-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
62 lines (50 loc) · 1.71 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from typing import Dict, Any, List
import torch.nn.functional as F
import numpy as np
import cv2
import torch
from model import ProprioNet
from torchvision.transforms import ToTensor
class EvalProprioNet:
"""
Uses trained NN to classify object faces
execute() -> int (class)
Params:
- model_path (Required)
- compute_type (default: 'cpu')
- axes (Required)
"""
# Parameter defaults
_compute_type: str = "cuda"
def __init__(self, model_path, state_dim, input_dim, compute_type):
self._compute_type = compute_type
self._input_dim: List[str] = input_dim
self._state_dim: int = state_dim
self._device = torch.device(self._compute_type)
self._model = ProprioNet(self._input_dim, state_dim)
self._model.to(self._device)
self._model.load_state_dict(torch.load(model_path))
self._model.eval()
self._to_tensor = ToTensor()
def run(self, frame):
frame = self._to_tensor(frame).double().to(self._device)
frame = torch.unsqueeze(frame, 0)
with torch.no_grad():
out: torch.Tensor = self._model(frame)
out = torch.flatten(out)
out = out.detach().cpu().numpy()
assert out.shape[0] == self._state_dim, print(out.shape)
return out
class Evaluator:
def __init__(self):
self.ground_truth = []
self.predicted = []
def add_sample(self,ground_truth, predicted):
self.ground_truth.append(ground_truth)
self.predicted.append(predicted)
def get_rmse(self):
gt = np.array(self.ground_truth)
pred = np.array(self.predicted)
mse = np.mean((pred - gt)**2)
rmse = np.sqrt(mse)
return rmse