-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolution.py
224 lines (193 loc) · 7.92 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
assignments = []
rows = 'ABCDEFGHI'
cols = '123456789'
def cross(A, B):
"Cross product of elements in A and elements in B."
return [s+t for s in A for t in B]
boxes = cross(rows, cols)
row_units = [cross(r, cols) for r in rows]
column_units = [cross(rows, c) for c in cols]
square_units = [cross(rs, cs) for rs in ('ABC','DEF','GHI')
for cs in ('123','456','789')]
unitlist = row_units + column_units + square_units
units = dict((s, [u for u in unitlist if s in u]) for s in boxes)
peers = dict((s, set(sum(units[s],[]))-set([s])) for s in boxes)
diag_boxes_lst = [[x + y for (x, y) in zip(rows, cols)], [x + y
for (x, y) in zip(rows, cols[::-1])]]
def assign_value(values, box, value):
"""
Please use this function to update your values dictionary!
Assigns a value to a given box. If it updates the board record it.
"""
# Don't waste memory appending actions that don't actually change any values
if values[box] == value:
return values
values[box] = value
if len(value) == 1:
assignments.append(values.copy())
return values
def naked_twins(values):
"""
Eliminate values using the naked twins strategy.
Args: values(dict) - a dictionary of the form {'box_name': '123456789', ...}
Returns: the values dictionary with the naked twins eliminated from peers.
"""
# Find all instances of naked twins
# Eliminate the naked twins as possibilities for their peers
for unit in unitlist + diag_boxes_lst:
twins = set()
temp_dct = dict() #key: value of the box, value: box index
for box in unit:
if values[box] not in temp_dct:
temp_dct[values[box]] = [box]
else:
temp_dct[values[box]].append(box)
for key, value in temp_dct.items():
if len(value) == 2 and len(key) == 2:
for box in unit:
if box not in temp_dct[key]:
for digit in key:
values = assign_value(values, box, \
values[box].replace(digit, ''))
return values
def grid_values(grid):
"""
Convert grid into a dict of {square: char} with '123456789' for empties.
Args: grid(string) - A grid in string form.
Returns: A grid in dictionary form
Keys: The boxes, e.g., 'A1'
Values: The value in each box, e.g., '8'. If the box has no value,
then the value will be '123456789'.
"""
values = []
all_digits = '123456789'
for c in grid:
if c == '.':
values.append(all_digits)
else:
values.append(c)
return dict(zip(boxes, values))
def display(values):
"""
Display the values as a 2-D grid.
Args: The sudoku in dictionary form
Returns: None
"""
width = 1 + max(len(values[s]) for s in boxes)
line = '+'.join(['-'*(width*3)] * 3)
for r in rows:
print(''.join(values[r+c].center(width)+('|' if c in '36' else '')
for c in cols))
if r in 'CF': print(line)
return
def eliminate(values):
"""
Eliminate values from peers (including diagonal peers) of each box with a
single value.
Go through all the boxes, and whenever there is a box with a single value,
eliminate this value from the set of values of all its peers.
In addition, whenever there is a box on the diagonals with a single value,
eliminate this value from the corresponding diagonal peers.
Moreover, eliminate values using naked twins strategy.
Args: values - Sudoku in dictionary form.
Returns: resulting Sudoku in dictionary form after eliminating values.
"""
solved_values = [box for box in values.keys() if len(values[box]) == 1]
for solved_box in solved_values:
digit = values[solved_box]
for peer in peers[solved_box]:
values = assign_value(values, peer, values[peer].replace(digit, ''))
for diag_boxes in diag_boxes_lst:
if solved_box in diag_boxes:
for diag_box in diag_boxes:
if diag_box != solved_box:
values = assign_value(values, diag_box, \
values[diag_box].replace(digit, ''))
return naked_twins(values)
def only_choice(values):
"""
Finalize all values that are the only choice for a unit.
Go through all the units, and whenever there is a unit with a value
that only fits in one box, assign the value to this box.
Args: Sudoku in dictionary form.
Returns: Resulting Sudoku in dictionary form after filling in only choices.
"""
for unit in unitlist:
for digit in '123456789':
potential_boxes = [box for box in unit if digit in values[box]]
if len(potential_boxes) == 1:
values = assign_value(values, potential_boxes[0], digit)
return values
def reduce_puzzle(values):
"""
Use Eliminate Strategy, Only Choice Strategy, & Naked Twins Strategy
Args: Sudoku in dictionary form.
Returns: Resulting Sudoku in dictionary form after eliminating invalid
choice and filling in only choices.
"""
stalled = False
while not stalled:
# Check how many boxes have a determined value
solved_values_before = len([box for box in values.keys() if
len(values[box]) == 1])
# Your code here: Use the Eliminate Strategy
values = eliminate(values)
# Your code here: Use the Only Choice Strategy
values = only_choice(values)
# Check how many boxes have a determined value, to compare
solved_values_after = len([box for box in values.keys() if
len(values[box]) == 1])
# If no new values were added, stop the loop.
stalled = solved_values_before == solved_values_after
# Sanity check, return False if there is a box with zero
# available values:
if len([box for box in values.keys() if len(values[box]) == 0]):
return False
return values
def search(values):
"""
Using depth-first search and propagation, create a search tree and solve
the sudoku.
Args: Sudoku in dictionary form.
Returns: A solution of the Sudoku puzzle in dictionary form if it exists.
Otherwise, False.
"""
# First, reduce the puzzle using the previous function
values = reduce_puzzle(values)
if not values:
return False ## Failed earlier
if all(len(values[box]) == 1 for box in boxes):
return values ## Solved!
# Choose one of the unfilled squares with the fewest possibilities
n, box = min((len(values[box]), box) for box in boxes
if len(values[box]) > 1)
# Now use recursion to solve each one of the resulting sudokus,
# and if one returns a value (not False), return that answer!
for value in values[box]:
new_sudoku = values.copy()
new_sudoku[box] = value
attempt = search(new_sudoku)
if attempt:
return attempt
def solve(grid):
"""
Find the solution to a Sudoku grid.
Args: grid(string) - a string representing a sudoku grid.
Example: '2.............62....1....7...6..8...3...9...7...6..4...4....
8....52.............3'
Returns: The dictionary representation of the final sudoku grid. False if no
solution exists.
"""
values = search(grid_values(grid))
return values if values else False
if __name__ == '__main__':
diag_sudoku_grid = '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
display(solve(diag_sudoku_grid))
try:
from visualize import visualize_assignments
visualize_assignments(assignments)
except SystemExit:
pass
except:
print('We could not visualize your board due to a pygame issue.'
'Not a problem! It is not a requirement.')