-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain_base.py
executable file
·201 lines (133 loc) · 6.71 KB
/
train_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This script is used to train new pose estimator models on batch, setting parameters from another script.
THIS SCRIPT IS INTENDED TO BE CALLED FROM 'train_architectures.py'. FOR MANUAL PARAMETER SELECTION USE 'train.py' INSTEAD.
"""
# Try to set seeds for everything
import numpy as np
import tensorflow as tf
import random as rn
import os
import sys
seed = 0
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(seed)
rn.seed(seed)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
session_conf.gpu_options.allow_growth = True
from tensorflow.keras import backend as K
tf.set_random_seed(seed)
sess = tf.Session(graph = tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# Other imports.
import time
import pandas as pd
from tensorflow.keras.callbacks import EarlyStopping, CSVLogger, ReduceLROnPlateau
from architectures import mpatacchiola_generic
from data_generator_array import HeadPoseDataGenerator
# Control parameters.
batch_size = 128
epochs = 500
verbose = True
patience = 10
# Datagen parameters.
mean = 0.408808
std = 0.237583
t_mean = -0.041212
t_std = 0.323931
p_mean = -0.000276
p_std = 0.540958
# Paths.
clean_dir = '/gdrive/My Drive/headpose_final/clean/'
db_name = 'aflw_pointing04'
model_dir = '/gdrive/My Drive/headpose_final/models/'
model_csv = model_dir + 'models.csv'
# Callbacks.
stop = EarlyStopping(monitor='val_mean_absolute_error', patience=patience, verbose=verbose, restore_best_weights=True)
reduce_lr = ReduceLROnPlateau()
# Dataset paths.
img_dir = clean_dir + db_name + '/'
train_csv = img_dir + 'train.csv'
validation_csv = img_dir + 'validation.csv'
test_csv = img_dir + 'test.csv'
# Load dataframes.
train_df = pd.read_csv(train_csv)
validation_df = pd.read_csv(validation_csv)
test_df = pd.read_csv(test_csv)
# Load image arrays.
train_array = np.load(img_dir + 'train_img.npy')
validation_array = np.load(img_dir + 'validation_img.npy')
test_array = np.load(img_dir + 'test_img.npy')
# Set input size for the estimator model.
in_size = 64
# Get the rest of parameters (architecture and data augmentation parameters) from command line.
if len(sys.argv) < 11:
print("Usage: " + sys.argv[0] + " <num_conv_blocks> <num_filters_first_layer> <num_dense_layers> <dense_layer_size> <dropout_rate> <shift_range> <brightness_min> <brightness_max> <zoom_min> <zoom_max>")
exit()
else:
num_conv_blocks = int(sys.argv[1])
num_filters_start = int(sys.argv[2])
num_dense_layers = int(sys.argv[3])
dense_layer_size = int(sys.argv[4])
if float(sys.argv[5]) != 0:
dropout_rate = float(sys.argv[5])
else:
dropout_rate = 0
shift_range = float(sys.argv[6])
brightness_range = [float(sys.argv[7]), float(sys.argv[8])]
zoom_range = [float(sys.argv[9]), float(sys.argv[10])]
# Configure data generators.
train_generator = HeadPoseDataGenerator(train_df, train_array, batch_size, normalize=True, input_norm=[mean, std],
tilt_norm=[t_mean, t_std], pan_norm=[p_mean, p_std], augment=True,
shift_range=shift_range, zoom_range=zoom_range,
brightness_range=brightness_range, img_rescale=1./255, out_rescale=1./90)
validation_generator = HeadPoseDataGenerator(validation_df, validation_array, batch_size, normalize=True, input_norm=[mean, std],
tilt_norm=[t_mean, t_std], pan_norm=[p_mean, p_std], img_rescale=1./255,
out_rescale=1./90)
STEP_SIZE_TRAIN = train_generator.__len__()
STEP_SIZE_VALID = validation_generator.__len__()
# Set new model name.
model_name = 'headpose' + str(int(time.time()))
model_path = model_dir + model_name + '.h5'
loss_csv = model_dir + model_name + '_loss.csv'
# Configure a callback for logging train progress in a .csv file.
csv_logger = CSVLogger(loss_csv)
# Get number of FLOPs.
run_meta = tf.RunMetadata()
with tf.Session(graph=tf.Graph()) as sess_2:
K.set_session(sess_2)
model = mpatacchiola_generic(in_size, num_conv_blocks, num_filters_start, num_dense_layers, dense_layer_size, dropout_rate, batch_size=1)
opts = tf.profiler.ProfileOptionBuilder.float_operation()
flops = tf.profiler.profile(sess_2.graph, run_meta=run_meta, cmd='op', options=opts).total_float_ops
# Restore session
K.set_session(sess)
# Configure estimator model from architecture parameters set before.
model = mpatacchiola_generic(in_size, num_conv_blocks, num_filters_start, num_dense_layers, dense_layer_size, dropout_rate)
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'])
# Train the configured model on the train generator.
history = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=validation_generator,
validation_steps=STEP_SIZE_VALID, epochs=epochs, callbacks=[reduce_lr, stop, csv_logger], verbose=verbose)
# Get score for the dataset (tilt, pan and global error).
pred = model.predict((test_array / 255.0 - mean) / std)
mean_tilt_error = np.mean(np.abs(test_df['tilt'] - ((pred[:,0] * t_std + t_mean) * 90.0)))
mean_pan_error = np.mean(np.abs(test_df['pan'] - ((pred[:,1] * p_std + p_mean) * 90.0)))
score = (mean_pan_error + mean_tilt_error) / 2
# Save trained model.
model.save(model_path)
# Record configured architecture and data augmentation parameters, with the obtained score for that configuration.
t_epochs = len(history.history['loss'])
if os.path.exists(model_csv):
with open(model_csv, "a") as file:
file.write(model_name + '.h5,%d,%d,%d,%d,%d,%.2f,%.1f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%d,%d,%d\n' %
(in_size, num_conv_blocks, num_filters_start, num_dense_layers, dense_layer_size, dropout_rate,
shift_range, brightness_range[0], brightness_range[1], zoom_range[0], zoom_range[1],
mean_tilt_error, mean_pan_error, score, t_epochs, model.count_params(), flops))
else:
with open(model_csv, "w") as file:
file.write('model,in_size,num_conv_blocks,num_filters_start,num_dense_layers,dense_layer_size,dropout_rate,'
'shift_range,brightness_min,brightness_max,zoom_min,zoom_max,tilt_error,pan_error,score,stop_epochs,num_weights,flops\n')
file.write(model_name + '.h5,%d,%d,%d,%d,%d,%.2f,%.1f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%d,%d,%d\n' %
(in_size, num_conv_blocks, num_filters_start, num_dense_layers, dense_layer_size, dropout_rate,
shift_range, brightness_range[0], brightness_range[1], zoom_range[0], zoom_range[1],
mean_tilt_error, mean_pan_error, score, t_epochs, model.count_params(), flops))