-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmri.js
527 lines (487 loc) · 23 KB
/
mri.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/* globals Struct, pako */
'use strict';
function MRI() {
var me = {
mriPath: null, // path to mri
mriFile: null, // mri file
//struct_url: 'http://localhost/structjs/struct.js',
//pako_url: 'http://localhost/libs/pako/1.0.5/pako.js',
struct_url: 'https://cdn.jsdelivr.net/gh/neuroanatomy/structjs@0.0.1/struct.js',
pako_url: 'https://cdn.jsdelivr.net/npm/pako@1.0.10/dist/pako.min.js',
// script loader
loadScript: function loadScript(path, testScriptPresent) {
var pr = new Promise(function(resolve, reject) {
console.log(testScriptPresent, testScriptPresent());
if (testScriptPresent && testScriptPresent()) {
console.log('Script', path, 'already present, not loading it again');
resolve();
return;
}
var s = document.createElement('script');
s.src = path;
s.onload = function() {
console.log('Loaded', path);
resolve();
return;
};
s.onerror = function() {
console.error('ERROR');
reject();
return;
};
document.body.appendChild(s);
});
return pr;
},
init: function init() {
var pr = new Promise(function(resolve, reject) {
me.loadScript(me.struct_url, function() { return window.Struct !== undefined; })
.then(function() { return me.loadScript(me.pako_url, function() { return window.pako !== undefined; }); })
/*
var pr = me.loadScript('https://cdn.rawgit.com/r03ert0/mrijs/v0.0.2/mri.js',function(){return window.MRI!=undefined});
*/
.then(function() {
if (!me.NiiHdrLE) {
me.NiiHdrLE = Struct()
.word32Sle('sizeof_hdr') // Size of the header. Must be 348 (bytes)
.chars('data_type', 10) // Not used; compatibility with analyze.
.chars('db_name', 18) // Not used; compatibility with analyze.
.word32Sle('extents') // Not used; compatibility with analyze.
.word16Sle('session_error') // Not used; compatibility with analyze.
.word8('regular') // Not used; compatibility with analyze.
.word8('dim_info') // Encoding directions (phase, frequency, slice).
.array('dim', 8, 'word16Sle') // Data array dimensions.
.floatle('intent_p1') // 1st intent parameter.
.floatle('intent_p2') // 2nd intent parameter.
.floatle('intent_p3') // 3rd intent parameter.
.word16Sle('intent_code') // nifti intent.
.word16Sle('datatype') // Data type.
.word16Sle('bitpix') // Number of bits per voxel.
.word16Sle('slice_start') // First slice index.
.array('pixdim', 8, 'floatle') // Grid spacings (unit per dimension).
.floatle('vox_offset') // Offset into a .nii file.
.floatle('scl_slope') // Data scaling, slope.
.floatle('scl_inter') // Data scaling, offset.
.word16Sle('slice_end') // Last slice index.
.word8('slice_code') // Slice timing order.
.word8('xyzt_units') // Units of pixdim[1..4].
.floatle('cal_max') // Maximum display intensity.
.floatle('cal_min') // Minimum display intensity.
.floatle('slice_duration') // Time for one slice.
.floatle('toffset') // Time axis shift.
.word32Sle('glmax') // Not used; compatibility with analyze.
.word32Sle('glmin') // Not used; compatibility with analyze.
.chars('descrip', 80) // Any text.
.chars('aux_file', 24) // Auxiliary filename.
.word16Sle('qform_code') // Use the quaternion fields.
.word16Sle('sform_code') // Use of the affine fields.
.floatle('quatern_b') // Quaternion b parameter.
.floatle('quatern_c') // Quaternion c parameter.
.floatle('quatern_d') // Quaternion d parameter.
.floatle('qoffset_x') // Quaternion x shift.
.floatle('qoffset_y') // Quaternion y shift.
.floatle('qoffset_z') // Quaternion z shift.
.array('srow_x', 4, 'floatle') // 1st row affine transform
.array('srow_y', 4, 'floatle') // 2nd row affine transform.
.array('srow_z', 4, 'floatle') // 3rd row affine transform.
.chars('intent_name', 16) // Name or meaning of the data.
.chars('magic', 4); // Magic string.
}
if (!me.NiiHdrBE) {
me.NiiHdrBE = Struct()
.word32Sbe('sizeof_hdr') // Size of the header. Must be 348 (bytes)
.chars('data_type', 10) // Not used; compatibility with analyze.
.chars('db_name', 18) // Not used; compatibility with analyze.
.word32Sbe('extents') // Not used; compatibility with analyze.
.word16Sbe('session_error') // Not used; compatibility with analyze.
.word8('regular') // Not used; compatibility with analyze.
.word8('dim_info') // Encoding directions (phase, frequency, slice).
.array('dim', 8, 'word16Sbe') // Data array dimensions.
.floatbe('intent_p1') // 1st intent parameter.
.floatbe('intent_p2') // 2nd intent parameter.
.floatbe('intent_p3') // 3rd intent parameter.
.word16Sbe('intent_code') // nifti intent.
.word16Sbe('datatype') // Data type.
.word16Sbe('bitpix') // Number of bits per voxel.
.word16Sbe('slice_start') // First slice index.
.array('pixdim', 8, 'floatbe') // Grid spacings (unit per dimension).
.floatbe('vox_offset') // Offset into a .nii file.
.floatbe('scl_slope') // Data scaling, slope.
.floatbe('scl_inter') // Data scaling, offset.
.word16Sbe('slice_end') // Last slice index.
.word8('slice_code') // Slice timing order.
.word8('xyzt_units') // Units of pixdim[1..4].
.floatbe('cal_max') // Maximum display intensity.
.floatbe('cal_min') // Minimum display intensity.
.floatbe('slice_duration') // Time for one slice.
.floatbe('toffset') // Time axis shift.
.word32Sbe('glmax') // Not used; compatibility with analyze.
.word32Sbe('glmin') // Not used; compatibility with analyze.
.chars('descrip', 80) // Any text.
.chars('aux_file', 24) // Auxiliary filename.
.word16Sbe('qform_code') // Use the quaternion fields.
.word16Sbe('sform_code') // Use of the affine fields.
.floatbe('quatern_b') // Quaternion b parameter.
.floatbe('quatern_c') // Quaternion c parameter.
.floatbe('quatern_d') // Quaternion d parameter.
.floatbe('qoffset_x') // Quaternion x shift.
.floatbe('qoffset_y') // Quaternion y shift.
.floatbe('qoffset_z') // Quaternion z shift.
.array('srow_x', 4, 'floatbe') // 1st row affine transform
.array('srow_y', 4, 'floatbe') // 2nd row affine transform.
.array('srow_z', 4, 'floatbe') // 3rd row affine transform.
.chars('intent_name', 16) // Name or meaning of the data.
.chars('magic', 4); // Magic string.
}
resolve();
});
});
return pr;
},
/**
* @function createNifti
* @desc create a nifti1 file
* @param dim array Array with 3 integers with the x, y and z dimensions of the data
* @param pixdim array Array with 3 floats with the x, y and z sizes of the data voxels's
* @param v2w array Array containing 4 arrays, each containing 4 floats, giving the affine voxel-to-world matrix of the data
* @param data array An array of size dim[0]*dim[1]*dim[2] containing the data to be encoded
* @returnValue Gzip compressed nifti format data
*/
createNifti: function createNifti(dim, pixdim, v2w, data) {
let sizeof_hdr = 348;
let dimensions = 4; // number of dimension values provided
let spacetimeunits = 2 + 8; // 2=nifti code for millimetres | 8=nifti code for seconds
let datatype = 16; // datatype for Float32 data
let vox_offset = 352;
let bitsPerVoxel = 32;
let newHdr = {
sizeof_hdr: sizeof_hdr,
data_type: '', db_name: '', extents: 0, session_error: 0, regular: 0, dim_info: 0,
dim: [3, dim[0], dim[1], dim[2], 1, 1, 1, 1],
intent_p1: 0, intent_p2: 0, intent_p3: 0, intent_code: 0,
datatype: datatype, // uchar
bitpix: bitsPerVoxel,
slice_start: 0,
pixdim: [-1, pixdim[0], pixdim[1], pixdim[2], 0, 1, 1, 1],
vox_offset: vox_offset,
scl_slope: 1, scl_inter: 0, slice_end: 0, slice_code: 0,
xyzt_units: spacetimeunits,
cal_max: 0, cal_min: 0, slice_duration: 0, toffset: 0,
glmax: 0, glmin: 0,
descrip: 'Reorient, 5 January 2018',
aux_file: '',
qform_code: 0,
sform_code: 1,
quatern_b: 0, quatern_c: 0, quatern_d: 0,
qoffset_x: 0, qoffset_y: 0, qoffset_z: 0,
srow_x: [v2w[0][0], v2w[0][1], v2w[0][2], v2w[0][3]],
srow_y: [v2w[1][0], v2w[1][1], v2w[1][2], v2w[1][3]],
srow_z: [v2w[2][0], v2w[2][1], v2w[2][2], v2w[2][3]],
intent_name: '',
magic: 'n+1'
};
me.NiiHdrLE.allocate();
let niihdr = me.NiiHdrLE.buffer();
let i;
for(i in newHdr) {
me.NiiHdrLE.fields[i] = newHdr[i];
}
let hdr = toArrayBuffer(niihdr);
let img = new Float32Array(data.length); //Buffer(sz);
for(i = 0; i<data.length; i++) {
img[i] = data[i];
}
let nii = new Uint8Array(img.buffer.byteLength + vox_offset);
nii.set(hdr, 0);
nii.set(new Uint8Array(img.buffer), vox_offset);
var niigz = new pako.Deflate({gzip:true});
niigz.push(nii, true);
return niigz.result;
},
/**
* @function saveNifti
* @desc save a nifti1 file
*/
saveNifti: function saveNifti(niigz, name) {
var a = document.createElement('a');
var niigzBlob = new Blob([niigz]);
a.href = window.URL.createObjectURL(niigzBlob);
a.download = name;
document.body.appendChild(a);
a.click();
},
loadMRIFromPath: function loadMRIFromPath(path, updateProgress) {
var pr = new Promise(function(resolve, reject) {
// load data
var req = new XMLHttpRequest();
req.open('GET', path, true);
req.responseType = 'arraybuffer';
req.onload = function(oEvent) {
// decompress data
var niigz = this.response;
var inflate = new pako.Inflate();
inflate.push(new Uint8Array(niigz), true);
var nii = inflate.result.buffer;
me.parseNifti(nii);
me.mriPath = path;
me.computeS2VTransform();
me.MatrixVox2Mm = me.vox2mm();
me.MatrixMm2Vox = me.mm2vox();
console.log('done');
resolve();
};
req.addEventListener("progress", updateProgress);
req.onerror = function() {
reject('Error loading data');
};
req.send();
});
return pr;
},
loadMRIFromFile: function loadMRIFromFile(file) {
var pr = new Promise(function(resolve, reject) {
const arr = file.name.split(".");
let compressed = true;
if(arr[arr.length - 1] === "gz" && arr[arr.length - 2] === "nii") {
compressed = true;
} else if (arr[arr.length - 1] === "nii") {
compressed = false;
} else {
alert("Unknown file format. Only nii and nii.gz are accepted");
reject();
}
// load data
var reader = new FileReader();
reader.onload = function() {
let nii;
// decompress data if necessary
if(compressed) {
var niigz = this.result;
var inflate = new pako.Inflate();
inflate.push(new Uint8Array(niigz), true);
nii = inflate.result.buffer;
} else {
nii = this.result;
}
me.parseNifti(nii);
me.computeS2VTransform();
me.MatrixVox2Mm = me.vox2mm();
me.MatrixMm2Vox = me.mm2vox();
console.log('done');
resolve();
};
reader.readAsArrayBuffer(file);
});
return pr;
},
NiiHdrLE: null,
NiiHdrBE: null,
swapInt16: function swapInt16(arr) {
var i,dv = new DataView(arr.buffer);
for (i = 0; i < arr.length; i++) {
arr[i] = dv.getInt16(2 * i, false);
}
return arr;
},
swapUint16: function swapUint16(arr) {
var i,dv = new DataView(arr.buffer);
for (i = 0; i < arr.length; i++) {
arr[i] = dv.getUint16(2 * i, false);
}
return arr;
},
swapInt32: function swapInt32(arr) {
var i,dv = new DataView(arr.buffer);
for (i = 0; i < arr.length; i++) {
arr[i] = dv.getInt32(4 * i, false);
}
return arr;
},
swapFloat32: function swapFloat32(arr) {
var i,dv = new DataView(arr.buffer);
for (i = 0; i < arr.length; i++) {
arr[i] = dv.getFloat32(4 * i, false);
}
return arr;
},
/**
* @function parseNifti
*/
parseNifti: function parseNifti(nii) {
var endianness = 'le';
me.NiiHdrLE._setBuff(toBuffer(nii));
var h = JSON.parse(JSON.stringify(me.NiiHdrLE.fields));
if (h.sizeof_hdr !== 348) {
me.NiiHdrBE._setBuff(toBuffer(nii));
h = JSON.parse(JSON.stringify(me.NiiHdrBE.fields));
endianness = 'be';
}
var vox_offset = h.vox_offset;
var sizeof_hdr = h.sizeof_hdr;
me.hdr = nii.slice(0, vox_offset);
me.datatype = h.datatype;
me.dim = [h.dim[1], h.dim[2], h.dim[3]];
me.datadim = h.dim[4];
console.log(me.datadim);
me.pixdim = [h.pixdim[1], h.pixdim[2], h.pixdim[3]];
switch (me.datatype) {
case 2: // UCHAR
me.data = new Uint8Array(nii, vox_offset);
break;
// case 256: // INT8
// me.data = new Uint8Array(nii,vox_offset);
// break;
case 4: // SHORT
if (endianness === 'le') {
me.data = new Int16Array(nii, vox_offset);
} else {
me.data = me.swapInt16(new Int16Array(nii, vox_offset));
}
break;
case 8: // INT
if (endianness === 'le') {
me.data = new Int32Array(nii, vox_offset);
} else {
me.data = me.swapInt32(new Int32Array(nii, vox_offset));
}
break;
case 16: // FLOAT
if (endianness === 'le') {
me.data = new Float32Array(nii, vox_offset);
} else {
me.data = me.swapFloat32(new Float32Array(nii, vox_offset));
}
break;
case 256: // INT8
me.data = new Int8Array(nii, vox_offset);
break;
case 512: // UINT16
if (endianness === 'le') {
me.data = new Uint16Array(nii, vox_offset);
} else {
me.data = me.swapUint16(new Uint16Array(nii, vox_offset));
}
break;
default:
console.error('Unknown dataType: ' + me.datatype);
}
},
multMatVec: function multMatVec(m, v) {
return [
m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2] + m[0][3],
m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2] + m[1][3],
m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2] + m[2][3]
];
},
multMatMat: function multMatMat(m, n) {
return [
[m[0][0]*n[0][0]+m[0][1]*n[1][0]+m[0][2]*n[2][0]+m[0][3]*n[3][0], m[0][0]*n[0][1]+m[0][1]*n[1][1]+m[0][2]*n[2][1]+m[0][3]*n[3][1], m[0][0]*n[0][2]+m[0][1]*n[1][2]+m[0][2]*n[2][2]+m[0][3]*n[3][2], m[0][0]*n[0][3]+m[0][1]*n[1][3]+m[0][2]*n[2][3]+m[0][3]*n[3][3]],
[m[1][0]*n[0][0]+m[1][1]*n[1][0]+m[1][2]*n[2][0]+m[1][3]*n[3][0], m[1][0]*n[0][1]+m[1][1]*n[1][1]+m[1][2]*n[2][1]+m[1][3]*n[3][1], m[1][0]*n[0][2]+m[1][1]*n[1][2]+m[1][2]*n[2][2]+m[1][3]*n[3][2], m[1][0]*n[0][3]+m[1][1]*n[1][3]+m[1][2]*n[2][3]+m[1][3]*n[3][3]],
[m[2][0]*n[0][0]+m[2][1]*n[1][0]+m[2][2]*n[2][0]+m[2][3]*n[3][0], m[2][0]*n[0][1]+m[2][1]*n[1][1]+m[2][2]*n[2][1]+m[2][3]*n[3][1], m[2][0]*n[0][2]+m[2][1]*n[1][2]+m[2][2]*n[2][2]+m[2][3]*n[3][2], m[2][0]*n[0][3]+m[2][1]*n[1][3]+m[2][2]*n[2][3]+m[2][3]*n[3][3]],
[m[3][0]*n[0][0]+m[3][1]*n[1][0]+m[3][2]*n[2][0]+m[3][3]*n[3][0], m[3][0]*n[0][1]+m[3][1]*n[1][1]+m[3][2]*n[2][1]+m[3][3]*n[3][1], m[3][0]*n[0][2]+m[3][1]*n[1][2]+m[3][2]*n[2][2]+m[3][3]*n[3][2], m[3][0]*n[0][3]+m[3][1]*n[1][3]+m[3][2]*n[2][3]+m[3][3]*n[3][3]]
];
},
inv4x4Mat: function inv4x4Mat(m) {
let inv = [];
let det, i;
inv[0] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] +m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5];
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if (det === 0) {
return;
}
det = 1.0 / det;
for (i = 0; i < 16; i++) {
inv[i] = inv[i] * det;
}
return inv;
},
/**
* @function vox2mm
* @desc Obtain the affine matrix to pass from voxel indices to world
* coordinates (millimetres) from the nifti header
*/
vox2mm: function vox2mm() {
var h = JSON.parse(JSON.stringify(me.NiiHdrLE.fields));
return [
[h.srow_x[0], h.srow_x[1], h.srow_x[2], h.srow_x[3]],
[h.srow_y[0], h.srow_y[1], h.srow_y[2], h.srow_y[3]],
[h.srow_z[0], h.srow_z[1], h.srow_z[2], h.srow_z[3]],
[0, 0, 0, 1]
];
},
/**
* @function mm2vox
* @desc Compute the affine matrix to pass from coordinates in world
* dimensions (millimetres) voxel indices by inverting the vox2mm
* matrix.
*/
mm2vox: function mm2vox() {
var m = me.vox2mm();
var im = me.inv4x4Mat([...m[0], ...m[1], ...m[2], ...m[3]]);
return [im.splice(0, 4), im.splice(0, 4), im.splice(0, 4), im];
},
/**
* @todo Additional transformation functions
*/
/*
vox2pix: function vox2pix() {
},
pix2vox: function pix2vox() {
},
mm2pix: function mm2pix() {
},
pix2mm: function pix2mm() {
},
*/
/**
* @function computeS2VTransformation
* @desc Find the orthogonal rotation closest to the orientation of the brain
*/
computeS2VTransform: function computeS2VTransform() {
var h = JSON.parse(JSON.stringify(me.NiiHdrLE.fields));
var v2w = [
[h.srow_x[0], h.srow_y[0], h.srow_z[0]],
[h.srow_x[1], h.srow_y[1], h.srow_z[1]],
[h.srow_x[2], h.srow_y[2], h.srow_z[2]]
];
var mi = {i: 0, v: 0}; v2w[0].map(function(o, n) { if (Math.abs(o) > Math.abs(mi.v)) { mi = {i: n, v: o}; } });
var mj = {i: 0, v: 0}; v2w[1].map(function(o, n) { if (Math.abs(o) > Math.abs(mj.v)) { mj = {i: n, v: o}; } });
var mk = {i: 0, v: 0}; v2w[2].map(function(o, n) { if (Math.abs(o) > Math.abs(mk.v)) { mk = {i: n, v: o}; } });
me.s2v = {
x: mi.i, // correspondence between screen coordinate x and voxel coordinate i
y: mj.i, // same for y
z: mk.i, // same for z
dx: (mi.v > 0) ? 1 : (-1), // direction of displacement in space coordinate x with displacement in voxel coordinate i
dy: (mj.v > 0) ? 1 : (-1), // same for y
dz: (mk.v > 0) ? 1 : (-1), // same for z
X: (mi.v > 0) ? 0 : (me.dim[0] - 1), // starting value for space coordinate x when voxel coordinate i starts
Y: (mj.v > 0) ? 0 : (me.dim[1] - 1), // same for y
Z: (mk.v > 0) ? 0 : (me.dim[2] - 1), // same for z
sdim: [],
wpixdim: []
};
me.s2v.sdim[mi.i] = me.dim[0];
me.s2v.sdim[mj.i] = me.dim[1];
me.s2v.sdim[mk.i] = me.dim[2];
me.s2v.wpixdim[mi.i] = me.pixdim[0];
me.s2v.wpixdim[mj.i] = me.pixdim[1];
me.s2v.wpixdim[mk.i] = me.pixdim[2];
}
};
return me;
}