-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbp_net.hpp
222 lines (183 loc) · 5.18 KB
/
bp_net.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#pragma once
#include <vector>
#include "matrix.hpp"
#include "random.h"
namespace cnn_net {
struct neuron {
neuron() = default;
neuron(size_t input_size) {
init(input_size);
}
neuron(const neuron& n) = delete;
/*{
weights = n.weights;
deltas = n.deltas;
bias = n.bias;
output = n.output;
}*/
neuron(neuron&& n) : weights(std::move(n.weights)), deltas(std::move(n.deltas)),
bias(n.bias), output(n.output)
{
n.reset();
}
neuron& operator= (const neuron& m) = delete;
neuron& operator= (neuron&& m) = delete;
matrix_1d weights;//input 权值列表
matrix_1d deltas; //delta列表
double bias = 0; //偏置
double output = 0; //输出值
void init(size_t input_size) {
assert(input_size > 0);
weights = { input_size };
deltas = matrix_1d(input_size);
for (size_t i = 0; i < input_size; i++) {
weights(i) = uniform_rand<double>(-1, 1);
}
}
void reset() {
weights.reset();
deltas.reset();
bias = 0;
output = 0;
}
};
struct layer {
std::vector<neuron> neurons; //the next layer neurons
matrix_1d input; //input values
layer() = default;
layer(size_t input_size, size_t neuron_count) {
init(input_size, neuron_count);
}
void init(size_t input_size, size_t neuron_count) {
for (size_t i = 0; i < neuron_count; i++)
{
//neuron n(input_size);
neurons.emplace_back(neuron{ input_size });
}
input = matrix_1d(input_size);
//just for test
for (size_t i = 0; i < input_size; i++) {
input(i) = uniform_rand<double>(-1, 1);
}
}
void calculate() {
double sum = 0;
for (size_t i = 0; i < neurons.size(); i++)
{
for (size_t j = 0; j < input.size(); j++)
{
sum += input(j)*neurons[i].weights(j);
}
sum += neurons[i].bias;
neurons[i].output = 1.f / (1.f + exp(-sum)); //sigmoid
}
}
};
class bp_net {
public:
void init(size_t input_count, size_t input_neurons, size_t output_count, std::vector<size_t> hidden_neurons) {
assert(input_count && input_neurons && output_count && !hidden_neurons.empty());
hidden_layer_count_ = hidden_neurons.size();
//init input layer
input_layer_.init(input_count, input_neurons);
//init hidden layers
for (size_t i = 0; i < hidden_layer_count_; i++){
if(i==0){
hidden_layers_[i] = { input_count, hidden_neurons[0] };
}
else {
hidden_layers_[i] = { hidden_neurons[i-1], hidden_neurons[i] };
}
}
//init output layer
output_layer_.init(hidden_neurons[hidden_layer_count_ - 1], output_count);
}
void update(int layer_index) {
if (layer_index == -1) {
for (size_t i = 0; i < input_layer_.neurons.size(); i++)
{
hidden_layers_[0].input(i) = input_layer_.neurons[i].output;
}
}
else {
for (size_t i = 0; i < hidden_layers_[layer_index].neurons.size(); i++)
{
if ((size_t)layer_index < hidden_layers_.size() - 1) {
hidden_layers_[layer_index + 1].input(i) = hidden_layers_[layer_index].neurons[i].output;
}
else {
output_layer_.input(i) = hidden_layers_[layer_index].neurons[i].output;
}
}
}
}
void forward(const double *input) {
input_layer_.calculate();
update(-1);
for (size_t i = 0; i < hidden_layers_.size(); i++)
{
hidden_layers_[i].calculate();
update(i);
}
}
double train(const double *desired_output, const double *input, double alpha, double momentum) {
double quadratic = 0;
return 0;
}
void output_layer_error(const float *desired_output) {
for (size_t i = 0; i < output_layer_.neurons.size(); i++) {
double output = output_layer_.neurons[i].output;
double result = output * (1 - output) * (desired_output[i] - output);
output_layer_delta_[i] = result;
output_layer_.neurons[i].deltas(i) = result;
total_error_ += (desired_output[i] - output) * (desired_output[i] - output);
for (size_t j = 0; j < output_layer_.input.size(); j++)
{
output_sum_ += output_layer_.neurons[i].weights(j)*result; //for next layer
}
}
total_error_ /= 2; //平方差
}
void hidden_layer_error() {
for (size_t i = hidden_layer_count_ - 1; i >= 0; i--) {
for (size_t j = 0; j < hidden_layers_[i].neurons.size(); j++)
{
double output = hidden_layers_[i].neurons[j].output;
double result = output * (1 - output) * output_sum_;
hidden_layer_delta_[i] = result;
hidden_layers_[i].neurons[j].deltas(j) = result;
}
}
}
void backward() {
//更新输出层权值和偏置
//更新隐藏层权值和偏置
}
void update_weight(double learning_rate) {
for (size_t i = 0; i < output_layer_.neurons.size(); i++) {
for (size_t j = 0; j < output_layer_.input.size(); j++)
{
double delta = learning_rate * output_layer_delta_[j] * output_layer_.input(j);
output_layer_.neurons[i].weights(j) += delta;
output_layer_.neurons[i].deltas(j) = delta;
}
}
}
void update_bias() {
}
layer &get_output_layer()
{
return output_layer_;
}
private:
layer input_layer_;
layer output_layer_;
std::vector<layer> hidden_layers_;
size_t hidden_layer_count_;
//中间变量
std::vector<double> output_layer_delta_;
double output_sum_ = 0;
std::vector<double> hidden_layer_delta_;
double total_error_ = 0;
};
}