Implementing Yolov3 algorithm using OpenCV to detect different objects
Input |
Output |
---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1-Firstly run download_models.sh
. This will download following three files:-
- coco.names (contains the names of all the detection objects)
- yolov3.weights (pretrained weights for the model)
- yolov3.cfg (configuration file of yolov3 algorithm)
2-Then run yolov3_run.py
. The output will be stored in the format of video_name_yolo_out_py.avi
for videos and image_name_yolo_out_py.jpg
for images.
3-For running through command lines:-
- python3 yolov3_run.py --video=video_name.mp4
- python3 yolov3_run.py --image=image_name.jpg
.
└── Yolov3-Implementation-Using-OpenCV
├── bash
│ └── tree_structure.sh
├── download_models.sh
├── images
│ ├── input-1.jpeg
│ ├── input-2.jpeg
│ ├── input-3.jpeg
│ ├── output-1.jpg
│ ├── output-2.jpg
│ └── output-3.jpg
├── README.md
└── yolov3_run.py
coco.names (https://github.com/pjreddie/darknet/blob/master/data/coco.names?raw=true-O./coco.names)
yolov3.weights (https://pjreddie.com/media/files/yolov3.weights)
yolov3.cfg https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg?raw=true-O./yolov3.cfg)