-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
63 lines (52 loc) · 1.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
from model import FlowerPredictionModel
from utils import load_data
# Set command line argument parser
parser = argparse.ArgumentParser(
description='Train model to predict flower image names',
)
# Required command line arguments
parser.add_argument('data_directory', help="Directory to read images from", action="store")
# Optional command line arguments
parser.add_argument("--save_dir", help="Directory to save trained model", action="store")
parser.add_argument("--arch", help="Architecture of model", action="store")
parser.add_argument("--learning_rate", help="Learning rate", action="store", type=float)
parser.add_argument("--hidden_units", help="Number of hidden units for classifier", action="store", type=int)
parser.add_argument('--epochs', help="Number of epochs to train model", action="store", type=int)
parser.add_argument('--gpu', help="Use GPU if available", action='store_true')
args = parser.parse_args()
# Load data
trainloader, validloader, testloader, class_to_idx = load_data(args.data_directory)
# Create model object
model = FlowerPredictionModel(args.gpu)
# Define model architecture parameters
if args.arch is not None:
arch = args.arch
else:
arch="vgg16"
if args.learning_rate is not None:
learning_rate = args.learning_rate
else:
learning_rate=0.003
if args.hidden_units is not None:
hidden_units = args.hidden_units
else:
hidden_units=15000
# Build new model
model.build(arch, learning_rate, hidden_units)
# Define model training parameters
if args.epochs is not None:
epochs = args.epochs
else:
epochs=4
# Train model
model.train(epochs, trainloader, validloader, class_to_idx)
# Test model
model.test(testloader)
# Define model save parameters
if args.save_dir is not None:
save_dir = args.save_dir
else:
save_dir=""
# Save model
model.save(save_dir)