forked from corinnabrungs/msn_tree_library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnpatlas_client.py
139 lines (113 loc) · 4.46 KB
/
npatlas_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import logging
import urllib.parse
import pandas as pd
import pandas_utils
from date_utils import iso_datetime_now, create_expired_entries_dataframe
from meta_constants import MetaColumns
from pandas_utils import remove_empty_lists_values, isnull, isnull_or_empty
from rest_utils import get_json_response, json_col
import datetime as dt
from joblib import Memory
memory = Memory("memcache")
# NPAtlas:
# ORIGIN ORGANISM TYPE
NP_ATLAS_URL = "https://www.npatlas.org/api/v1/compounds/basicSearch?method=full&{}&threshold=0&orderby=npaid&ascending=true&limit=10"
NP_ATLAS_STRUCTURE_SEARCH_URL = (
"https://www.npatlas.org/api/v1/compounds/structureSearch?structure={}"
"&type={}&method=sim&threshold=0.9999&skip=0&limit=10&stereo=false"
)
NP_ATLAS_PREFIX = "npatlas"
def np_atlas_url_by_exact_structure(structure, search_type="inchikey"):
return NP_ATLAS_URL.format(search_type + "=" + urllib.parse.quote(structure))
def np_atlas_url_similar_structure(structure, search_type="inchikey"):
return NP_ATLAS_URL.format(urllib.parse.quote(structure), search_type)
def npatlas_url(
structure: str, search_type: str = "inchikey", similarity: str = "exact"
):
url = None
if similarity == "exact":
url = np_atlas_url_by_exact_structure(structure, search_type)
if similarity == "similar":
url = np_atlas_url_similar_structure(structure, search_type)
if url is None:
raise ValueError(
"url is None this means npatlas search had wrong search or similarity type"
)
return url
def search_np_atlas_by_inchikey_smiles(row, search_similar: bool = False):
# try inchikey - otherwise smiles
similarity = "similar" if search_similar else "exact"
result = None
if "inchikey" in row:
result = query_npatlas(
row["inchikey"], search_type="inchikey", similarity=similarity
)
if result is None and "smiles" in row:
result = query_npatlas(
row["smiles"], search_type="smiles", similarity=similarity
)
if result is None and "canonical_smiles" in row:
result = query_npatlas(
row["canonical_smiles"], search_type="smiles", similarity=similarity
)
return result
def query_npatlas(
structure: str, search_type: str = "inchikey", similarity: str = "exact"
):
try:
return _query_npatlas(structure, search_type, similarity)
except:
logging.info(
f"Failed npatlas for {structure} as {search_type} with sim {similarity}"
)
return None
@memory.cache
def _query_npatlas(
structure: str, search_type: str = "inchikey", similarity: str = "exact"
):
"""
:param structure: input structure
:param search_type: inchikey or smiles
:param similarity: exact or similar
:return: list of matches or None if failed
"""
if isnull_or_empty(structure):
return None
url = npatlas_url(structure, search_type, similarity)
result = get_json_response(url, True, timeout=3)
if result is None:
raise Exception("Failed npatlas service")
return result
def search_np_atlas(
df: pd.DataFrame,
refresh_expired_entries_after: dt.timedelta = dt.timedelta(days=90),
) -> pd.DataFrame:
logging.info("Running npatlas search")
# only work on expired elements
# define which rows are old or were not searched before
filtered = create_expired_entries_dataframe(
df, MetaColumns.date_npatlas, refresh_expired_entries_after
)
filtered["results"] = filtered.apply(
lambda row: search_np_atlas_by_inchikey_smiles(row), axis=1
)
# refresh date
filtered.loc[
filtered["results"].notnull(), MetaColumns.date_npatlas
] = iso_datetime_now()
filtered = remove_empty_lists_values(filtered, "results") # empty results
filtered = filtered[filtered["results"].notnull()].copy()
npa = filtered["results"]
prefix = NP_ATLAS_PREFIX
filtered[prefix + "_num_entries"] = npa.apply(len)
npa = npa.apply(lambda result: result[0])
json_col(filtered, npa, prefix, "npaid")
json_col(filtered, npa, prefix, "original_name")
json_col(filtered, npa, prefix, "cluster_id")
json_col(filtered, npa, prefix, "node_id")
json_col(filtered, npa, prefix, "original_type")
json_col(filtered, npa, prefix, "original_organism")
json_col(filtered, npa, prefix, "original_doi")
# only keep specific columns
filter_col = [col for col in filtered.columns if prefix in col]
return filtered[filter_col]