-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
94 lines (74 loc) · 3.34 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import streamlit as st
import pandas as pd
import numpy as np
import pydeck as pdk
import plotly.express as px
data_url = ("C:/Users/patrick.roxas/Documents/portfolio/Streamlit Project/Motor_Vehicle_Collisions_-_Crashes.csv")
st.title("🚕 Motor Vehicle Collision in New York City")
st.markdown("This application is Streamlit dashboard that can be used to analyze motor-vehicle collisions in NYC")
@st.cache_data
def load_data(nrows):
data = pd.read_csv(data_url, nrows=nrows, parse_dates=[['CRASH_DATE', 'CRASH_TIME']])
data.dropna(subset=['LATITUDE', 'LONGITUDE'], inplace=True)
lowercase = lambda x: str(x).lower()
data.rename(lowercase, axis='columns', inplace=True)
data.rename(columns={'crash_date_crash_time':'date/time'}, inplace=True)
return data
data = load_data(100000)
original_data = data
st.header("📍Where are the most people injured in NYC?")
injured_people = st.slider("Number of injured people", 0, 19)
st.map(data.query("injured_persons >= @injured_people")[["latitude", "longitude"]].dropna(how="any"), )
st.header("🤕 How many collisions occur during a given time of day?")
hour = st.slider("Hour to look at", 0, 23)
data = data[data['date/time'].dt.hour == hour]
midpoint = (np.average(data["latitude"]), np.average(data["longitude"]))
st.markdown("Vehicle Collision between %i:00 and %i:00" % (hour, (hour + 1) % 24))
st.write(pdk.Deck(
map_style="mapbox://styles/mapbox/light-v9",
initial_view_state = {
"latitude": midpoint[0],
"longitude": midpoint[1],
"zoom": 11,
"pitch": 50,
},
layers = [
pdk.Layer(
"HexagonLayer",
data = data[['date/time', 'latitude', 'longitude']],
get_position = ["longitude", "latitude"],
radius=100,
extruded=True,
pickable=True,
elevation_scale=4,
elavation_range=[0, 1000],
),
],
))
st.subheader("Breakdown by minute between %i:00 and %i:00" %(hour, (hour + 1) %24))
filtered = data[
(data["date/time"].dt.hour >= hour) & (data["date/time"].dt.hour<= hour+1)
]
hist = np.histogram(filtered['date/time'].dt.minute, bins=60, range=(0, 60))[0]
chart_data = pd.DataFrame({'minute': range(60),
'crashes':hist
})
fig = px.bar(chart_data,
x = 'minute',
y= 'crashes',
hover_data=['minute', 'crashes'],
height=400,
)
fig.update_layout(template='plotly_white')
st.write(fig)
st.header("Top 5 dangerous streets by affected type")
select = st.selectbox("Affected type of people", ['Pedestrian', 'Cyclist', 'Motorist'])
if select == 'Pedestrian':
st.write(original_data.query("injured_pedestrians > = 1")[['on_street_name', 'injured_pedestrians']].sort_values(by="injured_pedestrians", ascending=False).dropna(how='any')[:5])
elif select == 'Cyclist':
st.write(original_data.query("injured_cyclists > = 1")[['on_street_name', 'injured_cyclists']].sort_values(by="injured_cyclists", ascending=False).dropna(how='any')[:5])
else:
st.write(original_data.query("injured_motorists > = 1")[['on_street_name', 'injured_motorists']].sort_values(by="injured_motorists", ascending=False).dropna(how='any')[:5])
if st.checkbox("Show Raw Data", False):
st.subheader('Raw Data')
st.write(data)