-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
40 lines (33 loc) · 1.09 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from torch.utils.data import Dataset
import numpy as np
import imageio
import os
from kornia import create_meshgrid
from typing import Tuple
from einops import rearrange
class ImageDataset(Dataset):
"""
Dataset for images.
"""
def __init__(self, image_path: str, split: str):
"""
Args:
image_path (str): One image.
split (str): 'train' or 'test'.
"""
image = imageio.imread(image_path)[...,:3] / 255
c = [image.shape[0]//2 , image.shape[1]//2]
self.r = 256
image = image[c[0] - self.r:c[0] + self.r, c[1] - self.r:c[1] + self.r]
self.uv = create_meshgrid( 2*self.r, 2*self.r, True)[0]
self.rgb = torch.FloatTensor(image)
if split == 'train':
self.rgb = self.rgb[::2, ::2]
self.uv = self.uv[::2, ::2]
self.uv = rearrange(self.uv, 'h w c -> (h w) c')
self.rgb = rearrange(self.rgb, 'h w c -> (h w) c')
def __len__(self):
return len(self.uv)
def __getitem__(self, idx):
return {'uv':self.uv[idx], 'rgb':self.rgb[idx]}