-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·243 lines (212 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
'''
Training Script for Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement
Author: Xin Liu, Daniel McDuff
'''
# %%
from __future__ import print_function
import argparse
import itertools
import json
import os
import numpy as np
import scipy.io
import tensorflow as tf
from data_generator import DataGenerator
from model import HeartBeat, CAN, CAN_3D, Hybrid_CAN, TS_CAN, MTTS_CAN, \
MT_Hybrid_CAN, MT_CAN_3D, MT_CAN
from pre_process import get_nframe_video, split_subj, sort_video_list
np.random.seed(100) # for reproducibility
tf.test.is_gpu_available()
tf.keras.backend.clear_session()
print(tf.__version__)
# %%
parser = argparse.ArgumentParser()
# data I/O
parser.add_argument('-exp', '--exp_name', type=str,
help='experiment name')
parser.add_argument('-i', '--data_dir', type=str, help='Location for the dataset')
parser.add_argument('-o', '--save_dir', type=str, default='./rPPG-checkpoints',
help='Location for parameter checkpoints and samples')
parser.add_argument('-a', '--nb_filters1', type=int, default=32,
help='number of convolutional filters to use')
parser.add_argument('-b', '--nb_filters2', type=int, default=64,
help='number of convolutional filters to use')
parser.add_argument('-c', '--dropout_rate1', type=float, default=0.25,
help='dropout rates')
parser.add_argument('-d', '--dropout_rate2', type=float, default=0.5,
help='dropout rates')
parser.add_argument('-l', '--lr', type=float, default=1.0,
help='learning rate')
parser.add_argument('-e', '--nb_dense', type=int, default=128,
help='number of dense units')
parser.add_argument('-f', '--cv_split', type=int, default=0,
help='cv_split')
parser.add_argument('-g', '--nb_epoch', type=int, default=24,
help='nb_epoch')
parser.add_argument('-t', '--nb_task', type=int, default=12,
help='nb_task')
parser.add_argument('-fd', '--frame_depth', type=int, default=10,
help='frame_depth for CAN_3D, TS_CAN, Hybrid_CAN')
parser.add_argument('-temp', '--temporal', type=str, default='MTTS_CAN',
help='CAN, MT_CAN, CAN_3D, MT_CAN_3D, Hybrid_CAN, \
MT_Hybrid_CAN, TS_CAN, MTTS_CAN ')
parser.add_argument('-save', '--save_all', type=int, default=1,
help='save all or not')
parser.add_argument('-resp', '--respiration', type=int, default=0,
help='train with resp or not')
args = parser.parse_args()
print('input args:\n', json.dumps(vars(args), indent=4, separators=(',', ':'))) # pretty print args
# %% Spliting Data
print('Spliting Data...')
subNum = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27])
taskList = list(range(1, args.nb_task+1))
# %% Training
def train(args, subTrain, subTest, cv_split, img_rows=36, img_cols=36):
print('================================')
print('Train...')
print('subTrain', subTrain)
print('subTest', subTest)
input_shape = (img_rows, img_cols, 3)
path_of_video_tr = sort_video_list(args.data_dir, taskList, subTrain)
path_of_video_test = sort_video_list(args.data_dir, taskList, subTest)
path_of_video_tr = list(itertools.chain(*path_of_video_tr)) # Fllaten the list
path_of_video_test = list(itertools.chain(*path_of_video_test))
print('sample path: ', path_of_video_tr[0])
nframe_per_video = get_nframe_video(path_of_video_tr[0])
print('Trian Length: ', len(path_of_video_tr))
print('Test Length: ', len(path_of_video_test))
print('nframe_per_video', nframe_per_video)
strategy = tf.distribute.MirroredStrategy()
print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
with strategy.scope():
if strategy.num_replicas_in_sync == 4:
print("Using 4 GPUs for training")
if args.temporal == 'CAN' or args.temporal == 'MT_CAN':
args.batch_size = 32
elif args.temporal == 'CAN_3D' or args.temporal == 'MT_CAN_3D':
args.batch_size = 12
elif args.temporal == 'TS_CAN' or args.temporal == 'MTTS_CAN':
args.batch_size = 32
elif args.temporal == 'Hybrid_CAN' or args.temporal == 'MT_Hybrid_CAN':
args.batch_size = 16
else:
raise ValueError('Unsupported Model Type!')
elif strategy.num_replicas_in_sync == 8:
print('Using 8 GPUs for training!')
args.batch_size = args.batch_size * 2
elif strategy.num_replicas_in_sync == 2:
args.batch_size = args.batch_size // 2
else:
raise Exception('Only supporting 4 GPUs or 8 GPUs now. Please adjust learning rate in the training script!')
if args.temporal == 'CAN':
print('Using CAN!')
model = CAN(args.nb_filters1, args.nb_filters2, input_shape, dropout_rate1=args.dropout_rate1,
dropout_rate2=args.dropout_rate2, nb_dense=args.nb_dense)
elif args.temporal == 'MT_CAN':
print('Using MT_CAN!')
model = MT_CAN(args.nb_filters1, args.nb_filters2, input_shape, dropout_rate1=args.dropout_rate1,
dropout_rate2=args.dropout_rate2, nb_dense=args.nb_dense)
elif args.temporal == 'CAN_3D':
print('Using CAN_3D!')
input_shape = (img_rows, img_cols, args.frame_depth, 3)
model = CAN_3D(args.frame_depth, args.nb_filters1, args.nb_filters2, input_shape,
dropout_rate1=args.dropout_rate1, dropout_rate2=args.dropout_rate2, nb_dense=args.nb_dense)
elif args.temporal == 'MT_CAN_3D':
print('Using MT_CAN_3D!')
input_shape = (img_rows, img_cols, args.frame_depth, 3)
model = MT_CAN_3D(args.frame_depth, args.nb_filters1, args.nb_filters2, input_shape,
dropout_rate1=args.dropout_rate1, dropout_rate2=args.dropout_rate2,
nb_dense=args.nb_dense)
elif args.temporal == 'TS_CAN':
print('Using TS_CAN!')
input_shape = (img_rows, img_cols, 3)
model = TS_CAN(args.frame_depth, args.nb_filters1, args.nb_filters2, input_shape,
dropout_rate1=args.dropout_rate1, dropout_rate2=args.dropout_rate2, nb_dense=args.nb_dense)
elif args.temporal == 'MTTS_CAN':
print('Using MTTS_CAN!')
input_shape = (img_rows, img_cols, 3)
model = MTTS_CAN(args.frame_depth, args.nb_filters1, args.nb_filters2, input_shape,
dropout_rate1=args.dropout_rate1, dropout_rate2=args.dropout_rate2, nb_dense=args.nb_dense)
elif args.temporal == 'Hybrid_CAN':
print('Using Hybrid_CAN!')
input_shape_motion = (img_rows, img_cols, args.frame_depth, 3)
input_shape_app = (img_rows, img_cols, 3)
model = Hybrid_CAN(args.frame_depth, args.nb_filters1, args.nb_filters2, input_shape_motion,
input_shape_app,
dropout_rate1=args.dropout_rate1, dropout_rate2=args.dropout_rate2,
nb_dense=args.nb_dense)
elif args.temporal == 'MT_Hybrid_CAN':
print('Using MT_Hybrid_CAN!')
input_shape_motion = (img_rows, img_cols, args.frame_depth, 3)
input_shape_app = (img_rows, img_cols, 3)
model = MT_Hybrid_CAN(args.frame_depth, args.nb_filters1, args.nb_filters2, input_shape_motion,
input_shape_app,
dropout_rate1=args.dropout_rate1, dropout_rate2=args.dropout_rate2,
nb_dense=args.nb_dense)
else:
raise ValueError('Unsupported Model Type!')
optimizer = tf.keras.optimizers.Adadelta(learning_rate=args.lr)
if args.temporal == 'MTTS_CAN' or args.temporal == 'MT_Hybrid_CAN' or args.temporal == 'MT_CAN_3D' or \
args.temporal == 'MT_CAN':
losses = {"output_1": "mean_squared_error", "output_2": "mean_squared_error"}
loss_weights = {"output_1": 1.0, "output_2": 1.0}
model.compile(loss=losses, loss_weights=loss_weights, optimizer=optimizer)
else:
model.compile(loss='mean_squared_error', optimizer=optimizer)
print('learning rate: ', args.lr)
# %% Create data genener
training_generator = DataGenerator(path_of_video_tr, nframe_per_video, (img_rows, img_cols),
batch_size=args.batch_size, frame_depth=args.frame_depth,
temporal=args.temporal, respiration=args.respiration)
validation_generator = DataGenerator(path_of_video_test, nframe_per_video, (img_rows, img_cols),
batch_size=args.batch_size, frame_depth=args.frame_depth,
temporal=args.temporal, respiration=args.respiration)
# %% Checkpoint Folders
checkpoint_folder = str(os.path.join(args.save_dir, args.exp_name))
if not os.path.exists(checkpoint_folder):
os.makedirs(checkpoint_folder)
cv_split_path = str(os.path.join(checkpoint_folder, "cv_" + str(cv_split)))
# %% Callbacks
if args.save_all == 1:
save_best_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=cv_split_path + "_epoch{epoch:02d}_model.hdf5",
save_best_only=False, verbose=1)
else:
save_best_callback = tf.keras.callbacks.ModelCheckpoint(filepath=cv_split_path + "_last_model.hdf5",
save_best_only=False, verbose=1)
csv_logger = tf.keras.callbacks.CSVLogger(filename=cv_split_path + '_train_loss_log.csv')
hb_callback = HeartBeat(training_generator, validation_generator, args, str(cv_split), checkpoint_folder)
# %% Model Training and Saving Results
history = model.fit(x=training_generator, validation_data=validation_generator, epochs=args.nb_epoch, verbose=1,
shuffle=False, callbacks=[csv_logger, save_best_callback, hb_callback], validation_freq=4)
val_loss_history = history.history['val_loss']
val_loss = np.array(val_loss_history)
np.savetxt((cv_split_path + '_val_loss_log.csv'), val_loss, delimiter=",")
score = model.evaluate_generator(generator=validation_generator, verbose=1)
print('****************************************')
if args.temporal == 'MTTS_CAN' or args.temporal == 'MT_Hybrid_CAN' or args.temporal == 'MT_CAN_3D' \
or args.temporal == 'MT_CAN':
print('Average Test Score: ', score[0])
print('PPG Test Score: ', score[1])
print('Respiration Test Score: ', score[2])
else:
print('Test score:', score)
print('****************************************')
print('Start saving predicitions from the last epoch')
training_generator = DataGenerator(path_of_video_tr, nframe_per_video, (img_rows, img_cols),
batch_size=args.batch_size, frame_depth=args.frame_depth,
temporal=args.temporal, respiration=args.respiration, shuffle=False)
validation_generator = DataGenerator(path_of_video_test, nframe_per_video, (img_rows, img_cols),
batch_size=args.batch_size, frame_depth=args.frame_depth,
temporal=args.temporal, respiration=args.respiration, shuffle=False)
yptrain = model.predict(training_generator, verbose=1)
scipy.io.savemat(checkpoint_folder + '/yptrain_best_' + '_cv' + str(cv_split) + '.mat',
mdict={'yptrain': yptrain})
yptest = model.predict(validation_generator, verbose=1)
scipy.io.savemat(checkpoint_folder + '/yptest_best_' + '_cv' + str(cv_split) + '.mat',
mdict={'yptest': yptest})
print('Finish saving the results from the last epoch')
# %% Training
print('Using Split ', str(args.cv_split))
subTrain, subTest = split_subj(args.data_dir, args.cv_split, subNum)
train(args, subTrain, subTest, args.cv_split)