-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
45 lines (33 loc) · 1.3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import logging
import os
import warnings
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import seed_everything
from src.util.file import get_checkpoint_directory, hash_config
from src.util.hydra import ConfigWrapper
warnings.filterwarnings(
"ignore", ".*Consider increasing the value of the `num_workers` argument*"
)
logger = logging.getLogger(__name__)
@hydra.main(config_path="config", config_name="config", version_base="1.2")
def main(config: DictConfig):
logger.info(OmegaConf.to_yaml(config))
logger.info("Working directory : {}".format(os.getcwd()))
seed_everything(config.random_state)
dataset = instantiate(config.data, config_wrapper=ConfigWrapper(config))
dataset.setup("fit")
checkpoint_path = get_checkpoint_directory(config)
wandb_logger = instantiate(config.wandb_logger, id=hash_config(config))
trainer = instantiate(config.test_trainer, logger=wandb_logger)
model = instantiate(
config.model,
n_documents=dataset.get_n_documents(),
n_queries=dataset.get_n_queries(),
train_stats=dataset.get_train_stats(),
lp_scores=dataset.get_train_policy_scores(),
)
trainer.test(model, dataset, ckpt_path=checkpoint_path)
if __name__ == "__main__":
main()