-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver_pytorch.py
177 lines (143 loc) · 5.04 KB
/
driver_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gzip
import pickle
import math
import torch
import torch.nn as nn
import torch.utils
import torch.utils.data
from torch.autograd import Variable
import matplotlib.pyplot as plt
from RVAE import RVAE
import numpy as np
from numpy.linalg import cholesky
# def train(loader, model, params ):
def train(train_loader, model, optimizer, epoch, batch_size, clip, print_every, normalize=False):
train_loss = 0
for batch_idx, data in enumerate(train_loader):
data = Variable(data.squeeze().transpose(0,1))
if normalize:
data = (data - data.min().data.item()) / (data.max().data.item() - data.min().data.item())
optimizer.zero_grad()
kld_loss, nll_loss, _, _ = model(data)
loss = kld_loss + nll_loss
loss.backward()
optimizer.step()
nn.utils.clip_grad_norm(model.parameters(), clip)
if batch_idx % print_every == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\t KLD Loss: {:.6f} \t NLL Loss: {:.6f}'.format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100. * batch_idx * len(data) / len(train_loader.dataset),
kld_loss.data.item() / batch_size,
nll_loss.data.item() / batch_size))
sample = model.sample(28)
plt.imshow(sample.numpy())
plt.pause(1e-6)
train_loss += loss.data.item()
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
def test(test_loader, model, epoch, normalize=False):
"""uses test data to evaluate
likelihood of the model"""
mean_kld_loss, mean_nll_loss = 0, 0
for i, data in enumerate(test_loader):
data = Variable(data.squeeze().transpose(0, 1))
if normalize:
data = (data - data.min().data.item()) / (data.max().data.item() - data.min().data.item())
kld_loss, nll_loss, _, _ = model(data)
mean_kld_loss += kld_loss.data.item()
mean_nll_loss += nll_loss.data.item()
mean_kld_loss /= len(test_loader.dataset)
mean_nll_loss /= len(test_loader.dataset)
print('====> Test set loss: KLD Loss = {:.4f}, NLL Loss = {:.4f} '.format(
mean_kld_loss, mean_nll_loss))
def simulated_data_loaders(num_features, num_trials, T, train_ratio=.8, seed=47):
np_rng = np.random.RandomState(seed)
raw_samp = np_rng.uniform(0.025, 0.035, (num_trials, 1))
z = np.hstack(raw_samp + np_rng.normal(0., .0025, (num_trials,1)) for _ in range(num_features))
z[z <= .001] = .001
z = z.reshape(int(num_trials/T), T, num_features).astype('float32')
train_ind = int(train_ratio * z.shape[0])
z_train = z[:train_ind, :, :]
z_test = z[train_ind:, :, :]
train_loader = torch.utils.data.DataLoader( z_train, batch_size=T, shuffle=True)
test_loader = torch.utils.data.DataLoader( z_test, batch_size=T, shuffle=True)
return train_loader, test_loader
def mnist_loaders(batch_size):
data_path = '/home/charles/src/Python/data/mnist.pkl.gz'
with gzip.open(data_path, 'rb') as f:
train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
train_data = train_set[0].reshape(50000, 28, 28)
test_data = test_set[0].reshape(10000, 28, 28)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=True)
return train_loader, test_loader
def main(mnist=True, normalize=False, save_model=False):
if mnist:
# Params
num_features = 28
batch_size = 2
n_phi_x_hidden = 150
n_phi_z_hidden = 150
n_latent = 28
n_hidden_prior = 150
n_rec_hidden = 150
n_encoder_hidden = 150
n_decoder_hidden = 150
n_rec_layers = 3
bias = False
# Loaders
train_loader, test_loader = mnist_loaders(batch_size)
else:
# Params
num_features = 24
batch_size = 2
num_trials = 500*100
T = 500
n_phi_x_hidden = 20
n_phi_z_hidden = 20
n_latent = 18
n_hidden_prior = 20
n_rec_hidden = 20
n_encoder_hidden = 20
n_decoder_hidden = 20
n_rec_layers = 50
bias = False
train_ratio = .8
# Loaders
train_loader, test_loader = simulated_data_loaders(num_features,
num_trials,
T,
train_ratio)
# Hyperparameters
seed = 47
n_epochs = 100
clip = 1
learning_rate = 1e-3
gseed = 128
print_every = 100
save_every = 10
torch.manual_seed(seed)
plt.ion()
model = RVAE(num_features,
n_phi_x_hidden,
n_phi_z_hidden,
n_latent,
n_hidden_prior,
n_rec_hidden,
n_encoder_hidden,
n_decoder_hidden,
n_rec_layers,
bias
)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(1, n_epochs + 1):
train(train_loader, model, optimizer, epoch, batch_size, clip, print_every, normalize=False)
test(test_loader, model, epoch, normalize=False)
if save_model and epoch % save_every == 1:
fn = 'models/vrnn_state_dict_'+str(epoch)+'.pth'
torch.save(model.state_dict(), fn)
print('Saved model to '+fn)
if __name__ == '__main__':
main(mnist=True, normalize=False)