-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnetraref.html
446 lines (368 loc) · 202 KB
/
netraref.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>Analysis of acumulation curves for species interactions</title>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<style type="text/css">
/* Set the main font to Calibri, same
as My Word 2010 uses. Also set the
default font size to 11pt.
The maximum width to 35em enhances
readability through optimal line
length. Note: this setting is ignored
by Word/Libre Office*/
body {
font-family: serif;
/* font-family: Calibri; */
font-size: 13pt;
background-color: white;
padding-top: 1em;
margin: auto;
max-width: 35em;
}
/* Set the paragraph margin and
padding to 0 except for the bottom */
p {
padding: 0;
margin: 0;
margin-bottom: 10pt;
}
/* Center the table and add top/bottom margins */
table{
margin: auto;
margin-top: 1em;
margin-bottom: 1em;
border: none;
}
/* The tr padding/margin 0 is important for table
import, while the font needs to be specified as
font and not font-family/font-size due to limiations
in Libre Office */
td, tr{
font: 12pt Arial;
padding: 0px;
margin: 0px;
}
/* The cell should have a little space to easy reading
although this section is mostly ignored by the
Libre Office import */
td {
padding: 4px;
padding-bottom: 2px;
}
/* Set the headings to correspond to Word-style */
h1, h2, h3, h4, h5, h6 {
margin: 10pt 0pt 0pt 0pt;
font-family: sans-serif;
font-weight: bold;
}
/* h1 has a slightly larger top margins
so we re-set that from the other*/
h1 {
margin: 24pt 0pt 0pt 0pt;
font-size: 18pt;
color: #365F91;
}
h2 {
margin: 18pt 0pt 0pt 0pt;
font-size: 14pt;
color: #4F81BD;
}
h3 {
margin: 15pt 0pt 0pt 0pt;
font-size: 13pt;
color: #4F81BD;
}
h4 {
font-size: 12pt;
font-weight: bold;
font-style: italic;
color: #4F81BD;
}
h5 {
font-size: 11pt;
font-weight: normal;
color: #243F5D;
}
h6 {
font-size: 11pt;
font-weight: normal;
font-style: italic;
color: #243F5D;
}
/* The following sections are mostly
unrelated to Word/Libre Office imports */
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
font-size:10pt;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter: none !important;
-ms-filter: none !important;
}
body {
font-size:11pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page {
margin-top: 2cm;
margin-bottom: 1.5cm;
margin-left: 3cm;
margin-right: 3cm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<h2 style='margin: 10pt 0pt 0pt 0pt;'>Analysis of acumulation curves for species interactions</h2>
<h3 style='margin: 10pt 0pt 0pt 0pt;'>Estimating frugivore species richness. A “phytocentric” sampling</h3>
<p>We use here a dataset of direct census of animal frugivores visiting <em>Cecropia glaziovii</em> (Cecropiaceae) trees in Intervales, SP, Brazil (March 2012).
We use each tree observed as a census, and we accumulate across trees the number of frugivore species recorded visiting the plant. The idea is that as we sample additional individual trees we may get a more complete account of the actual frugivore species interacting with the plant. Eventually, for a large sample size, the number of frugivore species recorded reaches a plateu, that can be considered a robust estimate of the actual spcies richness of the frugivore assemblage.</p>
<p>Species (taxa) are in rows. Census samples are the columns.<br/>
Code variables are:<br/>
<code>cla</code> - Class: Aves, Mammalia<br/>
<code>ord</code> - Order<br/>
<code>fam</code> - Family<br/>
<code>gen</code> - Genus<br/>
<code>sp</code> - Species<br/>
<code>code</code> - species labels<br/>
<code>totvis</code> - visits recorded<br/>
<code>totbic</code> - number of fruits pecked<br/>
<code>sde</code> - effectiveness<br/>
Then columns <code>cec18</code>, <code>cec02</code>… inidicate individual plants. The adjacency matrix entries hold the number of records. </p>
<pre><code class="r"># We may eventually need these libraries.
require(vegan)
require(ade4)
# Data input. First a dataset with group codes and labels.
accum <- read.table("data/cecropia.txt", header = TRUE, sep = "\t", dec = ",",
na.strings = "NA")
# I transpose the dataset (needed for accumulation curves).
mat <- data.frame(t(accum[, 10:37])) # Just the adjacency matrix,
# and we add rownames
colnames(mat) <- accum$code
head(mat[, 1:6])
</code></pre>
<pre><code>## Thr_orna Bro_tiri Eup_chal Pyr_fron Coe_flav Cis_leve
## cec18 999 400 0 120 6 0
## cec02 1113 0 20 1 0 0
## cec03 742 0 20 4 1 1
## cec25 49 0 0 0 4 0
## cec22 315 256 4 0 0 0
## cec06 99 16 0 0 0 16
</code></pre>
<pre><code class="r">specpool(mat) # This is the species richness estimates
</code></pre>
<pre><code>## Species chao chao.se jack1 jack1.se jack2 boot boot.se n
## All 38 50.5 8.457 52.46 5.052 58.35 44.71 2.873 28
</code></pre>
<pre><code class="r"># Now, plot the species accumulation curves.
all <- specaccum(mat, method = "random")
plot(all, col = "blue", lwd = 2, ci.type = "poly", ci.lty = 0, ci.col = "lightblue",
ylim = c(0, 45), main = "Cecropia glaziovii", xlab = "Number of trees",
ylab = "Number of frugivore species")
boxplot(all, col = "yellow", add = TRUE, pch = "+")
</code></pre>
<p><img src="" alt="plot of chunk data"/> </p>
<h3 style='margin: 10pt 0pt 0pt 0pt;'>Estimating fruit species richness. A “zoocentric” sampling</h3>
<p>Here I use a different dataset to assess how the number of interaction records increases with increasing the the number of individual samples. I use a dataset of three <em>Sylvia</em> species, whose diet was analyzed by study of faecal samples. Individual fruit species consumed by the warblers were determined by obtaining faeces from mist-netted birds and identifying seeds and pulp remains. I this way, the number of fruit ingested wa sestimated for a large number of individual birds. I am interested in assessing the robustness of the sampling, i.e., whether increasing the sample size would result in additional species recorded. This type of information can be used with all frugivore species in the community to assess the overall sampling robustnees of an empirical network.</p>
<pre><code class="r"># Reading the dataset, from a matrix of 1054 samples of three warbler
# species: Sylvia atricapilla, Sylvia borin, and Sylvia melanocephala. Data
# input. First a dataset with group codes and labels.
sylvia <- read.table("data/hr_sylvia.txt", header = TRUE, sep = "\t", dec = ".",
na.strings = "NA")
# By species
satr <- sylvia[sylvia$species == "SATR", ][, 4:20]
sbor <- sylvia[sylvia$species == "SBOR", ][, 4:20]
smel <- sylvia[sylvia$species == "SMEL", ][, 4:20]
#
specpool(satr) # Fruit species richness estimates
</code></pre>
<pre><code>## Species chao chao.se jack1 jack1.se jack2 boot boot.se n
## All 15 15 0 16 0.9984 17 15.44 0.5453 643
</code></pre>
<pre><code class="r">specpool(sbor)
</code></pre>
<pre><code>## Species chao chao.se jack1 jack1.se jack2 boot boot.se n
## All 13 13.25 0.7289 13.99 0.9942 13.02 13.71 0.7319 173
</code></pre>
<pre><code class="r">specpool(smel)
</code></pre>
<pre><code>## Species chao chao.se jack1 jack1.se jack2 boot boot.se n
## All 13 15 3.742 14.99 1.408 15.99 13.93 0.8036 238
</code></pre>
<pre><code class="r"># Now, plot the species accumulation curves. Function to estimate
# accumulation curves and plot
spacc <- function(data, thetitle) {
spaccum <- specaccum(data, method = "random")
plot(spaccum, ci.type = "poly", col = "blue", lwd = 2, ci.lty = 0, ylim = c(0,
20), ci.col = "lightblue", main = thetitle, xlab = "Number of samples",
ylab = "Number of fruit species")
# NOT RUN: boxplot(spaccum, col='yellow', add=TRUE, pch='+')
}
par(mfrow = c(3, 1))
spacc(satr, "Sylvia atricapilla")
spacc(sbor, "Sylvia borin")
spacc(smel, "Sylvia mlanocephala")
</code></pre>
<p><img src="" alt="plot of chunk sylvia"/> </p>
<h2 style='margin: 10pt 0pt 0pt 0pt;'>Accumulation curves for interactions</h2>
<p>Now suppose we sample an interaction network. We get data in different samples (i.e., census days) where we record pairwise species interactions. So, each sampling is our adjacency matrix filled up with just those interactions recorded in a particular day. For example, imagine we sample a communtiy with <code>A= 5</code> animal species and <code>P= 8</code> plant species:</p>
<pre><code class="r"># Create dummy datasets with pairwise interactions recorded in each
# sampling. List of the sampled matrices. Day 1- getting the pairwise
# interaction labels.
source("functions/vectorize.R")
source("functions/matfills.R") # This creates a randomly-filled matrix
M1 <- randommat(5, 8)
colnames(M1) <- c("P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8")
rownames(M1) <- c("A1", "A2", "A3", "A4", "A5")
MM <- vectorize(M1)
colnames(MM) <- c("A", "P", "I")
head(MM)
</code></pre>
<pre><code>## A P I
## 1 A1 P1 0
## 2 A1 P2 0
## 3 A1 P3 0
## 4 A1 P4 0
## 5 A1 P5 0
## 6 A1 P6 0
</code></pre>
<pre><code class="r">lab <- paste(MM$A, "-", MM$P)
MM <- data.frame(lab)
# Generate the additional matrices
m <- function() {
mat <- randommat(5, 8)
colnames(mat) <- c("P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8")
rownames(mat) <- c("A1", "A2", "A3", "A4", "A5")
return(mat)
}
# List of matrices (50 samples)
mlist <- list(m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(),
m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(),
m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(), m(),
m(), m(), m(), m(), m(), m(), m())
# mlist should be a list of observed matrices, corresponding to different
# sampling events (censuses, days, etc.)
tt <- sapply(mlist, function(m) cbind(vectorize(m)), simplify = FALSE, USE.NAMES = FALSE)
# Create a dataframe with the pairwise interactions recorded in each sample.
ttt <- as.data.frame(unlist(tt, recursive = F))
ttt <- ttt[, c(seq(from = 3, to = 150, by = 3))]
MM <- data.frame(cbind(MM, ttt))
colnames(MM) <- c("Pairwise", rep("sample", 50))
head(MM[, 1:8])
</code></pre>
<pre><code>## Pairwise sample sample.1 sample.2 sample.3 sample.4 sample.5 sample.6
## 1 A1 - P1 0 0 0 0 0 0 0
## 2 A1 - P2 1 0 1 0 0 1 1
## 3 A1 - P3 0 0 0 0 0 0 0
## 4 A1 - P4 0 0 0 0 0 0 0
## 5 A1 - P5 0 0 0 0 0 0 0
## 6 A1 - P6 0 0 0 0 1 0 0
</code></pre>
<p>Our final dataset now lists all the potential pairwise interactions and the records we got in each sampling day. Each of the columns lists the pairwise interactions recorded (value= 1) in a particular sample.
Now we can use accumulation functions to explore how increasing the sampling results in additional distinct interactions being sampled.
It is as a sampling of diversity, but instead of species we are recording pairwise interactions.</p>
<pre><code class="r"># Specify only the numerical columns!
mat <- t(MM[, 2:ncol(MM)]) # Note that I transpose the matrix to get
# samples as rows.
specpool(mat) # Statistics
</code></pre>
<pre><code>## Species chao chao.se jack1 jack1.se jack2 boot boot.se n
## All 39 39.12 0.4375 39.98 0.98 37.18 40.41 1.16 50
</code></pre>
<pre><code class="r">all <- specaccum(mat, method = "random")
plot(all, col = "blue", lwd = 2, ci.type = "poly", ci.lty = 0, ci.col = "lightblue",
ylim = c(0, 40), main = "Accumulation analysis - Interactions", xlab = "Number of censuses/samples",
ylab = "Number of distinct pairwise interactions")
boxplot(all, col = "yellow", add = TRUE, pch = "+")
</code></pre>
<p><img src="" alt="plot of chunk pairwise_interactions_2"/> </p>
</body>
</html>