-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfull.Rmd
320 lines (259 loc) · 8.55 KB
/
full.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
---
title : GOING DOWN TO SOUTH PARK
subtitle : to make some tidytext analysis
author : Patrik Drhlík
job : freelance data scientist
framework : io2012 # {io2012, html5slides, shower, dzslides, ...}
highlighter : highlight.js # {highlight.js, prettify, highlight}
hitheme : tomorrow #
widgets : [] # {mathjax, quiz, bootstrap}
mode : selfcontained # {standalone, draft}
knit : slidify::knit2slides
logo : boys.png
--- #southparkbg
<!-- South Park backgound intro slide -->
---
## Web scraping and R packages
<img src="assets/img/fandom.png" style="width: 10%" />
[South Park episode transcripts](https://southpark.wikia.com/wiki/Portal:Scripts)
<img src="assets/img/imdb.svg" style="width: 10%" />
[IMDB South Park episode ratings](https://www.imdb.com/title/tt0121955/episodes)
Main R packages: [tidyverse](https://www.tidyverse.org/),
[tidytext](https://www.tidytextmining.com/),
[southparkr](https://github.com/pdrhlik/southparkr)
<img src="assets/img/tidyverse.png" style="width: 10%" />
<img src="assets/img/tidytextmining.png" style="width: 10%" />
<img src="assets/img/southparkme.png" style="width: 15%" />
<img src="assets/img/griefer.png" style="position: absolute; right: 10px; bottom: 50px;" />
---
## Glimpse at the data
```{r, echo = FALSE, warning = FALSE, message = FALSE}
# Load required packages and prepared data
library(tidyverse)
library(southparkr)
library(kableExtra)
library(ggplot2)
theme_set(theme_bw())
episode_words <- read_rds("data/episode_words.rds")
by_episode <- group_by(episode_words, episode) %>%
summarise(
season_number = season_number[1],
episode_number = episode_number[1],
season_episode_number = season_episode_number[1],
user_rating = user_rating[1],
swear_word_ratio = sum(swear_word) / n()
)
n_seasons <- max(episode_words$season_number)
n_episodes <- max(episode_words$episode_number)
n_words <- 914475
n_words_no_stopwords <- nrow(episode_words)
n_swear_words <- filter(episode_words, swear_word == TRUE) %>%
nrow()
characters <- count(episode_words, character) %>%
arrange(desc(n))
mean_rating <- mean(by_episode$user_rating)
best_episode <- episode_words[which.max(episode_words$user_rating), ]
worst_episode <- episode_words[which.min(episode_words$user_rating), ]
```
```{r, echo = FALSE}
set.seed(424242)
glimpse(episode_words[sample(1:n_words_no_stopwords, n_words_no_stopwords), ])
```
---
## Basic statistics about the show
<div class="basic-stats-table">
```{r, echo = FALSE}
basic_stats <- data_frame(
figures = c(
n_seasons,
n_episodes,
n_words,
n_words_no_stopwords,
n_swear_words,
round((n_swear_words / n_words_no_stopwords) * 100, 2),
round((n_words_no_stopwords / n_words) * 100, 2),
nrow(characters),
round(mean_rating, 2),
best_episode$user_rating,
worst_episode$user_rating
),
text = c(
"Number of seasons",
"Number of episodes",
"Number of words",
"No stopwords (a, the, this, ...)",
"Number of swear words",
"% of swear words",
"% used for analysis",
"Number of characters",
"Mean IMDB rating",
paste0(
best_episode$episode,
" (S0",
best_episode$season_number,
"E0",
best_episode$season_episode_number,
")"),
paste0(
worst_episode$episode,
" (S",
worst_episode$season_number,
"E0",
worst_episode$season_episode_number,
")")
)
) %>%
mutate(
figures = prettyNum(figures, " ")
)
# South Park colors
# Green - #C3FCB2, Pink - #FBB7FE, Yellow - #F8FAA9, Red - #F9838F, White-blue-ish - #E2E4FF
# Orange - #DA9870
kable(basic_stats) %>%
kable_styling() %>%
column_spec(1, extra_css = "font-family: southpark;") %>%
row_spec(0, extra_css = "display: none;")
```
</div>
<img src="assets/img/mrgarrison.png" style="position: absolute; right: 10px; bottom: 50px;" />
---
## How much who talks?
```{r, echo = FALSE, message = FALSE, warning = FALSE, fig.width = 13.5, fig.align = "center"}
by_character <- episode_words %>%
count(character) %>%
arrange(desc(n)) %>%
top_n(20)
ggplot(by_character, aes(reorder(character, -n), n)) +
geom_col(fill = "#F9838F") +
labs(
x = "Character",
y = "Number of spoken words"
) +
theme(text = element_text(size = 25), axis.text.x = element_text(angle = 60, hjust = 1)) +
scale_y_continuous(labels = scales::comma)
```
---
## Most used words by characters
```{r, echo = FALSE, warning = FALSE, message = FALSE, fig.width = 13.5, fig.align = "center"}
top_n_character_words <- count(episode_words, character, word) %>%
filter(character %in% c("cartman", "kyle", "stan", "kenny")) %>%
arrange(desc(n)) %>%
group_by(character) %>%
top_n(10) %>%
ungroup() %>%
arrange(character, desc(n)) %>%
mutate(word = factor(reorder(word, n)))
ggplot(top_n_character_words, aes(word, n, fill = character)) +
geom_col(show.legend = FALSE) +
facet_wrap(~ character, scales = "free") +
coord_flip() +
labs(
y = "Number of occurrences",
x = "Word"
) +
theme(text = element_text(size = 25))
```
---
## Overall swear word ratio
```{r, echo = FALSE, message = FALSE, warning = FALSE, fig.width=13.5, fig.align="center"}
group_by(episode_words, episode_number) %>%
summarise(
mean_swear_word_ratio = sum(swear_word) / n()
) %>%
ggplot(aes(episode_number, mean_swear_word_ratio)) +
geom_col(fill = "#F9838F") +
geom_smooth() +
theme(text = element_text(size = 25))
```
---
## Character swear word ratio
```{r, echo = FALSE, message = FALSE, warning = FALSE, fig.width=13.5, fig.align="center"}
group_by(episode_words, character, episode_number) %>%
summarise(
mean_swear_word_ratio = sum(swear_word) / n()
) %>%
filter(character %in% c("cartman", "kyle", "stan", "kenny")) %>%
ggplot(aes(episode_number, mean_swear_word_ratio, fill = character)) +
geom_col() +
geom_smooth() +
facet_wrap(~ character) +
theme(text = element_text(size = 25), legend.position = "none")
```
---
## Overall sentiment analysis
```{r, echo = FALSE, message = FALSE, warning = FALSE, fig.width=13.5, fig.align="center"}
group_by(episode_words, episode_number) %>%
summarise(
mean_score = mean(score, na.rm = TRUE)
) %>%
ggplot(aes(episode_number, mean_score)) +
geom_col(fill = "#F9838F") +
geom_smooth() +
theme(text = element_text(size = 25))
```
---
## Character sentiment analysis
```{r, echo = FALSE, message = FALSE, warning = FALSE, fig.width = 13.5, fig.align = "center", dev.args = list(bg = 'transparent')}
by_character_episode <- episode_words %>%
group_by(character, episode_number) %>%
summarise(
score = mean(score, na.rm = TRUE)
)
filter(by_character_episode, character %in% c("cartman", "kyle", "stan", "kenny")) %>%
ggplot(., aes(episode_number, score, fill = character)) +
geom_col() +
geom_smooth() +
labs(
x = "Episode number",
y = "Sentiment score"
) +
facet_wrap(~ character) +
theme(text = element_text(size = 25), legend.position = "none")
```
---
## Episode popularity
```{r, echo = FALSE, message = FALSE, warnings = FALSE, fig.width = 13.5, fig.align = "center"}
ggplot(by_episode, aes(episode_number, user_rating)) +
geom_point(shape = 18, size = 8, alpha = 0.6, color = "#F9838F") +
geom_smooth() +
labs(
x = "Episode number",
y = "IMDB rating"
) +
theme(text = element_text(size = 25))
```
--- #naughty-episodes
## Are naughty episodes more popular?
```{r, echo = FALSE, warning = FALSE, message = FALSE, fig.width = 13.5, fig.align = "center"}
ggplot(by_episode, aes(user_rating, swear_word_ratio)) +
geom_point(shape = 18, size = 8, alpha = 0.6, color = "#F9838F") +
geom_smooth() +
labs(
x = "IMDB rating",
y = "Swear word ratio"
) +
theme(text = element_text(size = 25))
```
--- #mysterion
## So who's the naughtiest character?
<img src="assets/img/mysterion.png" style="position: absolute; width: 35%; left: 30%;" />
---
## It's Kenny!
<img src="assets/img/kenny.png" style="position: absolute; width: 35%; left: 30%;" />
---
```{r, echo = FALSE, message = FALSE, warning = FALSE, fig.width = 13.5, fig.height=8.5}
plot_swear_word_comparison("cartman", top_n_characters(episode_words, 20), episode_words, 25)
```
---
## Contact
<img src="assets/img/linkedin.png" width="32px" />
[https://www.linkedin.com/in/patrik-drhlik/](https://www.linkedin.com/in/patrik-drhlik/)
<img src="assets/img/github.png" width="32px" />
[https://github.com/pdrhlik](https://github.com/pdrhlik)
<img src="assets/img/twitter.png" width="32px" />
[@PatrioScraper](https://twitter.com/PatrioScraper)
<img src="assets/img/mail.png" width="32px" />
[patrik.drhlik@gmail.com](mailto:patrik.drhlik@gmail.com)
<img src="assets/img/blog.png" width="32px" />
[https://www.patrio.blog](https://www.patrio.blog)
<img src="assets/img/southparkme-contact.png" class="avatar-contact" />