-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
48 lines (35 loc) · 2.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="Run Recommender")
parser.add_argument('--recommender', nargs='?', help='Choose a recommender.', required=True)
parser.add_argument('--dataset', nargs='?', help='Choose a dataset.', required=True)
parser.add_argument('--lRate', type=float, default=0.001, help='Learning rate.', required=True)
parser.add_argument('--mode', nargs='?', help='Validation or Test (Val, Test)', required=True)
parser.add_argument('--early_stop', type=int, default=50, help='Early stop iteration.')
parser.add_argument('--topK', nargs='?', default='[1,5,10,20,50]', help="topK")
parser.add_argument('--numEpoch', type=int, default=500, help='Number of epochs.')
parser.add_argument('--num_negatives', type=int, default=100, help='Number of negative samples.')
parser.add_argument('--margin', type=float, default=1.0, help='Margin.')
parser.add_argument('--batch_size', type=int, default=1000, help='Batch size.')
parser.add_argument('--batchSize_test', type=int, default=2000, help='Batch size for test.')
parser.add_argument('--cuda', type=int, default=0, help='Speficy GPU number')
parser.add_argument('--reg1', type=float, default=0.01, help='Distance Regularization.')
parser.add_argument('--reg2', type=float, default=0.01, help='Neighborhood Regularization.')
parser.add_argument('--embedding_dim', type=int, default=10, help='Number of embedding dimensions.')
parser.add_argument('--rand_seed', type=int, default=34567, help='Random seed.')
return parser.parse_known_args()
def printConfig(args):
common_elems = ['recommender', 'dataset', 'numEpoch', 'lRate', 'num_negatives', 'embedding_dim', 'early_stop', 'batch_size', 'reg1', 'reg2', 'rand_seed', 'margin']
rec = args.recommender
st = []
for elem in common_elems:
s = str(elem + ": " + str(getattr(args, elem)))
st.append(s)
print(st)
if __name__ == '__main__':
args, unknown = parse_args()
printConfig(args)
if args.recommender == 'TransCF':
from TransCF import TransCF
recommender = TransCF(args)
recommender.training()