color_index.py common.py
input_cloud.py process_cloud.py
superpixels_dot.py superpixels_otsu.py
scripts for obtaining thresholding results on an image using Otsu's segmentation (directly on pixels, simplified treating superpixels as pixels, and implemented on superpixels)
otsu_regular.py otsu_reduced_sp.py otsu_sp.py
Otsu's segmentation on pixels. Save generated images, process whole folder, recency 0.2 (0.8 history - 0.2 current), use CIVE index
~$ python -W ignore otsu_regular.py -s -i testing/carrots/*.png -a 0.2 -c CIVE > otsu_pixels_CIVE_a_0.2.txt
Otsu's segmentation treating superpixels as pixels (variance calculated using only 1 value per superpixel). Save images, verbose output, use CIVE index and median representation of superpixels
~$ python -W ignore otsu_reduced_sp.py -s -v -i testing/carrots/*_orig.png -c CIVE -m med > testing/otsu_sp_reduced_med_CIVE_carrots.txt
Otsu's segmentation on superpixels (variance calculated using all pixels within a superpixel). Quiet output, run on three images, display the full comparison (with simple Otsu, the index image and the original image with superpixel overlay), use ExG index and average representation for superpixels
~$ python -W ignore otsu_sp.py -q -i testing/carrots/frame_20160915T125739.977576_orig.png testing/carrots/frame_20160915T125740.110574_orig.png testing/carrots/frame_20160915T125740.210576_orig.png -d full -c ExG -m avg
~$ python otsu_sp.py --help
hist.py img_hist.py timeseries.py
~$ python -W ignore hist.py -i testing/otsu_sp_reduced_med_CIVE.txt
~$ python -W ignore timeseries.py -i testing/otsu_sp_reduced_med_CIVE.txt
~$ python -W ignore img_hist.py -i testing/ndvi2.png -min 2 -max 150