-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathpredict.py
45 lines (34 loc) · 1.5 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import tensorflow as tf
from crnn import get_model
from loader import SIZE, MAX_LEN, TextImageGenerator, decode_batch
from keras import backend as K
import glob
import argparse
def loadmodel(weight_path):
model = get_model((*SIZE, 3), training=False, finetune=0)
model.load_weights(weight_path)
return model
def predict(model, datapath):
sess = tf.Session()
K.set_session(sess)
batch_size = 3
models = glob.glob('{}/best_*.h5'.format(model))
test_generator = TextImageGenerator(datapath, None, *SIZE, batch_size, 32, None, False, MAX_LEN)
test_generator.build_data()
for weight_path in models:
print('load {}'.format(weight_path))
model = loadmodel(weight_path)
X_test = test_generator.imgs.transpose((0, 2, 1, 3))
y_pred = model.predict(X_test, batch_size=3)
decoded_res = decode_batch(y_pred)
for i in range(len(test_generator.img_dir)):
print('{}: {}'.format(test_generator.img_dir[test_generator.indexes[i]], decoded_res[i]))
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model", default='../data/ocr/model/', type=str)
parser.add_argument('--data', default='../data/ocr/preprocess/test/', type=str)
parser.add_argument('--device', default=2, type=int)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.device)
predict(args.model, args.data)