-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCORPSE-ebolanetwork.R
447 lines (334 loc) · 17.2 KB
/
CORPSE-ebolanetwork.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
library(igraph)
library(tidyverse)
library(gam)
library(ggthemes)
# set seed if wanting to comapre against common data...
# set.seed(9999)
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# ------------------- Parameters that can change -------------------------
N = 1000 # size of the population
initial_num_infected = .01 * N
infection_rate_from_infected = 0.1
infection_rate_from_corpse = seq(0,1, by = 0.1) #
case_fatality_rate = .65 # case fatality # effect on infected --> recovery // Default CFR is .65
amt_doctors_in_network = 0.01 * N # amount of doctors in the network
x_param = infection_rate_from_corpse # <----------------------------------------- ENTER the Parameter currently tested
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# ------------------- Parameters that won't change
timestep = 100 # per iteration
iterations = 100
sw_nei = 5 # neighbors for the SmallWorld, set to 5 b/c avg houshold in sierra leone is 6 people
# ------------------- Set up tables for data collection
full_stats = tibble()
life_stats = tibble()
complete_counts = tibble()
#
# ---------------------------------- Multiple Iteration Start --------------------------------
#
for (sim in 1:iterations) {
for (iter in seq_along(x_param)) { # Start multiple iterations
# Set up testing params
# Will need to add [iter] to end of what is being tested!!!!
initial_infected = initial_num_infected
infection_rate_corpse = infection_rate_from_corpse[iter]
infection_rate = infection_rate_from_infected
CFR = case_fatality_rate
amt_doctors = amt_doctors_in_network
# ------------------ Setting up Network ------------
g <- sample_smallworld(size = N, dim = 1, nei = sw_nei, p = 0.05)
# ------------------ Setting up the empty agent attributes ------------
g <- set.vertex.attribute(g, 'class', value = NA) # either NA or doctor
#g <- set.vertex.attribute(g, 'influence', value = NA) # degree / max degree of whole network
g <- set.vertex.attribute(g, 'health', value = NA) # healthy , infected, dead, recovered, exposed
g <- set.vertex.attribute(g, 'case_count', value = NA)
g <- set.vertex.attribute(g, 'dead_count', value = NA)
# ------------------ Set Up Status of Individuals ------------------
# set up normal individuals
cit_pos = sample(V(g))
V(g)$col[cit_pos] = 'green'
V(g)$health[cit_pos] = 'healthy'
# set up the sick individual
sick_pos = sample(cit_pos, size = initial_infected)
V(g)$health[sick_pos] = 'infected'
V(g)$col[sick_pos] = 'red'
# set up the doctor
doc_pos = sample(cit_pos, size = amt_doctors)
V(g)$class[doc_pos] = 'doctor'
V(g)$col[doc_pos] = 'purple'
par(mfrow = c(1,1))
#plot(g, layout = layout.kamada.kawai, vertex.color = V(g)$col,
# vertex.label = '', vertex.shape = 'circle', vertex.size = 4)
# ------------------ New plot to compare old to new
p <- g
# ------------------ Setting up dict with initial infected ---------------
patient_0 = which(V(p)$health == 'infected')
dead_book = matrix(ncol = 2, nrow = length(V(p)))
for (i in 1:length(patient_0)) {
dead_book[patient_0[i],1] = patient_0[i]
dead_book[patient_0[i],2] = 2
}
# ------------------ Setting up dict to record exposed through timesteps -------
exposed_book = matrix(ncol = 2, nrow = length(V(p)))
# Next we set the movement within the network
# ---------------- Set up tables for data collection ---------------------
# Numbers of S, I, R, E, D at each time step
sick_monitor = tibble(S = N - initial_infected, I = initial_infected,E = 0, R = 0, D = 0, Timestep = 1)
# Calculted Network information at each time step
E_stats = tibble(coef = transitivity(p), time = 1, cluster = count_components(p),
max_degree = max(degree(p)), assortativity = assortativity_degree(p), diameter = diameter(p),
Number_of_P0 = initial_infected, infection_rate_corpse = infection_rate_corpse,
infection_rate = infection_rate, CFR = CFR, amt_doctors = amt_doctors, sim = sim)
# Cumulative deaths / cases at each time step
life_counts = tibble(cases = initial_infected, deaths = 0, time = 1,
Number_of_P0 = initial_infected,
infection_rate_corpse = infection_rate_corpse,
infection_rate = infection_rate, CFR = CFR, amt_doctors = amt_doctors, sim = sim)
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# ----------------------------------- Start of Single Model -------------------------------------------
for (t in 2:timestep) { # Start Single run
# RECORD STATS OF THE NETWORK
E_stats <- E_stats %>%
add_row(coef = transitivity(p),
cluster = count_components(p),
time = t,
max_degree = max(degree(p)),
assortativity = assortativity_degree(p),
diameter = diameter(p), Number_of_P0 = initial_infected, infection_rate_corpse = infection_rate_corpse,
infection_rate = infection_rate, CFR = CFR, amt_doctors = amt_doctors, sim = sim)
sick_monitor <- sick_monitor %>%
add_row(S = length(which(V(p)$health == 'healthy')),
I = length(which(V(p)$health == 'infected')),
R = length(which(V(p)$health == 'recovered')),
E = length(which(V(p)$health == 'exposed')),
D = length(which(V(p)$health == 'dead')),
Timestep = t)
# ------------------ Set up counters for exposed and dead
V(p)[V(p)]$case_count = NA
V(p)[V(p)]$dead_count = NA
#------------------------------------------- Movements --------------------------------------------------
# ------------------ DOCTOR ACTION -----------
# Is near a infected??
tryCatch({ # Helps me find and diagnose error if it happens
doc = which(V(p)$class == 'doctor')
if (length(doc) != 0) {
possible_patients = neighbors(p, doc)
infected_patients_TRUE = which(V(p)$health[possible_patients] == 'infected')
infected_patients_TRUE = sample(V(p)[infected_patients_TRUE])
if (length(infected_patients_TRUE) != 0) { # if the doctor is connected to an infected patient
doc_patients = possible_patients[infected_patients_TRUE] # <------- I identify the neighboring sick Agents
}
all_sick_peoples = which(V(p)$health == 'infected')
all_sick_peoples = sample(V(p)[all_sick_peoples])
if (length(all_sick_peoples) != 0) {
chosen_sick = which(V(p)$health == 'infected')
for (i in 1:length(doc)) {
a_sick_person = sample(V(p)[chosen_sick], size = 1)
add_edges(p, c(doc[i], a_sick_person))}
}
# does doc heal anyone??
if (length(infected_patients_TRUE) != 0) {
for (patient in length(doc_patients)) {
grim_reaper = sample(1:100, size = 1) # picks a random number
if (grim_reaper %% 2 == 0) { # if even, patient is cured as recover is often 50-50 (from CDC)
V(p)$health[doc_patients[patient]] = 'recovered'
V(p)$col[doc_patients[patient]] = 'cyan'
} else {}}}
}
}, error=function(e){cat("ERROR in DOC:",conditionMessage(e), "\n")})
#---------------- Latency period checked for individuals -----------
exposed = which(V(p)$health == 'exposed')
if (length(exposed) != 0) {
for (e in 1:length(exposed)){
if (exposed[e] %in% exposed_book[,1]) {
z = which(exposed_book[,1] == exposed[e])
time_in_E = exposed_book[z,2]
if (time_in_E == 8) { # Latency of 8 days for Ebola (from CDC)
if (V(p)$health[exposed[e]] == 'exposed' ){
exp_ind = exposed_book[z,1]
if(V(p)$health[exp_ind] != 'dead') {
V(p)$health[exp_ind] = 'infected'
V(p)$col[exp_ind] = 'red'
V(p)$case_count[exp_ind] = 'in'
}} else {}
} else {
exposed_book[z,2] <- time_in_E + 1
}} else {
new_val <- exposed[e]
exposed_book[new_val, 1] = new_val
exposed_book[new_val, 2] = 1
}}}
# ----------- Check who is infected at start of this new turn + length of time infected / if death happens -------------
infected = which(V(p)$health == 'infected')
if (length(infected) != 0) {
for (po in 1:length(infected)) {
if (infected[po] %in% dead_book[,1]) {
x = which(dead_book[,1] == infected[po])
time_in_I = dead_book[x,2]
if (time_in_I == 3) { # after 3 days of symptoms, 30% of people who survive are recovered by now (taken from infographic CDC)
R_ind = dead_book[x,1]
if (V(p)$health[R_ind] == 'infected') {
immune_sys = sample(seq(0,1,by = 0.01), size = 1)
if (immune_sys < .10){ # 30% of survivors feel better by now, there is a .1 probability of this happening at CFR of .65
V(p)$health[R_ind] = 'recovered'
V(p)$col[R_ind] = 'cyan'
}}}
if (time_in_I > 3) { # if time in infected past 3 days, death rate begins to factor into survival prob
l_ind = dead_book[x,1]
if (V(p)$health[l_ind] == 'infected') {
dead_dice = sample(seq(0,1,by = 0.01), size = 1)
if (dead_dice < CFR){
V(p)$health[l_ind] = 'dead'
V(p)$col[l_ind] = 'black'
V(p)$dead_count[l_ind] = 'in'
}}}
if (time_in_I == 8) { # if in infected w/ symptoms for 8 days, assume that death occurs (from CDC)
I_ind = dead_book[x,1]
if (V(p)$health[I_ind] == 'infected') {
V(p)$health[I_ind] = 'dead'
V(p)$col[I_ind] = 'black'
V(p)$dead_count[I_ind] = 'in'
}}
dead_book[x,2] <- time_in_I + 1
} else {
new_ind = infected[po]
dead_book[new_ind,1] = new_ind
dead_book[new_ind,2] = 1 #
}}}
#------------------------- Infected person infects someone here ---------
tryCatch({ # There were rare instances of neighbors being unable to be found when model is run 100+ iterations, this prevents from crashing / helps me diagnose issue
infected = which(V(p)$health == 'infected')
if (length(infected) != 0) {
susceptible_neighbors = neighbors(p, infected)
new_sick = sample(susceptible_neighbors)
new = which(V(p)[new_sick]$health == 'healthy')
new_sick = new_sick[new]
if (length(new_sick) != 0) {
for (d in 1:length(new_sick)) {
grim_dice = sample(seq(0,1,by = 0.01), size = 1)
if (grim_dice < infection_rate) { # if random # generated is below input infection rate, then infection occurs
if (V(p)$health[new_sick[d]] != 'dead' | V(p)$health[new_sick[d]] != 'recovered') { # just to make sure....
V(p)$health[new_sick[d]] = 'exposed'
V(p)$col[new_sick[d]] = 'yellow'
}}}}
}}, error=function(e){cat("ERROR in infected:",conditionMessage(e), "\n")})
# -------------------- Dead person infecting someone -----------
tryCatch({ # same as above
dead = which(V(p)$health == 'dead')
if (length(dead) != 0 ) {
close_to_body = neighbors(p, dead)
dead_b = sample(close_to_body)
new_d = which(V(p)[dead_b]$health == 'healthy')
dead_b = dead_b[new_d]
if (length(dead_b) > 0) {
for (q in 1:length(dead_b)) {
grim_dice = sample(seq(0,1,by = 0.01), size = 1)
if (grim_dice < infection_rate_corpse) { # Infection from corpse, similar method to infection above
V(p)$health[dead_b[q]] = 'exposed'
V(p)$col[dead_b[q]] = 'yellow'
}}}}
}, error=function(e){cat("ERROR in dead:",conditionMessage(e), "\n")})
# Count who is in dead BEFORE deleting verts
life_counts <- life_counts %>%
add_row(cases = life_counts$cases[t-1] + (length(which(V(p)$case_count == 'in'))),
deaths = life_counts$deaths[t-1] + (length(which(V(p)$dead_count == 'in'))),
time = t,
Number_of_P0 = initial_infected, infection_rate_corpse = infection_rate_corpse,
infection_rate = infection_rate, CFR = CFR, amt_doctors = amt_doctors, sim = sim)
#------------------- Bury the dead (remove from network) ----------------------
delete = which(V(p)$health == 'dead')
if (length(delete) > 0) {
p <- delete.vertices(p, c(V(p)[delete]))
}
} # End single run
full_stats = rbind(full_stats, E_stats)
life_stats = rbind(life_stats, life_counts)
} # End simulations
} # End multiple iterations
#----------------------------------------- END OF MODEL -----------------------------------------------
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# set tested variables to characters
life_stats$Number_of_P0 = as.character(life_stats$Number_of_P0)
life_stats$infection_rate_corpse = as.character(life_stats$infection_rate_corpse)
life_stats$infection_rate = as.character(life_stats$infection_rate)
life_stats$CFR = as.character(life_stats$CFR)
life_stats$amt_doctors = as.character(life_stats$amt_doctors)
full_stats$infection_rate_corpse = as.character(full_stats$infection_rate_corpse)
# -------------------- Plots
par(mfrow = c(1,1))
plot(p, layout = layout.fruchterman.reingold, vertex.color = V(p)$col,
vertex.label = '', vertex.shape = 'circle', vertex.size = 3)
ggplot(data = full_stats, mapping = aes(x = diameter, y = infection_rate_corpse)) +
geom_jitter(size = .1, aes(color = infection_rate_corpse)) +
xlab('Network Diameter') +
ylab('Infection Rate') +
theme_base() +
#scale_colour_colorblind() +
guides(color = F) +
scale_x_continuous(breaks = pretty(full_stats$diameter, n = 8))
# Death plot
ggplot(data = life_stats, mapping = aes(x = time, y = deaths, color = infection_rate_corpse)) +
#geom_jitter(size = 0.01) +
geom_smooth(data = filter(life_stats, deaths != 0), se = F, size = 1.5) +
xlab('Timestep') +
ylab('Average Deaths') +
labs(color = "Corpse Infection rate") +
theme_base() +
#scale_colour_colorblind()
guides(colour = guide_legend(override.aes = list(size=7)))
# Case plot
ggplot(data = life_stats,mapping = aes(x = time, y = cases, color = infection_rate_corpse)) +
#geom_jitter(size = 0.01) +
geom_smooth(data = filter(life_stats, cases != 10), se = F, size = 1.5) +
xlab('Timestep') +
ylab('Average Cases') +
labs(color = "Corpse Infection rate") +
theme_base() +
# scale_colour_colorblind()
guides(colour = guide_legend(override.aes = list(size=7)))
# quick stat test on data that is seemingly different
end.times = life_stats$time == 100
end.data = life_stats[end.times,]
CFR_0.1 = end.data[end.data$infection_rate_corpse == 0.1,]
CFR_0.2 =end.data[end.data$infection_rate_corpse == 0.2,]
CFR_0.3 =end.data[end.data$infection_rate_corpse == 0.3,]
CFR_0.4 =end.data[end.data$infection_rate_corpse == 0.4,]
CFR_0.5 =end.data[end.data$infection_rate_corpse == 0.5,]
CFR_0.6 =end.data[end.data$infection_rate_corpse == 0.6,]
CFR_0.7 =end.data[end.data$infection_rate_corpse == 0.7,]
CFR_0.8 =end.data[end.data$infection_rate_corpse == 0.8,]
CFR_0.9 =end.data[end.data$infection_rate_corpse == 0.9,]
CFR_1 =end.data[end.data$infection_rate_corpse == 1,]
AVG_CFR0.1 = mean(CFR_0.1$cases)
AVG_CFR0.2 = mean(CFR_0.2$cases)
AVG_CFR0.3 = mean(CFR_0.3$cases)
AVG_CFR0.4 = mean(CFR_0.4$cases)
AVG_CFR0.5 = mean(CFR_0.5$cases)
AVG_CFR0.6 = mean(CFR_0.6$cases)
AVG_CFR0.7 = mean(CFR_0.7$cases)
AVG_CFR0.8 = mean(CFR_0.8$cases)
AVG_CFR0.9 = mean(CFR_0.9$cases)
AVG_CFR1.0 = mean(CFR_1$cases)
case.table = tibble(IR = 0.1, AVG = mean(CFR_0.1$cases))
case.table <- case.table %>%
add_row(IR = 0.2, AVG = mean(CFR_0.2$cases))
case.table <- case.table %>%
add_row(IR = 0.3, AVG = mean(CFR_0.3$cases))
case.table <- case.table %>%
add_row(IR = 0.4, AVG = mean(CFR_0.4$cases))
case.table <- case.table %>%
add_row(IR = 0.5, AVG = mean(CFR_0.5$cases))
case.table <- case.table %>%
add_row(IR = 0.6, AVG = mean(CFR_0.6$cases))
case.table <- case.table %>%
add_row(IR = 0.7, AVG = mean(CFR_0.7$cases))
case.table <- case.table %>%
add_row(IR = 0.8, AVG = mean(CFR_0.8$cases))
case.table <- case.table %>%
add_row(IR = 0.9, AVG = mean(CFR_0.9$cases))
case.table <- case.table %>%
add_row(IR = 1.0, AVG = mean(CFR_1$cases))
case.table
case.table = as.data.frame(case.table)
my.aov = aov(AVG ~ IR, data = case.table)
shapiro.test(case.table$AVG)
summary(my.aov)# suggests there is significant difference between these values...