-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsklearn_models.py
390 lines (332 loc) · 22.9 KB
/
sklearn_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
'''
Akond Rahman
Oct 25 2018
sklearn prediction
'''
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.metrics import precision_score, recall_score
import numpy as np, pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn import cross_validation, svm
from sklearn.linear_model import RandomizedLogisticRegression, LogisticRegression
from sklearn.metrics import classification_report, roc_auc_score, mean_absolute_error, accuracy_score, confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import linear_model
import utility
from sklearn.metrics import f1_score
from sklearn.metrics import matthews_corrcoef
import math
iterDumpDir = '/Users/akond/Documents/AkondOneDrive/OneDrive/stvr/output/'
def dumpPredPerfValuesToFile(iterations, predPerfVector, fileName):
str2write=''
headerStr='AUC,PRECISION,RECALL,F1,ACC,GMEAN,'
for cnt in xrange(iterations):
auc_ = predPerfVector[0][cnt]
prec_ = predPerfVector[1][cnt]
recal = predPerfVector[2][cnt]
f1 = predPerfVector[3][cnt]
acc = predPerfVector[4][cnt]
gmean = predPerfVector[5][cnt]
str2write = str2write + str(auc_) + ',' + str(prec_) + ',' + str(recal) + ',' + str(f1) + ',' + str(acc) + ',' + str(gmean) + ',' + '\n'
str2write = headerStr + '\n' + str2write
bytes_ = utility.dumpContentIntoFile(str2write, fileName)
print "Created {} of {} bytes".format(fileName, bytes_)
def evalClassifier(actualLabels, predictedLabels):
'''
the way skelarn treats is the following: first index -> lower index -> 0 -> 'Low'
next index after first -> next lower index -> 1 -> 'high'
'''
target_labels = ['N', 'Y']
class_report = classification_report(actualLabels, predictedLabels, target_names=target_labels)
conf_matr_output = confusion_matrix(actualLabels, predictedLabels)
# print "Confusion matrix start"
# print conf_matr_output
# print "Confusion matrix end"
# preserve the order first test(real values from dataset), then predcited (from the classifier )
prec_ = precision_score(actualLabels, predictedLabels, average='binary')
recall_ = recall_score(actualLabels, predictedLabels, average='binary')
area_roc_output = roc_auc_score(actualLabels, predictedLabels)
fscore_output = f1_score(actualLabels, predictedLabels, average='binary')
accuracy_score_output = accuracy_score(actualLabels, predictedLabels)
gmean_out = math.sqrt ( prec_ * recall_ ) ##reff: https://stats.stackexchange.com/questions/174011/can-g-mean-be-larger-than-accuracy
return area_roc_output, prec_, recall_, fscore_output, accuracy_score_output, gmean_out
def perform_cross_validation(classiferP, featuresP, labelsP, cross_vali_param, infoP):
predicted_labels = cross_validation.cross_val_predict(classiferP, featuresP , labelsP, cv=cross_vali_param)
area_roc_to_ret = evalClassifier(labelsP, predicted_labels)
return area_roc_to_ret
def performCART(featureParam, labelParam, foldParam, infoP):
theCARTModel = DecisionTreeClassifier()
cart_area_under_roc = perform_cross_validation(theCARTModel, featureParam, labelParam, foldParam, infoP)
return cart_area_under_roc
def performKNN(featureParam, labelParam, foldParam, infoP):
theKNNModel = KNeighborsClassifier()
knn_area_under_roc = perform_cross_validation(theKNNModel, featureParam, labelParam, foldParam, infoP)
return knn_area_under_roc
def performRF(featureParam, labelParam, foldParam, infoP):
theRndForestModel = RandomForestClassifier()
rf_area_under_roc = perform_cross_validation(theRndForestModel, featureParam, labelParam, foldParam, infoP)
return rf_area_under_roc
def performSVC(featureParam, labelParam, foldParam, infoP):
theSVMModel = svm.SVC(kernel='rbf').fit(featureParam, labelParam)
svc_area_under_roc = perform_cross_validation(theSVMModel, featureParam, labelParam, foldParam, infoP)
return svc_area_under_roc
def performLogiReg(featureParam, labelParam, foldParam, infoP):
theLogisticModel = LogisticRegression()
theLogisticModel.fit(featureParam, labelParam)
logireg_area_under_roc = perform_cross_validation(theLogisticModel, featureParam, labelParam, foldParam, infoP)
return logireg_area_under_roc
def performNaiveBayes(featureParam, labelParam, foldParam, infoP):
theNBModel = GaussianNB() ### DEFAULT
# theNBModel = BernoulliNB() ### TUNED
theNBModel.fit(featureParam, labelParam)
gnb_area_under_roc = perform_cross_validation(theNBModel, featureParam, labelParam, foldParam, infoP)
return gnb_area_under_roc
def performModeling(features, labels, foldsParam):
#r_, c_ = np.shape(features)
### lets do CART (decision tree)
performCART(features, labels, foldsParam, "CART")
print "="*100
### lets do knn (nearest neighbor)
performKNN(features, labels, foldsParam, "KNN")
print "="*100
### lets do RF (ensemble method: random forest)
performRF(features, labels, foldsParam, "RF")
print "="*100
### lets do SVC (support vector: support-vector classification)
performSVC(features, labels, foldsParam, "SVC")
print "="*100
### lets do Logistic regession
performLogiReg(features, labels, foldsParam, "LogiRegr")
print "="*100
def performIterativeModeling(iterDumpDir, featureParam, labelParam, foldParam, iterationP=10):
cart_prec_holder, cart_recall_holder, holder_cart, f1_holder_cart, acc_holder_cart, gmean_holder_cart = [], [], [], [], [], []
knn_prec_holder, knn_recall_holder, holder_knn, f1_holder_knn, acc_holder_knn, gmean_holder_knn = [], [], [], [], [], []
rf_prec_holder, rf_recall_holder, holder_rf, f1_holder_rf, acc_holder_rf, gmean_holder_rf = [], [], [], [], [], []
svc_prec_holder, svc_recall_holder, holder_svc, f1_holder_svc, acc_holder_svc, gmean_holder_svc = [], [], [], [], [], []
logi_prec_holder, logi_recall_holder, holder_logi, f1_holder_lr, acc_holder_lr, gmean_holder_lr = [], [], [], [], [], []
nb_prec_holder, nb_recall_holder, holder_nb, f1_holder_nb, acc_holder_nb, gmean_holder_nb = [], [], [], [], [], []
for ind_ in xrange(iterationP):
## iterative modeling for CART
cart_area_roc, cart_prec_, cart_recall_, cart_f1, cart_accu, cart_gmean = performCART(featureParam, labelParam, foldParam, "CART")
holder_cart.append(cart_area_roc)
cart_prec_holder.append(cart_prec_)
cart_recall_holder.append(cart_recall_)
f1_holder_cart.append(cart_f1)
acc_holder_cart.append(cart_accu)
gmean_holder_cart.append(cart_gmean)
cart_f1 = 0
cart_accu = 0
cart_area_roc = float(0)
cart_prec_ = float(0)
cart_recall_ = float(0)
cart_gmean = 0
## iterative modeling for KNN
knn_area_roc, knn_prec_, knn_recall_, knn_f1, knn_acc, knn_gmean = performKNN(featureParam, labelParam, foldParam, "K-NN")
holder_knn.append(knn_area_roc)
knn_prec_holder.append(knn_prec_)
knn_recall_holder.append(knn_recall_)
f1_holder_knn.append(knn_f1)
acc_holder_knn.append(knn_acc)
gmean_holder_knn.append(knn_gmean)
knn_area_roc, knn_prec_, knn_recall_, knn_f1, knn_acc, knn_gmean = 0, 0, 0, 0, 0, 0
## iterative modeling for RF
rf_area_roc, rf_prec_, rf_recall_, rf_f1, rf_accu, rf_gm = performRF(featureParam, labelParam, foldParam, "Rand. Forest")
holder_rf.append(rf_area_roc)
rf_prec_holder.append(rf_prec_)
rf_recall_holder.append(rf_recall_)
f1_holder_rf.append(rf_f1)
acc_holder_rf.append(rf_accu)
gmean_holder_rf.append(rf_gm)
rf_area_roc, rf_prec_, rf_recall_, rf_f1, rf_accu, rf_gm = 0, 0, 0, 0, 0, 0
## iterative modeling for SVC
svc_area_roc, svc_prec_, svc_recall_, svc_f1, svc_accu,svc_gm = performSVC(featureParam, labelParam, foldParam, "Supp. Vector Classi.")
holder_svc.append(svc_area_roc)
svc_prec_holder.append(svc_prec_)
svc_recall_holder.append(svc_recall_)
f1_holder_svc.append(svc_f1)
acc_holder_svc.append(svc_accu)
gmean_holder_svc.append(svc_gm)
svc_area_roc, svc_prec_, svc_recall_, svc_f1, svc_accu, svc_gm = 0, 0, 0, 0, 0, 0
## iterative modeling for logistic regression
logi_reg_area_roc, logi_reg_preci_, logi_reg_recall, lr_f1, lr_ac, lr_gm = performLogiReg(featureParam, labelParam, foldParam, "Logi. Regression Classi.")
holder_logi.append(logi_reg_area_roc)
logi_prec_holder.append(logi_reg_preci_)
logi_recall_holder.append(logi_reg_recall)
f1_holder_lr.append(lr_f1)
acc_holder_lr.append(lr_ac)
gmean_holder_lr.append(lr_gm)
logi_reg_area_roc, logi_reg_preci_, logi_reg_recall, lr_f1, lr_ac, lr_gm = 0, 0, 0, 0, 0, 0
## iterative modeling for naiev bayes
nb_area_roc, nb_preci_, nb_recall, f1_nb, acc_nb, nb_gm = performNaiveBayes(featureParam, labelParam, foldParam, "Naive Bayes")
holder_nb.append(nb_area_roc)
nb_prec_holder.append(nb_preci_)
nb_recall_holder.append(nb_recall)
f1_holder_nb.append(f1_nb)
acc_holder_nb.append(acc_nb)
gmean_holder_nb.append(nb_gm)
nb_area_roc, nb_preci_, nb_recall, f1_nb, acc_nb, nb_gm = 0, 0, 0, 0, 0, 0
print "-"*50
print "Summary: AUC, for:{}, mean:{}, median:{}, max:{}, min:{}".format("CART", np.mean(holder_cart),
np.median(holder_cart), max(holder_cart),
min(holder_cart))
print "*"*25
print "Summary: Precision, for:{}, mean:{}, median:{}, max:{}, min:{}".format("CART", np.mean(cart_prec_holder),
np.median(cart_prec_holder), max(cart_prec_holder),
min(cart_prec_holder))
print "*"*25
print "Summary: Recall, for:{}, mean:{}, median:{}, max:{}, min:{}".format("CART", np.mean(cart_recall_holder),
np.median(cart_recall_holder), max(cart_recall_holder),
min(cart_recall_holder))
print "*"*25
print "Summary: F1, for:{}, mean:{}, median:{}, max:{}, min:{}".format("CART", np.mean(f1_holder_cart),
np.median(f1_holder_cart), max(f1_holder_cart),
min(f1_holder_cart))
print "*"*25
print "Summary: Accuracy, for:{}, mean:{}, median:{}, max:{}, min:{}".format("CART", np.mean(acc_holder_cart),
np.median(acc_holder_cart), max(acc_holder_cart),
min(acc_holder_cart))
print "*"*25
print "Summary: G-Mean, for:{}, mean:{}, median:{}, max:{}, min:{}".format("CART", np.mean(gmean_holder_cart),
np.median(gmean_holder_cart), max(gmean_holder_cart),
min(gmean_holder_cart))
print "*"*25
cart_all_pred_perf_values = (holder_cart, cart_prec_holder, cart_recall_holder, f1_holder_cart, acc_holder_cart, gmean_holder_cart)
dumpPredPerfValuesToFile(iterationP, cart_all_pred_perf_values, iterDumpDir+'PRED_PERF_CART.csv')
print "-"*50
print "Summary: AUC, for:{}, mean:{}, median:{}, max:{}, min:{}".format("KNN", np.mean(holder_knn),
np.median(holder_knn), max(holder_knn),
min(holder_knn))
print "*"*25
print "Summary: Precision, for:{}, mean:{}, median:{}, max:{}, min:{}".format("KNN", np.mean(knn_prec_holder),
np.median(knn_prec_holder), max(knn_prec_holder),
min(knn_prec_holder))
print "*"*25
print "Summary: Recall, for:{}, mean:{}, median:{}, max:{}, min:{}".format("KNN", np.mean(knn_recall_holder),
np.median(knn_recall_holder), max(knn_recall_holder),
min(knn_recall_holder))
print "*"*25
print "Summary: F1, for:{}, mean:{}, median:{}, max:{}, min:{}".format("KNN", np.mean(f1_holder_knn),
np.median(f1_holder_knn), max(f1_holder_knn),
min(f1_holder_knn))
print "*"*25
print "Summary: Accuracy, for:{}, mean:{}, median:{}, max:{}, min:{}".format("KNN", np.mean(acc_holder_knn),
np.median(acc_holder_knn), max(acc_holder_knn),
min(acc_holder_knn))
print "*"*25
print "Summary: G-Mean, for:{}, mean:{}, median:{}, max:{}, min:{}".format("KNN", np.mean(gmean_holder_knn),
np.median(gmean_holder_knn), max(gmean_holder_knn),
min(gmean_holder_knn))
print "*"*25
knn_all_pred_perf_values = (holder_knn, knn_prec_holder, knn_recall_holder, f1_holder_knn, acc_holder_knn, gmean_holder_knn)
dumpPredPerfValuesToFile(iterationP, knn_all_pred_perf_values, iterDumpDir+'PRED_PERF_KNN.csv')
print "-"*50
print "Summary: AUC, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Rand. Forest", np.mean(holder_rf),
np.median(holder_rf), max(holder_rf),
min(holder_rf))
print "*"*25
print "Summary: Precision, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Rand. Forest", np.mean(rf_prec_holder),
np.median(rf_prec_holder), max(rf_prec_holder),
min(rf_prec_holder))
print "*"*25
print "Summary: Recall, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Rand. Forest", np.mean(rf_recall_holder),
np.median(rf_recall_holder), max(rf_recall_holder),
min(rf_recall_holder))
print "*"*25
print "Summary: F1, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Rand. Forest", np.mean(f1_holder_rf),
np.median(f1_holder_rf), max(f1_holder_rf),
min(f1_holder_rf))
print "*"*25
print "Summary: Accuracy, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Rand. Forest", np.mean(acc_holder_rf),
np.median(acc_holder_rf), max(acc_holder_rf),
min(acc_holder_rf))
print "*"*25
print "Summary: G-Mean, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Rand. Forest", np.mean(gmean_holder_rf),
np.median(gmean_holder_rf), max(gmean_holder_rf),
min(gmean_holder_rf))
print "*"*25
rf_all_pred_perf_values = (holder_rf, rf_prec_holder, rf_recall_holder, f1_holder_rf, acc_holder_rf, gmean_holder_rf)
dumpPredPerfValuesToFile(iterationP, rf_all_pred_perf_values, iterDumpDir+'PRED_PERF_RF.csv')
print "-"*50
print "Summary: AUC, for:{}, mean:{}, median:{}, max:{}, min:{}".format("S. Vec. Class.", np.mean(holder_svc),
np.median(holder_svc), max(holder_svc),
min(holder_svc))
print "*"*25
print "Summary: Precision, for:{}, mean:{}, median:{}, max:{}, min:{}".format("S. Vec. Class.", np.mean(svc_prec_holder),
np.median(svc_prec_holder), max(svc_prec_holder),
min(svc_prec_holder))
print "*"*25
print "Summary: Recall, for:{}, mean:{}, median:{}, max:{}, min:{}".format("S. Vec. Class.", np.mean(svc_recall_holder),
np.median(svc_recall_holder), max(svc_recall_holder),
min(svc_recall_holder))
print "*"*25
print "Summary: F1, for:{}, mean:{}, median:{}, max:{}, min:{}".format("S. Vec. Class.", np.mean(f1_holder_svc),
np.median(f1_holder_svc), max(f1_holder_svc),
min(f1_holder_svc))
print "*"*25
print "Summary: Accuracy, for:{}, mean:{}, median:{}, max:{}, min:{}".format("S. Vec. Class.", np.mean(acc_holder_svc),
np.median(acc_holder_svc), max(acc_holder_svc),
min(acc_holder_svc))
print "*"*25
print "Summary: G-Mean, for:{}, mean:{}, median:{}, max:{}, min:{}".format("S. Vec. Class.", np.mean(gmean_holder_svc),
np.median(gmean_holder_svc), max(gmean_holder_svc),
min(gmean_holder_svc))
print "*"*25
svc_all_pred_perf_values = (holder_svc, svc_prec_holder, svc_recall_holder, f1_holder_svc, acc_holder_svc, gmean_holder_svc)
dumpPredPerfValuesToFile(iterationP, svc_all_pred_perf_values, iterDumpDir+'PRED_PERF_SVC.csv')
print "-"*50
print "Summary: AUC, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Logi. Regression", np.mean(holder_logi),
np.median(holder_logi), max(holder_logi),
min(holder_logi))
print "*"*25
print "Summary: Precision, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Logi. Regression", np.mean(logi_prec_holder),
np.median(logi_prec_holder), max(logi_prec_holder),
min(logi_prec_holder))
print "*"*25
print "Summary: Recall, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Logi. Regression", np.mean(logi_recall_holder),
np.median(logi_recall_holder), max(logi_recall_holder),
min(logi_recall_holder))
print "*"*25
print "Summary: F1, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Logi. Regression", np.mean(f1_holder_lr),
np.median(f1_holder_lr), max(f1_holder_lr),
min(f1_holder_lr))
print "*"*25
print "Summary: Accuracy, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Logi. Regression", np.mean(acc_holder_lr),
np.median(acc_holder_lr), max(acc_holder_lr),
min(acc_holder_lr))
print "*"*25
print "Summary: G-Mean, for:{}, mean:{}, median:{}, max:{}, min:{}".format("S. Vec. Class.", np.mean(gmean_holder_lr),
np.median(gmean_holder_lr), max(gmean_holder_lr),
min(gmean_holder_lr))
print "*"*25
logireg_all_pred_perf_values = (holder_logi, logi_prec_holder, logi_recall_holder, f1_holder_lr, acc_holder_lr, gmean_holder_lr)
dumpPredPerfValuesToFile(iterationP, logireg_all_pred_perf_values, iterDumpDir+'PRED_PERF_LOGIREG.csv')
print "-"*50
print "Summary: AUC, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Naive Bayes", np.mean(holder_nb),
np.median(holder_nb), max(holder_nb),
min(holder_nb))
print "*"*25
print "Summary: Precision, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Naive Bayes", np.mean(nb_prec_holder),
np.median(nb_prec_holder), max(nb_prec_holder),
min(nb_prec_holder))
print "*"*25
print "Summary: Recall, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Naive Bayes", np.mean(nb_recall_holder),
np.median(nb_recall_holder), max(nb_recall_holder),
min(nb_recall_holder))
print "*"*25
print "Summary: F1, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Naive Bayes", np.mean(f1_holder_nb),
np.median(f1_holder_nb), max(f1_holder_nb),
min(f1_holder_nb))
print "*"*25
print "Summary: Accuracy, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Naive Bayes", np.mean(acc_holder_nb),
np.median(acc_holder_nb), max(acc_holder_nb),
min(acc_holder_nb))
print "*"*25
print "Summary: G-Mean, for:{}, mean:{}, median:{}, max:{}, min:{}".format("Naive Bayes", np.mean(gmean_holder_nb),
np.median(gmean_holder_nb), max(gmean_holder_nb),
min(gmean_holder_nb))
print "*"*25
nb_all_pred_perf_values = (holder_nb, nb_prec_holder, nb_recall_holder, f1_holder_nb, acc_holder_nb, gmean_holder_nb)
dumpPredPerfValuesToFile(iterationP, nb_all_pred_perf_values, iterDumpDir+'PRED_PERF_NB.csv')
print "-"*50
return cart_all_pred_perf_values, knn_all_pred_perf_values, rf_all_pred_perf_values, svc_all_pred_perf_values, logireg_all_pred_perf_values, nb_all_pred_perf_values