forked from NVlabs/LSGM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vada.py
512 lines (463 loc) · 30.3 KB
/
train_vada.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for LSGM. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import argparse
import torch
import numpy as np
import os
from torch.multiprocessing import Process
from torch.cuda.amp import autocast, GradScaler
from nvae import NVAE
from diffusion_discretized import DiffusionDiscretized
from diffusion_continuous import make_diffusion
try:
from apex.optimizers import FusedAdam
except ImportError:
print("No Apex Available. Using PyTorch's native Adam. Install Apex for faster training.")
from torch.optim import Adam as FusedAdam
from util.ema import EMA
from util import utils, datasets
from util.sr_utils import SpectralNormCalculator
from evaluate_diffusion import test_dae_fid, generate_samples_vada, elbo_evaluation
from train_vae import infer_active_variables
from training_obj_joint import train_vada_joint
from training_obj_disjoint import train_vada_disjoint
def main(args):
# common initialization
logging, writer = utils.common_init(args.global_rank, args.seed, args.save)
# Get data loaders.
train_queue, valid_queue, num_classes = datasets.get_loaders(args)
args.num_total_iter = len(train_queue) * args.epochs
warmup_iters = len(train_queue) * args.warmup_epochs
# load a pretrained NVAE only for VADA.
load_vae, load_dae = False, False
if args.vae_checkpoint != '' or args.vada_checkpoint != '':
assert not (args.vae_checkpoint != '' and args.vada_checkpoint != ''), 'provide only 1 checkpoint'
checkpoint_path = args.vada_checkpoint if args.vada_checkpoint != '' else args.vae_checkpoint
logging.info('loading pretrained vae checkpoint:')
logging.info(checkpoint_path)
checkpoint = torch.load(checkpoint_path, map_location='cpu')
stored_args = checkpoint['args']
utils.override_architecture_fields(args, stored_args, logging)
load_vae = True and not args.discard_vae_weights
load_dae = args.vada_checkpoint != '' and not args.discard_dae_weights
arch_instance_vae = utils.get_arch_cells(args.arch_instance, args.use_se)
logging.info('args = %s', args)
vae = NVAE(args, arch_instance_vae)
if load_vae:
logging.info('loading weights from vae checkpoint')
vae.load_state_dict(checkpoint['vae_state_dict'])
vae = vae.cuda()
logging.info('VAE: param size = %fM ', utils.count_parameters_in_M(vae))
# sync all parameters between all gpus by sending param from rank 0 to all gpus.
utils.broadcast_params(vae.parameters(), args.distributed)
vae_optimizer = FusedAdam(vae.parameters(), args.learning_rate_vae, weight_decay=args.weight_decay, eps=1e-3)
vae_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
vae_optimizer, float(args.epochs - args.warmup_epochs - 1), eta_min=args.learning_rate_min_vae)
# enable mixed prediction for vada
args.mixed_prediction = True
num_input_channels = vae.latent_structure()[0]
dae = utils.get_dae_model(args, num_input_channels)
if load_dae:
logging.info('loading weights from dae checkpoint')
dae.load_state_dict(checkpoint['dae_state_dict'])
dae = dae.cuda()
# for VESDE, run one epoch over data and get encodings and estimate sigma2_max based on Song's/Ermon's techniques.
if args.sde_type == 'vesde':
assert args.sigma2_min == args.sigma2_0, "VESDE was proposed implicitly assuming sigma2_min = sigma2_0!"
args = utils.set_vesde_sigma_max(args, vae, train_queue, logging, args.distributed)
diffusion_cont = make_diffusion(args)
diffusion_disc = DiffusionDiscretized(args, diffusion_cont.var)
logging.info('DAE: param size = %fM ', utils.count_parameters_in_M(dae))
# sync all parameters between all gpus by sending param from rank 0 to all gpus.
utils.broadcast_params(dae.parameters(), args.distributed)
dae_optimizer = FusedAdam(dae.parameters(), args.learning_rate_dae, weight_decay=args.weight_decay, eps=1e-4)
# add EMA functionality to the optimizer
dae_optimizer = EMA(dae_optimizer, ema_decay=args.ema_decay)
dae_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
dae_optimizer, float(args.epochs - args.warmup_epochs - 1), eta_min=args.learning_rate_min_dae)
# create SN calculator
vae_sn_calculator = SpectralNormCalculator(custom_conv=True) # NVAE consists of our own custom conv layer classes
dae_sn_calculator = SpectralNormCalculator(custom_conv=args.custom_conv_dae) # NCSN++ mode consists of pytorch conv layers
if args.train_vae:
vae_sn_calculator.add_conv_layers(vae)
vae_sn_calculator.add_bn_layers(vae)
dae_sn_calculator.add_conv_layers(dae)
dae_sn_calculator.add_bn_layers(dae)
grad_scalar = GradScaler(2**10)
bpd_coeff = utils.get_bpd_coeff(args.dataset)
# if continue training from a checkpoint
# useful when training is interrupted.
checkpoint_file = os.path.join(args.save, 'checkpoint.pt')
if args.cont_training:
logging.info('loading the model.')
checkpoint = torch.load(checkpoint_file, map_location='cpu')
init_epoch = checkpoint['epoch']
epoch = init_epoch
dae.load_state_dict(checkpoint['dae_state_dict'])
# load dae
dae = dae.cuda()
dae_optimizer.load_state_dict(checkpoint['dae_optimizer'])
dae_scheduler.load_state_dict(checkpoint['dae_scheduler'])
if 'dae_sn_calculator' in checkpoint: # for backward compatibility
dae_sn_calculator.load_state_dict(checkpoint['dae_sn_calculator'], torch.device("cuda"))
# load vae
vae.load_state_dict(checkpoint['vae_state_dict'])
vae = vae.cuda()
vae_optimizer.load_state_dict(checkpoint['vae_optimizer'])
vae_scheduler.load_state_dict(checkpoint['vae_scheduler'])
if 'vae_sn_calculator' in checkpoint: # for backward compatibility
vae_sn_calculator.load_state_dict(checkpoint['vae_sn_calculator'], torch.device("cuda"))
grad_scalar.load_state_dict(checkpoint['grad_scalar'])
global_step = checkpoint['global_step']
best_score_fid = checkpoint['best_score_fid']
best_score_nll = checkpoint['best_score_nll']
logging.info('loaded the model at epoch %d.', init_epoch)
else:
global_step, epoch, init_epoch, best_score_fid, best_score_nll = 0, 0, 0, 1e10, 1e10
for epoch in range(init_epoch, args.epochs):
# update lrs.
if args.distributed:
train_queue.sampler.set_epoch(global_step + args.seed)
valid_queue.sampler.set_epoch(0)
if epoch > args.warmup_epochs:
dae_scheduler.step()
vae_scheduler.step()
# remove disabled latent variables by setting their mixing component to a small value
if epoch == 0 and args.mixed_prediction and args.drop_inactive_var:
logging.info('inferring active latent variables.')
is_active = infer_active_variables(train_queue, vae, args, max_iter=1000)
dae.mixing_logit.data[0, torch.logical_not(is_active), 0, 0] = -15
dae.is_active = is_active.float().view(1, -1, 1, 1)
# Logging.
logging.info('epoch %d', epoch)
if args.disjoint_training:
# we may use disjoint training for update q with ema
assert args.iw_sample_p != args.iw_sample_q or args.update_q_ema, \
'disjoint training is for the case training objective of p and q are not the same unless q is ' \
'updated with the EMA parameters.'
assert args.iw_sample_q in ['ll_uniform', 'll_iw']
assert args.train_vae, 'disjoint training is used when training both VAE and prior.'
train_obj, global_step = train_vada_disjoint(train_queue, diffusion_cont, dae, dae_optimizer, vae, vae_optimizer,
grad_scalar, global_step, warmup_iters, writer, logging,
dae_sn_calculator, vae_sn_calculator, args)
else:
assert not args.update_q_ema, 'q can be training with EMA parameters of prior in disjoint training only.'
train_obj, global_step = train_vada_joint(train_queue, diffusion_cont, dae, dae_optimizer, vae, vae_optimizer,
grad_scalar, global_step, warmup_iters, writer, logging,
dae_sn_calculator, vae_sn_calculator, args)
logging.info('train_loss %f', train_obj)
writer.add_scalar('train/loss_epoch', train_obj, global_step)
# generate samples less frequently
num_evaluations_nll = 20
num_evaluations_fid = 20
num_saves = 100 # more frequent saves
eval_freq_nll = max(args.epochs // num_evaluations_nll, 1)
eval_freq_fid = max(args.epochs // num_evaluations_fid, 1)
save_freq = max(args.epochs // num_saves, 1)
if (epoch + 1) % eval_freq_nll == 0 or (epoch + 1) % eval_freq_fid == 0 or epoch == (args.epochs - 1):
fast_ode_param = {'ode_eps': args.train_ode_eps, 'ode_solver_tol': args.train_ode_solver_tol}
dae.eval()
vae.eval()
# switch to EMA parameters
dae_optimizer.swap_parameters_with_ema(store_params_in_ema=True)
# generate samples
n = int(np.floor(np.sqrt(min(64, args.batch_size)))) # cannot generate too many samples on big datasets
num_samples = n ** 2
samples_disc, _, _, _ = generate_samples_vada(dae, diffusion_disc, vae, num_samples,
enable_autocast=args.autocast_eval,
prior_var=args.sigma2_max if args.sde_type == 'vesde' else 1.0)
samples_disc = utils.tile_image(samples_disc, n)
writer.add_image('generated_disc', samples_disc, global_step)
samples_ode, nfe, _, _ = generate_samples_vada(dae, diffusion_cont, vae, num_samples,
enable_autocast=args.autocast_eval,
ode_eps=fast_ode_param['ode_eps'],
ode_solver_tol=fast_ode_param['ode_solver_tol'],
ode_sample=True,
prior_var=args.sigma2_max if args.sde_type == 'vesde' else 1.0)
samples_ode = utils.tile_image(samples_ode, n)
writer.add_image('generated_ode', samples_ode, global_step)
writer.add_scalar('ode_sampling_nfe/single_batch', nfe, global_step)
logging.info('sampled new images using ODE framework with {} func. evaluations (ode error tol.: {}, ode eps: {})'
.format(nfe, fast_ode_param['ode_solver_tol'], fast_ode_param['ode_eps']))
if (epoch + 1) % eval_freq_nll == 0 or epoch == (args.epochs - 1):
# NLL calculation (ODE-based)
neg_log_p_ode, _, nfe_nll_ode, _, _ = elbo_evaluation(valid_queue, diffusion_cont, dae, args, vae,
max_step=10, ode_eval=True, ode_param_dict=fast_ode_param)
logging.info('valid NLL (ODE-based) {} bpd (with {} func. evaluations)'.format(neg_log_p_ode * bpd_coeff, nfe_nll_ode))
writer.add_scalar('val/ode_nll_bpd', neg_log_p_ode * bpd_coeff, epoch)
writer.add_scalar('val/ode_nll_nat', neg_log_p_ode, epoch)
writer.add_scalar('val/ode_nll_nfe', nfe_nll_ode, epoch)
if neg_log_p_ode < best_score_nll:
best_score_nll = neg_log_p_ode
if args.global_rank == 0:
# Because we already swapped EMA parameters, we only save the VAE/DAE models here.
logging.info('saving the model for NLL.')
checkpoint_file_nll = os.path.join(args.save, 'checkpoint_nll.pt')
content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
'best_score_fid': best_score_fid, 'best_score_nll': best_score_nll,
'dae_state_dict': dae.state_dict(), 'vae_state_dict': vae.state_dict()}
torch.save(content, checkpoint_file_nll)
if (epoch + 1) % eval_freq_fid == 0 or epoch == (args.epochs - 1):
# FID calculation (ODE-based)
num_fid_samples = 2500 # use small number of samples for FID calculation during training
val_fid_ema = test_dae_fid(dae, diffusion_cont, writer, logging, args, num_fid_samples, vae,
ode_param_dict=fast_ode_param)
logging.info('valid FID (ODE-based) {} (ode error tol.: {}, ode eps: {})'.format(
val_fid_ema, fast_ode_param['ode_solver_tol'], fast_ode_param['ode_eps']))
writer.add_scalar('val/ode_fid', val_fid_ema, epoch)
if val_fid_ema < best_score_fid:
best_score_fid = val_fid_ema
if args.global_rank == 0:
# Because we already swapped EMA parameters, we only save the VAE/DAE models here.
logging.info('saving the model for FID.')
checkpoint_file_fid = os.path.join(args.save, 'checkpoint_fid.pt')
content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
'best_score_fid': best_score_fid, 'best_score_nll': best_score_nll,
'dae_state_dict': dae.state_dict(), 'vae_state_dict': vae.state_dict()}
torch.save(content, checkpoint_file_fid)
# switch back to original parameters
dae_optimizer.swap_parameters_with_ema(store_params_in_ema=True)
if (epoch + 1) % save_freq == 0 or epoch == (args.epochs - 1):
if args.global_rank == 0:
logging.info('saving the model.')
content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
'grad_scalar': grad_scalar.state_dict(), 'best_score_fid': best_score_fid, 'best_score_nll': best_score_nll,
'dae_state_dict': dae.state_dict(), 'dae_optimizer': dae_optimizer.state_dict(),
'dae_scheduler': dae_scheduler.state_dict(), 'vae_state_dict': vae.state_dict(),
'vae_optimizer': vae_optimizer.state_dict(), 'vae_scheduler': vae_scheduler.state_dict(),
'vae_sn_calculator': vae_sn_calculator.state_dict(), 'dae_sn_calculator': dae_sn_calculator.state_dict()}
torch.save(content, checkpoint_file)
# skip the final evaluation
# useful when evaluate_vada.py is used for the evaluation.
if args.skip_final_eval:
writer.close()
return
# final evaluation (max samples for FID, full validation set of NLL, both ODE-based and with manual discretization)
eval_ode_param = {'ode_eps': args.eval_ode_eps, 'ode_solver_tol': args.eval_ode_solver_tol}
dae.eval()
vae.eval()
# switch to EMA parameters
dae_optimizer.swap_parameters_with_ema(store_params_in_ema=True)
# NLL (ODE-based)
neg_log_p_ode, _, nfe_nll_ode, _, _ = elbo_evaluation(valid_queue, diffusion_cont, dae, args, vae, max_step=None,
ode_eval=True, ode_param_dict=eval_ode_param)
logging.info('final valid NLL (ODE-based) {} bpd (with {} func. evaluations)'.format(neg_log_p_ode * bpd_coeff, nfe_nll_ode))
writer.add_scalar('final_val/ode_nll_bpd', neg_log_p_ode * bpd_coeff, epoch)
writer.add_scalar('final_val/ode_nll_nat', neg_log_p_ode, epoch)
writer.add_scalar('final_val/ode_nll_nfe', nfe_nll_ode, epoch)
# ELBO (discretized)
elbo_disc, _, _, _, _ = elbo_evaluation(valid_queue, diffusion_disc, dae, args, vae, max_step=None, ode_eval=False)
logging.info('final valid ELBO (discretized) bpd %f', elbo_disc * bpd_coeff)
writer.add_scalar('final_val/disc_elbo_bpd', elbo_disc * bpd_coeff, epoch)
writer.add_scalar('final_val/disc_elbo_nat', elbo_disc, epoch)
# FID calculation (using discretized sampling)
num_fid_samples = 50000
val_fid_ema_disc = test_dae_fid(dae, diffusion_disc, writer, logging, args, num_fid_samples, vae)
logging.info('final valid FID (discretized) %f', val_fid_ema_disc)
writer.add_scalar('final_val/disc_fid', val_fid_ema_disc, epoch)
# FID calculation (using ODE-based sampling)
val_fid_ema_ode = test_dae_fid(dae, diffusion_cont, writer, logging, args, num_fid_samples, vae, eval_ode_param)
logging.info('final valid FID (ODE-based) {} (ode error tol.: {}, ode eps: {})'.format(
val_fid_ema_ode, eval_ode_param['ode_solver_tol'], eval_ode_param['ode_eps']))
writer.add_scalar('final_val/ode_fid', val_fid_ema_ode, epoch)
# switch back to original parameters
dae_optimizer.swap_parameters_with_ema(store_params_in_ema=True)
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser('encoder decoder examiner')
# experimental results
parser.add_argument('--root', type=str, default='/tmp/nvae-diff/expr',
help='location of the results')
parser.add_argument('--save', type=str, default='exp',
help='id used for storing intermediate results')
# data
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'celeba_64', 'celeba_256', 'mnist', 'omniglot',
'imagenet_32', 'ffhq', 'lsun_bedroom_128', 'lsun_church_256'],
help='which dataset to use')
parser.add_argument('--data', type=str, default='/tmp/nvae-diff/data',
help='location of the data corpus')
# optimization
parser.add_argument('--batch_size', type=int, default=64,
help='batch size per GPU')
parser.add_argument('--learning_rate_vae', type=float, default=1e-4,
help='init learning rate')
parser.add_argument('--learning_rate_min_vae', type=float, default=1e-5,
help='min learning rate')
parser.add_argument('--ema_decay', type=float, default=0.9999,
help='EMA decay factor')
parser.add_argument('--weight_decay', type=float, default=3e-4,
help='weight decay')
parser.add_argument('--weight_decay_norm_vae', type=float, default=0.,
help='The lambda parameter for spectral regularization.')
parser.add_argument('--epochs', type=int, default=100,
help='num of training epochs')
parser.add_argument('--warmup_epochs', type=int, default=5,
help='num of training epochs in which lr is warmed up')
parser.add_argument('--arch_instance', type=str, default='res_mbconv',
help='path to the architecture instance')
parser.add_argument('--use_se', action='store_true', default=False,
help='This flag enables squeeze and excitation.')
parser.add_argument('--cont_training', action='store_true', default=False,
help='This flag enables training from an existing checkpoint.')
parser.add_argument('--grad_clip_max_norm', type=float, default=0.,
help='The maximum norm used in gradient norm clipping (0 applies no clipping).')
# Diffusion
parser.add_argument('--learning_rate_dae', type=float, default=3e-4,
help='init learning rate')
parser.add_argument('--learning_rate_min_dae', type=float, default=3e-4,
help='min learning rate')
parser.add_argument('--weight_decay_norm_dae', type=float, default=0.,
help='The lambda parameter for spectral regularization.')
parser.add_argument('--custom_conv_dae', action='store_true', default=False,
help='Set this argument if conv layers in the SGM prior are custom layers from NVAE.')
parser.add_argument('--num_channels_dae', type=int, default=128,
help='number of initial channels in denosing model')
parser.add_argument('--num_scales_dae', type=int, default=4,
help='number of spatial scales in denosing model')
parser.add_argument('--num_cell_per_scale_dae', type=int, default=2,
help='number of cells per scale')
parser.add_argument('--embedding_dim', type=int, default=128,
help='dimension used for time embeddings')
parser.add_argument('--diffusion_steps', type=int, default=1000,
help='number of diffusion steps')
parser.add_argument('--sigma2_0', type=float, default=0.0,
help='initial SDE variance at t=0 (sort of represents Normal perturbation of input data)')
parser.add_argument('--beta_start', type=float, default=0.1,
help='initial beta variance value')
parser.add_argument('--beta_end', type=float, default=20.0,
help='final beta variance value')
parser.add_argument('--vpsde_power', type=int, default=2,
help='vpsde power for power-VPSDE')
parser.add_argument('--sigma2_min', type=float, default=1e-4,
help='initial beta variance value')
parser.add_argument('--sigma2_max', type=float, default=0.99,
help='final beta variance value')
parser.add_argument('--sde_type', type=str, default='geometric_sde',
choices=['geometric_sde', 'vpsde', 'sub_vpsde', 'vesde'],
help='what kind of sde type to use when training/evaluating in continuous manner.')
parser.add_argument('--train_ode_eps', type=float, default=1e-2,
help='ODE can only be integrated up to some epsilon > 0.')
parser.add_argument('--train_ode_solver_tol', type=float, default=1e-4,
help='ODE solver error tolerance.')
parser.add_argument('--eval_ode_eps', type=float, default=1e-5,
help='ODE can only be integrated up to some epsilon > 0.')
parser.add_argument('--eval_ode_solver_tol', type=float, default=1e-5,
help='ODE solver error tolerance.')
parser.add_argument('--time_eps', type=float, default=1e-2,
help='During training, t is sampled in [time_eps, 1.].')
parser.add_argument('--denoising_stddevs', type=str, default='beta', choices=['learn', 'beta', 'beta_post'],
help='enables learning the conditional VAE decoder distribution standard deviations')
parser.add_argument('--dropout', type=float, default=0.,
help='dropout probability applied to the denosing model')
parser.add_argument('--fid_dir', type=str, default='/tmp/nvae-diff/fid-stats',
help='A dir to store fid related files')
parser.add_argument('--mixing_logit_init', type=float, default=-3,
help='The initial logit for mixing coefficient.')
parser.add_argument('--embedding_type', type=str, choices=['positional', 'fourier'], default='positional',
help='Type of time embedding')
parser.add_argument('--embedding_scale', type=float, default=1.,
# 'fourier':16, 'positional':1000, backward compatible: 1.
help='Embedding scale that is used for rescaling time')
# NCSN++
parser.add_argument('--dae_arch', type=str, default='unet', choices=['ncsnpp'],
help='Switch between different DAE architectures.')
parser.add_argument('--fir', action='store_true', default=False,
help='Enable FIR upsampling/downsampling')
parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
help='progressive type for output')
parser.add_argument('--progressive_input', type=str, default='none', choices=['none', 'input_skip', 'residual'],
help='progressive type for input')
parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
help='progressive combine method.')
# VADA
parser.add_argument('--vae_checkpoint', type=str, default='',
help='Pretrained VAE checkpoint.')
parser.add_argument('--vada_checkpoint', type=str, default='',
help='Pretrained VADA checkpoint.')
parser.add_argument('--discard_vae_weights', action='store_true', default=False,
help='set true to ignore the vae weights from the checkpoint.')
parser.add_argument('--discard_dae_weights', action='store_true', default=False,
help='set true to ignore the dae weights from the checkpoint.')
parser.add_argument('--train_vae', action='store_true', default=False,
help='set true to train the vae model.')
parser.add_argument('--iw_sample_p', type=str, default='ll_uniform', choices=['ll_uniform', 'll_iw',
'drop_all_uniform', 'drop_all_iw', 'drop_sigma2t_iw', 'rescale_iw', 'drop_sigma2t_uniform'],
help='Specifies the weighting mechanism used for training p (sgm prior) and whether or not to use importance sampling')
parser.add_argument('--iw_sample_q', type=str, default='reweight_p_samples', choices=['reweight_p_samples', 'll_uniform', 'll_iw'],
help='Specifies the weighting mechanism used for training q (vae) and whether or not to use importance sampling. '
'reweight_p_samples indicates reweight the t samples generated for the prior as done in Algorithm 3.')
parser.add_argument('--iw_subvp_like_vp_sde', action='store_true', default=False,
help='Only relevant when using Sub-VPSDE. When true, use VPSDE-based IW distributions.')
parser.add_argument('--no_autograd_jvp', action='store_true', default=False,
help='Set to true to use backward() instead of grad(). '
'Suitable for models with gradient checkpointing.')
parser.add_argument('--apply_sqrt2_res', action='store_true', default=False,
help='Enable mixing residual cells with 1/sqrt(2).')
parser.add_argument('--drop_inactive_var', action='store_true', default=False,
help='Drops inactive latent variables.')
parser.add_argument('--skip_final_eval', action='store_true', default=False,
help='set true to skip the final eval.')
parser.add_argument('--disjoint_training', action='store_true', default=False,
help='When p (sgm prior) and q (vae) have different objectives, trains them in two separate forward calls (Algorithm 2).')
parser.add_argument('--update_q_ema', action='store_true', default=False,
help='Enables updating q with EMA parameters of prior.')
# second stage VADA KL annealing
parser.add_argument('--cont_kl_anneal', action='store_true', default=False,
help='If true, we continue KL annealing using below setup when training LSGM.')
parser.add_argument('--kl_anneal_portion_vada', type=float, default=0.1,
help='The portions epochs that KL is annealed')
parser.add_argument('--kl_const_portion_vada', type=float, default=0.0,
help='The portions epochs that KL is constant at kl_const_coeff')
parser.add_argument('--kl_const_coeff_vada', type=float, default=0.7,
help='The constant value used for min KL coeff')
parser.add_argument('--kl_max_coeff_vada', type=float, default=1.,
help='The constant value used for max KL coeff')
parser.add_argument('--kl_balance_vada', action='store_true', default=False,
help='If true, we use KL balancing during VADA KL annealing.')
# DDP.
parser.add_argument('--autocast_train', action='store_true', default=True,
help='This flag enables FP16 in training.')
parser.add_argument('--autocast_eval', action='store_true', default=True,
help='This flag enables FP16 in evaluation.')
parser.add_argument('--num_proc_node', type=int, default=1,
help='The number of nodes in multi node env.')
parser.add_argument('--node_rank', type=int, default=0,
help='The index of node.')
parser.add_argument('--local_rank', type=int, default=0,
help='rank of process in the node')
parser.add_argument('--global_rank', type=int, default=0,
help='rank of process among all the processes')
parser.add_argument('--num_process_per_node', type=int, default=1,
help='number of gpus')
parser.add_argument('--master_address', type=str, default='127.0.0.1',
help='address for master')
parser.add_argument('--seed', type=int, default=1,
help='seed used for initialization')
args = parser.parse_args()
args.save = args.root + '/' + args.save
utils.create_exp_dir(args.save)
size = args.num_process_per_node
if size > 1:
args.distributed = True
processes = []
for rank in range(size):
args.local_rank = rank
global_rank = rank + args.node_rank * args.num_process_per_node
global_size = args.num_proc_node * args.num_process_per_node
args.global_rank = global_rank
print('Node rank %d, local proc %d, global proc %d' % (args.node_rank, rank, global_rank))
p = Process(target=utils.init_processes, args=(global_rank, global_size, main, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
# for debugging
print('starting in debug mode')
args.distributed = True
utils.init_processes(0, size, main, args)