forked from NVlabs/LSGM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion_continuous.py
619 lines (511 loc) · 29 KB
/
diffusion_continuous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for LSGM. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
from abc import ABC, abstractmethod
import numpy as np
import torch
import gc
import util
from util.utils import trace_df_dx_hutchinson, sample_gaussian_like, sample_rademacher_like, get_mixed_prediction
from torchdiffeq import odeint
from torch.cuda.amp import autocast
from timeit import default_timer as timer
def make_diffusion(args):
""" simple diffusion factory function to return diffusion instances. Only use this to create continuous diffusions """
if args.sde_type == 'geometric_sde':
return DiffusionGeometric(args)
elif args.sde_type == 'vpsde':
return DiffusionVPSDE(args)
elif args.sde_type == 'sub_vpsde':
return DiffusionSubVPSDE(args)
elif args.sde_type == 'vesde':
return DiffusionVESDE(args)
else:
raise ValueError("Unrecognized sde type: {}".format(args.sde_type))
class DiffusionBase(ABC):
"""
Abstract base class for all diffusion implementations.
"""
def __init__(self, args):
super().__init__()
self.sigma2_0 = args.sigma2_0
self.sde_type = args.sde_type
@abstractmethod
def f(self, t):
""" returns the drift coefficient at time t: f(t) """
pass
@abstractmethod
def g2(self, t):
""" returns the squared diffusion coefficient at time t: g^2(t) """
pass
@abstractmethod
def var(self, t):
""" returns variance at time t, \sigma_t^2"""
pass
@abstractmethod
def e2int_f(self, t):
""" returns e^{\int_0^t f(s) ds} which corresponds to the coefficient of mean at time t. """
pass
@abstractmethod
def inv_var(self, var):
""" inverse of the variance function at input variance var. """
pass
@abstractmethod
def mixing_component(self, x_noisy, var_t, t, enabled):
""" returns mixing component which is the optimal denoising model assuming that q(z_0) is N(0, 1) """
pass
def sample_q(self, x_init, noise, var_t, m_t):
""" returns a sample from diffusion process at time t """
return m_t * x_init + torch.sqrt(var_t) * noise
def cross_entropy_const(self, ode_eps):
""" returns cross entropy factor with variance according to ode integration cutoff ode_eps """
# _, c, h, w = x_init.shape
return 0.5 * (1.0 + torch.log(2.0 * np.pi * self.var(t=torch.tensor(ode_eps, device='cuda'))))
def compute_ode_nll(self, dae, eps, ode_eps, ode_solver_tol, enable_autocast, no_autograd, num_samples, report_std):
""" calculates NLL based on ODE framework, assuming integration cutoff ode_eps """
# ODE solver starts consuming the CPU memory without this on large models
# https://github.com/scipy/scipy/issues/10070
gc.collect()
dae.eval()
def ode_func(t, state):
""" the ode function (including log probability integration for NLL calculation) """
global nfe_counter
nfe_counter = nfe_counter + 1
x = state[0].detach()
x.requires_grad_(True)
noise = sample_gaussian_like(x) # could also use rademacher noise (sample_rademacher_like)
with torch.set_grad_enabled(True):
with autocast(enabled=enable_autocast):
variance = self.var(t=t)
mixing_component = self.mixing_component(x_noisy=x, var_t=variance, t=t, enabled=dae.mixed_prediction)
pred_params = dae(x=x, t=t)
params = get_mixed_prediction(dae.mixed_prediction, pred_params, dae.mixing_logit, mixing_component)
dx_dt = self.f(t=t) * x + 0.5 * self.g2(t=t) * params / torch.sqrt(variance)
with autocast(enabled=False):
dlogp_x_dt = -trace_df_dx_hutchinson(dx_dt, x, noise, no_autograd).view(x.shape[0], 1)
return (dx_dt, dlogp_x_dt)
# NFE counter
global nfe_counter
nll_all, nfe_all = [], []
for i in range(num_samples):
# integrated log probability
logp_diff_t0 = torch.zeros(eps.shape[0], 1, device='cuda')
nfe_counter = 0
# solve the ODE
x_t, logp_diff_t = odeint(
ode_func,
(eps, logp_diff_t0),
torch.tensor([ode_eps, 1.0], device='cuda'),
atol=ode_solver_tol,
rtol=ode_solver_tol,
method="scipy_solver",
options={"solver": 'RK45'},
)
# last output values
x_t0, logp_diff_t0 = x_t[-1], logp_diff_t[-1]
# prior
if self.sde_type == 'vesde':
logp_prior = torch.sum(util.distributions.log_p_var_normal(x_t0, var=self.sigma2_max), dim=[1, 2, 3])
else:
logp_prior = torch.sum(util.distributions.log_p_standard_normal(x_t0), dim=[1, 2, 3])
log_likelihood = logp_prior - logp_diff_t0.view(-1)
nll_all.append(-log_likelihood)
nfe_all.append(nfe_counter)
nfe_mean = np.mean(nfe_all)
nll_all = torch.stack(nll_all, dim=1)
nll_mean = torch.mean(nll_all, dim=1)
if num_samples > 1 and report_std:
nll_stddev = torch.std(nll_all, dim=1)
nll_stddev_batch = torch.mean(nll_stddev)
nll_stderror_batch = nll_stddev_batch / np.sqrt(num_samples)
else:
nll_stddev_batch = None
nll_stderror_batch = None
return nll_mean, nfe_mean, nll_stddev_batch, nll_stderror_batch
def sample_model_ode(self, dae, num_samples, shape, ode_eps, ode_solver_tol, enable_autocast, temp, noise=None):
""" generates samples using the ODE framework, assuming integration cutoff ode_eps """
# ODE solver starts consuming the CPU memory without this on large models
# https://github.com/scipy/scipy/issues/10070
gc.collect()
dae.eval()
def ode_func(t, x):
""" the ode function (sampling only, no NLL stuff) """
global nfe_counter
nfe_counter = nfe_counter + 1
with autocast(enabled=enable_autocast):
variance = self.var(t=t)
mixing_component = self.mixing_component(x_noisy=x, var_t=variance, t=t, enabled=dae.mixed_prediction)
pred_params = dae(x=x, t=t)
params = get_mixed_prediction(dae.mixed_prediction, pred_params, dae.mixing_logit, mixing_component)
dx_dt = self.f(t=t) * x + 0.5 * self.g2(t=t) * params / torch.sqrt(variance)
return dx_dt
# the initial noise
if noise is None:
noise = torch.randn(size=[num_samples] + shape, device='cuda')
if self.sde_type == 'vesde':
noise_init = temp * noise * np.sqrt(self.sigma2_max)
else:
noise_init = temp * noise
# NFE counter
global nfe_counter
nfe_counter = 0
# solve the ODE
start = timer()
samples_out = odeint(
ode_func,
noise_init,
torch.tensor([1.0, ode_eps], device='cuda'),
atol=ode_solver_tol,
rtol=ode_solver_tol,
method="scipy_solver",
options={"solver": 'RK45'},
)
end = timer()
ode_solve_time = end - start
return samples_out[-1], nfe_counter, ode_solve_time
def iw_quantities(self, size, time_eps, iw_sample_mode, iw_subvp_like_vp_sde):
if self.sde_type in ['geometric_sde', 'vpsde']:
return self._iw_quantities_vpsdelike(size, time_eps, iw_sample_mode)
elif self.sde_type in ['sub_vpsde']:
return self._iw_quantities_subvpsdelike(size, time_eps, iw_sample_mode, iw_subvp_like_vp_sde)
elif self.sde_type in ['vesde']:
return self._iw_quantities_vesde(size, time_eps, iw_sample_mode)
else:
raise NotImplementedError
def _iw_quantities_vpsdelike(self, size, time_eps, iw_sample_mode):
"""
For all SDEs where the underlying SDE is of the form dz = -0.5 * beta(t) * z * dt + sqrt{beta(t)} * dw, like
for the VPSDE.
"""
rho = torch.rand(size=[size], device='cuda')
# In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode.
# obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood
# weighting.
if iw_sample_mode == 'll_uniform':
# uniform t sampling - likelihood obj. for both q and p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'll_iw':
# importance sampling for likelihood obj. - likelihood obj. for both q and p
ones = torch.ones_like(rho, device='cuda')
sigma2_1, sigma2_eps = self.var(ones), self.var(time_eps * ones)
log_sigma2_1, log_sigma2_eps = torch.log(sigma2_1), torch.log(sigma2_eps)
var_t = torch.exp(rho * log_sigma2_1 + (1 - rho) * log_sigma2_eps)
t = self.inv_var(var_t)
m_t, g2_t = self.e2int_f(t), self.g2(t)
obj_weight_t = obj_weight_t_ll = 0.5 * (log_sigma2_1 - log_sigma2_eps) / (1.0 - var_t)
elif iw_sample_mode == 'drop_all_uniform':
# uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = torch.ones(1, device='cuda')
obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'drop_all_iw':
# importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p
assert self.sde_type == 'vpsde', 'Importance sampling for fully unweighted objective is currently only ' \
'implemented for the regular VPSDE.'
t = torch.sqrt(1.0 / self.delta_beta_half) * torch.erfinv(rho * self.const_norm_2 + self.const_erf) - self.beta_frac
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = self.const_norm / (1.0 - var_t)
obj_weight_t_ll = obj_weight_t * g2_t / (2.0 * var_t)
elif iw_sample_mode == 'drop_sigma2t_iw':
# importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
ones = torch.ones_like(rho, device='cuda')
sigma2_1, sigma2_eps = self.var(ones), self.var(time_eps * ones)
var_t = rho * sigma2_1 + (1 - rho) * sigma2_eps
t = self.inv_var(var_t)
m_t, g2_t = self.e2int_f(t), self.g2(t)
obj_weight_t = 0.5 * (sigma2_1 - sigma2_eps) / (1.0 - var_t)
obj_weight_t_ll = obj_weight_t / var_t
elif iw_sample_mode == 'drop_sigma2t_uniform':
# uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = g2_t / 2.0
obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'rescale_iw':
# importance sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = 0.5 / (1.0 - var_t)
obj_weight_t_ll = g2_t / (2.0 * var_t)
else:
raise ValueError("Unrecognized importance sampling type: {}".format(iw_sample_mode))
return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \
obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1)
def _iw_quantities_subvpsdelike(self, size, time_eps, iw_sample_mode, iw_subvp_like_vp_sde):
"""
For all SDEs where the underlying SDE is of the form
dz = -0.5 * beta(t) * z * dt + sqrt{beta(t) * (1 - exp[-2 * betaintegral])} * dw, like for the Sub-VPSDE.
When iw_subvp_like_vp_sde is True, then we define the importance sampling distributions based on an analogous
VPSDE, while stile using the Sub-VPSDE. The motivation is that deriving the correct importance sampling
distributions for the Sub-VPSDE itself is hard, but the importance sampling distributions from analogous VPSDEs
probably already significantly reduce the variance also for the Sub-VPSDE.
"""
rho = torch.rand(size=[size], device='cuda')
# In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode.
# obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood
# weighting.
if iw_sample_mode == 'll_uniform':
# uniform t sampling - likelihood obj. for both q and p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'll_iw':
if iw_subvp_like_vp_sde:
# importance sampling for vpsde likelihood obj. - sub-vpsde likelihood obj. for both q and p
ones = torch.ones_like(rho, device='cuda')
sigma2_1, sigma2_eps = self.var_vpsde(ones), self.var_vpsde(time_eps * ones)
log_sigma2_1, log_sigma2_eps = torch.log(sigma2_1), torch.log(sigma2_eps)
var_t_vpsde = torch.exp(rho * log_sigma2_1 + (1 - rho) * log_sigma2_eps)
t = self.inv_var_vpsde(var_t_vpsde)
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t) * \
(log_sigma2_1 - log_sigma2_eps) * var_t_vpsde / (1 - var_t_vpsde) / self.beta(t)
else:
raise NotImplementedError
elif iw_sample_mode == 'drop_all_uniform':
# uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = torch.ones(1, device='cuda')
obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'drop_all_iw':
if iw_subvp_like_vp_sde:
# importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p
assert self.sde_type == 'sub_vpsde', 'Importance sampling for fully unweighted objective is ' \
'currently only implemented for the Sub-VPSDE.'
t = torch.sqrt(1.0 / self.delta_beta_half) * torch.erfinv(rho * self.const_norm_2 + self.const_erf) - self.beta_frac
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = self.const_norm / (1.0 - self.var_vpsde(t))
obj_weight_t_ll = obj_weight_t * g2_t / (2.0 * var_t)
else:
raise NotImplementedError
elif iw_sample_mode == 'drop_sigma2t_iw':
if iw_subvp_like_vp_sde:
# importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
ones = torch.ones_like(rho, device='cuda')
sigma2_1, sigma2_eps = self.var_vpsde(ones), self.var_vpsde(time_eps * ones)
var_t_vpsde = rho * sigma2_1 + (1 - rho) * sigma2_eps
t = self.inv_var_vpsde(var_t_vpsde)
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = 0.5 * g2_t / self.beta(t) * (sigma2_1 - sigma2_eps) / (1.0 - var_t_vpsde)
obj_weight_t_ll = obj_weight_t / var_t
else:
raise NotImplementedError
elif iw_sample_mode == 'drop_sigma2t_uniform':
# uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = g2_t / 2.0
obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'rescale_iw':
# importance sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p
# Note that we use the sub-vpsde variance to scale the p objective! It's not clear what's optimal here!
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = 0.5 / (1.0 - var_t)
obj_weight_t_ll = g2_t / (2.0 * var_t)
else:
raise ValueError("Unrecognized importance sampling type: {}".format(iw_sample_mode))
return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \
obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1)
def _iw_quantities_vesde(self, size, time_eps, iw_sample_mode):
"""
For the VESDE.
"""
rho = torch.rand(size=[size], device='cuda')
# In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode.
# obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood
# weighting.
if iw_sample_mode == 'll_uniform':
# uniform t sampling - likelihood obj. for both q and p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'll_iw':
# importance sampling for likelihood obj. - likelihood obj. for both q and p
ones = torch.ones_like(rho, device='cuda')
nsigma2_1, nsigma2_eps, sigma2_eps = self.var_N(ones), self.var_N(time_eps * ones), self.var(time_eps * ones)
log_frac_sigma2_1, log_frac_sigma2_eps = torch.log(self.sigma2_max / nsigma2_1), torch.log(nsigma2_eps / sigma2_eps)
var_N_t = (1.0 - self.sigma2_min) / (1.0 - torch.exp(rho * (log_frac_sigma2_1 + log_frac_sigma2_eps) - log_frac_sigma2_eps))
t = self.inv_var_N(var_N_t)
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = obj_weight_t_ll = 0.5 * (log_frac_sigma2_1 + log_frac_sigma2_eps) * self.var_N(t) / (1.0 - self.sigma2_min)
elif iw_sample_mode == 'drop_all_uniform':
# uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = torch.ones(1, device='cuda')
obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'drop_all_iw':
# importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p
ones = torch.ones_like(rho, device='cuda')
nsigma2_1, nsigma2_eps, sigma2_eps = self.var_N(ones), self.var_N(time_eps * ones), self.var(time_eps * ones)
log_frac_sigma2_1, log_frac_sigma2_eps = torch.log(self.sigma2_max / nsigma2_1), torch.log(nsigma2_eps / sigma2_eps)
var_N_t = (1.0 - self.sigma2_min) / (1.0 - torch.exp(rho * (log_frac_sigma2_1 + log_frac_sigma2_eps) - log_frac_sigma2_eps))
t = self.inv_var_N(var_N_t)
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t_ll = 0.5 * (log_frac_sigma2_1 + log_frac_sigma2_eps) * self.var_N(t) / (1.0 - self.sigma2_min)
obj_weight_t = 2.0 * obj_weight_t_ll / np.log(self.sigma2_max / self.sigma2_min)
elif iw_sample_mode == 'drop_sigma2t_iw':
# importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
ones = torch.ones_like(rho, device='cuda')
nsigma2_1, nsigma2_eps = self.var_N(ones), self.var_N(time_eps * ones)
var_N_t = torch.exp(rho * torch.log(nsigma2_1) + (1 - rho) * torch.log(nsigma2_eps))
t = self.inv_var_N(var_N_t)
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = 0.5 * torch.log(nsigma2_1 / nsigma2_eps) * self.var_N(t)
obj_weight_t_ll = obj_weight_t / var_t
elif iw_sample_mode == 'drop_sigma2t_uniform':
# uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = g2_t / 2.0
obj_weight_t_ll = g2_t / (2.0 * var_t)
elif iw_sample_mode == 'rescale_iw':
# uniform sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p
t = rho * (1. - time_eps) + time_eps
var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t)
obj_weight_t = 0.5 / (1.0 - var_t)
obj_weight_t_ll = g2_t / (2.0 * var_t)
else:
raise ValueError("Unrecognized importance sampling type: {}".format(iw_sample_mode))
return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \
obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1)
class DiffusionGeometric(DiffusionBase):
"""
Diffusion implementation with dz = -0.5 * beta(t) * z * dt + sqrt(beta(t)) * dW SDE and geometric progression of
variance. This is our new diffusion.
"""
def __init__(self, args):
super().__init__(args)
self.sigma2_min = args.sigma2_min
self.sigma2_max = args.sigma2_max
def f(self, t):
return -0.5 * self.g2(t)
def g2(self, t):
sigma2_geom = self.sigma2_min * ((self.sigma2_max / self.sigma2_min) ** t)
log_term = np.log(self.sigma2_max / self.sigma2_min)
return sigma2_geom * log_term / (1.0 - self.sigma2_0 + self.sigma2_min - sigma2_geom)
def var(self, t):
return self.sigma2_min * ((self.sigma2_max / self.sigma2_min) ** t) - self.sigma2_min + self.sigma2_0
def e2int_f(self, t):
return torch.sqrt(1.0 + self.sigma2_min * (1.0 - (self.sigma2_max / self.sigma2_min) ** t) / (1.0 - self.sigma2_0))
def inv_var(self, var):
return torch.log((var + self.sigma2_min - self.sigma2_0) / self.sigma2_min) / np.log(self.sigma2_max / self.sigma2_min)
def mixing_component(self, x_noisy, var_t, t, enabled):
if enabled:
return torch.sqrt(var_t) * x_noisy
else:
return None
class DiffusionVPSDE(DiffusionBase):
"""
Diffusion implementation of the VPSDE. This uses the same SDE like DiffusionGeometric but with linear beta(t).
Note that we need to scale beta_start and beta_end by 1000 relative to JH's DDPM values, since our t is in [0,1].
"""
def __init__(self, args):
super().__init__(args)
self.beta_start = args.beta_start
self.beta_end = args.beta_end
# auxiliary constants
self.time_eps = args.time_eps
self.delta_beta_half = torch.tensor(0.5 * (self.beta_end - self.beta_start), device='cuda')
self.beta_frac = torch.tensor(self.beta_start / (self.beta_end - self.beta_start), device='cuda')
self.const_aq = (1.0 - self.sigma2_0) * torch.exp(0.5 * self.beta_frac) * torch.sqrt(0.25 * np.pi / self.delta_beta_half)
self.const_erf = torch.erf(torch.sqrt(self.delta_beta_half) * (self.time_eps + self.beta_frac))
self.const_norm = self.const_aq * (torch.erf(torch.sqrt(self.delta_beta_half) * (1.0 + self.beta_frac)) - self.const_erf)
self.const_norm_2 = torch.erf(torch.sqrt(self.delta_beta_half) * (1.0 + self.beta_frac)) - self.const_erf
def f(self, t):
return -0.5 * self.g2(t)
def g2(self, t):
return self.beta_start + (self.beta_end - self.beta_start) * t
def var(self, t):
return 1.0 - (1.0 - self.sigma2_0) * torch.exp(-self.beta_start * t - 0.5 * (self.beta_end - self.beta_start) * t * t)
def e2int_f(self, t):
return torch.exp(-0.5 * self.beta_start * t - 0.25 * (self.beta_end - self.beta_start) * t * t)
def inv_var(self, var):
c = torch.log((1 - var) / (1 - self.sigma2_0))
a = self.beta_end - self.beta_start
t = (-self.beta_start + torch.sqrt(np.square(self.beta_start) - 2 * a * c)) / a
return t
def mixing_component(self, x_noisy, var_t, t, enabled):
if enabled:
return torch.sqrt(var_t) * x_noisy
else:
return None
class DiffusionSubVPSDE(DiffusionBase):
"""
Diffusion implementation of the sub-VPSDE. Note that this uses a different SDE compared to the above two diffusions.
"""
def __init__(self, args):
super().__init__(args)
self.beta_start = args.beta_start
self.beta_end = args.beta_end
# auxiliary constants (assumes regular VPSDE)
self.time_eps = args.time_eps
self.delta_beta_half = torch.tensor(0.5 * (self.beta_end - self.beta_start), device='cuda')
self.beta_frac = torch.tensor(self.beta_start / (self.beta_end - self.beta_start), device='cuda')
self.const_aq = (1.0 - self.sigma2_0) * torch.exp(0.5 * self.beta_frac) * torch.sqrt(0.25 * np.pi / self.delta_beta_half)
self.const_erf = torch.erf(torch.sqrt(self.delta_beta_half) * (self.time_eps + self.beta_frac))
self.const_norm = self.const_aq * (torch.erf(torch.sqrt(self.delta_beta_half) * (1.0 + self.beta_frac)) - self.const_erf)
self.const_norm_2 = torch.erf(torch.sqrt(self.delta_beta_half) * (1.0 + self.beta_frac)) - self.const_erf
def f(self, t):
return -0.5 * self.beta(t)
def g2(self, t):
return self.beta(t) * (1.0 - torch.exp(-2.0 * self.beta_start * t - (self.beta_end - self.beta_start) * t * t))
def var(self, t):
int_term = torch.exp(-self.beta_start * t - 0.5 * (self.beta_end - self.beta_start) * t * t)
return torch.square(1.0 - int_term) + self.sigma2_0 * int_term
def e2int_f(self, t):
return torch.exp(-0.5 * self.beta_start * t - 0.25 * (self.beta_end - self.beta_start) * t * t)
def beta(self, t):
""" auxiliary beta function """
return self.beta_start + (self.beta_end - self.beta_start) * t
def inv_var(self, var):
raise NotImplementedError
def mixing_component(self, x_noisy, var_t, t, enabled):
if enabled:
int_term = torch.exp(-self.beta_start * t - 0.5 * (self.beta_end - self.beta_start) * t * t).view(-1, 1, 1, 1)
return torch.sqrt(var_t) * x_noisy / (torch.square(1.0 - int_term) + int_term)
else:
return None
def var_vpsde(self, t):
return 1.0 - (1.0 - self.sigma2_0) * torch.exp(-self.beta_start * t - 0.5 * (self.beta_end - self.beta_start) * t * t)
def inv_var_vpsde(self, var):
c = torch.log((1 - var) / (1 - self.sigma2_0))
a = self.beta_end - self.beta_start
t = (-self.beta_start + torch.sqrt(np.square(self.beta_start) - 2 * a * c)) / a
return t
class DiffusionVESDE(DiffusionBase):
"""
Diffusion implementation of the VESDE with dz = sqrt(beta(t)) * dW
"""
def __init__(self, args):
super().__init__(args)
self.sigma2_min = args.sigma2_min
self.sigma2_max = args.sigma2_max
assert self.sigma2_min == self.sigma2_0, "VESDE was proposed implicitly assuming sigma2_min = sigma2_0!"
def f(self, t):
return torch.zeros_like(t, device='cuda')
def g2(self, t):
return self.sigma2_min * np.log(self.sigma2_max / self.sigma2_min) * ((self.sigma2_max / self.sigma2_min) ** t)
def var(self, t):
return self.sigma2_min * ((self.sigma2_max / self.sigma2_min) ** t) - self.sigma2_min + self.sigma2_0
def e2int_f(self, t):
return torch.ones_like(t, device='cuda')
def inv_var(self, var):
return torch.log((var + self.sigma2_min - self.sigma2_0) / self.sigma2_min) / np.log(self.sigma2_max / self.sigma2_min)
def mixing_component(self, x_noisy, var_t, t, enabled):
if enabled:
return torch.sqrt(var_t) * x_noisy / (self.sigma2_min * ((self.sigma2_max / self.sigma2_min) ** t.view(-1, 1, 1, 1)) - self.sigma2_min + 1.0)
else:
return None
def var_N(self, t):
return 1.0 - self.sigma2_min + self.sigma2_min * ((self.sigma2_max / self.sigma2_min) ** t)
def inv_var_N(self, var):
return torch.log((var + self.sigma2_min - 1.0) / self.sigma2_min) / np.log(self.sigma2_max / self.sigma2_min)