diff --git a/doc/source/reference/arrays.rst b/doc/source/reference/arrays.rst index a631cd517e3c2..5be08f163e6ce 100644 --- a/doc/source/reference/arrays.rst +++ b/doc/source/reference/arrays.rst @@ -61,7 +61,7 @@ is an :class:`ArrowDtype`. support as NumPy including first-class nullability support for all data types, immutability and more. The table below shows the equivalent pyarrow-backed (``pa``), pandas extension, and numpy (``np``) types that are recognized by pandas. -Pyarrow-backed types below need to be passed into :class:`ArrowDtype` to be recognized by pandas e.g. ``pd.ArrowDtype(pa.bool_())`` +Pyarrow-backed types below need to be passed into :class:`ArrowDtype` to be recognized by pandas e.g. ``pd.ArrowDtype(pa.bool_())``. =============================================== ========================== =================== PyArrow type pandas extension type NumPy type @@ -114,7 +114,7 @@ values. ArrowDtype -For more information, please see the :ref:`PyArrow user guide ` +For more information, please see the :ref:`PyArrow user guide `. .. _api.arrays.datetime: @@ -495,7 +495,7 @@ a :class:`CategoricalDtype`. CategoricalDtype.categories CategoricalDtype.ordered -Categorical data can be stored in a :class:`pandas.Categorical` +Categorical data can be stored in a :class:`pandas.Categorical`: .. autosummary:: :toctree: api/ diff --git a/doc/source/user_guide/text.rst b/doc/source/user_guide/text.rst index 827e7a3c884d9..e96faecd9a266 100644 --- a/doc/source/user_guide/text.rst +++ b/doc/source/user_guide/text.rst @@ -13,7 +13,7 @@ Text data types There are two ways to store text data in pandas: -1. ``object`` -dtype NumPy array. +1. ``object`` dtype NumPy array. 2. :class:`StringDtype` extension type. We recommend using :class:`StringDtype` to store text data. @@ -40,20 +40,20 @@ to significantly increase the performance and lower the memory overhead of and parts of the API may change without warning. For backwards-compatibility, ``object`` dtype remains the default type we -infer a list of strings to +infer a list of strings to: .. ipython:: python pd.Series(["a", "b", "c"]) -To explicitly request ``string`` dtype, specify the ``dtype`` +To explicitly request ``string`` dtype, specify the ``dtype``: .. ipython:: python pd.Series(["a", "b", "c"], dtype="string") pd.Series(["a", "b", "c"], dtype=pd.StringDtype()) -Or ``astype`` after the ``Series`` or ``DataFrame`` is created +Or ``astype`` after the ``Series`` or ``DataFrame`` is created: .. ipython:: python @@ -88,7 +88,7 @@ Behavior differences ^^^^^^^^^^^^^^^^^^^^ These are places where the behavior of ``StringDtype`` objects differ from -``object`` dtype +``object`` dtype: l. For ``StringDtype``, :ref:`string accessor methods` that return **numeric** output will always return a nullable integer dtype, @@ -102,7 +102,7 @@ l. For ``StringDtype``, :ref:`string accessor methods` s.str.count("a") s.dropna().str.count("a") - Both outputs are ``Int64`` dtype. Compare that with object-dtype + Both outputs are ``Int64`` dtype. Compare that with object-dtype: .. ipython:: python