From 2b466c2b808f2e9711f598647791675fb250a38d Mon Sep 17 00:00:00 2001 From: koushik-rout-samsung <146946876+koushik-rout-samsung@users.noreply.github.com> Date: Mon, 24 Feb 2025 07:42:06 +0000 Subject: [PATCH 1/3] WEB: Fix donation page (#60995) --- web/pandas/contribute.md | 2 +- web/pandas/donate.md | 14 -------------- 2 files changed, 1 insertion(+), 15 deletions(-) delete mode 100644 web/pandas/donate.md diff --git a/web/pandas/contribute.md b/web/pandas/contribute.md index 258ba149f1849..3307ddcfb1a0a 100644 --- a/web/pandas/contribute.md +++ b/web/pandas/contribute.md @@ -48,7 +48,7 @@ and about current sponsors in the [sponsors page]({{ base_url }}about/sponsors.h infrastructure, travel expenses for our volunteer contributors to attend the in-person sprints, or to give small grants to develop features.

-

Make your donation in the donate page

+

Make your donation in the donate page

diff --git a/web/pandas/donate.md b/web/pandas/donate.md deleted file mode 100644 index 69db7e4648e77..0000000000000 --- a/web/pandas/donate.md +++ /dev/null @@ -1,14 +0,0 @@ -# Donate to pandas - -
-
- - -_pandas_ is a Sponsored Project of [NumFOCUS](https://numfocus.org/), a 501(c)(3) nonprofit charity in the United States. -NumFOCUS provides _pandas_ with fiscal, legal, and administrative support to help ensure the -health and sustainability of the project. Visit numfocus.org for more information. - -Donations to _pandas_ are managed by NumFOCUS. For donors in the United States, your gift is tax-deductible -to the extent provided by law. As with any donation, you should consult with your tax adviser about your particular tax situation. From 6bd74fab5f2dfe3512ecbd2797808399411bd452 Mon Sep 17 00:00:00 2001 From: "Christine P. Chai" Date: Mon, 24 Feb 2025 10:25:34 -0800 Subject: [PATCH 2/3] DOC: Add missing punctuation to pandas documentation (#60982) * DOC: Add missing punctuation in text.rst * DOC: Also add missing punctuation in arrays.rst --- doc/source/reference/arrays.rst | 6 +++--- doc/source/user_guide/text.rst | 12 ++++++------ 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/doc/source/reference/arrays.rst b/doc/source/reference/arrays.rst index a631cd517e3c2..5be08f163e6ce 100644 --- a/doc/source/reference/arrays.rst +++ b/doc/source/reference/arrays.rst @@ -61,7 +61,7 @@ is an :class:`ArrowDtype`. support as NumPy including first-class nullability support for all data types, immutability and more. The table below shows the equivalent pyarrow-backed (``pa``), pandas extension, and numpy (``np``) types that are recognized by pandas. -Pyarrow-backed types below need to be passed into :class:`ArrowDtype` to be recognized by pandas e.g. ``pd.ArrowDtype(pa.bool_())`` +Pyarrow-backed types below need to be passed into :class:`ArrowDtype` to be recognized by pandas e.g. ``pd.ArrowDtype(pa.bool_())``. =============================================== ========================== =================== PyArrow type pandas extension type NumPy type @@ -114,7 +114,7 @@ values. ArrowDtype -For more information, please see the :ref:`PyArrow user guide ` +For more information, please see the :ref:`PyArrow user guide `. .. _api.arrays.datetime: @@ -495,7 +495,7 @@ a :class:`CategoricalDtype`. CategoricalDtype.categories CategoricalDtype.ordered -Categorical data can be stored in a :class:`pandas.Categorical` +Categorical data can be stored in a :class:`pandas.Categorical`: .. autosummary:: :toctree: api/ diff --git a/doc/source/user_guide/text.rst b/doc/source/user_guide/text.rst index 827e7a3c884d9..e96faecd9a266 100644 --- a/doc/source/user_guide/text.rst +++ b/doc/source/user_guide/text.rst @@ -13,7 +13,7 @@ Text data types There are two ways to store text data in pandas: -1. ``object`` -dtype NumPy array. +1. ``object`` dtype NumPy array. 2. :class:`StringDtype` extension type. We recommend using :class:`StringDtype` to store text data. @@ -40,20 +40,20 @@ to significantly increase the performance and lower the memory overhead of and parts of the API may change without warning. For backwards-compatibility, ``object`` dtype remains the default type we -infer a list of strings to +infer a list of strings to: .. ipython:: python pd.Series(["a", "b", "c"]) -To explicitly request ``string`` dtype, specify the ``dtype`` +To explicitly request ``string`` dtype, specify the ``dtype``: .. ipython:: python pd.Series(["a", "b", "c"], dtype="string") pd.Series(["a", "b", "c"], dtype=pd.StringDtype()) -Or ``astype`` after the ``Series`` or ``DataFrame`` is created +Or ``astype`` after the ``Series`` or ``DataFrame`` is created: .. ipython:: python @@ -88,7 +88,7 @@ Behavior differences ^^^^^^^^^^^^^^^^^^^^ These are places where the behavior of ``StringDtype`` objects differ from -``object`` dtype +``object`` dtype: l. For ``StringDtype``, :ref:`string accessor methods` that return **numeric** output will always return a nullable integer dtype, @@ -102,7 +102,7 @@ l. For ``StringDtype``, :ref:`string accessor methods` s.str.count("a") s.dropna().str.count("a") - Both outputs are ``Int64`` dtype. Compare that with object-dtype + Both outputs are ``Int64`` dtype. Compare that with object-dtype: .. ipython:: python From d575eeaeed67828bc4ae53afb1ee74654a149fd8 Mon Sep 17 00:00:00 2001 From: Matthew Roeschke <10647082+mroeschke@users.noreply.github.com> Date: Mon, 24 Feb 2025 13:39:27 -0800 Subject: [PATCH 3/3] TST: Change sqlite test query string values to single quotes (#61000) --- pandas/tests/io/test_sql.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/pandas/tests/io/test_sql.py b/pandas/tests/io/test_sql.py index 97c856d3b6c40..13576c891ad2c 100644 --- a/pandas/tests/io/test_sql.py +++ b/pandas/tests/io/test_sql.py @@ -4282,11 +4282,11 @@ def test_xsqlite_execute_fail(sqlite_buildin): cur.execute(create_sql) with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql: - pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)') - pandas_sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)') + pandas_sql.execute("INSERT INTO test VALUES('foo', 'bar', 1.234)") + pandas_sql.execute("INSERT INTO test VALUES('foo', 'baz', 2.567)") with pytest.raises(sql.DatabaseError, match="Execution failed on sql"): - pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 7)') + pandas_sql.execute("INSERT INTO test VALUES('foo', 'bar', 7)") def test_xsqlite_execute_closed_connection(): @@ -4304,7 +4304,7 @@ def test_xsqlite_execute_closed_connection(): cur.execute(create_sql) with sql.pandasSQL_builder(conn) as pandas_sql: - pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)') + pandas_sql.execute("INSERT INTO test VALUES('foo', 'bar', 1.234)") msg = "Cannot operate on a closed database." with pytest.raises(sqlite3.ProgrammingError, match=msg):