-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscopus_comparison.R
232 lines (158 loc) · 8.18 KB
/
scopus_comparison.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Compare counts of publications on various topics during a certain period.
scopus_comparison =
function( reference_query,
comparison_terms,
search_period,
quota = 5,
reference_query_field_tag = NULL,
verbose = TRUE ) {
require(rscopus)
# Error if API key missing
if(!have_api_key()) {
stop('The login key for the Scopus API has not been read in. Find out more at \n',
' https://cran.r-project.org/web/packages/rscopus/vignettes/api_key.html')
}
require(stringr) # text processing
require(dplyr) # data wrangling
require(formattable) # number formatting
# If reference_query_field_tag was supplied, save the original reference_query
# for later use, and wrap reference_query in the field tag.
original_reference_query = reference_query
if(!is.null(reference_query_field_tag)) {
reference_query = paste0(reference_query_field_tag, '(', reference_query, ')')
}
# Process search_period input, throwing error if it's invalid
if(!is.integer(search_period)) {
if(str_detect(search_period, pattern = '^[:number:]*.[:number:]*$')) {
search_period =
as.numeric(eval(parse(
text = str_replace_all( search_period,
pattern = '\\D+',
replacement = ':' )
)))
} else stop('`search_period` must contain either a numeric vector or\n',
' two years separated by one character.')
}
# Compose comparison queries by preceding each comparison term with the
# reference query (e.g., "'language learning'). In this way, the
# `comparison_terms` input (e.g., "'effect size'") is not searched for
# alone, but it is always preceded by the reference query
# (e.g., "'language learning' 'effect size'").
queries = reference_query
for(i_term in seq_along(comparison_terms)) {
queries = c(queries, paste(reference_query, comparison_terms[i_term]))
}
results = data.frame( query = as.character(),
abridged_query = as.character(),
year = as.numeric(),
publications = as.character() )
# Iterate over queries
for(i_query in seq_along(queries)) {
query = queries[i_query]
# Iterate over search_period
for(i_year in seq_along(search_period)) {
year = search_period[i_year]
# Use tryCatch() to handle errors in scopus_search. Errors arise when
# there are no publications, in which case a zero is registered.
publications = tryCatch({
res = scopus_search(query = query, max_count = quota, count = quota,
date = year, verbose = verbose)
res$total_results # output
}, error = function(e) { # If error, register 0 publications
0 # output
})
results = results %>%
rbind( data.frame(query, year, publications) %>%
mutate( abridged_query =
case_when( query == reference_query ~ original_reference_query,
query != reference_query ~
str_replace(query, fixed(reference_query),
"[ref.] + '") %>%
str_replace("' ", "'") %>% paste0("'"),
.default = query )
)
)
}
}
# Compute publication count over the whole search_period
results = results %>%
group_by(query) %>%
mutate(total_publications = sum(publications))
# Create columns containing each query and its total publication count
results = results %>% mutate(
query_total_publications =
paste0("'", query, "'", ' [',
formattable::comma(total_publications, digits = 0), ']'),
abridged_query_total_publications =
case_when( query == reference_query ~
paste0("'", original_reference_query, "'", ' [',
formattable::comma(total_publications, digits = 0), ']'),
query != reference_query ~
paste0(abridged_query, ' [',
formattable::comma(total_publications, digits = 0), ']'),
.default = NA )
)
# Compute comparison weights by calculating the percentage of results for each
# comparison query (e.g., "'language learning' 'effect size'") relative to the
# results for the reference query (e.g., "'language learning'"). To this end,
# iterate over comparison queries. The data used in each iteration include the
# reference query and the comparison query specific to the iteration. In the
# code `seq_along(queries[-1])` below, the first element (i.e., the reference
# query) is removed in order to iterate over the comparison queries only.
results2 = results[0,]
for(i_query in seq_along(queries[-1])) {
comparison_query = queries[-1][i_query]
selection = results[results$query == comparison_query,]
selection[selection$query == comparison_query,
'average_comparison_percentage'] =
results[results$query == comparison_query,
'total_publications'] / # divide by the reference query below
results[results$query == reference_query,
'total_publications'] * 100 # create percentage
# Iterate over search_period
for(i_year in seq_along(search_period)) {
year = search_period[i_year]
selection2 = selection[selection$year == year,]
selection2$comparison_percentage = NA
selection2[selection2$query == comparison_query &
selection2$year == year,
'comparison_percentage'] =
results[results$query == comparison_query &
results$year == year,
'publications'] / # divide by the reference query below
results[results$query == reference_query &
results$year == year,
'publications'] * 100 # create percentage
# Add up iterations
results2 = rbind(results2, selection2)
}
}
# Stack up queries, placing reference_query first
results = results %>%
filter(query == reference_query) %>%
rbind(results2) %>%
# Classify queries as reference and comparison
mutate(query_type = case_when(query == reference_query ~ 'reference',
.default = 'comparison'))
# Sort queries by their average percentage rank throughout search_period
query_order =
results %>% arrange(-average_comparison_percentage) %>%
pull(query) %>% unique()
results$query = factor(results$query, levels = query_order)
query_order =
results %>% arrange(-average_comparison_percentage) %>%
pull(abridged_query) %>% unique()
results$abridged_query =
factor(results$abridged_query, levels = query_order)
query_order =
results %>% arrange(-average_comparison_percentage) %>%
pull(query_total_publications) %>% unique()
results$query_total_publications =
factor(results$query_total_publications, levels = query_order)
query_order =
results %>% arrange(-average_comparison_percentage) %>%
pull(abridged_query_total_publications) %>% unique()
results$abridged_query_total_publications =
factor(results$abridged_query_total_publications, levels = query_order)
return(results)
}