diff --git a/authors/admin/index.html b/authors/admin/index.html index aa030e027..9219a2027 100644 --- a/authors/admin/index.html +++ b/authors/admin/index.html @@ -634,7 +634,7 @@
Postdoctoral fellow, Nov 2022 – Feb 2025
UiT The Arctic University of Norway
-- Service: co-organisation of multiple events, including the lunch meetings of AcqVA Aurora and C-LaBL, and a public outreach event of C-LaBL. Peer-review for Cognition, Cognitive Science and EuroSLA conference.
+- Additional service: co-organisation of multiple events, including the lunch meetings of AcqVA Aurora and C-LaBL, and a public outreach event of C-LaBL. Peer-review for Cognition, Cognitive Science and EuroSLA conference.
@@ -670,7 +670,7 @@PhD Psychology with graduate teaching scholarship, 2018–2022
Lancaster University (United Kingdom)
-- Service: peer-review for Cognitive Science and for Psychological Science Accelerator; development of website for open science group in my department.
+- Additional service: peer-review for Cognitive Science and for Psychological Science Accelerator; development of website for open science group in my department.
diff --git a/categories/index.html b/categories/index.html index 2b0db1d41..183b7d901 100644 --- a/categories/index.html +++ b/categories/index.html @@ -672,7 +672,7 @@Postdoctoral fellow, Nov 2022 – Feb 2025
UiT The Arctic University of Norway
-- Service: co-organisation of multiple events, including the lunch meetings of AcqVA Aurora and C-LaBL, and a public outreach event of C-LaBL. Peer-review for Cognition, Cognitive Science and EuroSLA conference.
+- Additional service: co-organisation of multiple events, including the lunch meetings of AcqVA Aurora and C-LaBL, and a public outreach event of C-LaBL. Peer-review for Cognition, Cognitive Science and EuroSLA conference.
@@ -3650,7 +3650,7 @@PhD Psychology with graduate teaching scholarship, 2018–2022
Lancaster University (United Kingdom)
-- Service: peer-review for Cognitive Science and for Psychological Science Accelerator; development of website for open science group in my department.
+- Additional service: peer-review for Cognitive Science and for Psychological Science Accelerator; development of website for open science group in my department.
diff --git a/index.json b/index.json index 32f0ac4fc..4cd3e99f5 100644 --- a/index.json +++ b/index.json @@ -1 +1 @@ -[{"authors":["admin"],"categories":null,"content":"After completing a research master's, I became a PhD student and graduate teaching assistant in Psychology at Lancaster University. In my thesis, I investigated how conceptual processing—that is, the comprehension of the meaning of words—is supported by linguistic and sensorimotor brain systems, and how research on this topic is influenced by methodological aspects such as the operationalisation of variables and the sample size of experiments.\nCurrently, I am a postdoctoral fellow at UiT The Arctic University of Norway. I work at the Department of Language and Culture, and specifically within the PoLaR Lab and C-LaBL. As the local manager of the LESS Project (Language Economy through Transfer Source Selectivity), I work on a six-session longitudinal study that investigates how bilingual people acquire an additional language, how this process is influenced by the characteristics of the languages, and how the process is instantiated in the brain. As part of this work so far, I contributed to the design of our study, developed most of the materials for our study and for a partner study in Spain, documented the creation of the materials and pretested them, wrote a preregistration, recruited participants, designed the protocol for the electroencephalography (EEG) sessions, trained students and research assistants in this protocol and in EEG more generally, set up and managed an EEG lab, conducted many of the sessions and oversaw those conducted by our research assistants, monitored the longitudinal progress per participant, presented the design of the study at conferences, preprocessed the EEG and behavioural data in collaboration with research assistants, and performed the statistical analysis.\nI am also interested in the relationships between language and other cognitive domains, as well as in the origins and evolution of language.\nI employ a range of tools, including behavioural and electroencephalographic experiments, corpus analysis, statistics and programming.\nThe materials from my research are available at https://osf.io/25u3x, and my CV is available here.\n","date":-62135596800,"expirydate":-62135596800,"kind":"section","lang":"en","lastmod":-62135596800,"objectID":"2525497d367e79493fd32b198b28f040","permalink":"https://pablobernabeu.github.io/authors/admin/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/authors/admin/","section":"authors","summary":"After completing a research master's, I became a PhD student and graduate teaching assistant in Psychology at Lancaster University. In my thesis, I investigated how conceptual processing—that is, the comprehension of the meaning of words—is supported by linguistic and sensorimotor brain systems, and how research on this topic is influenced by methodological aspects such as the operationalisation of variables and the sample size of experiments.\nCurrently, I am a postdoctoral fellow at UiT The Arctic University of Norway.","tags":null,"title":"Pablo Bernabeu","type":"authors"},{"authors":["González Alonso, J., Bernabeu, P., Silva, G., DeLuca, V., Poch, C., Ivanova, I., \u0026 Rothman, J."],"categories":["research methods","psycholinguistics"],"content":"\rReference\rGonzález Alonso, J., Bernabeu, P., Silva, G., DeLuca, V., Poch, C., Ivanova, I., \u0026amp; Rothman, J. (2024). Starting from the very beginning: Unraveling third language (L3) development with longitudinal data from artificial language learning and related epistemology. International Journal of Multilingualism, 1(22). https://doi.org/10.1080/14790718.2024.2415993\n\rLay summary\rDo people learn a third language differently from their second one? For those already fluent in two languages, acquiring a third one introduces specific complexities. We are investigating this process using artificial languages, which allow for precise control and observation of the learning experience.\nIn this study, we developed ‘mini-languages’ that replicate grammatical structures of real languages while minimising the need to learn a new vocabulary. The study, conducted in Norway and Spain, follows participants over time, aiming to understand how previous bilingual experience—especially based on structural similarities between languages—influences the learning of a new language.\nBy using electroencephalography to monitor brain activity, we will examine which prior language(s) serve as sources of transfer in the learning of the new language. This line of inquiry is guided by previous findings in third language acquisition suggesting that learners might rely on both previous languages, though one may be more—or uniquely—influential at the onset of learning.\nThe study also examines how core cognitive functions—specifically, working memory, inhibitory control and implicit learning—may affect learning outcomes. Similar to how focusing in a noisy environment requires specific mental skills, third language acquisition may depend on particular cognitive abilities. For instance, participants with strong working memory might have an advantage in recognising patterns or recalling grammatical rules.\nBy better understanding the processes of third language acquisition, this work could also contribute to broader inquiries in cognitive science regarding how we use existing knowledge to adapt to new tasks.\n\rRelated references\rAbbas, N., Degani, T., \u0026amp; Prior, A. (2021). Equal Opportunity Interference: Both L1 and L2 Influence L3 Morpho-Syntactic Processing. Frontiers in Psychology, 12, 673535. https://doi.org/10.3389/fpsyg.2021.673535\nAdelhöfer, N., \u0026amp; Beste, C. (2019). Validity expectancies shape the interplay of cueing and task demands during inhibitory control associated with right inferior frontal regions. Brain Structure and Function, 224(5), 1911–1924. https://doi.org/10.1007/s00429-019-01884-y\nAdelhöfer, N., Gohil, K., Passow, S., Teufert, B., Roessner, V., Li, S., \u0026amp; Beste, C. (2018). The system‐neurophysiological basis for how methylphenidate modulates perceptual–attentional conflicts during auditory processing. Human Brain Mapping, 39(12), 5050–5061. https://doi.org/10.1002/hbm.24344\nAdelhöfer, N., Schreiter, M. L., \u0026amp; Beste, C. (2020). Cardiac cycle gated cognitive-emotional control in superior frontal cortices. NeuroImage, 222, 117275. https://doi.org/10.1016/j.neuroimage.2020.117275\nÅgren, M., Michot, M.-E., Granget, C., Gerolimich, S., Hadermann, P., \u0026amp; Stabarin, I. (2020). “Les copains dit au revoir”: On Subject–Verb Agreement in L2 French and Cross-Linguistic Influence. Languages, 6*(1), 7. https://doi.org/10.3390/languages6010007\nAguasvivas, J. A., \u0026amp; Carreiras, M. (2022). Bilingualism, Foreign Language Learning, and Cognition: Insights for Education. In M. V. Alves, R. Ekuni, M. J. Hermida, \u0026amp; J. Valle-Lisboa (Eds.), Cognitive Sciences and Education in Non-WEIRD Populations (pp. 153–168). Springer International Publishing. https://doi.org/10.1007/978-3-031-06908-6_10\nAlarcón, I. (2021). Adjectival and verbal agreement in the oral production of early and late bilinguals: Fluency, complexity, and integrated knowledge. Revista Española de Lingüística Aplicada/Spanish Journal of Applied Linguistics, 34(2), 371–401. https://doi.org/10.1075/resla.19050.ala\nAlbirini, A., Saadah, E., \u0026amp; Alhawary, M. T. (2020). L1 and L2 transfer to L3 in L3 and L2 learners of Standard Arabic. Linguistic Approaches to Bilingualism, 10(6), 745–774. https://doi.org/10.1075/lab.18013.alb\nAlemán Bañón, J., Fiorentino, R., \u0026amp; Gabriele, A. (2018). Using event-related potentials to track morphosyntactic development in second language learners: The processing of number and gender agreement in Spanish. PLOS ONE, 13(7), e0200791. https://doi.org/10.1371/journal.pone.0200791\nAlemán Bañón, J., Fiorentino, R., \u0026amp; Gabriele, A. (2023). The Neurolinguistics of the Second Language Syntactic System. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 133–147). Routledge. https://doi.org/10.4324/9781003190912-13\nAlemán Bañón, J., \u0026amp; Martin, C. (2021). The role of crosslinguistic differences in second language anticipatory processing: An event-related potentials study. Neuropsychologia, 155, 107797. https://doi.org/10.1016/j.neuropsychologia.2021.107797\nAlemán Bañón, J., \u0026amp; Rothman, J. (2019). Being a Participant Matters: Event-Related Potentials Show That Markedness Modulates Person Agreement in Spanish. Frontiers in Psychology, 10, 746. https://doi.org/10.3389/fpsyg.2019.00746\nAl-Ezzi, A., Kamel, N., Faye, I., \u0026amp; Gunaseli, E. (2020). Review of EEG, ERP, and Brain Connectivity Estimators as Predictive Biomarkers of Social Anxiety Disorder. Frontiers in Psychology, 11, 730. https://doi.org/10.3389/fpsyg.2020.00730\nAlhawary, M. T. (Ed.). (2018). The Routledge Handbook of Arabic Second Language Acquisition (1st ed.). Routledge. https://doi.org/10.4324/9781315674261\nAllgäuer-Hackl, E., \u0026amp; Jessner, U. (2019). 15. Cross-linguistic Interaction and Multilingual Awareness. In S. Montanari \u0026amp; S. Quay (Eds.), Multidisciplinary Perspectives on Multilingualism (pp. 325–350). De Gruyter. https://doi.org/10.1515/9781501507984-015\nAlyan, E., Wascher, E., Arnau, S., Kaesemann, R., \u0026amp; Reiser, J. E. (2023). Operator State in a Workplace Simulation Modulates Eye-Blink Related EEG Activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 1167–1179. https://doi.org/10.1109/TNSRE.2023.3241962\nAmaro, J. C., \u0026amp; Iverson, M. (2018a). Third Language Acquisition. In K. L. Geeslin (Ed.), The Cambridge Handbook of Spanish Linguistics (1st ed., pp. 737–757). Cambridge University Press. https://doi.org/10.1017/9781316779194.034\nAmaro, J. C., \u0026amp; Iverson, M. (2018b). Third Language Acquisition. In K. L. Geeslin (Ed.), The Cambridge Handbook of Spanish Linguistics (1st ed., pp. 737–757). Cambridge University Press. https://doi.org/10.1017/9781316779194.034\nAmora, K. K., Tretow, A., Verwimp, C., Tijms, J., Leppänen, P. H. T., \u0026amp; Csépe, V. (2022). Typical and Atypical Development of Visual Expertise for Print as Indexed by the Visual Word N1 (N170w): A Systematic Review. Frontiers in Neuroscience, 16, 898800. https://doi.org/10.3389/fnins.2022.898800\nAmoruso, L., García, A. M., Pusil, S., Timofeeva, P., Quiñones, I., \u0026amp; Carreiras, M. (2024). Decoding bilingualism from resting‐state oscillatory network organization. Annals of the New York Academy of Sciences, 1534(1), 106–117. https://doi.org/10.1111/nyas.15113\nAndersen, S.-O. (2020). Toward Real-life Teaching: Theories and Students’ Perceptive Hypothesis Concerning Technology-enhanced Approaches in the L3 German Classroom. In P.-A. Mather (Ed.), Technology-enhanced Learning and Linguistic Diversity: Strategies and Approaches to Teaching Students in a 2nd or 3rd Language (pp. 75–90). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83982-128-820201006\nAnderson, N. E., Maurer, J. M., Steele, V. R., \u0026amp; Kiehl, K. A. (2018). Psychopathic traits associated with abnormal hemodynamic activity in salience and default mode networks during auditory oddball task. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 18(3), 564–580. https://doi.org/10.3758/s13415-018-0588-2\nAndersson, A., Sayehli, S., \u0026amp; Gullberg, M. (2019). Language background affects online word order processing in a second language but not offline. Bilingualism: Language and Cognition, 22(04), 802–825. https://doi.org/10.1017/S1366728918000573\nAndriani, L., D’Alessandro, R., Frasson, A., Van Osch, B., Sorgini, L., \u0026amp; Terenghi, S. (2022). Adding the microdimension to the study of language change in contact. Three case studies. Glossa: A Journal of General Linguistics, 7(1). https://doi.org/10.16995/glossa.5748\nAngelovska, T. (2022). 4 The Multilingual Language Classroom: Applying Linguistically Diverse Approaches for Handling Prior Languages in Teaching English as a Third Language. In A. Krulatz, G. Neokleous, \u0026amp; A. Dahl (Eds.), Theoretical and Applied Perspectives on Teaching Foreign Languages in Multilingual Settings (pp. 67–81). Multilingual Matters. https://doi.org/10.21832/9781788926423-009\nAngelovska, T., Roehm, D., \u0026amp; Weinmüller, S. (2023). Uncovering transfer effects of dominance and proficiency in L3 English acquisition using the visual moving window paradigm and grammaticality judgments. Applied Linguistics Review, 14(1), 115–143. https://doi.org/10.1515/applirev-2019-0075\nAntonicelli, G., \u0026amp; Rastelli, S. (2023). Event-related potentials in the study of L2 sentence processing: A scoping review of the decade 2010-2020. Language Acquisition, 30(2), 163–200. https://doi.org/10.1080/10489223.2022.2141633\nAraujo, F. A., Jacobi, E. B., Avila-Souza, J., Rodrigues, J. F., Moioli, R. C., Araujo, M. F. P., \u0026amp; Peres, A. S. C. (2019). Characterization of Auditory Evoked Potential for Different Tones in Marmoset Primary Auditory Cortex. In R. Costa-Felix, J. C. Machado, \u0026amp; A. V. Alvarenga (Eds.), XXVI Brazilian Congress on Biomedical Engineering (Vol. 70/2, pp. 95–101). Springer Singapore. https://doi.org/10.1007/978-981-13-2517-5_15\nArchibald, J. (2021). Turtles all the way down: Micro-cues and piecemeal transfer in L3 phonology and syntax. Second Language Research, 37(3), 415–421. https://doi.org/10.1177/0267658320941036\nArchibald, J. (2022). Segmental and Prosodic Evidence for Property-by-Property Transfer in L3 English in Northern Africa. Languages, 7(1), 28. https://doi.org/10.3390/languages7010028\nArchibald, J. (2023a). Phonological parsing via an integrated I-language: The emergence of property-by-property transfer effects in L3 phonology. Linguistic Approaches to Bilingualism, 13(6), 743–766. https://doi.org/10.1075/lab.21017.arc\nArchibald, J. (2023b). Using a contrastive hierarchy to formalize structural similarity as I-proximity in L3 phonology. Linguistic Approaches to Bilingualism, 13(5), 614–637. https://doi.org/10.1075/lab.22051.arc\nArchibald, J. (2024a). Chapter 11. “And yet it moves”: Finding a place for phonology in the GenSLA cosmos. In M. Velnić, A. Dahl, \u0026amp; K. F. Listhaug (Eds.), Language Acquisition and Language Disorders (Vol. 70, pp. 264–289). John Benjamins Publishing Company. https://doi.org/10.1075/lald.70.11arc\nArchibald, J. (2024b). Phonology in Multilingual Grammars: Representational Complexity and Linguistic Interfaces (1st ed.). Oxford University PressNew York. https://doi.org/10.1093/oso/9780190923334.001.0001\nArıbaş, D. Ş., \u0026amp; Cele, F. (2021). Acquisition of articles in L2 and L3 English: The influence of L2 proficiency on positive transfer from L2 to L3. Journal of Multilingual and Multicultural Development, 42(1), 19–36. https://doi.org/10.1080/01434632.2019.1667364\nArmstrong, A., Bulkes, N., \u0026amp; Tanner, D. (2018). QUANTIFICATIONAL CUES MODULATE THE PROCESSING OF ENGLISH SUBJECT-VERB AGREEMENT BY NATIVE CHINESE SPEAKERS: AN ERP STUDY. Studies in Second Language Acquisition, 40(4), 731–754. https://doi.org/10.1017/S0272263118000013\nBabaeeghazvini, P., Rueda-Delgado, L. M., Gooijers, J., Swinnen, S. P., \u0026amp; Daffertshofer, A. (2021). Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Frontiers in Human Neuroscience, 15, 721206. https://doi.org/10.3389/fnhum.2021.721206\nBabaie-Janvier, T., \u0026amp; Robinson, P. A. (2020). Neural Field Theory of Evoked Response Potentials With Attentional Gain Dynamics. Frontiers in Human Neuroscience, 14, 293. https://doi.org/10.3389/fnhum.2020.00293\nBagherzadeh, Y., Baldauf, D., Pantazis, D., \u0026amp; Desimone, R. (2020). Alpha Synchrony and the Neurofeedback Control of Spatial Attention. Neuron, 105(3), 577-587.e5. https://doi.org/10.1016/j.neuron.2019.11.001\nBailey, N. W., Hill, A. T., Biabani, M., Murphy, O. W., Rogasch, N. C., McQueen, B., Miljevic, A., \u0026amp; Fitzgerald, P. B. (2023). RELAX part 2: A fully automated EEG data cleaning algorithm that is applicable to Event-Related-Potentials. Clinical Neurophysiology, 149, 202–222. https://doi.org/10.1016/j.clinph.2023.01.018\nBañón, J. A., Miller, D., \u0026amp; Rothman, J. (2021). EXAMINING THE CONTRIBUTION OF MARKEDNESS TO THE L2 PROCESSING OF SPANISH PERSON AGREEMENT: AN EVENT‑RELATED POTENTIALS STUDY. Studies in Second Language Acquisition, 43(4), 699–728. https://doi.org/10.1017/S0272263120000479\nBaptista, M. (2020). Competition, selection, and the role of congruence in Creole genesis and development. Language, 96(1), 160–199. https://doi.org/10.1353/lan.2020.0005\nBar On, S., \u0026amp; Meir, N. (2022). Requests and apologies in two languages among bilingual speakers: A comparison of heritage English speakers and English- and Hebrew-dominant bilinguals. Frontiers in Psychology, 13, 1017715. https://doi.org/10.3389/fpsyg.2022.1017715\nBarbey, F. M., Farina, F. R., Buick, A. R., Danyeli, L., Dyer, J. F., Islam, Md. N., Krylova, M., Murphy, B., Nolan, H., Rueda-Delgado, L. M., Walter, M., \u0026amp; Whelan, R. (2022). Neuroscience from the comfort of your home: Repeated, self-administered wireless dry EEG measures brain function with high fidelity. Frontiers in Digital Health, 4, 944753. https://doi.org/10.3389/fdgth.2022.944753\nBardel, C., \u0026amp; Falk, Y. (2021). L1, L2 and L3: Same or different? Second Language Research, 37(3), 459–464. https://doi.org/10.1177/0267658320941033\nBardel, C., Gyllstad, H., \u0026amp; Tholin, J. (2023). Research on foreign language learning, teaching, and assessment in Sweden 2012–2021. Language Teaching, 56(2), 223–260. https://doi.org/10.1017/S0261444823000022\nBarkov, M., Santiago, F., \u0026amp; Peralta, T. (2022). Production of Vowel Reduction by Mexican Learners of English as L2 and Russian as L3. Canadian Journal of Linguistics/Revue Canadienne de Linguistique, 67(1–2), 88–117. https://doi.org/10.1017/cnj.2022.6\nBarwasser, A., Calhoon, M. B., Knaak, T., \u0026amp; Grünke, M. (2024). English L2 vocabulary acquisition through storytelling for adolescents with and without learning disabilities. Language Teaching Research, 13621688241263492. https://doi.org/10.1177/13621688241263492\nBauer, A.-K. R., Bleichner, M. G., Jaeger, M., Thorne, J. D., \u0026amp; Debener, S. (2018a). Dynamic phase alignment of ongoing auditory cortex oscillations. NeuroImage, 167, 396–407. https://doi.org/10.1016/j.neuroimage.2017.11.037\nBauer, A.-K. R., Bleichner, M. G., Jaeger, M., Thorne, J. D., \u0026amp; Debener, S. (2018b). Dynamic phase alignment of ongoing auditory cortex oscillations. NeuroImage, 167, 396–407. https://doi.org/10.1016/j.neuroimage.2017.11.037\nBayram, F., \u0026amp; Rothman, J. (2020). Formal Linguistics and Language Education: A View from Bilingualism Research. In A. Trotzke \u0026amp; T. Kupisch (Eds.), Formal Linguistics and Language Education (Vol. 43, pp. 11–19). Springer International Publishing. https://doi.org/10.1007/978-3-030-39257-4_2\nBeatty‐Martínez, A. L., Bruni, M. R., Bajo, M. T., \u0026amp; Dussias, P. E. (2021). Brain potentials reveal differential processing of masculine and feminine grammatical gender in native Spanish speakers. Psychophysiology, 58(3), e13737. https://doi.org/10.1111/psyp.13737\nBenmamoun, E., \u0026amp; Albirini, A. (2018a). IS LEARNING A STANDARD VARIETY SIMILAR TO LEARNING A NEW LANGUAGE?: Evidence from Heritage Speakers of Arabic. Studies in Second Language Acquisition, 40(1), 31–61. https://doi.org/10.1017/S0272263116000383\nBenmamoun, E., \u0026amp; Albirini, A. (2018b). IS LEARNING A STANDARD VARIETY SIMILAR TO LEARNING A NEW LANGUAGE?: Evidence from Heritage Speakers of Arabic. Studies in Second Language Acquisition, 40(1), 31–61. https://doi.org/10.1017/S0272263116000383\nBensmann, W., Roessner, V., Stock, A.-K., \u0026amp; Beste, C. (2018). Catecholaminergic Modulation of Conflict Control Depends on the Source of Conflicts. International Journal of Neuropsychopharmacology, 21(10), 901–909. https://doi.org/10.1093/ijnp/pyy063\nBensmann, W., Vahid, A., Beste, C., \u0026amp; Stock, A.-K. (2019). The Intensity of Early Attentional Processing, but Not Conflict Monitoring, Determines the Size of Subliminal Response Conflicts. Frontiers in Human Neuroscience, 13, 53. https://doi.org/10.3389/fnhum.2019.00053\nBensmann, W., Zink, N., Arning, L., Beste, C., \u0026amp; Stock, A.-K. (2020). Dopamine D1, but not D2, signaling protects mental representations from distracting bottom-up influences. NeuroImage, 204, 116243. https://doi.org/10.1016/j.neuroimage.2019.116243\nBerthele, R. (2021). The Extraordinary Ordinary: Re‐engineering Multilingualism as a Natural Category. Language Learning, 71(S1), 80–120. https://doi.org/10.1111/lang.12407\nBeste, C., Mückschel, M., Rosales, R., Domingo, A., Lee, L., Ng, A., Klein, C., \u0026amp; Münchau, A. (2018). The Basal Ganglia Striosomes Affect the Modulation of Conflicts by Subliminal Information—Evidence from X-Linked Dystonia Parkinsonism. Cerebral Cortex, 28(7), 2243–2252. https://doi.org/10.1093/cercor/bhx125\nBeste, C., Stock, A.-K., Zink, N., Ocklenburg, S., Akgün, K., \u0026amp; Ziemssen, T. (2019). How minimal variations in neuronal cytoskeletal integrity modulate cognitive control. NeuroImage, 185, 129–139. https://doi.org/10.1016/j.neuroimage.2018.10.053\nBi, X. Y., Ma, X., Abulaiti, A., Yang, J., \u0026amp; Tao, Y. (2022). The influence of pride emotion on executive function: Evidence from ERP. Brain and Behavior, 12(8), e2678. https://doi.org/10.1002/brb3.2678\nBialystok, E. (2024). Bilingualism modifies cognition through adaptation, not transfer. Trends in Cognitive Sciences, 28(11), 987–997. https://doi.org/10.1016/j.tics.2024.07.012\nBian, J., Zhang, H., \u0026amp; Sun, C. (2021). An ERP Study on Attraction Effects in Advanced L2 Learners. Frontiers in Psychology, 12, 616804. https://doi.org/10.3389/fpsyg.2021.616804\nBice, K., Yamasaki, B. L., \u0026amp; Prat, C. S. (2020). Bilingual Language Experience Shapes Resting-State Brain Rhythms. Neurobiology of Language, 1(3), 288–318. https://doi.org/10.1162/nol_a_00014\nBitner, R. A., \u0026amp; Le, N.-T. (2022). Can EEG-devices differentiate attention values between incorrect and correct solutions for problem-solving tasks? Journal of Information and Telecommunication, 6(2), 121–140. https://doi.org/10.1080/24751839.2021.1950319\nBitner, R., Le, N.-T., \u0026amp; Pinkwart, N. (2020). A Concurrent Validity Approach for EEG-Based Feature Classification Algorithms in Learning Analytics. In N. T. Nguyen, B. H. Hoang, C. P. Huynh, D. Hwang, B. Trawiński, \u0026amp; G. Vossen (Eds.), Computational Collective Intelligence (Vol. 12496, pp. 568–580). Springer International Publishing. https://doi.org/10.1007/978-3-030-63007-2_44\nBodmer, B., Mückschel, M., Roessner, V., \u0026amp; Beste, C. (2017). Neurophysiological variability masks differences in functional neuroanatomical networks and their effectiveness to modulate response inhibition between children and adults. Brain Structure and Function. https://doi.org/10.1007/s00429-017-1589-6\nBoetzel, C., Stecher, H. I., \u0026amp; Herrmann, C. S. (2024). Aligning Event-Related Potentials with Transcranial Alternating Current Stimulation for Modulation—A Review. Brain Topography, 37(6), 933–946. https://doi.org/10.1007/s10548-024-01055-1\nBoetzel, C., Stecher, H. I., Kasten, F. H., \u0026amp; Herrmann, C. S. (2024). Modulating the difficulty of a visual oddball-like task and P3m amplitude. Scientific Reports, 14(1), 1505. https://doi.org/10.1038/s41598-023-50857-z\nBohnacker, U. (2021). On transfer and third language acquisition: A commentary on Schwartz \u0026amp; Sprouse. Linguistic Approaches to Bilingualism, 11(1), 37–44. https://doi.org/10.1075/lab.20101.boh\nBojorges-Valdez, E., \u0026amp; Yanez-Suarez, O. (2018). Association between EEG spectral power dynamics and event related potential amplitude on a P300 speller. Biomedical Physics \u0026amp; Engineering Express, 4(2), 025028. https://doi.org/10.1088/2057-1976/aaa15e\nBolibaugh, C., \u0026amp; Foster, P. (2021). Implicit Statistical Learning in Naturalistic and Instructed Morphosyntactic Attainment: An Aptitude‐Treatment Interaction Design. Language Learning, 71(4), 959–1003. https://doi.org/10.1111/lang.12465\nBordag, D., \u0026amp; Opitz, A. (2022). Employing General Linguistic Knowledge in Incidental Acquisition of Grammatical Properties of New L1 and L2 Lexical Representations: Toward Reducing Fuzziness in the Initial Ontogenetic Stage. Frontiers in Psychology, 12, 768362. https://doi.org/10.3389/fpsyg.2021.768362\nBorra, D., Magosso, E., Castelo-Branco, M., \u0026amp; Simões, M. (2022). A Bayesian-optimized design for an interpretable convolutional neural network to decode and analyze the P300 response in autism. Journal of Neural Engineering, 19(4), 046010. https://doi.org/10.1088/1741-2552/ac7908\nBranets, A., \u0026amp; Backus, A. (2020). L2 knowledge facilitating L3 learning: The role of Russian linguistic factors in understanding of Ukrainian by Estonians. Philologia Estonica Tallinnensis, 5. https://doi.org/10.22601/PET.2020.05.02\nBringas Vega, M. L., Liu, S., Zhang, M., Pedroso Ibañez, I., Morales Chacon, L. M., Galan Garcia, L., Perez Bocourt, V., Jahanshahi, M., \u0026amp; Valdes-Sosa, P. A. (2020). Flanker Task-Elicited Event-Related Potential Sources Reflect Human Recombinant Erythropoietin Differential Effects on Parkinson’s Patients. Parkinson’s Disease, 2020, 1–10. https://doi.org/10.1155/2020/8625794\nBrown-Bousfield, M. M., \u0026amp; Chang, C. B. (2023). Regressive cross-linguistic influence in multilingual speech rhythm: The role of language similarity. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 49–71). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.03bro\nBruchmann, M., Schindler, S., \u0026amp; Straube, T. (2020). The spatial frequency spectrum of fearful faces modulates early and mid‐latency ERPs but not the N170. Psychophysiology, 57(9), e13597. https://doi.org/10.1111/psyp.13597\nBusterud, G., Dahl, A., Kush, D., \u0026amp; Listhaug, K. F. (2023). Verb placement in L3 French and L3 German: The role of language-internal factors in determining cross-linguistic influence from prior languages. Linguistic Approaches to Bilingualism, 13(5), 693–716. https://doi.org/10.1075/lab.22058.bus\nCabrelli, J., \u0026amp; Iverson, M. (2024). Why do learners overcome non-facilitative transfer faster from an L2 than an L1? The cumulative input threshold hypothesis. International Journal of Multilingualism, 21(3), 1594–1620. https://doi.org/10.1080/14790718.2023.2200252\nCabrelli, J., Iverson, M., Giancaspro, D., \u0026amp; Halloran González, B. (2020). The roles of L1 Spanish versus L2 Spanish in L3 Portuguese morphosyntactic development. In K. V. Molsing, C. Becker Lopes Perna, \u0026amp; A. M. Tramunt Ibaños (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 24, pp. 11–33). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.24.01cab\nCabrelli, J., \u0026amp; Pichan, C. (2021). Initial phonological transfer in L3 Brazilian Portuguese and Italian. Linguistic Approaches to Bilingualism, 11(2), 131–167. https://doi.org/10.1075/lab.18048.cab\nCabrelli, J., Pichan, C., Ward, J., Rothman, J., \u0026amp; Serratrice, L. (2023). Factors that moderate global similarity in initial L3 transfer: Intervocalic voiced stops in heritage Spanish/English bilinguals’ L3 Italian. Linguistic Approaches to Bilingualism, 13(5), 638–662. https://doi.org/10.1075/lab.22062.cab\nCabrelli, J., \u0026amp; Puig-Mayenco, E. (2021). Theoretical and methodological considerations for a robust evaluation of the Linguistic Proximity Model. Second Language Research, 37(3), 465–471. https://doi.org/10.1177/0267658320943661\nCabuk-Balli, S. (2023). Gauging sensitivity to grammaticality violations of adpositional phrases: Self-paced reading evidence from third language acquisition. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 205–235). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.09cab\nÇabuk-Ballı, S. (2023). Cross-linguistic influence in the acquisition of adpositions in L3. International Journal of Multilingualism, 20(3), 697–716. https://doi.org/10.1080/14790718.2021.1914061\nCaffarra, S., Dias, P., \u0026amp; Costello, B. (2020). The learnability of gender agreement in Spanish bilinguals. In M. Schlechtweg (Ed.), The Learnability of Complex Constructions (pp. 183–218). De Gruyter. https://doi.org/10.1515/9783110695113-008\nCai, C., Zhang, L., Quan, Z., Fang, X., Cai, S., \u0026amp; Zhang, J. (2024). Search flavor labels in beverages: An electrophysiological investigation of color-flavor congruency and association strength in visual search. Neuropsychologia, 203, 108985. https://doi.org/10.1016/j.neuropsychologia.2024.108985\nCai, W., Wang, L., Chen, T., Zhao, S., Feng, C., \u0026amp; Feng, W. (2020). Auditory attentional biases in young males with physical stature dissatisfaction. Psychophysiology, 57(10), e13635. https://doi.org/10.1111/psyp.13635\nCal, Z., \u0026amp; Sypiańska, J. (2020). The interaction of L2 and L3 levels of proficiency in third language acquisition. Poznan Studies in Contemporary Linguistics, 56(4), 577–603. https://doi.org/10.1515/psicl-2020-0019\nCal, Z., \u0026amp; Wrembel, M. (2024). Developmental acquisition of stops by multilingual speakers. International Journal of Multilingualism, 1–23. https://doi.org/10.1080/14790718.2024.2363777\nCalafato, R. (2024). Multilingual pedagogies in first versus foreign language contexts: A cross-country study of language teachers. International Review of Applied Linguistics in Language Teaching, 62(2), 249–273. https://doi.org/10.1515/iral-2022-0019\nCalvo, N., \u0026amp; Bialystok, E. (2021). Electrophysiological signatures of attentional control in bilingual processing: Evidence from proactive interference. Brain and Language, 222, 105027. https://doi.org/10.1016/j.bandl.2021.105027\nCalvo, N., Grundy, J. G., \u0026amp; Bialystok, E. (2023). Bilingualism modulates neural efficiency at rest through alpha reactivity. Neuropsychologia, 180, 108486. https://doi.org/10.1016/j.neuropsychologia.2023.108486\nCantelon, J. A., \u0026amp; Giles, G. E. (2021). A Review of Cognitive Changes During Acute Aerobic Exercise. Frontiers in Psychology, 12, 653158. https://doi.org/10.3389/fpsyg.2021.653158\nCarvalho, A. (2021). A close look at how context of acquisition of previous languages influences third language pedagogy: Does one model fit all? Zenodo. https://doi.org/10.5281/ZENODO.4449770\nCayado, D. K. T., \u0026amp; Chan, R. K. W. (2023). The Influence of Prior Linguistic Knowledge on Second Language Semantic Implicit Learning: Evidence from Cantonese–English Bilinguals. Language Learning, 73(3), 657–682. https://doi.org/10.1111/lang.12546\nCepeda-Freyre, H. A., Garcia-Aguilar, G., Eguibar, J. R., \u0026amp; Cortes, C. (2020). Brain Processing of Complex Geometric Forms in a Visual Memory Task Increases P2 Amplitude. Brain Sciences, 10(2), 114. https://doi.org/10.3390/brainsci10020114\nChami, R., Treasure, J., Cardi, V., Lozano-Madrid, M., Eichin, K. N., McLoughlin, G., \u0026amp; Blechert, J. (2020). Exploring Changes in Event-Related Potentials After a Feasibility Trial of Inhibitory Training for Bulimia Nervosa and Binge Eating Disorder. Frontiers in Psychology, 11, 1056. https://doi.org/10.3389/fpsyg.2020.01056\nChan, I. L., \u0026amp; Chang, C. B. (2019). Perception of nonnative tonal contrasts by Mandarin-English and English-Mandarin sequential bilinguals. The Journal of the Acoustical Society of America, 146(2), 956–972. https://doi.org/10.1121/1.5120522\nChan, R. K., \u0026amp; Leung, J. H. (2020). WHY ARE LEXICAL TONES DIFFICULT TO LEARN?: INSIGHTS FROM THE INCIDENTAL LEARNING OF TONE-SEGMENT CONNECTIONS. Studies in Second Language Acquisition, 42(1), 33–59. https://doi.org/10.1017/S0272263119000482\nChan, R. K. W., \u0026amp; Leung, J. H. C. (2018). Implicit knowledge of lexical stress rules: Evidence from the combined use of subjective and objective awareness measures. Applied Psycholinguistics, 39(1), 37–66. https://doi.org/10.1017/S0142716417000376\nChau, L. T., Leijten, M., Bernolet, S., \u0026amp; Vangehuchten, L. (2022). Envisioning multilingualism in source-based writing in L1, L2, and L3: The relation between source use and text quality. Frontiers in Psychology, 13, 914125. https://doi.org/10.3389/fpsyg.2022.914125\nChen, H. C., \u0026amp; Tian, J. X. (2024). The roles of Cantonese speakers’ L1 and L2 phonological features in L3 pronunciation acquisition. International Journal of Multilingualism, 21(1), 1–17. https://doi.org/10.1080/14790718.2021.1993231\nChen, J. (2020). How do L3 words find conceptual parasitic hosts in typologically distant L1 or L2? Evidence from a cross-linguistic priming effect. International Journal of Bilingual Education and Bilingualism, 23(10), 1238–1253. https://doi.org/10.1080/13670050.2018.1439879\nChen, J., Kwok, A. P. K., \u0026amp; Li, Y. (2023). Effective utilization of attentional resources in postural control in athletes of skill-oriented sports: An event-related potential study. Frontiers in Human Neuroscience, 17, 1219022. https://doi.org/10.3389/fnhum.2023.1219022\nChen, S., Xie, H., Yang, H., Fan, C., Hou, Z., \u0026amp; Zhang, C. (2023). A Classification Framework Based on Multi-modal Features for Detection of Cognitive Impairments. In Z. Yu, X. Hei, D. Li, X. Song, \u0026amp; Z. Lu (Eds.), Intelligent Robotics (Vol. 1770, pp. 349–361). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0301-6_27\nChen, Z., Qin, Y., Peng, M., Zhao, W., Shi, X., Lai, D., Yin, E., Yan, Y., Yao, D., \u0026amp; Liu, T. (2023). Event‐related potential patterns of selective attention modulated by perceptual load. Brain and Behavior, 13(3), e2907. https://doi.org/10.1002/brb3.2907\nCheng, Y., Rothman, J., \u0026amp; Cunnings, I. (2021). Parsing preferences and individual differences in nonnative sentence processing: Evidence from eye movements. Applied Psycholinguistics, 42(1), 129–151. https://doi.org/10.1017/S014271642000065X\nCherici, A. (2023). The role of L1 and L2 in the acquisition of null subjects by Chinese learners of L3 Italian. International Journal of Multilingualism, 20(3), 735–752. https://doi.org/10.1080/14790718.2021.1977308\nChild, M. W. (2022). Transfer in L3 cognate language acquisition: The role of language background on instructed L3 Portuguese acquisition. International Review of Applied Linguistics in Language Teaching, 60(2), 143–168. https://doi.org/10.1515/iral-2017-0113\nChmielewski, W. X., \u0026amp; Beste, C. (2019a). RETRACTED: Neurophysiological mechanisms underlying the modulation of cognitive control by simultaneous conflicts. Cortex, 115, 216–230. https://doi.org/10.1016/j.cortex.2019.02.006\nChmielewski, W. X., \u0026amp; Beste, C. (2019b). Stimulus Feature Conflicts Enhance Motor Inhibitory Control Processes in the Lateral Prefrontal Cortex. Journal of Cognitive Neuroscience, 31(9), 1430–1442. https://doi.org/10.1162/jocn_a_01424\nChmielewski, W. X., \u0026amp; Beste, C. (2019c). Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes. NeuroImage, 196, 227–236. https://doi.org/10.1016/j.neuroimage.2019.04.035\nChmielewski, W. X., Tiedt, A., Bluschke, A., Dippel, G., Roessner, V., \u0026amp; Beste, C. (2018). Effects of multisensory stimuli on inhibitory control in adolescent ADHD: It is the content of information that matters. NeuroImage: Clinical, 19, 527–537. https://doi.org/10.1016/j.nicl.2018.05.019\nCho, J., Iverson, M., Judy, T., Leal, T., \u0026amp; Shimanskaya, E. (2018). Introduction. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. ix–xv). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.cho\nChuang, Y., Bell, M. J., Banke, I., \u0026amp; Baayen, R. H. (2021). Bilingual and Multilingual Mental Lexicon: A Modeling Study With Linear Discriminative Learning. Language Learning, 71(S1), 219–292. https://doi.org/10.1111/lang.12435\nCitherlet, D., Boucher, O., Tremblay, J., Robert, M., Gallagher, A., Bouthillier, A., Lepore, F., \u0026amp; Nguyen, D. K. (2020). Spatiotemporal dynamics of auditory information processing in the insular cortex: An intracranial EEG study using an oddball paradigm. Brain Structure and Function, 225(5), 1537–1559. https://doi.org/10.1007/s00429-020-02072-z\nClayson, P. E., Mcdonald, J. B., Park, B., Holbrook, A., Baldwin, S. A., Riesel, A., \u0026amp; Larson, M. J. (2023). Registered replication report of the construct validity of the error‐related negativity ( ERN ): A multi‐site study of task‐specific ERN correlations with internalizing and externalizing symptoms. Psychophysiology, e14496. https://doi.org/10.1111/psyp.14496\nClements, M., \u0026amp; Domínguez, L. (2018). Chapter 7. Testing the predictions of the Scalpel Model in L3/Ln acquisition: The acquisition of null and overt subjects in L3 Chinese. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. 181–201). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.07cle\nČok, T. (2023). Cognitive Implications for Raising Cross-language Awareness in Foreign Language Acquisition. Springer International Publishing. https://doi.org/10.1007/978-3-031-27829-7\nCui, Y., Engelmann, J. M., Gilbert, D. G., Waters, A. J., Cinciripini, P. M., \u0026amp; Robinson, J. D. (2019). The impact of nicotine dose and instructed dose on smokers’ implicit attitudes to smoking cues: An ERP study. Psychology of Addictive Behaviors, 33(8), 710–720. https://doi.org/10.1037/adb0000523\nCulbertson, J., Franck, J., Braquet, G., Barrera Navarro, M., \u0026amp; Arnon, I. (2020). A learning bias for word order harmony: Evidence from speakers of non-harmonic languages. Cognition, 204, 104392. https://doi.org/10.1016/j.cognition.2020.104392\nCuza, A., Jiao, J., \u0026amp; López-Otero, J. C. (2018). Does Typological Proximity Really Matter? Evidence from Mandarin and Brazilian Portuguese-Speaking Learners of Spanish. Languages, 3(2), 13. https://doi.org/10.3390/languages3020013\nDahl, A., Listhaug, K. F., \u0026amp; Busterud, G. (2022). The role of L1 Norwegian and L2 English in the acquisition of verb placement in L3 German. In T. Leal, E. Shimanskaya, \u0026amp; C. A. Isabelli (Eds.), Language Acquisition and Language Disorders (Vol. 67, pp. 191–212). John Benjamins Publishing Company. https://doi.org/10.1075/lald.67.08dah\nD’Alessandro, R. (2021). Syntactic Change in Contact: Romance. Annual Review of Linguistics, 7(1), 309–328. https://doi.org/10.1146/annurev-linguistics-011619-030311\nD’Angelo, F. (2023). Teaching and Learning Third Languages. Multilingual Matters. https://doi.org/10.21832/DANGEL3078\nDe Bruin, A., Hoversten, L. J., \u0026amp; Martin, C. D. (2023). Interference between non-native languages during trilingual language production. Journal of Memory and Language, 128, 104386. https://doi.org/10.1016/j.jml.2022.104386\nDebnath, R., \u0026amp; Wetzel, N. (2022). Processing of task‐irrelevant sounds during typical everyday activities in children. Developmental Psychobiology, 64(7), e22331. https://doi.org/10.1002/dev.22331\nDeLuca, V., Miller, D., Pliatsikas, C., \u0026amp; Rothman, J. (2019). Brain Adaptations and Neurological Indices of Processing in Adult Second Language Acquisition: Challenges for the Critical Period Hypothesis. In J. W. Schwieter \u0026amp; M. Paradis (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 170–196). Wiley. https://doi.org/10.1002/9781119387725.ch8\nDeLuca, V., Rothman, J., Bialystok, E., \u0026amp; Pliatsikas, C. (2019). Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proceedings of the National Academy of Sciences, 116(15), 7565–7574. https://doi.org/10.1073/pnas.1811513116\nDeLuca, V., Rothman, J., Bialystok, E., \u0026amp; Pliatsikas, C. (2020). Duration and extent of bilingual experience modulate neurocognitive outcomes. NeuroImage, 204, 116222. https://doi.org/10.1016/j.neuroimage.2019.116222\nDemeter, E., Glassberg, B., Gamble, M. L., \u0026amp; Woldorff, M. G. (2022). Reward magnitude enhances early attentional processing of auditory stimuli. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(2), 268–280. https://doi.org/10.3758/s13415-021-00962-1\nDeng, Y., Choi, I., Shinn-Cunningham, B., \u0026amp; Baumgartner, R. (2019). Impoverished auditory cues limit engagement of brain networks controlling spatial selective attention. NeuroImage, 202, 116151. https://doi.org/10.1016/j.neuroimage.2019.116151\nDenhovska, N., Serratrice, L., \u0026amp; Payne, J. (2018). Frequency and working memory effects in incidental learning of a complex agreement pattern. Lingua, 207, 49–70. https://doi.org/10.1016/j.lingua.2018.02.009\nDepartment of English Language Education, Gyeongin National University of Education, Jo, K., Hong, S., \u0026amp; Kim, K. (2020). Cross-Linguistic Influence in the Use of Be in L3 English by L1-Chinese and L1-Russian Children in Korea. English Teaching, 75(0), 35–53. https://doi.org/10.15858/engtea.75.s1.202006.35\nDepestele, S., Ross, V., Verstraelen, S., Brijs, K., Brijs, T., Van Dun, K., \u0026amp; Meesen, R. (2020). The impact of cognitive functioning on driving performance of older persons in comparison to younger age groups: A systematic review. Transportation Research Part F: Traffic Psychology and Behaviour, 73, 433–452. https://doi.org/10.1016/j.trf.2020.07.009\nDepestele, S., Van Dun, K., Verstraelen, S., Ross, V., Van Hoornweder, S., Brijs, K., Brijs, T., Getzmann, S., \u0026amp; Meesen, R. (2023). Age-related changes in midfrontal theta activity during steering control: A driving simulator study. Neurobiology of Aging, 123, 145–153. https://doi.org/10.1016/j.neurobiolaging.2022.11.014\nDesmarais, M. (2023). Comparing two notions of transfer in third language phonological acquisition: A reanalysis of three studies. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 76–95). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.04des\nDi Pisa, G., Pereira Soares, S. M., \u0026amp; Rothman, J. (2021). Brain, mind and linguistic processing insights into the dynamic nature of bilingualism and its outcome effects. Journal of Neurolinguistics, 58, 100965. https://doi.org/10.1016/j.jneuroling.2020.100965\nDiaubalick, T., Eibensteiner, L., \u0026amp; Salaberry, M. R. (2023). Influence of L1/L2 linguistic knowledge on the acquisition of L3 Spanish past tense morphology among L1 German speakers. International Journal of Multilingualism, 20(2), 329–346. https://doi.org/10.1080/14790718.2020.1841204\nDługosz, K. (2021). Transfer effects in gender assignment and gender concord in L3 Swedish: A case study. Moderna Språk, 115(4), 1–26. https://doi.org/10.58221/mosp.v115i4.6745\nDługosz, K. (2023a). Grammatical gender assignment in L3 versus L4 Swedish: A pseudo-longitudinal study. International Review of Applied Linguistics in Language Teaching. https://doi.org/10.1515/iral-2022-0207\nDługosz, K. (2023b). Processing gender agreement in an additional language: The more languages the better? Second Language Research, 39(4), 997–1026. https://doi.org/10.1177/02676583221113333\nDługosz, K. (2024a). Cross-linguistic influence in the comprehension of reflexive possessive pronouns in L3 and L4 Swedish. International Journal of Bilingualism, 28(5), 828–844. https://doi.org/10.1177/13670069231194341\nDługosz, K. (2024b). The accelerating effect of multilingualism on learning a new language grammar: The case of grammatical gender agreement. XLinguae, 17(2), 216–230. https://doi.org/10.18355/XL.2024.17.02.15\nDmitrenko, V. (2019). Extending Oxford’s (1990) Taxonomy for Multilingual Learners. In E. Vetter \u0026amp; U. Jessner (Eds.), International Research on Multilingualism: Breaking with the Monolingual Perspective (Vol. 35, pp. 187–214). Springer International Publishing. https://doi.org/10.1007/978-3-030-21380-0_11\nDurand-López, E. M. (2024a). Working memory and L2 gender agreement processing in structural distance conditions. Journal of Cultural Cognitive Science, 8(2), 121–137. https://doi.org/10.1007/s41809-024-00143-9\nDurand-López, E. M. (2024b). Working memory training yields improvements in L2 morphosyntactic processing. Language, Cognition and Neuroscience, 39(6), 757–772. https://doi.org/10.1080/23273798.2024.2359560\nDyson, B. J., Steward, B. A., Meneghetti, T., \u0026amp; Forder, L. (2020). Behavioural and neural limits in competitive decision making: The roles of outcome, opponency and observation. Biological Psychology, 149, 107778. https://doi.org/10.1016/j.biopsycho.2019.107778\nDziubalska-Kolaczyk, K., \u0026amp; Wrembel, M. (2024). Chapter 16. A revised Natural Growth Theory of Acquisition: Evidence from L3 phonology. In E. Babatsouli (Ed.), Studies in Bilingualism (Vol. 67, pp. 426–449). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.67.16dzi\nEcke, P. (2022). Chapter 6. Grammatical gender and article use in beginning learners of German. In D. Ayoun (Ed.), Studies in Bilingualism (Vol. 63, pp. 127–156). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.63.06eck\nEcke, P., \u0026amp; Hall, C. J. (2021). The Parasitic Model: Lexical acquisition and its impact on morphosyntactic transfer. Linguistic Approaches to Bilingualism, 11(1), 45–49. https://doi.org/10.1075/lab.20088.eck\nEfeoglu, G., \u0026amp; Schroeder, C. (2021). Acquisition of Object Pronouns in EFL in Germany by Heritage Speakers of Turkish. Sustainable Multilingualism, 18(1), 71–84. https://doi.org/10.2478/sm-2021-0004\nEfeoglu, G., Yüksel, H. G., \u0026amp; Baran, S. (2020). Lexical cross-linguistic influence: A study of three multilingual learners of L3 English. International Journal of Multilingualism, 17(4), 535–551. https://doi.org/10.1080/14790718.2019.1620239\nEgurtzegi, A., Blasi, D. E., Bornkessel-Schlesewsky, I., Laka, I., Meyer, M., Bickel, B., \u0026amp; Sauppe, S. (2022). Cross-linguistic differences in case marking shape neural power dynamics and gaze behavior during sentence planning. Brain and Language, 230, 105127. https://doi.org/10.1016/j.bandl.2022.105127\nEhlers, C. L., Phillips, E., Kim, C., Wills, D. N., Karriker-Jaffe, K. J., \u0026amp; Gilder, D. A. (2019). CR-19-0950: Event-related responses to alcohol-related stimuli in Mexican-American young adults: Relation to age, gender, comorbidity and “dark side” symptoms. Drug and Alcohol Dependence, 202, 76–86. https://doi.org/10.1016/j.drugalcdep.2019.06.001\nEibensteiner, L. (2023). L3 acquisition of aspect: The influence of structural similarity, analytic L2 and general L3 proficiency. International Review of Applied Linguistics in Language Teaching, 61(4), 1827–1858. https://doi.org/10.1515/iral-2021-0220\nEibensteiner, L. (2024). Complex transfer processes in multilingual language (L3/Ln ) acquisition of Spanish past tenses: The role of non-native language (L2) transfer. International Journal of Multilingualism, 21(3), 1313–1331. https://doi.org/10.1080/14790718.2022.2164768\nElham Al-Makatrah. (2019). Markedness variability: The case of do-support. Lingue e linguaggio, 2, 267–290. https://doi.org/10.1418/95393\nElvin, J. (2024). Phonological acquisition of Portuguese as a second and a third language. In A. Zampaulo, The Routledge Handbook of Portuguese Phonology (1st ed., pp. 350–364). Routledge. https://doi.org/10.4324/9781003266648-21\nEl-Zghir, R. K., Gabay, N. C., \u0026amp; Robinson, P. A. (2021). Modal-Polar Representation of Evoked Response Potentials in Multiple Arousal States. Frontiers in Human Neuroscience, 15, 642479. https://doi.org/10.3389/fnhum.2021.642479\nEngemann, H., \u0026amp; Radetzky, S. (2024). Cognate Facilitation in Child Third Language Learners in a Multilingual Setting. Languages, 9(10), 310. https://doi.org/10.3390/languages9100310\nEnglert, C., Venagli, I., \u0026amp; Kupisch, T. (2024). When multilingualism is more than three: On the nature of gender transfer in L3+ acquisition. Second Language Research, 02676583241237763. https://doi.org/10.1177/02676583241237763\nEnriquez-Geppert, S. (2019). Neurofeedback aus der Perspektive der Neurowissenschaften: Aktuelle Entwicklungen und Trends. Psychotherapeut, 64(3), 186–193. https://doi.org/10.1007/s00278-019-0351-3\nErdocia, K., \u0026amp; Laka, I. (2018). Negative Transfer Effects on L2 Word Order Processing. Frontiers in Psychology, 9, 337. https://doi.org/10.3389/fpsyg.2018.00337\nEspi-Sanchis, G., \u0026amp; Cockcroft, K. (2022). Working memory and multilingualism: Balanced language proficiency predicts verbal working memory. International Journal of Bilingual Education and Bilingualism, 25(8), 2976–2990. https://doi.org/10.1080/13670050.2021.1997901\nEstaji, M. \u0026amp; Associate Professor of Applied Linguistics, Department of English Language and Literature, Faculty of Persian Literature and Foreign Languages, Allameh Tabataba’i University, Tehran, Iran. (2022). The Implementation of Self-Monitoring in Writing: Analyzing the Form and Content of EFL Learners’ Annotations. Language Related Research, 13(5), 197–222. https://doi.org/10.52547/LRR.13.5.8\nFaerman, M. V., Ehgoetz Martens, K. A., Meehan, S. K., \u0026amp; Staines, W. R. (2024). Neural correlates of trait anxiety in sensory processing and distractor filtering. Psychophysiology, e14706. https://doi.org/10.1111/psyp.14706\nFalk, Y., \u0026amp; Bardel, C. (2021). Transfer patterns in L3 learning discussed. Linguistic Approaches to Bilingualism, 11(1), 50–53. https://doi.org/10.1075/lab.20082.fal\nFalk, Y., \u0026amp; Bardel, C. (2024). The L2/L3 initial state, initial stages and judgement tasks: The role of intercomprehension when judging unknown languages. Second Language Research, 02676583231220785. https://doi.org/10.1177/02676583231220785\nFallah, N., \u0026amp; Jabbari, A. A. (2018). L3 acquisition of English attributive adjectives: Dominant language of communication matters for syntactic cross-linguistic influence. Linguistic Approaches to Bilingualism, 8(2), 193–216. https://doi.org/10.1075/lab.16003.fal\nFaustino Lacerda De Souza, R., Borges De Araujo Lima, L. A., Almeida Silveira Mendes, T. M., Soares Brandão, D., Andrés Laplagne, D., \u0026amp; Cordeiro De Sousa, M. B. (2022). Implicit motor imagery performance and cortical activity throughout the menstrual cycle. Scientific Reports, 12(1), 21385. https://doi.org/10.1038/s41598-022-25766-2\nFernández Fuertes, R., \u0026amp; Sánchez Calderón, S. (2021). The syntactic status of English dative alternation structures in bilingual and in monolingual acquisition data. Linguistic Approaches to Bilingualism, 11(6), 817–845. https://doi.org/10.1075/lab.18093.fer\nFernández-Berkes, É., \u0026amp; Flynn, S. (2020). Where DLC Meets Multilingual Syntactic Development. In J. Lo Bianco \u0026amp; L. Aronin (Eds.), Dominant Language Constellations (Vol. 47, pp. 57–74). Springer International Publishing. https://doi.org/10.1007/978-3-030-52336-7_4\nFestman, J. (2021). Learning and Processing Multiple Languages: The More the Easier? Language Learning, 71(S1), 121–162. https://doi.org/10.1111/lang.12437\nFingelkurts, A. A., Fingelkurts, A. A., \u0026amp; Neves, C. F. H. (2020). Neuro-assessment of leadership training. Coaching: An International Journal of Theory, Research and Practice, 13(2), 107–145. https://doi.org/10.1080/17521882.2019.1619796\nFischer-Jbali, L. R., Montoro, C. I., Montoya, P., Halder, W., \u0026amp; Duschek, S. (2021). Central nervous activity during implicit processing of emotional face expressions in fibromyalgia syndrome. Brain Research, 1758, 147333. https://doi.org/10.1016/j.brainres.2021.147333\nFlores-Salgado, E., \u0026amp; Gutiérrez-Koyoc, A. F. (2024). Working Memory and Cross-Linguistic Influence on Vocabulary Acquisition. Brain Sciences, 14(8), 796. https://doi.org/10.3390/brainsci14080796\nFolyi, T., \u0026amp; Wentura, D. (2019). Involuntary sensory enhancement of gain- and loss-associated tones: A general relevance principle. International Journal of Psychophysiology, 138, 11–26. https://doi.org/10.1016/j.ijpsycho.2019.01.007\nForcelini, J., \u0026amp; Sunderman, G. (2020). When More is Less: The Effect of a Third Language on a Second Language. Hispania, 103(4), 489–500. https://doi.org/10.1353/hpn.2020.0110\nForyś-Nogala, M., Broniś, O., Opacki, M., \u0026amp; Otwinowska, A. (2023). Cross-linguistic influences, language proficiency and metalinguistic knowledge in L3 Italian subject placement. International Journal of Multilingualism, 20(2), 308–328. https://doi.org/10.1080/14790718.2020.1811710\nFranck, J., \u0026amp; Papadopoulou, D. (2022). L2 French learning by Eritrean refugee speakers of Tigrinya. Bilingualism: Language and Cognition, 25(4), 631–644. https://doi.org/10.1017/S1366728921001048\nFrankowsky, M., Ke, D., Zwitserlood, P., Michel, R., \u0026amp; Bölte, J. (2022). The interplay between classifier choice and animacy in Mandarin-Chinese noun phrases: An ERP study. Language, Cognition and Neuroscience, 37(7), 866–882. https://doi.org/10.1080/23273798.2022.2026420\nFranz, M., Schmidt, B., Hecht, H., Naumann, E., \u0026amp; Miltner, W. H. R. (2020). Suggested deafness during hypnosis and simulation of hypnosis compared to a distraction and control condition: A study on subjective experience and cortical brain responses. PLOS ONE, 15(10), e0240832. https://doi.org/10.1371/journal.pone.0240832\nFreichel, R., Zink, N., Chang, F. Y., Vera, J. D., Truong, H., Michelini, G., Loo, S. K., \u0026amp; Lenartowicz, A. (2024). Alpha event-related decreases during encoding in adults with ADHD – An investigation of sustained attention and working memory processes. Behavioural Brain Research, 469, 115003. https://doi.org/10.1016/j.bbr.2024.115003\nFreunberger, D., Bylund, E., \u0026amp; Abrahamsson, N. (2022). Is It Time to Reconsider the ‘Gold Standard’ for Nativelikeness in ERP Studies on Grammatical Processing in a Second Language? A Critical Assessment Based on Qualitative Individual Differences. Applied Linguistics, 43(3), 433–452. https://doi.org/10.1093/applin/amab058\nFriedrich, J., Mückschel, M., \u0026amp; Beste, C. (2019). Physical intensity of stimuli modulates motor inhibition by affecting response selection processes in right inferior frontal regions. Behavioural Brain Research, 359, 597–608. https://doi.org/10.1016/j.bbr.2018.10.006\nFrolov, N., Pitsik, E., Maksimenko, V., \u0026amp; Hramov, A. (2023). Applying recurrence time entropy to identify changes in event-related potentials. The European Physical Journal Special Topics, 232(1), 161–168. https://doi.org/10.1140/epjs/s11734-022-00743-y\nFukuta, J., \u0026amp; Yamashita, J. (2023). The complex relationship between conscious/unconscious learning and conscious/unconscious knowledge: The mediating effects of salience in form–meaning connections. Second Language Research, 39(2), 425–446. https://doi.org/10.1177/02676583211044950\nFuster, C., \u0026amp; Neuser, H. (2020). Exploring intentionality in lexical transfer. International Journal of Multilingualism, 17(4), 516–534. https://doi.org/10.1080/14790718.2018.1559845\nGabriel, C., \u0026amp; Grünke, J. (2018). Chapter 12. Focus, prosody, and subject positions in L3 Spanish: Analyzing data from German learners with Italian and European Portuguese as heritage languages. In M. García García \u0026amp; M. Uth (Eds.), Studies in Language Companion Series (Vol. 201, pp. 357–386). John Benjamins Publishing Company. https://doi.org/10.1075/slcs.201.12gab\nGabriele, A. (2021). Microvariation and transfer in L2 and L3 acquisition. Second Language Research, 37(3), 453–458. https://doi.org/10.1177/0267658320941063\nGabriele, A., Alemán Bañón, J., Hoffman, L., Covey, L., Rossomondo, A., \u0026amp; Fiorentino, R. (2021). Examining variability in the processing of agreement in novice learners: Evidence from event-related potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(7), 1106–1140. https://doi.org/10.1037/xlm0000983\nGallardo, M., \u0026amp; Montrul, S. (2023). Property-by-property transfer in L3 Italian. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 236–271). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.10gal\nGallo, F., \u0026amp; Abutalebi, J. (2024). The unique role of bilingualism among cognitive reserve-enhancing factors. Bilingualism: Language and Cognition, 27(2), 287–294. https://doi.org/10.1017/S1366728923000317\nGantiva, C., Sotaquirá, M., Araujo, A., \u0026amp; Cuervo, P. (2020). Cortical processing of human and emoji faces: An ERP analysis. Behaviour \u0026amp; Information Technology, 39(8), 935–943. https://doi.org/10.1080/0144929X.2019.1632933\nGarcía, V. B., \u0026amp; Martínez Martínez, S. (2024). “I Have Confidence in Screens.” In C. Plaza-Lara, M. D. M. Ogea-Pozo, \u0026amp; C. Botella-Tejera, Empirical Studies in Didactic Audiovisual Translation (1st ed., pp. 129–151). Routledge. https://doi.org/10.4324/9781003462194-11\nGeiss, M., Gumbsheimer, S., Lloyd-Smith, A., Schmid, S., \u0026amp; Kupisch, T. (2022). VOICE ONSET TIME IN MULTILINGUAL SPEAKERS: ITALIAN HERITAGE SPEAKERS IN GERMANY WITH L3 ENGLISH. Studies in Second Language Acquisition, 44(2), 435–459. https://doi.org/10.1017/S0272263121000280\nGeng, S., Quiñones, I., Gil-Robles, S., Pomposo Gastelu, I. C., Bermudez, G., Timofeeva, P., Molinaro, N., Carreiras, M., \u0026amp; Amoruso, L. (2023). “Neural dynamics supporting longitudinal plasticity of action naming across languages: MEG evidence from bilingual brain tumor patients.” Neuropsychologia, 181, 108494. https://doi.org/10.1016/j.neuropsychologia.2023.108494\nGetzmann, S., Arnau, S., Karthaus, M., Reiser, J. E., \u0026amp; Wascher, E. (2018). Age-Related Differences in Pro-active Driving Behavior Revealed by EEG Measures. Frontiers in Human Neuroscience, 12, 321. https://doi.org/10.3389/fnhum.2018.00321\nGetzmann, S., Reiser, J. E., Karthaus, M., Rudinger, G., \u0026amp; Wascher, E. (2021). Measuring Correlates of Mental Workload During Simulated Driving Using cEEGrid Electrodes: A Test–Retest Reliability Analysis. Frontiers in Neuroergonomics, 2, 729197. https://doi.org/10.3389/fnrgo.2021.729197\nGholamipourbarogh, N., Eggert, E., Münchau, A., Frings, C., \u0026amp; Beste, C. (2024). EEG tensor decomposition delineates neurophysiological principles underlying conflict-modulated action restraint and action cancellation. NeuroImage, 295, 120667. https://doi.org/10.1016/j.neuroimage.2024.120667\nGil, L. A., \u0026amp; Müller, N. (2018). French Postverbal Subjects: A Comparison of Monolingual, Bilingual, Trilingual, and Multilingual French. Languages, 3(3), 29. https://doi.org/10.3390/languages3030029\nGing-Jehli, N. R., Ratcliff, R., \u0026amp; Arnold, L. E. (2021). Improving neurocognitive testing using computational psychiatry—A systematic review for ADHD. Psychological Bulletin, 147(2), 169–231. https://doi.org/10.1037/bul0000319\nGonzález Alonso, J., Alemán Bañón, J., DeLuca, V., Miller, D., Pereira Soares, S. M., Puig-Mayenco, E., Slaats, S., \u0026amp; Rothman, J. (2020). Event related potentials at initial exposure in third language acquisition: Implications from an artificial mini-grammar study. Journal of Neurolinguistics, 56, 100939. https://doi.org/10.1016/j.jneuroling.2020.100939\nGonzález Alonso, J., \u0026amp; Duñabeitia, J. A. (2023). Family Attitudes towards Multilingualism in Bilingual Education Programs and Their Relationship with Academic Performance. Behavioral Sciences, 14(1), 6. https://doi.org/10.3390/bs14010006\nGonzález Alonso, J., \u0026amp; Puig-Mayenco, E. (2021). You know more than you say: Methodological choices in L3 transfer research. Linguistic Approaches to Bilingualism, 11(1), 54–59. https://doi.org/10.1075/lab.20089.gon\nGonzález Alonso, J., Puig-Mayenco, E., Fábregas, A., Chaouch-Orozco, A., \u0026amp; Rothman, J. (2021). On the status of transfer in adult third language acquisition of early bilinguals. PLOS ONE, 16(3), e0247976. https://doi.org/10.1371/journal.pone.0247976\nGonzález Alonso, J., \u0026amp; Rothman, J. (2021). Avoiding the cum hoc ergo propter hoc fallacy: Comments and questions regarding Full Transfer Potential. Second Language Research, 37(3), 423–428. https://doi.org/10.1177/0267658320934135\nGonzalez Fernandez, J. (2020). Methodology for the Natural Acquisition of Second Languages. Peter Lang D. https://doi.org/10.3726/b16650\nGrey, S. (2020). What can artificial languages reveal about morphosyntactic processing in bilinguals? Bilingualism: Language and Cognition, 23(1), 81–86. https://doi.org/10.1017/S1366728919000567\nGrey, S. (2024). The Declarative / Procedural Model and Input Processing. In W. Wong \u0026amp; J. Barcroft, The Routledge Handbook of Second Language Acquisition and Input Processing (1st ed., pp. 134–149). Routledge. https://doi.org/10.4324/9781003041412-13\nGrey, S., \u0026amp; Jackson, C. (2020). The Effects of Learners’ Perceptions and Affective Factors on L2 Learning Outcomes. The Canadian Modern Language Review, 76(1), 2–30. https://doi.org/10.3138/cmlr.2018-0209\nGrey, S., Sanz, C., Morgan-Short, K., \u0026amp; Ullman, M. T. (2018). Bilingual and monolingual adults learning an additional language: ERPs reveal differences in syntactic processing. Bilingualism: Language and Cognition, 21(5), 970–994. https://doi.org/10.1017/S1366728917000426\nGrey, S., \u0026amp; Tagarelli, K. M. (2018). Psycholinguistic Methods. In A. Phakiti, P. De Costa, L. Plonsky, \u0026amp; S. Starfield (Eds.), The Palgrave Handbook of Applied Linguistics Research Methodology (pp. 287–312). Palgrave Macmillan UK. https://doi.org/10.1057/978-1-137-59900-1_14\nGrossberg, S. (2021). A Neural Model of Intrinsic and Extrinsic Hippocampal Theta Rhythms: Anatomy, Neurophysiology, and Function. Frontiers in Systems Neuroscience, 15, 665052. https://doi.org/10.3389/fnsys.2021.665052\nGrundy, J. G., \u0026amp; Chung-Fat-Yim, A. (2023). Chapter 12. Domain-general electrophysiological changes associated with bilingualism. In G. Luk, J. A. E. Anderson, \u0026amp; J. G. Grundy (Eds.), Studies in Bilingualism (Vol. 64, pp. 245–271). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.64.12gru\nGu, J. (2024). Digital Tools in Language Learning: Optimizing Memory and Attention for College Students. International Journal of Human–Computer Interaction, 1–11. https://doi.org/10.1080/10447318.2024.2400384\nGu, Q., \u0026amp; Adil, M. (2022). The L3 acquisition of English tense-aspect system by Uygur speakers with L2 Mandarin Chinese. Forum for Linguistic Studies, 4(1), 116. https://doi.org/10.18063/fls.v4i1.1459\nGu, R. (2019). ERP Experimental Design. In L. Hu \u0026amp; Z. Zhang (Eds.), EEG Signal Processing and Feature Extraction (pp. 43–69). Springer Singapore. https://doi.org/10.1007/978-981-13-9113-2_4\nGüntekin, B., Aktürk, T., Arakaki, X., Bonanni, L., Del Percio, C., Edelmayer, R., Farina, F., Ferri, R., Hanoğlu, L., Kumar, S., Lizio, R., Lopez, S., Murphy, B., Noce, G., Randall, F., Sack, A. T., Stocchi, F., Yener, G., Yıldırım, E., \u0026amp; Babiloni, C. (2022). Are there consistent abnormalities in event‐related EEG oscillations in patients with Alzheimer’s disease compared to other diseases belonging to dementia? Psychophysiology, 59(5), e13934. https://doi.org/10.1111/psyp.13934\nGuo, W., \u0026amp; Jia, Z. (2019). Early attentive processing on forged and genuine exemplars by imitators: An ERP study. Forensic Science International, 297, 335–341. https://doi.org/10.1016/j.forsciint.2019.02.023\nGuo, Y., \u0026amp; Yuan, B. (2020). Facilitative transfer only?: L3 acquisition of Mandarin sentence-final particle clusters by English-Cantonese bilinguals. Journal of Second Language Studies, 3(2), 261–289. https://doi.org/10.1075/jsls.00013.guo\nGuo, Y., \u0026amp; Yuan, B. (2023). Asymmetric transfer and development of temporal-aspectual sentence-final particles in English-Cantonese bilinguals’ L3 Mandarin grammars. Linguistic Approaches to Bilingualism, 13(4), 576–606. https://doi.org/10.1075/lab.20116.guo\nGuo, Y., \u0026amp; Yuan, B. (2024a). Disentangling cues of different domains in transfer and development in L3 acquisition: An investigation of L2/L3 Mandarin yes-no questions. Bilingualism: Language and Cognition, 1–13. https://doi.org/10.1017/S1366728923000913\nGuo, Y., \u0026amp; Yuan, B. (2024b). How does a structurally similar background language influence L3 grammars? A study on the syntax of L2/L3 Mandarin [SI 21/3]. International Journal of Multilingualism, 1–17. https://doi.org/10.1080/14790718.2024.2367590\nGuzmán Pitarch, J. R. (2021). The effect of L4 on translation students’ L1/L2 writing scripts. Language Value, 14(1), 1–32. https://doi.org/10.6035/languagev.5804\nHamrick, P., \u0026amp; Sachs, R. (2018). ESTABLISHING EVIDENCE OF LEARNING IN EXPERIMENTS EMPLOYING ARTIFICIAL LINGUISTIC SYSTEMS. Studies in Second Language Acquisition, 40(1), 153–169. https://doi.org/10.1017/S0272263116000474\nHan, Q., Tian, J. X., \u0026amp; Chen, H. C. (2023). L3 prosody: Cross-linguistic influence of prosodic features in Mandarin and English by Cantonese multilinguals. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 96–120). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.05han\nHaznedar, B. (2023). Teaching and Assessment in Young Learners’ Classrooms: In D. Köksal, N. Kavaklı Ulutaş, \u0026amp; S. Arslan (Eds.), Advances in Educational Technologies and Instructional Design (pp. 136–155). IGI Global. https://doi.org/10.4018/978-1-6684-5660-6.ch008\nHelms-Park, R., Petrescu, M. C., Pirvulescu, M., \u0026amp; Dronjic, V. (2022). Canadian-born trilingual children’s narrative skills in their heritage language and Canada’s official languages. International Journal of Multilingualism, 1–25. https://doi.org/10.1080/14790718.2022.2059078\nHenriksen, N. (2021). 14 Second and third language acquisition of Romance phonology. In C. Gabriel, R. Gess, \u0026amp; T. Meisenburg (Eds.), Manual of Romance Phonetics and Phonology (pp. 435–461). De Gruyter. https://doi.org/10.1515/9783110550283-015\nHermas, A. (2020). Genericity in third language English: Acquisition pattern and transfer in ultimate attainment. International Journal of Bilingualism, 24(2), 266–288. https://doi.org/10.1177/1367006919826865\nHermas, A. (2023). Genericity in L2 French and L3 English: A pragmatic deficit with a semantic consequence. International Journal of Multilingualism, 20(2), 425–451. https://doi.org/10.1080/14790718.2020.1820510\nHetkamp, M., Bender, J., Rheindorf, N., Kowalski, A., Lindner, M., Knispel, S., Beckmann, M., Tagay, S., \u0026amp; Teufel, M. (2019). A Systematic Review of the Effect of Neurofeedback in Cancer Patients. Integrative Cancer Therapies, 18, 1534735419832361. https://doi.org/10.1177/1534735419832361\nHolmes, B. C., \u0026amp; Putnam, M. T. (2020). Mental representations in receptive multilingual grammars. Linguistic Approaches to Bilingualism, 10(3), 309–314. https://doi.org/10.1075/lab.00029.int\nHong, X., Sun, J., Wang, J., Li, C., \u0026amp; Tong, S. (2020). Attention-related modulation of frontal midline theta oscillations in cingulate cortex during a spatial cueing Go/NoGo task. International Journal of Psychophysiology, 148, 1–12. https://doi.org/10.1016/j.ijpsycho.2019.11.011\nHopp, H. (2019). Cross-linguistic influence in the child third language acquisition of grammar: Sentence comprehension and production among Turkish-German and German learners of English. International Journal of Bilingualism, 23(2), 567–583. https://doi.org/10.1177/1367006917752523\nHopp, H., Jakisch, J., Sturm, S., Becker, C., \u0026amp; Thoma, D. (2020). Integrating multilingualism into the early foreign language classroom: Empirical and teaching perspectives. International Multilingual Research Journal, 14(2), 146–162. https://doi.org/10.1080/19313152.2019.1669519\nHopp, H., \u0026amp; Lemmerth, N. (2018a). LEXICAL AND SYNTACTIC CONGRUENCY IN L2 PREDICTIVE GENDER PROCESSING. Studies in Second Language Acquisition, 40(1), 171–199. https://doi.org/10.1017/S0272263116000437\nHopp, H., \u0026amp; Lemmerth, N. (2018b). LEXICAL AND SYNTACTIC CONGRUENCY IN L2 PREDICTIVE GENDER PROCESSING. Studies in Second Language Acquisition, 40(1), 171–199. https://doi.org/10.1017/S0272263116000437\nHopp, H., Thoma, D., Kieseier, T., Jakisch, J., \u0026amp; Sturm, S. (2022). Early plurilingual foreign language teaching in mixed classrooms: Linguistic and metalinguistic predictors of foreign language development among majority-language and minority-language students in EFL classes. System, 108, 102828. https://doi.org/10.1016/j.system.2022.102828\nHu, L., Xue, C., \u0026amp; Shao, J. (2020). ERP Research on Semantic Matching of Audio-visual Information in Interfaces in Quiet-Noise Situations. 2020 Information Communication Technologies Conference (ICTC), 323–327. https://doi.org/10.1109/ICTC49638.2020.9123266\nHu, R., Zhang, L., Meng, P., Meng, X., \u0026amp; Weng, M. (2022). The Neural Responses of Visual Complexity in the Oddball Paradigm: An ERP Study. Brain Sciences, 12(4), 447. https://doi.org/10.3390/brainsci12040447\nHuang, T., Loerts, H., \u0026amp; Steinkrauss, R. (2022). The impact of second- and third-language learning on language aptitude and working memory. International Journal of Bilingual Education and Bilingualism, 25(2), 522–538. https://doi.org/10.1080/13670050.2019.1703894\nHuang, T., Steinkrauss, R., \u0026amp; Verspoor, M. (2021). Variability as predictor in L2 writing proficiency. Journal of Second Language Writing, 52, 100787. https://doi.org/10.1016/j.jslw.2020.100787\nHuang, T., Steinkrauss, R., \u0026amp; Verspoor, M. (2022). Learning an L2 and L3 at the same time: Help or hinder? International Journal of Multilingualism, 19(4), 566–582. https://doi.org/10.1080/14790718.2020.1779726\nHuang, Y., Li, D., Ma, J., Ji, X., \u0026amp; Zhou, C. (2024). Bilinguals outperform trilinguals in implicit language aptitude: The mediating role of selective attention. Journal of Multilingual and Multicultural Development, 1–17. https://doi.org/10.1080/01434632.2024.2392884\nHuang, Y., Wang, M., \u0026amp; Rao, H. (2024). Working memory as a partial mediator of the relationship between multilingualism and foreign language aptitude. International Journal of Multilingualism, 21(1), 18–35. https://doi.org/10.1080/14790718.2021.1993860\nHudson, M. R., \u0026amp; Jones, N. C. (2022). Deciphering the code: Identifying true gamma neural oscillations. Experimental Neurology, 357, 114205. https://doi.org/10.1016/j.expneurol.2022.114205\nHughes, C. J. L., Costley, J., \u0026amp; Lange, C. (2021). The Relationship between Attention and Extraneous Load. Theory and Practice of Second Language Acquisition, 7(2), 61–82. https://doi.org/10.31261/TAPSLA.9986\nHuo, S., Li, J., Guo, J., Yan, H., Deng, X., Liu, Y., \u0026amp; Zhao, J. (2023). Young Adults with Negative Body Image at Fatness Subscale Are More Restrained Than Normal Adults during a Chocolate Discounting Task. International Journal of Environmental Research and Public Health, 20(12), 6122. https://doi.org/10.3390/ijerph20126122\nImaz Agirre, A., \u0026amp; García Mayo, M. D. P. (2018). Chapter 8. Proficiency and transfer effects in the acquisition of gender agreement by L2 and L3 English learners. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. 203–227). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.08ima\nIrsara, M. (2020). Applying typological insights in a minority-language context: Motion event lexicalisations in Ladin, Italian, German and English texts compiled by Ladins. Glottodidactica. An International Journal of Applied Linguistics, 47(1), 23–40. https://doi.org/10.14746/gl.2020.47.1.02\nIsasi-Isasmendi, A., Sauppe, S., Andrews, C., Laka, I., Meyer, M., \u0026amp; Bickel, B. (2024). Incremental sentence processing is guided by a preference for agents: EEG evidence from Basque. Language, Cognition and Neuroscience, 39(1), 76–97. https://doi.org/10.1080/23273798.2023.2250023\nIshikawa, K. (2019). Incidental and explicit learning of L2 derivational morphology and the nature of acquired knowledge. Applied Psycholinguistics, 40(6), 1377–1404. https://doi.org/10.1017/S0142716419000304\nJabbari, A. A., Achard-Bayle, G., \u0026amp; Ablali, D. (2018). Acquisition of L3 French wh-question structure by Persian-English bilinguals. Cogent Education, 5(1), 1524551. https://doi.org/10.1080/2331186X.2018.1524551\nJackson, D. O. (2019). The Potential Relationship Between Openness and Explicit Versus Implicit L2 Knowledge. Journal of Psycholinguistic Research, 48(2), 289–306. https://doi.org/10.1007/s10936-018-9603-6\nJacobs, M., Dykens, E. M., \u0026amp; Key, A. P. (2018). Attentional rather than sensory differences characterize auditory processing in Williams syndrome. Brain and Cognition, 121, 24–37. https://doi.org/10.1016/j.bandc.2018.01.005\nJacopo Saturno. (2023). Transfer (or lack thereof) and the accusative case in L2 Polish. Language Science Press. https://doi.org/10.5281/ZENODO.10280612\nJaekel, N., Schurig, M., \u0026amp; Lorenz, E. (2024). Moving beyond binary language status in research: Investigating early foreign language learning and linguistic distance. Research Methods in Applied Linguistics, 3(3), 100151. https://doi.org/10.1016/j.rmal.2024.100151\nJamali, M., Jabbari, A. A., \u0026amp; Razmi, M. H. (2023). Acquisition of attributive adjectives and noun adjuncts by L3 learners of French and German: Further evidence for the typological primacy model (TPM). International Review of Applied Linguistics in Language Teaching, 61(3), 851–876. https://doi.org/10.1515/iral-2020-0013\nJamous, R., Ghorbani, F., Mükschel, M., Münchau, A., Frings, C., \u0026amp; Beste, C. (2024). Neurophysiological principles underlying predictive coding during dynamic perception-action integration. NeuroImage, 301, 120891. https://doi.org/10.1016/j.neuroimage.2024.120891\nJavitt, D. C., Siegel, S. J., Spencer, K. M., Mathalon, D. H., Hong, L. E., Martinez, A., Ehlers, C. L., Abbas, A. I., Teichert, T., Lakatos, P., \u0026amp; Womelsdorf, T. (2020). A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology, 45(9), 1411–1422. https://doi.org/10.1038/s41386-020-0697-9\nJensen, I. N., Mitrofanova, N., Anderssen, M., Rodina, Y., Slabakova, R., \u0026amp; Westergaard, M. (2023). Crosslinguistic influence in L3 acquisition across linguistic modules. International Journal of Multilingualism, 20(3), 717–734. https://doi.org/10.1080/14790718.2021.1985127\nJensen, I. N., \u0026amp; Westergaard, M. (2023). Syntax Matters: Exploring the Effect of Linguistic Similarity in Third Language Acquisition. Language Learning, 73(2), 374–402. https://doi.org/10.1111/lang.12525\nJerath, R., Beveridge, C., \u0026amp; Jensen, M. (2019). On the Hierarchical Organization of Oscillatory Assemblies: Layered Superimposition and a Global Bioelectric Framework. Frontiers in Human Neuroscience, 13, 426. https://doi.org/10.3389/fnhum.2019.00426\nJiang, C., Liu, F., Gong, Y., Cao, Y., \u0026amp; Chen, J. (2023). How do Chinese-English Bilinguals and Tibetan-Chinese-English Trilinguals Differ in Explicit and Implicit Aptitude? Journal of Psycholinguistic Research, 52(3), 869–885. https://doi.org/10.1007/s10936-022-09914-3\nJiang, R., Xie, F., \u0026amp; Li, A. (2024). Effect of conscious conflict on the subliminal perception of table tennis players: From the electrophysiological evidence of ERP. Cognitive Neurodynamics, 18(1), 85–94. https://doi.org/10.1007/s11571-022-09883-2\nJiao, J., Cuza, A., \u0026amp; López Otero, J. C. (2020). Chapter 11. The acquisition of personal a among Chinese-speaking L2 learners of Spanish: A case for syntactic complexity. In D. Pascual Y Cabo \u0026amp; I. Elola (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 27, pp. 233–252). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.27.11jia\nJitpaiboon, J., Rungswang, A., \u0026amp; Miyamoto, Y. (2024). Investigating Motivations of Learning Languages Other Than English: A Case of Learners of Japanese in Thailand. rEFLections, 31(1), 63–89. https://doi.org/10.61508/refl.v31i1.271377\nJo, K., Kim, K., \u0026amp; Kim, H. (2021). Children’s interpretation of negation and quantifier scope in L3 English. Bilingualism: Language and Cognition, 24(3), 427–438. https://doi.org/10.1017/S1366728920000395\nJohannessen, J. B., Lundquist, B., Rodina, Y., Tengesdal, E., Kaldhol, N. H., Türker, E., \u0026amp; Fyndanis, V. (2024). Cross-linguistic effects in grammatical gender assignment and predictive processing in L1 Greek, L1 Russian, and L1 Turkish speakers of Norwegian as a second language. Second Language Research, 02676583241227709. https://doi.org/10.1177/02676583241227709\nJouravlev, O., Mineroff, Z., Blank, I. A., \u0026amp; Fedorenko, E. (2021). The Small and Efficient Language Network of Polyglots and Hyper-polyglots. Cerebral Cortex, 31(1), 62–76. https://doi.org/10.1093/cercor/bhaa205\nKachinske, I., \u0026amp; DeKeyser, R. (2024). The role of awareness in implicit and explicit knowledge. International Review of Applied Linguistics in Language Teaching. https://doi.org/10.1515/iral-2022-0212\nKaipa, R. M., \u0026amp; Wendelbo, S. (2023). Comparative analysis of morphosyntactic rule learning among monolingual, bilingual, and trilingual speakers: A study on Spanish preterite forms. International Journal of Multilingualism, 1–18. https://doi.org/10.1080/14790718.2023.2256788\nKałamała, P., Walther, J., Zhang, H., Diaz, M., Senderecka, M., \u0026amp; Wodniecka, Z. (2022). The use of a second language enhances the neural efficiency of inhibitory control: An ERP study. Bilingualism: Language and Cognition, 25(1), 163–180. https://doi.org/10.1017/S1366728921000389\nKang, X., Matthews, S., Yip, V., \u0026amp; Wong, P. C. M. (2021). Language and nonlanguage factors in foreign language learning: Evidence for the learning condition hypothesis. Npj Science of Learning, 6(1), 28. https://doi.org/10.1038/s41539-021-00104-9\nKanik, M. (2018). Maturational constraint or system preservation. International Journal of Applied Linguistics, 28(3), 451–464. https://doi.org/10.1111/ijal.12219\nKanli, E. (2024). Salgo de casa? Salgo a casa? Salgo la casa? Analysis of the crosslinguistic influence on preposition use in motion verb constructions by multilingual German learners of Spanish. Ampersand, 13, 100186. https://doi.org/10.1016/j.amper.2024.100186\nKaoo, L., \u0026amp; Upor, R. A. (2021). LEMMATIC INFLUENCE ON VOCABULARY ACQUISITION AMONG L3 ENGLISH LANGUAGE LEARNERS IN TANZANIA. Indonesian Journal of Applied Linguistics, 11(1). https://doi.org/10.17509/ijal.v11i1.34671\nKaramacoska, D., Barry, R. J., De Blasio, F. M., \u0026amp; Steiner, G. Z. (2019). EEG-ERP dynamics in a visual Continuous Performance Test. International Journal of Psychophysiology, 146, 249–260. https://doi.org/10.1016/j.ijpsycho.2019.08.013\nKaramacoska, D., Barry, R. J., \u0026amp; Steiner, G. Z. (2019). Using principal components analysis to examine resting state EEG in relation to task performance. Psychophysiology, 56(5), e13327. https://doi.org/10.1111/psyp.13327\nKaramacoska, D., Barry, R. J., Steiner, G. Z., Coleman, E. P., \u0026amp; Wilson, E. J. (2018). Intrinsic EEG and task-related changes in EEG affect Go/NoGo task performance. International Journal of Psychophysiology, 125, 17–28. https://doi.org/10.1016/j.ijpsycho.2018.01.015\nKearney, B. E., \u0026amp; Lanius, R. A. (2022). The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Frontiers in Neuroscience, 16, 1015749. https://doi.org/10.3389/fnins.2022.1015749\nKeating, G. D. (2022). The Effect of Age of Onset of Bilingualism on Gender Agreement Processing in Spanish as a Heritage Language. Language Learning, 72(4), 1170–1208. https://doi.org/10.1111/lang.12510\nKenanidis, P., Dąbrowska, E., Llompart, M., \u0026amp; Pili-Moss, D. (2023). Can adults learn L2 grammar after prolonged exposure under incidental conditions? PLOS ONE, 18(7), e0288989. https://doi.org/10.1371/journal.pone.0288989\nKenanidis, P., Llompart, M., Santos, S. F., \u0026amp; Dąbrowska, E. (2024). Redundancy can hinder adult L2 grammar learning: Evidence from case markers of varying salience levels. Frontiers in Psychology, 15, 1368080. https://doi.org/10.3389/fpsyg.2024.1368080\nKholiq, A., Yulianto, B., \u0026amp; Suhartono, S. (2024). ROLE OF L1 AND L2 IN THE ACQUISITION OF BAHASA INDONESIA AS A THIRD LANGUAGE. Issues in Language Studies, 13(1), 413–431. https://doi.org/10.33736/ils.5567.2024\nKim, H., Kim, K., \u0026amp; Jo, K. (2024). The role of crosslinguistic morphological congruency and L2 proficiency in the L3 acquisition of English plural marking. International Journal of Multilingualism, 21(2), 1074–1091. https://doi.org/10.1080/14790718.2022.2127735\nKim, J. S., Lee, Y. J., \u0026amp; Shim, S.-H. (2021). What Event-Related Potential Tells Us about Brain Function: Child-Adolescent Psychiatric Perspectives. Journal of the Korean Academy of Child and Adolescent Psychiatry, 32(3), 93–98. https://doi.org/10.5765/jkacap.210012\nKim, K., Hsieh, L.-T., Parvizi, J., \u0026amp; Ranganath, C. (2020). Neural repetition suppression effects in the human hippocampus. Neurobiology of Learning and Memory, 173, 107269. https://doi.org/10.1016/j.nlm.2020.107269\nKim, K. M., \u0026amp; Fenn, K. M. (2020). SLEEP-DEPENDENT CONSOLIDATION OF SECOND LANGUAGE GRAMMAR KNOWLEDGE: THE ROLE OF AWARENESS. Studies in Second Language Acquisition, 42(5), 1107–1120. https://doi.org/10.1017/S0272263120000200\nKlassen, G., Ferreira, A., \u0026amp; Schwieter, J. W. (2023). The role of immersion learning in the acquisition and processing of L2 gender agreement. Applied Linguistics Review, 14(2), 391–413. https://doi.org/10.1515/applirev-2020-0038\nKleimaker, A., Kleimaker, M., Bäumer, T., Beste, C., \u0026amp; Münchau, A. (2020). Gilles de la Tourette Syndrome—A Disorder of Action-Perception Integration. Frontiers in Neurology, 11, 597898. https://doi.org/10.3389/fneur.2020.597898\nKliesch, M., Becker, R., \u0026amp; Hervais-Adelman, A. (2022). Global and localized network characteristics of the resting brain predict and adapt to foreign language learning in older adults. Scientific Reports, 12(1), 3633. https://doi.org/10.1038/s41598-022-07629-y\nKolb, N., Mitrofanova, N., \u0026amp; Westergaard, M. (2022). Crosslinguistic influence in child L3 English: An empirical study on Russian-German heritage bilinguals. International Journal of Bilingualism, 26(4), 476–501. https://doi.org/10.1177/13670069211054891\nKolb, N., Mitrofanova, N., \u0026amp; Westergaard, M. (2023). Structural similarity in third language acquisition. Linguistic Approaches to Bilingualism, 13(5), 607–613. https://doi.org/10.1075/lab.23037.kol\nKong, S. (2023). The acquisition of L3 French present simple and present progressive by adult L1 Chinese speakers of L2 English. International Review of Applied Linguistics in Language Teaching, 61(2), 655–689. https://doi.org/10.1515/iral-2022-0178\nKonkuk University, Korea, Ahn, H.-D., Cho, Y., Hwang, J.-B., Lim, J. H., \u0026amp; Mao, C. (2022). The Modulating Role of Mean Dependency Distance in the Backward Transfer of L3 on the Interpretation of L2 Reflexives. The Journal of AsiaTEFL, 19(3), 896–910. https://doi.org/10.18823/asiatefl.2022.19.3.9.896\nKonkuk University, Korea, Ahn, H.-D., \u0026amp; Jang, H. (2019). The Role of L3 in the Interpretation of Articles with Definite Plurals in L2 English. The Journal of AsiaTEFL, 16(1), 12–36. https://doi.org/10.18823/asiatefl.2019.16.1.2.12\nKonkuk University, Korea, Ahn, H.-D., \u0026amp; Mao, C. (2019). Reverse transfer of L3 on the Interpretation of L2 Reflexives. The Journal of AsiaTEFL, 16(4), 1323–1331. https://doi.org/10.18823/asiatefl.2019.16.4.16.1323\nKopečková, R., Gut, U., Wrembel, M., \u0026amp; Balas, A. (2023). Phonological cross-linguistic influence at the initial stages of L3 acquisition. Second Language Research, 39(4), 1107–1131. https://doi.org/10.1177/02676583221123994\nKorenar, M., Treffers-Daller, J., \u0026amp; Pliatsikas, C. (2023). Brain structure adapts dynamically to highly demanding bilingual experiences: Insights from interpreters and translators. Ampersand, 11, 100148. https://doi.org/10.1016/j.amper.2023.100148\nKosonogov, V., Kovsh, E., \u0026amp; Vorobyeva, E. (2022). Event-Related Potentials during Verbal Recognition of Naturalistic Neutral-to-Emotional Dynamic Facial Expressions. Applied Sciences, 12(15), 7782. https://doi.org/10.3390/app12157782\nKossowska, M., Szumowska, E., \u0026amp; Szwed, P. (2020). The Psychology of Tolerance in Times of Uncertainty (1st ed.). Routledge. https://doi.org/10.4324/9780367821487\nKoulidobrova, E., \u0026amp; Pichler, D. C. (2021). Cripping the “Delay”: Multilingualism-Related Consequences of Re-Labeling Language Deprivation Systems. Frontiers in Communication, 6, 751457. https://doi.org/10.3389/fcomm.2021.751457\nKruse, M. (2024). Problem-solving activity during the foreign language writing process: A proposal for categorisation and visualisation of source use and a new take on fluency in multilingual writing. Journal of Writing Research, 16(1), 129–161. https://doi.org/10.17239/jowr-2024.16.01.05\nKubota, M., Alonso, J. G., Anderssen, M., Jensen, I. N., Luque, A., Soares, S. M. P., Prystauka, Y., Vangsnes, Ø. A., Sandstedt, J. J., \u0026amp; Rothman, J. (2024). Bilectal Exposure Modulates Neural Signatures to Conflicting Grammatical Properties: Norway as a Natural Laboratory. Language Learning, 74(2), 436–467. https://doi.org/10.1111/lang.12608\nKubota, M., Heycock, C., Sorace, A., \u0026amp; Rothman, J. (2020). Cross-Linguistic Influence on L2 Before and After Extreme Reduction in Input: The Case of Japanese Returnee Children. Frontiers in Psychology, 11, 560874. https://doi.org/10.3389/fpsyg.2020.560874\nKumar, G. V., Kumar, N., Roy, D., \u0026amp; Banerjee, A. (2018). Segregation and Integration of Cortical Information Processing Underlying Cross-Modal Perception. Multisensory Research, 31(5), 481–500. https://doi.org/10.1163/22134808-00002574\nKupisch, T., Soares, S. M. P., Puig‐Mayenco, E., \u0026amp; Rothman, J. (2021). Multilingualism and Chomsky’s Generative Grammar. In N. Allott, T. Lohndal, \u0026amp; G. Rey (Eds.), A Companion to Chomsky (1st ed., pp. 232–242). Wiley. https://doi.org/10.1002/9781119598732.ch15\nKush, D., \u0026amp; Dahl, A. (2022). L2 transfer of L1 island-insensitivity: The case of Norwegian. Second Language Research, 38(2), 315–346. https://doi.org/10.1177/0267658320956704\nKustubayeva, A., Kamzanova, A., Kudaibergenova, S., Pivkina, V., \u0026amp; Matthews, G. (2020). Major Depression and Brain Asymmetry in a Decision-Making Task with Negative and Positive Feedback. Symmetry, 12(12), 2118. https://doi.org/10.3390/sym12122118\nKuzmina, E., Goral, M., Norvik, M., \u0026amp; Weekes, B. S. (2019). What Influences Language Impairment in Bilingual Aphasia? A Meta-Analytic Review. Frontiers in Psychology, 10, 445. https://doi.org/10.3389/fpsyg.2019.00445\nLabotka, D., Sabo, E., Bonais, R., Gelman, S. A., \u0026amp; Baptista, M. (2023). Testing the effects of congruence in adult multilingual acquisition with implications for creole genesis. Cognition, 235, 105387. https://doi.org/10.1016/j.cognition.2023.105387\nLago, S., Mosca, M., \u0026amp; Stutter Garcia, A. (2021). The Role of Crosslinguistic Influence in Multilingual Processing: Lexicon Versus Syntax. Language Learning, 71(S1), 163–192. https://doi.org/10.1111/lang.12412\nLago, S., Stone, K., Oltrogge, E., \u0026amp; Veríssimo, J. (2023). Possessive Processing in Bilingual Comprehension. Language Learning, 73(3), 904–941. https://doi.org/10.1111/lang.12556\nLago, S., Stutter Garcia, A., \u0026amp; Felser, C. (2019). The role of native and non-native grammars in the comprehension of possessive pronouns. Second Language Research, 35(3), 319–349. https://doi.org/10.1177/0267658318770491\nLaiveniece, D., \u0026amp; Lauze, L. (2022). Students’ Linguistic Attitude Towards Language Mistakes/Errors in Learning and Using a Foreign Language. Sustainable Multilingualism, 21(1), 227–248. https://doi.org/10.2478/sm-2022-0019\nLee, A. H., \u0026amp; Lloyd, J. S. (2024). The effects of incidental learning and input frequency on the perception of non-native speech. Second Language Research, 02676583241249348. https://doi.org/10.1177/02676583241249348\nLee, K. M., Kang, S., Hong, S. H., \u0026amp; Moon, I. J. (2024). Effects of Metrical Context on the P1 Component. Journal of Audiology and Otology, 28(3), 195–202. https://doi.org/10.7874/jao.2023.00262\nLeivada, E., Westergaard, M., Duñabeitia, J. A., \u0026amp; Rothman, J. (2021). On the phantom-like appearance of bilingualism effects on neurocognition: (How) should we proceed? Bilingualism: Language and Cognition, 24(1), 197–210. https://doi.org/10.1017/S1366728920000358\nLeow, R. P. (2019). ISLA: How implicit or how explicit should it be? Theoretical, empirical, and pedagogical/curricular issues. Language Teaching Research, 23(4), 476–493. https://doi.org/10.1177/1362168818776674\nLi, Y. (2021). An investigation on the role of L2 proficiency in adult learners’ L2 morphological performance. International Journal of Applied Linguistics, 31(3), 421–437. https://doi.org/10.1111/ijal.12339\nLibben, G., \u0026amp; Schwieter, J. W. (2019). Lexical Organization and Reorganization in the Multilingual Mind. In J. W. Schwieter \u0026amp; M. Paradis (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 297–312). Wiley. https://doi.org/10.1002/9781119387725.ch14\nLiebherr, M., Weiland-Breckle, H., Grewe, T., \u0026amp; Schumacher, P. B. (2018). Cognitive performance under motor demands – On the influence of task difficulty and postural control. Brain Research, 1684, 1–8. https://doi.org/10.1016/j.brainres.2018.01.025\nLikhanov, M., Bogdanova, O., Alenina, E., Kolienko, T., \u0026amp; Kovas, Y. (2023). No evidence of a positive effect of learning Chinese language as an L2 on spatial ability. Scientific Reports, 13(1), 1262. https://doi.org/10.1038/s41598-022-26738-2\nLin, B., Chen, Y., Li, B., Avitt, A., Guo, Y., Pan, L., \u0026amp; Huang, X. (2022). Spatial selectivity of the visual duration aftereffect in the sub-second range: An event-related potentials study. Behavioural Brain Research, 431, 113950. https://doi.org/10.1016/j.bbr.2022.113950\nLin, L., Leung, A. W. S., Wu, J., \u0026amp; Zhang, L. (2020). Individual differences under acute stress: Higher cortisol responders performs better on N-back task in young men. International Journal of Psychophysiology, 150, 20–28. https://doi.org/10.1016/j.ijpsycho.2020.01.006\nLin, W., Li, Z., Zhang, X., Gao, Y., \u0026amp; Lin, J. (2023). Electrophysiological evidence for the effectiveness of images versus text in warnings. Scientific Reports, 13(1), 1278. https://doi.org/10.1038/s41598-023-28230-x\nLin, W., Lin, J., Yang, Y., Liao, J., Chen, W., \u0026amp; Mo, L. (2022). The difference in the warning effect of different warning signs. International Journal of Occupational Safety and Ergonomics, 28(2), 890–900. https://doi.org/10.1080/10803548.2020.1840733\nLinck, J. A., Clark, M., Bonilla, C. L., Golonka, E., Doughty, C. J., Mecham, T., \u0026amp; Burns, W. (2020). Autonomous Portuguese L3 learning through an adaptive platform. In K. V. Molsing, C. Becker Lopes Perna, \u0026amp; A. M. Tramunt Ibaños (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 24, pp. 231–258). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.24.09lin\nLindström, E., \u0026amp; Lubińska, D. (2022). Target-like and non-target-like conjunctive relations in L2 Swedish beginner writing. Linguistics and Education, 71, 101073. https://doi.org/10.1016/j.linged.2022.101073\nLipińska, A. (2023). Crosslinguistic influence from the learners’ perspective. Colloquia Germanica Stetinensia, 32, 307–323. https://doi.org/10.18276/cgs.2023.32-15\nLiu, C., Lin, Y., Ye, C., Yang, J., \u0026amp; He, W. (2023). Alpha ERS-ERD Pattern during Divergent and Convergent Thinking Depends on Individual Differences on Metacontrol. Journal of Intelligence, 11(4), 74. https://doi.org/10.3390/jintelligence11040074\nLiu, J., \u0026amp; Lin, J. (2021). A Cross-Linguistic Study of L3 Phonological Acquisition of Stop Contrasts. Sage Open, 11(1), 2158244020985510. https://doi.org/10.1177/2158244020985510\nLiu, X., Xu, X., \u0026amp; Wang, H. (2018). The effect of emotion on morphosyntactic learning in foreign language learners. PLOS ONE, 13(11), e0207592. https://doi.org/10.1371/journal.pone.0207592\nLiu, Y., \u0026amp; Dras, M. (2024). Using corpora from Natural Language Processing for investigating crosslinguistic influence. Ampersand, 12, 100174. https://doi.org/10.1016/j.amper.2024.100174\nLiu, Z. (2022). Mapping the research trends of third language acquisition: A bibliometric analysis based on Scopus. Frontiers in Psychology, 13, 1021517. https://doi.org/10.3389/fpsyg.2022.1021517\nLlama, R., \u0026amp; Cardoso, W. (2018). Revisiting (Non-)Native Influence in VOT Production: Insights from Advanced L3 Spanish. Languages, 3(3), 30. https://doi.org/10.3390/languages3030030\nLlinàs-Grau, M., \u0026amp; Bel, A. (2019). On the Acceptance of the Null That by Bilingual Catalan/Spanish L2 Learners of English. Languages, 4(2), 30. https://doi.org/10.3390/languages4020030\nLlop Naya, A., Puig-Mayenco, E., \u0026amp; Paradís, A. (2024). The acquisition of Polarity Items in L3/Ln Catalan by speakers of English, Italian, Portuguese and Spanish: Implications for L3/Ln development theorising and language teaching. International Journal of Multilingualism, 1–23. https://doi.org/10.1080/14790718.2024.2367583\nLloyd-Smith, A., Gyllstad, H., Kupisch, T., \u0026amp; Quaglia, S. (2021). Heritage language proficiency does not predict syntactic CLI into L3 English. International Journal of Bilingual Education and Bilingualism, 24(3), 435–451. https://doi.org/10.1080/13670050.2018.1472208\nLohndal, T. (2021). Syntax of Heritage Languages. In S. Montrul \u0026amp; M. Polinsky (Eds.), The Cambridge Handbook of Heritage Languages and Linguistics (1st ed., pp. 644–667). Cambridge University Press. https://doi.org/10.1017/9781108766340.029\nLohndal, T., Rothman, J., Kupisch, T., \u0026amp; Westergaard, M. (2019). Heritage language acquisition: What it reveals and why it is important for formal linguistic theories. Language and Linguistics Compass, 13(12), e12357. https://doi.org/10.1111/lnc3.12357\nLong, A. (2022). Uncommonly Studied Language Pairs. In K. Geeslin, The Routledge Handbook of Second Language Acquisition and Sociolinguistics (1st ed., pp. 420–432). Routledge. https://doi.org/10.4324/9781003017325-38\nLorenz, E. (2022). Crosslinguistic Influence in L3 Acquisition: Bilingual Heritage Speakers in Germany (1st ed.). Routledge. https://doi.org/10.4324/9781003134336\nLorenz, E., Bonnie, R. J., Feindt, K., Rahbari, S., \u0026amp; Siemund, P. (2019). Cross-linguistic influence in unbalanced bilingual heritage speakers on subsequent language acquisition: Evidence from pronominal object placement in ditransitive clauses. International Journal of Bilingualism, 23(6), 1410–1430. https://doi.org/10.1177/1367006918791296\nLorenz, E., Toprak-Yildiz, T. E., \u0026amp; Siemund, P. (2024). L3 English in the German secondary school context: Longitudinal development of bilingual heritage speakers’ multilingual repertoire. International Journal of Multilingualism, 1–22. https://doi.org/10.1080/14790718.2024.2345215\nLuan, X., Kuno, M., Sugawara, A., Kawasaki, Y., \u0026amp; Sugimori, E. (2024). The effect of previously acquired languages on third language acquisition. Heliyon, 10(4), e26202. https://doi.org/10.1016/j.heliyon.2024.e26202\nLuk, G. (2023). Justice and equity for whom? Reframing research on the “bilingual (dis)advantage.” Applied Psycholinguistics, 44(3), 301–315. https://doi.org/10.1017/S0142716422000339\nLuk, G., \u0026amp; Rothman, J. (2022). Experience-based individual differences modulate language, mind and brain outcomes in multilinguals. Brain and Language, 228, 105107. https://doi.org/10.1016/j.bandl.2022.105107\nLuo, C., Biencinto López, C., \u0026amp; Ruiz, J. M. (2022). Motivación de los estudiantes chinos en el aprendizaje del español. Hispania, 105(1), 67–89. https://doi.org/10.1353/hpn.2022.0006\nLuo, J., Li, V. G., \u0026amp; Mok, P. P. K. (2020). The Perception of Cantonese Vowel Length Contrast by Mandarin Speakers. Language and Speech, 63(3), 635–659. https://doi.org/10.1177/0023830919879471\nLuque, A., \u0026amp; Covey, L. (2023). Factors Accounting for Individual Differences in Second Language Neurocognition. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 274–286). Routledge. https://doi.org/10.4324/9781003190912-25\nLutz, N. D., Admard, M., Genzoni, E., Born, J., \u0026amp; Rauss, K. (2021). Occipital sleep spindles predict sequence learning in a visuo-motor task. SLEEP, 44(8), zsab056. https://doi.org/10.1093/sleep/zsab056\nMadashetty, S., Palaniswamy, H. P., \u0026amp; Rajashekhar, B. (2024). Investigating the impact of hearing loss on attentional networks among older individuals: An event-related potential study. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-024-10140-x\nMadeira, A. (2018). Inflected infinitives in L2 Portuguese. In A. L. Santos \u0026amp; A. Gonçalves (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 17, pp. 321–360). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.17.11mad\nMadlener, K. (2018). Chapter 10. Do findings from artificial language learning generalize to second language classrooms? In A. E. Tyler, L. Ortega, M. Uno, \u0026amp; H. I. Park (Eds.), Language Learning \u0026amp; Language Teaching (Vol. 49, pp. 211–234). John Benjamins Publishing Company. https://doi.org/10.1075/lllt.49.10mad\nMagliacano, A., Fiorenza, S., Estraneo, A., \u0026amp; Trojano, L. (2020). Eye blink rate increases as a function of cognitive load during an auditory oddball paradigm. Neuroscience Letters, 736, 135293. https://doi.org/10.1016/j.neulet.2020.135293\nMagnuson, J. R., Doesburg, S. M., \u0026amp; McNeil, C. J. (2021). Development and recovery time of mental fatigue and its impact on motor function. Biological Psychology, 161, 108076. https://doi.org/10.1016/j.biopsycho.2021.108076\nMaie, R., \u0026amp; DeKeyser, R. M. (2020). CONFLICTING EVIDENCE OF EXPLICIT AND IMPLICIT KNOWLEDGE FROM OBJECTIVE AND SUBJECTIVE MEASURES. Studies in Second Language Acquisition, 42(2), 359–382. https://doi.org/10.1017/S0272263119000615\nMamede, A., Boffo, M., Noordzij, G., Denktaş, S., \u0026amp; Wieser, M. J. (2024). The effect of cognitive reappraisal on food craving and consumption: Does working memory capacity influence reappraisal ability? An event-related potential study. Appetite, 193, 107112. https://doi.org/10.1016/j.appet.2023.107112\nMarafioti, P. E. (2024). Regímenes latentes de error en el aprendizaje de la concordancia plural en ELE. Forma y Función, 37(1). https://doi.org/10.15446/fyf.v37n1.104617\nMarciszewska, A. A. (2021). L3 morphosyntactic processing among Polish–English bilinguals: Considering learners’ level of bilingualism and language dominance. Open Linguistics, 7(1), 353–371. https://doi.org/10.1515/opli-2021-0015\nMariani, N., Abdullah Al-Rawe, M. F., Al-Salami, A. A. A., \u0026amp; Kumar, T. (2024). The Impact of Bilingualism on Learning a Third Language: A Case Study of Iraqi Learners of Indonesian. International Journal of Society, Culture and Language, 12(2). https://doi.org/10.22034/ijscl.2023.2008408.3119\nMasaracchia, L., Fredes, F., Woolrich, M. W., \u0026amp; Vidaurre, D. (2023). Dissecting unsupervised learning through hidden Markov modeling in electrophysiological data. Journal of Neurophysiology, 130(2), 364–379. https://doi.org/10.1152/jn.00054.2023\nMather, P.-A. (2020). Higher Education and the Multilingual Classroom: How Applied Linguistics Research Can Help Design Effective Teaching Strategies. In P.-A. Mather (Ed.), Technology-enhanced Learning and Linguistic Diversity: Strategies and Approaches to Teaching Students in a 2nd or 3rd Language (pp. 1–9). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83982-128-820201001\nMcMillan, R., \u0026amp; Muthukumaraswamy, S. D. (2020). The neurophysiology of ketamine: An integrative review. Reviews in the Neurosciences, 31(5), 457–503. https://doi.org/10.1515/revneuro-2019-0090\nMcPartland, J. C., Lerner, M. D., Bhat, A., Clarkson, T., Jack, A., Koohsari, S., Matuskey, D., McQuaid, G. A., Su, W.-C., \u0026amp; Trevisan, D. A. (2021). Looking Back at the Next 40 Years of ASD Neuroscience Research. Journal of Autism and Developmental Disorders, 51(12), 4333–4353. https://doi.org/10.1007/s10803-021-05095-5\nMcWilliams, E. C., Barbey, F. M., Dyer, J. F., Islam, M. N., McGuinness, B., Murphy, B., Nolan, H., Passmore, P., Rueda-Delgado, L. M., \u0026amp; Buick, A. R. (2021). Feasibility of Repeated Assessment of Cognitive Function in Older Adults Using a Wireless, Mobile, Dry-EEG Headset and Tablet-Based Games. Frontiers in Psychiatry, 12, 574482. https://doi.org/10.3389/fpsyt.2021.574482\nMercante, B., Enrico, P., \u0026amp; Deriu, F. (2023). Cognitive Functions following Trigeminal Neuromodulation. Biomedicines, 11(9), 2392. https://doi.org/10.3390/biomedicines11092392\nMercante, B., Enrico, P., Ginatempo, F., Loi, N., \u0026amp; Deriu, F. (2023). Short-term transcutaneous trigeminal nerve stimulation does not affect visual oddball task and paired-click paradigm ERP responses in healthy volunteers. Experimental Brain Research, 241(2), 327–339. https://doi.org/10.1007/s00221-022-06525-1\nMickan, A., \u0026amp; Lemhöfer, K. (2020). Tracking Syntactic Conflict between Languages over the Course of L2 Acquisition: A Cross-sectional Event-related Potential Study. Journal of Cognitive Neuroscience, 32(5), 822–846. https://doi.org/10.1162/jocn_a_01528\nMickan, A., McQueen, J. M., \u0026amp; Lemhöfer, K. (2020). Between-language competition as a driving force in foreign language attrition. Cognition, 198, 104218. https://doi.org/10.1016/j.cognition.2020.104218\nMihi Park, \u0026amp; Peck Jeeyoung. (2022). Beneficial effect of multilingualism in resolving L3 structural complexity: Attention shift from familiar cue to critical cue. Linguistic Research, 39(null), 1–27. https://doi.org/10.17250/KHISLI.39..202209.001\nMiller, D., DeLuca, V., Swanson, K., \u0026amp; Rothman, J. (2023). Neurolinguistic Methods and Generative Approaches to Second Language Acquisition. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 177–190). Routledge. https://doi.org/10.4324/9781003190912-17\nMitrofanova, N., Leivada, E., \u0026amp; Westergaard, M. (2023). Crosslinguistic influence in L3 acquisition: Evidence from artificial language learning. Linguistic Approaches to Bilingualism, 13(5), 717–742. https://doi.org/10.1075/lab.22063.mit\nMonachino, A. D., Lopez, K. L., Pierce, L. J., \u0026amp; Gabard-Durnam, L. J. (2022). The HAPPE plus Event-Related (HAPPE+ER) software: A standardized preprocessing pipeline for event-related potential analyses. Developmental Cognitive Neuroscience, 57, 101140. https://doi.org/10.1016/j.dcn.2022.101140\nMontrul, S. (2019). The acquisition of differential object marking in Spanish by Romanian speakers. Revista Española de Lingüística Aplicada/Spanish Journal of Applied Linguistics, 32(1), 185–219. https://doi.org/10.1075/resla.17040.mon\nMontrul, S. (2023). Chapter 1 Heritage language development: Dominant language transfer and the sociopolitical context. In F. B. Romano (Ed.), Studies in Italian as a Heritage Language (pp. 5–32). De Gruyter. https://doi.org/10.1515/9783110759587-002\nMontrul, S. A. (2018). Chapter 6. The Bottleneck Hypothesis extends to heritage language acquisition. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. 149–177). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.06mon\nMontrul, S., Mason, S. A., \u0026amp; Armstrong, A. (2024). The Role of Language Experience in the Acquisition of Spanish Gender Agreement: A Study with Nonce Nouns. Languages, 9(2), 45. https://doi.org/10.3390/languages9020045\nMorales-Front, A., \u0026amp; Sanz, C. (2021). Piecemeal crosslinguistic influence and multilingualism. Second Language Research, 37(3), 473–479. https://doi.org/10.1177/0267658320943663\nMorand-Beaulieu, S., \u0026amp; Lavoie, M. E. (2019). Cognitive and motor event-related potentials in Tourette syndrome and tic disorders: A systematic review. Clinical Neurophysiology, 130(6), 1041–1057. https://doi.org/10.1016/j.clinph.2018.10.022\nMorand-Beaulieu, S., Perrault, M.-A., \u0026amp; Lavoie, M. E. (2022). Test-Retest Reliability of Event-Related Potentials Across Three Tasks. Journal of Psychophysiology, 36(2), 100–117. https://doi.org/10.1027/0269-8803/a000286\nMorris, M. B., Jack Rhodes, L., Borghetti, L., \u0026amp; Haubert, A. (2023). Vigilance end-spurt patterns in event-related potentials. Brain Research, 1812, 148396. https://doi.org/10.1016/j.brainres.2023.148396\nMosca, M. (2019). Trilinguals’ language switching: A strategic and flexible account. Quarterly Journal of Experimental Psychology, 72(4), 693–716. https://doi.org/10.1177/1747021818763537\nMottarella, M., \u0026amp; Prat, C. S. (2023). Using Quantitative Electroencephalography (qEEG) to Investigate Second Language Learning. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 31–45). Routledge. https://doi.org/10.4324/9781003190912-5\nMückschel, M., Ziemssen, T., \u0026amp; Beste, C. (2020). Properties of lower level processing modulate the actions of the norepinephrine system during response inhibition. Biological Psychology, 152, 107862. https://doi.org/10.1016/j.biopsycho.2020.107862\nMurphy, B., Aleni, A., Belaoucha, B., Dyer, J., \u0026amp; Nolan, H. (2018). Quantifying cognitive aging and performance with at-home gamified mobile EEG. 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 1–4. https://doi.org/10.1109/PRNI.2018.8423954\nMurphy, E., Hoshi, K., \u0026amp; Benítez-Burraco, A. (2022). Subcortical syntax: Reconsidering the neural dynamics of language. Journal of Neurolinguistics, 62, 101062. https://doi.org/10.1016/j.jneuroling.2022.101062\nMustile, M., Giocondo, F., Caligiore, D., Borghi, A. M., \u0026amp; Kourtis, D. (2021). Motor Inhibition to Dangerous Objects: Electrophysiological Evidence for Task-dependent Aversive Affordances. Journal of Cognitive Neuroscience, 33(5), 826–839. https://doi.org/10.1162/jocn_a_01690\nMykhalchuk, N., Levchuk, P., Ivashkevych, E., \u0026amp; Nabochuk, A. (2023). Dynamic Models of Multilingualism on the Territory of Western Ukraine. PSYCHOLINGUISTICS, 33(2), 114–144. https://doi.org/10.31470/2309-1797-2023-33-2-114-144\nNahum, M., \u0026amp; Bavelier, D. (2020). Video games as rich environments to foster brain plasticity. In Handbook of Clinical Neurology (Vol. 168, pp. 117–136). Elsevier. https://doi.org/10.1016/B978-0-444-63934-9.00010-X\nNajjar, N. (2021). Studies on factors influencing syntactic transfer in L3 acquisition. Studia Linguistica Universitatis Iagellonicae Cracoviensis, 138(2), 79–109. https://doi.org/10.4467/20834624SL.21.009.13472\nNathaniel, U., Eidelsztein, S., Geskin, K. G., Yamasaki, B. L., Nir, B., Dronjic, V., Booth, J. R., \u0026amp; Bitan, T. (2023). Decomposition in early stages of learning novel morphologically derived words: The impact of linear vs. non-linear structure. Cognition, 240, 105604. https://doi.org/10.1016/j.cognition.2023.105604\nNejati, R., \u0026amp; Jabbari, M. (2023). EVALUATING THE VALIDITY OF MEARA AND ROGERS’ VOCABULARY APTITUDE TEST: A RASCH MEASUREMENT MODEL ANALYSIS. Issues in Language Studies, 12(2), 37–55. https://doi.org/10.33736/ils.5290.2023\nNelson, C., Krzysik, I., Lewandowska, H., \u0026amp; Wrembel, M. (2021). Multilingual learners’ perceptions of cross-linguistic distances: A proposal for a visual psychotypological measure. Language Awareness, 30(2), 176–194. https://doi.org/10.1080/09658416.2021.1897132\nNettinga, J., Naseem, S., Yakobi, O., Willoughby, T., \u0026amp; Danckert, J. (2024). Exploring EEG resting state as a function of boredom proneness in pre-adolescents and adolescents. Experimental Brain Research, 242(1), 123–135. https://doi.org/10.1007/s00221-023-06733-3\nOcklenburg, S., Friedrich, P., Fraenz, C., Schlüter, C., Beste, C., Güntürkün, O., \u0026amp; Genç, E. (2018). Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. Science Advances, 4(7), eaar6830. https://doi.org/10.1126/sciadv.aar6830\nO’Grady, W. (2022). Chapter 8. A calculus for L1 transfer. In A. G. Benati \u0026amp; J. W. Schwieter (Eds.), Bilingual Processing and Acquisition (Vol. 14, pp. 143–176). John Benjamins Publishing Company. https://doi.org/10.1075/bpa.14.08ogr\nOrcasitas-Vicandi, M. (2020). Crosslinguistic influence and morphological awareness in English (third language) writing. International Journal of Bilingualism, 24(4), 616–633. https://doi.org/10.1177/1367006919852164\nOrcasitas-Vicandi, M. (2022a). Lexical crosslinguistic influence in Basque-Spanish bilinguals’ English (L3) writing. International Journal of Bilingual Education and Bilingualism, 25(2), 491–501. https://doi.org/10.1080/13670050.2019.1701979\nOrcasitas-Vicandi, M. (2022b). Towards a multilingual approach in assessing writing: Holistic, analytic and cross-linguistic perspectives. International Journal of Bilingual Education and Bilingualism, 25(6), 2186–2207. https://doi.org/10.1080/13670050.2021.1894089\nOrtin, R., \u0026amp; Fernandez-Florez, C. (2019). Transfer of variable grammars in third language acquisition. International Journal of Multilingualism, 16(4), 442–458. https://doi.org/10.1080/14790718.2018.1550088\nOtwinowska, A. (2024). Cross-linguistic influence and language co-activation in acquiring L3 words: What empirical evidence do we have so far? Second Language Research, 40(3), 765–783. https://doi.org/10.1177/02676583231176371\nOu, J., \u0026amp; Law, S.-P. (2018). Induced gamma oscillations index individual differences in speech sound perception and production. Neuropsychologia, 121, 28–36. https://doi.org/10.1016/j.neuropsychologia.2018.10.028\nPan, J., Zhang, Y., \u0026amp; Zhang, W. (2023). Revisiting attending to form during meaning comprehension in learning Spanish as an additional foreign language. Foreign Language Annals, 56(1), 214–231. https://doi.org/10.1111/flan.12664\nPanther, F., Mattingley, W., Hay, J., Todd, S., King, J., \u0026amp; Keegan, P. J. (2024). Morphological segmentations of Non-Māori Speaking New Zealanders match proficient speakers. Bilingualism: Language and Cognition, 27(1), 1–15. https://doi.org/10.1017/S1366728923000329\nPaquet, P.-L. (2018). Influence of L1 Properties and Proficiency on the Acquisition of Gender Agreement. Journal of Language and Education, 4(1), 92–104. https://doi.org/10.17323/2411-7390-2018-4-1-92-104\nPark, M. (2022). Chapter 4. Cross-linguistic influence in the acquisition of L3 variation: A comparison of speech and writing. In R. Bayley, D. R. Preston, \u0026amp; X. Li (Eds.), Studies in Language Variation (Vol. 28, pp. 71–96). John Benjamins Publishing Company. https://doi.org/10.1075/silv.28.04par\nPark, M., \u0026amp; García Mayo, M. D. P. (2023). Comprehension of English articles by Korean learners of L2 English and L3 Spanish. International Review of Applied Linguistics in Language Teaching. https://doi.org/10.1515/iral-2022-0152\nPark, M., \u0026amp; Starr, R. L. (2020). The acquisition of L3 variation among early bilinguals: The roles of L2 experience, home language and linguistic factors. Linguistic Approaches to Bilingualism, 10(5), 657–689. https://doi.org/10.1075/lab.17066.par\nParrish, K. (2022). The Categorization of L3 Vowels Near First Exposure by Spanish-English Bilinguals. Languages, 7(3), 226. https://doi.org/10.3390/languages7030226\nParrish, K. (2024a). Statistical Insignificance is not wholesale transfer in L3 Acquisition: An approximate replication of Rothman (2011). Studies in Second Language Acquisition, 1–18. https://doi.org/10.1017/S0272263124000342\nParrish, K. (2024b). The production of L3 stop-initial words by Spanish/English bilinguals. International Journal of Multilingualism, 21(1), 131–148. https://doi.org/10.1080/14790718.2022.2060234\nPathak, L. S., Vulchanova, M., Pathak, P., \u0026amp; Mishra, R. K. (2024). Trilingual parallel processing: Do the dominant languages grab all the attention? Bilingualism: Language and Cognition, 1–18. https://doi.org/10.1017/S1366728924000257\nPatience, M. (2018). Acquisition of the Tap-Trill Contrast by L1 Mandarin–L2 English–L3 Spanish Speakers. Languages, 3(4), 42. https://doi.org/10.3390/languages3040042\nPatience, M., \u0026amp; Qian, W. (2022). The Role of Task Complexity and Dominant Articulatory Routines in the Acquisition of L3 Spanish. Languages, 7(2), 90. https://doi.org/10.3390/languages7020090\nPavlovskaya, N., Riches, N., \u0026amp; Young-Scholten, M. (2024). Chapter 8. First exposure to Russian word forms by adult English speakers: Disentangling language‑specific and language‑universal factors. In L. Hracs (Ed.), Language Acquisition and Language Disorders (Vol. 69, pp. 191–224). John Benjamins Publishing Company. https://doi.org/10.1075/lald.69.08pav\nPayne, B. R., Ng, S., Shantz, K., \u0026amp; Federmeier, K. D. (2020). Event-related brain potentials in multilingual language processing: The N’s and P’s. In Psychology of Learning and Motivation (Vol. 72, pp. 75–118). Elsevier. https://doi.org/10.1016/bs.plm.2020.03.003\nPehlivanoglu, D., Myers, E., \u0026amp; Ebner, N. C. (2020). -Phasic Model of xytocin (): A systematic conceptual review of oxytocin-related ERP research. Biological Psychology, 154, 107917. https://doi.org/10.1016/j.biopsycho.2020.107917\nPélissier{, M. (2020). Comparing ERPs between native speakers and second language learners: Dealing with individual variability. Zenodo. https://doi.org/10.5281/ZENODO.4032282\nPeña-Acuña, B., \u0026amp; Crismán-Pérez, R. (2022). Research on Papua, a digital tool with artificial intelligence in favor of learning and linguistic attitudes towards the learning of the English language in students of Spanish language as L1. Frontiers in Psychology, 13, 1019278. https://doi.org/10.3389/fpsyg.2022.1019278\nPereira Soares, S. M., Kubota, M., Rossi, E., \u0026amp; Rothman, J. (2021). Determinants of bilingualism predict dynamic changes in resting state EEG oscillations. Brain and Language, 223, 105030. https://doi.org/10.1016/j.bandl.2021.105030\nPereira Soares, S. M., Kupisch, T., \u0026amp; Rothman, J. (2022). Testing Potential Transfer Effects in Heritage and Adult L2 Bilinguals Acquiring a Mini Grammar as an Additional Language: An ERP Approach. Brain Sciences, 12(5), 669. https://doi.org/10.3390/brainsci12050669\nPereira Soares, S. M., Prystauka, Y., DeLuca, V., Poch, C., \u0026amp; Rothman, J. (2024). Brain correlates of attentional load processing reflect degree of bilingual engagement: Evidence from EEG. NeuroImage, 298, 120786. https://doi.org/10.1016/j.neuroimage.2024.120786\nPereira Soares, S. M., Prystauka, Y., DeLuca, V., \u0026amp; Rothman, J. (2022). Type of bilingualism conditions individual differences in the oscillatory dynamics of inhibitory control. Frontiers in Human Neuroscience, 16, 910910. https://doi.org/10.3389/fnhum.2022.910910\nPereira Soares, S. M., \u0026amp; Rothman, J. (2021). Cognitive states in third language acquisition and beyond: Theoretical and methodological paths forward. Linguistic Approaches to Bilingualism, 11(1), 89–95. https://doi.org/10.1075/lab.20080.per\nPereyron, L., \u0026amp; Alves, U. K. (2020). Multi-directionality in language transfer: Development of the vowel system of Brazilian Portuguese as a second (L2) or third language (L3). In K. V. Molsing, C. Becker Lopes Perna, \u0026amp; A. M. Tramunt Ibaños (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 24, pp. 83–106). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.24.04per\nPérez-Valverde, C., Ruiz-Cecilia, R., Medina-Sánchez, L., \u0026amp; Guijarro-Ojeda, J. R. (2021). Coping with Challenges in Teaching Foreign Languages to Children with Mild Intellectual Disabilities: Stakeholders’ Perspectives. Mathematics, 9(8), 906. https://doi.org/10.3390/math9080906\nPerpiñán, S., \u0026amp; Montrul, S. (2023). Does your regional variety help you acquire an additional language?: Spanish differential object marking in Northern and Southern Italians. Linguistic Approaches to Bilingualism, 13(5), 663–692. https://doi.org/10.1075/lab.22057.per\nPhD candidate, Department of Foreign Languages, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran, maryam.ghezlou@gmail.com, Ghezlou, M., Koosha, M., Assoc. Prof., Department of Foreign Languages, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran, mansourkoosha@yahoo.com, Lotfi, A. R., \u0026amp; Asst. Prof., Department of Foreign Languages, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran, lotfi.ahmadreza@gmail.com. (2019). Cross-linguistic Influence in the L3 Acquisition of English Adjective Properties by Azeri-Persian Bilinguals. International Journal of Instruction, 12(1), 1299–1318. https://doi.org/10.29333/iji.2019.12183a\nPichler, D. C., \u0026amp; Koulidobrova, E. (2023). The Role of Modality in L2 Learning: The Importance of Learners Acquiring a Second Sign Language (M2L2 and M1L2 Learners). Language Learning, 73(S1), 197–233. https://doi.org/10.1111/lang.12607\nPicoral, A., \u0026amp; Carvalho, A. M. (2020). The Acquisition of Preposition + Article Contractions in L3 Portuguese among Different L1-Speaking Learners: A Variationist Approach. Languages, 5(4), 45. https://doi.org/10.3390/languages5040045\nPirvulescu, M., Hill, V., Nacif, N., Helms-Park, R., \u0026amp; Petrescu, M. (2022). The acquisition of adverbs in child L3 French in Canada. Glossa: A Journal of General Linguistics, 7(1). https://doi.org/10.16995/glossa.5721\nPitsik, E. N. (2022). Recurrence quantification analysis detects P300 in single-trial EEG. In B. N. Khlebtsov \u0026amp; D. E. Postnov (Eds.), Computational Biophysics and Nanobiophotonics (p. 40). SPIE. https://doi.org/10.1117/12.2626711\nPitsik, N. E. (2022). Recurrence Quantification Analysis of P300 Event-Related Potential on Single-Trial EEG. Bulletin of the Russian Academy of Sciences: Physics, 86(2), 211–215. https://doi.org/10.3103/S1062873822020241\nPoeste, M., Müller, N., \u0026amp; Arnaus Gil, L. (2019). Code-mixing and language dominance: Bilingual, trilingual and multilingual children compared. International Journal of Multilingualism, 16(4), 459–491. https://doi.org/10.1080/14790718.2019.1569017\nPopp, F., Dallmer-Zerbe, I., Philipsen, A., \u0026amp; Herrmann, C. S. (2019). Challenges of P300 Modulation Using Transcranial Alternating Current Stimulation (tACS). Frontiers in Psychology, 10, 476. https://doi.org/10.3389/fpsyg.2019.00476\nPrela, L., Llompart, M., \u0026amp; Dąbrowska, E. (2022). Aptitude and experience as predictors of grammatical proficiency in adult Greek-English bilinguals. Frontiers in Psychology, 13, 1062821. https://doi.org/10.3389/fpsyg.2022.1062821\nPřevrátilová, S. (2023). One Mind, Many Languages: Czech as an Additional Language in Plurilingual Repertoires. Sustainable Multilingualism, 23(1), 91–120. https://doi.org/10.2478/sm-2023-0014\nPrystauka, Y., DeLuca, V., Luque, A., Voits, T., \u0026amp; Rothman, J. (2023). Cognitive Neuroscience Perspectives on Language Acquisition and Processing. Brain Sciences, 13(12), 1613. https://doi.org/10.3390/brainsci13121613\nPuig-Mayenco, E., González Alonso, J., \u0026amp; Rothman, J. (2020). A systematic review of transfer studies in third language acquisition. Second Language Research, 36(1), 31–64. https://doi.org/10.1177/0267658318809147\nPuig-Mayenco, E., \u0026amp; Marsden, H. (2018). Polarity-item anything in L3 English: Where does transfer come from when the L1 is Catalan and the L2 is Spanish? Second Language Research, 34(4), 487–515. https://doi.org/10.1177/0267658317747926\nPuig-Mayenco, E., Miller, D., \u0026amp; Rothman, J. (2018). Chapter 9. Language dominance and transfer selection in L3 acquisition: Evidence from sentential negation and negative quantifiers in L3 English. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. 229–260). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.09pui\nPuig-Mayenco, E., \u0026amp; Rothman, J. (2020). Low proficiency does not mean ab initio: A methodological footnote for linguistic transfer studies. Language Acquisition, 27(2), 217–226. https://doi.org/10.1080/10489223.2019.1677668\nPuig-Mayenco, E., Rothman, J., \u0026amp; Tubau, S. (2022). Language dominance in the previously acquired languages modulates rate of third language (L3) development over time: A longitudinal study. International Journal of Bilingual Education and Bilingualism, 25(5), 1641–1664. https://doi.org/10.1080/13670050.2020.1792408\nQin, T., Fias, W., Van De Weghe, N., \u0026amp; Huang, H. (2024). Differentiating Everyday Map Tasks: Unique Attention-Related Eye Movements and Electrophysiological Signatures of Map Use. Annals of the American Association of Geographers, 114(7), 1604–1624. https://doi.org/10.1080/24694452.2024.2353845\nQuiñones, I., Amoruso, L., Pomposo Gastelu, I. C., Gil-Robles, S., \u0026amp; Carreiras, M. (2021). What Can Glioma Patients Teach Us about Language (Re)Organization in the Bilingual Brain: Evidence from fMRI and MEG. Cancers, 13(11), 2593. https://doi.org/10.3390/cancers13112593\nQuiñones, I., Gisbert-Muñoz, S., Amoruso, L., Manso-Ortega, L., Mori, U., Bermudez, G., Robles, S. G., Pomposo, I., \u0026amp; Carreiras, M. (2024). Unveiling the neuroplastic capacity of the bilingual brain: Insights from healthy and pathological individuals. Brain Structure and Function. https://doi.org/10.1007/s00429-024-02846-9\nRafeekh, R., Krishna, P. P., Kapiley, K., \u0026amp; Mishra, R. K. (2021). The effects of short-term L2 training on components of executive control in Indian bilinguals. Cognitive Processing, 22(2), 339–351. https://doi.org/10.1007/s10339-021-01014-9\nRaine, L. B., Kao, S.-C., Pindus, D., Westfall, D. R., Shigeta, T. T., Logan, N., Cadenas-Sanchez, C., Li, J., Drollette, E. S., Pontifex, M. B., Khan, N. A., Kramer, A. F., \u0026amp; Hillman, C. H. (2018). A Large-Scale Reanalysis of Childhood Fitness and Inhibitory Control. Journal of Cognitive Enhancement, 2(2), 170–192. https://doi.org/10.1007/s41465-018-0070-7\nRamos Feijoo, J., \u0026amp; García Mayo, M. D. P. (2023). The acquisition of relative clauses by Spanish-Basque learners of L3 English: Does dominance play a role? International Review of Applied Linguistics in Language Teaching, 61(3), 1051–1081. https://doi.org/10.1515/iral-2021-0054\nRashid Izullah, F., Koivisto, M., Nieminen, V., Luimula, M., \u0026amp; Hämäläinen, H. (2022). Aging and sleep deprivation affect different neurocognitive stages of spatial information processing during a virtual driving task – An ERP study. Transportation Research Part F: Traffic Psychology and Behaviour, 89, 399–406. https://doi.org/10.1016/j.trf.2022.07.001\nReisian, E., Jabbari, A., Fazilatfar, A., \u0026amp; Rezai, M. J. (2023). Acquisition of L3 English Attributive Adjectives by Arabic-Persian and Persian-Arabic Bilinguals. Applied Research on English Language, 12(4). https://doi.org/10.22108/are.2024.138102.2115\nRoberts, L., González Alonso, J., Pliatsikas, C., \u0026amp; Rothman, J. (2018). Evidence from neurolinguistic methodologies: Can it actually inform linguistic/language acquisition theories and translate to evidence-based applications? Second Language Research, 34(1), 125–143. https://doi.org/10.1177/0267658316644010\nRockholt, M. M., Kenefati, G., Doan, L. V., Chen, Z. S., \u0026amp; Wang, J. (2023). In search of a composite biomarker for chronic pain by way of EEG and machine learning: Where do we currently stand? Frontiers in Neuroscience, 17, 1186418. https://doi.org/10.3389/fnins.2023.1186418\nRosales, C., \u0026amp; Torres, J. (2024). The role of metalinguistic knowledge in third-language development among heritage and late bilinguals. International Journal of Bilingualism, 13670069241229161. https://doi.org/10.1177/13670069241229161\nRose, M. C., Brooks, P. J., Lodhi, A. K., \u0026amp; Cortez, A. (2024). Benefits of Testing and Production for Learning Turkish As a New Language. Language Learning, 74(2), 365–401. https://doi.org/10.1111/lang.12602\nRosen, R. S. (2018). Longitudinal L3 Acquisition of American Sign Language Motion Verbs: A Case Study of Changes and Persistencies in Prior Language Influence. Sign Language Studies, 18(2), 266–299. https://doi.org/10.1353/sls.2018.0003\nRoss, V., Vossen, A. Y., Smulders, F. T. Y., Ruiter, R. A. C., Brijs, T., Brijs, K., Wets, G., \u0026amp; Jongen, E. M. M. (2018). Measuring working memory load effects on electrophysiological markers of attention orienting during a simulated drive. Ergonomics, 61(3), 429–443. https://doi.org/10.1080/00140139.2017.1353708\nRossi, E., Pereira Soares, S. M., Prystauka, Y., Nakamura, M., \u0026amp; Rothman, J. (2023). Riding the (brain) waves! Using neural oscillations to inform bilingualism research. Bilingualism: Language and Cognition, 26(1), 202–215. https://doi.org/10.1017/S1366728922000451\nRossi, E., Voits, T., \u0026amp; DeLuca, V. (2023). Using Structural Neuroimaging to Investigate Second Language. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 59–71). Routledge. https://doi.org/10.4324/9781003190912-7\nRothman, J. (2024). Harnessing the bilingual descent down the mountain of life: Charting novel paths for Cognitive and Brain Reserves research. Bilingualism: Language and Cognition, 1–9. https://doi.org/10.1017/S1366728924000026\nRothman, J., Alonso, J. G., \u0026amp; Miller, D. (2018). The Acquisition of Second Language Spanish Morphosyntax. In K. L. Geeslin (Ed.), The Cambridge Handbook of Spanish Linguistics (1st ed., pp. 689–715). Cambridge University Press. https://doi.org/10.1017/9781316779194.032\nRothman, J., González Alonso, J., \u0026amp; Puig-Mayenco, E. (2019). Third Language Acquisition and Linguistic Transfer (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781316014660\nRothman, J., \u0026amp; Slabakova, R. (2018). THE GENERATIVE APPROACH TO SLA AND ITS PLACE IN MODERN SECOND LANGUAGE STUDIES. Studies in Second Language Acquisition, 40(2), 417–442. https://doi.org/10.1017/S0272263117000134\nRoyle, P., \u0026amp; Steinhauer, K. (2023). Neural Correlates of Morphology Computation and Representation. In M. Grimaldi, E. Brattico, \u0026amp; Y. Shtyrov (Eds.), Language Electrified (Vol. 202, pp. 447–503). Springer US. https://doi.org/10.1007/978-1-0716-3263-5_14\nSadeghi, K. (2022). Talking About Second Language Acquisition. Springer International Publishing. https://doi.org/10.1007/978-3-030-99758-8\nSaez-Fajardo, S. (2023). The language learning strategies of multilinguals: The influence of age of acquisition in early bilingualism. International Journal of Multilingualism, 1–18. https://doi.org/10.1080/14790718.2023.2241484\nSafavi, S. M., Lopour, B., \u0026amp; Chou, P. H. (2018). Reducing the Computational Complexity of EEG Source Localization With Cortical Patch Decomposition and Optimal Electrode Selection. IEEE Transactions on Biomedical Engineering, 65(10), 2298–2310. https://doi.org/10.1109/TBME.2018.2793882\nSalaberry, R. (2020). The conceptualisation of knowledge about aspect: From monolingual to multilingual representations. Zenodo. https://doi.org/10.5281/ZENODO.4138737\nSamara, A. (2022). Artificial Language Learning Methods as a Tool for Sociolinguistic Research. In K. Geeslin, The Routledge Handbook of Second Language Acquisition and Sociolinguistics (1st ed., pp. 249–260). Routledge. https://doi.org/10.4324/9781003017325-23\nSánchez, L. (2020). Multilingualism from a language acquisition perspective. Zenodo. https://doi.org/10.5281/ZENODO.4138735\nSánchez-Moguel, S. M., Baravalle, R., González-Salinas, S., Rosso, O. A., Fernández, T., \u0026amp; Montani, F. (2022). Abnormal EEG signal energy in the elderly: A wavelet analysis of event-related potentials during a stroop task. Journal of Neuroscience Methods, 376, 109608. https://doi.org/10.1016/j.jneumeth.2022.109608\nSarah Von Grebmer Zu Wolfsthurn. (2022). Does your native language matter? Neural correlates of typological similarity in non-native production. Lingue e linguaggio, 1, 143–169. https://doi.org/10.1418/104453\nSaturno, J. (2022). Production of inflectional morphology in intercomprehension-based language teaching: The case of Slavic languages. International Journal of Multilingualism, 19(3), 383–401. https://doi.org/10.1080/14790718.2020.1730379\nSavalle, E., Pillette, L., Won, K., Argelaguet, F., Lécuyer, A., \u0026amp; J-M Macé, M. (2024). Towards electrophysiological measurement of presence in virtual reality through auditory oddball stimuli. Journal of Neural Engineering, 21(4), 046015. https://doi.org/10.1088/1741-2552/ad5cc2\nSavelieva, T., \u0026amp; Rodina, Y. (2022). Cross-linguistic influence in the acquisition of articles in L3 English by Danish-Russian bilingual children. Journal of Second Language Studies, 5(2), 235–265. https://doi.org/10.1075/jsls.21025.rod\nScalise, E., Stahnke, J., \u0026amp; Müller, N. (2021). Parameter setting and acceleration: Subject omissions in a trilingual child with special reference to French. Language, Interaction and Acquisition, 12(1), 157–184. https://doi.org/10.1075/lia.20011.sca\nSchepens, J., Van Hout, R., \u0026amp; Jaeger, T. F. (2020). Big data suggest strong constraints of linguistic similarity on adult language learning. Cognition, 194, 104056. https://doi.org/10.1016/j.cognition.2019.104056\nSchiller, N. O. (2019). Evidence for syntactic feature transfer between two languages. Linguistic Approaches to Bilingualism, 9(6), 883–887. https://doi.org/10.1075/lab.19058.sch\nSchindler, S., Bruchmann, M., Gathmann, B., Moeck, R., \u0026amp; Straube, T. (2021). Effects of low-level visual information and perceptual load on P1 and N170 responses to emotional expressions. Cortex, 136, 14–27. https://doi.org/10.1016/j.cortex.2020.12.011\nSchindler, S., Bruchmann, M., \u0026amp; Straube, T. (2022). Feature-based attention interacts with emotional picture content during mid-latency and late ERP processing stages. Biological Psychology, 170, 108310. https://doi.org/10.1016/j.biopsycho.2022.108310\nSchindler, S., Busch, N., Bruchmann, M., Wolf, M., \u0026amp; Straube, T. (2022). Early ERP functions are indexed by lateralized effects to peripherally presented emotional faces and scrambles. Psychophysiology, 59(2), e13959. https://doi.org/10.1111/psyp.13959\nSchindler, S., Richter, T. S., Bruchmann, M., Busch, N. A., \u0026amp; Straube, T. (2022). Effects of task load, spatial attention, and trait anxiety on neuronal responses to fearful and neutral faces. Psychophysiology, 59(11), e14114. https://doi.org/10.1111/psyp.14114\nSchirmer, A., Wijaya, M., Wu, E., \u0026amp; Penney, T. B. (2019). Vocal threat enhances visual perception as a function of attention and sex. Social Cognitive and Affective Neuroscience, 14(7), 727–735. https://doi.org/10.1093/scan/nsz044\nSchneider, J. M., Behboudi, M. H., \u0026amp; Maguire, M. J. (2024). The Necessity of Taking Culture and Context into Account When Studying the Relationship between Socioeconomic Status and Brain Development. Brain Sciences, 14(4), 392. https://doi.org/10.3390/brainsci14040392\nSchreiter, M. L., \u0026amp; Beste, C. (2020). Inflexible adjustment of expectations affects cognitive-emotional conflict control in adolescents with autism spectrum disorder. Cortex, 130, 231–245. https://doi.org/10.1016/j.cortex.2020.06.002\nSchreiter, M. L., Chmielewski, W. X., \u0026amp; Beste, C. (2018). How socioemotional setting modulates late-stage conflict resolution processes in the lateral prefrontal cortex. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 18(3), 521–535. https://doi.org/10.3758/s13415-018-0585-5\nSchreiter, M. L., Chmielewski, W. X., Mückschel, M., Ziemssen, T., \u0026amp; Beste, C. (2019). How the depth of processing modulates emotional interference – evidence from EEG and pupil diameter data. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 19(5), 1231–1246. https://doi.org/10.3758/s13415-019-00732-0\nSchreiter, M. L., Chmielewski, W. X., Ward, J., \u0026amp; Beste, C. (2019). How non-veridical perception drives actions in healthy humans: Evidence from synaesthesia. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1787), 20180574. https://doi.org/10.1098/rstb.2018.0574\nSchwartz, B. D., \u0026amp; Sprouse, R. A. (2021a). In defense of ‘copying and restructuring.’ Second Language Research, 37(3), 489–493. https://doi.org/10.1177/0267658320975831\nSchwartz, B. D., \u0026amp; Sprouse, R. A. (2021b). Making models, making predictions. Linguistic Approaches to Bilingualism, 11(1), 116–129. https://doi.org/10.1075/lab.00032.sch\nSchwartz, B. D., \u0026amp; Sprouse, R. A. (2021c). The Full Transfer/Full Access model and L3 cognitive states. Linguistic Approaches to Bilingualism, 11(1), 1–29. https://doi.org/10.1075/lab.20055.sch\nSeidel, A., Ghio, M., Studer, B., \u0026amp; Bellebaum, C. (2021). Illusion of control affects ERP amplitude reductions for auditory outcomes of self‐generated actions. Psychophysiology, 58(5), e13792. https://doi.org/10.1111/psyp.13792\nShaktawat, D. (2024). The Effect of Indian Contact and Glaswegian Contact on the Phonetic Backward Transfer of Glaswegian English (L2) on Hindi and Indian English (L1). Languages, 9(4), 118. https://doi.org/10.3390/languages9040118\nShanghai International Studies University, Ding, Y., Wang, T., \u0026amp; Macau University of Science and Technology. (2023). Análisis de la correlación del rendimiento de aprendizaje entre segunda lengua (L2) y tercera lengua (L3): El caso de estudiantes chinos. México y La Cuenca Del Pacífico, 12(35), 111–130. https://doi.org/10.32870/mycp.v12i35.828\nShantz, K., \u0026amp; Tanner, D. (2020). Electrophysiology finds no inherent delay for grammatical gender retrieval in non-native production. Bilingualism: Language and Cognition, 23(1), 98–118. https://doi.org/10.1017/S1366728918001232\nSheehan, M., Paciorek, A., \u0026amp; Williams, J. (2018). Case/agreement matching: Evidence for a cognitive bias. Glossa: A Journal of General Linguistics, 3(1). https://doi.org/10.5334/gjgl.413\nSherif, M. A., Cortes‐Briones, J. A., Ranganathan, M., \u0026amp; Skosnik, P. D. (2018). Cannabinoid–glutamate interactions and neural oscillations: Implications for psychosis. European Journal of Neuroscience, 48(8), 2890–2902. https://doi.org/10.1111/ejn.13800\nShimeng Xu, E., \u0026amp; Chun Man Wong, P. (2023). First Language/Second Language Crosslinguistic Influence on Third Language Acquisition via Neurocognitive Memory Systems. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 314–325). Routledge. https://doi.org/10.4324/9781003190912-29\nSiemund, P., \u0026amp; Lorenz, E. (2024). Chapter 5. Multilingual advantages: On the relationship between type of bilingualism and language knowledge. In K. K. Grohmann (Ed.), Studies in Bilingualism (Vol. 66, pp. 123–151). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.66.05sie\nSiemund, P., Lorenz, E., \u0026amp; Toprak-Yildiz, T. E. (2024). The impact of heritage language proficiency on English as an additional language: Disentangling language and cognition. International Journal of Multilingualism, 21(4), 2131–2149. https://doi.org/10.1080/14790718.2023.2228340\nSittiprapaporn, P., \u0026amp; Suyajai, P. (2022). Topographical distribution of the human brain to Plukenetia volubilis-based omega-3,6,9 enriched egg consumption. IAES International Journal of Artificial Intelligence (IJ-AI), 11(4), 1426. https://doi.org/10.11591/ijai.v11.i4.pp1426-1438\nSlabakova, R. (2021). Does Full Transfer Endure in L3A? Linguistic Approaches to Bilingualism, 11(1), 96–102. https://doi.org/10.1075/lab.20087.sla\nSlabakova, R. (2023). A shared linguistic system of multilingual representations. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 29–48). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.02sla\nSokhadze, E. M., Shaban, M., El-Baz, A. S., Tasman, A., Sears, L., \u0026amp; Casanova, M. F. (2023). Event-related potentials and gamma oscillations in EEG as functional diagnostic biomarkers and outcomes in autism spectrum disorder treatment research. In Neural Engineering Techniques for Autism Spectrum Disorder, Volume 2 (pp. 297–319). Elsevier. https://doi.org/10.1016/B978-0-12-824421-0.00022-9\nSokolova, M., \u0026amp; Slabakova, R. (2019). L3 Sentence Processing: Language-Specific or Phenomenon-Sensitive? Languages, 4(3), 54. https://doi.org/10.3390/languages4030054\nSokolova, M., \u0026amp; Slabakova, R. (2022). A different type of RC attachment resolution: Comparing bilingual and trilingual processing. In T. Leal, E. Shimanskaya, \u0026amp; C. A. Isabelli (Eds.), Language Acquisition and Language Disorders (Vol. 67, pp. 287–314). John Benjamins Publishing Company. https://doi.org/10.1075/lald.67.12sok\nSokolova, M. Y., \u0026amp; Levandovski, M. (2023). Relative Clause Processing and Attachment Resolution across Languages: Tatar–Russian–English Trilinguals. Languages, 9(1), 18. https://doi.org/10.3390/languages9010018\nSpinner, P., Foote, R., \u0026amp; Upor, R. A. (2018). Gender and number processing in second language Swahili. Linguistic Approaches to Bilingualism, 8(4), 446–476. https://doi.org/10.1075/lab.16042.spi\nSpinner, P., \u0026amp; Gass, S. M. (2019). Using Judgments in Second Language Acquisition Research (1st ed.). Routledge. https://doi.org/10.4324/9781315463377\nSprouse, R. A. (2024). Non-canonical word orders. In T. Ionin, S. Montrul, \u0026amp; R. Slabakova, The Routledge Handbook of Second Language Acquisition, Morphosyntax, and Semantics (1st ed., pp. 382–396). Routledge. https://doi.org/10.4324/9781003412373-33\nStadt, R., Hulk, A., \u0026amp; Sleeman, P. (2018). The role of L2 exposure in L3A: A comparative study between third and fourth year secondary school students in the Netherlands. In J. Berns, H. Jacobs, \u0026amp; D. Nouveau (Eds.), Romance Languages and Linguistic Theory (Vol. 13, pp. 279–296). John Benjamins Publishing Company. https://doi.org/10.1075/rllt.13.17sta\nStadt, R., Hulk, A., \u0026amp; Sleeman, P. (2020a). L1 Dutch vs L2 English and the initial stages of L3 French acquisition. Zenodo. https://doi.org/10.5281/ZENODO.4138749\nStadt, R., Hulk, A., \u0026amp; Sleeman, P. (2020b). L2 Influence in L3 Acquisition: The Role of the L3. In A. Trotzke \u0026amp; T. Kupisch (Eds.), Formal Linguistics and Language Education (Vol. 43, pp. 203–221). Springer International Publishing. https://doi.org/10.1007/978-3-030-39257-4_11\nStetie, N. A. (2021). Modelos de procesamiento sintáctico y sus implicaciones para el estudio del lenguaje / Syntactic processing models and their implications for the study of language. REVISTA DE ESTUDOS DA LINGUAGEM, 29(3), 2117. https://doi.org/10.17851/2237-2083.29.3.2117-1262\nStoehr, A., Jevtović, M., De Bruin, A., \u0026amp; Martin, C. D. (2024). Phonetic and Lexical Crosslinguistic Influence in Early Spanish–Basque–English Trilinguals. Language Learning, 74(2), 332–364. https://doi.org/10.1111/lang.12598\nStoll, E. A. (2024). The Mechanics Underpinning Non-Deterministic Computation in Cortical Neural Networks. AppliedMath, 4(3), 806–827. https://doi.org/10.3390/appliedmath4030043\nStringer, D. (2021). Commitment in L3 relationships: Sacred vows or polyamory? Second Language Research, 37(3), 495–500. https://doi.org/10.1177/0267658320988045\nSuwazono, S., Arao, H., Ueda, Y., \u0026amp; Maedou, S. (2021). Event-related potentials using the auditory novel paradigm in patients with myotonic dystrophy. Journal of Neurology, 268(8), 2900–2907. https://doi.org/10.1007/s00415-021-10465-1\nSuzuki, Y. (2021). Individual differences in memory predict changes in breakdown and repair fluency but not speed fluency: A short-term fluency training intervention study. Applied Psycholinguistics, 42(4), 969–995. https://doi.org/10.1017/S0142716421000187\nSyed, N. A., \u0026amp; Bibi, S. (2024). VOT for plosives in the indigenous languages of Balochistan: Implications for adult learners of English. Journal of Second Language Studies, 7(1), 157–192. https://doi.org/10.1075/jsls.23002.sye\nTajari, S. N., Gholami, S., Rostami, R., Trabelsi, K., \u0026amp; Taheri, M. (2023). The effect of perceptual-motor exercise on temporal dynamics of cognitive inhibition control in children with developmental coordination disorder. Mental Health and Physical Activity, 24, 100495. https://doi.org/10.1016/j.mhpa.2022.100495\nTakacs, A., Zink, N., Wolff, N., Münchau, A., Mückschel, M., \u0026amp; Beste, C. (2020). Connecting EEG signal decomposition and response selection processes using the theory of event coding framework. Human Brain Mapping, 41(10), 2862–2877. https://doi.org/10.1002/hbm.24983\nTammenga-Helmantel, M., \u0026amp; Maijala, M. (2018a). Sequences in German grammar teaching: An analysis of Dutch, Finnish, and global textbooks. International Review of Applied Linguistics in Language Teaching, 56(1), 45–78. https://doi.org/10.1515/iral-2015-0070\nTammenga-Helmantel, M., \u0026amp; Maijala, M. (2018b). Sequences in German grammar teaching: An analysis of Dutch, Finnish, and global textbooks. International Review of Applied Linguistics in Language Teaching, 56(1), 45–78. https://doi.org/10.1515/iral-2015-0070\nTao, L., Wang, G., Zhu, M., \u0026amp; Cai, Q. (2021). Bilingualism and domain-general cognitive functions from a neural perspective: A systematic review. Neuroscience \u0026amp; Biobehavioral Reviews, 125, 264–295. https://doi.org/10.1016/j.neubiorev.2021.02.029\nTararova, O., Black, M., Wang, Q., \u0026amp; Blong, K. (2023). Gender Agreement in L3 Spanish Production among Speakers of Typologically Different Languages. Languages, 8(1), 18. https://doi.org/10.3390/languages8010018\nTavakol, M., Tavakoli, M., \u0026amp; Ketabi, S. (2022). The impact of linguistic background on the nature of classroom dyadic interactions: Evidence from L2 and L3 learners of English as a foreign language. International Multilingual Research Journal, 16(1), 1–26. https://doi.org/10.1080/19313152.2021.1929761\nTesta, M. (2020). Exploring the Relation Between Psychotypologies and Article Acquisition. PSYCHOLINGUISTICS, 27(2), 252–289. https://doi.org/10.31470/2309-1797-2020-27-2-252-289\nTimofeeva, P., Quiñones, I., Geng, S., De Bruin, A., Carreiras, M., \u0026amp; Amoruso, L. (2023). Behavioral and oscillatory signatures of switch costs in highly proficient bilinguals. Scientific Reports, 13(1), 7725. https://doi.org/10.1038/s41598-023-34895-1\nTomić, A., \u0026amp; Kaan, E. (2022). Oscillatory brain responses to processing code-switches in the presence of others. Brain and Language, 231, 105139. https://doi.org/10.1016/j.bandl.2022.105139\nTravers, W. (2022). 10 Inside the L3 Classroom: Learner Reflections on University-level Foreign Language Classes for Bilinguals in the United States. In A. Krulatz, G. Neokleous, \u0026amp; A. Dahl (Eds.), Theoretical and Applied Perspectives on Teaching Foreign Languages in Multilingual Settings (pp. 170–185). Multilingual Matters. https://doi.org/10.21832/9781788926423-015\nTribushinina, E., Boz, B., Aalbers, V., \u0026amp; Blom, E. (2024). Revisiting bilingual foreign language learning advantages: The role of extramural exposure. International Journal of Bilingualism, 13670069231224542. https://doi.org/10.1177/13670069231224542\nTribushinina, E., \u0026amp; Mackaaij, M. (2023). Bilingual advantages in foreign language learning: Evidence from primary-school pupils with developmental language disorder. Frontiers in Education, 8, 1264120. https://doi.org/10.3389/feduc.2023.1264120\nTrumbo, M. C., Jones, A. P., Robert, B. M., Trumbo, D., \u0026amp; Matzen, L. E. (2022). A Method of Developing Video Stimuli that Are Amenable to Neuroimaging Analysis: An EEG Pilot Study. In D. D. Schmorrow \u0026amp; C. M. Fidopiastis (Eds.), Augmented Cognition (Vol. 13310, pp. 183–201). Springer International Publishing. https://doi.org/10.1007/978-3-031-05457-0_16\nUdry, I., \u0026amp; Berthele, R. (2024). Young learners’ academic self-concepts for L2/L3 French and English. International Journal of Multilingualism, 1–18. https://doi.org/10.1080/14790718.2023.2301094\nUmejima, K., Flynn, S., \u0026amp; Sakai, K. L. (2021). Enhanced activations in syntax-related regions for multilinguals while acquiring a new language. Scientific Reports, 11(1), 7296. https://doi.org/10.1038/s41598-021-86710-4\nUth, M., \u0026amp; García García, M. (2018). Chapter 1. Introduction: Core issues of focus realization in Romance. In M. García García \u0026amp; M. Uth (Eds.), Studies in Language Companion Series (Vol. 201, pp. 1–30). John Benjamins Publishing Company. https://doi.org/10.1075/slcs.201.01uth\nVahid, A., Bluschke, A., Roessner, V., Stober, S., \u0026amp; Beste, C. (2019). Deep Learning Based on Event-Related EEG Differentiates Children with ADHD from Healthy Controls. Journal of Clinical Medicine, 8(7), 1055. https://doi.org/10.3390/jcm8071055\nVahid, A., Mückschel, M., Stober, S., Stock, A.-K., \u0026amp; Beste, C. (2020). Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control. Communications Biology, 3(1), 112. https://doi.org/10.1038/s42003-020-0846-z\nVallerossa, F. (2024). ‘I think mangiò might be passé simple’: Exploring multilingual learners’ reflections on past tense verb morphology. International Journal of Multilingualism, 21(1), 112–130. https://doi.org/10.1080/14790718.2022.2036159\nVallerossa, F., \u0026amp; Bardel, C. (2023). Always trust your gut?: A case study on the differential impact of French as L1/L2 on Italian L3 tense-aspect judgments. Language, Interaction and Acquisition, 14(1), 41–74. https://doi.org/10.1075/lia.22020.val\nVallerossa, F., Gudmundson, A., Bergström, A., \u0026amp; Bardel, C. (2023). Learning aspect in Italian as additional language. The role of second languages. International Review of Applied Linguistics in Language Teaching, 61(3), 1139–1171. https://doi.org/10.1515/iral-2021-0033\nVan Baal, Y. (2023). Definiteness marking in American Norwegian: A unique pattern among the Scandinavian languages. The Journal of Comparative Germanic Linguistics, 27(1), 1. https://doi.org/10.1007/s10828-023-09149-z\nVan De Ruit, M., \u0026amp; Ghosh, A. (2022). Can you hear me now? Momentary increase in smartphone usage enhances neural processing of task-irrelevant sound tones. Neuroimage: Reports, 2(4), 100131. https://doi.org/10.1016/j.ynirp.2022.100131\nVan De Ven, M., Voeten, M., Steenbeek-Planting, E. G., \u0026amp; Verhoeven, L. (2018a). Transfer of decoding skills in early foreign language reading. Learning and Individual Differences, 62, 1–11. https://doi.org/10.1016/j.lindif.2018.01.005\nVan De Ven, M., Voeten, M., Steenbeek-Planting, E. G., \u0026amp; Verhoeven, L. (2018b). Transfer of decoding skills in early foreign language reading. Learning and Individual Differences, 62, 1–11. https://doi.org/10.1016/j.lindif.2018.01.005\nVan Dijk, C., Dijkstra, T., \u0026amp; Unsworth, S. (2022). Cross-linguistic influence during online sentence processing in bilingual children. Bilingualism: Language and Cognition, 25(4), 691–704. https://doi.org/10.1017/S1366728922000050\nVan Tessel, E., \u0026amp; Bril, M. (2021). French as a foreign language in the Netherlands: An L2 or an L3? A study on crosslinguistic influences from Dutch and English. Linguistics in the Netherlands, 38, 114–127. https://doi.org/10.1075/avt.00056.tes\nVanhove, J. (2019). Metalinguistic knowledge about the native language and language transfer in gender assignment. Studies in Second Language Learning and Teaching, 9(2), 397–419. https://doi.org/10.14746/ssllt.2019.9.2.7\nVargas, J. C., \u0026amp; García Mayo, M. D. P. (2022). Lexical Crosslinguistic Influence in L3 Spanish by Tagalog–English Bilinguals. Languages, 7(3), 213. https://doi.org/10.3390/languages7030213\nVastano, R., \u0026amp; Widerstrom-Noga, E. (2023). Event-related potentials during mental rotation of body-related stimuli in spinal cord injury population. Neuropsychologia, 179, 108447. https://doi.org/10.1016/j.neuropsychologia.2022.108447\nVeezhinathan, M., Geethanjali, B., Sakthivel, S., \u0026amp; AnanthaNarayanan, R. (2023). Evaluating cognitive load during lexical decision tasks for monolinguals and bilinguals using EEG. In M. Murugappan (Ed.), Affective Computing in Healthcare (pp. 2-1-2–32). IOP Publishing. https://doi.org/10.1088/978-0-7503-5182-9ch2\nVera, J. D., Freichel, R., Michelini, G., Loo, S. K., \u0026amp; Lenartowicz, A. (2024). A Network Approach to Understanding the Role of Executive Functioning and Alpha Oscillations in Inattention and Hyperactivity-Impulsivity Symptoms of ADHD. Journal of Attention Disorders, 28(10), 1357–1367. https://doi.org/10.1177/10870547241253999\nVoits, T., DeLuca, V., \u0026amp; Abutalebi, J. (2022). The Nuance of Bilingualism as a Reserve Contributor: Conveying Research to the Broader Neuroscience Community. Frontiers in Psychology, 13, 909266. https://doi.org/10.3389/fpsyg.2022.909266\nVoits, T., DeLuca, V., Hao, J., Elin, K., Abutalebi, J., Duñabeitia, J. A., Berglund, G., Gabrielsen, A., Rook, J., Thomsen, H., Waagen, P., \u0026amp; Rothman, J. (2024). Degree of multilingual engagement modulates resting state oscillatory activity across the lifespan. Neurobiology of Aging, 140, 70–80. https://doi.org/10.1016/j.neurobiolaging.2024.04.009\nVon Grebmer Zu Wolfsthurn, S., Pablos, L., \u0026amp; Schiller, N. O. (2021). Noun-phrase production as a window to language selection: An ERP study. Neuropsychologia, 162, 108055. https://doi.org/10.1016/j.neuropsychologia.2021.108055\nWach, A. (2018). Trilingual Learners’ Awareness of the Role of L1 in Learning Target Language Grammar. In M. Pawlak \u0026amp; A. Mystkowska-Wiertelak (Eds.), Challenges of Second and Foreign Language Education in a Globalized World (pp. 209–226). Springer International Publishing. https://doi.org/10.1007/978-3-319-66975-5_13\nWakabayashi, S. (2023). Generative grammar. In L. Wei, Z. Hua, \u0026amp; J. Simpson, The Routledge Handbook of Applied Linguistics (2nd ed., pp. 336–349). Routledge. https://doi.org/10.4324/9781003082644-28\nWalter, D. R., Fischer, G., \u0026amp; Cai, J. (2024). The effect of cue length and position on noticing and learning of determiner agreement pairings: Evidence from a cue-balanced artificial vocabulary learning task. PLOS ONE, 19(7), e0302355. https://doi.org/10.1371/journal.pone.0302355\nWand, A. (2023). Segregation in Language Education: The Case of South Tyrol, Italy. Springer International Publishing. https://doi.org/10.1007/978-3-031-32747-6\nWang, C., Shen, H., Zhu, J., Manman, N., Liao, L., Jiang, K., \u0026amp; Dong, X. (2023). Recognition memory for pictures in children with ADHD: An event-related potential study. International Journal of Neuroscience, 133(5), 555–566. https://doi.org/10.1080/00207454.2021.1936518\nWang, L., Zhang, J., Liu, T., Chen, D., Yang, D., Go, R., Wu, J., \u0026amp; Yan, T. (2022). Prediction of Cognitive Task Activations via Resting-State Functional Connectivity Networks: An EEG Study. IEEE Transactions on Cognitive and Developmental Systems, 14(1), 181–188. https://doi.org/10.1109/TCDS.2020.3031604\nWang, M., Tokimoto, S., Song, G., Ueno, T., Koizumi, M., \u0026amp; Kiyama, S. (2022). Different Neural Responses for Unfinished Sentence as a Conventional Indirect Refusal Between Native and Non-native Speakers: An Event-Related Potential Study. Frontiers in Psychology, 13, 806023. https://doi.org/10.3389/fpsyg.2022.806023\nWang, T., \u0026amp; Yang, J. (2024). The semantic access mechanism of L3 Spanish words: Evidence from a cross-linguistic priming effect by Chinese native speakers. Review of Cognitive Linguistics. https://doi.org/10.1075/rcl.00175.wan\nWang, Y., Tang, Z., Zhang, X., \u0026amp; Yang, L. (2022). Auditory and cross-modal attentional bias toward positive natural sounds: Behavioral and ERP evidence. Frontiers in Human Neuroscience, 16, 949655. https://doi.org/10.3389/fnhum.2022.949655\nWang, Z., \u0026amp; Xu, C. (2024). Language transfers in third language acquisition of Chinese by intermediate level German and English native speakers: Evidence from a behavioral experiment online. Frontiers in Psychology, 15, 1358603. https://doi.org/10.3389/fpsyg.2024.1358603\nWard, D. F. B., \u0026amp; Lo, Y. Y. (2023). Incidental development of implicit and explicit grammar knowledge from reading: The case of lower-intermediate learners of English. System, 116, 103094. https://doi.org/10.1016/j.system.2023.103094\nWascher, E., Arnau, S., Gutberlet, I., Karthaus, M., \u0026amp; Getzmann, S. (2018). Evaluating Pro- and Re-Active Driving Behavior by Means of the EEG. Frontiers in Human Neuroscience, 12, 205. https://doi.org/10.3389/fnhum.2018.00205\nWei, Y., Okazaki, Y. O., So, R. H. Y., Chu, W. C. W., \u0026amp; Kitajo, K. (2019). Motion sickness-susceptible participants exposed to coherent rotating dot patterns show excessive N2 amplitudes and impaired theta-band phase synchronization. NeuroImage, 202, 116028. https://doi.org/10.1016/j.neuroimage.2019.116028\nWestergaard, M. (2021a). L3 acquisition and crosslinguistic influence as co-activation: Response to commentaries on the keynote ‘Microvariation in multilingual situations: The importance of property-by-property acquisition.’ Second Language Research, 37(3), 501–518. https://doi.org/10.1177/02676583211007897\nWestergaard, M. (2021b). Microvariation in multilingual situations: The importance of property-by-property acquisition. Second Language Research, 37(3), 379–407. https://doi.org/10.1177/0267658319884116\nWestergaard, M. (2021c). The plausibility of wholesale vs. Property-by-property transfer in L3 acquisition. Linguistic Approaches to Bilingualism, 11(1), 103–108. https://doi.org/10.1075/lab.20091.wes\nWhite, L. (2021). Choosing between theories: Can L3 acquisition really decide? Second Language Research, 37(3), 429–433. https://doi.org/10.1177/0267658320941047\nWhite, L. (2024). Verb movement. In T. Ionin, S. Montrul, \u0026amp; R. Slabakova, The Routledge Handbook of Second Language Acquisition, Morphosyntax, and Semantics (1st ed., pp. 341–354). Routledge. https://doi.org/10.4324/9781003412373-30\nWicht, C. A., De Pretto, M., Mouthon, M., \u0026amp; Spierer, L. (2022). Neural correlates of expectations-induced effects of caffeine intake on executive functions. Cortex, 150, 61–84. https://doi.org/10.1016/j.cortex.2022.02.004\nWilang, J. D. (2024). Exploring the Mindsets of Thai Undergraduate Students: A Comprehensive Study of General and Language-Related Beliefs. Sage Open, 14(2), 21582440241262952. https://doi.org/10.1177/21582440241262952\nWolff, N., \u0026amp; Beste, C. (2020). Short-term Smartphone App–Based Focused Attention Meditation Diminishes Cognitive Flexibility. Journal of Cognitive Neuroscience, 32(8), 1484–1496. https://doi.org/10.1162/jocn_a_01564\nWolff, N., Chmielewski, W. X., Beste, C., \u0026amp; Roessner, V. (2018). Working memory load affects repetitive behaviour but not cognitive flexibility in adolescent autism spectrum disorder. The World Journal of Biological Psychiatry, 19(7), 509–520. https://doi.org/10.1080/15622975.2017.1296973\nWolff, N., Gussek, P., Stock, A., \u0026amp; Beste, C. (2018). Effects of high‐dose ethanol intoxication and hangover on cognitive flexibility. Addiction Biology, 23(1), 503–514. https://doi.org/10.1111/adb.12470\nWolff, N., Mückschel, M., Ziemssen, T., \u0026amp; Beste, C. (2018). The role of phasic norepinephrine modulations during task switching: Evidence for specific effects in parietal areas. Brain Structure and Function, 223(2), 925–940. https://doi.org/10.1007/s00429-017-1531-y\nWoll, N. (2018). Investigating dimensions of metalinguistic awareness: What think-aloud protocols revealed about the cognitive processes involved in positive transfer from L2 to L3. Language Awareness, 27(1–2), 167–185. https://doi.org/10.1080/09658416.2018.1432057\nWoll, N. (2019). Investigating Positive Lexical Transfer from English (L2) to German (L3) by Quebec Francophones. In E. Vetter \u0026amp; U. Jessner (Eds.), International Research on Multilingualism: Breaking with the Monolingual Perspective (Vol. 35, pp. 103–123). Springer International Publishing. https://doi.org/10.1007/978-3-030-21380-0_7\nWoll, N., Paquet, P.-L., \u0026amp; Wouters, I. (2024). Language as a vehicle or as a resource? Exploring the nature of metalinguistic reflection in plurilingual consciousness-raising tasks. Journal of Multilingual and Multicultural Development, 45(9), 3906–3925. https://doi.org/10.1080/01434632.2022.2134398\nWrembel, M. (2021a). Multilingual acquisition property by property: A view from a wider perspective. Second Language Research, 37(3), 441–447. https://doi.org/10.1177/0267658320935167\nWrembel, M. (2021b). Transfer vs. dynamic cross-linguistic interactions: Exploring alternative avenues in L3 research. Linguistic Approaches to Bilingualism, 11(1), 109–115. https://doi.org/10.1075/lab.20092.wre\nWu, L., Chen, Y., Liu, X., Fang, P., Feng, T., Sun, K., Ren, L., Liang, W., Lu, H., Lin, X., Li, Y., Wang, L., Li, C., Zhang, T., Ni, C., \u0026amp; Wu, S. (2022). The influence of job burnout on the attention ability of army soldiers and officers: Evidence from ERP. Frontiers in Neuroscience, 16, 992537. https://doi.org/10.3389/fnins.2022.992537\nWu, S., Liu, D., \u0026amp; Li, Z. (2023). Testing the Bottleneck Hypothesis: Chinese EFL learners’ knowledge of morphology and syntax across proficiency levels. Second Language Research, 39(4), 1191–1217. https://doi.org/10.1177/02676583221128520\nXiang, J., \u0026amp; Yuan, B. (2020). Definiteness constraint on subjects in L2 and L3 Mandarin grammars: Empirical evidence concerning the source of transfer in L3 acquisition. Journal of Second Language Studies, 3(2), 233–260. https://doi.org/10.1075/jsls.00012.xia\nXiaobao, W. (2024). Trilingual Education of Uyghur Children: Phonological Awareness, Language Acquisition and Literacy Development (1st ed.). Routledge. https://doi.org/10.4324/9781003473596\nXu, E. S., Matthews, S., Yip, V., \u0026amp; Wong, P. C. M. (2024). Memory systems modulate crosslinguistic influence on third language morphosyntactic acquisition. PLOS ONE, 19(7), e0304572. https://doi.org/10.1371/journal.pone.0304572\nXu, X., Nie, X., Zhang, J., \u0026amp; Xu, T. (2023). Multi-Level Attention Recognition of EEG Based on Feature Selection. International Journal of Environmental Research and Public Health, 20(4), 3487. https://doi.org/10.3390/ijerph20043487\nXu, Y., Yuan, Y., Xie, X., Tan, H., \u0026amp; Guan, L. (2022). Romantic feedbacks influence self-relevant processing: The moderating effects of sex difference and facial attractiveness. Current Psychology, 41(7), 4145–4157. https://doi.org/10.1007/s12144-021-02114-7\nYang, Y. (2023). The Correlation Between English and French Proficiency of Chinese Trilingual Learners. Chinese Journal of Applied Linguistics, 46(3), 404–423. https://doi.org/10.1515/CJAL-2023-0305\nYee, J., Yap, N. T., Korenar, M., Saddy, J. D., \u0026amp; Pliatsikas, C. (2024). Subcortical restructuring as a function of multilingualism: Insights from monolinguals, bilinguals, trilinguals and quadrilinguals. Bilingualism: Language and Cognition, 27(4), 715–728. https://doi.org/10.1017/S136672892300086X\nYener, G., Hünerli-Gündüz, D., Yıldırım, E., Aktürk, T., Başar-Eroğlu, C., Bonanni, L., Del Percio, C., Farina, F., Ferri, R., Güntekin, B., Hajós, M., Ibáñez, A., Jiang, Y., Lizio, R., Lopez, S., Noce, G., Parra, M. A., Randall, F., Stocchi, F., \u0026amp; Babiloni, C. (2022). Treatment effects on event-related EEG potentials and oscillations in Alzheimer’s disease. International Journal of Psychophysiology, 177, 179–201. https://doi.org/10.1016/j.ijpsycho.2022.05.008\nYou, E. (2024). The cross-linguistic influence of L1 Korean and L2 English in L3 Spanish syntactic processing. Onomázein Revista de Lingüística Filología y Traducción, 63, 37–54. https://doi.org/10.7764/onomazein.63.03\nYu, L., Wang, X., Lyu, Y., Ding, L., Jia, J., Tong, S., \u0026amp; Guo, X. (2020). Electrophysiological Evidences for the Rotational Uncertainty Effect in the Hand Mental Rotation: An ERP and ERS/ERD Study. Neuroscience, 432, 205–215. https://doi.org/10.1016/j.neuroscience.2020.02.040\nZaharchuk, H. A., \u0026amp; Karuza, E. A. (2021). Multilayer networks: An untapped tool for understanding bilingual neurocognition. Brain and Language, 220, 104977. https://doi.org/10.1016/j.bandl.2021.104977\nZahler, S. L. (2022). Measuring Individual Differences. In K. Geeslin, The Routledge Handbook of Second Language Acquisition and Sociolinguistics (1st ed., pp. 237–248). Routledge. https://doi.org/10.4324/9781003017325-22\nZanesco, J., Tipura, E., Posada, A., Clément, F., \u0026amp; Pegna, A. J. (2019). Seeing is believing: Early perceptual brain processes are modified by social feedback. Social Neuroscience, 14(5), 519–529. https://doi.org/10.1080/17470919.2018.1511470\nZawiszewski, A., \u0026amp; Laka, I. (2020). Bilinguals processing noun morphology: Evidence for the Language Distance Hypothesis from event-related potentials. Journal of Neurolinguistics, 55, 100908. https://doi.org/10.1016/j.jneuroling.2020.100908\nZen, E. L. (2018). A Preliminary Evidence of Transfer in the Acquisition of Sentential Negation of English in Multilingual Indonesian Children in School Contexts. 3L The Southeast Asian Journal of English Language Studies, 24(3), 155–167. https://doi.org/10.17576/3L-2018-2403-12\nZen, E. L. (2020). Role of Regional Language Background and Speech Styles on the Production of Voice Onset Time (VOT) in English among Indonesian Multilinguals. Indonesian Journal of Applied Linguistics, 10(2), 359–368. https://doi.org/10.17509/ijal.v10i2.28604\nZenia, N. Z., Dizaji, L. G., \u0026amp; Hu, Y. (2023). Effect of Machine Reliability on the Cognitive Processes of the Task Performance. 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3241–3246. https://doi.org/10.1109/SMC53992.2023.10394070\nZeynali Hamied, R., \u0026amp; Modirkhamene, S. (2024). EFL learners’ short-term and long-term memory: Does learning additional languages matter? International Journal of Multilingualism, 1–15. https://doi.org/10.1080/14790718.2023.2294955\nZhang, G., Li, X., \u0026amp; Cong, F. (2020). Objective Extraction of Evoked Event-Related Oscillation from Time-Frequency Representation of Event-Related Potentials. Neural Plasticity, 2020, 1–20. https://doi.org/10.1155/2020/8841354\nZhang, L. (2022). ¿Pollo o Bollo? Acquisition of Voicing Contrast by Chinese Learners of L3 Spanish. Hispania, 105(4), 595–613. https://doi.org/10.1353/hpn.2022.0118\nZhang, L., Morales-Front, A., \u0026amp; Sanz, C. (2023). Dynamics in cross-linguistic influence: Evidence from VOT development of Mandarin-English bilingual learners of L3 Spanish. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 121–149). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.06zha\nZhang, X., Guo, F., Li, S., Li, M., \u0026amp; Chen, H. (2018). Consumers’ different neural activity and attitude to the leading brand and imitator. Journal of Neuroscience, Psychology, and Economics, 11(3), 166–181. https://doi.org/10.1037/npe0000077\nZhang, Z., Ma, F., \u0026amp; Guo, T. (2023). Proactive and reactive language control in bilingual language production revealed by decoding sustained potentials and electroencephalography oscillations. Human Brain Mapping, 44(15), 5065–5078. https://doi.org/10.1002/hbm.26433\nZhao, C., Kormos, J., Rebuschat, P., \u0026amp; Suzuki, S. (2021). The role of modality and awareness in language learning. Applied Psycholinguistics, 42(3), 703–737. https://doi.org/10.1017/S0142716421000023\nZhao, Q., Li, H., Hu, B., Li, Y., Gillebert, C. R., Mantini, D., \u0026amp; Liu, Q. (2018a). Neural Correlates of Drug-Related Attentional Bias in Heroin Dependence. Frontiers in Human Neuroscience, 11, 646. https://doi.org/10.3389/fnhum.2017.00646\nZhao, Q., Li, H., Hu, B., Li, Y., Gillebert, C. R., Mantini, D., \u0026amp; Liu, Q. (2018b). Neural Correlates of Drug-Related Attentional Bias in Heroin Dependence. Frontiers in Human Neuroscience, 11, 646. https://doi.org/10.3389/fnhum.2017.00646\nZhou, S., Luo, J., Yu, T., Li, D., Yin, Y., \u0026amp; Tang, X. (2020). Towards a neural model of creative evaluation in advertising: An electrophysiological study. Scientific Reports, 10(1), 21958. https://doi.org/10.1038/s41598-020-79044-0\nZhou, X. (Emily), Huang, X., \u0026amp; He, J. (2020). Translanguaging in L3 Spanish Classrooms: Practices and Attitudes. Círculo de Lingüística Aplicada a La Comunicación, 84, 65–75. https://doi.org/10.5209/clac.71996\nZhu, L., Ma, Q., Bai, X., \u0026amp; Hu, L. (2020). Mechanisms behind hazard perception of warning signs: An EEG study. Transportation Research Part F: Traffic Psychology and Behaviour, 69, 362–374. https://doi.org/10.1016/j.trf.2020.02.001\nZhu, Y., \u0026amp; Mok, P. (2024). Cross-linguistic influences on the production of third language consonant clusters by L1 Cantonese–L2 English–L3 German trilinguals. International Journal of Multilingualism, 21(3), 1700–1717. https://doi.org/10.1080/14790718.2023.2208866\nZibin, A., Allawama, A., Akayleh, M., \u0026amp; Naimat, K. (2024). Investigating Arabic-speaking EFL learners’ understanding of French gender markers: A typological primacy model approach to a third language. Cogent Arts \u0026amp; Humanities, 11(1), 2328898. https://doi.org/10.1080/23311983.2024.2328898\nZink, N., Bensmann, W., Arning, L., Beste, C., \u0026amp; Stock, A.-K. (2019). Apolipoprotein ε4 is associated with better cognitive control allocation in healthy young adults. NeuroImage, 185, 274–285. https://doi.org/10.1016/j.neuroimage.2018.10.046\nZink, N., Stock, A.-K., Vahid, A., \u0026amp; Beste, C. (2018). On the Neurophysiological Mechanisms Underlying the Adaptability to Varying Cognitive Control Demands. Frontiers in Human Neuroscience, 12, 411. https://doi.org/10.3389/fnhum.2018.00411\nZink, N., Zhang, R., Chmielewski, W. X., Beste, C., \u0026amp; Stock, A.-K. (2019). Detrimental effects of a high-dose alcohol intoxication on sequential cognitive flexibility are attenuated by practice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 89, 97–108. https://doi.org/10.1016/j.pnpbp.2018.08.034\nŻychliński, S., Skałba, A., Wrembel, M., \u0026amp; Kaźmierski, K. (2023). How syntactic gradience in L1 affects L3 acquisition: A longitudinal study. Linguistic Approaches to Bilingualism. https://doi.org/10.1075/lab.23011.zyc\nZyzik, E., \u0026amp; Marqués-Pascual, L. (2018). Practice with Formulaic Sequences: Can It Promote the Incidental Learning of Grammar? In C. Jones (Ed.), Practice in Second Language Learning (1st ed., pp. 55–78). Cambridge University Press. https://doi.org/10.1017/9781316443118.005\n水英姚. (2021). 香港大专生普通话学习中”了”的偏误分析: 对体习得普遍趋势和多语教学的启示. Chinese as a Second Language Research, 10(1), 131–154. https://doi.org/10.1515/caslar-2021-0006\n\r\r\r","date":1731024000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1731024000,"objectID":"9fcb894ca0d8c63bc74c7c6f4407cc6d","permalink":"https://pablobernabeu.github.io/publication/third-language-longitudinal-data-artificial-language-learning-eeg/","publishdate":"2024-11-08T00:00:00Z","relpermalink":"/publication/third-language-longitudinal-data-artificial-language-learning-eeg/","section":"publication","summary":"The burgeoning field of third language (L3) acquisition has increasingly focused on intermediate stages of language development, aiming to establish the groundwork for comprehensive models of L3 learning that encompass the entire developmental sequence. This article underscores the importance of a robust epistemological foundation, advocating for incremental knowledge building through longitudinal research. In the study presented here, we use artificial languages to investigate L3 acquisition from initial exposure with complete input control, factoring in individual differences in executive functions and history of bilingual exposure/engagement to assess the role of these variables in shaping learning trajectories and modulating cross-linguistic influence (CLI). This approach not only advances our understanding of L3 development under controlled conditions but also links L3 acquisition research to broader cognitive science inquiries.","tags":["Third language acquisition","L3 learning","Artificial languages","Crosslinguistic influence","Crosslinguistic transfer","Language transfer","Bilingualism","Multilingualism","Cognitive functions","EEG","Language processing","Executive functions","Longitudinal study","Morphosyntax","Typological similarity","Individual differences","Language dominance"],"title":"Starting from the very beginning: Unraveling third language (L3) development with longitudinal data from artificial language learning and related epistemology","type":"publication"},{"authors":null,"categories":["research methods"],"content":"\rReducing the impedance in electroencephalography (EEG) is crucial for capturing high-quality brain activity signals. This process involves ensuring that electrodes make optimal contact with the skin without harming the participant. Below are a few tips to achieve this using a blunt needle, electrolyte gel and gentle wiggling.\nFirst, Do No Harm\rThe primary goal is to reduce the impedance without damaging the skin or causing discomfort. Only use disposable, blunt needles, and never let the needle pierce the skin. While wiggling the needle under each electrode, do not any apply any force down on the skin. To achieve this, hold the syringe with the minimum grip force needed to control it.\n\rManage the Angle and Depth of the Needle\rThe needle should be positioned at an angle of around 20–50 degrees relative to the participant’s skin. To attain such an angle, you may rotate the electrodes, move yourself or move the participant.\nControl the depth of the needle to prevent scratching the skin. Usually, only half of the needle has to be inside, as the key work area is right under the electrode.\n\r\r\r\r\n\rApply Gel Strategically\rUse just enough electrolyte gel to reduce the impedance, but avoid creating bridges between adjacent electrodes. A small amount of gel should be visible on the opening of each electrode, and any large lumps should be carefully removed. This ensures that each electrode maintains a distinct connection with the skin.\n\rControl the Swing of the Electrode\rPlace your finger on the electrode throughout the wiggling to feel and control its movement. This helps prevent excess gel from forming a bump under the electrode, which could lead to inaccurate readings.\n\rWiggle with Precision\rPosition yourself comfortably to work on each electrode, allowing for precise movements and minimising participant discomfort. Wiggle the needle in small circular motions to move hair aside and ensure good skin contact. Be careful not to scratch the skin in the process.\nBy following these tips, you’ll achieve lower impedance without causing harm, ensuring high-quality EEG data and a better experience for the participant. In short, you’ll have moved the needle.\n\r","date":1729123200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1729123200,"objectID":"946343bb42394fec5613e73557bb0e1d","permalink":"https://pablobernabeu.github.io/2024/lowering-impedance-in-electroencephalography-using-a-blunt-needle-electrolyte-gel-and-wiggling/","publishdate":"2024-10-17T00:00:00Z","relpermalink":"/2024/lowering-impedance-in-electroencephalography-using-a-blunt-needle-electrolyte-gel-and-wiggling/","section":"post","summary":"Reducing the impedance in electroencephalography (EEG) is crucial for capturing high-quality brain activity signals. This process involves ensuring that electrodes make optimal contact with the skin without harming the participant. Below are a few tips to achieve this using a blunt needle, electrolyte gel and gentle wiggling.","tags":["electroencephalography","impedance","s"],"title":"Reducing the impedance in electroencephalography using a blunt needle, electrolyte gel and wiggling","type":"post"},{"authors":[],"categories":["linguistics"],"content":"\rGiven all of the data that E\u0026amp;L [Evans \u0026amp; Levinson, 2009] cite, how could anyone maintain the notion of a universal grammar with linguistic content? Traditionally, there have been three basic strategies. First, just as we may force English grammar into the Procrustean bed of Latin grammar – that is how I was taught the structure of English in grade school – the grammars of the world’s so-called exotic languages may be forced into an abstract scheme based mainly on European languages.\n— Tomasello (2009)\n\rResearchers often make participants jump through hoops. Due to our personal blind spots, it seems easier to realise the full extent of these acrobatics when we consider the work of other researchers. In linguistic research, the acrobatics are often spurred by unnatural grammatical constructions. For instance, in Spanish, be-based passive constructions—such as La guerra fue empezada por … ‘The war was started by …’—are much less frequent than in English. In Spanish, be-passives are mostly reserved for the formal, written discourse. Outside of that register, the left-dislocation of the patient is more commonly achieved through the following constructions. One construction hinges on the reflexive pronoun se—e.g., El apartamento se vendió ‘The apartment was sold’ (Takagaki, 2005). The other construction implements a pronominal object clitic (usually in preverbal position), as illustrated below.1 The latter construction, though not strictly passive, is thematically equivalent to many passives in English (Hidalgo Downing \u0026amp; Downing, 2012).\n\nComparing the frequency of the English-like, be-based passive to the construction that implements a pronominal object clitic in preverbal position.\nThe ratio of 8 to 5,300 results suggests that be-passives are much less common than the construction implementing a preverbal clitic. In the light of this ratio, it is surprising to find linguistic research that seems to overlook the asymmetry between English and Spanish regarding passives. For instance, in a study on crosslinguistic syntactic priming in bilingual children, Vasilyeva et al. (2010) used stimuli such as El gato fue lavado por el perro ‘The cat was washed by the dog’. Through a quick-and-dirty corpus analysis using a search engine, we can examine the limitations of these stimuli. Whereas the English form ‘The cat was washed’ is common enough, the literal translations El gato fue lavado and La gata fue lavada are essentially negligible.\n\n\n\nComparing the frequency of passive constructions in English and in Spanish.\nVasilyeva et al. (2010) observed that, when primed with English-like, be-based passives in Spanish, the children increased their use of passive constructions in English. In contrast, exposure to English passives in the prime sentences did not lead to a greater use of the English-like passives in Spanish. The authors described this contrast as an asymmetry, which has been profusely echoed in the subsequent literature on crosslinguistic syntactic priming (Serratrice, 2022). The caveat about this finding is that the stimuli themselves contained an asymmetry, as the be-passive is infelicitous in Spanish, certainly when compared to be-passives in English (Hartsuiker \u0026amp; Bernolet, 2017; Vasilyeva et al., 2010), and especially among children, who use passives even less frequently.\nSyntactic isomorphism is less common than it may seem. That is, syntactic structures cannot always be mapped on a one-to-one basis across languages. Even when the same structures exist in two languages, their frequencies may be fundamentally different, as in the case of be-based passives in English and Spanish. Thus, where possible, stimuli should capture the functional equivalents between languages, not just the surface-level structural forms, to avoid skewed results. By this means, it will become easier to interpret the results of crosslinguistic priming. At the same time, seeking crosslinguistic overlaps may be like looking for a needle in a haystack.\nReferences\rEvans, N., \u0026amp; Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32(5), 429-448. https://doi.org/10.1017/S0140525X0999094X\nHartsuiker, R. J., \u0026amp; Bernolet, S. (2017). The development of shared syntax in second language learning. Bilingualism: Language and Cognition, 20(2), 219-234. https://doi.org/10.1017/S1366728915000164\nHidalgo Downing, R., \u0026amp; Downing, A. (2012). Topic and topicality in text: A contrastive study of English and Spanish narrative texts. Linguistics and the Human Sciences, 6, 193–217. https://doi.org/10.1558/lhs.v6i1-3.193\nSerratrice, L. (2022). What can syntactic priming tell us about crosslinguistic influence? In Messenger, K. (Ed.), Syntactic priming in language acquisition: Representations, mechanisms and applications (pp. 129–156). Amsterdam: John Benjamins. https://doi.org/10.1075/tilar.31\nTakagaki, T. (2005). On the productivity of the Spanish passive constructions. In Takagaki et al. (Eds.), Corpus-based approaches to sentence structures (pp. 289–309). Amsterdam: John Benjamins. https://doi.org/10.1075/ubli.2\nTomasello, M. (2009). Universal grammar is dead. Behavioral and Brain Sciences, 32(5), 470–471. https://doi.org/10.1017/S0140525X09990744\nVasilyeva, M., Waterfall, H., Gámez, P. B., Gómez, L. E., Bowers, E., \u0026amp; Shimpi, P. (2010). Cross-linguistic syntactic priming in bilingual children. Journal of Child Language, 37(5), 1047–1064. https://doi.org/10.1017/S0305000909990213\n\r\rFor a couple of more ideas about pronominal object clitics, see this other post.↩︎\n\r\r\r","date":1726876800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1726876800,"objectID":"a550b05cb78b46260b3f4410714e9f9c","permalink":"https://pablobernabeu.github.io/2024/passive-constructions-and-asymmetries-between-languages/","publishdate":"2024-09-21T00:00:00Z","relpermalink":"/2024/passive-constructions-and-asymmetries-between-languages/","section":"post","summary":"Researchers often make participants jump through hoops. Due to our personal blind spots, it seems easier to realise the full extent of these acrobatics when we consider the work of other researchers. In linguistic research, the acrobatics are often spurred by unnatural grammatical constructions.","tags":["linguistics","syntax","s"],"title":"Passive constructions and asymmetries between languages","type":"post"},{"authors":["Pablo Bernabeu, Gabriella Silva, Ngoc Giang My Hoang, Vincent DeLuca, Claudia Poch, Iva Ivanova, Jason Rothman, Jorge González Alonso"],"categories":["psycholinguistics"],"content":"\r Poster\r\r\r .embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}\rwindow.jQuery || document.write('\\x3C/script') \r\r\rvar mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/3ba9y/?direct%26mode=render%26action=download%26mode=render\");\r","date":1725494400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1725494400,"objectID":"ae9468a4fcc1b4665b99e37852f1d900","permalink":"https://pablobernabeu.github.io/presentation/investigating-language-learning-and-morphosyntactic-transfer-longitudinally-using-artificial-languages/","publishdate":"2024-09-05T00:00:00Z","relpermalink":"/presentation/investigating-language-learning-and-morphosyntactic-transfer-longitudinally-using-artificial-languages/","section":"presentation","summary":"Unlike children acquiring their first language (L1), L2/Ln learners can draw on existing grammatical knowledge to ease the task, at least for those properties where the grammars align. This means that, in addition to statistical learning, there might be a substantial role for individual differences in cognitive processes necessary to identify, recruit and deploy this prior knowledge—e.g., procedural memory, working memory (WM), inhibitory control. In this study, we measured these individual differences through an SRT task, a digit-span, and a Stroop task, at the onset of a longitudinal artificial language (AL) learning paradigm. Grammatical and lexical similarity between the ALs and previous languages (Norwegian-English or SpanishEnglish) were systematically manipulated. Behavioral measures of sensitivity to grammatical violations in the AL were collected after each training session (three total). Results suggest that the ability to capitalize on prior knowledge is significantly modulated by individual differences in procedural memory, WM and inhibitory control.","tags":["multilingualism","psycholinguistics","crosslinguistic transfer","language learning","executive functions","individual differences","artificial languages","Norwegian","English","Spanish","event-related potentials","electroencephalography"],"title":"Investigating language learning and morphosyntactic transfer longitudinally using artificial languages","type":"presentation"},{"authors":["Pablo Bernabeu, Gabriella Silva, Ngoc Giang My Hoang, Vincent DeLuca, Claudia Poch, Iva Ivanova, Jason Rothman, Jorge González Alonso"],"categories":["research methods"],"content":"\r Poster\r\r\r .embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}\rwindow.jQuery || document.write('\\x3C/script') \r\r\rvar mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/h83yq/?direct%26mode=render%26action=download%26mode=render\");\rSnippet 1\rThe use of code scripts facilitates the reproducibility, testability and expandability of materials.\n└── stimulus_preparation\r├── Norway site, base stimuli.csv\r├── Spain site, base stimuli.csv\r├── base_images.R\r├── R_functions\r│ ├── Session2_Pretraining_vocabulary.R\r│ ├── Session2_Training_gender_agreement.R\r│ ├── Session2_Test_gender_agreement.R\r│ ├── Session2_Experiment_gender_agreement.R\r...\r├── compile_all_stimuli.R\r\r\rTable 1\rThe minimal components of each language are contained in a base file.\n\r\rverb_ID\rverb_type\rverb\rverb_contrast_ID\r\r\r\r1\rcopula_be\ris\r\r\r2\rcopula_be\rare\r\r\r3\rcopula_look\rlooks\r\r\r4\rcopula_look\rlook\r\r\r5\rtransitive\rremembered\rA\r\r6\rtransitive\rforgot\rA\r\r7\rtransitive\rchose\rB\r\r8\rtransitive\rrefused\rB\r\r\r\r\r\rSnippet 2\rTests were set throughout the workflow to control the frequency of some categories (R code).\ncolumns_to_check = c(\u0026#39;noun1_gender\u0026#39;, \u0026#39;number\u0026#39;, \u0026#39;person\u0026#39;, \u0026#39;verb\u0026#39;, \u0026#39;noun1\u0026#39;, \u0026#39;wrapup_noun\u0026#39;)\rfor(i in seq_along(columns_to_check)) {\rcolumn = columns_to_check[i]\rnumber_of_unique_frequencies = combinations %\u0026gt;% filter(complete.cases(get(column)), get(column) != \u0026#39;\u0026#39;) %\u0026gt;% group_by(get(column)) %\u0026gt;% tally() %\u0026gt;% select(n) %\u0026gt;% n_distinct()\rif(number_of_unique_frequencies != 1) {\rwarning(paste0(\u0026#39;Some elements in the column `\u0026#39;, column, \u0026#39;` appear more often than others.\u0026#39;))\r}\r}\r\r\rSnippet 3\rSeamless adjustment of parameters in each OpenSesame session (Python code).\nparticipant_parameters = pd.read_csv(exp.get_file(\u0026#39;../parameters per participant/\u0026#39; + var.study_site + \u0026#39; site, parameters per participant.csv\u0026#39;))\rvar.resting_state_order = participant_parameters.loc[\rparticipant_parameters[\u0026#39;participant\u0026#39;] ==\rvar.subject_nr][\u0026#39;Session2_resting_state_order\u0026#39;].iloc[0]\rvar.language = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;language\u0026#39;].iloc[0]\r\r\r\rSnippet 4\rSending serial-port triggers in OpenSesame to record ERPs (Python code).\n# Open the first serial port available\rserialport = serial.Serial(serial.tools.list_ports.comports()[0].device)\r# Send triggers to the port\rdef send_trigger(trigger):\rserialport.write(trigger.to_bytes(length = 1, byteorder = \u0026#39;big\u0026#39;))\r# 10 ms separation from next trigger (see BrainVision Recorder manual)\rtime.sleep(0.01) # reset port\rserialport.write(int(0).to_bytes(length = 1, byteorder = \u0026#39;big\u0026#39;)) return;\r\r\r\rReferences\rBarsalou, L. W. (2019). Establishing generalizable mechanisms. Psychological Inquiry, 30(4), 220–230. https://doi.org/10.1080/1047840X.2019.1693857\nCross, Z. R., Zou-Williams, L., Wilkinson, E. M., Schlesewsky, M., \u0026amp; Bornkessel-Schlesewsky, I. (2021). Mini Pinyin: A modified miniature language for studying language learning and incremental sentence processing. Behavior Research Methods, 53(3), 1218–1239. https://doi.org/10.3758/s13428-020-01473-6\nGonzález Alonso, J., Alemán Bañón, J., DeLuca, V., Miller, D., Pereira Soares, S. M., Puig-Mayenco, E., Slaats, S., \u0026amp; Rothman, J. (2020). Event related potentials at initial exposure in third language acquisition: Implications from an artificial mini-grammar study. Journal of Neurolinguistics, 56, 100939. https://doi.org/10.1016/j.jneuroling.2020.100939\nMitrofanova, N., Leivada, E., \u0026amp; Westergaard, M. (2023). Crosslinguistic influence in L3 acquisition: Evidence from artificial language learning. Linguistic Approaches to Bilingualism, 13(5), 717-742. https://doi.org/10.1075/lab.22063.mit\nMorgan-Short, K., Finger, I., Grey, S., \u0026amp; Ullman, M. T. (2012). Second language processing shows increased native-like neural responses after months of no exposure. PLOS ONE, 7(3), e32974. https://doi.org/10.1371/journal.pone.0032974\nPereira Soares, S. M., Kupisch, T., \u0026amp; Rothman, J. (2022). Testing potential transfer effects in heritage and adult L2 bilinguals acquiring a mini grammar as an additional language: An ERP approach. Brain Sciences, 12(5), Article 5. https://doi.org/10.3390/brainsci12050669\nWilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), Article 1. https://doi.org/10.1038/sdata.2016.18\n\r","date":1725494400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1725494400,"objectID":"10ae92f9ef396b09caebc30fe39315f7","permalink":"https://pablobernabeu.github.io/presentation/making-research-materials-findable-accessible-interoperable-reusable-fair/","publishdate":"2024-02-15T08:26:33+01:00","relpermalink":"/presentation/making-research-materials-findable-accessible-interoperable-reusable-fair/","section":"presentation","summary":"To err is human, but when it comes to creating research materials, mistakes can be reduced by sharing more of our work and by using some helpful tools. For instance, we can make our research materials FAIRer—that is, more Findable, Accessible, Interoperable and Reusable (Wilkinson et al., 2016). These practices facilitate the reproducibility, revision, modification and expansion of research materials, by the creators themselves and by other researchers, at any point in time, which is convenient due to the vital importance of methods in experimental research (Barsalou, 2019). In the current presentation, we describe how documentation practices and open-source software (namely, R and OpenSesame) were used to prepare materials for a study in multilingualism using artificial languages, and comprising several sessions and several grammatical properties. So far, the creation of artificial languages in similar studies has not generally displayed an extensive use of FAIR practices (Cross et al., 2021; González Alonso et al., 2020; Mitrofanova et al., 2023; Morgan-Short et al., 2012; Pereira Soares et al., 2022). In our current study, the stimuli were prepared in R using a modular framework that consisted of interoperable components (Snippet 1). The modularity of this method facilitates the expansion of the materials within the same languages and to other languages. Specifically, the minimal components of each language were contained in a base file in the ‘stimulus_preparation’ folder. Furthermore, for the creation of the final stimuli, several controls were exerted to prevent spurious effects. For instance, gender and number were counterbalanced across experimental conditions, words were rotated across grammatical properties and sessions, and frequency of occurrence was controlled (Snippet 2). The final stimuli can be recreated using the script 'compile_all_stimuli.R', and the resulting stimuli are saved to the 'session_materials' folder. Furthermore, the final stimuli were presented using OpenSesame, which is a free-of-charge software supporting experiments in the social sciences. We describe the implementation of several complex sessions in OpenSesame, which involved the use of conditions for controlling the engagement of certain items. Last, we describe a custom script in OpenSesame that enables the measurement of event-related potentials by time-locking electroencephalographic measures to the onset of specific stimuli. In conclusion, the materials of the current study are accessible, and the workflow is reproducible. As a result, the final materials are testable, modifiable and expandable, improving long-term efficiency.","tags":["materials","stimuli","open science","open data","reproducibility","research methods","psychology","linguistics","psycholinguistics"],"title":"Making research materials Findable, Accessible, Interoperable and Reusable","type":"presentation"},{"authors":[],"categories":["research methods"],"content":"\rSay, you need to set up a makeshift EEG lab in an office? Easy-peasy—only, try to move the hardware as little as possible, especially laptops with dongles sticking out. The rest is a trail of snapshots devoid of captions, a sink, a shower room and other paraphernalia, as this is only an ancillary, temporary, extraordinary little lab, and all those staples are within reach in our mainstream lab (see Ledwidge et al., 2018; Luck, 2014).\n\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\r The needles below are blunt—that is, they do not pierce the skin. They’re just used to put some gel into the cap to enable the detection of electrical activity in the brain. You can explore the non-invasive, painless procedure of EEG here.\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\rClick here or press Esc to close\r\r\r\r❮\r❯\n\rReferences\rLedwidge, P., Foust, J., \u0026amp; Ramsey, A. (2018). Recommendations for developing an EEG laboratory at a primarily undergraduate institution. Journal of Undergraduate Neuroscience Education, 17(1), A10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312138\nLuck, S. J. (2014). Online Chapter 16: Setting up and running an ERP lab. In S. J. Luck (Ed.), An introduction to\rthe event-related potential technique. Cambridge, MA: MIT Press. Retrieved from http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0\u0026amp;fn=Ch_16_0.pdf\u0026amp;id=8575\n\r","date":1723420800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1723420800,"objectID":"5583e67e0e0bd8b488457936e4a67497","permalink":"https://pablobernabeu.github.io/2024/makeshift-eeg-lab/","publishdate":"2024-08-12T00:00:00Z","relpermalink":"/2024/makeshift-eeg-lab/","section":"post","summary":"Say, you need to set up a makeshift EEG lab in an office? Easy-peasy---only, try to move the hardware as little as possible, especially laptops with dongles sticking out. The rest is a trail of snapshots devoid of captions, a sink, a shower room and other paraphernalia, as this is only an ancillary, temporary, extraordinary little lab, and all those staples are within reach in our mainstream lab (see Ledwidge et al., 2018; Luck, 2014).","tags":["electroencephalography","s"],"title":"A makeshift EEG lab","type":"post"},{"authors":[],"categories":["research methods","R"],"content":"\rElectroencephalography (EEG) has become a cornerstone for understanding the intricate workings of the human brain in the field of neuroscience. However, EEG software and hardware come with their own set of constraints, particularly in the management of markers, also known as triggers. This article aims to shed light on these limitations and future prospects of marker management in EEG studies, while also introducing R functions that can help deal with vmrk files from BrainVision.\nMarkers, serving as timestamps that indicate specific events during data collection, play a crucial role in EEG studies. These events could range from the onset of a stimulus to the participant’s response. However, one of the major constraints in current EEG systems is the limitation of markers to numbers between 1 and 255. This limitation is due to the fact that markers are typically stored as 8-bit unsigned integers in computer memory, which can only represent numbers in the range of 0 to 255. However, the number 0 is usually reserved for system use, leaving only the numbers 1 to 255 available for markers.\nThis numerical constraint can pose significant challenges in the interpretation of markers, especially in complex experimental designs where a multitude of events need to be marked and differentiated. It necessitates careful documentation of each marker’s purpose prior to running the study. This means that researchers must meticulously map each number to a specific event or condition in their experiment, which can be a daunting task, especially for complex studies with numerous conditions and events.\nLooking towards the future, one might wonder if it will become possible to send markers with semantic information, instead of being constrained to numbers between 1 and 255. This would allow researchers to encode more detailed information in each marker, such as the type of stimulus presented or the specific condition being tested. Such a development could revolutionize the way we conduct and analyze EEG studies, offering greater flexibility in experimental design and more nuanced insights into brain activity.\nBelow, we’ll demonstrate some functions from this GitHub repository that help inspect and fix vmrk files. We’ll work with the vmrk file shown below.\n# Read the file into a vector of lines\rreadLines(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example.vmrk\u0026#39;)\r## [1] \u0026quot;Brain Vision Data Exchange Marker File, Version 1.0\u0026quot; ## [2] \u0026quot;\u0026quot; ## [3] \u0026quot;[Common Infos]\u0026quot; ## [4] \u0026quot;DataFile=3.eeg\u0026quot; ## [5] \u0026quot;Codepage=utf-8\u0026quot; ## [6] \u0026quot;\u0026quot; ## [7] \u0026quot;[Marker Infos]\u0026quot; ## [8] \u0026quot;; Each entry: Mk\u0026lt;Marker number\u0026gt;=\u0026lt;Type\u0026gt;,\u0026lt;Description\u0026gt;,\u0026lt;Position in data points\u0026gt;,\u0026quot; ## [9] \u0026quot;; \u0026lt;Size in data points\u0026gt;, \u0026lt;Channel number (0 = marker is related to all channels)\u0026gt;,\u0026quot;\r## [10] \u0026quot;; \u0026lt;Date (YYYYMMDDhhmmssuuuuuu)\u0026gt;\u0026quot; ## [11] \u0026quot;; Fields are delimited by commas, some fields might be omited (empty).\u0026quot; ## [12] \u0026quot;; Commas in type or description text are coded as \\\u0026quot;\\\\1\\\u0026quot;.\u0026quot; ## [13] \u0026quot;Mk1=New Segment,,1,1,0,20240318111955090000\u0026quot; ## [14] \u0026quot;Mk2=Stimulus,S254,20419,1,0\u0026quot; ## [15] \u0026quot;Mk3=Stimulus,S 5,22332,1,0\u0026quot; ## [16] \u0026quot;Mk4=Stimulus,S 42,23095,1,0\u0026quot; ## [17] \u0026quot;Mk5=Stimulus,S143,23100,1,0\u0026quot; ## [18] \u0026quot;Mk6=Stimulus,S 2,23106,1,0\u0026quot; ## [19] \u0026quot;Mk7=Stimulus,S102,23111,1,0\u0026quot; ## [20] \u0026quot;Mk8=Stimulus,S 6,25882,1,0\u0026quot; ## [21] \u0026quot;Mk9=Stimulus,S 5,28106,1,0\u0026quot; ## [22] \u0026quot;Mk10=Stimulus,S 50,29053,1,0\u0026quot; ## [23] \u0026quot;Mk11=Stimulus,S241,29058,1,0\u0026quot; ## [24] \u0026quot;Mk12=Stimulus,S 1,29063,1,0\u0026quot; ## [25] \u0026quot;Mk13=Stimulus,S101,29069,1,0\u0026quot; ## [26] \u0026quot;Mk14=Stimulus,S 6,31830,1,0\u0026quot; ## [27] \u0026quot;Mk15=Stimulus,S 5,34056,1,0\u0026quot; ## [28] \u0026quot;Mk16=Stimulus,S 49,35055,1,0\u0026quot; ## [29] \u0026quot;Mk17=Stimulus,S226,35060,1,0\u0026quot; ## [30] \u0026quot;Mk18=Stimulus,S 2,35066,1,0\u0026quot; ## [31] \u0026quot;Mk19=Stimulus,S103,35071,1,0\u0026quot; ## [32] \u0026quot;Mk20=Stimulus,S 6,37242,1,0\u0026quot; ## [33] \u0026quot;Mk21=Stimulus,S 5,39436,1,0\u0026quot; ## [34] \u0026quot;Mk22=Stimulus,S 43,40417,1,0\u0026quot; ## [35] \u0026quot;Mk23=Stimulus,S155,40423,1,0\u0026quot; ## [36] \u0026quot;Mk24=Stimulus,S 2,40429,1,0\u0026quot; ## [37] \u0026quot;Mk25=Stimulus,S103,40434,1,0\u0026quot; ## [38] \u0026quot;Mk26=Stimulus,S 6,42481,1,0\u0026quot; ## [39] \u0026quot;Mk27=Stimulus,S 5,44662,1,0\u0026quot; ## [40] \u0026quot;Mk28=Stimulus,S 40,45678,1,0\u0026quot; ## [41] \u0026quot;Mk29=Stimulus,S118,45683,1,0\u0026quot; ## [42] \u0026quot;Mk30=Stimulus,S 1,45688,1,0\u0026quot; ## [43] \u0026quot;Mk31=Stimulus,S103,45693,1,0\u0026quot; ## [44] \u0026quot;Mk32=Stimulus,S 6,47621,1,0\u0026quot; ## [45] \u0026quot;Mk33=Stimulus,S 5,49809,1,0\u0026quot; ## [46] \u0026quot;Mk34=Stimulus,S 50,50808,1,0\u0026quot; ## [47] \u0026quot;Mk35=Stimulus,S237,50813,1,0\u0026quot; ## [48] \u0026quot;Mk36=Stimulus,S 3,50818,1,0\u0026quot; ## [49] \u0026quot;Mk37=Stimulus,S101,50823,1,0\u0026quot; ## [50] \u0026quot;Mk38=Stimulus,S 6,53823,1,0\u0026quot; ## [51] \u0026quot;Mk39=Stimulus,S 5,56042,1,0\u0026quot; ## [52] \u0026quot;Mk40=Stimulus,S 40,57129,1,0\u0026quot; ## [53] \u0026quot;Mk41=Stimulus,S114,57134,1,0\u0026quot; ## [54] \u0026quot;Mk42=Stimulus,S 3,57140,1,0\u0026quot; ## [55] \u0026quot;Mk43=Stimulus,S103,57145,1,0\u0026quot; ## [56] \u0026quot;Mk44=Stimulus,S 6,59661,1,0\u0026quot;\rNumbering trials\rThe antediluvian limitation of markers often prevents us from storing the order of trials using markers. Thus, when we need to inspect or fix vmrk files, we must mentally divide the lines into trials. For instance, in our example vmrk file, all trials begin with the marker S 5. The function below allows us to temporarily number trials by appending the number to the first marker of each trial. The parameters of the function allow us to select the start_line to skip the metadata at the top of the vmrk file, as well as to select the number of lines_per_trial and the first_number to use in the first trial.\n\r# Create temporary vmrk file with numbered trials\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/number_trials.R\u0026#39;)\rnumber_trials(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example.vmrk\u0026#39;, start_line = 15, lines_per_trial = 6, first_number = 1)\r## [1] \u0026quot;Brain Vision Data Exchange Marker File, Version 1.0\u0026quot; ## [2] \u0026quot;\u0026quot; ## [3] \u0026quot;[Common Infos]\u0026quot; ## [4] \u0026quot;DataFile=3.eeg\u0026quot; ## [5] \u0026quot;Codepage=utf-8\u0026quot; ## [6] \u0026quot;\u0026quot; ## [7] \u0026quot;[Marker Infos]\u0026quot; ## [8] \u0026quot;; Each entry: Mk\u0026lt;Marker number\u0026gt;=\u0026lt;Type\u0026gt;,\u0026lt;Description\u0026gt;,\u0026lt;Position in data points\u0026gt;,\u0026quot; ## [9] \u0026quot;; \u0026lt;Size in data points\u0026gt;, \u0026lt;Channel number (0 = marker is related to all channels)\u0026gt;,\u0026quot;\r## [10] \u0026quot;; \u0026lt;Date (YYYYMMDDhhmmssuuuuuu)\u0026gt;\u0026quot; ## [11] \u0026quot;; Fields are delimited by commas, some fields might be omited (empty).\u0026quot; ## [12] \u0026quot;; Commas in type or description text are coded as \\\u0026quot;\\\\1\\\u0026quot;.\u0026quot; ## [13] \u0026quot;Mk1=New Segment,,1,1,0,20240318111955090000\u0026quot; ## [14] \u0026quot;Mk2=Stimulus,S254,20419,1,0\u0026quot; ## [15] \u0026quot;Mk3=Stimulus,S 5,22332,1,0 1\u0026quot; ## [16] \u0026quot;Mk4=Stimulus,S 42,23095,1,0\u0026quot; ## [17] \u0026quot;Mk5=Stimulus,S143,23100,1,0\u0026quot; ## [18] \u0026quot;Mk6=Stimulus,S 2,23106,1,0\u0026quot; ## [19] \u0026quot;Mk7=Stimulus,S102,23111,1,0\u0026quot; ## [20] \u0026quot;Mk8=Stimulus,S 6,25882,1,0\u0026quot; ## [21] \u0026quot;Mk9=Stimulus,S 5,28106,1,0 2\u0026quot; ## [22] \u0026quot;Mk10=Stimulus,S 50,29053,1,0\u0026quot; ## [23] \u0026quot;Mk11=Stimulus,S241,29058,1,0\u0026quot; ## [24] \u0026quot;Mk12=Stimulus,S 1,29063,1,0\u0026quot; ## [25] \u0026quot;Mk13=Stimulus,S101,29069,1,0\u0026quot; ## [26] \u0026quot;Mk14=Stimulus,S 6,31830,1,0\u0026quot; ## [27] \u0026quot;Mk15=Stimulus,S 5,34056,1,0 3\u0026quot; ## [28] \u0026quot;Mk16=Stimulus,S 49,35055,1,0\u0026quot; ## [29] \u0026quot;Mk17=Stimulus,S226,35060,1,0\u0026quot; ## [30] \u0026quot;Mk18=Stimulus,S 2,35066,1,0\u0026quot; ## [31] \u0026quot;Mk19=Stimulus,S103,35071,1,0\u0026quot; ## [32] \u0026quot;Mk20=Stimulus,S 6,37242,1,0\u0026quot; ## [33] \u0026quot;Mk21=Stimulus,S 5,39436,1,0 4\u0026quot; ## [34] \u0026quot;Mk22=Stimulus,S 43,40417,1,0\u0026quot; ## [35] \u0026quot;Mk23=Stimulus,S155,40423,1,0\u0026quot; ## [36] \u0026quot;Mk24=Stimulus,S 2,40429,1,0\u0026quot; ## [37] \u0026quot;Mk25=Stimulus,S103,40434,1,0\u0026quot; ## [38] \u0026quot;Mk26=Stimulus,S 6,42481,1,0\u0026quot; ## [39] \u0026quot;Mk27=Stimulus,S 5,44662,1,0 5\u0026quot; ## [40] \u0026quot;Mk28=Stimulus,S 40,45678,1,0\u0026quot; ## [41] \u0026quot;Mk29=Stimulus,S118,45683,1,0\u0026quot; ## [42] \u0026quot;Mk30=Stimulus,S 1,45688,1,0\u0026quot; ## [43] \u0026quot;Mk31=Stimulus,S103,45693,1,0\u0026quot; ## [44] \u0026quot;Mk32=Stimulus,S 6,47621,1,0\u0026quot; ## [45] \u0026quot;Mk33=Stimulus,S 5,49809,1,0 6\u0026quot; ## [46] \u0026quot;Mk34=Stimulus,S 50,50808,1,0\u0026quot; ## [47] \u0026quot;Mk35=Stimulus,S237,50813,1,0\u0026quot; ## [48] \u0026quot;Mk36=Stimulus,S 3,50818,1,0\u0026quot; ## [49] \u0026quot;Mk37=Stimulus,S101,50823,1,0\u0026quot; ## [50] \u0026quot;Mk38=Stimulus,S 6,53823,1,0\u0026quot; ## [51] \u0026quot;Mk39=Stimulus,S 5,56042,1,0 7\u0026quot; ## [52] \u0026quot;Mk40=Stimulus,S 40,57129,1,0\u0026quot; ## [53] \u0026quot;Mk41=Stimulus,S114,57134,1,0\u0026quot; ## [54] \u0026quot;Mk42=Stimulus,S 3,57140,1,0\u0026quot; ## [55] \u0026quot;Mk43=Stimulus,S103,57145,1,0\u0026quot; ## [56] \u0026quot;Mk44=Stimulus,S 6,59661,1,0\u0026quot;\r\rRemoving trial numbers\r\rNow, we will unnumber the trials. This can be especially useful after fixing any errors in the markers. For this demo, we’ll use an example file with numbered trials that looks just like the output from number_trials() shown above.\n# Remove trial numbers from temporary vmrk file\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/remove_trial_numbers.R\u0026#39;)\rremove_trial_numbers(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example_numbered_trials.vmrk\u0026#39;)\r## [1] \u0026quot;Brain Vision Data Exchange Marker File, Version 1.0\u0026quot; ## [2] \u0026quot;\u0026quot; ## [3] \u0026quot;[Common Infos]\u0026quot; ## [4] \u0026quot;DataFile=3.eeg\u0026quot; ## [5] \u0026quot;Codepage=utf-8\u0026quot; ## [6] \u0026quot;\u0026quot; ## [7] \u0026quot;[Marker Infos]\u0026quot; ## [8] \u0026quot;; Each entry: Mk\u0026lt;Marker number\u0026gt;=\u0026lt;Type\u0026gt;,\u0026lt;Description\u0026gt;,\u0026lt;Position in data points\u0026gt;,\u0026quot; ## [9] \u0026quot;; \u0026lt;Size in data points\u0026gt;, \u0026lt;Channel number (0 = marker is related to all channels)\u0026gt;,\u0026quot;\r## [10] \u0026quot;; \u0026lt;Date (YYYYMMDDhhmmssuuuuuu)\u0026gt;\u0026quot; ## [11] \u0026quot;; Fields are delimited by commas, some fields might be omited (empty).\u0026quot; ## [12] \u0026quot;; Commas in type or description text are coded as \\\u0026quot;\\\\1\\\u0026quot;.\u0026quot; ## [13] \u0026quot;Mk1=New Segment,,1,1,0,20240318111955090000\u0026quot; ## [14] \u0026quot;Mk2=Stimulus,S254,20419,1,0\u0026quot; ## [15] \u0026quot;Mk3=Stimulus,S 5,22332,1,0\u0026quot; ## [16] \u0026quot;Mk4=Stimulus,S 42,23095,1,0\u0026quot; ## [17] \u0026quot;Mk5=Stimulus,S143,23100,1,0\u0026quot; ## [18] \u0026quot;Mk6=Stimulus,S 2,23106,1,0\u0026quot; ## [19] \u0026quot;Mk7=Stimulus,S102,23111,1,0\u0026quot; ## [20] \u0026quot;Mk8=Stimulus,S 6,25882,1,0\u0026quot; ## [21] \u0026quot;Mk9=Stimulus,S 5,28106,1,0\u0026quot; ## [22] \u0026quot;Mk10=Stimulus,S 50,29053,1,0\u0026quot; ## [23] \u0026quot;Mk11=Stimulus,S241,29058,1,0\u0026quot; ## [24] \u0026quot;Mk12=Stimulus,S 1,29063,1,0\u0026quot; ## [25] \u0026quot;Mk13=Stimulus,S101,29069,1,0\u0026quot; ## [26] \u0026quot;Mk14=Stimulus,S 6,31830,1,0\u0026quot; ## [27] \u0026quot;Mk15=Stimulus,S 5,34056,1,0\u0026quot; ## [28] \u0026quot;Mk16=Stimulus,S 49,35055,1,0\u0026quot; ## [29] \u0026quot;Mk17=Stimulus,S226,35060,1,0\u0026quot; ## [30] \u0026quot;Mk18=Stimulus,S 2,35066,1,0\u0026quot; ## [31] \u0026quot;Mk19=Stimulus,S103,35071,1,0\u0026quot; ## [32] \u0026quot;Mk20=Stimulus,S 6,37242,1,0\u0026quot; ## [33] \u0026quot;Mk21=Stimulus,S 5,39436,1,0\u0026quot; ## [34] \u0026quot;Mk22=Stimulus,S 43,40417,1,0\u0026quot; ## [35] \u0026quot;Mk23=Stimulus,S155,40423,1,0\u0026quot; ## [36] \u0026quot;Mk24=Stimulus,S 2,40429,1,0\u0026quot; ## [37] \u0026quot;Mk25=Stimulus,S103,40434,1,0\u0026quot; ## [38] \u0026quot;Mk26=Stimulus,S 6,42481,1,0\u0026quot; ## [39] \u0026quot;Mk27=Stimulus,S 5,44662,1,0\u0026quot; ## [40] \u0026quot;Mk28=Stimulus,S 40,45678,1,0\u0026quot; ## [41] \u0026quot;Mk29=Stimulus,S118,45683,1,0\u0026quot; ## [42] \u0026quot;Mk30=Stimulus,S 1,45688,1,0\u0026quot; ## [43] \u0026quot;Mk31=Stimulus,S103,45693,1,0\u0026quot; ## [44] \u0026quot;Mk32=Stimulus,S 6,47621,1,0\u0026quot; ## [45] \u0026quot;Mk33=Stimulus,S 5,49809,1,0\u0026quot; ## [46] \u0026quot;Mk34=Stimulus,S 50,50808,1,0\u0026quot; ## [47] \u0026quot;Mk35=Stimulus,S237,50813,1,0\u0026quot; ## [48] \u0026quot;Mk36=Stimulus,S 3,50818,1,0\u0026quot; ## [49] \u0026quot;Mk37=Stimulus,S101,50823,1,0\u0026quot; ## [50] \u0026quot;Mk38=Stimulus,S 6,53823,1,0\u0026quot; ## [51] \u0026quot;Mk39=Stimulus,S 5,56042,1,0\u0026quot; ## [52] \u0026quot;Mk40=Stimulus,S 40,57129,1,0\u0026quot; ## [53] \u0026quot;Mk41=Stimulus,S114,57134,1,0\u0026quot; ## [54] \u0026quot;Mk42=Stimulus,S 3,57140,1,0\u0026quot; ## [55] \u0026quot;Mk43=Stimulus,S103,57145,1,0\u0026quot; ## [56] \u0026quot;Mk44=Stimulus,S 6,59661,1,0\u0026quot;\r\rCounting markers\r\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/count_markers.R\u0026#39;)\rcount_markers(file = \u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example.vmrk\u0026#39;, marker = \u0026#39;S 2\u0026#39;)\r## Count of \u0026quot;S 2\u0026quot;: 3 instances\rcount_markers(file = \u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example.vmrk\u0026#39;, marker = \u0026#39;S 3\u0026#39;)\r## Count of \u0026quot;S 3\u0026quot;: 2 instances\r\r","date":1719705600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1719705600,"objectID":"3c62fd582c4a680062686386e31d1b38","permalink":"https://pablobernabeu.github.io/2024/r-functions-for-checking-and-fixing-vmrk-files-from-brainvision/","publishdate":"2024-06-30T00:00:00Z","relpermalink":"/2024/r-functions-for-checking-and-fixing-vmrk-files-from-brainvision/","section":"post","summary":"Electroencephalography (EEG) has become a cornerstone for understanding the intricate workings of the human brain in the field of neuroscience. However, EEG software and hardware come with their own set of constraints, particularly in the management of markers, also known as triggers. This article aims to shed light on these limitations and future prospects of marker management in EEG studies, while also introducing R functions that can help deal with vmrk files from BrainVision.","tags":["research methods","electroencephalography","EEG","BrainVision","event-related potentials","s"],"title":"R functions for checking and fixing vmrk files from BrainVision","type":"post"},{"authors":[],"categories":["research methods","electroencephalography"],"content":"\rElectroencephalographic (EEG) signals are often contaminated by muscle artifacts such as blinks, jaw clenching and (of course) yawns, which generate electrical activity that can obscure the brain signals of interest. These artifacts typically manifest as large, abrupt changes in the EEG signal, complicating data interpretation and analysis. To reduce the likelihood of muscle artifacts, participants can be instructed during the preparatory phase of the session to minimize blinking and to keep their facial muscles relaxed. Furthermore, the design of the session can include verification stages that allow experimenters to verify the quality of the live EEG signal before letting the session continue.\nParticipant briefing\r\r\r\rVerification stages\rVerification stages allow the experimenters to verify the quality of the live EEG signal before letting the session continue. The following example includes an abbreviated reminder, i.s.r , prompting the experimenter to verify the impedance and the signal before starting to record the signal. The orange stripes flag up the need for the experimenter to intervene.\n\nThe impedance check is performed by verifying the impedance on each electrode, which has a dedicated function in most EEG software. Sometimes, especially if some time has elapsed since the initial impedance work, one or two electrodes have to be revised, which can be done quickly.\nThe signal check complements the previous check. Once all electrodes present a low-enough impedance and a calm-enough signal—usually taking a couple of minutes—, the experimenter begins recording the signal.\nNext, the experimenter presses the keys that are—unbeknownst to participants—needed to proceed with the session. The screenshot below shows an example setup in OpenSesame, whereby the letter C must be pressed twice to advance.\n\nThe advice is reinforced before returning the control of the screen to the participant (i.e., this screen is the last one that requires the experimenter’s intervention).\n\nLater, during the breaks, the advice is reiterated, and a buffer period is introduced to best preserve the trials immediately following the breaks.\n\n\rOutcome\rThe combination of verbal and written instructions, along with verification stages, can greatly contribute to the quality of raw EEG data, which in turn helps preserve more data in the preprocessing.\n\r","date":1717200000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1717200000,"objectID":"fc56d85f264d0e0293620070e9a466dd","permalink":"https://pablobernabeu.github.io/2024/preventing-muscle-artifacts-in-electroencephalography-sessions/","publishdate":"2024-06-01T00:00:00Z","relpermalink":"/2024/preventing-muscle-artifacts-in-electroencephalography-sessions/","section":"post","summary":"Electroencephalographic (EEG) signals are often contaminated by muscle artifacts such as blinks, jaw clenching and (of course) yawns, which generate electrical activity that can obscure the brain signals of interest. These artifacts typically manifest as large, abrupt changes in the EEG signal, complicating data interpretation and analysis. To mitigate these issues, participants can be instructed during the preparatory phase of the session to minimize blinking and to keep their facial muscles relaxed. Additionally, researchers can emphasize the importance of staying still and provide practice sessions to help participants become aware of their movements, thereby reducing the likelihood of muscle artifacts affecting the EEG recordings.","tags":["electroencephalography","BrainVision","muscle artifacts","event-related potentials","ERPs","s"],"title":"Preventing muscle artifacts in electroencephalography sessions","type":"post"},{"authors":[],"categories":["job"],"content":"\rWe are seeking to appoint a part-time research assistant to help us recruit participants and conduct an experiment. In the current project, led by Jorge González Alonso and funded by the Research Council of Norway, we investigate language learning and the neurophysiological basis of multilingualism. To this end, we are conducting an electroencephalography (EEG) experiment.\nYour work as a research assistant will be mentored and supervised primarily by Pablo Bernabeu, and secondarily by the head of our project and the directors of our lab. The role involves 20 hours a week of on-site work in the Department of Language and Culture at UiT The Arctic University of Norway. The appointment should begin in early April 2024, or soon thereafter, and will span until mid-August (an extension thereafter might be possible).\nBy the end of your appointment, you will be able to conduct EEG sessions on your own, and will have a better understanding of EEG, experimental research and the psychology of language. This experience will be most useful for subsequent work in academic research; for instance, in a PhD. Yet, the post also involves more general skills, such as planning, documentation and data management.\nPerson specification\rPlease consider the essential (required) criteria and the desirable criteria listed below.\nEssential criteria\r\rnot being currently enrolled in an on-site degree programme at UiT or any other university;\n\ravailability for the on-site work at UiT throughout the appointment;\n\rattention to detail;\n\rcomputer literacy;\n\rwritten and spoken fluency in English\n\r\r\rDesirable criteria\r\rprevious experience in running EEG sessions, or related qualifications;\n\rprevious experience in any experimental research, or related qualifications;\n\rschedule flexibility to accommodate the lab sessions;\n\rinterest in experimental linguistics, psychology or neuroscience\n\r\r\r\rHow to apply\rPlease submit your CV and a personal statement of up to 400 words to Pablo Bernabeu (p.bernabeu@uit.no) and Jorge González Alonso (jorge.gonzalez.alonso@uit.no), with the subject ‘RA post’. Any questions are also welcome. In the personal statement, please describe how your background fits with the above criteria. We will review applications on a rolling basis.\n\r","date":1711497600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1711497600,"objectID":"97cb2083ecc83c0e99e66d175daded1e","permalink":"https://pablobernabeu.github.io/2024/job-part-time-research-assistant-in-experimental-research/","publishdate":"2024-03-27T00:00:00Z","relpermalink":"/2024/job-part-time-research-assistant-in-experimental-research/","section":"post","summary":"We are seeking to appoint a part-time research assistant to help us recruit participants and conduct an experiment. In the current project, led by Jorge González Alonso and funded by the Research Council of Norway, we investigate language learning and the neurophysiological basis of multilingualism. To this end, we are conducting an electroencephalography (EEG) experiment.\nYour work as a research assistant will be mentored and supervised primarily by Pablo Bernabeu, and secondarily by the head of our project and the directors of our lab.","tags":["job","research assistant","UIT The Arctic University of Norway","Tromsø","electroencephalography","s"],"title":"Job: Part-time research assistant in experimental research","type":"post"},{"authors":[],"categories":["R","bibliometrics"],"content":"\rSometimes it’s useful to do a bibliometric analysis. To this end, the rscopus_plus functions (Bernabeu, 2024) extend the R package rscopus (Muschelli, 2022) to administer the search quota and to enable specific searches and comparisons.\n\rscopus_search_plus runs rscopus::scopus_search as many times as necessary based on the number of results and the search quota.\n\rscopus_search_DOIs gets DOIs from scopus_search_plus, which can then be imported into a reference manager, such as Zotero, to create a list of references.\n\rscopus_search_additional_DOIs searches for additional DOIs.\n\rscopus_comparison compares counts of publications on various topics throughout a certain period. The comparison terms are shown in the legend and in the lines, and they all include the reference query.\n\rplot_scopus_comparison draws a line plot with the output from scopus_comparison.\n\r\rNote. Before using any of the first four functions, the user must set their Scopus API key confidentially (see rscopus guidelines).\n\rExample of use\rAs an example (also available on GitHub), we’ll visualise the prevalence of three executive functions in the literatures on second and third language throughout the past two decades.\nFirst, we’ll use scopus_comparison() (fragment shown below).\n\rNext, we’ll use plot_scopus_comparison() (fragment shown below).\n\rlibrary(rscopus)\r# set_api_key(\u0026#39;your_key_here\u0026#39;) # (see https://cran.r-project.org/web/packages/rscopus/vignettes/api_key.html)\r# I\u0026#39;ll read in mine from a file. If you do this, make sure not to share your file.\rapi_key = readLines(\u0026#39;scopus_key.txt\u0026#39;)\rset_api_key(api_key)\rlibrary(dplyr)\rlibrary(patchwork)\r# Load in Scopus search functions from https://github.com/pablobernabeu/rscopus_plus\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/rscopus_plus/main/scopus_comparison.R\u0026#39;)\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/rscopus_plus/main/plot_scopus_comparison.R\u0026#39;)\r# General parameters\rsearch_period = 1990:2023\rquota = 20\r# Prevalence of three executive functions in second language studies from 2000 to 2023. # In addition to \u0026quot;second language\u0026quot;, the reference query includes the terms # \u0026quot;learning\u0026quot; and \u0026quot;cognition\u0026quot; to make the scope of the search more relevant to # the topic of interest. reference_query = \u0026#39;\u0026quot;second language\u0026quot;\u0026#39;\rcomparison_terms = c( \u0026#39;\u0026quot;working memory\u0026quot;\u0026#39;, \u0026#39;inhibit*\u0026#39;, \u0026#39;\u0026quot;implicit learning\u0026quot;\u0026#39; )\rN_comparison_terms = length(comparison_terms)\rL2_EF = scopus_comparison(reference_query, comparison_terms, search_period, quota, verbose = FALSE, reference_query_field_tag = \u0026#39;TITLE-ABS-KEY\u0026#39;)\rsaveRDS(L2_EF, \u0026#39;L2_EF.rds\u0026#39;)\rL2_EF = readRDS(\u0026#39;L2_EF.rds\u0026#39;) # it\u0026#39;s possible to load results directly\rplot_L2_EF = plot_scopus_comparison(L2_EF, pub_count_in_legend = FALSE, pub_count_in_lines = TRUE) +\rscale_color_manual(\rvalues = c( \u0026quot;[ref.] + \u0026#39;\\\u0026quot;working memory\\\u0026quot;\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[1],\r\u0026quot;[ref.] + \u0026#39;inhibit*\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[2], \u0026quot;[ref.] + \u0026#39;\\\u0026quot;implicit learning\\\u0026quot;\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[3] )\r) + guides(colour = guide_legend(override.aes = list(alpha = 1))) +\r# Prepare layout for the multi-plot combination\rtheme(axis.text.x = element_blank(), axis.title.x = element_blank(), legend.position = \u0026#39;none\u0026#39;, plot.margin = margin(0, 0, 15, 0))\r# Prevalence of three executive functions in third language studies from 2000 to 2023. # In addition to \u0026quot;third language\u0026quot;, the reference query includes the terms \u0026quot;learning\u0026quot; # and \u0026quot;cognition\u0026quot; to make the scope of the search more relevant to the topic of # interest. reference_query = \u0026#39;\u0026quot;third language\u0026quot;\u0026#39;\r# Other parameters identical to those used in the query above.\rL3_EF = scopus_comparison(reference_query, comparison_terms, search_period, quota, verbose = FALSE, reference_query_field_tag = \u0026#39;TITLE-ABS-KEY\u0026#39;)\rsaveRDS(L3_EF, \u0026#39;L3_EF.rds\u0026#39;)\rL3_EF = readRDS(\u0026#39;L3_EF.rds\u0026#39;) # it\u0026#39;s possible to load results directly\rplot_L3_EF = plot_scopus_comparison(L3_EF, pub_count_in_legend = FALSE, pub_count_in_lines = TRUE) +\rscale_color_manual(\rvalues = c( \u0026quot;[ref.] + \u0026#39;\\\u0026quot;working memory\\\u0026quot;\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[1],\r\u0026quot;[ref.] + \u0026#39;inhibit*\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[2], \u0026quot;[ref.] + \u0026#39;\\\u0026quot;implicit learning\\\u0026quot;\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[3] )\r) + guides(colour = guide_legend(override.aes = list(alpha = 1))) +\r# Prepare layout for the multi-plot combination\rtheme(axis.text.x = element_text(margin = margin(7, 0, 0, 0, \u0026#39;pt\u0026#39;)),\raxis.title.x = element_text(margin = margin(8, 0, 0, 0, \u0026#39;pt\u0026#39;)),\rlegend.position = \u0026#39;inside\u0026#39;, legend.position.inside = c(.82, .8))\r# Combine plots\rplot_L2_EF + plot_L3_EF + plot_layout(ncol = 1, axes = \u0026#39;collect\u0026#39;) \u0026amp;\rtheme(axis.text = element_text(size = 10),\raxis.title = element_text(vjust = 0.5, size = 13), plot.title = element_markdown(hjust = 0.5, size = 12),\rlegend.text = element_text(size = 11,),\rlegend.background = element_rect(color = \u0026#39;grey80\u0026#39;, fill = \u0026#39;grey99\u0026#39;), legend.margin = margin(0, 5, 2, 0)) \rThe total number of publications over the current period is shown between brackets after each query.\n\rReferences\rBernabeu, P. (2024). rscopus_plus. OSF. https://doi.org/10.17605/OSF.IO/BUZQ6\nMuschelli, J. (2022). Package ’rscopus’. CRAN. https://cran.r-project.org/web/packages/rscopus/rscopus.pdf\n\r","date":1708473600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1708473600,"objectID":"eba99634f37d6cae8955f23d377823a2","permalink":"https://pablobernabeu.github.io/2024/rscopus-plus-an-extension-of-the-rscopus-package/","publishdate":"2024-02-21T00:00:00Z","relpermalink":"/2024/rscopus-plus-an-extension-of-the-rscopus-package/","section":"post","summary":"Sometimes it’s useful to do a bibliometric analysis. To this end, the rscopus_plus functions (Bernabeu, 2024) extend the R package rscopus (Muschelli, 2022) to administer the search quota and to enable specific searches and comparisons.\n\rscopus_search_plus runs rscopus::scopus_search as many times as necessary based on the number of results and the search quota.\n\rscopus_search_DOIs gets DOIs from scopus_search_plus, which can then be imported into a reference manager, such as Zotero, to create a list of references.","tags":["bibliometrics","R","research methods","research software","second language","third language","executive functions","working memory","inhibition","implicit learning","s"],"title":"rscopus_plus: An extension of the rscopus package","type":"post"},{"authors":null,"categories":["research methods"],"content":"\r\n\r\n\r\n","date":1706486400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1706486400,"objectID":"6aac03374ffe7acabb17244f28f0d2ce","permalink":"https://pablobernabeu.github.io/2024/how-to-end-trial-after-timeout-in-jspsych/","publishdate":"2024-01-29T00:00:00Z","relpermalink":"/2024/how-to-end-trial-after-timeout-in-jspsych/","section":"post","summary":"I would like to ask for advice regarding a custom plugin for a serial reaction time task, that was created by @vekteo, and is available in Gorilla, where the code can be edited and tested. By default, trials are self-paced, but I would need them to time out after 2,000 ms. I am struggling to achieve this, and would be very grateful if someone could please advise me a bit.","tags":["javascript","jsPsych","s"],"title":"How to end trial after timeout in jsPsych","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rLongitudinal studies consist of several sessions, and often involve session session conductors. To facilitate the planning, registration and tracking of sessions, a session logbook becomes even more necessary than usual. To this end, an Excel workbook with conditional formatting can help automatise some formats and visualise the progress.\nBelow is an example that is available on OneDrive. To fully access this workbook, it may be downloaded via File \u0026gt; Save as \u0026gt; Download a copy. Alternatively, the workbook can be exported to one’s own account on OneDrive.\nThe conditional formats include:\n\rfill in blanks in columns A, C or D to remove the background\n\rfill in blanks in F and G, or I and J, or L and M, etc, to highlight the entire session in green\n\rfill in any notes columns to highlight them in red\n\r\r\rThese conditional formats can be consulted (and edited) from the Home tab by opening Conditional Formatting \u0026gt; Manage Rules. At the top, the option This Worksheet should be selected to view all formulas.\n","date":1701475200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1701475200,"objectID":"8dca6620f93de52426718f340e0a7901","permalink":"https://pablobernabeu.github.io/2023/a-session-logbook-for-a-longitudinal-study-using-conditional-formatting-in-excel/","publishdate":"2023-12-02T00:00:00Z","relpermalink":"/2023/a-session-logbook-for-a-longitudinal-study-using-conditional-formatting-in-excel/","section":"post","summary":"Longitudinal studies consist of several sessions, and often involve session session conductors. To facilitate the planning, registration and tracking of sessions, a session logbook becomes even more necessary than usual. To this end, an Excel workbook with conditional formatting can help automatise some formats and visualise the progress.\nBelow is an example that is available on OneDrive. To fully access this workbook, it may be downloaded via File \u0026gt; Save as \u0026gt; Download a copy.","tags":["research methods","session logbook","longitudinal study","Excel formulas","conditional formatting","s"],"title":"A session logbook for a longitudinal study using conditional formatting in Excel","type":"post"},{"authors":[],"categories":["research-methods"],"content":"\rThe disorder\rStudies in the cognitive sciences often feature multiple experimental conditions and other independent variables. Once the study progresses, the analytical liberties associated with all the conditions and variables are compounded by the myriad possible steps in data processing and analysis. All these combinations lead to a garden of forking paths, and the researcher degrees of freedom soar to unexpected highs.\nThe system of professional incentives in academia largely ignores the issue of researcher degrees of freedom. When CVs are assessed, quantity weighs more than quality of research. When studies are assessed, statistical significance weighs more than methodological rigour. Thus, the low replication rates in various fields, including linguistics (Kobrock \u0026amp; Roettger, 2023), are hardly surprising (cf. Barsalou, 2019).\n\rThe treatment\rThe number of researcher degrees of freedom, and their unforeseen influence, can be reduced a priori by publishing a preregistration before data collection has begun (or before the analysis in the case of meta-analyses and secondary-data analyes). The preregistration takes a bit of time, which poses a challenge because funding systems often require doing things as soon and as fast as possible, driven by a questionable notion of scientific productivity.\nHow to gather the strength\rThe best argument to motivate a preregistration may be that does not incur any extra time. It only requires frontloading an important portion of the work. This effort will be rewarded when the study is published, as preregistered analyses are received with greater trust by peer-reviewers and other readers.\nIf any contributors of a project can gather just enough time and interest to initiate a preregistration in time, the researchers can attempt to pocket this important asset for their study. They will reap the reward in time, and so will their field of research at large.\n\rWhat to do\rInitially, rather than detailed analytical steps, it is the broader theoretical aspects that should be laid out. An abstract and an introduction should be written, describing why the study has been designed in such a way, what analyses will be performed, and what hypotheses are afforded by the literature. Next, some methodological details regarding the materials and the analyses should be added.\nThe degree of detail in the preregistration can be determined by the researchers alone. Yet, ceteris paribus, the greater the detail in a preregistration, the greater the trustworthiness of the analyses and the results. Multiple preregistration guidelines exist by now, including some field-specific ones.\n\rSolace\rPreregistration is not perfect, but is a lesser evil that reduces the misuse of statistical analysis in science (Mertzen et al., 2021; Roettger, 2023).\n\rEven the strongest blizzards start with a single snowflake. (Sara Raasch)\n\rRules are made to be broken—at least as and when necessary. That is, deviations from the preregistration are possible, and indeed very frequent (Bakker et al., 2020; van den Akker et al., 2023).\n\r\rReferences\rBakker, M., Veldkamp, C. L. S., Assen, M. A. L. M. van, Crompvoets, E. A. V., Ong, H. H., Nosek, B. A., Soderberg, C. K., Mellor, D., \u0026amp; Wicherts, J. M. (2020). Ensuring the quality and specificity of preregistrations. PLOS Biology, 18(12), e3000937. https://doi.org/10.1371/journal.pbio.3000937\nBarsalou, L. W. (2019). Establishing generalizable mechanisms. Psychological Inquiry, 30(4), 220–230. https://doi.org/10.1080/1047840X.2019.1693857\nKobrock, K., \u0026amp; Roettger, T. B. (2023). Assessing the replication landscape in experimental linguistics. Glossa Psycholinguistics, 2(1). https://doi.org/10.5070/G6011135\nMertzen, D., Lago, S., \u0026amp; Vasishth, S. (2021). The benefits of preregistration for hypothesis-driven bilingualism research. Bilingualism: Language and Cognition, 24(5), 807–812. https://doi.org/10.1017/S1366728921000031\nRoettger, T. B. (2021). Preregistration in experimental linguistics: Applications, challenges, and limitations. Linguistics, 59(5), 1227–1249. https://doi.org/10.1515/ling-2019-0048\nvan den Akker, O. R., van Assen, M. A. L. M., Enting, M., de Jonge, M., Ong, H. H., Rüffer, F., Schoenmakers, M., Stoevenbelt, A. H., Wicherts, J. M., \u0026amp; Bakker, M. (2023). Selective hypothesis reporting in psychology: Comparing preregistrations and corresponding publications. Advances in Methods and Practices in Psychological Science, 6(3), 25152459231187988. https://doi.org/10.1177/25152459231187988\n\r","date":1700784000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1700784000,"objectID":"cfbdd0889c2bc7d177fd4ef7c36c6d83","permalink":"https://pablobernabeu.github.io/2023/motivating-a-preregistration-especially-in-experimental-linguistics/","publishdate":"2023-11-24T00:00:00Z","relpermalink":"/2023/motivating-a-preregistration-especially-in-experimental-linguistics/","section":"post","summary":"The best argument to motivate a preregistration may be that it doesn’t take any extra time. It just requires frontloading an important portion of the work. As a reward, the paper will receive greater trust from the reviewers and the readers at large. Preregistration is not perfect, but is a lesser evil that reduces the misuse of statistical analysis in science.","tags":["prereg","preregistration","research methods","s"],"title":"Motivating a preregistration (especially in experimental linguistics)","type":"post"},{"authors":[],"categories":["science"],"content":"\rVed å delta i vårt eksperiment og gjøre noen enkle oppgaver på en datamaskin, kan du bidra til forskning og tjene 250 kr i timen (gavekort). EEG er helt smertefritt.\rEksperimentet foregår i Tromsø, ved UiT Norges Arktiske Universitet.\rVi ser etter deltakere med følgende egenskaper:\n☑ Alder 18–45 år;\n☑ Snakker norsk som førstespråk og engelsk flytende. Utenom disse språkene, kan deltakerne også snakke svensk og dansk, men ikke andre språk (utover noen få ord);\n☑ Ingen språkrelaterte lidelser eller vansker, som f.eks. dysleksi;\n☑ Ingen oppmerksomhetssvikt\n\rI de fleste tilfeller vil deltakelse innebære å gjennomføre fem økter over en måned, med bonusutbetaling på slutten.\nDersom du oppfyller disse kriteriene og ønsker å delta, vennligst registrer deg nedenfor for å motta mer informasjon, eller kontakt Pablo på epost-adressen p.bernabeu@uit.no.\n\rMeld deg på\r\r\r\nTusen takk for din interesse i denne studien.\n\n\rTakk til Mona Kirknes Fossum og Marit Westergaard for hjelpen med oversettelsen av denne annonsen.\n\r","date":1699920000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1699920000,"objectID":"c8e6159c17153fddc97f7595f92fb6e6","permalink":"https://pablobernabeu.github.io/2023/do-you-speak-a-scandinavian-language-s-and-english-but-no-other-languages-delta-i-et-eeg-eksperiment/","publishdate":"2023-11-14T00:00:00Z","relpermalink":"/2023/do-you-speak-a-scandinavian-language-s-and-english-but-no-other-languages-delta-i-et-eeg-eksperiment/","section":"post","summary":"Ved å delta i vårt eksperiment og gjøre noen enkle oppgaver på en datamaskin, kan du bidra til forskning og tjene 250 kr i timen (gavekort). EEG er helt smertefritt.\rEksperimentet foregår i Tromsø, ved UiT Norges Arktiske Universitet.\rVi ser etter deltakere med følgende egenskaper:\n☑ Alder 18–45 år;\n☑ Snakker norsk som førstespråk og engelsk flytende. Utenom disse språkene, kan deltakerne også snakke svensk og dansk, men ikke andre språk (utover noen få ord);","tags":["vitenskap","electroencephalography","eksperiment","tromsø","tromso","uit","norges arktiske universitet","arctic university of norway","universitetet i tromsø","s"],"title":"Do you speak a Scandinavian language(s) and English, but no other languages? Delta i et EEG-eksperiment","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rIs it worth learning how to use a reference management system such as Zotero? Maybe.\nThe hours you invest in learning how to use Zotero (approx. 10 hours) are likely to pay off, as they will save you a lot of time that you would otherwise spend formatting, revising and correcting references. In addition, this skill would become part of your skill set.\n\rA great guide\n\rFree, online webinars in which you could participate and ask questions\n\rZotero and Word\n\rZotero extension for the Chrome browser, to quickly add papers to your libraries\n\r\r","date":1699574400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1699574400,"objectID":"ba8c91c9eedf1d550f9eba0f6c942d96","permalink":"https://pablobernabeu.github.io/2023/learning-how-to-use-zotero/","publishdate":"2023-11-10T00:00:00Z","relpermalink":"/2023/learning-how-to-use-zotero/","section":"post","summary":"Is it worth learning how to use a reference management system such as Zotero? Maybe.\nThe hours you invest in learning how to use Zotero (approx. 10 hours) are likely to pay off, as they will save you a lot of time that you would otherwise spend formatting, revising and correcting references. In addition, this skill would become part of your skill set.\n\rA great guide\n\rFree, online webinars in which you could participate and ask questions","tags":["research methods","science","writing","academic writing","phdchat","s"],"title":"Learning how to use Zotero","type":"post"},{"authors":[],"categories":["linear mixed-effects models","R"],"content":"\rI am dealing with nested data, and I remember from an article by Clark (1973) that nested should be analysed using special models. I’ve looked into mixed-effects models, and I’ve reached a structure with random intercepts by subjects and by items. Is this fine?\n\rIn early days, researchers would aggregate the data across these repeated measures to prevent the violation of the assumption of independence of observations, which is one of the most important assumptions in statistics. With the advent of mixed-effects models, researchers began accounting for these repeated measures using random intercepts and slopes. However, problems of convergence led many researchers to remove random slopes. This became widespread until, over the past few years, we have realised that random slopes are necessary to prevent an inflation of the Type I error due to the violation of the assumption of independence (Brauer \u0026amp; Curtin, 2018; Singmann \u0026amp; Kellen, 2019). Please see Table 17 in Brauer and Curtin (2018). Due to the present reasons, the models in the current article are anti-conservative. To redress this problem, please consider the inclusion of random slopes by participant for all between-items variables [e.g., (stimulus_condition | participant)], and random slopes by item for all between-participants variables [e.g., (extraversion | item)]. Interaction terms should also have the corresponding slopes, except when the variables in the interaction vary within different units, that is, one between participants and one between items (Brauer \u0026amp; Curtin, 2018). Each of the random intercepts and random slopes included in the model should be noted in the main text, for instance using footnotes in the results table (see example).\n\r\rI calculated the p values by comparing minimally-different models using the anova function. Is this fine?\n\rLuke (2017) warns that the p values calculated by model comparison—which are based on likelihood ratio tests—can be anti-conservative. Therefore, the Kenward-Roger and the Satterthwaite methods are recommended instead (both available in other packages, such as lmerTest and afex).\n\r\rThe lme4 package only runs on one thread (CPU) but the computer has 8. Do you have any advice on making the model run using more of the threads? It’s taking a very long time. I’ve seen these two possible solutions online from 2018 (here and here) but would like some advice if they have any or have attempted either of these solutions.\n\rFrom the information I have seen in the past as well as right now, parallelising (g)lmer intentionally would be very involved. There is certainly interest in it, as your resources show (also see here). However, the current information suggests to me that it is not possible.\nInterestingly, some isolated cases of unintentional parallelisation have been documented, and the developers of the lme4 package were surprised about them because they have not created this feature (see here and here).\nI think the best approach may be running your model(s) in a high-performance computing (HPC) cluster. Although this would not reduce the amount of time required for each model, it would have two advantages. First, your own computers wouldn’t be busy for days, and second, you could even run several models at the same time without exhausting your own computers. I still have access to the HPC at my previous university, and it would be fine for me to send your model(s) there if that would help you. Feel free to let me know. Otherwise I can see that your university has this facility too.\n\r\rWe took your advice and ran the model on a supercomputer - it took roughly 2.5 days, which is what it took for the model to run on my iMac and a gaming laptop Vivienne has.\nThe model, however, didn’t converge. We have read that you can use allFit() to try the fit with all available optimizers. Do you have any experience using this? If you did, I wondered where this would sit in the code for the model? How and where do I add this in to check all available optimizers, please?\nI have attached my code in a txt file and the data in excel for you to see, in case it is of any use.\n\rThe multi-optimizer check is indeed a way (albeit tentative) to probe into the convergence. Convergence has long been a fuzzy subject, as there are different standpoints depending on the degree of conservativeness that is sought after by the analysts.\nOn Page 124 in my thesis (https://osf.io/97u5c), you can find this multi-optimizer check (also see this blog post). All the code is available on OSF. More generally, I discuss the issue of convergence throughout the thesis.\n\r\rI have run the model with optimizer=\"nloptwrap\" and algorithm=\"NLOPT_LN_BOBYQA\" and received the following warning message (once the model ran) -\nIn optwrap(optimizer, devfun, start, rho$lower, control = control, :\rconvergence code 5 from nloptwrap: NLOPT_MAXEVAL_REACHED: optimization stopped becasue maxeval (above) was reached.\rDoes this mean that the model didn’t converge? I’m only asking because I wasn’t given a statement saying it didn’t converge, as it did with Nelder_Mead. It was stated (at the end of summary table)\nOptimizer (Nelder_Mead) convergence code: 4 (failure to converge in 10000 evaluations)\rfailure to converge in 10000 evaluations\r\rPlease try increasing the max number of iterations.\n\r\rWe increased the max number of iterations to 1e6 and then 1e7, and the model didn’t converge. But it has converged with maxeval=1e8.\nI wanted to ask please, do you know of any issues with the max iterations being this high and effecting the interpretability of the model? Or is it completely fine?\n\rThere are no side-effects to increasing the number of iterations (see Remedy 6 in Brauer \u0026amp; Curtin, 2018).\n\r\r","date":1699056000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1699056000,"objectID":"d3816a9374eb22857ab5f62f872e0896","permalink":"https://pablobernabeu.github.io/2023/faqs-on-mixed-effects-models/","publishdate":"2023-11-04T00:00:00Z","relpermalink":"/2023/faqs-on-mixed-effects-models/","section":"post","summary":"I am dealing with nested data, and I remember from an article by Clark (1973) that nested should be analysed using special models. I’ve looked into mixed-effects models, and I’ve reached a structure with random intercepts by subjects and by items. Is this fine?\n\rIn early days, researchers would aggregate the data across these repeated measures to prevent the violation of the assumption of independence of observations, which is one of the most important assumptions in statistics.","tags":["linear-mixed effects models","R","research methods","s"],"title":"FAQs on mixed-effects models","type":"post"},{"authors":[],"categories":["research methods","R"],"content":"\rIn the fast-paced world of scientific research, establishing minimum standards for the creation of research materials is essential. Whether it’s stimuli, custom software for data collection, or scripts for statistical analysis, the quality and transparency of these materials significantly impact the reproducibility and credibility of research. This blog post explores the importance of adhering to FAIR (Findable, Accessible, Interoperable, Reusable) principles, and offers practical examples for researchers, with a focus on the cognitive sciences.\n\rNotwithstanding the need for speed in most scientific projects, what should be the minimum acceptable standards in the creation of research materials such as stimuli, custom software for data collection (e.g., experiment in jsPsych, OpenSesame or psychoPy), or scripts for statistical analysis?\nThe answer to this question is contingent upon the field of research, the purpose and the duration of the project, and many other contextual factors. So, to narrow down the scope and come at a general answer, let’s suppose we asked a researcher in the cognitive sciences (e.g., a linguist, a psychologist or a neuroscientist) who values open science. Perhaps, such a researchers would be satisfied with a method for the creation of materials that allows the creators of the materials, as well as their collaborators and any other stakeholders (e.g., any fellow scientists working in the same field), to explore, understand, reproduce, modify, and reuse the materials following their completion and thereafter. Let’s review some of the implements that can help fulfil these standards.\nFAIRness\rThe FAIR Guiding Principles for scientific data management and stewardship exhaustively describe a protocol for making materials Findable, Accessible, Interoperable and Reusable. These terms cover the five allowances listed above, along with other important aspects.\nLet’s look at some instantiations of the FAIR principles.\nSharing the materials\rA condition sine qua non is to share the materials publicly online, as far as possible. Repositories on servers such as OSF or GitHub are often sufficient to this end. Unfortunately, most studies in the cognitive sciences still do not share the complete materials.\nOne of the reasons why sharing is so important is to prevent wrong assumptions by the audience that will consider the research. That is, when the materials of a study are not publicly shared online, the readers of the papers are left with two options: to assume that there were no errors or to assume that were some errors of an uncertain degree. The method followed in the creation of the materials should free the readers of this tribulation, by allowing them to consult the materials and their preparation in full, or as completely as possible.\n\rReproducibility\rIt is convenient to allow others, and our future selves, to reproduce the materials throughout their preparation and at any time thereafter. For this purpose, R can be used to register in scripts as many as possible of the steps followed throughout the preparation of the materials. Far from being only a software for data analysis, R allows the preparation of texts, images, audios, etc. Humans err, by definition. That can be counted on. Conveniently, registering the steps followed during weeks or months of preparation allows us to offload part of the documentation efforts. It’s a way of video-recording, as it were, all the additions, subtractions, replacements, transformations and calculations performed with the raw materials, for the creation of the final materials.\n\rGenerous documentation\rUnder the curse of knowledge, the creators of research materials may believe that their materials are self-explanatory. Often they are more obscure than they think. To allow any other stakeholders, including their future selves, to exercise the five allowances listed above—i.e., explore, understand, reproduce, modify, and reuse the materials—, the preparation process and the end materials should be documented with enough detail. This can be done using README.txt files throughout the project. Using the .txt format/extension is recommended because other formats, such as Microsoft Word, may not be (fully) available in some computers. To exemplify the format and the content of readme files, below is an excerpt from a longitudinal study on which I’ve been working.\n-- Post-training test --\rIn Sessions 2, 3, 4 and 6, if the test is failed in the first attempt, the training and the test are repeated (following González Alonso et al., 2020). In such cases, the result is shown at the end of the second attempt. The session advances if the accuracy achieved in the second attempt exceeds 80%, whereas the session stops if the accuracy is lower. In the latter situation, an 'End of session' message is presented, flanked by two orange circles, and followed by an acknowledgement for the participant. Once the participant has read this screen, the experimenter quits the session by pressing 'ESC' and then 'Q'.\r== Stimuli ==\rThe stimulus lists are described in the R functions that were used to create the stimuli, as well as\rin the 'list' column in the stimulus files.\r== Participant-specific parameters for lab-based sessions ==\rEach participant was assigned certain parameters in advance, including the mini-language, the order of the resting-state parts, and the stimulus lists. The code that was used to create this assignment is available in the 'stimulus_preparation' folder. Due to the pre-assignment of the parameters, there is a fixed set of participant IDs that can be used in OpenSesame. These identification numbers range between 1 and 144. If an ID outside of this range is used, the OpenSesame session does not run.\r== General procedure for lab-based sessions ==\rAt the beginning of lab-based Sessions 2, 3, 4 and 6, the experimenter will first signal the lab is busy using a light or a sign. Next, they will ascertain what participant and what session applies. This is done using the session logbook that is shared among all session conductors. This session logbook is instantly updated online using a cloud service, such as OneDrive. Next, the experimenter starts OpenSesame by opening the program directly (not by opening the session-specific file), and then opens the appropriate session within OpenSesame. This procedure helps prevent the opening of a standalone Python window, the closing of which would result in the closing of OpenSesame. Next, the experimenter opens BrainVision Recorder.\rWhen the participant arrives in the lab, they are informed that they can use the toilet outside. The participant is also offered some water. Next, the size of their head is measured, and an appropriate cap is tried on the participant’s head. Next, the cap is placed on a dummy head, and the electrodes are attached to the cap. At that point, to prevent signal interference, the participant is kindly asked to either put their mobile devices (phone, tablet, smartwatch) in flight mode, or to leave them outside of the booth. Next, to protect the participant's clothes from any drops of gel, a towel is placed on their upper back, covering shoulders and upper torso. Both ends of the towel are clipped together at the front using two or three clothes pegs. Next, the cap is fitted on the participant's head. To prevent the cap from being pulled back during the session, the splitter box is attached to the towel on the participant's back, right below their head. Next, measures are taken to adjust the position of the cap evenly, first from the nasion to the inion, and then from the tip of an ear to the other ear. Next, the experimenter returns to OpenSesame and runs the session in full screen by clicking on the full green triangle at the top left. Then, a file explorer window opens, in which the experimenter must assign a subject number consistent with the session logbook, and must select the destination folder for the logfile. The destination folder is called 'logfiles'. Any prompts to overwrite a logfile must normally be refused, or considered carefully, due to the risk of losing data from previous sessions.\rIn the first screen, the experimenter can disable some of the tasks. This option can be used if a session has ended abruptly, in which case the session can be resumed from a near checkpoint. In such a case, the experimenter must first note this incident in their logbook, and rename the log file that was produced on the first run, by appending '_first_run' to the name. This prevents overwriting the file on the second run. Next, they must open a new session, enter the same participant ID, and select the appropriate part from which to begin. This part must be the part immediately following the last part that was completed in full. For instance, if a session ended\rabruptly during the experiment, the beginning selected on the second run would be the experiment. Once the session has finished completely, the first log file and the second log file must be safely merged into a single file, keeping only the fully completed tasks.\rIn the first instructional screen, participants are asked to refrain from asking any questions unless it is necessary, so that all participants can receive the same instructions.\rAt the beginning of the resting-state part in Session 2, and at the beginning of the Experiment part, instructions are presented on the screen that ask participants to stay as still as possible during the following task. The screen contains an orange-coloured square with the letters 'i.s.r', that remind the experimenter to check the impedance and the signal, and finally to begin recording the EEG signal. If the impedance of any electrodes is poor, the experimenter may enter the booth to lower the impedance of the electrodes affected. Otherwise, after validating the signal and the impedance, the experimenter can begin the recording in BrainVision, and press the letter 'C' twice in the stimulus computer. At that point, a green circle will appear, along with instructions for the participant. Similarly, at the end of the eyes-closed resting-state measurement (which is five minutes long), the experimenter must intervene when they see the screen with the orange stripes, by knocking on the door to let the participant open their eyes. Furthermore, at the end of the resting-state part and at the end of the Experiment part, a screen\rwith a crossed-out R appears to remind the experimenter to stop recording the EEG. Notice that the above-mentioned stages, characterised by screens with orange stripes, require the experimenter's intervention. The experimenter must allow the participant to read any text on these screens. Next, the experimenter must press the letter 'C' twice to let the session continue. This protocol provides the experimenter with control when necessary. The experimenter should be aware of the use of the letter 'C' at these points, as the requirement is not signalled on the screen to prevent participants from pressing the letter themselves. During the experiment, it is important to monitor the EEG signal. If it ever becomes very noisy, the experimenter must wait until the next break and the participant to stop, so that the signal can be verified. If the noise in the signal is due to the participant's movement, they should be asked again to please stay as still possible. If the noise is due to an increase in the impedance of some electrodes, the impedance of those electrodes should be revised.\rThe experiment in Session 2 contains breaks every 40 trials, whereas the experiments in subsequent sessions contain breaks every 50 trials. During these breaks, the number of the current trial appears in grey on the bottom right corner of the screen.\rIf a session ends abruptly during the experiment, but there is not enough time to restart the session from the experiment, then the data should be uploaded to the repository. == Definition of items in OpenSesame (only for programming purposes, not for in-session use) ==\r-- Each major part of the session is contained in a sequence item that is named in capital letters (e.g., 'PRETRAINING', 'TRAINING', 'TEST', 'EXPERIMENT').\r-- 'continue_space': allows proceeding to the following screen after pressing the space bar, which should be done by the participant. In most cases, two presses are required, as detailed on the screen.\r-- 'continue_c': allows proceeding to the following screen after pressing the letter 'C', which should be done by the experimenter. In most cases, two presses are required, as detailed on the screen.\r== Variables in the OpenSesame log files ==\rIn the log files produced by OpenSesame, each part of the session (e.g., Test, Experiment) is identified in the variable 'session_part'. The names of the response variables are 'response',\r'response_time' and 'correct'. Item-specific response variables follow the formats of 'response_[item_name]', 'response_time_[item_name]' and 'correct_[item_name]' (see https://osdoc.cogsci.nl/3.3/manual/variables/#response-variables).\rThe output is verbose and requires preprocessing of the data. For instance, the last response in each loop may appear twice in the output, due to the processing of the response. These duplicates can--and must--be cleaned up by discarding the rows that have the same trial number\ras the preceding row.\r== EEG triggers ==\rTriggers are sent to the EEG recorder throughout the experiment. The system for sending triggers is set up in OpenSesame script within the inline script 'EEG_trigger_setup'.\rThe key to the triggers is provided below.\r0: reset trigger port in BrainVision Recorder. This trigger is integrated in the trigger-sending function.\r-- Resting-state EEG part --\r10: beginning of eyes-open resting-state EEG\r11: end of eyes-open resting-state EEG\r12: beginning of eyes-closed resting-state EEG\r13: end of eyes-closed resting-state EEG\r-- Experiment part --\r5: fixation mark\r-- ID of each target sentence (only applicable to target trials) --\r110--253: triggers ranging between 110 and 253, time-locked to the onset of the word of interest in each trial.\r\rComments in code scripts\rIt is helpful for our future selves, for our collaborators, and for any other stakeholders associated with a project—which includes any fellow researchers worldwide—to include comments in code scripts. These comments should introduce the purpose of the script at the top, and the purpose of various components of the code. Some excerpts are shown below as examples.\n\r\r\r\rOpen-source software\rWhere possible, open-source software should be used. Open-source software is free, and hence more accessible. Open-source software can be classified in various dimensions, such as the size of the user base. The more users, the greater the support, because the core developers have more resources, and the users will often help each other in public forums such as Stack Exchange. For instance, a programming language such as R boasts millions of users worldwide who count on support in public forums and in R-specific forums such as the Posit Community.\nOther software are not as large. For instance, open-source software for psychological research (e.g., OpenSesame, psychoPy) are far smaller than R in terms of community. Yet, these software too can count on substantial support. For the more basic uses, most of the way has already been paved, and the existing documentation suffices. For more advanced uses, the smaller size of the community can become more obvious, as one needs to spend more time looking for solutions.\nRegardless of the size of the community, all else being equal, open-source software is the right choice to ensure access to one’s work for all (potential) stakeholders in the future. The other option, proprietary software, entails dependence on the services of a private company.\n\rTidiness and parsimony in computer code\rCode scripts should be as tidy and parsimonious as possible. For instance, to prevent overly long scripts that would impair the comprehension of the materials, it is useful to break down large projects into nested scripts, and source (i.e., run) the smaller scripts in the larger scripts.\n# Compose all stimuli for Sessions 2, 3, 4 and 6\r# Create participant-specific parameters\rsource(\u0026#39;stimulus_preparation/participant_parameters.R\u0026#39;)\r# Frame base images\rsource(\u0026#39;stimulus_preparation/base_images.R\u0026#39;)\r# Session 2\rsource(\u0026#39;stimulus_preparation/Session 2/Session2_compile_all_stimuli.R\u0026#39;)\r# Session 3\rsource(\u0026#39;stimulus_preparation/Session 3/Session3_compile_all_stimuli.R\u0026#39;)\r# Session 4\rsource(\u0026#39;stimulus_preparation/Session 4/Session4_compile_all_stimuli.R\u0026#39;)\r# Session 6\rsource(\u0026#39;stimulus_preparation/Session 6/Session6_compile_all_stimuli.R\u0026#39;)\r\rTidiness and parsimony in project directories\rA directory tree is useful to display all the folders in a project. The tree can be produced in the RStudio ‘Terminal’ console using the following one-line command.\nfind . -type d | sed -e \u0026quot;s/[^-][^\\/]*\\// |/g\u0026quot; -e \u0026quot;s/|\\([^ ]\\)/| - \\1/\u0026quot;\rThe output will look like the following (excerpt from https://osf.io/gt5uf/wiki).\n.\r| - bayesian_priors\r| | - plots\r| - semanticpriming\r| | - analysis_with_visualsimilarity\r| | | - model_diagnostics\r| | | | - results\r| | | | - plots\r| | | - results\r| | | - plots\r| | | - correlations\r| | | | - plots\r| | - frequentist_bayesian_plots\r| | | - plots\r| | - frequentist_analysis\r| | | - model_diagnostics\r| | | | - results\r| | | | - plots\r| | | - lexical_covariates_selection\r| | | | - results\r| | | | - plots\r| | | - results\r| | | - plots\r\rConclusion\rAdhering to best practices—including the FAIR principles—in the creation of research materials enhances transparency, accessibility and reproducibility in scientific research. These standards facilitate researchers’ work beyond the short term, and increase the reliability of scientific work, thus contributing to the best use of resources.\n\r\r","date":1698883200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1698883200,"objectID":"63ac305c778f5e5add08f5f6137d3b0e","permalink":"https://pablobernabeu.github.io/2023/fair-standards-for-the-creation-of-research-materials-with-examples/","publishdate":"2023-11-02T00:00:00Z","relpermalink":"/2023/fair-standards-for-the-creation-of-research-materials-with-examples/","section":"post","summary":"In the fast-paced world of scientific research, establishing minimum standards for the creation of research materials is essential. Whether it's stimuli, custom software for data collection, or scripts for statistical analysis, the quality and transparency of these materials significantly impact the reproducibility and credibility of research. This blog post explores the importance of adhering to FAIR (Findable, Accessible, Interoperable, Reusable) principles, and offers practical examples for researchers, with a focus on the cognitive sciences.","tags":["research materials","experimental stimuli","research methods","programming","R","s"],"title":"FAIR standards for the creation of research materials, with examples","type":"post"},{"authors":"","categories":["research-methods"],"content":"\r\n\r\n\r\n","date":1698796800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1698796800,"objectID":"2bc4a1121d8e2cc67316b0a02deb9ca2","permalink":"https://pablobernabeu.github.io/2023/two-second-delay-after-logger/","publishdate":"2023-11-01T00:00:00Z","relpermalink":"/2023/two-second-delay-after-logger/","section":"post","summary":"The result shows a varying delay of around 2 seconds on average. It would be very helpful for us if we could cut down this delay, as it adds up. To try to achieve this, I reduced the number of variables logged, from the default 363 to 34 important variables. Unfortunately, this change did not result in a reduction of the delay.","tags":["OpenSesame","stimulus presentation","experiment","s"],"title":"Two-second delay after logger in OpenSesame","type":"post"},{"authors":[],"categories":["R"],"content":"\rThe present script can be used to pre-process data from a frequency list of the Norwegian as Web Corpus (NoWaC; Guevara, 2010).\rBefore using the script, the frequency list should be downloaded from this URL. The list is described as ‘frequency list sorted primary alphabetic and secondary by frequency within each character’, and this is the direct URL. The download requires signing in to an institutional network. Last, the downloaded file should be unzipped.\nThe script is shown below.\n\r\rReferences\rGuevara, E. R. (2010). NoWaC: A large web-based corpus for Norwegian. In Proceedings of the NAACL HLT 2010 Sixth Web as Corpus Workshop (pp. 1-7). https://aclanthology.org/W10-1501\nRodina, Y., \u0026amp; Westergaard, M. (2015). Grammatical gender in Norwegian: Language acquisition and language change. Journal of Germanic Linguistics, 27(2), 145–187. https://doi.org/10.1017/S1470542714000245\nRodina, Y., \u0026amp; Westergaard, M. (2021). Grammatical gender and declension class in language change: A study of the loss of feminine gender in Norwegian. Journal of Germanic Linguistics, 33(3), 235–263. https://doi.org/10.1017/S1470542719000217\n\r","date":1695859200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1695859200,"objectID":"5dc2e55e585f7576bfede0fa86bf54a6","permalink":"https://pablobernabeu.github.io/2023/preprocessing-the-norwegian-web-as-corpus-nowac-in-r/","publishdate":"2023-09-28T00:00:00Z","relpermalink":"/2023/preprocessing-the-norwegian-web-as-corpus-nowac-in-r/","section":"post","summary":"The present script can be used to pre-process data from a frequency list of the Norwegian as Web Corpus (NoWaC; Guevara, 2010).\rBefore using the script, the frequency list should be downloaded from this URL. The list is described as ‘frequency list sorted primary alphabetic and secondary by frequency within each character’, and this is the direct URL. The download requires signing in to an institutional network. Last, the downloaded file should be unzipped.","tags":["R","corpora","corpus","Norwegian","NoWaC","linguistics","language","research methods","s"],"title":"Preprocessing the Norwegian Web as Corpus (NoWaC) in R","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rThe OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame? There are many reasons: it is free, open source, based on Python, stable enough thanks to more than a decade of usage and development, well maintained, and has a community forum.\nI recently faced a challenge when developing an EEG experiment that uses event-related potentials. I couldn’t find a way to send triggers through a serial port. Online, I could find several resources, such as a script by Kate Stone that draws on a parallel port, an outdated plugin that also draws on a parallel port, and resources based on Python scripts in PsychoPy and in base Python. By standing on these giants’ shoulders, and on even more shoulders from StackOverflow, I put together the following inline script for OpenSesame. The code must be placed in the Prepare phase. The Run phase can be empty.\nThis script is used to set up the system for sending triggers to the EEG recording software (e.g., BrainVision Recorder). The code automatically looks for an available serial port at the beginning of the session. If there are any available ports, a connection is established to the first port in the list. If there are no available ports, no connection is established, and a warning is shown on the screen, informing the user that no triggers will be sent to the EEG recorder. In the latter case, the triggers are only printed in the OpenSesame console.\n\r","date":1694217600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1694217600,"objectID":"85166813c4162e9b2a8ade9ba3f30765","permalink":"https://pablobernabeu.github.io/2023/an-inline-script-for-opensesame-to-send-eeg-triggers-via-serial-port/","publishdate":"2023-09-09T00:00:00Z","relpermalink":"/2023/an-inline-script-for-opensesame-to-send-eeg-triggers-via-serial-port/","section":"post","summary":"The OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame?","tags":["electroencephalography","BrainVision","event-related potentials","OpenSesame","opensource","s"],"title":"An inline script for OpenSesame to send EEG triggers via serial port","type":"post"},{"authors":[],"categories":[""],"content":"\rThe OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame? There are many reasons: it is free, open source, based on Python, stable enough thanks to more than a decade of usage and development, well maintained, and has a community forum.\nI recently faced a challenge when developing an EEG experiment that uses event-related potentials. I couldn’t find a way to send triggers through a serial port. Online, I could find several resources, such as a script by Kate Stone that draws on a parallel port, an outdated plugin that also draws on a parallel port, and resources based on Python scripts in PsychoPy and in base Python. By standing on these giants’ shoulders, and on even more shoulders from StackOverflow, I put together the following inline script for OpenSesame. The code must be placed in the Prepare phase. The Run phase can be empty.\nThis script is used to set up the system for sending triggers to the EEG recording software (e.g., BrainVision Recorder). The code automatically looks for an available serial port at the beginning of the session. If there are any available ports, a connection is established to the first port in the list. If there are no available ports, no connection is established, and a warning is shown on the screen, informing the user that no triggers will be sent to the EEG recorder. In the latter case, the triggers are only printed in the OpenSesame console.\n\r","date":1694217600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1694217600,"objectID":"7811b658bd44e0620f32630e56e8973a","permalink":"https://pablobernabeu.github.io/2023/an-inline-script-for-opensesame-to-send-eeg-triggers-via-the-serial-port/","publishdate":"2023-09-09T00:00:00Z","relpermalink":"/2023/an-inline-script-for-opensesame-to-send-eeg-triggers-via-the-serial-port/","section":"post","summary":"The OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame?","tags":[""],"title":"An inline script for OpenSesame to send EEG triggers via serial port","type":"post"},{"authors":null,"categories":["research methods"],"content":"\r\n\r\n\r\n","date":1692230400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1692230400,"objectID":"cda8a0144dfd2df916b35fb7cecb0a9e","permalink":"https://pablobernabeu.github.io/2023/encode-triggers-in-python-and-send-them-to-brainvision-through-serial-port-useful-for-opensesame-and-psychopy/","publishdate":"2023-08-17T00:00:00Z","relpermalink":"/2023/encode-triggers-in-python-and-send-them-to-brainvision-through-serial-port-useful-for-opensesame-and-psychopy/","section":"post","summary":"I'm sending the triggers in a binary format because Python requires this. For instance, to send the trigger 1, I run the code serialport.write(b'1'). I have succeeded in sending triggers in this way. However, I encounter two problems. First, the triggers are converted in a way I cannot entirely decipher. For instance, when I run the code serialport.write(b'1'), the trigger displayed in BrainVision Recorder is S 49, not S 1 as I would hope (please see Appendix below). Second, I cannot send two triggers with the same code one after the other. For instance, if I run serialport.write(b'1'), a trigger appears in BrainVision Recorder, but if I run the same afterwards (no matter how many times), no trigger appears. I tried to solve these problems by opening the parallel port in addition to the serial port, but the problems persist.","tags":["electroencephalography","BrainVision","triggers","serial port","python","OpenSesame","PsychoPy","encoding","binary","s"],"title":"How to correctly encode triggers in Python and send them to BrainVision through serial port (useful for OpenSesame and PsychoPy)","type":"post"},{"authors":[],"categories":["R"],"content":"\rThe R package ‘simr’ has greatly facilitated power analysis for mixed-effects models using Monte Carlo simulation (which involves running hundreds or thousands of tests under slight variations of the data). The powerCurve function is used to estimate the statistical power for various sample sizes in one go. Since the tests are run serially, they can take a VERY long time; approximately, the time it takes to run the model supplied once (say, a few hours) times the number of simulations (nsim, which should be higher than 200), and times the number of different sample sizes examined. While there isn’t a built-in parallel method, the power curves for different sample sizes can be run separately, and the results can be progressively combined as each component finishes running (see tutorial). The power curves produced by simr are so good they deserve ‘ggplot2’ rendering. So, here’s a function for it.\n\rA usage example\rlibrary(lme4)\rlibrary(simr)\rlibrary(ggplot2)\r# Toy model with data from \u0026#39;simr\u0026#39; package\rfit = lmer(y ~ x + (x | g), data = simdata)\r# Extend sample size of `g`\rfit_extended_g = extend(fit, along = \u0026#39;g\u0026#39;, n = 12)\rfit_powercurve = powerCurve(fit_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = c(4, 6, 8, 10, 12), nsim = 50, seed = 123, progress = FALSE)\r# Read in custom function to ggplot results from simr::powerCurve\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/powercurvePlot/main/powercurvePlot.R\u0026#39;)\rpowercurvePlot(fit_powercurve, number_x_axis_levels = 6) +\r# Change some defaults\rxlab(\u0026quot;Number of levels in \u0026#39;g\u0026#39;\u0026quot;) +\rtheme(plot.title = element_blank(),\raxis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text = element_text(size = 17))\r\r","date":1687824000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687824000,"objectID":"a0367657357f5990652c570253139340","permalink":"https://pablobernabeu.github.io/2023/ggplotting-power-curves-from-simr-package/","publishdate":"2023-06-27T00:00:00Z","relpermalink":"/2023/ggplotting-power-curves-from-simr-package/","section":"post","summary":"The R package ‘simr’ has greatly facilitated power analysis for mixed-effects models using Monte Carlo simulation (which involves running hundreds or thousands of tests under slight variations of the data). The powerCurve function is used to estimate the statistical power for various sample sizes in one go. Since the tests are run serially, they can take a VERY long time; approximately, the time it takes to run the model supplied once (say, a few hours) times the number of simulations (nsim, which should be higher than 200), and times the number of different sample sizes examined.","tags":["power analysis","statistical power","simr","research methods","visualisation","s"],"title":"ggplotting power curves from the 'simr' package","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\rWhereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot. For instance, using the plot_model function, I plotted the interaction between two continuous variables.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\r#\u0026gt; Learn more about sjPlot with \u0026#39;browseVignettes(\u0026quot;sjPlot\u0026quot;)\u0026#39;.\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\r# Create data partially based on code by Ben Bolker # from https://stackoverflow.com/a/38296264/7050882\rset.seed(101)\rspin = runif(800, 1, 24)\rtrait = rep(1:40, each = 20)\rID = rep(1:80, each = 10)\rtestdata \u0026lt;- data.frame(spin, trait, ID)\rtestdata$fatigue \u0026lt;- testdata$spin * testdata$trait / rnorm(800, mean = 6, sd = 2)\r# Model\rfit = lmer(fatigue ~ spin * trait + (1|ID),\rdata = testdata, REML = TRUE)\r#\u0026gt; boundary (singular) fit: see help(\u0026#39;isSingular\u0026#39;)\rplot_model(fit, type = \u0026#39;pred\u0026#39;, terms = c(\u0026#39;spin\u0026#39;, \u0026#39;trait\u0026#39;))\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\rCreated on 2023-06-24 with reprex v2.0.2\nHowever, I needed an extra feature, as sjPlot by default breaks down the colour (fill) variable into few levels that do not include the minimum or the maximum values in my variable. What I would like to do is to stratify the colour variable into equally-sized levels that include the minimum and the maximum values.\nFurthermore, in the legend, I would also like to display the number of levels of a grouping variable (ID) that are contained in each level of the colour variable.\nBelow is a solution using custom functions called deciles_interaction_plot and sextiles_interaction_plot.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\r# Create data partially based on code by Ben Bolker # from https://stackoverflow.com/a/38296264/7050882\rset.seed(101)\rspin = runif(800, 1, 24)\rtrait = rep(1:40, each = 20)\rID = rep(1:80, each = 10)\rtestdata \u0026lt;- data.frame(spin, trait, ID)\rtestdata$fatigue \u0026lt;- testdata$spin * testdata$trait / rnorm(800, mean = 6, sd = 2)\r# Model\rfit = lmer(fatigue ~ spin * trait + (1|ID),\rdata = testdata, REML = TRUE)\r#\u0026gt; boundary (singular) fit: see help(\u0026#39;isSingular\u0026#39;)\r# plot_model(fit, type = \u0026#39;pred\u0026#39;, terms = c(\u0026#39;spin\u0026#39;, \u0026#39;trait\u0026#39;))\r# Binning the colour variable into ten levels (deciles)\r# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/deciles_interaction_plot.R\u0026#39;)\rdeciles_interaction_plot(\rmodel = fit, x = \u0026#39;spin\u0026#39;,\rfill = \u0026#39;trait\u0026#39;,\rfill_nesting_factor = \u0026#39;ID\u0026#39;\r)\r#\u0026gt; Loading required package: dplyr\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\r#\u0026gt; Loading required package: RColorBrewer\r#\u0026gt; Loading required package: ggtext\r#\u0026gt; Loading required package: Cairo\r#\u0026gt; Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Set1 is 9\r#\u0026gt; Returning the palette you asked for with that many colors\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\r#\u0026gt; Scale for \u0026#39;y\u0026#39; is already present. Adding another scale for \u0026#39;y\u0026#39;, which will\r#\u0026gt; replace the existing scale.\r#\u0026gt; Scale for \u0026#39;colour\u0026#39; is already present. Adding another scale for \u0026#39;colour\u0026#39;,\r#\u0026gt; which will replace the existing scale.\r\r# If you wanted or needed to make six levels (sextiles) instead # of ten, you could use the function sextiles_interaction_plot.\r# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/sextiles_interaction_plot.R\u0026#39;)\rsextiles_interaction_plot(\rmodel = fit, x = \u0026#39;spin\u0026#39;,\rfill = \u0026#39;trait\u0026#39;,\rfill_nesting_factor = \u0026#39;ID\u0026#39;\r)\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\r#\u0026gt; Scale for \u0026#39;y\u0026#39; is already present. Adding another scale for \u0026#39;y\u0026#39;, which will\r#\u0026gt; replace the existing scale.\r#\u0026gt; Scale for \u0026#39;colour\u0026#39; is already present. Adding another scale for \u0026#39;colour\u0026#39;,\r#\u0026gt; which will replace the existing scale.\rCreated on 2023-06-24 with reprex v2.0.2\n","date":1687618486,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687618486,"objectID":"97b5d6ac8c1b6a2c07f2a0d6969c66c0","permalink":"https://pablobernabeu.github.io/2023/how-to-break-down-colour-variable-in-sjplot-plot-model-into-equally-sized-bins/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2023/how-to-break-down-colour-variable-in-sjplot-plot-model-into-equally-sized-bins/","section":"post","summary":"Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot. For instance, using the plot_model function, I plotted the interaction between two continuous variables.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\r#\u0026gt; Learn more about sjPlot with \u0026#39;browseVignettes(\u0026quot;sjPlot\u0026quot;)\u0026#39;.\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\r# Create data partially based on code by Ben Bolker # from https://stackoverflow.","tags":["visualisation","linear-mixed effects models","interactions","binning","sjPlot","s"],"title":"How to break down colour variable in sjPlot::plot_model into equally-sized bins","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\rWhereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot. For instance, using the plot_model function, I plotted the interaction between a continuous variable and a categorical variable. The categorical variable was passed to the fill argument of plot_model.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\r#\u0026gt; Install package \u0026quot;strengejacke\u0026quot; from GitHub (`devtools::install_github(\u0026quot;strengejacke/strengejacke\u0026quot;)`) to load all sj-packages at once!\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\rcake$recipe_recoded = ifelse(cake$recipe == \u0026#39;A\u0026#39;, -0.5,\rifelse(cake$recipe == \u0026#39;B\u0026#39;, 0,\rifelse(cake$recipe == \u0026#39;C\u0026#39;, 0.5,\rNA)))\rfit = lmer(angle ~ recipe_recoded * temp + (1|recipe_recoded:replicate), cake, REML= FALSE)\rplot_model(fit, type = \u0026#39;pred\u0026#39;, terms = c(\u0026#39;temp\u0026#39;, \u0026#39;recipe_recoded\u0026#39;))\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\rCreated on 2023-06-24 with reprex v2.0.2\nHowever, I needed an extra feature, as the categorical variable was not quite informative because it was a sum-coded transformation. Thus, I wanted the legend of the plot to show the values of the original variable (i.e., A, B and C), instead of those of the sum-coded variable that had been used in the model (i.e., -0.5, 0 and 0.5).\nBelow is a solution using a custom function called alias_interaction_plot.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\rcake$recipe_recoded = ifelse(cake$recipe == \u0026#39;A\u0026#39;, -0.5,\rifelse(cake$recipe == \u0026#39;B\u0026#39;, 0,\rifelse(cake$recipe == \u0026#39;C\u0026#39;, 0.5,\rNA)))\rfit = lmer(angle ~ recipe_recoded * temp + (1|recipe_recoded:replicate), cake, REML= FALSE)\r# plot_model(fit, type = \u0026#39;pred\u0026#39;, terms = c(\u0026#39;temp\u0026#39;, \u0026#39;recipe_recoded\u0026#39;))\r# Displaying the original variable instead\r# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/alias_interaction_plot.R\u0026#39;)\ralias_interaction_plot(\rmodel = fit, dataset = cake,\rx = \u0026#39;temp\u0026#39;,\rfill = \u0026#39;recipe_recoded\u0026#39;,\rfill_alias = \u0026#39;recipe\u0026#39;,\rfill_title = \u0026#39;recipe\u0026#39;\r)\r#\u0026gt; Loading required package: rlang\r#\u0026gt; Loading required package: dplyr\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\r#\u0026gt; Loading required package: RColorBrewer\r#\u0026gt; Loading required package: ggtext\r#\u0026gt; Loading required package: Cairo\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\r#\u0026gt; Scale for \u0026#39;y\u0026#39; is already present. Adding another scale for \u0026#39;y\u0026#39;, which will\r#\u0026gt; replace the existing scale.\r#\u0026gt; Scale for \u0026#39;colour\u0026#39; is already present. Adding another scale for \u0026#39;colour\u0026#39;,\r#\u0026gt; which will replace the existing scale.\rCreated on 2023-06-24 with reprex v2.0.2\n","date":1687618271,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687618271,"objectID":"d8d04c79b1d74b13a38f855a1905f537","permalink":"https://pablobernabeu.github.io/2023/how-to-map-more-informative-values-onto-fill-argument-of-sjplot-plot-model/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2023/how-to-map-more-informative-values-onto-fill-argument-of-sjplot-plot-model/","section":"post","summary":"Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot. For instance, using the plot_model function, I plotted the interaction between a continuous variable and a categorical variable. The categorical variable was passed to the fill argument of plot_model.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\r#\u0026gt; Install package \u0026quot;strengejacke\u0026quot; from GitHub (`devtools::install_github(\u0026quot;strengejacke/strengejacke\u0026quot;)`) to load all sj-packages at once!","tags":["linear-mixed effects models","interactions","sjPlot","alias","recode","visualisation","s"],"title":"How to map more informative values onto fill argument of sjPlot::plot_model","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\rTo assess whether convergence warnings render the results invalid, or on the contrary, the results can be deemed valid in spite of the warnings, Bates et al. (2023) suggest refitting models affected by convergence warnings with a variety of optimizers. The authors argue that, if the different optimizers produce practically-equivalent results, the results are valid. The allFit function from the ‘lme4’ package allows the refitting of models using a number of optimizers. To use the seven optimizers listed above, two extra packages must be installed: ‘dfoptim’ and ‘optimx’ (see lme4 manual). The output from allFit contains several statistics on the fixed and the random effects fitted by each optimizer.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(dfoptim)\rlibrary(optimx)\r# Create data using code by Ben Bolker from # https://stackoverflow.com/a/38296264/7050882\rset.seed(101)\rspin = runif(600, 1, 24)\rreg = runif(600, 1, 15)\rID = rep(c(\u0026quot;1\u0026quot;,\u0026quot;2\u0026quot;,\u0026quot;3\u0026quot;,\u0026quot;4\u0026quot;,\u0026quot;5\u0026quot;, \u0026quot;6\u0026quot;, \u0026quot;7\u0026quot;, \u0026quot;8\u0026quot;, \u0026quot;9\u0026quot;, \u0026quot;10\u0026quot;))\rday = rep(1:30, each = 10)\rtestdata \u0026lt;- data.frame(spin, reg, ID, day)\rtestdata$fatigue \u0026lt;- testdata$spin * testdata$reg/10 * rnorm(30, mean=3, sd=2)\r# Model\rfit = lmer(fatigue ~ spin * reg + (1|ID),\rdata = testdata, REML = TRUE)\r# Refit model using all available algorithms\rmulti_fit = allFit(fit)\r#\u0026gt; bobyqa : [OK]\r#\u0026gt; Nelder_Mead : [OK]\r#\u0026gt; nlminbwrap : [OK]\r#\u0026gt; nmkbw : [OK]\r#\u0026gt; optimx.L-BFGS-B : [OK]\r#\u0026gt; nloptwrap.NLOPT_LN_NELDERMEAD : [OK]\r#\u0026gt; nloptwrap.NLOPT_LN_BOBYQA : [OK]\r# Show results summary(multi_fit)$fixef\r#\u0026gt; (Intercept) spin reg spin:reg\r#\u0026gt; bobyqa -2.975678 0.5926561 0.1437204 0.1834016\r#\u0026gt; Nelder_Mead -2.975675 0.5926559 0.1437202 0.1834016\r#\u0026gt; nlminbwrap -2.975677 0.5926560 0.1437203 0.1834016\r#\u0026gt; nmkbw -2.975678 0.5926561 0.1437204 0.1834016\r#\u0026gt; optimx.L-BFGS-B -2.975680 0.5926562 0.1437205 0.1834016\r#\u0026gt; nloptwrap.NLOPT_LN_NELDERMEAD -2.975666 0.5926552 0.1437196 0.1834017\r#\u0026gt; nloptwrap.NLOPT_LN_BOBYQA -2.975678 0.5926561 0.1437204 0.1834016\r# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/plot.fixef.allFit/main/plot.fixef.allFit.R\u0026#39;)\rplot.fixef.allFit(multi_fit, select_predictors = c(\u0026#39;spin\u0026#39;, \u0026#39;reg\u0026#39;, \u0026#39;spin:reg\u0026#39;), # Increase padding at top and bottom of Y axis\rmultiply_y_axis_limits = 1.3,\ry_title = \u0026#39;Fixed effect (*b*)\u0026#39;)\r#\u0026gt; Loading required package: dplyr\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\r#\u0026gt; Loading required package: reshape2\r#\u0026gt; Loading required package: stringr\r#\u0026gt; Loading required package: scales\r#\u0026gt; Loading required package: ggplot2\r#\u0026gt; Loading required package: ggtext\r#\u0026gt; Loading required package: patchwork\r\r# Alternative using plot-specific Y axes and other modified settings\rplot.fixef.allFit(multi_fit, select_predictors = c(\u0026#39;spin\u0026#39;, \u0026#39;spin:reg\u0026#39;), # Use plot-specific Y axis limits\rshared_y_axis_limits = FALSE,\rdecimal_places = 7, # Move up Y axis title\ry_title_hjust = 4.5,\ry_title = \u0026#39;Fixed effect (*b*)\u0026#39;)\rCreated on 2023-06-26 with reprex v2.0.2\n","date":1687617754,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687617754,"objectID":"8009eef6a8e7599daebf9d33f27dd603","permalink":"https://pablobernabeu.github.io/2023/how-to-visually-assess-the-convergence-of-a-mixed-effects-model-by-plotting-various-optimizers/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2023/how-to-visually-assess-the-convergence-of-a-mixed-effects-model-by-plotting-various-optimizers/","section":"post","summary":"To assess whether convergence warnings render the results invalid, or on the contrary, the results can be deemed valid in spite of the warnings, Bates et al. (2023) suggest refitting models affected by convergence warnings with a variety of optimizers. The authors argue that, if the different optimizers produce practically-equivalent results, the results are valid. The allFit function from the ‘lme4’ package allows the refitting of models using a number of optimizers.","tags":["convergence","research methods","statistics","linear-mixed effects models","visualisation","s"],"title":"How to visually assess the convergence of a mixed-effects model by plotting various optimizers","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rI’m developing a slightly tricky design in OpenSesame (a Python-based experiment builder). My stimuli comprise two kinds of sentences that contain different elements, and different numbers of elements. These sentences must be presented word by word. Furthermore, I need to attach triggers to some words in the first kind of sentences but not in the second kind. Last, these kinds of sentences must be intermixed within a block (or a sequence) of trials, because the first kind are targets and the second kind are fillers.\nI need to present stimuli randomly from either of two loops within a sequence. Currently, when I try this arrangement using the interface, the resulting script ends up with run loop1 followed by run loop2, but I can’t find a way to ensure that the overarching sequence pulls randomly from either loop over successive trials. In other words, my goal is to intermix the stimuli from both loops.\nI have searched for clues in the OpenSesame tutorials, in the OpenSesame forum, and elsewhere online, but to no avail.\nSolution\rFinally, I solved this by first distributing all the words in each sentence across different columns in the stimulus file, yielding ‘word1’, ‘word2’, etc. Next, in OpenSesame, I created a sketchpad for each word. Last, to prevent showing any words that were blank, I entered conditions such as [word7] != NA in the Run if field of the sequence.\n\r","date":1687564800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687564800,"objectID":"85409a874f0a6cd2066a0f84805fd0bd","permalink":"https://pablobernabeu.github.io/2023/intermixing-stimuli-from-two-loops-randomly-in-opensesame/","publishdate":"2023-06-24T00:00:00Z","relpermalink":"/2023/intermixing-stimuli-from-two-loops-randomly-in-opensesame/","section":"post","summary":"I’m developing a slightly tricky design in OpenSesame (a Python-based experiment builder). My stimuli comprise two kinds of sentences that contain different elements, and different numbers of elements. These sentences must be presented word by word. Furthermore, I need to attach triggers to some words in the first kind of sentences but not in the second kind. Last, these kinds of sentences must be intermixed within a block (or a sequence) of trials, because the first kind are targets and the second kind are fillers.","tags":["OpenSesame","s"],"title":"Intermixing stimuli from two loops randomly in OpenSesame","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rI am using jsPsych to create an experiment and I am struggling to sample from two variables simultaneously. Specifically, in each trial, I would like to present a primeWord and a targetWord by randomly sampling each of them from its own variable.\nI have looked into several resources—such as sampling without replacement, custom sampling and position indices—but to no avail. I’m a beginner at this, so it’s possible that one of these resources was relevant (especially the last one, I think).\nIn addition to the parallel sampling, I wonder how I could save the same trial index in the data of both primeWord and targetWord.\nSolution\rFinally I solved this using position indices in a for-of loop (see below: For loop that creates trial information iteratively over trials (3 steps)).\n\u0026lt;!DOCTYPE html\u0026gt;\r\u0026lt;html\u0026gt;\r\u0026lt;head\u0026gt;\r\u0026lt;!-- jsPsych plugins --\u0026gt;\r\u0026lt;script src=\u0026quot;../jspsych.js\u0026quot;\u0026gt;\u0026lt;/script\u0026gt;\r\u0026lt;script src=\u0026quot;../plugins/jspsych-html-keyboard-response.js\u0026quot;\u0026gt;\u0026lt;/script\u0026gt;\r\u0026lt;script src=\u0026quot;../plugins/jspsych-html-button-response.js\u0026quot;\u0026gt;\u0026lt;/script\u0026gt;\r\u0026lt;!-- CSS --\u0026gt;\r\u0026lt;link rel=\u0026quot;stylesheet\u0026quot; href=\u0026quot;../css/jspsych.css\u0026quot;\u0026gt;\r\u0026lt;style\u0026gt;\rbody.jspsych-display-element {\rcolor: #ececec;\rbackground-color: #2b2b2b;\r}\r#jspsych-html-keyboard-response-stimulus {\rfont-size: 32px;\r}\r.fas,\r.far {\rcolor: #b6b6b6;\r}\r\u0026lt;/style\u0026gt;\r\u0026lt;/head\u0026gt;\r\u0026lt;!-- Beginning of the script that contains the core of the experiment --\u0026gt;\r\u0026lt;script\u0026gt;\r/* Create empty timeline object, which will be sequentially filled in using timeline.push() */\rvar timeline = [];\rvar instructions = {\rtype: \u0026#39;html-button-response\u0026#39;,\rstimulus: [\u0026quot;\u0026lt;p\u0026gt;Each screen will show a word in lower case, such as \u0026#39;target\u0026#39;. Press \u0026lt;b\u0026gt;F\u0026lt;/b\u0026gt; if the word is primarily abstract\u0026lt;/p\u0026gt;\u0026quot; +\r\u0026#39;\u0026lt;p\u0026gt;or \u0026lt;b\u0026gt;J\u0026lt;/b\u0026gt; if it is primarily concrete. Each word is presented for up to five seconds.\u0026lt;/p\u0026gt;\u0026#39;\r],\rchoices: [\u0026#39;Ready to start\u0026#39;]\r}\r/* Add instructions to the timeline */\rtimeline.push(instructions)\r/* Stimuli */\r/* Begin with a general list of words, and randomly split the list into a set of prime words and a set of target words. */\rvar allWords = [{\rword: \u0026#39;word 1\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 2\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 3\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 4\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 5\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 6\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r},\r{\rword: \u0026#39;word 7\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r},\r{\rword: \u0026#39;word 8\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r},\r{\rword: \u0026#39;word 9\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r},\r{\rword: \u0026#39;word 10\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r}\r]\r/* Shuffle all words */\rvar shuffled_allWords = allWords.sort(function() {\rreturn 0.5 - Math.random()\r});\r/* Split up the list into two sets */\rvar midpoint = Math.floor(shuffled_allWords.length / 2);\r/* Set number of trials per participant (must be smaller than half of all words) */\rvar number_of_trials = 4;\r/* Create the set of prime words */\rvar primeWords = shuffled_allWords.slice(0, number_of_trials);\r/* Make prime words uppercase, as in Hutchison et al.\r(2013; https://doi.org/10.3758/s13428-012-0304-z) */\rvar primeWords = primeWords.map(item =\u0026gt; ({\r...item,\rword: item.word.toUpperCase()\r}))\r/* Create the set of target words */\rvar targetWords = shuffled_allWords.slice(midpoint, midpoint + number_of_trials);\r/* Next, create set of interstimulus intervals from a range between 60 and 1200 ms. First, the range is split into as many integers as the number of trials, equally for all participants. Afterwards, the list is shuffled within participants. */\rfunction makeArr(startValue, stopValue, cardinality) {\rvar arr = [];\rvar step = (stopValue - startValue) / (cardinality - 1);\rfor (var i = 0; i \u0026lt; cardinality; i++) {\rarr.push(startValue + (step * i));\r}\rreturn arr;\r}\rordered_interstimulus_intervals = makeArr(60, 1200, number_of_trials);\rinterstimulus_interval =\rordered_interstimulus_intervals.sort(function() {\rreturn 0.5 - Math.random()\r});\r/* For loop that creates trial information iteratively over trials (3 steps) */\r/* 1. Enable function to create iterable range, to be used in the for loop below */\rconst Range = (start, end) =\u0026gt; ({\r*[Symbol.iterator]() {\rwhile (start \u0026lt; end)\ryield start++;\r}\r})\r/* 2. Initialise stimuli array */\rstimuli = [];\r/* 3. Run loop */\rfor (const i of Range(0, number_of_trials)) {\rstimuli.push({\rprimeWord: primeWords[i].word,\rtargetWord: targetWords[i].word,\rinterstimulus_interval: interstimulus_interval[i],\rcorrect_response: targetWords[i].correct_response,\rtrial: i + 1 /* 1 is added because, otherwise, trials would else trials would start from 0 */\r})\r}\r/* Trial content: fixation, primeWord, interstimulus interval, targetWord, feedback.\rThis constitutes a unique trial in the semantic priming paradigm. Yet, beware that jsPsych provides a \u0026#39;trial_index\u0026#39; value in the output of the task. That index is assigned to each part of every trial. Thus, in the present experiment, there are five trial_index values per trial--namely, one for each part listed above. */\r/* Fixation cross */\rvar fixation = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: \u0026#39;+\u0026#39;,\rresponse_ends_trial: false,\rtrial_duration: function() {\r/* Set fixations with a varying duration to boost participants\u0026#39; attention */\rreturn jsPsych.randomization.sampleWithoutReplacement([400, 450, 500, 550, 600], 1)[0];\r},\rpost_trial_gap: 0,\rdata: {\rtrial: jsPsych.timelineVariable(\u0026#39;trial\u0026#39;)\r},\rcss_classes: [\u0026#39;stimulus\u0026#39;],\r/* Computation run at the end of each trial */\ron_finish: function(data) {\r/* Log key presses, if any, by writing 1 into fixation_keypresses (else, write 0) */\rif (data.key_press == null) {\rvar fixation_keypresses = 0;\r} else {\rvar fixation_keypresses = 1;\r};\rdata.fixation_keypresses = fixation_keypresses\r}\r};\rvar primeWord = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: jsPsych.timelineVariable(\u0026#39;primeWord\u0026#39;),\rresponse_ends_trial: false,\rtrial_duration: 150,\rpost_trial_gap: 0,\rdata: {\rposition: \u0026#39;prime\u0026#39;,\rtrial: jsPsych.timelineVariable(\u0026#39;trial\u0026#39;)\r},\rcss_classes: [\u0026#39;stimulus\u0026#39;],\r/* Computation run at the end of each trial */\ron_finish: function(data) {\r/* Log key presses, if any, by writing 1 into primeWord_keypresses (else, write 0) */\rif (data.key_press == null) {\rvar primeWord_keypresses = 0;\r} else {\rvar primeWord_keypresses = 1;\r};\rdata.primeWord_keypresses = primeWord_keypresses\r}\r};\rvar interstimulus_interval = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: \u0026#39; \u0026#39;,\rresponse_ends_trial: false,\rtrial_duration: jsPsych.timelineVariable(\u0026#39;interstimulus_interval\u0026#39;),\rpost_trial_gap: 0,\rdata: {\rinterstimulus_interval: jsPsych.timelineVariable(\u0026#39;interstimulus_interval\u0026#39;),\rtrial: jsPsych.timelineVariable(\u0026#39;trial\u0026#39;)\r},\rcss_classes: [\u0026#39;stimulus\u0026#39;],\r/* Computation run at the end of each trial */\ron_finish: function(data) {\r/* Log key presses, if any, by writing 1 into interstimulus_interval_keypresses (else, write 0) */\rif (data.key_press == null) {\rvar interstimulus_interval_keypresses = 0;\r} else {\rvar interstimulus_interval_keypresses = 1;\r};\rdata.interstimulus_interval_keypresses = interstimulus_interval_keypresses\r}\r};\rvar targetWord = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: jsPsych.timelineVariable(\u0026#39;targetWord\u0026#39;),\rchoices: [\u0026#39;f\u0026#39;, \u0026#39;j\u0026#39;],\rtrial_duration: 3000,\rpost_trial_gap: 0,\rcss_classes: [\u0026#39;stimulus\u0026#39;],\rdata: {\rposition: \u0026#39;target\u0026#39;,\rtrial: jsPsych.timelineVariable(\u0026#39;trial\u0026#39;),\rcorrect_response: jsPsych.timelineVariable(\u0026#39;correct_response\u0026#39;)\r},\r/* Computation run at the end of each trial */\ron_finish: function(data) {\rif (data.key_press !== null) {\r/* Label correct responses */\rif (data.correct_response == \u0026#39;abstract\u0026#39; \u0026amp;\u0026amp; data.key_press == jsPsych.pluginAPI.convertKeyCharacterToKeyCode(\u0026#39;f\u0026#39;) ||\rdata.correct_response == \u0026#39;concrete\u0026#39; \u0026amp;\u0026amp; data.key_press == jsPsych.pluginAPI.convertKeyCharacterToKeyCode(\u0026#39;j\u0026#39;)) {\rvar accuracy = \u0026#39;correct\u0026#39;;\r/* Label incorrect responses */\r} else if (data.correct_response == \u0026#39;abstract\u0026#39; \u0026amp;\u0026amp; data.key_press == jsPsych.pluginAPI.convertKeyCharacterToKeyCode(\u0026#39;j\u0026#39;) ||\rdata.correct_response == \u0026#39;concrete\u0026#39; \u0026amp;\u0026amp; data.key_press == jsPsych.pluginAPI.convertKeyCharacterToKeyCode(\u0026#39;f\u0026#39;)) {\rvar accuracy = \u0026#39;incorrect\u0026#39;;\r}\r/* Label unanswered trials */\r} else {\rvar accuracy = \u0026#39;unanswered\u0026#39;;\r};\rdata.accuracy = accuracy;\r/* Count up premature responses per trial. The command \u0026#39;last(4)\u0026#39; is used below\rto consider only the current part of the \u0026#39;trial\u0026#39; (i.e., targetWord) and the three previous parts (i.e., interstimulus_interval, primeWord and fixation). Notice that the response entered in this part (targetWord) is not added into the sum, as it is appropriate to respond to the target word. */\rdata.premature_responses =\rjsPsych.data.get().last(4).filter(\u0026#39;fixation_keypresses\u0026#39; == 1).select(\u0026#39;fixation_keypresses\u0026#39;).sum() +\rjsPsych.data.get().last(4).filter(\u0026#39;primeWord_keypresses\u0026#39; == 1).select(\u0026#39;primeWord_keypresses\u0026#39;).sum() +\rjsPsych.data.get().last(4).filter(\u0026#39;interstimulus_interval_keypresses\u0026#39; == 1).select(\u0026#39;interstimulus_interval_keypresses\u0026#39;).sum();\r}\r};\rfeedback = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: function() {\rvar last_trial_accuracy = jsPsych.data.getLastTrialData().values()[0].accuracy;\rif (last_trial_accuracy == \u0026#39;incorrect\u0026#39;) {\rreturn \u0026#39;\u0026lt;p style=\u0026quot;color:red; font-face:bold;\u0026quot;\u0026gt;X\u0026lt;/p\u0026gt;\u0026#39;;\r} else if (last_trial_accuracy == \u0026#39;unanswered\u0026#39;) {\rreturn \u0026#39;\u0026lt;p style=\u0026quot;color:red; font-face:bold;\u0026quot;\u0026gt;0\u0026lt;/p\u0026gt;\u0026#39;\r} else {\rreturn \u0026#39;\u0026#39;\r}\r},\rchoices: jsPsych.NO_KEYS,\rtrial_duration: function() {\rvar last_trial_accuracy = jsPsych.data.getLastTrialData().values()[0].accuracy;\rif (last_trial_accuracy == \u0026#39;correct\u0026#39;) {\rreturn 0\r} else {\rreturn 800\r}\r}\r};\rvar main_procedure = {\rtimeline: [fixation, primeWord, interstimulus_interval, targetWord, feedback],\rtimeline_variables: stimuli\r};\rtimeline.push(main_procedure);\rvar debrief = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rchoices: [\u0026#39;c\u0026#39;],\rstimulus: function() {\rvar total_correct = jsPsych.data.get().filter({\raccuracy: \u0026#39;correct\u0026#39;\r}).count();\rvar total_incorrect = jsPsych.data.get().filter({\raccuracy: \u0026#39;incorrect\u0026#39;\r}).count();\rvar total_unanswered = jsPsych.data.get().filter({\raccuracy: \u0026#39;unanswered\u0026#39;\r}).count();\rvar accuracy_rate = Math.round(total_correct / (total_correct + total_incorrect + total_unanswered) * 100) + \u0026quot;%\u0026quot;;\rvar message = \u0026quot;\u0026lt;div style=\u0026#39;font-size:20px;\u0026#39;\u0026gt;\u0026lt;p\u0026gt;All done!\u0026lt;/p\u0026gt;\u0026quot; +\r\u0026quot;\u0026lt;p\u0026gt;Your accuracy rate was \u0026quot; + accuracy_rate + \u0026quot; (\u0026quot; + total_correct + \u0026quot; correct trials, \u0026quot; + total_incorrect +\r\u0026quot; incorrect and \u0026quot; + total_unanswered + \u0026quot; unanswered).\u0026lt;/p\u0026gt;\u0026quot; +\r\u0026quot;\u0026lt;p\u0026gt;Press C to see the entire set of data generated by this experiment.\u0026lt;/p\u0026gt;\u0026lt;/div\u0026gt;\u0026quot;;\rreturn message;\r}\r}\r/* Add debrief to the timeline */\rtimeline.push(debrief);\r/* Initialize experiment by incorporating the timeline\rand setting the data to be displayed at the end. */\rjsPsych.init({\rtimeline: timeline,\ron_finish: function() {\rjsPsych.data.displayData();\r},\rdefault_iti: function() {\r/* Use varying intertrial intervals to reduce habituation effects */\rreturn jsPsych.randomization.sampleWithoutReplacement([1300, 1400, 1500, 1600, 1700], 1)[0];\r}\r});\r\u0026lt;/script\u0026gt;\r\u0026lt;/html\u0026gt;\r\r\r","date":1687564800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687564800,"objectID":"ba29325485e1ca60ef6e55348a52fc8c","permalink":"https://pablobernabeu.github.io/2023/simultaneously-sampling-from-two-variables-in-jspsych/","publishdate":"2023-06-24T00:00:00Z","relpermalink":"/2023/simultaneously-sampling-from-two-variables-in-jspsych/","section":"post","summary":"I am using jsPsych to create an experiment and I am struggling to sample from two variables simultaneously. Specifically, in each trial, I would like to present a primeWord and a targetWord by randomly sampling each of them from its own variable.\nI have looked into several resources—such as sampling without replacement, custom sampling and position indices—but to no avail. I’m a beginner at this, so it’s possible that one of these resources was relevant (especially the last one, I think).","tags":["jsPsych","javascript","s"],"title":"Simultaneously sampling from two variables in jsPsych","type":"post"},{"authors":[],"categories":["R"],"content":"\rHere’s an example of fuzzy-matching strings in R that I shared on StackOverflow. In stringdist_join, the max_dist argument is used to constrain the degree of fuzziness.\nlibrary(fuzzyjoin)\rlibrary(dplyr)\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\rlibrary(knitr)\rsmall_tab = data.frame(Food.Name = c(\u0026#39;Corn\u0026#39;, \u0026#39;Squash\u0026#39;, \u0026#39;Peppers\u0026#39;), Food.Code = c(NA, NA, NA))\rlarge_tab = data.frame(Food.Name = c(\u0026#39;Sweet Corn\u0026#39;, \u0026#39;Red Corn\u0026#39;, \u0026#39;Baby Corns\u0026#39;, \u0026#39;Squash\u0026#39;, \u0026#39;Long Squash\u0026#39;, \u0026#39;Red Pepper\u0026#39;, \u0026#39;Green Pepper\u0026#39;, \u0026#39;Red Peppers\u0026#39;), Food.Code = c(532, 532, 944, 111, 123, 654, 655, 654))\rjoined_tab = stringdist_join(small_tab, large_tab, by = \u0026#39;Food.Name\u0026#39;,\rignore_case = TRUE, method = \u0026#39;cosine\u0026#39;, max_dist = 0.5, distance_col = \u0026#39;dist\u0026#39;) %\u0026gt;%\r# Tidy columns select(Food.Name = Food.Name.x, -Food.Name.y, Food.Code = Food.Code.y, -dist) %\u0026gt;%\r# Only keep most frequent food code per food name\rgroup_by(Food.Name) %\u0026gt;% count(Food.Name, Food.Code) %\u0026gt;% slice(which.max(n)) %\u0026gt;% select(-n) %\u0026gt;%\r# Order food names as in the small table\rarrange(factor(Food.Name, levels = small_tab$Food.Name))\r# Show table with columns renamed\rjoined_tab %\u0026gt;%\rrename(\u0026#39;Food Name\u0026#39; = Food.Name, \u0026#39;Food Code\u0026#39; = Food.Code) %\u0026gt;%\rkable()\r\r\rFood Name\rFood Code\r\r\r\rCorn\r532\r\rSquash\r111\r\rPeppers\r654\r\r\r\rCreated on 2023-05-31 with reprex v2.0.2\n","date":1687564800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687564800,"objectID":"f1f06d3de129624cdf947d3fb65b2602","permalink":"https://pablobernabeu.github.io/2023/table-joins-with-conditional-fuzzy-string-matching-in-r/","publishdate":"2023-06-24T00:00:00Z","relpermalink":"/2023/table-joins-with-conditional-fuzzy-string-matching-in-r/","section":"post","summary":"Here’s an example of fuzzy-matching strings in R that I shared on StackOverflow. In stringdist_join, the max_dist argument is used to constrain the degree of fuzziness.\nlibrary(fuzzyjoin)\rlibrary(dplyr)\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\rlibrary(knitr)\rsmall_tab = data.frame(Food.Name = c(\u0026#39;Corn\u0026#39;, \u0026#39;Squash\u0026#39;, \u0026#39;Peppers\u0026#39;), Food.Code = c(NA, NA, NA))\rlarge_tab = data.","tags":["string matching","s"],"title":"Table joins with conditional \"fuzzy\" string matching in R","type":"post"},{"authors":[],"categories":["R","linear mixed-effects models"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\rLinear mixed-effects models (LMM) offer a consistent way of performing regression and analysis of variance tests which allows accounting for non-independence in the data. Over the past decades, LMMs have subsumed most of the General Linear Model, with a steady increase in popularity (Meteyard \u0026amp; Davies, 2020). Since their conception, LMMs have presented the challenge of model convergence. In essence, the issue of convergence boils down to the widespread tension between parsimony and completeness in data analysis. That is, on the one hand, a good model must allow an accurate, parsimonious analysis of each predictor, and thus, it must not be overfitted with too many parameters. Yet, on the other hand, the model must be complete enough to account for a sufficient amount of variation in the data. In LMMs, any predictors that entail non-independent observations (also known as repeated measures) will normally bring both fixed and random effects into the model. Where a few of these predictors coexist, models often struggle to find enough information in the data to account for every predictor—and especially, for every random effect. This difficulty translates into convergence warnings (Brauer \u0026amp; Curtin, 2018; Singmann \u0026amp; Kellen, 2019). In this article, I review the issue of convergence before presenting a new plotting function in R that facilitates the diagnosis of convergence by visualising the fixed effects fitted by different optimization algorithms (also dubbed optimizers).\nCompleteness versus parsimony\rBoth fixed and random effects comprise intercepts and slopes. The pressure exerted by each of those types of effects on the model is determined by the number of data points involved by each. First, slopes are more demanding than intercepts, as they involve a (far) larger number of data points. Second, random effects are more demanding than fixed effects, as random effects entail the number of estimates required for fixed effects times the number of levels in the grouping factor. As a result, on the most lenient end of the scale lies the fixed intercept, and on the heaviest end lie the random slopes. Convergence warnings in LMMs are often due to the random slopes alone.\nSounds easy, then! Not inviting the random slopes to the party should solve the problem. Indeed, since random slopes involve the highest number of estimates by far, removing them does often remove convergence warnings. This, however, leads to a different problem. Surrendering the information provided by random slopes can result in the violation of the assumption of independence of observations. For years, the removal of random slopes due to convergence warnings was standard practice. Currently, in contrast, proposals increasingly consider other options, such as removing random effects if they do not significantly improve the fit of the model (Matuschek et al., 2017), and keeping the random slopes in the model in spite of the convergence warnings to safeguard the assumption of independence (see Table 17 in Brauer \u0026amp; Curtin, 2018; Singmann \u0026amp; Kellen, 2019).\n\rThe multiple-optimizers sanity check from lme4::allFit()\rFramed within the drive to maintain random slopes wherever possible, the developers of the ‘lme4’ package propose a sanity check that uses a part of the ‘lme4’ engine called ‘optimizer’. Every model has a default optimizer, unless a specific one is chosen through control = lmerControl(optimizer = '...') (in lmer models) or control = glmerControl(optimizer = '...') (in glmer models). The seven widely-available optimizers are:\n\rbobyqa\rNelder_Mead\rnlminbwrap\rnmkbw\roptimx.L-BFGS-B\rnloptwrap.NLOPT_LN_NELDERMEAD\rnloptwrap.NLOPT_LN_BOBYQA\r\rTo assess whether convergence warnings render the results invalid, or on the contrary, the results can be deemed valid in spite of the warnings, Bates et al. (2022) suggest refitting models affected by convergence warnings with a variety of optimizers. The authors argue that if the different optimizers produce practically-equivalent results, the results are valid. The allFit function from the ‘lme4’ package allows the refitting of models using a number of optimizers. To use the seven optimizers listed above, two extra packages must be installed: ‘dfoptim’ and ‘optimx’ (see lme4 manual). The output from allFit() contains several statistics on the fixed and the random effects fitted by each optimizer (see example).\n\rPlotting the fixed effects from allFit()\rSeveral R users have ventured into plotting the allFit() output but there is not a function in ‘lme4’ yet at the time of writing. I (Bernabeu, 2022) developed a function that takes the output from allFit(), tidies it, selects the fixed effects and plots them using ‘ggplot2’. The function is shown below, and can be copied through the Copy Code button at the top right corner. It can be renamed by changing plot.fixef.allFit to another valid name.\n# Plot the results from the fixed effects produced by different optimizers. This function # takes the output from lme4::allFit(), tidies it, selects fixed effects and plots them.\rplot.fixef.allFit = function(allFit_output, # Set the same Y axis limits in every plot\rshared_y_axis_limits = TRUE,\r# Multiply Y axis limits by a factor (only # available if shared_y_axis_limits = TRUE)\rmultiply_y_axis_limits = 1, # Number of decimal places\rdecimal_places = NULL,\r# Select predictors\rselect_predictors = NULL, # Number of rows\rnrow = NULL, # Y axis title\ry_title = \u0026#39;Fixed effect\u0026#39;,\r# Alignment of the Y axis title\ry_title_hjust = NULL,\r# Add number to the names of optimizers\rnumber_optimizers = TRUE,\r# Replace colon in interactions with x\rinteraction_symbol_x = TRUE) {\rrequire(lme4)\rrequire(dfoptim)\rrequire(optimx)\rrequire(dplyr)\rrequire(reshape2)\rrequire(stringr)\rrequire(scales)\rrequire(ggplot2)\rrequire(ggtext)\rrequire(patchwork)\rlibrary(Cairo)\r# Tidy allFit output\r# Extract fixed effects from the allFit() output\rallFit_fixef = summary(allFit_output)$fixef %\u0026gt;% # Select fixed effects in the allFit results\rreshape2::melt() %\u0026gt;% # Structure the output as a data frame\rrename(\u0026#39;Optimizer\u0026#39; = \u0026#39;Var1\u0026#39;, \u0026#39;fixed_effect\u0026#39; = \u0026#39;Var2\u0026#39;) # set informative names\r# If number_optimizers = TRUE, assign number to each optimizer and place it before its name\rif(number_optimizers == TRUE) {\rallFit_fixef$Optimizer = paste0(as.numeric(allFit_fixef$Optimizer), \u0026#39;. \u0026#39;, allFit_fixef$Optimizer)\r}\r# If select_predictors was supplied, select them along with the intercept (the latter required)\rif(!is.null(select_predictors)) {\rallFit_fixef = allFit_fixef %\u0026gt;% dplyr::filter(fixed_effect %in% c(\u0026#39;(Intercept)\u0026#39;, select_predictors))\r}\r# Order variables\rallFit_fixef = allFit_fixef[, c(\u0026#39;Optimizer\u0026#39;, \u0026#39;fixed_effect\u0026#39;, \u0026#39;value\u0026#39;)]\r# PLOT. The overall plot is formed of a first row containing the intercept and the legend # (intercept_plot), and a second row containing the predictors (predictors_plot), # which may in turn occupy several rows.\r# If multiply_y_axis_limits was supplied but shared_y_axis_limits = FALSE,\r# warn that shared_y_axis_limits is required.\rif(!multiply_y_axis_limits == 1 \u0026amp; shared_y_axis_limits == FALSE) {\rmessage(\u0026#39;The argument `multiply_y_axis_limits` has not been used because \\n it requires `shared_y_axis_limits` set to TRUE.\u0026#39;)\r}\r# If extreme values were entered in y_title_hjust, show warning\rif(!is.null(y_title_hjust)) {\rif(y_title_hjust \u0026lt; 0.5 | y_title_hjust \u0026gt; 6) {\rmessage(\u0026#39;NOTE: For y_title_hjust, a working range of values is between 0.6 and 6.\u0026#39;)\r}\r}\r# If decimal_places was supplied, convert number to the format used in \u0026#39;scales\u0026#39; package\rif(!is.null(decimal_places)) {\rdecimal_places = ifelse(decimal_places == 1, 0.1, ifelse(decimal_places == 2, 0.01, ifelse(decimal_places == 3, 0.001, ifelse(decimal_places == 4, 0.0001, ifelse(decimal_places == 5, 0.00001, ifelse(decimal_places == 6, 0.000001, ifelse(decimal_places == 7, 0.0000001, ifelse(decimal_places == 8, 0.00000001, ifelse(decimal_places == 9, 0.000000001, ifelse(decimal_places == 10, 0.0000000001,\rifelse(decimal_places == 11, 0.00000000001,\rifelse(decimal_places == 12, 0.000000000001,\rifelse(decimal_places == 13, 0.0000000000001,\rifelse(decimal_places == 14, 0.00000000000001,\rifelse(decimal_places \u0026gt;= 15, 0.000000000000001, 0.001\r)))))))))))))))\r}\r# First row: intercept_plot\r# Select intercept data only\rintercept = allFit_fixef %\u0026gt;% dplyr::filter(fixed_effect == \u0026#39;(Intercept)\u0026#39;)\rintercept_plot = intercept %\u0026gt;%\rggplot(., aes(fixed_effect, value, colour = Optimizer)) +\rgeom_point(position = position_dodge(1)) +\rfacet_wrap(~fixed_effect, scale = \u0026#39;free\u0026#39;) +\rguides(colour = guide_legend(title.position = \u0026#39;left\u0026#39;)) +\rtheme_bw() + theme(axis.title = element_blank(), axis.ticks.x = element_blank(),\raxis.text.x = element_blank(), strip.text = element_text(size = 10, margin = margin(t = 4, b = 6)),\rstrip.background = element_rect(fill = \u0026#39;grey96\u0026#39;),\rlegend.margin = margin(0.3, 0, 0.8, 1, \u0026#39;cm\u0026#39;), legend.title = element_text(size = unit(15, \u0026#39;pt\u0026#39;), angle = 90, hjust = 0.5))\r# Second row: predictors_plot\r# Select all predictors except intercept\rpredictors = allFit_fixef %\u0026gt;% dplyr::filter(!fixed_effect == \u0026#39;(Intercept)\u0026#39;)\r# If interaction_symbol_x = TRUE (default), replace colon with times symbol x between spaces\rif(interaction_symbol_x == TRUE) {\r# Replace colon in interactions with \\u00D7, i.e., x; then set factor class\rpredictors$fixed_effect = predictors$fixed_effect %\u0026gt;% str_replace_all(\u0026#39;:\u0026#39;, \u0026#39; \\u00D7 \u0026#39;) %\u0026gt;% factor()\r}\r# Order predictors as in the original output from lme4::allFit()\rpredictors$fixed_effect = factor(predictors$fixed_effect, levels = unique(predictors$fixed_effect))\r# Set number of rows for the predictors excluding the intercept.\r# First, if nrow argument supplied, use it\rif(!is.null(nrow)) {\rpredictors_plot_nrow = nrow - 1 # Subtract 1 as intercept row not considered\r# Else, if nrow argument not supplied, calculate sensible number of rows: i.e., divide number of\r# predictors (exc. intercept) by 2 and round up the result. For instance, 7 predictors --\u0026gt; 3 rows\r} else predictors_plot_nrow = (length(unique(predictors$fixed_effect)) / 2) %\u0026gt;% ceiling()\rpredictors_plot = ggplot(predictors, aes(fixed_effect, value, colour = Optimizer)) +\rgeom_point(position = position_dodge(1)) +\rfacet_wrap(~fixed_effect, scale = \u0026#39;free\u0026#39;,\r# Note that predictors_plot_nrow was defined a few lines above\rnrow = predictors_plot_nrow, # Wrap names of predictors with more than 54 characters into new lines\rlabeller = labeller(fixed_effect = label_wrap_gen(width = 55))) +\rlabs(y = y_title) +\rtheme_bw() + theme(axis.title.x = element_blank(), axis.text.x = element_blank(),\raxis.ticks.x = element_blank(),\raxis.title.y = ggtext::element_markdown(size = 14, margin = margin(0, 15, 0, 0)),\rstrip.text = element_text(size = 10, margin = margin(t = 4, b = 6)),\rstrip.background = element_rect(fill = \u0026#39;grey96\u0026#39;), legend.position = \u0026#39;none\u0026#39;)\r# Below, the function scale_y_continuous is applied conditionally to avoid overriding settings. First, # if shared_y_axis_limits = TRUE and decimal_places was supplied, set the same Y axis limits in # every plot and set decimal_places. By default, also expand limits by a seventh of its original # limit, and allow further multiplication of limits through multiply_y_axis_limits.\rif(shared_y_axis_limits == TRUE \u0026amp; !is.null(decimal_places)) {\rintercept_plot = intercept_plot +\rscale_y_continuous(limits = c(min(allFit_fixef$value) - allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits,\rmax(allFit_fixef$value) + allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits), # Set number of decimal places\rlabels = scales::label_number(accuracy = decimal_places))\rpredictors_plot = predictors_plot + scale_y_continuous(limits = c(min(allFit_fixef$value) - allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits,\rmax(allFit_fixef$value) + allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits), # Set number of decimal places\rlabels = scales::label_number(accuracy = decimal_places))\r# Else, if shared_y_axis_limits = TRUE but decimal_places were not supplied, do as above but without\r# setting decimal_places.\r} else if(shared_y_axis_limits == TRUE \u0026amp; is.null(decimal_places)) {\rintercept_plot = intercept_plot +\rscale_y_continuous(limits = c(min(allFit_fixef$value) - allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits,\rmax(allFit_fixef$value) + allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits),\r# Set number of decimal places\rlabels = scales::label_number(accuracy = decimal_places))\rpredictors_plot = predictors_plot + scale_y_continuous(limits = c(min(allFit_fixef$value) - allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits,\rmax(allFit_fixef$value) + allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits),\r# Set number of decimal places\rlabels = scales::label_number(accuracy = decimal_places))\r# Else, if shared_y_axis_limits = FALSE and decimal_places was supplied, set decimal_places. } else if(shared_y_axis_limits == FALSE \u0026amp; !is.null(decimal_places)) {\r# Set number of decimal places in both plots\rintercept_plot = intercept_plot +\rscale_y_continuous(labels = scales::label_number(accuracy = decimal_places))\rpredictors_plot = predictors_plot +\rscale_y_continuous(labels = scales::label_number(accuracy = decimal_places))\r}\r# Plot matrix: based on number of predictors_plot_nrow, adjust height of Y axis title\r# (unless supplied), and assign space to intercept_plot and predictors_plot\rif(predictors_plot_nrow == 1) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 3.6))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 11, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow == 2) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 1.4))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 16, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow == 3) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 0.92))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 21, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow == 4) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 0.8))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 26, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow == 5) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 0.73))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 31, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow \u0026gt; 5) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 0.65))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 36, l = 0) # predictors row(s)\r)\r# Also, advise user to consider distributing predictors into several plots\rmessage(\u0026#39; Many rows! Consider distributing predictors into several plots \\n using argument `select_predictors`\u0026#39;)\r} # Add margin\rpredictors_plot = predictors_plot + theme(plot.margin = margin(15, 15, 15, 15))\r# Return matrix of plots\rwrap_plots(intercept_plot, predictors_plot, design = layout,\r# The 2 below corresponds to intercept_plot and predictors_plot\rnrow = 2)\r}\r\rOptional arguments\rBelow are the optional arguments allowed by the function, with their default values.\n# Set the same Y axis limits in every plot\rshared_y_axis_limits = TRUE,\r# Multiply Y axis limits by a factor (only # available if shared_y_axis_limits = TRUE)\rmultiply_y_axis_limits = 1, # Number of decimal places\rdecimal_places = NULL,\r# Select predictors\rselect_predictors = NULL, # Number of rows\rnrow = NULL, # Y axis title\ry_title = \u0026#39;Fixed effect\u0026#39;,\r# Alignment of the Y axis title\ry_title_hjust = NULL,\r# Add number to the names of optimizers\rnumber_optimizers = TRUE,\r# Replace colon in interactions with x\rinteraction_symbol_x = TRUE\r\rThe argument shared_y_axis_limits deserves a comment. It allows using the same Y axis limits (i.e., range) in all plots or, alternatively, using plot-specific limits. The parameter is TRUE by default to prevent overinterpretations of small differences across optimizers (see the first figure below). In contrast, when shared_y_axis_limits = FALSE, plot-specific limits are used, which results in a narrower range of values in the Y axis (see the second figure below). Since data points will span the entire Y axis in that case, any difference across optimizers—regardless of its relative importance—might be perceived as large, unless the specific range of values in each plot is noticed.\n\r\rUse case\rLet’s test the function with a minimal model.\n# Create data using code by Ben Bolker from # https://stackoverflow.com/a/38296264/7050882\rset.seed(101)\rspin = runif(600, 1, 24)\rreg = runif(600, 1, 15)\rID = rep(c(\u0026quot;1\u0026quot;,\u0026quot;2\u0026quot;,\u0026quot;3\u0026quot;,\u0026quot;4\u0026quot;,\u0026quot;5\u0026quot;, \u0026quot;6\u0026quot;, \u0026quot;7\u0026quot;, \u0026quot;8\u0026quot;, \u0026quot;9\u0026quot;, \u0026quot;10\u0026quot;))\rday = rep(1:30, each = 10)\rtestdata \u0026lt;- data.frame(spin, reg, ID, day)\rtestdata$fatigue \u0026lt;- testdata$spin * testdata$reg/10 * rnorm(30, mean=3, sd=2)\r# Model\rlibrary(lme4)\rfit = lmer(fatigue ~ spin * reg + (1|ID),\rdata = testdata, REML = TRUE)\r# Refit model using all available algorithms\rmulti_fit = allFit(fit)\r## bobyqa : [OK]\r## Nelder_Mead : [OK]\r## nlminbwrap : [OK]\r## nmkbw : [OK]\r## optimx.L-BFGS-B : [OK]\r## nloptwrap.NLOPT_LN_NELDERMEAD : [OK]\r## nloptwrap.NLOPT_LN_BOBYQA : [OK]\rsummary(multi_fit)$fixef\r## (Intercept) spin reg spin:reg\r## bobyqa -2.975678 0.5926561 0.1437204 0.1834016\r## Nelder_Mead -2.975675 0.5926559 0.1437202 0.1834016\r## nlminbwrap -2.975677 0.5926560 0.1437203 0.1834016\r## nmkbw -2.975678 0.5926561 0.1437204 0.1834016\r## optimx.L-BFGS-B -2.975680 0.5926562 0.1437205 0.1834016\r## nloptwrap.NLOPT_LN_NELDERMEAD -2.975666 0.5926552 0.1437196 0.1834017\r## nloptwrap.NLOPT_LN_BOBYQA -2.975678 0.5926561 0.1437204 0.1834016\rThe effects to be visualised are selected below using the argument select_predictors. Notice that the intercept is plotted by default on the first row, along with the legend that lists all the optimizers used.\n# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/plot.fixef.allFit/main/plot.fixef.allFit.R\u0026#39;)\rplot.fixef.allFit(multi_fit, select_predictors = c(\u0026#39;spin\u0026#39;, \u0026#39;reg\u0026#39;, \u0026#39;spin:reg\u0026#39;), # Increase padding at top and bottom of Y axis\rmultiply_y_axis_limits = 1.3,\ry_title = \u0026#39;Fixed effect (*b*)\u0026#39;,\r# Align y title\ry_title_hjust = .9)\rThe plot produced by plot.fixef.allFit() by default replaces the colons in interaction effects (e.g., spin:reg) with ’ × ’ to facilitate the visibility (this can be overriden by setting interaction_symbol_x = FALSE). Yet, it is important to note that any interactions passed to select_predictors must have the colon, as that is the symbol present in the lme4::allFit() output.\nThe output of plot.fixef.allFit() is a ggplot2 object that can be stored for further use, as in the example below, in which new parameters are used.\nlibrary(ggplot2)\rplot_fit_convergence = plot.fixef.allFit(multi_fit, select_predictors = c(\u0026#39;spin\u0026#39;, \u0026#39;spin:reg\u0026#39;), # Use plot-specific Y axis limits\rshared_y_axis_limits = FALSE,\rdecimal_places = 7, # Move up Y axis title\ry_title_hjust = -20,\ry_title = \u0026#39;Fixed effect (*b*)\u0026#39;)\r# Print\rplot_fit_convergence\r# Plot can be saved to disk as pdf, png, etc. through `ggplot2::ggsave()`\r# ggsave(\u0026#39;plot_fit_convergence.pdf\u0026#39;, plot_fit_convergence, # device = cairo_pdf, width = 9, height = 9, dpi = 900)\r\rReferences\rBates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., Green, P., Fox, J., Bauer, A., \u0026amp; Krivitsky, P. N. (2022). Package ‘lme4’. CRAN. https://cran.r-project.org/web/packages/lme4/lme4.pdf\nBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159\nMatuschek, H., Kliegl, R., Vasishth, S., Baayen, H., \u0026amp; Bates, D. (2017). Balancing type 1 error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001\nMeteyard, L., \u0026amp; Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092\nSingmann, H., \u0026amp; Kellen, D. (2019). An introduction to mixed models for experimental psychology. In D. H. Spieler \u0026amp; E. Schumacher (Eds.), New methods in cognitive psychology (pp. 4–31). Psychology Press.\n\r","date":1687392000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687392000,"objectID":"ef5142572a939044659c17baecffa1ac","permalink":"https://pablobernabeu.github.io/2023/a-new-function-to-plot-convergence-diagnostics-from-lme4-allfit/","publishdate":"2023-06-22T00:00:00Z","relpermalink":"/2023/a-new-function-to-plot-convergence-diagnostics-from-lme4-allfit/","section":"post","summary":"When a model has struggled to find enough information in the data to account for every predictor---especially for every random effect---, convergence warnings appear (Brauer \u0026 Curtin, 2018; Singmann \u0026 Kellen, 2019). In this article, I review the issue of convergence before presenting a new plotting function in R that facilitates the visualisation of the fixed effects fitted by different optimization algorithms (also dubbed optimizers).","tags":["s","R","linear mixed-effects models","visualisation","statistics"],"title":"A new function to plot convergence diagnostics from lme4::allFit()","type":"post"},{"authors":["Chen, S.-C., Buchanan, E. M., Kekecs, Z., Miller, J. K., Szabelska, A., Aczel, B., Bernabeu, P., Forscher, P. S., Szuts, A., Vally, D. Z., Al-Hoorie, A. H., Helmy, M., Silva, C. S. A. da, Silva, L. O. da, Moraes, Y. L. de, Hsu, R. M. C. S., Mafra, A. L., Valentova, J. V., Varella, M. A. C., … Chartier, C. R."],"categories":["conceptual processing","replication"],"content":" General project Data from our lab Video demonstration of the procedure followed in our lab \rRelated: the value of a replication study during PhD.\nReference Chen, S.-C., Buchanan, E. M., Kekecs, Z., Miller, J. K., Szabelska, A., Aczel, B., Bernabeu, P., Forscher, P. S., Szuts, A., Vally, D. Z., Al-Hoorie, A. H., Helmy, M., Silva, C. S. A. da, Silva, L. O. da, Moraes, Y. L. de, Hsu, R. M. C. S., Mafra, A. L., Valentova, J. V., Varella, M. A. C., … Chartier, C. R. (2023). Investigating object orientation effects across 18 languages. OSF Preprints. https://doi.org/10.31219/osf.io/2qf6w\n\r","date":1686182400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1686182400,"objectID":"9e4b60290f7493777dd1254f0a6e8953","permalink":"https://pablobernabeu.github.io/publication/chen-etal-inprep/","publishdate":"2023-06-08T00:00:00Z","relpermalink":"/publication/chen-etal-inprep/","section":"publication","summary":"Mental simulation theories of language comprehension propose that people automatically create mental representations of objects mentioned in sentences. Mental representation is often measured with the sentence-picture verification task, wherein participants first read a sentence that implies the object property (i.e., shape and orientation). Participants then respond to an image of an object by indicating whether it was an object from the sentence or not. Previous studies have shown matching advantages for shape, but findings concerning object orientation have not been robust across languages. This registered report investigated the match advantage of object orientation across 18 languages in nearly 4,000 participants. The preregistered analysis revealed no compelling evidence for a match advantage across languages. Additionally, the match advantage was not predicted by mental rotation scores. Overall, the results did not support current mental simulation theories.","tags":["object orientation effect","conceptual processing","reading","event-related potentials","cognition","mental rotation","individual differences","crosslinguistic","replication","psycholinguistics","Psychological Science Accelerator"],"title":"Investigating object orientation effects across 18 languages","type":"publication"},{"authors":null,"categories":["psycholinguistics"],"content":"\n Slideshare \rLabotka, D., Sabo, E., Bonais, R., Gelman, S. A., \u0026amp; Baptista, M. (2023). Testing the effects of congruence in adult multilingual acquisition with implications for creole genesis. Cognition, 235, 105387. https://doi.org/10.1016/j.cognition.2023.105387\n ","date":1684713600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684713600,"objectID":"0309a9853357e593b9a96c16e25d5895","permalink":"https://pablobernabeu.github.io/presentation/discussion-of-labotka-et-al-2023/","publishdate":"2023-05-22T00:00:00Z","relpermalink":"/presentation/discussion-of-labotka-et-al-2023/","section":"presentation","summary":"\n Slideshare \rLabotka, D., Sabo, E., Bonais, R., Gelman, S. A., \u0026amp; Baptista, M. (2023). Testing the effects of congruence in adult multilingual acquisition with implications for creole genesis. Cognition, 235, 105387. https://doi.org/10.1016/j.cognition.2023.105387\n ","tags":["creole","interlanguage transfer","language learning","linguistics","psycholinguistics"],"title":"Discussion of Labotka et al. (2023)","type":"presentation"},{"authors":[],"categories":["research methods"],"content":"\rOpenSesame offers options to counterbalance properties of the stimulus across participants. However, in cases of more involved assignments of session parameters across participants, it becomes necessary to write a bit of Python code in an inline script, which should be placed at the top of the timeline. In such a script, the participant-specific parameters are loaded in from a csv file. Below is a minimal example of the csv file.\n\r\r\r\rparticipant\rlanguage\rtraining_list\rtest_list\rexperiment_list\r\r\r\r1\rMini-English\r1\r1\r1\r\r2\rMini-Norwegian\r1\r1\r1\r\r3\rMini-English\r2\r2\r1\r\r4\rMini-Norwegian\r2\r2\r1\r\r5\rMini-English\r1\r3\r2\r\r6\rMini-Norwegian\r1\r3\r2\r\r7\rMini-English\r2\r4\r2\r\r8\rMini-Norwegian\r2\r4\r2\r\r\r\rBelow is the corresponding inline script. The code .iloc[0] at the end of the lines is used to select a cell.\n# Assign participant-specific parameters. For each participant-specific factor in the # stimulus files, take the level corresponding to the index position specified in the # participant parameters file.\rimport csv # handle csv file\rimport pandas as pd # handle data frames\rparticipant_parameters = pd.read_csv(exp.get_file(\u0026#39;stimuli/parameters per participant.csv\u0026#39;))\rvar.participant = var.subject_nr\rvar.language = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;language\u0026#39;].iloc[0]\rvar.training_list = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;training_list\u0026#39;].iloc[0]\rvar.test_list = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;test_list\u0026#39;].iloc[0]\rvar.experiment_list = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;experiment_list\u0026#39;].iloc[0]\rFinally, the variables created in the script can be used in Run if conditions (e.g., [language] == 'Mini-English'), as replacements inside file names (e.g., [language] training, List [training_list].csv), and as input in sketchpads (e.g., Current list: [training_list]).\n","date":1684281600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684281600,"objectID":"0a75f39305dfd092000bbe97b550af25","permalink":"https://pablobernabeu.github.io/2023/assigning-participant-specific-parameters-automatically-in-opensesame/","publishdate":"2023-05-17T00:00:00Z","relpermalink":"/2023/assigning-participant-specific-parameters-automatically-in-opensesame/","section":"post","summary":"OpenSesame offers options to counterbalance properties of the stimulus across participants. However, in cases of more involved assignments of session parameters across participants, it becomes necessary to write a bit of Python code in an inline script, which should be placed at the top of the timeline. In such a script, the participant-specific parameters are loaded in from a csv file. Below is a minimal example of the csv file.","tags":["research methods","OpenSesame","python","s"],"title":"Assigning participant-specific parameters automatically in OpenSesame","type":"post"},{"authors":[],"categories":["linguistics"],"content":"\rUnlike English, some Romance languages not only allow—but sometimes require—pronominal object clitics in preverbal position (Hanson \u0026amp; Carlson, 2014; Labotka et al., 2023). That is, instead of saying La maestra ha detto il nome (Italian) ‘The teacher has said the name’, Italian allows Il nome lo ha detto la maestra (literally, ‘The name it has said the teacher’), which could translate as ‘The name has been said by the teacher’, ‘The teacher has said the name’, or even ‘It is the teacher that has said the name’. The form Il nome lo ha detto la maestra is a marked phrasing that increases the attention to the agent of the action. Furthermore, when the clitic is in preverbal position, the degree of focus on the agent is also dependent on the context. For instance, the focus is light in Lo ha detto la maestra, whereas it is stronger in Lo ha detto la maestra, non l’assistente “It’s the teacher that’s said it, not the assistant”.\nThe agent-focus can sometimes be relinquished in translations (‘The teacher has said it’). In other cases, it must be preserved by applying an intonational or written emphasis on the agent (‘The teacher has said it’), or by implementing the idiomatic form ‘The teacher said’, or a marked syntax—for instance, with an it-cleft, as in “It’s the teacher that’s said it”, or by adding ‘oneself’, as in ‘The teacher said it herself’.\nNow, how does Google Translate (GT) deal with these translations in May 2023? To translate Lo ha detto la maestra, GT opts for ‘The teacher said’, which is a good, idiomatic option. When it comes to translating to Spanish, GT returns ‘El profesor dijo’, which is the direct equivalent of the English translation.1 This option is valid in some varieties of Spanish in America. Nonetheless, it must be noted that a more direct translation from the Italian form would have been very good in Spanish (Lo ha dicho la maestra).\nGT has greater trouble when the content of the sentence is slightly less frequent. For instance, Lo cerca la maestra ‘Him is seeking the teacher’ is stripped of its markedness in GT’s rendering in English—i.e., ‘The teacher is looking for him’. Preserving the agent-focus—e.g., “It’s the teacher that’s looking for him”—would require some syntactic liberties, and hence entail some risks. So, playing it safe is understandable. Our next step is checking the translation to some Romance languages that allow the same movement to preverbal position present in the original Italian sentence Lo cerca la maestra. Aside from GT, the sentence could be well translated into Romanian as Îl caută dăscăliţa, or into Spanish as Lo busca la profesora. In contrast, for both translations, GT returns the equivalents of the English translation—i.e., Profesorul îl caută and El profesor lo busca, again discarding the focus on the agent—unnecessarily in these cases, due to the overlap in the grammars.2\n\nSubmitting a better translation is always an option.\nIn fairness, machine translation is an absolute feat overall, provided enough caution is practised. With the expansion of language models, machine translation is only going to improve. So, how much of a piece of cake will it be for GT to crack some of these syntactic details in time, and to preserve syntactic forms across languages when the systems match?\nReferences\rHanson, A. E. S., \u0026amp; Carlson, M. T. (2014). The roles of first language and proficiency in L2 processing of Spanish clitics: Global effects. Language Learning, 64(2), 310-342. https://doi.org/10.1111/lang.12050\nLabotka, D., Sabo, E., Bonais, R., Gelman, S. A., \u0026amp; Baptista, M. (2023). Testing the effects of congruence in adult multilingual acquisition with implications for creole genesis. Cognition, 235, 105387. https://doi.org/10.1016/j.cognition.2023.105387\n\r\rWe can again ignore the errors of lexical gender in the translations.↩︎\n\rWe can again ignore the errors of lexical gender in the translations.↩︎\n\r\r\r","date":1684281600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684281600,"objectID":"04ef742b99131ee067508761d7d2d365","permalink":"https://pablobernabeu.github.io/2023/pronominal-object-clitics-in-preverbal-position-are-a-hard-nut-to-crack-for-google-translate/","publishdate":"2023-05-17T00:00:00Z","relpermalink":"/2023/pronominal-object-clitics-in-preverbal-position-are-a-hard-nut-to-crack-for-google-translate/","section":"post","summary":"Unlike English, some Romance languages not only allow—but sometimes require—pronominal object clitics in preverbal position (Hanson \u0026amp; Carlson, 2014; Labotka et al., 2023). That is, instead of saying La maestra ha detto il nome (Italian) ‘The teacher has said the name’, Italian allows Il nome lo ha detto la maestra (literally, ‘The name it has said the teacher’), which could translate as ‘The name has been said by the teacher’, ‘The teacher has said the name’, or even ‘It is the teacher that has said the name’.","tags":["linguistics","syntax","translation","s"],"title":"Pronominal object clitics in preverbal position are a hard nut to crack for Google Translate","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rIn the preparation of projects, files are often downloaded from OSF. It is good to document the URL addresses that were used for the downloads. These URLs can be provided in a code script (see example) or in a README file. Better yet, it’s possible to specify the version of each file in the URL. This specification helps reduce the possibility of inaccuracies later, should any files be modified afterwards.\nThe versions of files can be consulted on the right-hand side of the file page on OSF, as shown below.\nNext, the appropriate version can be specified in the download link by appending ?version=X at the end. For instance, the seventh version is specified in the link https://osf.io/hx6tz/download?version=7.\n","date":1684195200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684195200,"objectID":"dc077344d34aa8f1b16260087144109d","permalink":"https://pablobernabeu.github.io/2023/specifying-version-number-in-osf-download-links/","publishdate":"2023-05-16T00:00:00Z","relpermalink":"/2023/specifying-version-number-in-osf-download-links/","section":"post","summary":"In the preparation of projects, files are often downloaded from OSF. It is good to document the URL addresses that were used for the downloads. These URLs can be provided in a code script (see example) or in a README file. Better yet, it’s possible to specify the version of each file in the URL. This specification helps reduce the possibility of inaccuracies later, should any files be modified afterwards.","tags":["research methods","s"],"title":"Specifying version number in OSF download links","type":"post"},{"authors":[],"categories":["research methods","statistics"],"content":"\rThe need for covariates—or nuisance variables—in statistical analyses is twofold. The first reason is purely statistical and the second reason is academic.\nFirst, the use of covariates is often necessary when the variable(s) of interest in a study may be connected to, and affected by, some satellite variables (Bottini et al., 2022; Elze et al., 2017; Sassenhagen \u0026amp; Alday, 2016). This complex scenario is the most common one due to the multivariate, dynamic, interactive nature of the real world.\nSecond, the use of covariates is often necessary to prevent the development of bogus, redundant theories. Academics are strongly rewarded for developing theories. As we know, wherever there are strong rewards, there are serious risks. An academic could—consciously or not—produce a theory that is too closely related to an existing theory. So closely related are these theories that the second version might not warrant a name of its own. In such a scenario, covariates are useful and indeed necessary to vet the unique nature of the second version. That is, the first and the second version must be tested in the same model, and the variables corresponding to the first version can be construed as covariates. This allows both the developers of the theories and the readers to compare the effects corresponding to each version of the theory, and to assess the degree of separation between them.\nThe perverted use of covariates (Stefan \u0026amp; Schönbrodt, 2023)—however frequent and harmful—stands completely orthogonal to the correct usage of covariates, in the same way that a stethoscope can be used for good or for bad purposes. It would be poorly informed and misleading to conflate the correct and the incorrect uses, or to reject the use of covariates altogether due to the incorrect uses.\nIn conclusion, the effects of interest in correlational/observational studies can be subject to mediation and moderation by satellite variables. These variables cannot be manipulated in correlational/observational studies, but they can—and often should—be included as covariates in the statistical models, to ward off spurious results and to vet similar theories.\nReferences\rBottini, R., Morucci, P., D’Urso, A., Collignon, O., \u0026amp; Crepaldi, D. (2022). The concreteness advantage in lexical decision does not depend on perceptual simulations. Journal of Experimental Psychology: General, 151(3), 731–738. https://doi.org/10.1037/xge0001090\nElze, M. C., Gregson, J., Baber, U., Williamson, E., Sartori, S., Mehran, R., Nichols, M., Stone, G. W., \u0026amp; Pocock, S. J. (2017). Comparison of propensity score methods and covariate adjustment: Evaluation in 4 cardiovascular studies. Journal of the American College of Cardiology, 69(3), 345-357. https://doi.org/10.1016/j.jacc.2016.10.060\nSassenhagen, J., \u0026amp; Alday, P. M. (2016). A common misapplication of statistical inference: Nuisance control with null-hypothesis significance tests. Brain and Language, 162, 42-45. https://doi.org/10.1016/j.bandl.2016.08.001\nStefan, A. M., \u0026amp; Schönbrodt, F. D. (2023). Big little lies: A compendium and simulation of p-hacking strategies. Royal Society Open Science, 10(2), 220346. https://doi.org/10.1098/rsos.220346\n\r","date":1684108800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684108800,"objectID":"3006b3b13da03672741cd712494ede7f","permalink":"https://pablobernabeu.github.io/2023/covariates-are-necessary-to-validate-the-variables-of-interest-and-to-prevent-bogus-theories/","publishdate":"2023-05-15T00:00:00Z","relpermalink":"/2023/covariates-are-necessary-to-validate-the-variables-of-interest-and-to-prevent-bogus-theories/","section":"post","summary":"The need for covariates—or nuisance variables—in statistical analyses is twofold. The first reason is purely statistical and the second reason is academic.\nFirst, the use of covariates is often necessary when the variable(s) of interest in a study may be connected to, and affected by, some satellite variables (Bottini et al., 2022; Elze et al., 2017; Sassenhagen \u0026amp; Alday, 2016). This complex scenario is the most common one due to the multivariate, dynamic, interactive nature of the real world.","tags":["research methods","statistics","conflation","s"],"title":"Covariates are necessary to validate the variables of interest and to prevent bogus theories","type":"post"},{"authors":null,"categories":["statistics"],"content":"\r\n\r\n\r\n","date":1681171200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1681171200,"objectID":"3c2f849c53709f267bdefd8e6e784b9c","permalink":"https://pablobernabeu.github.io/2023/cannot-open-plots-created-with-brms-mcmc-plot-due-to-lack-of-discrete-range-function/","publishdate":"2023-04-11T00:00:00Z","relpermalink":"/2023/cannot-open-plots-created-with-brms-mcmc-plot-due-to-lack-of-discrete-range-function/","section":"post","summary":"I would like to ask for advice regarding some plots that were created using brms::mcmc_plot(), and cannot be opened in R now. The plots were created last year using brms 2.17.0, and were saved in RDS objects. The problem I have is that I cannot open the plots in R now because I get an error related to a missing function. I would be very grateful if someone could please advise me if they can think of a possible reason or solution.","tags":["statistics","Bayesian statistics","linear-mixed effects models","brms","plotting","data visualisation","R","s"],"title":"Cannot open plots created with brms::mcmc_plot due to lack of `discrete_range` function","type":"post"},{"authors":null,"categories":["psycholinguistics"],"content":"\n Slideshare\r\rJost, E., Brill-Schuetz, K., Morgan-Short, K., \u0026amp; Christiansen, M. H. (2019). Input complexity affects long-term retention of statistically learned regularities in an artificial language learning task. Frontiers in Human Neuroscience, 13, 358. https://www.frontiersin.org/articles/10.3389/fnhum.2019.00358\n ","date":1675036800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1675036800,"objectID":"051d6888f5eb3f3d3e10fd8b8c40e103","permalink":"https://pablobernabeu.github.io/presentation/discussion-of-jost-et-al-2019/","publishdate":"2023-01-30T00:00:00Z","relpermalink":"/presentation/discussion-of-jost-et-al-2019/","section":"presentation","summary":"\n Slideshare\r\rJost, E., Brill-Schuetz, K., Morgan-Short, K., \u0026amp; Christiansen, M. H. (2019). Input complexity affects long-term retention of statistically learned regularities in an artificial language learning task. Frontiers in Human Neuroscience, 13, 358. https://www.frontiersin.org/articles/10.3389/fnhum.2019.00358\n ","tags":["language","learning","linguistics","psycholinguistics","statistical learning"],"title":"Discussion of Jost et al. (2019)","type":"presentation"},{"authors":[],"categories":["R","statistics"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\r\rHere I share the format applied to tables presenting the results of Bayesian models in Bernabeu (2022; the table for frequentist models is covered in this other post). The sample table presents a Bayesian mixed-effects model that was fitted using the R package brms (Bürkner et al., 2022). The mixed effects were driven by the maximal principle (Brauer \u0026amp; Curtin, 2018). The format of the table resembles one of the examples published by the American Psychological Association. However, there are also deviations from those examples. For instance, in the present table, the effects are grouped under informative labels to facilitate the readers’ comprehension, using the kableExtra package (Zhu, 2022). Furthermore, the random slopes are specified using superscript letters and a footnote. The table can be reproduced using the materials at https://osf.io/gt5uf.\nLoading packages and the results of the models\rlibrary(dplyr)\rlibrary(knitr)\rlibrary(tibble)\rlibrary(stringr)\rlibrary(lmerTest)\rlibrary(kableExtra)\r# Load Bayesian results summary\rsemanticpriming_summary_weaklyinformativepriors_exgaussian = readRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_summary_weaklyinformativepriors_exgaussian.rds?raw=true\u0026#39;)))\r\rAdjusting the names of the effects\rFirst, to facilitate the understanding of the results, the original names of the effects will be adjusted in the brms summary.\n# Rename effects in plain language and specify the random slopes\r# (if any) for each effect, in the footnote. For this purpose, # superscripts are added to the names of the appropriate effects.\r# # In the interactions below, word-level variables are presented # first for the sake of consistency (the order does not affect # the results in any way). Also in the interactions, double # colons are used to inform the \u0026#39;bayesian_model_table\u0026#39; # function that the two terms in the interaction must be split # into two lines.\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_attentional_control\u0026#39;] = \u0026#39;Attentional control\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_attentional_control\u0026#39;] = \u0026#39;Attentional control\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_vocabulary_size\u0026#39;] = \u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_recoded_participant_gender\u0026#39;] = \u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_target_word_frequency\u0026#39;] = \u0026#39;Word frequency\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_target_number_syllables\u0026#39;] = \u0026#39;Number of syllables\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_word_concreteness_diff\u0026#39;] = \u0026#39;Word-concreteness difference\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_word_concreteness_diff:z_vocabulary_size\u0026#39;] = \u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_word_concreteness_diff:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Word-concreteness difference : SOA\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_word_concreteness_diff:z_recoded_participant_gender\u0026#39;] = \u0026#39;Word-concreteness difference : Gender\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_attentional_control:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Attentional control\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_attentional_control:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Attentional control\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_vocabulary_size:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Vocabulary size\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_vocabulary_size:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_recoded_participant_gender:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : Gender\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_recoded_participant_gender:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : Gender\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\r\rbayesian_model_table()\rIn Bernabeu (2022), the following custom function was used.\n\rThe above function was used to render a PDF output. In the current scenario, however, we have an HTML output. In the above function, the code used for the \\(\\widehat{R}\\) tailored to the HTML output (\u0026amp;Rcirc;) does not render properly.\n\rInstead, the LaTeX code $\\\\widehat{R}$ must be used. Therefore, we’ll correct this error and load the function below.\n# Function used in the manuscript to present summaries from \u0026#39;brms\u0026#39; models # in APA-formatted tables. The only obligatory argument to be supplied is # a summary of a \u0026#39;brms\u0026#39; model.\rbayesian_model_table = function(model_summary, show_intercept = TRUE, select_effects = NULL, order_effects = NULL, format = NULL, # If interaction_symbol_x = TRUE, replace double colons with # times symbols followed by line breaks and indentation. # Then, replace single colons with times symbols.\rinteraction_symbol_x = FALSE,\rcaption = \u0026#39;Summary of the lmerTest model.\u0026#39;) {\rrequire(dplyr)\rrequire(knitr)\rrequire(tibble)\rrequire(stringr)\rrequire(lmerTest)\rrequire(kableExtra)\r# Create data frame\rmodel_summary = data.frame(Effect = rownames(model_summary$fixed), Estimate = model_summary$fixed$Estimate, SE = model_summary$fixed$Est.Error, CrI_2.5 = model_summary$fixed$`l-95% CI`, CrI_97.5 = model_summary$fixed$`u-95% CI`, Rhat = model_summary$fixed$Rhat,\rrow.names = NULL)\r# Process credible intervals and present both inside square brackets\rmodel_summary$CrI_2.5 = model_summary$CrI_2.5 %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .) %\u0026gt;% # Remove minus sign from pure zeros\rsub(\u0026#39;-0.00\u0026#39;, \u0026#39;0.00\u0026#39;, .)\rmodel_summary$CrI_97.5 = model_summary$CrI_97.5 %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .) %\u0026gt;% # Remove minus sign from pure zeros\rsub(\u0026#39;-0.00\u0026#39;, \u0026#39;0.00\u0026#39;, .)\rmodel_summary$CrI_95 = paste0(\u0026#39;[\u0026#39;, model_summary$CrI_2.5, \u0026#39;, \u0026#39;, model_summary$CrI_97.5, \u0026#39;]\u0026#39;)\r# If show_intercept = FALSE, remove it\rif(isFALSE(show_intercept)) {\rmodel_summary = model_summary %\u0026gt;% filter(!grepl(\u0026#39;Intercept\u0026#39;, Effect))\r# Put \u0026#39;Intercept\u0026#39; in parentheses\r} else if(!is.null(model_summary[model_summary$Effect == \u0026#39;Intercept\u0026#39;, \u0026#39;Effect\u0026#39;])) {\rmodel_summary[model_summary$Effect == \u0026#39;Intercept\u0026#39;, \u0026#39;Effect\u0026#39;] = \u0026#39;(Intercept)\u0026#39;\r}\r# If select_effects was supplied, apply it and order effects accordingly\rif(!is.null(select_effects)) {\rmodel_summary = model_summary %\u0026gt;% filter(Effect %in% select_effects) %\u0026gt;%\rarrange(factor(Effect, levels = select_effects))\r}\r# If order_effects was supplied, apply order\rif(!is.null(order_effects)) {\rmodel_summary = model_summary %\u0026gt;%\rarrange(factor(Effect, levels = order_effects))\r}\r# Round other values\rmodel_summary$Estimate = model_summary$Estimate %\u0026gt;% as.numeric %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .) %\u0026gt;% # Remove minus sign from pure zeros\rsub(\u0026#39;-0.00\u0026#39;, \u0026#39;0.00\u0026#39;, .)\rmodel_summary$SE = model_summary$SE %\u0026gt;% as.numeric %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .)\rmodel_summary$Rhat = model_summary$Rhat %\u0026gt;% as.numeric %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .)\r# Order columns\rmodel_summary = model_summary %\u0026gt;% select(Effect, Estimate, SE, CrI_95, Rhat)\r# Right-align all columns after first one\ralign = c(\u0026#39;l\u0026#39;, \u0026#39;r\u0026#39;, \u0026#39;r\u0026#39;, \u0026#39;r\u0026#39;, \u0026#39;r\u0026#39;)\r# Establish latex or HTML format: if no format supplied, # try to obtain it from knitr, or apply HTML\rif(missing(format) || is.null(format)) {\rif(knitr::is_latex_output()) {\rformat = \u0026#39;latex\u0026#39;\r} else format = \u0026#39;html\u0026#39;\r}\r# HTML format\rif(format == \u0026#39;html\u0026#39;) {\r# If interaction_symbol_x = TRUE, replace double colons with times # symbols followed by line breaks and indentation. Then, replace # single colons with times symbols.\rif(interaction_symbol_x) {\rmodel_summary$Effect = model_summary$Effect %\u0026gt;% gsub(\u0026#39;::\u0026#39;, \u0026#39; \u0026amp;times; \u0026lt;br\u0026gt; \u0026amp;nbsp;\u0026amp;nbsp;\u0026#39;, .) %\u0026gt;%\rgsub(\u0026#39;:\u0026#39;, \u0026#39; \u0026amp;times; \u0026#39;, .)\r}\r# Output table\rmodel_summary %\u0026gt;% # Remove header of first column and rename other headers\rrename(\u0026#39; \u0026#39; = \u0026#39;Effect\u0026#39;, \u0026#39;\u0026amp;beta;\u0026#39; = \u0026#39;Estimate\u0026#39;, \u0026#39;\u0026lt;i\u0026gt;SE\u0026lt;/i\u0026gt;\u0026#39; = \u0026#39;SE\u0026#39;, \u0026#39;95% CrI\u0026#39; = \u0026#39;CrI_95\u0026#39;, \u0026#39;$\\\\widehat{R}$\u0026#39; = \u0026#39;Rhat\u0026#39;) %\u0026gt;%\r# Present table\rkbl(digits = 2, booktabs = TRUE, escape = FALSE, align = align,\r# Caption of the table (default unless specified)\rcaption = caption, # Disable occasional line gap (https://stackoverflow.com/a/49018919/7050882)\rlinesep = \u0026#39;\u0026#39;) %\u0026gt;%\r# Apply nice kableExtra format\rkable_styling() %\u0026gt;%\r# Center-align header row\rrow_spec(0, align = \u0026#39;c\u0026#39;)\r# LaTeX format\r} else {\r# If interaction_symbol_x = TRUE, replace double colons with times # symbols followed by line breaks and indentation. Then, replace # single colons with times symbols.\rif(interaction_symbol_x) {\rmodel_summary$Effect = model_summary$Effect %\u0026gt;% gsub(\u0026#39;::\u0026#39;, \u0026#39; $\\\\\\\\times$ \\n \\\\\\\\hspace{0.3cm}\u0026#39;, .) %\u0026gt;%\rgsub(\u0026#39;:\u0026#39;, \u0026#39; $\\\\\\\\times$ \u0026#39;, .)\r}\rmodel_summary$Effect = model_summary$Effect %\u0026gt;%\r# Escape underscores to avoid error in table\rstr_replace_all(\u0026#39;_\u0026#39;, \u0026#39;\\\\\\\\_\u0026#39;) %\u0026gt;%\r# Allow line breaks in the names of the effects\r# (used in the interactions)\rkableExtra::linebreak(align = \u0026#39;l\u0026#39;)\r# Output table\rmodel_summary %\u0026gt;% # Remove header of first column and rename other headers\rrename(\u0026#39; \u0026#39; = \u0026#39;Effect\u0026#39;, \u0026#39;$\\\\upbeta$\u0026#39; = \u0026#39;Estimate\u0026#39;, \u0026#39;$SE$\u0026#39; = \u0026#39;SE\u0026#39;, \u0026#39;95\\\\% CrI\u0026#39; = \u0026#39;CrI_95\u0026#39;, \u0026#39;$\\\\widehat R$\u0026#39; = \u0026#39;Rhat\u0026#39;) %\u0026gt;%\r# Present table\rkbl(digits = 2, booktabs = TRUE, escape = FALSE, align = align,\r# Caption of the table (default unless specified)\rcaption = caption, # Disable occasional line gap (https://stackoverflow.com/a/49018919/7050882)\rlinesep = \u0026#39;\u0026#39;) %\u0026gt;%\r# Apply nice kableExtra format\rkable_styling() %\u0026gt;%\r# Center-align header row\rrow_spec(0, align = \u0026#39;c\u0026#39;)\r}\r}\r\rThe function in use\r# Create table (using custom function from the \u0026#39;R_functions\u0026#39; folder)\rbayesian_model_table(\rsemanticpriming_summary_weaklyinformativepriors_exgaussian,\rorder_effects = c(\u0026#39;(Intercept)\u0026#39;,\r\u0026#39;Attentional control\u0026#39;,\r\u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Word frequency\u0026#39;,\r\u0026#39;Number of syllables\u0026#39;,\r\u0026#39;Word-concreteness difference\u0026#39;,\r\u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;,\r\u0026#39;Word-concreteness difference : SOA\u0026#39;,\r\u0026#39;Word-concreteness difference : Gender\u0026#39;,\r\u0026#39;Language-based similarity :: Attentional control\u0026#39;,\r\u0026#39;Visual-strength difference :: Attentional control\u0026#39;,\r\u0026#39;Language-based similarity :: Vocabulary size\u0026#39;,\r\u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;,\r\u0026#39;Language-based similarity : Gender\u0026#39;,\r\u0026#39;Visual-strength difference : Gender\u0026#39;,\r\u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;),\r# Replace colons in the names of interactions with times symbols\rinteraction_symbol_x = TRUE, # No title\rcaption = NULL) %\u0026gt;%\r# Group predictors under headings\rpack_rows(\u0026#39;Individual differences\u0026#39;, 2, 4) %\u0026gt;% pack_rows(\u0026#39;Target-word lexical covariates\u0026#39;, 5, 6) %\u0026gt;% pack_rows(\u0026#39;Prime--target relationship\u0026#39;, 7, 9) %\u0026gt;% pack_rows(\u0026#39;Task condition\u0026#39;, 10, 10) %\u0026gt;% pack_rows(\u0026#39;Interactions\u0026#39;, 11, 21) %\u0026gt;% # Apply white background to override default shading in HTML output\rrow_spec(1:21, background = \u0026#39;white\u0026#39;) %\u0026gt;%\r# Highlight covariates\rrow_spec(c(2, 5:7, 11:15), background = \u0026#39;#FFFFF1\u0026#39;) %\u0026gt;%\r# Format\rkable_classic(full_width = FALSE, html_font = \u0026#39;Cambria\u0026#39;) %\u0026gt;%\r# Footnote describing abbreviations, random slopes, etc. # LaTeX code used to format the text.\rfootnote(escape = FALSE, threeparttable = TRUE, general_title = \u0026#39;\u0026lt;br\u0026gt;\u0026#39;, general = paste(\u0026#39;*Note*. \u0026amp;beta; = Estimate based on $z$-scored predictors; *SE* = standard error;\u0026#39;,\r\u0026#39;CrI = credible interval. Yellow rows contain covariates. Some interactions are \u0026#39;,\r\u0026#39;split over two lines, with the second line indented. \u0026lt;br\u0026gt;\u0026#39;, \u0026#39;\u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt; By-word random slopes were included for this effect.\u0026#39;,\r\u0026#39;\u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt; By-participant random slopes were included for this effect.\u0026#39;))\r\r\r\rβ\r\rSE\r\r95% CrI\r\r\\(\\widehat{R}\\)\r\r\r\r\r\r(Intercept)\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.00\r\r\rIndividual differences\r\r\r\rAttentional control\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.00\r\r\r\rVocabulary size a\r\r-0.01\r\r0.00\r\r[-0.01, 0.00]\r\r1.00\r\r\r\rGender a\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.00\r\r\rTarget-word lexical covariates\r\r\r\rWord frequency\r\r-0.11\r\r0.00\r\r[-0.12, -0.11]\r\r1.00\r\r\r\rNumber of syllables\r\r0.07\r\r0.00\r\r[0.06, 0.07]\r\r1.00\r\r\rPrime–target relationship\r\r\r\rWord-concreteness difference\r\r0.01\r\r0.00\r\r[0.00, 0.01]\r\r1.00\r\r\r\rLanguage-based similarity b\r\r-0.06\r\r0.00\r\r[-0.07, -0.06]\r\r1.00\r\r\r\rVisual-strength difference b\r\r0.01\r\r0.00\r\r[0.01, 0.01]\r\r1.00\r\r\rTask condition\r\r\r\rStimulus onset asynchrony (SOA) b\r\r0.03\r\r0.01\r\r[0.02, 0.04]\r\r1.00\r\r\rInteractions\r\r\r\rWord-concreteness difference × Vocabulary size\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rWord-concreteness difference × SOA\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rWord-concreteness difference × Gender\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rLanguage-based similarity × Attentional control\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r1.00\r\r\r\rVisual-strength difference × Attentional control\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rLanguage-based similarity × Vocabulary size\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r1.00\r\r\r\rVisual-strength difference × Vocabulary size\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rLanguage-based similarity × Gender\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r1.00\r\r\r\rVisual-strength difference × Gender\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rLanguage-based similarity × SOA b\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rVisual-strength difference × SOA b\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\r\r\r\r\r\r\r Note. β = Estimate based on \\(z\\)-scored predictors; SE = standard error; CrI = credible interval. Yellow rows contain covariates. Some interactions are split over two lines, with the second line indented. a By-word random slopes were included for this effect. b By-participant random slopes were included for this effect.\r\r\r\r\rShading specific rows\rShading specific rows is done differently when the output is PDF, as shown below (see p. 170 in Bernabeu, 2022).\n\r\r\rSession info\rIf you encounter any blockers while reproducing the table using the materials at https://osf.io/gt5uf, my current session info may be useful.\nsessionInfo()\r## R version 4.3.2 (2023-10-31 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 11 x64 (build 22621)\r## ## Matrix products: default\r## ## ## locale:\r## [1] LC_COLLATE=English_United Kingdom.utf8 ## [2] LC_CTYPE=English_United Kingdom.utf8 ## [3] LC_MONETARY=English_United Kingdom.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United Kingdom.utf8 ## ## time zone: Europe/Oslo\r## tzcode source: internal\r## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] kableExtra_1.3.4 lmerTest_3.1-3 lme4_1.1-35.1 ## [4] Matrix_1.6-4 stringr_1.5.1 tibble_3.2.1 ## [7] dplyr_1.1.4 knitr_1.45 xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] sass_0.4.8 utf8_1.2.4 generics_0.1.3 ## [4] xml2_1.3.6 blogdown_1.18 stringi_1.8.3 ## [7] lattice_0.22-5 digest_0.6.33 magrittr_2.0.3 ## [10] evaluate_0.23 grid_4.3.2 bookdown_0.37 ## [13] fastmap_1.1.1 jsonlite_1.8.8 httr_1.4.7 ## [16] rvest_1.0.3 fansi_1.0.6 viridisLite_0.4.2 ## [19] scales_1.3.0 numDeriv_2016.8-1.1 jquerylib_0.1.4 ## [22] cli_3.6.2 rlang_1.1.2 munsell_0.5.0 ## [25] splines_4.3.2 withr_2.5.2 cachem_1.0.8 ## [28] yaml_2.3.8 tools_4.3.2 uuid_1.1-1 ## [31] nloptr_2.0.3 minqa_1.2.6 colorspace_2.1-0 ## [34] ggplot2_3.4.4 webshot_0.5.5 boot_1.3-28.1 ## [37] vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4 ## [40] MASS_7.3-60 pkgconfig_2.0.3 pillar_1.9.0 ## [43] bslib_0.6.1 gtable_0.3.4 glue_1.6.2 ## [46] Rcpp_1.0.11 systemfonts_1.0.5 xfun_0.41 ## [49] tidyselect_1.2.0 rstudioapi_0.15.0 htmltools_0.5.7 ## [52] nlme_3.1-164 svglite_2.1.3 rmarkdown_2.25 ## [55] compiler_4.3.2\r\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159\nBürkner, P.-C., Gabry, J., Weber, S., Johnson, A., Modrak, M., Badr, H. S., Weber, F., Ben-Shachar, M. S., \u0026amp; Rabel, H. (2022). Package ’brms’. CRAN. https://cran.r-project.org/web/packages/brms/brms.pdf\nZhu, H. (2022). Package ’kableExtra’. CRAN. https://cran.r-project.org/web/packages/kableExtra/kableExtra.pdf\n\r","date":1672272000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1672272000,"objectID":"b1392cb5949a0c807058805dab18b8f9","permalink":"https://pablobernabeu.github.io/2022/a-table-of-results-for-bayesian-mixed-effects-models-grouping-variables-and-specifying-random-slopes/","publishdate":"2022-12-29T00:00:00Z","relpermalink":"/2022/a-table-of-results-for-bayesian-mixed-effects-models-grouping-variables-and-specifying-random-slopes/","section":"post","summary":"Here I share the format applied to tables presenting the results of Bayesian models in Bernabeu (2022). The sample table presents a mixed-effects model that was fitted using the R package 'brms' (Bürkner et al., 2022).","tags":["R","statistics","rstats","brms","credible intervals","s"],"title":"A table of results for Bayesian mixed-effects models: Grouping variables and specifying random slopes","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\r\rHere I share the format applied to tables presenting the results of frequentist models in Bernabeu (2022; the table for Bayesian models is covered in this other post). The sample table presents a mixed-effects model that was fitted using the R package lmerTest (Kuznetsova et al., 2022). The mixed effects were driven by the maximal principle (Brauer \u0026amp; Curtin, 2018). The format of the table resembles one of the examples published by the American Psychological Association. However, there are also deviations from those examples. For instance, in the present table, the effects are grouped under informative labels to facilitate the readers’ comprehension, using the kableExtra package (Zhu, 2022). Furthermore, the random slopes are specified using superscript letters and a footnote. The table can be reproduced using the materials at https://osf.io/gt5uf.\nLoading packages and the results of the models\rlibrary(dplyr)\rlibrary(knitr)\rlibrary(tibble)\rlibrary(stringr)\rlibrary(lmerTest)\rlibrary(kableExtra)\r# Load frequentist coefficients (estimates and confidence intervals)\rKR_summary_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/KR_summary_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\rconfint_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/confint_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\r\rAdjusting the names of the effects\rFirst, to facilitate the understanding of the results, the original names of the effects will be adjusted in the lmerTest summary and in the confidence intervals object.\nIncidentally, the confidence intervals were obtained using the confint.merMod function from the lme4 package, as neither lmerTest nor lme4 currently provide confidence intervals in their default results output. However, computing the confidence intervals is uncomplicated (see code).\n# Rename effects in plain language and specify the random slopes\r# (if any) for each effect, in the footnote. For this purpose, # superscripts are added to the names of the appropriate effects.\r# # In the interactions below, word-level variables are presented # first for the sake of consistency (the order does not affect # the results in any way). Also in the interactions, double # colons are used to inform the \u0026#39;frequentist_model_table\u0026#39; # function that the two terms in the interaction must be split # into two lines.\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_attentional_control\u0026#39;] = \u0026#39;Attentional control\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_vocabulary_size\u0026#39;] = \u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_participant_gender\u0026#39;] = \u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_target_word_frequency\u0026#39;] = \u0026#39;Word frequency\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_target_number_syllables\u0026#39;] = \u0026#39;Number of syllables\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_word_concreteness_diff\u0026#39;] = \u0026#39;Word-concreteness difference\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_word_concreteness_diff:z_vocabulary_size\u0026#39;] = \u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_word_concreteness_diff:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Word-concreteness difference : SOA\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_word_concreteness_diff:z_recoded_participant_gender\u0026#39;] = \u0026#39;Word-concreteness difference : Gender\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_attentional_control:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Attentional control\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_attentional_control:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Attentional control\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_vocabulary_size:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Vocabulary size\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_vocabulary_size:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_participant_gender:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : Gender\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_participant_gender:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : Gender\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\r# Next, change the names in the confidence intervals object\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_attentional_control\u0026#39;] = \u0026#39;Attentional control\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_vocabulary_size\u0026#39;] = \u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_participant_gender\u0026#39;] = \u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_target_word_frequency\u0026#39;] = \u0026#39;Word frequency\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_target_number_syllables\u0026#39;] = \u0026#39;Number of syllables\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_word_concreteness_diff\u0026#39;] = \u0026#39;Word-concreteness difference\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_word_concreteness_diff:z_vocabulary_size\u0026#39;] = \u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_word_concreteness_diff:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Word-concreteness difference : SOA\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_word_concreteness_diff:z_recoded_participant_gender\u0026#39;] = \u0026#39;Word-concreteness difference : Gender\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_attentional_control:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Attentional control\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_attentional_control:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Attentional control\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_vocabulary_size:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Vocabulary size\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_vocabulary_size:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_participant_gender:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : Gender\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_participant_gender:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : Gender\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\r\rfrequentist_model_table()\rThe following custom function was used.\n\rLoading the function from GitHub\rsource(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/raw/main/R_functions/frequentist_model_table.R\u0026#39;)\r\r\rThe function in use\r# Create table (using custom function from the \u0026#39;R_functions\u0026#39; folder)\rfrequentist_model_table(\rKR_summary_semanticpriming_lmerTest, confint_semanticpriming_lmerTest,\rorder_effects = c(\u0026#39;(Intercept)\u0026#39;,\r\u0026#39;Attentional control\u0026#39;,\r\u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Word frequency\u0026#39;,\r\u0026#39;Number of syllables\u0026#39;,\r\u0026#39;Word-concreteness difference\u0026#39;,\r\u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;,\r\u0026#39;Word-concreteness difference : SOA\u0026#39;,\r\u0026#39;Word-concreteness difference : Gender\u0026#39;,\r\u0026#39;Language-based similarity :: Attentional control\u0026#39;,\r\u0026#39;Visual-strength difference :: Attentional control\u0026#39;,\r\u0026#39;Language-based similarity :: Vocabulary size\u0026#39;,\r\u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;,\r\u0026#39;Language-based similarity : Gender\u0026#39;,\r\u0026#39;Visual-strength difference : Gender\u0026#39;,\r\u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;),\r# Replace colons in the names of interactions with times symbols\rinteraction_symbol_x = TRUE, # No title\rcaption = NULL) %\u0026gt;%\r# Group predictors under headings\rpack_rows(\u0026#39;Individual differences\u0026#39;, 2, 4) %\u0026gt;% pack_rows(\u0026#39;Target-word lexical covariates\u0026#39;, 5, 6) %\u0026gt;% pack_rows(\u0026#39;Prime--target relationship\u0026#39;, 7, 9) %\u0026gt;% pack_rows(\u0026#39;Task condition\u0026#39;, 10, 10) %\u0026gt;% pack_rows(\u0026#39;Interactions\u0026#39;, 11, 21) %\u0026gt;% # Apply white background to override default shading in HTML output\rrow_spec(1:21, background = \u0026#39;white\u0026#39;) %\u0026gt;%\r# Highlight covariates\rrow_spec(c(2, 5:7, 11:15), background = \u0026#39;#FFFFF1\u0026#39;) %\u0026gt;%\r# Format\rkable_classic(full_width = FALSE, html_font = \u0026#39;Cambria\u0026#39;) %\u0026gt;%\r# Footnote describing abbreviations, random slopes, etc. # LaTeX code used to format the text.\rfootnote(escape = FALSE, threeparttable = TRUE, general_title = \u0026#39;\u0026lt;br\u0026gt;\u0026#39;, general = paste(\u0026#39;*Note*. \u0026amp;beta; = Estimate based on $z$-scored predictors; *SE* = standard error;\u0026#39;,\r\u0026#39;CI = confidence interval. Yellow rows contain covariates. Some interactions are \u0026#39;,\r\u0026#39;split over two lines, with the second line indented. \u0026lt;br\u0026gt;\u0026#39;, \u0026#39;\u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt; By-word random slopes were included for this effect.\u0026#39;,\r\u0026#39;\u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt; By-participant random slopes were included for this effect.\u0026#39;))\r\r\r\rβ\r\rSE\r\r95% CI\r\rt\r\rp\r\r\r\r\r\r(Intercept)\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.59\r\r.112\r\r\rIndividual differences\r\r\r\rAttentional control\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r-0.56\r\r.577\r\r\r\rVocabulary size a\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r0.02\r\r.987\r\r\r\rGender a\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r-0.03\r\r.979\r\r\rTarget-word lexical covariates\r\r\r\rWord frequency\r\r-0.16\r\r0.00\r\r[-0.16, -0.15]\r\r-49.40\r\r\u0026lt;.001\r\r\r\rNumber of syllables\r\r0.07\r\r0.00\r\r[0.07, 0.08]\r\r22.81\r\r\u0026lt;.001\r\r\rPrime–target relationship\r\r\r\rWord-concreteness difference\r\r0.01\r\r0.00\r\r[0.01, 0.02]\r\r3.48\r\r.001\r\r\r\rLanguage-based similarity b\r\r-0.08\r\r0.00\r\r[-0.08, -0.07]\r\r-22.44\r\r\u0026lt;.001\r\r\r\rVisual-strength difference b\r\r0.01\r\r0.00\r\r[0.01, 0.02]\r\r4.18\r\r\u0026lt;.001\r\r\rTask condition\r\r\r\rStimulus onset asynchrony (SOA) b\r\r0.06\r\r0.01\r\r[0.04, 0.07]\r\r7.47\r\r\u0026lt;.001\r\r\rInteractions\r\r\r\rWord-concreteness difference × Vocabulary size\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.31\r\r.189\r\r\r\rWord-concreteness difference × SOA\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r2.57\r\r.010\r\r\r\rWord-concreteness difference × Gender\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r-0.97\r\r.332\r\r\r\rLanguage-based similarity × Attentional control\r\r-0.01\r\r0.00\r\r[-0.01, 0.00]\r\r-2.46\r\r.014\r\r\r\rVisual-strength difference × Attentional control\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r0.24\r\r.810\r\r\r\rLanguage-based similarity × Vocabulary size\r\r-0.01\r\r0.00\r\r[-0.01, 0.00]\r\r-2.34\r\r.020\r\r\r\rVisual-strength difference × Vocabulary size\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r-1.37\r\r.172\r\r\r\rLanguage-based similarity × Gender\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r-0.79\r\r.433\r\r\r\rVisual-strength difference × Gender\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.46\r\r.144\r\r\r\rLanguage-based similarity × SOA b\r\r0.01\r\r0.00\r\r[0.00, 0.01]\r\r3.22\r\r.001\r\r\r\rVisual-strength difference × SOA b\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r-2.25\r\r.025\r\r\r\r\r\r\r\r\r\r Note. β = Estimate based on \\(z\\)-scored predictors; SE = standard error; CI = confidence interval. Yellow rows contain covariates. Some interactions are split over two lines, with the second line indented. a By-word random slopes were included for this effect. b By-participant random slopes were included for this effect.\r\r\r\r\rShading specific rows\rShading specific rows is done differently when the output is PDF, as shown below (see p. 62 in Bernabeu, 2022).\n\r\r\rSession info\rIf you encounter any blockers while reproducing the table using the materials at https://osf.io/gt5uf, my current session info may be useful.\nsessionInfo()\r## R version 4.3.2 (2023-10-31 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 11 x64 (build 22621)\r## ## Matrix products: default\r## ## ## locale:\r## [1] LC_COLLATE=English_United Kingdom.utf8 ## [2] LC_CTYPE=English_United Kingdom.utf8 ## [3] LC_MONETARY=English_United Kingdom.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United Kingdom.utf8 ## ## time zone: Europe/Oslo\r## tzcode source: internal\r## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] kableExtra_1.3.4 lmerTest_3.1-3 lme4_1.1-35.1 ## [4] Matrix_1.6-4 stringr_1.5.1 tibble_3.2.1 ## [7] dplyr_1.1.4 knitr_1.45 xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] sass_0.4.8 utf8_1.2.4 generics_0.1.3 ## [4] xml2_1.3.6 blogdown_1.18 stringi_1.8.3 ## [7] lattice_0.22-5 digest_0.6.33 magrittr_2.0.3 ## [10] evaluate_0.23 grid_4.3.2 bookdown_0.37 ## [13] fastmap_1.1.1 jsonlite_1.8.8 httr_1.4.7 ## [16] rvest_1.0.3 fansi_1.0.6 viridisLite_0.4.2 ## [19] scales_1.3.0 numDeriv_2016.8-1.1 jquerylib_0.1.4 ## [22] cli_3.6.2 rlang_1.1.2 munsell_0.5.0 ## [25] splines_4.3.2 withr_2.5.2 cachem_1.0.8 ## [28] yaml_2.3.8 tools_4.3.2 uuid_1.1-1 ## [31] nloptr_2.0.3 minqa_1.2.6 colorspace_2.1-0 ## [34] ggplot2_3.4.4 webshot_0.5.5 boot_1.3-28.1 ## [37] vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4 ## [40] MASS_7.3-60 pkgconfig_2.0.3 pillar_1.9.0 ## [43] bslib_0.6.1 gtable_0.3.4 glue_1.6.2 ## [46] Rcpp_1.0.11 systemfonts_1.0.5 xfun_0.41 ## [49] tidyselect_1.2.0 rstudioapi_0.15.0 htmltools_0.5.7 ## [52] nlme_3.1-164 svglite_2.1.3 rmarkdown_2.25 ## [55] compiler_4.3.2\r\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159\nKuznetsova, A., Brockhoff, P. B., \u0026amp; Christensen, R. H. B. (2022). Package ’lmerTest’. CRAN. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf\nZhu, H. (2022). Package ’kableExtra’. CRAN. https://cran.r-project.org/web/packages/kableExtra/kableExtra.pdf\n\r","date":1672272000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1672272000,"objectID":"76438e72432949f7f3e7ec3744994479","permalink":"https://pablobernabeu.github.io/2022/a-table-of-results-for-frequentist-mixed-effects-models-grouping-variables-and-specifying-random-slopes/","publishdate":"2022-12-29T00:00:00Z","relpermalink":"/2022/a-table-of-results-for-frequentist-mixed-effects-models-grouping-variables-and-specifying-random-slopes/","section":"post","summary":"Here I share the format applied to tables presenting the results of frequentist models in Bernabeu (2022). The sample table presents a mixed-effects model that was fitted using the R package 'lmerTest' (Kuznetsova et al., 2022).","tags":["R","statistics","rstats","lmerTest","lme4","confidence intervals","s"],"title":"A table of results for frequentist mixed-effects models: Grouping variables and specifying random slopes","type":"post"},{"authors":[],"categories":["R","data visualisation"],"content":"\rWhereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. One of these functions is alias_interaction_plot, which allows the plotting of interactions between a continuous variable and a categorical variable. Importantly, the categorical variable is replaced with an alias variable. This feature allows the back-transformation of the categorical variable to facilitate the communication of the results, for instance, when the categorical variable was sum-coded, which has been recommended for mixed-effects models (Brauer \u0026amp; Curtin, 2018).\nBelow, we’ll use the function with a model fitted using lmerTest (Kuznetsova et al., 2022), although the function also works with several other models (see sjPlot manual). The plot can be reproduced using the materials at https://osf.io/gt5uf.\nAlias interaction plot\rThe function\r\r\rThe function in use\r\r\n\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159\nKuznetsova, A., Brockhoff, P. B., \u0026amp; Christensen, R. H. B. (2022). Package ’lmerTest’. CRAN. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf\nLüdecke, D. (2022). Package ’sjPlot’. CRAN. https://cran.r-project.org/web/packages/sjPlot/sjPlot.pdf\n\r\r","date":1672012800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1672012800,"objectID":"e6979835a88a63c8e8e698615abbb6b4","permalink":"https://pablobernabeu.github.io/2022/plotting-two-way-interactions-from-mixed-effects-models-using-alias-variables/","publishdate":"2022-12-26T00:00:00Z","relpermalink":"/2022/plotting-two-way-interactions-from-mixed-effects-models-using-alias-variables/","section":"post","summary":"Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. One of these functions is alias_interaction_plot, which allows the plotting of interactions between a continuous variable and a categorical variable.","tags":["R","visualisation","plotting","alias","sjPlot","linear mixed-effects models","statistics","s"],"title":"Plotting two-way interactions from mixed-effects models using alias variables","type":"post"},{"authors":[],"categories":["R","data visualisation"],"content":"\rWhereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. Two of these functions are deciles_interaction_plot and sextiles_interaction_plot. These functions allow the plotting of interactions between two continuous variables. In the case of deciles_interaction_plot, one of the variables is divided into ten bins, known as deciles, and the other variable is unchanged. In the case of sextiles_interaction_plot, one of the variables is divided into six bins, or sextiles, and the other variable is unchanged.\nBelow, we’ll use these functions with models fitted using lmerTest (Kuznetsova et al., 2022), although the functions also work with several other models (see sjPlot manual). The plots can be reproduced using the materials at https://osf.io/gt5uf.\nDeciles interaction plot\rThe function\r\r\rThe function in use\r\r\n\r\rSextiles interaction plot\rThe function\r\r\rThe function in use\r\r\n\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nKuznetsova, A., Brockhoff, P. B., \u0026amp; Christensen, R. H. B. (2022). Package ’lmerTest’. CRAN. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf\nLüdecke, D. (2022). Package ’sjPlot’. CRAN. https://cran.r-project.org/web/packages/sjPlot/sjPlot.pdf\n\r\r","date":1672012800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1672012800,"objectID":"795ff41b768a6f22abfeca4c3ccbf2f7","permalink":"https://pablobernabeu.github.io/2022/plotting-two-way-interactions-from-mixed-effects-models-using-ten-or-six-bins/","publishdate":"2022-12-26T00:00:00Z","relpermalink":"/2022/plotting-two-way-interactions-from-mixed-effects-models-using-ten-or-six-bins/","section":"post","summary":"Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. Two of these functions are deciles_interaction_plot and sextiles_interaction_plot. These functions allow the plotting of interactions between two continuous variables.","tags":["R","visualisation","plotting","deciles","sextiles","sjPlot","linear mixed-effects models","statistics","s"],"title":"Plotting two-way interactions from mixed-effects models using ten or six bins","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\rFrequentist and Bayesian statistics are sometimes regarded as fundamentally different philosophies. Indeed, can both methods qualify as philosophies, or is one of them just a pointless ritual? Is frequentist statistics about \\(p\\) values only? Are frequentist estimates diametrically opposed to Bayesian posterior distributions? Are confidence intervals and credible intervals irreconcilable? Will R crash if lmerTest and brms are simultaneously loaded? If only we could fit frequentist and Bayesian models to the same data and plot the results together, we might get a glimpse into these puzzles.\nAll the analyses shown below can be reproduced using the materials at https://osf.io/gt5uf. The combination of the frequentist and the Bayesian estimates in the same plot is achieved using the following custom function from Bernabeu (2022).\nVisualising frequentist and Bayesian estimates in one plot\rBoth frequentist and Bayesian statistics offer the options of hypothesis testing and parameter estimation (Cumming, 2014; Kruschke \u0026amp; Liddell, 2018; Rouder et al., 2018; Schmalz et al., 2022; Tendeiro \u0026amp; Kiers, 2019, 2022; van Ravenzwaaij \u0026amp; Wagenmakers, 2022). In the statistical analyses conducted by Bernabeu (2022), hypothesis testing was performed within the frequentist framework, whereas parameter estimation was performed within both the frequentist and the Bayesian frameworks (for other examples of the estimation approach, see Milek et al., 2018; Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020).\n\rLet’s load the function from GitHub and put it to the test.\n# Presenting the frequentist and the Bayesian estimates in the same plot. # For this purpose, the frequentist results are merged into a plot from # brms::mcmc_plot()\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/frequentist_bayesian_plot.R\u0026#39;)\r# install.packages(\u0026#39;devtools\u0026#39;)\r# library(devtools)\r# install_version(\u0026#39;tidyverse\u0026#39;, \u0026#39;1.3.1\u0026#39;) # Due to breaking changes, Version 1.3.1 is required.\r# install_version(\u0026#39;ggplot2\u0026#39;, \u0026#39;3.3.5\u0026#39;) # Due to breaking changes, Version 3.3.5 is required.\rlibrary(tidyverse)\rlibrary(ggplot2)\rlibrary(Cairo)\r# Load frequentist coefficients (estimates and confidence intervals)\rKR_summary_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/KR_summary_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\rconfint_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/confint_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\r# Below are the default names of the effects\r# rownames(KR_summary_semanticpriming_lmerTest$coefficients)\r# rownames(confint_semanticpriming_lmerTest)\r# Load Bayesian posterior distributions\rsemanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian = readRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian.rds?raw=true\u0026#39;)))\r# Below are the default names of the effects\r# levels(semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian$data$parameter)\r# Reorder the components of interactions in the frequentist results to match # with the order present in the Bayesian results.\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) =\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;, replacement = \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;, replacement = \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;)\rrownames(confint_semanticpriming_lmerTest) = rownames(confint_semanticpriming_lmerTest) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;, replacement = \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;, replacement = \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;)\r# Create a vector containing the names of the effects. This vector will be passed # to the plotting function.\rnew_labels = semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian$data$parameter %\u0026gt;% unique %\u0026gt;%\r# Remove the default \u0026#39;b_\u0026#39; from the beginning of each effect\rstr_remove(\u0026#39;^b_\u0026#39;) %\u0026gt;%\r# Put Intercept in parentheses\rstr_replace(pattern = \u0026#39;Intercept\u0026#39;, replacement = \u0026#39;(Intercept)\u0026#39;) %\u0026gt;%\r# First, adjust names of variables (both in main effects and in interactions)\rstr_replace(pattern = \u0026#39;z_target_word_frequency\u0026#39;,\rreplacement = \u0026#39;Target-word frequency\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_target_number_syllables\u0026#39;,\rreplacement = \u0026#39;Number of target-word syllables\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_word_concreteness_diff\u0026#39;,\rreplacement = \u0026#39;Word-concreteness difference\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_cosine_similarity\u0026#39;,\rreplacement = \u0026#39;Language-based similarity\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_visual_rating_diff\u0026#39;,\rreplacement = \u0026#39;Visual-strength difference\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_attentional_control\u0026#39;,\rreplacement = \u0026#39;Attentional control\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_vocabulary_size\u0026#39;,\rreplacement = \u0026#39;Vocabulary size\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_participant_gender\u0026#39;,\rreplacement = \u0026#39;Gender\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval\u0026#39;,\rreplacement = \u0026#39;SOA\u0026#39;) %\u0026gt;%\r# Show acronym in main effect of SOA\rstr_replace(pattern = \u0026#39;^SOA$\u0026#39;,\rreplacement = \u0026#39;Stimulus onset asynchrony (SOA)\u0026#39;) %\u0026gt;%\r# Second, adjust order of effects in interactions. In the output from the model, # the word-level variables of interest (i.e., \u0026#39;z_cosine_similarity\u0026#39; and # \u0026#39;z_visual_rating_diff\u0026#39;) sometimes appeared second in their interactions. For # better consistency, the code below moves those word-level variables (with # their new names) to the first position in their interactions. Note that the # order does not affect the results in any way.\rsub(\u0026#39;(\\\\w+.*):(Language-based similarity|Visual-strength difference)\u0026#39;, \u0026#39;\\\\2:\\\\1\u0026#39;, .) %\u0026gt;%\r# Replace colons denoting interactions with times symbols\rstr_replace(pattern = \u0026#39;:\u0026#39;, replacement = \u0026#39; \u0026amp;times; \u0026#39;)\r# Create plot\rplot_semanticpriming_frequentist_bayesian_plot_weaklyinformativepriors_exgaussian =\rfrequentist_bayesian_plot(KR_summary_semanticpriming_lmerTest,\rconfint_semanticpriming_lmerTest,\rsemanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian,\rlabels = new_labels, interaction_symbol_x = TRUE,\rvertical_line_at_x = 0, x_title = \u0026#39;Effect size (\u0026amp;beta;)\u0026#39;,\rlegend_ncol = 1) + theme(legend.position = \u0026#39;bottom\u0026#39;)\r\r\nplot_semanticpriming_frequentist_bayesian_plot_weaklyinformativepriors_exgaussian\rFrequentist and Bayesian estimates are not so polar opposites, are they? What is more, the larger differences between some estimates are the result of the priors that were set on the corresponding effects. With uninformative priors, the frequentist and the Bayesian estimates are virtually identical.\n\rNow it’s time to consider in earnest:\n\rIs frequentist statistics about \\(p\\) values only? Are frequentist estimates diametrically opposed to Bayesian posterior distributions? Are confidence intervals and credible intervals irreconcilable? Will R crash if lmerTest and brms are simultaneously loaded?\n\r\rSession info\rIf you encounter any blockers while reproducing the above analyses using the materials at https://osf.io/gt5uf, my current session info may be useful. For instance, the legend of the plot may not show if the latest versions of the ggplot2 and the tidyverse packages are used. Instead, ggplot2 3.3.5 and tidyverse 1.3.1 should be installed using install_version('ggplot2', '3.3.5') and install_version('tidyverse', '1.3.1').\nsessionInfo()\r## R version 4.2.3 (2023-03-15 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 10 x64 (build 22621)\r## ## Matrix products: default\r## ## locale:\r## [1] LC_COLLATE=English_United Kingdom.utf8 ## [2] LC_CTYPE=English_United Kingdom.utf8 ## [3] LC_MONETARY=English_United Kingdom.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United Kingdom.utf8 ## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] ggtext_0.1.2 Cairo_1.6-0 forcats_1.0.0 ## [4] stringr_1.5.0 dplyr_1.1.1 purrr_1.0.1 ## [7] readr_2.1.4 tidyr_1.3.0 tibble_3.2.1 ## [10] ggplot2_3.3.5 tidyverse_1.3.1 knitr_1.42 ## [13] xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] Rcpp_1.0.10 lubridate_1.9.2 digest_0.6.31 utf8_1.2.3 ## [5] plyr_1.8.8 R6_2.5.1 cellranger_1.1.0 ggridges_0.5.4 ## [9] backports_1.4.1 reprex_2.0.2 evaluate_0.21 highr_0.10 ## [13] httr_1.4.6 blogdown_1.16 pillar_1.9.0 rlang_1.1.0 ## [17] uuid_1.1-0 readxl_1.4.2 rstudioapi_0.14 jquerylib_0.1.4 ## [21] rmarkdown_2.21 labeling_0.4.2 munsell_0.5.0 gridtext_0.1.5 ## [25] broom_1.0.4 compiler_4.2.3 modelr_0.1.11 xfun_0.38 ## [29] pkgconfig_2.0.3 htmltools_0.5.5 tidyselect_1.2.0 bookdown_0.33.3 ## [33] fansi_1.0.4 crayon_1.5.2 tzdb_0.4.0 dbplyr_2.3.2 ## [37] withr_2.5.0 commonmark_1.9.0 grid_4.2.3 jsonlite_1.8.4 ## [41] gtable_0.3.3 lifecycle_1.0.3 DBI_1.1.3 magrittr_2.0.3 ## [45] scales_1.2.1 cli_3.4.1 stringi_1.7.12 cachem_1.0.7 ## [49] farver_2.1.1 fs_1.6.1 xml2_1.3.3 bslib_0.4.2 ## [53] generics_0.1.3 vctrs_0.6.1 tools_4.2.3 glue_1.6.2 ## [57] markdown_1.5 hms_1.1.3 fastmap_1.1.1 yaml_2.3.7 ## [61] timechange_0.2.0 colorspace_2.1-0 rvest_1.0.3 haven_2.5.2 ## [65] sass_0.4.6\r\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nCumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966\nKruschke, J. K., \u0026amp; Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin \u0026amp; Review, 25(1), 178–206.\nMilek, A., Butler, E. A., Tackman, A. M., Kaplan, D. M., Raison, C. L., Sbarra, D. A., Vazire, S., \u0026amp; Mehl, M. R. (2018). “Eavesdropping on happiness” revisited: A pooled, multisample replication of the association between life satisfaction and observed daily conversation quantity and quality. Psychological Science, 29(9), 1451–1462. https://doi.org/10.1177/0956797618774252\nPregla, D., Lissón, P., Vasishth, S., Burchert, F., \u0026amp; Stadie, N. (2021). Variability in sentence comprehension in aphasia in German. Brain and Language, 222, 105008. https://doi.org/10.1016/j.bandl.2021.105008\nRodríguez-Ferreiro, J., Aguilera, M., \u0026amp; Davies, R. (2020). Semantic priming and schizotypal personality: Reassessing the link between thought disorder and enhanced spreading of semantic activation. PeerJ, 8, e9511. https://doi.org/10.7717/peerj.9511\nRouder, J. N., Haaf, J. M., \u0026amp; Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychonomic Bulletin \u0026amp; Review, 25(1), 102–113. https://doi.org/10.3758/s13423-017-1420-7\nSchmalz, X., Biurrun Manresa, J., \u0026amp; Zhang, L. (2021). What is a Bayes factor? Psychological Methods. https://doi.org/10.1037/met0000421\nTendeiro, J. N., \u0026amp; Kiers, H. A. L. (2019). A review of issues about null hypothesis Bayesian testing. Psychological Methods, 24(6), 774–795. https://doi.org/10.1037/met0000221\nTendeiro, J. N., \u0026amp; Kiers, H. A. L. (2022). On the white, the black, and the many shades of gray in between: Our reply to van Ravenzwaaij and Wagenmakers (2021). Psychological Methods, 27(3), 466–475. https://doi.org/10.1037/met0000505\nvan Ravenzwaaij, D., \u0026amp; Wagenmakers, E.-J. (2022). Advantages masquerading as “issues” in Bayesian hypothesis testing: A commentary on Tendeiro and Kiers (2019). Psychological Methods, 27(3), 451–465. https://doi.org/10.1037/met0000415\n\r","date":1671753600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1671753600,"objectID":"892657f2f258f7626a3a632b6c423db1","permalink":"https://pablobernabeu.github.io/2022/why-can-t-we-be-friends-plotting-frequentist-lmertest-and-bayesian-brms-mixed-effects-models/","publishdate":"2022-12-23T00:00:00Z","relpermalink":"/2022/why-can-t-we-be-friends-plotting-frequentist-lmertest-and-bayesian-brms-mixed-effects-models/","section":"post","summary":"Frequentist and Bayesian statistics are sometimes regarded as fundamentally different philosophies. Indeed, can both qualify as philosophies or is one of them just a pointless ritual? Is frequentist statistics only about $p$ values? Are frequentist estimates diametrically opposed to Bayesian posterior distributions? Are confidence intervals and credible intervals irreconcilable? Will R crash if lmerTest and brms are simultaneously loaded?","tags":["statistics","Bayesian statistics","frequentist statistics","linear-mixed effects models","lmerTest","lme4","brms","plotting","data visualisation","s"],"title":"Why can't we be friends? Plotting frequentist (lmerTest) and Bayesian (brms) mixed-effects models","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\rlibrary(dplyr)\rlibrary(ggplot2)\rlibrary(ggridges)\rlibrary(ggtext)\rlibrary(patchwork)\rlibrary(papaja)\rThis post presents a code-through of a Bayesian workflow in R, which can be reproduced using the materials at https://osf.io/gt5uf. The content is closely based on Bernabeu (2022), which was in turn based on lots of other references. In addition to those, you may wish to consider Nicenboim et al. (n.d.), a book in preparation that is already available online (https://vasishth.github.io/bayescogsci/book).\nIn Bernabeu (2022), a Bayesian analysis was performed to complement the estimates that had been obtained in the frequentist analysis. Whereas the goal of the frequentist analysis had been hypothesis testing, for which \\(p\\) values were used, the goal of the Bayesian analysis was parameter estimation. Accordingly, we estimated the posterior distribution of every effect, without calculating Bayes factors (for other examples of the same estimation approach, see Milek et al., 2018; Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; for comparisons between estimation and hypothesis testing, see Cumming, 2014; Kruschke \u0026amp; Liddell, 2018; Rouder et al., 2018; Schmalz et al., 2021; Tendeiro \u0026amp; Kiers, 2019, in press; van Ravenzwaaij \u0026amp; Wagenmakers, 2021). In the estimation approach, the estimates are interpreted by considering the position of their credible intervals in relation to the expected effect size. That is, the closer an interval is to an effect size of 0, the smaller the effect of that predictor. For instance, an interval that is symmetrically centred on 0 indicates a very small effect, whereas—in comparison—an interval that does not include 0 at all indicates a far larger effect.\nThis analysis served two purposes: first, to ascertain the interpretation of the smaller effects—which were identified as unreliable in the power analyses—, and second, to complement the estimates obtained in the frequentist analysis. The latter purpose was pertinent because the frequentist models presented convergence warnings—even though it must be noted that a previous study found that frequentist and Bayesian estimates were similar despite convergence warnings appearing in the frequentist analysis (Rodríguez-Ferreiro et al., 2020). Furthermore, the complementary analysis was pertinent because the frequentist models presented residual errors that deviated from normality—even though mixed-effects models are fairly robust to such a deviation (Knief \u0026amp; Forstmeier, 2021; Schielzeth et al., 2020). Owing to these precedents, we expected to find broadly similar estimates in the frequentist analyses and in the Bayesian ones. Across studies, each frequentist model has a Bayesian counterpart, with the exception of the secondary analysis performed in Study 2.1 (semantic priming) that included vision-based similarity as a predictor. The R package ‘brms’, Version 2.17.0, was used for the Bayesian analysis (Bürkner, 2018; Bürkner et al., 2022).\nPriors\rPriors are one of the hardest nuts to crack in Bayesian statistics. First, it can be useful to inspect what priors can be set in the model. Second, it is important to visualise a reasonable set of priors based on the available literature or any other available sources. Third, just before fitting the model, the adequacy of a range of priors should be assessed using prior predictive checks. Fourth, posterior predictive checks were performed to assess the consistency between the observed data and new data predicted by the posterior distributions. Fifth, the influence of the priors on the results should be assessed through a prior sensitivity analysis (Lee \u0026amp; Wagenmakers, 2014; Van de Schoot et al., 2021; also see Bernabeu, 2022; Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; Stone et al., 2021).\n\r1. Checking what priors can be set\rThe brms::get_prior function can be used to check what effects in the model can be assigned a prior. The output (see example) will include the current (perhaps default) prior on each effect.\n\r\r2. Determining the priors\rThe priors were established by inspecting the effect sizes obtained in previous studies as well as the effect sizes obtained in our frequentist analyses of the present data (reported in Studies 2.1, 2.2 and 2.3). In the first regard, the previous studies that were considered were selected because the experimental paradigms, variables and analytical procedures they had used were similar to those used in our current studies. Specifically, regarding paradigms, we sought studies that implemented: (I) semantic priming with a lexical decision task—as in Study 2.1—, (II) semantic decision—as in Study 2.2—, or (III) lexical decision—as in Study 2.3. Regarding analytical procedures, we sought studies in which both the dependent and the independent variables were \\(z\\)-scored. We found two studies that broadly matched these criteria: Lim et al. (2020) (see Table 5 therein) and Pexman \u0026amp; Yap (2018) (see Tables 6 and 7 therein). Out of these studies, Pexman \u0026amp; Yap (2018) contained the variables that were most similar to ours, which included vocabulary size (labelled ‘NAART’) and word frequency.\nBased on both these studies and on the frequentist analyses, a range of effect sizes was identified that spanned between β = -0.30 and β = 0.30. This range was centred around 0 as the variables were \\(z\\)-scored. The bounds of this range were determined by the largest effects, which appeared in Pexman \u0026amp; Yap (2018). Pexman et al. conducted a semantic decision study, and split the data set into abstract and concrete words. The two largest effects they found were—first—a word concreteness effect in the concrete-words analysis of β = -0.41, and—second—a word concreteness effect in the abstract-words analysis of β = 0.20. Unlike Pexman et al., we did not split the data set into abstract and concrete words, but analysed these sets together. Therefore, we averaged between the aforementioned values, obtaining a range between β = -0.30 and β = 0.30.\nIn the results of Lim et al. (2020) and Pexman \u0026amp; Yap (2018), and in our frequentist results, some effects consistently presented a negative polarity (i.e., leading to shorter response times), whereas some other effects were consistently positive. We incorporated the direction of effects into the priors only in cases of large effects that had presented a consistent direction (either positive or negative) in previous studies and in our frequentist analyses in the present studies. These criteria were matched by the following variables: word frequency—with a negative direction, as higher word frequency leads to shorter RTs (Brysbaert et al., 2016; Brysbaert et al., 2018; Lim et al., 2020; Mendes \u0026amp; Undorf, 2021; Pexman \u0026amp; Yap, 2018)—, number of letters and number of syllables—both with positive directions (Barton et al., 2014; Beyersmann et al., 2020; Pexman \u0026amp; Yap, 2018)—, and orthographic Levenshtein distance—with a positive direction (Cerni et al., 2016; Dijkstra et al., 2019; Kim et al., 2018; Yarkoni et al., 2008). We did not incorporate information about the direction of the word concreteness effect, as this effect can follow different directions in abstract and concrete words (Brysbaert et al., 2014; Pexman \u0026amp; Yap, 2018), and we analysed both sets of words together. In conclusion, the four predictors that had directional priors were covariates. All the other predictors had priors centred on 0. Last, as a methodological matter, it is noteworthy that most of the psycholinguistic studies applying Bayesian analysis have not incorporated any directional information in priors (e.g., Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; cf. Stone et al., 2021).\nPrior distributions\rThe choice of priors can influence the results in consequential ways. To assess the extent of this influence, prior sensitivity analyses have been recommended. These analyses are performed by comparing the effect of more and less strict priors—or, in other words, priors varying in their degree of informativeness. The degree of variation is adjusted through the standard deviation, and the means are not varied (Lee \u0026amp; Wagenmakers, 2014; Stone et al., 2020; Van de Schoot et al., 2021).\nIn this way, we compared the results obtained using ‘informative’ priors (\\(SD\\) = 0.1), ‘weakly-informative’ priors (\\(SD\\) = 0.2) and ‘diffuse’ priors (\\(SD\\) = 0.3). These standard deviations were chosen so that around 95% of values in the informative priors would fall within our initial range of effect sizes that spanned from -0.30 to 0.30. All priors are illustrated in the figure below. These priors resembled others from previous psycholinguistic studies (Pregla et al., 2021; Stone et al., 2020; Stone et al., 2021). For instance, Stone et al. (2020) used the following priors: \\(Normal\\)(0, 0.1), \\(Normal\\)(0, 0.3) and \\(Normal\\)(0, 1). The range of standard deviations we used—i.e., 0.1, 0.2 and 0.3—was narrower than those of previous studies because our dependent variable and our predictors were \\(z\\)-scored, resulting in small estimates and small \\(SD\\)s (see Lim et al., 2020; Pexman \u0026amp; Yap, 2018). These priors were used on the fixed effects and on the standard deviation parameters of the fixed effects. For the correlations among the random effects, an \\(LKJ\\)(2) prior was used (Lewandowski et al., 2009). This is a ‘regularising’ prior, as it assumes that high correlations among random effects are rare (also used in Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; Stone et al., 2021; Vasishth et al., 2018).\n# Set seed number to ensure exact reproducibility # of the random distributions\rset.seed(123)\r# The code below plots all our types of priors. Each distribution # contains 10,000 simulations, resulting in 90,000 rows.\r# The green vertical rectangle shows the range of plausible effect # sizes based on previous studies that applied a similar analysis # (Lim et al., 2020, https://doi.org/10.1177/1747021820906566; # Pexman \u0026amp; Yap, 2018, https://doi.org/10.1037/xlm0000499) as # well as on the frequentist analyses of the current data.\rpriors = data.frame(\rinformativeness = as.factor(c(rep(\u0026#39;Informative priors (*SD* = 0.1)\u0026#39;, 30000),\rrep(\u0026#39;Weakly-informative priors (*SD* = 0.2)\u0026#39;, 30000),\rrep(\u0026#39;Diffuse priors (*SD* = 0.3)\u0026#39;, 30000))), direction = as.factor(c(rep(\u0026#39;negative\u0026#39;, 10000), rep(\u0026#39;neutral\u0026#39;, 10000),\rrep(\u0026#39;positive\u0026#39;, 10000),\rrep(\u0026#39;negative\u0026#39;, 10000), rep(\u0026#39;neutral\u0026#39;, 10000),\rrep(\u0026#39;positive\u0026#39;, 10000),\rrep(\u0026#39;negative\u0026#39;, 10000), rep(\u0026#39;neutral\u0026#39;, 10000),\rrep(\u0026#39;positive\u0026#39;, 10000))),\rdirection_and_distribution = as.factor(c(rep(\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.1)\u0026#39;, 10000), rep(\u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.1)\u0026#39;, 10000),\rrep(\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.1)\u0026#39;, 10000),\rrep(\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.2)\u0026#39;, 10000),\rrep(\u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.2)\u0026#39;, 10000),\rrep(\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.2)\u0026#39;, 10000),\rrep(\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.3)\u0026#39;, 10000), rep(\u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.3)\u0026#39;, 10000),\rrep(\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.3)\u0026#39;, 10000))),\restimate = c(rnorm(10000, m = -0.1, sd = 0.1),\rrnorm(10000, m = 0, sd = 0.1),\rrnorm(10000, m = 0.1, sd = 0.1),\rrnorm(10000, m = -0.1, sd = 0.2),\rrnorm(10000, m = 0, sd = 0.2),\rrnorm(10000, m = 0.1, sd = 0.2),\rrnorm(10000, m = -0.1, sd = 0.3),\rrnorm(10000, m = 0, sd = 0.3),\rrnorm(10000, m = 0.1, sd = 0.3))\r)\r# Order factor levels\rpriors$informativeness = ordered(priors$informativeness, levels = c(\u0026#39;Informative priors (*SD* = 0.1)\u0026#39;, \u0026#39;Weakly-informative priors (*SD* = 0.2)\u0026#39;, \u0026#39;Diffuse priors (*SD* = 0.3)\u0026#39;))\rpriors$direction = ordered(priors$direction, levels = c(\u0026#39;negative\u0026#39;, \u0026#39;neutral\u0026#39;, \u0026#39;positive\u0026#39;))\rpriors$direction_and_distribution =\rordered(priors$direction_and_distribution,\rlevels = c(\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.1)\u0026#39;, \u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.1)\u0026#39;,\r\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.1)\u0026#39;,\r\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.2)\u0026#39;, \u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.2)\u0026#39;,\r\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.2)\u0026#39;,\r\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.3)\u0026#39;, \u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.3)\u0026#39;,\r\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.3)\u0026#39;))\r# PLOT zone\rcolours = c(\u0026#39;#7276A2\u0026#39;, \u0026#39;black\u0026#39;, \u0026#39;#A27272\u0026#39;)\rfill_colours = c(\u0026#39;#CCCBE7\u0026#39;, \u0026#39;#D7D7D7\u0026#39;, \u0026#39;#E7CBCB\u0026#39;)\r# Initialise plot (`aes` specified separately to allow # use of `geom_rect` at the end)\rggplot() +\r# Turn to the distributions\rstat_density_ridges(data = priors, aes(x = estimate, y = direction_and_distribution, color = direction, fill = direction),\rgeom = \u0026#39;density_ridges_gradient\u0026#39;, alpha = 0.7, jittered_points = TRUE, quantile_lines = TRUE, quantiles = c(0.025, 0.975), show.legend = F) +\rscale_color_manual(values = colours) + scale_fill_manual(values = fill_colours) + # Adjust X axis to the random distributions obtained\rscale_x_continuous(limits = c(min(priors$estimate), max(priors$estimate)), n.breaks = 6, expand = c(0.04, 0.04)) +\rscale_y_discrete(expand = expansion(add = c(0.18, 1.9))) +\r# Facets containing the three models varying in informativeness\rfacet_wrap(vars(informativeness), scales = \u0026#39;free\u0026#39;, dir = \u0026#39;v\u0026#39;) +\r# Vertical line at x = 0\rgeom_vline(xintercept = 0, linetype = \u0026#39;dashed\u0026#39;, color = \u0026#39;grey50\u0026#39;) +\rxlab(\u0026#39;Effect size (\u0026amp;beta;)\u0026#39;) + ylab(\u0026#39;Direction of the prior and corresponding distribution\u0026#39;) +\rtheme_minimal() +\rtheme(axis.title.x = ggtext::element_markdown(size = 12, margin = margin(t = 9)),\raxis.text.x = ggtext::element_markdown(size = 11, margin = margin(t = 4)),\raxis.title.y = ggtext::element_markdown(size = 12, margin = margin(r = 9)),\raxis.text.y = ggtext::element_markdown(lineheight = 1.6, colour = colours),\rstrip.background = element_rect(fill = \u0026#39;grey98\u0026#39;, colour = \u0026#39;grey90\u0026#39;,\rlinetype = \u0026#39;solid\u0026#39;),\rstrip.text = element_markdown(size = 11, margin = margin(t = 7, b = 7)),\rpanel.spacing.y = unit(9, \u0026#39;pt\u0026#39;), panel.grid.minor = element_blank(), plot.margin = margin(8, 8, 9, 8)\r) +\r# Shaded rectangle containing range of previous effects\rgeom_rect(data = data.frame(x = 1), xmin = -0.3, xmax = 0.3, ymin = -Inf, ymax = Inf, fill = \u0026#39;darkgreen\u0026#39;, alpha = .3)\r\rPriors used in the three studies. The green vertical rectangle shows the range of plausible effect sizes based on previous studies and on our frequentist analyses. In the informative priors, around 95% of the values fall within the range.\n\r\n\r\r3. Prior predictive checks\rThe adequacy of each of these priors was assessed by performing prior predictive checks, in which we compared the observed data to the predictions of the model (Van de Schoot et al., 2021). Furthermore, in these checks we also tested the adequacy of two model-wide distributions: the traditional Gaussian distribution (default in most analyses) and an exponentially modified Gaussian—dubbed ‘ex-Gaussian’—distribution (Matzke \u0026amp; Wagenmakers, 2009). The ex-Gaussian distribution was considered because the residual errors of the frequentist models were not normally distributed (Lo \u0026amp; Andrews, 2015), and because this distribution was found to be more appropriate than the Gaussian one in a previous, related study (see supplementary materials of Rodríguez-Ferreiro et al., 2020). The ex-Gaussian distribution had an identity link function, which preserves the interpretability of the coefficients, as opposed to a transformation applied directly to the dependent variable (Lo \u0026amp; Andrews, 2015). The results of these prior predictive checks revealed that the priors were adequate, and that the ex-Gaussian distribution was more appropriate than the Gaussian one, converging with Rodríguez-Ferreiro et al. (2020). Therefore, the ex-Gaussian distribution was used in the final models.\n\rModels with a Gaussian distribution\rThe figures below show the prior predictive checks for the Gaussian models. These plots show the maximum, mean and minimum values of the observed data (\\(y\\)) and those of the predicted distribution (\\(y_{rep}\\), which stands for replications of the outcome). The way of interpreting these plots is by comparing the observed data to the predicted distribution. The specifics of this comparison vary across the three plots. First, in the upper plot, which shows the maximum values, the ideal scenario would show the observed maximum value (\\(y\\)) overlapping with the maximum value of the predicted distribution (\\(y_{rep}\\)). Second, in the middle plot, showing the mean values, the ideal scenario would show the observed mean value (\\(y\\)) overlapping with the mean value of the predicted distribution (\\(y_{rep}\\)). Last, in the lower plot, which shows the minimum values, the ideal scenario would have the observed minimum value (\\(y\\)) overlapping with the minimum value of the predicted distribution (\\(y_{rep}\\)). While the overlap need not be absolute, the closer the observed and the predicted values are on the X axis, the better. As such, the three predictive checks below—corresponding to models that used the default Gaussian distribution—show that the priors fitted the data acceptably but not very well.\n\rPrior predictive checks for the Gaussian, informative-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rPrior predictive checks for the Gaussian, weakly-informative-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rPrior predictive checks for the Gaussian, diffuse-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rModels with an exponentially-modified Gaussian (i.e., ex-Gaussian) distribution\rIn contrast to the above results, the figures below demonstrate that, when an ex-Gaussian distribution was used, the priors fitted the data far better, which converged with the results of a similar comparison performed by Rodríguez-Ferreiro et al. (2020; see supplementary materials of the latter study).\n\rPrior predictive checks for the ex-Gaussian, informative-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rPrior predictive checks for the ex-Gaussian, weakly-informative-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rPrior predictive checks for the ex-Gaussian, diffuse-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\n\r\r4. Posterior predictive checks\rBased on the results from the prior predictive checks, the ex-Gaussian distribution was used in the final models. Next, posterior predictive checks were performed to assess the consistency between the observed data and new data predicted by the posterior distributions (Van de Schoot et al., 2021). The figure below presents the posterior predictive checks for the latter models. The interpretation of these plots is simple: the distributions of the observed (\\(y\\)) and the predicted data (\\(y_{rep}\\)) should be as similar as possible. As such, the plots below suggest that the results are trustworthy.\n\r\rPosterior predictive checks for the (ex-Gaussian) models from the semantic priming study. The observed data (\\(y\\)) and the predicted data (\\(y_{rep}\\)) almost entirely overlap with each other, demonstrating a very good fit.\n\r\n\r5. Prior sensitivity analysis\rIn the main analysis, the informative, weakly-informative and diffuse priors were used in separate models. In other words, in each model, all priors had the same degree of informativeness (as done in Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; Stone et al., 2021). In this way, a prior sensitivity analysis was performed to acknowledge the likely influence of the priors on the posterior distributions—that is, on the results (Lee \u0026amp; Wagenmakers, 2014; Stone et al., 2020; Van de Schoot et al., 2021).\nWe’ll first load a custom function (frequentist_bayesian_plot) from GitHub.\nsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/frequentist_bayesian_plot.R\u0026#39;)\r# Presenting the frequentist and the Bayesian estimates in the same plot. # For this purpose, the frequentist results are merged into a plot from # brms::mcmc_plot()\r# install.packages(\u0026#39;devtools\u0026#39;)\r# library(devtools)\r# install_version(\u0026#39;tidyverse\u0026#39;, \u0026#39;1.3.1\u0026#39;) # Due to breaking changes, Version 1.3.1 is required.\r# install_version(\u0026#39;ggplot2\u0026#39;, \u0026#39;5.3.5\u0026#39;) # Due to breaking changes, Version 5.3.5 is required.\rlibrary(tidyverse)\rlibrary(ggplot2)\rlibrary(Cairo)\r# Load frequentist coefficients (estimates and confidence intervals)\rKR_summary_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/KR_summary_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\rconfint_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/confint_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\r# Below are the default names of the effects\r# rownames(KR_summary_semanticpriming_lmerTest$coefficients)\r# rownames(confint_semanticpriming_lmerTest)\r# Load Bayesian posterior distributions\rsemanticpriming_posteriordistributions_informativepriors_exgaussian = readRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_posteriordistributions_informativepriors_exgaussian.rds?raw=true\u0026#39;)))\rsemanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian.rds?raw=true\u0026#39;)))\rsemanticpriming_posteriordistributions_diffusepriors_exgaussian = readRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_posteriordistributions_diffusepriors_exgaussian.rds?raw=true\u0026#39;)))\r# Below are the default names of the effects\r# levels(semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian$data$parameter)\r# Reorder the components of interactions in the frequentist results to match # with the order present in the Bayesian results.\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) =\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;, replacement = \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;, replacement = \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;)\rrownames(confint_semanticpriming_lmerTest) = rownames(confint_semanticpriming_lmerTest) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;, replacement = \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;, replacement = \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;)\r# Create a vector containing the names of the effects. This vector will be passed # to the plotting function.\rnew_labels = semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian$data$parameter %\u0026gt;% unique %\u0026gt;%\r# Remove the default \u0026#39;b_\u0026#39; from the beginning of each effect\rstr_remove(\u0026#39;^b_\u0026#39;) %\u0026gt;%\r# Put Intercept in parentheses\rstr_replace(pattern = \u0026#39;Intercept\u0026#39;, replacement = \u0026#39;(Intercept)\u0026#39;) %\u0026gt;%\r# First, adjust names of variables (both in main effects and in interactions)\rstr_replace(pattern = \u0026#39;z_target_word_frequency\u0026#39;,\rreplacement = \u0026#39;Target-word frequency\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_target_number_syllables\u0026#39;,\rreplacement = \u0026#39;Number of target-word syllables\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_word_concreteness_diff\u0026#39;,\rreplacement = \u0026#39;Word-concreteness difference\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_cosine_similarity\u0026#39;,\rreplacement = \u0026#39;Language-based similarity\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_visual_rating_diff\u0026#39;, replacement = \u0026#39;Visual-strength difference\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_attentional_control\u0026#39;,\rreplacement = \u0026#39;Attentional control\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_vocabulary_size\u0026#39;,\rreplacement = \u0026#39;Vocabulary size\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_participant_gender\u0026#39;,\rreplacement = \u0026#39;Gender\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval\u0026#39;,\rreplacement = \u0026#39;SOA\u0026#39;) %\u0026gt;%\r# Show acronym in main effect of SOA\rstr_replace(pattern = \u0026#39;^SOA$\u0026#39;,\rreplacement = \u0026#39;Stimulus onset asynchrony (SOA)\u0026#39;) %\u0026gt;%\r# Second, adjust order of effects in interactions. In the output from the model, # the word-level variables of interest (i.e., \u0026#39;z_cosine_similarity\u0026#39; and # \u0026#39;z_visual_rating_diff\u0026#39;) sometimes appeared second in their interactions. For # better consistency, the code below moves those word-level variables (with # their new names) to the first position in their interactions. Note that the # order does not affect the results in any way.\rsub(\u0026#39;(\\\\w+.*):(Language-based similarity|Visual-strength difference)\u0026#39;, \u0026#39;\\\\2:\\\\1\u0026#39;, .) %\u0026gt;%\r# Replace colons denoting interactions with times symbols\rstr_replace(pattern = \u0026#39;:\u0026#39;, replacement = \u0026#39; \u0026amp;times; \u0026#39;) # Create plots, beginning with the informative-prior model\rplot_semanticpriming_frequentist_bayesian_plot_informativepriors_exgaussian =\rfrequentist_bayesian_plot(KR_summary_semanticpriming_lmerTest,\rconfint_semanticpriming_lmerTest,\rsemanticpriming_posteriordistributions_informativepriors_exgaussian,\rlabels = new_labels, interaction_symbol_x = TRUE,\rvertical_line_at_x = 0, x_title = \u0026#39;Effect size (\u0026amp;beta;)\u0026#39;, x_axis_labels = 3, note_frequentist_no_prior = TRUE) +\rggtitle(\u0026#39;Prior *SD* = 0.1\u0026#39;)\r#####\rplot_semanticpriming_frequentist_bayesian_plot_weaklyinformativepriors_exgaussian =\rfrequentist_bayesian_plot(KR_summary_semanticpriming_lmerTest,\rconfint_semanticpriming_lmerTest,\rsemanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian,\rlabels = new_labels, interaction_symbol_x = TRUE,\rvertical_line_at_x = 0, x_title = \u0026#39;Effect size (\u0026amp;beta;)\u0026#39;,\rx_axis_labels = 3, note_frequentist_no_prior = TRUE) +\rggtitle(\u0026#39;Prior *SD* = 0.2\u0026#39;) +\rtheme(axis.text.y = element_blank())\r#####\rplot_semanticpriming_frequentist_bayesian_plot_diffusepriors_exgaussian =\rfrequentist_bayesian_plot(KR_summary_semanticpriming_lmerTest,\rconfint_semanticpriming_lmerTest,\rsemanticpriming_posteriordistributions_diffusepriors_exgaussian,\rlabels = new_labels, interaction_symbol_x = TRUE,\rvertical_line_at_x = 0, x_title = \u0026#39;Effect size (\u0026amp;beta;)\u0026#39;, x_axis_labels = 3, note_frequentist_no_prior = TRUE) +\rggtitle(\u0026#39;Prior *SD* = 0.3\u0026#39;) + theme(axis.text.y = element_blank())\r\r\nThe figure below presents the posterior distribution of each effect in each model. The frequentist estimates are also shown to facilitate the comparison.\nplot_semanticpriming_frequentist_bayesian_plot_informativepriors_exgaussian +\rplot_semanticpriming_frequentist_bayesian_plot_weaklyinformativepriors_exgaussian +\rplot_semanticpriming_frequentist_bayesian_plot_diffusepriors_exgaussian +\rplot_layout(ncol = 3, guides = \u0026#39;collect\u0026#39;) \u0026amp; theme(legend.position = \u0026#39;bottom\u0026#39;)\r\rEstimates from the frequentist analysis (in red) and from the Bayesian analysis (in blue) for the semantic priming study, in each model. The frequentist means (represented by points) are flanked by 95% confidence intervals. The Bayesian means (represented by vertical lines) are flanked by 95% credible intervals in light blue (in some cases, the interval is occluded by the bar of the mean)\n\r\nA blog post on the frequentist-Bayesian plots is also available.\nSession info\rIf you encounter any blockers while reproduce the above analyses using the materials at https://osf.io/gt5uf, my current session info may be useful. For instance, the legend of the last plot may not show if the latest versions of the ggplot2 and the tidyverse packages are used. Instead, ggplot2 3.3.5 and tidyverse 1.3.1 should be installed using install_version('ggplot2', '3.3.5') and install_version('tidyverse', '1.3.1').\nsessionInfo()\r## R version 4.2.3 (2023-03-15 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 10 x64 (build 22621)\r## ## Matrix products: default\r## ## locale:\r## [1] LC_COLLATE=English_United Kingdom.utf8 ## [2] LC_CTYPE=English_United Kingdom.utf8 ## [3] LC_MONETARY=English_United Kingdom.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United Kingdom.utf8 ## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] Cairo_1.6-0 forcats_1.0.0 stringr_1.5.0 ## [4] purrr_1.0.1 readr_2.1.4 tidyr_1.3.0 ## [7] tibble_3.2.1 tidyverse_1.3.1 papaja_0.1.1 ## [10] tinylabels_0.2.3 patchwork_1.1.2 ggtext_0.1.2 ## [13] ggridges_0.5.4 ggplot2_3.3.5 dplyr_1.1.1 ## [16] knitr_1.42 xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] fs_1.6.1 lubridate_1.9.2 insight_0.19.2 httr_1.4.6 ## [5] tools_4.2.3 backports_1.4.1 bslib_0.4.2 utf8_1.2.3 ## [9] R6_2.5.1 DBI_1.1.3 colorspace_2.1-0 withr_2.5.0 ## [13] tidyselect_1.2.0 emmeans_1.8.7 compiler_4.2.3 cli_3.4.1 ## [17] rvest_1.0.3 xml2_1.3.3 sandwich_3.0-2 labeling_0.4.2 ## [21] bookdown_0.33.3 bayestestR_0.13.1 sass_0.4.6 scales_1.2.1 ## [25] mvtnorm_1.1-3 commonmark_1.9.0 digest_0.6.31 rmarkdown_2.21 ## [29] pkgconfig_2.0.3 htmltools_0.5.5 dbplyr_2.3.2 fastmap_1.1.1 ## [33] highr_0.10 rlang_1.1.0 readxl_1.4.2 rstudioapi_0.14 ## [37] jquerylib_0.1.4 farver_2.1.1 generics_0.1.3 zoo_1.8-11 ## [41] jsonlite_1.8.4 magrittr_2.0.3 parameters_0.21.1 Matrix_1.6-1 ## [45] Rcpp_1.0.10 munsell_0.5.0 fansi_1.0.4 lifecycle_1.0.3 ## [49] stringi_1.7.12 multcomp_1.4-23 yaml_2.3.7 MASS_7.3-60 ## [53] plyr_1.8.8 grid_4.2.3 crayon_1.5.2 lattice_0.21-8 ## [57] haven_2.5.2 splines_4.2.3 gridtext_0.1.5 hms_1.1.3 ## [61] pillar_1.9.0 uuid_1.1-0 markdown_1.5 estimability_1.4.1\r## [65] effectsize_0.8.3 codetools_0.2-19 reprex_2.0.2 glue_1.6.2 ## [69] evaluate_0.21 blogdown_1.16 modelr_0.1.11 vctrs_0.6.1 ## [73] tzdb_0.4.0 cellranger_1.1.0 gtable_0.3.3 datawizard_0.8.0 ## [77] cachem_1.0.7 xfun_0.38 xtable_1.8-4 broom_1.0.4 ## [81] survival_3.5-7 timechange_0.2.0 TH.data_1.1-1\r\rReferences\rBarton, J. J. S., Hanif, H. M., Eklinder Björnström, L., \u0026amp; Hills, C. (2014). The word-length effect in reading: A review. Cognitive Neuropsychology, 31(5-6), 378–412. https://doi.org/10.1080/02643294.2014.895314\r\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\r\rBeyersmann, E., Grainger, J., \u0026amp; Taft, M. (2020). Evidence for embedded word length effects in complex nonwords. Language, Cognition and Neuroscience, 35(2), 235–245. https://doi.org/10.1080/23273798.2019.1659989\r\rBrysbaert, M., Mandera, P., \u0026amp; Keuleers, E. (2018). The word frequency effect in word processing: An updated review. Current Directions in Psychological Science, 27(1), 45–50. https://doi.org/10.1177/0963721417727521\r\rBrysbaert, M., Stevens, M., Mandera, P., \u0026amp; Keuleers, E. (2016). The impact of word prevalence on lexical decision times: Evidence from the Dutch Lexicon Project 2. Journal of Experimental Psychology: Human Perception and Performance, 42(3), 441–458. https://doi.org/10.1037/xhp0000159\r\rBrysbaert, M., Warriner, A. B., \u0026amp; Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46, 904–911. https://doi.org/10.3758/s13428-013-0403-5\r\rBürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411. https://journal.r-project.org/archive/2018/RJ-2018-017/index.html\r\rBürkner, P.-C., Gabry, J., Weber, S., Johnson, A., Modrak, M., Badr, H. S., Weber, F., Ben-Shachar, M. S., \u0026amp; Rabel, H. (2022). Package ’brms’. CRAN. https://cran.r-project.org/web/packages/brms/brms.pdf\r\rCerni, T., Velay, J.-L., Alario, F.-X., Vaugoyeau, M., \u0026amp; Longcamp, M. (2016). Motor expertise for typing impacts lexical decision performance. Trends in Neuroscience and Education, 5(3), 130–138. https://doi.org/10.1016/j.tine.2016.07.007\r\rCumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966\r\rDijkstra, T., Wahl, A., Buytenhuijs, F., Halem, N. V., Al-Jibouri, Z., Korte, M. D., \u0026amp; Rekké, S. (2019). Multilink: A computational model for bilingual word recognition and word translation. Bilingualism: Language and Cognition, 22(4), 657–679. https://doi.org/10.1017/S1366728918000287\r\rKim, M., Crossley, S. A., \u0026amp; Skalicky, S. (2018). Effects of lexical features, textual properties, and individual differences on word processing times during second language reading comprehension. Reading and Writing, 31(5), 1155–1180. https://doi.org/10.1007/s11145-018-9833-x\r\rKnief, U., \u0026amp; Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods. https://doi.org/10.3758/s13428-021-01587-5\r\rKruschke, J. K., \u0026amp; Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin \u0026amp; Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4\r\rLee, M. D., \u0026amp; Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press. https://doi.org/10.1017/CBO9781139087759\r\rLewandowski, D., Kurowicka, D., \u0026amp; Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008\r\rLim, R. Y., Yap, M. J., \u0026amp; Tse, C.-S. (2020). Individual differences in Cantonese Chinese word recognition: Insights from the Chinese Lexicon Project. Quarterly Journal of Experimental Psychology, 73(4), 504–518. https://doi.org/10.1177/1747021820906566\r\rLo, S., \u0026amp; Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, 6, 1171. https://doi.org/10.3389/fpsyg.2015.01171\r\rMatzke, D., \u0026amp; Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin \u0026amp; Review, 16(5), 798–817. https://doi.org/10.3758/PBR.16.5.798\r\rMendes, P. S., \u0026amp; Undorf, M. (2021). On the pervasive effect of word frequency in metamemory. Quarterly Journal of Experimental Psychology, 17470218211053329. https://doi.org/10.1177/17470218211053329\r\rMilek, A., Butler, E. A., Tackman, A. M., Kaplan, D. M., Raison, C. L., Sbarra, D. A., Vazire, S., \u0026amp; Mehl, M. R. (2018). “Eavesdropping on happiness” revisited: A pooled, multisample replication of the association between life satisfaction and observed daily conversation quantity and quality. Psychological Science, 29(9), 1451–1462. https://doi.org/10.1177/0956797618774252\r\rNicenboim, B., Schad, D., \u0026amp; Vasishth, S. (n.d.). An introduction to Bayesian data analysis for cognitive science. Chapman and Hall/CRC Statistics in the Social and Behavioral Sciences Series.\r\rPexman, P. M., \u0026amp; Yap, M. J. (2018). Individual differences in semantic processing: Insights from the Calgary semantic decision project. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1091–1112. https://doi.org/10.1037/xlm0000499\r\rPregla, D., Lissón, P., Vasishth, S., Burchert, F., \u0026amp; Stadie, N. (2021). Variability in sentence comprehension in aphasia in German. Brain and Language, 222, 105008. https://doi.org/10.1016/j.bandl.2021.105008\r\rRodríguez-Ferreiro, J., Aguilera, M., \u0026amp; Davies, R. (2020). Semantic priming and schizotypal personality: Reassessing the link between thought disorder and enhanced spreading of semantic activation. PeerJ, 8, e9511. https://doi.org/10.7717/peerj.9511\r\rRouder, J. N., Haaf, J. M., \u0026amp; Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychonomic Bulletin \u0026amp; Review, 25(1), 102–113. https://doi.org/10.3758/s13423-017-1420-7\r\rSchielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C., Réale, D., Dochtermann, N. A., Garamszegi, L. Z., \u0026amp; Araya‐Ajoy, Y. G. (2020). Robustness of linear mixed‐effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11(9), 1141–1152. https://doi.org/10.1111/2041-210X.13434\r\rSchmalz, X., Biurrun Manresa, J., \u0026amp; Zhang, L. (2021). What is a Bayes factor? Psychological Methods. https://doi.org/10.1037/met0000421\r\rStone, K., Malsburg, T. von der, \u0026amp; Vasishth, S. (2020). The effect of decay and lexical uncertainty on processing long-distance dependencies in reading. PeerJ, 8, e10438. https://doi.org/10.7717/peerj.10438\r\rStone, K., Veríssimo, J., Schad, D. J., Oltrogge, E., Vasishth, S., \u0026amp; Lago, S. (2021). The interaction of grammatically distinct agreement dependencies in predictive processing. Language, Cognition and Neuroscience, 36(9), 1159–1179. https://doi.org/10.1080/23273798.2021.1921816\r\rTendeiro, J. N., \u0026amp; Kiers, H. A. L. (2019). A review of issues about null hypothesis Bayesian testing. Psychological Methods, 24(6), 774–795. https://doi.org/10.1037/met0000221\r\rTendeiro, J. N., \u0026amp; Kiers, H. A. L. (in press). On the white, the black, and the many shades of gray in between: Our reply to van Ravenzwaaij and Wagenmakers (2021). Psychological Methods.\r\rVan de Schoot, R., Depaoli, S., Gelman, A., King, R., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., Willemsen, J., \u0026amp; Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1, 3. https://doi.org/10.1038/s43586-020-00003-0\r\rvan Ravenzwaaij, D., \u0026amp; Wagenmakers, E.-J. (2021). Advantages masquerading as “issues” in Bayesian hypothesis testing: A commentary on Tendeiro and Kiers (2019). Psychological Methods. https://doi.org/10.1037/met0000415\r\rVasishth, S., Nicenboim, B., Beckman, M. E., Li, F., \u0026amp; Kong, E. J. (2018). Bayesian data analysis in the phonetic sciences: A tutorial introduction. Journal of Phonetics, 71, 147–161. https://doi.org/10.1016/j.wocn.2018.07.008\r\rYarkoni, T., Balota, D., \u0026amp; Yap, M. J. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin \u0026amp; Review, 15(5), 971–979. https://doi.org/10.3758/PBR.15.5.971\r\r\r\r\r","date":1671667200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1671667200,"objectID":"2895a175c5fb1f734016c2e19a19dbbe","permalink":"https://pablobernabeu.github.io/2022/bayesian-workflow-prior-determination-predictive-checks-and-sensitivity-analyses/","publishdate":"2022-12-22T00:00:00Z","relpermalink":"/2022/bayesian-workflow-prior-determination-predictive-checks-and-sensitivity-analyses/","section":"post","summary":"This post presents a run-through of a Bayesian workflow in R. The content is *closely* based on Bernabeu (2022), which was in turn based on lots of other references, also cited here.","tags":["Bayesian statistics","linear mixed-effects models","priors","predictive checks","sensitivity analysis","R","visualisation","brms","s"],"title":"Bayesian workflow: Prior determination, predictive checks and sensitivity analyses","type":"post"},{"authors":["Bernabeu, P., Lynott, D., \u0026 Connell, L."],"categories":["conceptual processing","embodied cognition","statistical power","research methods","statistics"],"content":"\r Online book\r\r\r\nReference\rBernabeu, P., Lynott, D., \u0026amp; Connell, L. (2022). Language and vision in conceptual processing: Multilevel analysis and statistical power. OSF. https://osf.io/dnskh\n\r","date":1665792000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1665792000,"objectID":"2df7d61d7171559226e1a31f94ee9097","permalink":"https://pablobernabeu.github.io/publication/language-vision-conceptual-processing/","publishdate":"2022-10-22T09:10:27Z","relpermalink":"/publication/language-vision-conceptual-processing/","section":"publication","summary":"Research has suggested that conceptual processing depends on both language-based and vision-based information. We tested this interplay at three levels of the experimental structure: individuals, words and tasks. To this end, we drew on three existing, large data sets that implemented the paradigms of semantic priming, semantic decision and lexical decision. We extended these data sets with measures of language-based and vision-based information, and analysed how the latter variables interacted with participants' vocabulary size and gender, and also with presentation speed in the semantic priming study. We performed the analysis using mixed-effects models that included a comprehensive array of fixed effects---including covariates---and random effects. First, we found that language-based information was more important than vision-based information. Second, in the semantic priming study---whose task required distinguishing between words and nonwords---, both language-based and vision-based information were more influential when words were presented faster. Third, a 'task-relevance advantage' was identified in higher-vocabulary participants. Specifically, in lexical decision, higher-vocabulary participants were more sensitive to language-based information than lower-vocabulary participants. In contrast, in semantic decision, higher-vocabulary participants were more sensitive to word concreteness. Fourth, we demonstrated the influence of the analytical method on the results. These findings support the interplay between language and vision in conceptual processing, and demonstrate the influence of measurement instruments on the results. Last, we estimated the sample size required to reliably investigate various effects. We found that 300 participants were sufficient to examine the effect of language-based information contained in words, whereas more than 1,000 participants were necessary to examine the effect of vision-based information and the interactions of both former variables with vocabulary size, gender and presentation speed. In conclusion, this power analysis reveals the need to increase sample sizes when conducting research on perceptual simulation and individual differences.","tags":["semantic processing","semantic priming","semantic decision","lexical decision","language","vision","visual strength","cognition","psycholinguistics","reading","linear mixed-effects models","frequentist statistics","lme4","lmerTest","Bayesian statistics","brms","power analysis","sample size","simr","rstats","R"],"title":"Language and vision in conceptual processing: Multilevel analysis and statistical power","type":"publication"},{"authors":["Bernabeu, P."],"categories":["conceptual processing","embodied cognition","statistical power`","research methods","statistics"],"content":"\n\u0026nbsp; Online book \r\rReference Bernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\n\rRelated references Abrams, M. B., Bjaalie, J. G., Das, S., Egan, G. F., Ghosh, S. S., Goscinski, W. J., Grethe, J. S., Kotaleski, J. H., Ho, E. T. W., Kennedy, D. N., Lanyon, L. J., Leergaard, T. B., Mayberg, H. S., Milanesi, L., Mouček, R., Poline, J. B., Roy, P. K., Strother, S. C., Tang, T. B., \u0026hellip; Martone, M. E. (2022). A Standards Organization for Open and FAIR Neuroscience: The International Neuroinformatics Coordinating Facility. Neuroinformatics, 20(1), 25\u0026ndash;36. https://doi.org/10.1007/s12021-020-09509-0\nAburumman, N., Gillies, M., Ward, J. A., \u0026amp; Hamilton, A. F. de C. (2022). Nonverbal communication in virtual reality: Nodding as a social signal in virtual interactions. International Journal of Human-Computer Studies, 164, 102819. https://doi.org/10.1016/j.ijhcs.2022.102819\nAbu‐Zhaya, R., Arnon, I., \u0026amp; Borovsky, A. (2022). Do Children Use Multi‐Word Information in Real‐Time Sentence Comprehension? Cognitive Science, 46(3), e13111. https://doi.org/10.1111/cogs.13111\nAchterberg, M., Becht, A., Van Der Cruijsen, R., Van De Groep, I. H., Spaans, J. P., Klapwijk, E., \u0026amp; Crone, E. A. (2022). Longitudinal associations between social media use, mental well-being and structural brain development across adolescence. Developmental Cognitive Neuroscience, 54, 101088. https://doi.org/10.1016/j.dcn.2022.101088\nAdamo, P., Oddenino, F., De Leo, D., Agnelli, M., Cescon, C., Temporiti, F., \u0026amp; Gatti, R. (2022). Dispersion of Knee Helical Axes during Walking after Maximal versus Resistant Strength Training in Healthy Subjects. Applied Sciences, 12(12), 5850. https://doi.org/10.3390/app12125850\nAdams, H., Stefanucci, J., Creem-Regehr, S., \u0026amp; Bodenheimer, B. (2022). Depth Perception in Augmented Reality: The Effects of Display, Shadow, and Position. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 792\u0026ndash;801. https://doi.org/10.1109/VR51125.2022.00101\nAdeleke, R., Iyanda, A. E., Osayomi, T., \u0026amp; Alabede, O. (2022). Tackling female digital exclusion: Drivers and constraints of female Internet use in Nigeria. African Geographical Review, 41(4), 531\u0026ndash;544. https://doi.org/10.1080/19376812.2021.1963296\nAggarwal, N., Williams, L. E., Tromp, D. P. M., Pine, D. S., \u0026amp; Kalin, N. H. (2022). A dynamic relation between whole-brain white matter microstructural integrity and anxiety symptoms in preadolescent females with pathological anxiety. Translational Psychiatry, 12(1), 57. https://doi.org/10.1038/s41398-022-01827-y\nAgmon, G., Loewenstein, Y., \u0026amp; Grodzinsky, Y. (2022). Negative sentences exhibit a sustained effect in delayed verification tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(1), 122\u0026ndash;141. https://doi.org/10.1037/xlm0001059\nAgrawal, A., Nag, S., Hari, K. V. S., \u0026amp; Arun, S. P. (2022). Letter processing in upright bigrams predicts reading fluency variations in children. Journal of Experimental Psychology: General, 151(9), 2237\u0026ndash;2249. https://doi.org/10.1037/xge0001175\nAkil, A. M., Ujhelyi, A., \u0026amp; Logemann, H. N. A. (2022). Exposure to Depression Memes on Social Media Increases Depressive Mood and It Is Moderated by Self-Regulation: Evidence From Self-Report and Resting EEG Assessments. Frontiers in Psychology, 13, 880065. https://doi.org/10.3389/fpsyg.2022.880065\nAl-Azary, H., Yu, T., \u0026amp; McRae, K. (2022). Can you touch the N400? The interactive effects of body-object interaction and task demands on N400 amplitudes and decision latencies. Brain and Language, 231, 105147. https://doi.org/10.1016/j.bandl.2022.105147\nAlbert, D. A., Claude Ouimet, M., \u0026amp; Brown, T. G. (2022). Negative mood mind wandering and unsafe driving in young male drivers. Accident Analysis \u0026amp; Prevention, 178, 106867. https://doi.org/10.1016/j.aap.2022.106867\nAlcántara, I., Somma, A., Chalar, G., Fabre, A., Segura, A., Achkar, M., Arocena, R., Aubriot, L., Baladán, C., Barrios, M., Bonilla, S., Burwood, M., Calliari, D. L., Calvo, C., Capurro, L., Carballo, C., Céspedes-Payret, C., Conde, D., Corrales, N., \u0026hellip; García-Rodríguez, F. (2022). A reply to \u0026ldquo;Relevant factors in the eutrophication of the Uruguay River and the Río Negro.\u0026rdquo; Science of The Total Environment, 818, 151854. https://doi.org/10.1016/j.scitotenv.2021.151854\nAlhebshi, A., Alsharif, N., Thorley, J., James, L. J., \u0026amp; Clifford, T. (2021). The Effects of Dietary Protein Supplementation on Exercise-Induced Inflammation and Oxidative Stress: A Systematic Review of Human Trials. Antioxidants, 11(1), 13. https://doi.org/10.3390/antiox11010013\nAlJassmi, M. A., Warrington, K. L., McGowan, V. A., White, S. J., \u0026amp; Paterson, K. B. (2022). Effects of word predictability on eye movements during Arabic reading. Attention, Perception, \u0026amp; Psychophysics, 84(1), 10\u0026ndash;24. https://doi.org/10.3758/s13414-021-02375-1\nAltabella, L., Benetti, G., Camera, L., Cardano, G., Montemezzi, S., \u0026amp; Cavedon, C. (2022). Machine learning for multi-parametric breast MRI: Radiomics-based approaches for lesion classification. Physics in Medicine \u0026amp; Biology, 67(15), 15TR01. https://doi.org/10.1088/1361-6560/ac7d8f\nAltın, E., Okur, N., Yalçın, E., Eraçıkbaş, A. F., \u0026amp; Aktan-Erciyes, A. (2022). Relations Between L2 Proficiency and L1 Lexical Property Evaluations. Frontiers in Psychology, 13, 820702. https://doi.org/10.3389/fpsyg.2022.820702\nAlzahrani, A. (2022). Priming the Arabic dative: Evidence for syntactic abstractness and implicit learning. Frontiers in Education, 7, 951898. https://doi.org/10.3389/feduc.2022.951898\nAmodio, D. M., \u0026amp; Berg, J. J. (2022). The neural underpinnings of intergroup bias. In P. Molenberghs, The Neuroscience of Intergroup Relations (1st ed., pp. 3\u0026ndash;15). Routledge. https://doi.org/10.4324/9781003042426-1\nAnastassopoulou, C., Antoni, D., Manoussopoulos, Y., Stefanou, P., Argyropoulou, S., Vrioni, G., \u0026amp; Tsakris, A. (2022). Age and sex associations of SARS-CoV-2 antibody responses post BNT162b2 vaccination in healthcare workers: A mixed effects model across two vaccination periods. PLOS ONE, 17(4), e0266958. https://doi.org/10.1371/journal.pone.0266958\nAndelius, T. C. K., Henriksen, T. B., Kousholt, B. S., \u0026amp; Kyng, K. J. (2022). Remote ischemic postconditioning for neuroprotection after newborn hypoxia\u0026ndash;ischemia: Systematic review of preclinical studies. Pediatric Research, 91(7), 1654\u0026ndash;1661. https://doi.org/10.1038/s41390-021-01656-7\nAnderson, B. A., \u0026amp; Peterson, S. A. (2022). Concreteness and levels of processing: A test of the dual-coding hypothesis using dynamic visual noise. Memory, 30(10), 1405\u0026ndash;1420. https://doi.org/10.1080/09658211.2022.2120622\nAndria, S., Madi‐Tarabya, B., \u0026amp; Khateb, A. (2022). Behavioural and electrophysiological analyses of written word processing in spoken and literary Arabic: New insights into the diglossia question. European Journal of Neuroscience, 56(6), 4819\u0026ndash;4836. https://doi.org/10.1111/ejn.15781\nAndriguetto-Filho, J. M., Medeiros, R. P., Vaz-dos-Santos, A. M., \u0026amp; Chaves, P. D. T. D. C. (2022). Shrimp up, fish down, and vice-versa: Fishers\u0026rsquo; strategies and long-term changes in small-scale fisheries landings at two spatial levels in Southern Brazil. Marine Policy, 143, 105184. https://doi.org/10.1016/j.marpol.2022.105184\nAndronowski, J. M., Cole, M. E., Hieronymus, T. L., Davis, R. A., Usher, L. R., \u0026amp; Cooper, L. N. (2022). Intraskeletal consistency in patterns of vascularity within bat limb bones. The Anatomical Record, 305(2), 462\u0026ndash;476. https://doi.org/10.1002/ar.24694\nAnlló, H., Herer, B., Delignières, A., Ghergan, A., Bocahu, Y., Segundo, I., Moulin, C., \u0026amp; Larue, F. (2022). Hypnosis for the management of COPD-related anxiety and dyspnoea in pulmonary rehabilitation: Rationale and design for a cluster-randomised, active-control trial (HYPNOBPCO_2). ERJ Open Research, 8(1), 00565\u0026ndash;02021. https://doi.org/10.1183/23120541.00565-2021\nAnlló, H., Watanabe, K., Sackur, J., \u0026amp; De Gardelle, V. (2022). Effects of false statements on visual perception hinge on social suggestibility. Journal of Experimental Psychology: Human Perception and Performance, 48(8), 889\u0026ndash;900. https://doi.org/10.1037/xhp0001024\nAnnala, M. J., Lehosmaa, K., Ahonen, S. H. K., Karttunen, K., Markkola, A. M., Puumala, I., \u0026amp; Mykrä, H. (2022). Effect of riparian soil moisture on bacterial, fungal and plant communities and microbial decomposition rates in boreal stream-side forests. Forest Ecology and Management, 519, 120344. https://doi.org/10.1016/j.foreco.2022.120344\nAntony, J. W., Romero, A., Vierra, A. H., Luenser, R. S., Hawkins, R. D., \u0026amp; Bennion, K. A. (2022). Semantic relatedness retroactively boosts memory and promotes memory interdependence across episodes. eLife, 11, e72519. https://doi.org/10.7554/eLife.72519\nAppelqvist-Dalton, M., Wilmott, J. P., He, M., \u0026amp; Simmons, A. M. (2022). Time perception in film is modulated by sensory modality and arousal. Attention, Perception, \u0026amp; Psychophysics, 84(3), 926\u0026ndash;942. https://doi.org/10.3758/s13414-022-02464-9\nArina, G. A., Dobrushina, O. R., Shvetsova, E. T., Osina, E. D., Meshkov, G. A., Aziatskaya, G. A., Trofimova, A. K., Efremova, I. N., Martunov, S. E., \u0026amp; Nikolaeva, V. V. (2022). Infra-Low Frequency Neurofeedback in Tension-Type Headache: A Cross-Over Sham-Controlled Study. Frontiers in Human Neuroscience, 16, 891323. https://doi.org/10.3389/fnhum.2022.891323\nAristei, S., Knoop, C. A., Lubrich, O., Nehrlich, T., Enge, A., Stark, K., Sommer, W., \u0026amp; Abdel Rahman, R. (2023). Affect as Anaesthetic: How emotional contexts modulate the processing of counterintuitive concepts. Language, Cognition and Neuroscience, 38(10), 1514\u0026ndash;1530. https://doi.org/10.1080/23273798.2022.2085312\nArjmand, S., Wegener, G., Landau, A. M., \u0026amp; Eskelund, A. (2022). Tips and traps for behavioural animal experimentation. Acta Neuropsychiatrica, 34(5), 240\u0026ndash;252. https://doi.org/10.1017/neu.2022.4\nArmitage, K. L., \u0026amp; Redshaw, J. (2022). Children boost their cognitive performance with a novel offloading technique. Child Development, 93(1), 25\u0026ndash;38. https://doi.org/10.1111/cdev.13664\nArriagada-Mödinger, F., \u0026amp; Ferreira, R. A. (2022). The Effect of Emotional Valence on Auditory Word Recognition Memory in English as a Foreign Language. Journal of Psycholinguistic Research, 51(2), 309\u0026ndash;322. https://doi.org/10.1007/s10936-022-09841-3\nArseniev-Koehler, A. (2022). Theoretical Foundations and Limits of Word Embeddings: What Types of Meaning can They Capture? Sociological Methods \u0026amp; Research, 004912412211401. https://doi.org/10.1177/00491241221140142\nArtuso, C., Bossi, F., Belacchi, C., \u0026amp; Palladino, P. (2022). Effects of semantic relationship and preactivation on memory updating. Cognitive Processing, 23(3), 407\u0026ndash;422. https://doi.org/10.1007/s10339-022-01096-z\nAster, H.-C., Romanos, M., Walitza, S., Gerlach, M., Mühlberger, A., Rizzo, A., Andreatta, M., Hasenauer, N., Hartrampf, P. E., Nerlich, K., Reiners, C., Lorenz, R., Buck, A. K., \u0026amp; Deserno, L. (2022). Responsivity of the Striatal Dopamine System to Methylphenidate\u0026mdash;A Within-Subject I-123-β-CIT-SPECT Study in Male Children and Adolescents With Attention-Deficit/Hyperactivity Disorder. Frontiers in Psychiatry, 13, 804730. https://doi.org/10.3389/fpsyt.2022.804730\nAtaturk Universitesi, Veteriner Fakultesi, Biyometri Anabillim Dali, Erzurum, Turkiye, Eltas, O., Topal, M., \u0026amp; Amasya Universitesi, Tip Fakultesi, Biyoistatistik Anabilim Dali, Amasya, Turkiye. (2022). Using Covariance Factor in Genetic Parameter Estimation. Veterinary Sciences and Practices, 17(1), 1\u0026ndash;5. https://doi.org/10.54614/VetSciPract.2022.1015013\nAtkinson, L., Doyle, R. E., Woodward, A., \u0026amp; Jongman, E. C. (2022). Exposure to humans after weaning does not reduce the behavioural reactivity of extensively reared Merino lambs. Behavioural Processes, 201, 104709. https://doi.org/10.1016/j.beproc.2022.104709\nAye, N., Lehmann, N., Kaufmann, J., Heinze, H.-J., Düzel, E., Taubert, M., \u0026amp; Ziegler, G. (2022). Test-retest reliability of multi-parametric maps (MPM) of brain microstructure. NeuroImage, 256, 119249. https://doi.org/10.1016/j.neuroimage.2022.119249\nAzimi, T., Ghoreishi, Z., Nilipour, R., Farazi, M., Ahmadi, A., Krishnan, G., \u0026amp; Aliniaye Asli, P. (2022). Lexical-semantic processing of action verbs and non-action nouns in Persian speakers: Behavioral evidence from the semantic similarity judgment task. Applied Neuropsychology: Adult, 29(4), 718\u0026ndash;730. https://doi.org/10.1080/23279095.2020.1806844\nAzizi, Z., Jandaghi, G., Firoozi, M., Zia-Tohidi, A., \u0026amp; Ebnerasouli, S. (2022). The Relative Importance of Mindfulness Facets and Their Interactions: Relations to Psychological Symptoms in Chronic Pain. Mindfulness, 13(4), 1054\u0026ndash;1068. https://doi.org/10.1007/s12671-022-01862-2\nBacelar, M. F. B., Parma, J. O., Cabral, D., Daou, M., Lohse, K. R., \u0026amp; Miller, M. W. (2022). Dissociating the contributions of motivational and information processing factors to the self-controlled feedback learning benefit. Psychology of Sport and Exercise, 59, 102119. https://doi.org/10.1016/j.psychsport.2021.102119\nBacelar, M. F. B., Parma, J. O., Murrah, W. M., \u0026amp; Miller, M. W. (2022). Meta-analyzing enhanced expectancies on motor learning: Positive effects but methodological concerns. International Review of Sport and Exercise Psychology, 1\u0026ndash;30. https://doi.org/10.1080/1750984X.2022.2042839\nBadia, S. B. I., Silva, P. A., Branco, D., Pinto, A., Carvalho, C., Menezes, P., Almeida, J., \u0026amp; Pilacinski, A. (2022). Virtual Reality for Safe Testing and Development in Collaborative Robotics: Challenges and Perspectives. Electronics, 11(11), 1726. https://doi.org/10.3390/electronics11111726\nBae, S., Pae, H. K., \u0026amp; Yi, K. (2022). The effects of script specificity on word recognition: Syllabic type, syllabic format, and reading direction in Korean Hangul. Journal of Cultural Cognitive Science, 6(2), 179\u0026ndash;198. https://doi.org/10.1007/s41809-022-00094-z\nBaese-Berk, M. M., \u0026amp; Samuel, A. G. (2022). Just give it time: Differential effects of disruption and delay on perceptual learning. Attention, Perception, \u0026amp; Psychophysics, 84(3), 960\u0026ndash;980. https://doi.org/10.3758/s13414-022-02463-w\nBago, B., Rosenzweig, L. R., Berinsky, A. J., \u0026amp; Rand, D. G. (2022). Emotion may predict susceptibility to fake news but emotion regulation does not seem to help. Cognition and Emotion, 36(6), 1166\u0026ndash;1180. https://doi.org/10.1080/02699931.2022.2090318\nBahlinger, K., Lincoln, T. M., \u0026amp; Clamor, A. (2022). Are Acute Increases and Variability in Emotion Regulation Strategies Related to Negative Affect and Paranoid Thoughts in Daily Life? Cognitive Therapy and Research, 46(1), 62\u0026ndash;72. https://doi.org/10.1007/s10608-021-10253-1\nBahnfleth, C. L., Strupp, B. J., Caudill, M. A., \u0026amp; Canfield, R. L. (2022). Prenatal choline supplementation improves child sustained attention: A 7‐year follow‐up of a randomized controlled feeding trial. The FASEB Journal, 36(1). https://doi.org/10.1096/fj.202101217R\nBai, B., Yang, C., \u0026amp; Fan, J. (2022). Semantic integration of multidimensional perceptual information in L1 sentence comprehension. Language and Cognition, 14(1), 109\u0026ndash;130. https://doi.org/10.1017/langcog.2021.24\nBakdash, J. Z., Marusich, L. R., Cox, K. R., Geuss, M. N., Zaroukian, E. G., \u0026amp; Morris, K. M. (2022). The validity of situation awareness for performance: A meta-analysis. Theoretical Issues in Ergonomics Science, 23(2), 221\u0026ndash;244. https://doi.org/10.1080/1463922X.2021.1921310\nBalzus, L., Klawohn, J., Elsner, B., Schmidt, S., Brandt, S. A., \u0026amp; Kathmann, N. (2022). Non-invasive brain stimulation modulates neural correlates of performance monitoring in patients with obsessive-compulsive disorder. NeuroImage: Clinical, 35, 103113. https://doi.org/10.1016/j.nicl.2022.103113\nBarnes, J. L., \u0026amp; Black, J. E. (2022). What's in a name? Book title salience and the psychology of fiction. Psychology of Aesthetics, Creativity, and the Arts, 16(2), 290\u0026ndash;301. https://doi.org/10.1037/aca0000333\nBarroca, N. C. B., Della Santa, G., Suchecki, D., García-Cairasco, N., \u0026amp; Umeoka, E. H. de L. (2022). Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neuroscience \u0026amp; Biobehavioral Reviews, 140, 104771. https://doi.org/10.1016/j.neubiorev.2022.104771\nBars, S. L., Bourgeois-Gironde, S., Wyart, V., Sari, I., Pacherie, E., \u0026amp; Chambon, V. (2022). Motor Coordination and Strategic Cooperation in Joint Action. Psychological Science, 33(5), 736\u0026ndash;751. https://doi.org/10.1177/09567976211053275\nBatailler, C., Brannon, S. M., Teas, P. E., \u0026amp; Gawronski, B. (2022). A Signal Detection Approach to Understanding the Identification of Fake News. Perspectives on Psychological Science, 17(1), 78\u0026ndash;98. https://doi.org/10.1177/1745691620986135\nBatista, L. G., Mello, V. H., Souza, A. P., \u0026amp; Margarido, G. R. A. (2022). Genomic prediction with allele dosage information in highly polyploid species. Theoretical and Applied Genetics, 135(2), 723\u0026ndash;739. https://doi.org/10.1007/s00122-021-03994-w\nBauer, A., Kagedal, M., \u0026amp; Wolfsegger, M. J. (2022). Assessment of pharmacokinetic linearity after repeated drug administration. Pharmaceutical Statistics, 21(5), 932\u0026ndash;943. https://doi.org/10.1002/pst.2206\nBausenhart, K. M., Ulrich, R., \u0026amp; Kaup, B. (2023). Association between abstraction level and time: Are future and past more abstract than the present? Quarterly Journal of Experimental Psychology, 17470218231217732. https://doi.org/10.1177/17470218231217732\nBaxter, P., Bekkering, H., Dijkstra, T., Droop, M., Van Den Hurk, M., \u0026amp; Leoné, F. (2022). Contrasting orthographically similar words facilitates adult second language vocabulary learning. Learning and Instruction, 80, 101582. https://doi.org/10.1016/j.learninstruc.2022.101582\nBehr, H., Ho, A. S., Yang, Q., Mitchell, E. S., DeLuca, L., Greenstein, N., \u0026amp; Michaelides, A. (2023). Men's Weight Loss Outcomes, Behaviors, and Perceptions in a Self-Directed Commercial Mobile Program: Retrospective Analysis. Health Education \u0026amp; Behavior, 50(1), 70\u0026ndash;83. https://doi.org/10.1177/10901981211055467\nBeier, E. J., \u0026amp; Ferreira, F. (2022). Replication of Cutler, A., \u0026amp; Fodor, J. A. (1979). Semantic focus and sentence comprehension. Cognition, 7(1), 49\u0026ndash;59. Journal of Memory and Language, 126, 104339. https://doi.org/10.1016/j.jml.2022.104339\nBell, T. R., Sprague, B. N., \u0026amp; Ross, L. A. (2022). Longitudinal associations of pain and cognitive decline in community-dwelling older adults. Psychology and Aging, 37(6), 715\u0026ndash;730. https://doi.org/10.1037/pag0000699\nBenabdallah, F. Z., Drissi El Maliani, A., Lotfi, D., Jennane, R., \u0026amp; El Hassouni, M. (2022). An autism spectrum disorder adaptive identification based on the Elimination of brain connections: A proof of long-range underconnectivity. Soft Computing, 26(10), 4701\u0026ndash;4711. https://doi.org/10.1007/s00500-022-06890-7\nBenson, T., Bucher, T., Oughton, R., McCloat, A., Mooney, E., Farrell, S., \u0026amp; Dean, M. (2022). The effects of nutrition and health claims on the nutrient composition of single and subsequent meal servings. Appetite, 176, 106105. https://doi.org/10.1016/j.appet.2022.106105\nBernardez, B., Duran, A., Parejo, J. A., Juristo, N., \u0026amp; RuizCortes, A. (2022). Effects of Mindfulness on Conceptual Modeling Performance: A Series of Experiments. IEEE Transactions on Software Engineering, 48(2), 432\u0026ndash;452. https://doi.org/10.1109/TSE.2020.2991699\nBerner, D., \u0026amp; Amrhein, V. (2022). Why and how we should join the shift from significance testing to estimation. Journal of Evolutionary Biology, 35(6), 777\u0026ndash;787. https://doi.org/10.1111/jeb.14009\nBeyer, M., Liebig, J., Sylvester, T., Braun, M., Heekeren, H. R., Froehlich, E., Jacobs, A. M., \u0026amp; Ziegler, J. C. (2022). Structural gray matter features and behavioral preliterate skills predict future literacy \u0026ndash; A machine learning approach. Frontiers in Neuroscience, 16, 920150. https://doi.org/10.3389/fnins.2022.920150\nBhatia, S., \u0026amp; Dillon, B. (2022). Processing agreement in Hindi: When agreement feeds attraction. Journal of Memory and Language, 125, 104322. https://doi.org/10.1016/j.jml.2022.104322\nBiggs, A. T. (2022). How to enhance military research using mathematical psychology. Journal of Mathematical Psychology, 106, 102619. https://doi.org/10.1016/j.jmp.2021.102619\nBiondo, N., Soilemezidi, M., \u0026amp; Mancini, S. (2022). Yesterday is history, tomorrow is a mystery: An eye-tracking investigation of the processing of past and future time reference during sentence reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 1001\u0026ndash;1018. https://doi.org/10.1037/xlm0001053\nBitter, A. N., Wondra, T., McCrea, S. M., Darzi, A., \u0026amp; Novak, V. D. (2022). Does it pay to play? Undermining effects of monetary reward and gamification in a web-based task. Technology, Mind, and Behavior, 3(1). https://doi.org/10.1037/tmb0000056\nBlack, B., Hollingsworth, A., Nunes, L., \u0026amp; Simon, K. (2022). Simulated power analyses for observational studies: An application to the Affordable Care Act Medicaid expansion. Journal of Public Economics, 213, 104713. https://doi.org/10.1016/j.jpubeco.2022.104713\nBloch, C., Tepest, R., Jording, M., Vogeley, K., \u0026amp; Falter-Wagner, C. M. (2022). Intrapersonal synchrony analysis reveals a weaker temporal coherence between gaze and gestures in adults with autism spectrum disorder. Scientific Reports, 12(1), 20417. https://doi.org/10.1038/s41598-022-24605-8\nBloch, C., Viswanathan, S., Tepest, R., Jording, M., Falter-Wagner, C. M., \u0026amp; Vogeley, K. (2023). Differentiated, rather than shared, strategies for time-coordinated action in social and non-social domains in autistic individuals. Cortex, 166, 207\u0026ndash;232. https://doi.org/10.1016/j.cortex.2023.05.008\nBlockley, A., Ogle, D., Woodrow, C., Montealegre-Z, F., \u0026amp; Warren, B. (2022). Physiological changes throughout an insect ear due to age and noise\u0026mdash;A longitudinal study. iScience, 25(9), 104746. https://doi.org/10.1016/j.isci.2022.104746\nBloom, P. A., VanTieghem, M., Gabard‐Durnam, L., Gee, D. G., Flannery, J., Caldera, C., Goff, B., Telzer, E. H., Humphreys, K. L., Fareri, D. S., Shapiro, M., Algharazi, S., Bolger, N., Aly, M., \u0026amp; Tottenham, N. (2022). Age‐related change in task‐evoked amygdala\u0026mdash;prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4\u0026ndash;22 years. Human Brain Mapping, 43(10), 3221\u0026ndash;3244. https://doi.org/10.1002/hbm.25847\nBöckler, A., \u0026amp; Singer, T. (2022). Longitudinal evidence for differential plasticity of cognitive functions: Mindfulness-based mental training enhances working memory, but not perceptual discrimination, response inhibition, and metacognition. Journal of Experimental Psychology: General, 151(7), 1573\u0026ndash;1590. https://doi.org/10.1037/xge0001143\nBøg Petersen, G., Klingenberg, S., \u0026amp; Makransky, G. (2022). Pipetting in virtual reality can predict real-life pipetting performance. Technology, Mind, and Behavior, 3(3). https://doi.org/10.1037/tmb0000076\nBogdány, T., Perakakis, P., Bódizs, R., \u0026amp; Simor, P. (2022). The heartbeat evoked potential is a questionable biomarker in nightmare disorder: A replication study. NeuroImage: Clinical, 33, 102933. https://doi.org/10.1016/j.nicl.2021.102933\nBögge, L., Colás-Blanco, I., \u0026amp; Piolino, P. (2022). Respiratory sinus arrhythmia during biofeedback is linked to persistent improvements in attention, short-term memory, and positive self-referential episodic memory. Frontiers in Neuroscience, 16, 791498. https://doi.org/10.3389/fnins.2022.791498\nBohmann, A. (2023). Future‐time reference in world Englishes. World Englishes, weng.12634. https://doi.org/10.1111/weng.12634\nBolens, G. (2022). Kinesic intelligence, medieval illuminated psalters, and the poetics of the psalms. Studia Neophilologica, 1\u0026ndash;24. https://doi.org/10.1080/00393274.2022.2051733\nBollini, A., Cocchi, E., Salvagno, V., \u0026amp; Gori, M. (2023). The causal role of vision in the development of spatial coordinates: Evidence from visually impaired children. Journal of Experimental Psychology: Human Perception and Performance, 49(7), 1042\u0026ndash;1052. https://doi.org/10.1037/xhp0001122\nBonin, P., Laroche, B., \u0026amp; Méot, A. (2021). Psycholinguistic norms for a set of 506 French compound words. Behavior Research Methods, 54(1), 393\u0026ndash;413. https://doi.org/10.3758/s13428-021-01601-w\nBonito, J. A. (2022). Extending the Group Actor-Partner Interdependence Model: MSEM Applications. Small Group Research, 53(2), 207\u0026ndash;243. https://doi.org/10.1177/10464964211012457\nBooker, J. A., Fivush, R., \u0026amp; Graci, M. E. (2022). Narrative identity informs psychological adjustment: Considering three themes captured across five time points and two event valences. Journal of Personality, 90(3), 324\u0026ndash;342. https://doi.org/10.1111/jopy.12668\nBooth, S. J., Taylor, J. R., Brown, L. J. E., \u0026amp; Pobric, G. (2022). The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex, 147, 112\u0026ndash;139. https://doi.org/10.1016/j.cortex.2021.12.001\nBorders, J. C., \u0026amp; Troche, M. S. (2022). Voluntary Cough Effectiveness and Airway Clearance in Neurodegenerative Disease. Journal of Speech, Language, and Hearing Research, 65(2), 431\u0026ndash;449. https://doi.org/10.1044/2021_JSLHR-21-00308\nBorghi, A. M., Osińska, A., Roepstorff, A., \u0026amp; Raczaszek-Leonardi, J. (2023). Concepts in interaction: Social engagement and inner experiences. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210351. https://doi.org/10.1098/rstb.2021.0351\nBosch-Bayard, J., Razzaq, F. A., Lopez-Naranjo, C., Wang, Y., Li, M., Galan-Garcia, L., Calzada-Reyes, A., Virues-Alba, T., Rabinowitz, A. G., Suarez-Murias, C., Guo, Y., Sanchez-Castillo, M., Roger, K., Gallagher, A., Prichep, L., Anderson, S. G., Michel, C. M., Evans, A. C., Bringas-Vega, M. L., \u0026hellip; Valdes-Sosa, P. A. (2022). Early protein energy malnutrition impacts life-long developmental trajectories of the sources of EEG rhythmic activity. NeuroImage, 254, 119144. https://doi.org/10.1016/j.neuroimage.2022.119144\nBottini, R., Morucci, P., D'Urso, A., Collignon, O., \u0026amp; Crepaldi, D. (2022). The concreteness advantage in lexical decision does not depend on perceptual simulations. Journal of Experimental Psychology: General, 151(3), 731\u0026ndash;738. https://doi.org/10.1037/xge0001090\nBottino, F., Lucignani, M., Pasquini, L., Mastrogiovanni, M., Gazzellini, S., Ritrovato, M., Longo, D., Figà-Talamanca, L., Rossi Espagnet, M. C., \u0026amp; Napolitano, A. (2022). Spatial Stability of Functional Networks: A Measure to Assess the Robustness of Graph-Theoretical Metrics to Spatial Errors Related to Brain Parcellation. Frontiers in Neuroscience, 15, 736524. https://doi.org/10.3389/fnins.2021.736524\nBowers, S. J., Summa, K. C., Thompson, R. S., González, A., Vargas, F., Olker, C., Jiang, P., Lowry, C. A., Dorrestein, P. C., Knight, R., Wright, K. P., Fleshner, M., Turek, F. W., \u0026amp; Vitaterna, M. H. (2022). A Prebiotic Diet Alters the Fecal Microbiome and Improves Sleep in Response to Sleep Disruption in Rats. Frontiers in Neuroscience, 16, 889211. https://doi.org/10.3389/fnins.2022.889211\nBračić, M., Bohn, L., Siewert, V., Von Kortzfleisch, V. T., Schielzeth, H., Kaiser, S., Sachser, N., \u0026amp; Richter, S. H. (2022). Once an optimist, always an optimist? Studying cognitive judgment bias in mice. Behavioral Ecology, 33(4), 775\u0026ndash;788. https://doi.org/10.1093/beheco/arac040\nBraid, J., \u0026amp; Richlan, F. (2022). The Functional Neuroanatomy of Reading Intervention. Frontiers in Neuroscience, 16, 921931. https://doi.org/10.3389/fnins.2022.921931\nBreadmore, H. L., Côté, E., \u0026amp; Deacon, S. H. (2023). The Timing Tells the Tale: Multiple Morphological Processes in Children's and Adults\u0026rsquo; Spelling. Scientific Studies of Reading, 27(5), 408\u0026ndash;427. https://doi.org/10.1080/10888438.2023.2186233\nBredemeyer, O., Patel, S., FitzGerald, J. J., \u0026amp; Antoniades, C. A. (2022). Oculomotor deficits in Parkinson's disease: Increasing sensitivity using multivariate approaches. Frontiers in Digital Health, 4, 939677. https://doi.org/10.3389/fdgth.2022.939677\nBreitfeld, E., \u0026amp; Saffran, J. R. (2023). Early word learning is influenced by physical environments. Child Development, cdev.14046. https://doi.org/10.1111/cdev.14046\nBrewster, G. S., Wang, D., McPhillips, M. V., Epps, F., \u0026amp; Yang, I. (2022). Correlates of Sleep Disturbance Experienced by Informal Caregivers of Persons Living with Dementia: A Systematic Review. Clinical Gerontologist, 1\u0026ndash;28. https://doi.org/10.1080/07317115.2022.2139655\nBrice, H., Siegelman, N., Van Den Bunt, M., Frost, S. J., Rueckl, J. G., Pugh, K. R., \u0026amp; Frost, R. (2022). INDIVIDUAL DIFFERENCES IN L2 LITERACY ACQUISITION: PREDICTING READING SKILL FROM SENSITIVITY TO REGULARITIES BETWEEN ORTHOGRAPHY, PHONOLOGY, AND SEMANTICS. Studies in Second Language Acquisition, 44(3), 737\u0026ndash;758. https://doi.org/10.1017/S0272263121000528\nBrimmell, J., Edwards, E. J., \u0026amp; Vaughan, R. S. (2022). Executive function and visual attention in sport: A systematic review. International Review of Sport and Exercise Psychology, 1\u0026ndash;34. https://doi.org/10.1080/1750984X.2022.2145574\nBringas Vega, M. L., Pedroso Ibáñez, I., Razzaq, F. A., Zhang, M., Morales Chacón, L., Ren, P., Galan Garcia, L., Gan, P., Virues Alba, T., Lopez Naranjo, C., Jahanshahi, M., Bosch-Bayard, J., \u0026amp; Valdes-Sosa, P. A. (2022). The Effect of Neuroepo on Cognition in Parkinson's Disease Patients Is Mediated by Electroencephalogram Source Activity. Frontiers in Neuroscience, 16, 841428. https://doi.org/10.3389/fnins.2022.841428\nBrochhagen, T., \u0026amp; Boleda, G. (2022). When do languages use the same word for different meanings? The Goldilocks principle in colexification. Cognition, 226, 105179. https://doi.org/10.1016/j.cognition.2022.105179\nBrock, K. M., Chelini, M.-C., Ayton, C., Madden, I. E., Ramos, C., Blois, J. L., Pafilis, P., \u0026amp; Edwards, D. L. (2022). Colour morph predicts social behaviour and contest outcomes in a polymorphic lizard (Podarcis erhardii). Animal Behaviour, 191, 91\u0026ndash;103. https://doi.org/10.1016/j.anbehav.2022.06.017\nBrockhoff, L., Schindler, S., Bruchmann, M., \u0026amp; Straube, T. (2022). Effects of perceptual and working memory load on brain responses to task-irrelevant stimuli: Review and implications for future research. Neuroscience \u0026amp; Biobehavioral Reviews, 135, 104580. https://doi.org/10.1016/j.neubiorev.2022.104580\nBrown, C. R. H. (2022). The prioritisation of motivationally salient stimuli in hemi-spatial neglect may be underpinned by goal-relevance: A meta-analytic review. Cortex, 150, 85\u0026ndash;107. https://doi.org/10.1016/j.cortex.2022.03.001\nBruijnzeel, A. W., Behnood-Rod, A., Malphurs, W., Chellian, R., Caudle, R. M., Febo, M., Setlow, B., \u0026amp; Neubert, J. K. (2022). Oxycodone decreases anxiety-like behavior in the elevated plus-maze test in male and female rats. Behavioural Pharmacology, 33(6), 418\u0026ndash;426. https://doi.org/10.1097/FBP.0000000000000690\nBrummelman, E., Nikolić, M., Nevicka, B., \u0026amp; Bögels, S. M. (2022). Early physiological indicators of narcissism and self‐esteem in children. Psychophysiology, 59(10), e14082. https://doi.org/10.1111/psyp.14082\nBuchanan, E. M., Valentine, K. D., \u0026amp; Wilkowsky, A. (2022). An extension of the QWERTY effect: Not just the right hand, expertise and typeability predict valence ratings of words. Psychology of Language and Communication, 26(1), 85\u0026ndash;101. https://doi.org/10.2478/plc-2022-0005\nBuchtel, E. E., Ng, L. C. Y., Bidwell, A., \u0026amp; Cannon, P. R. (2022). Moral expressions in Hong Kong, New Zealand, and the United Kingdom: Cultural similarities and differences in how affective facial muscle activity predicts judgments. Emotion, 22(3), 511\u0026ndash;525. https://doi.org/10.1037/emo0000766\nBuckley, M. G., Holden, L. J., Smith, A. D., \u0026amp; Haselgrove, M. (2022). The developmental trajectories of children's reorientation to global and local properties of environmental geometry. Journal of Experimental Psychology: General. https://doi.org/10.1037/xge0001265\nBurt, T., Roffel, A. F., Langer, O., Anderson, K., \u0026amp; DiMasi, J. (2022). Strategic, feasibility, economic, and cultural aspects of phase 0 approaches: Is it time to change the drug development process in order to increase productivity? Clinical and Translational Science, 15(6), 1355\u0026ndash;1379. https://doi.org/10.1111/cts.13269\nBuzzi, F., Yahya, N. B., Gambazza, S., Binda, F., Galazzi, A., Ferrari, A., Crespan, S., Al-Atroushy, H. A., Cantoni, B. M., Laquintana, D., \u0026amp; Collaborative Group. (2022). Use of Musical Intervention in the Pediatric Intensive Care Unit of a Developing Country: A Pilot Pre\u0026ndash;Post Study. Children, 9(4), 455. https://doi.org/10.3390/children9040455\nByers‐Heinlein, K., Bergmann, C., \u0026amp; Savalei, V. (2022). Six solutions for more reliable infant research. Infant and Child Development, 31(5), e2296. https://doi.org/10.1002/icd.2296\nBylemans, T., Heleven, E., Baetens, K., Deroost, N., Baeken, C., \u0026amp; Van Overwalle, F. (2022). A narrative sequencing and mentalizing training for adults with autism: A pilot study. Frontiers in Behavioral Neuroscience, 16, 941272. https://doi.org/10.3389/fnbeh.2022.941272\nCalafat, F. M., Wahl, T., Tadesse, M. G., \u0026amp; Sparrow, S. N. (2022). Trends in Europe storm surge extremes match the rate of sea-level rise. Nature, 603(7903), 841\u0026ndash;845. https://doi.org/10.1038/s41586-022-04426-5\nCallard, F. (2022). Replication and Reproduction: Crises in Psychology and Academic Labour. Review of General Psychology, 26(2), 199\u0026ndash;211. https://doi.org/10.1177/10892680211055660\nCamarillo‐Rodriguez, L., Leenen, I., Waldman, Z., Serruya, M., Wanda, P. A., Herweg, N. A., Kahana, M. J., Rubinstein, D., Orosz, I., Lega, B., Podkorytova, I., Gross, R. E., Worrell, G., Davis, K. A., Jobst, B. C., Sheth, S. A., Weiss, S. A., \u0026amp; Sperling, M. R. (2022). Temporal lobe interictal spikes disrupt encoding and retrieval of verbal memory: A subregion analysis. Epilepsia, 63(9), 2325\u0026ndash;2337. https://doi.org/10.1111/epi.17334\nCampbell, E. E., \u0026amp; Bergelson, E. (2022). Making sense of sensory language: Acquisition of sensory knowledge by individuals with congenital sensory impairments. Neuropsychologia, 174, 108320. https://doi.org/10.1016/j.neuropsychologia.2022.108320\nCandia-Rivera, D., \u0026amp; Valenza, G. (2022). Cluster permutation analysis for EEG series based on non-parametric Wilcoxon\u0026ndash;Mann\u0026ndash;Whitney statistical tests. SoftwareX, 19, 101170. https://doi.org/10.1016/j.softx.2022.101170\nCanessa, E., Chaigneau, S. E., \u0026amp; Moreno, S. (2022). Using agreement probability to study differences in types of concepts and conceptualizers. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02030-z\nCao, A., \u0026amp; Lewis, M. (2022). Quantifying the syntactic bootstrapping effect in verb learning: A meta‐analytic synthesis. Developmental Science, 25(2), e13176. https://doi.org/10.1111/desc.13176\nCapparini, C., To, M. P. S., \u0026amp; Reid, V. M. (2022). Identifying the limits of peripheral visual processing in 9‐month‐old infants. Developmental Psychobiology, 64(4), e22274. https://doi.org/10.1002/dev.22274\nCaravolas, M. (2022). Reading and Reading Disorders in Alphabetic Orthographies. In M. J. Snowling, C. Hulme, \u0026amp; K. Nation (Eds.), The Science of Reading (1st ed., pp. 327\u0026ndash;353). Wiley. https://doi.org/10.1002/9781119705116.ch15\nCarbon, C.-C., Held, M. J., \u0026amp; Schütz, A. (2022). Reading Emotions in Faces With and Without Masks Is Relatively Independent of Extended Exposure and Individual Difference Variables. Frontiers in Psychology, 13, 856971. https://doi.org/10.3389/fpsyg.2022.856971\nCarli, V., Petros, N. G., Hadlaczky, G., Vitcheva, T., Berchialla, P., Bianchi, S., Carletto, S., Christinaki, E., Citi, L., Dinis, S., Gentili, C., Geraldes, V., Giovinazzo, L., Gonzalez-Martinez, S., Meyer, B., Ostacoli, L., Ottaviano, M., Ouakinin, S., Papastylianou, T., \u0026hellip; Valenza, G. (2022). The NEVERMIND e-health system in the treatment of depressive symptoms among patients with severe somatic conditions: A multicentre, pragmatic randomised controlled trial. eClinicalMedicine, 48, 101423. https://doi.org/10.1016/j.eclinm.2022.101423\nCarlsen, M. F., Christoffersen, B. Ø., Lindgaard, R., Pedersen, H. D., \u0026amp; Olsen, L. H. (2022). Implantation of telemetric blood pressure transmitters in Göttingen Minipigs: Validation of 24-h systemic blood pressure and heart rate monitoring and influence of anaesthesia. Journal of Pharmacological and Toxicological Methods, 115, 107168. https://doi.org/10.1016/j.vascn.2022.107168\nCarney, J., \u0026amp; Robertson, C. (2022). Five studies evaluating the impact on mental health and mood of recalling, reading, and discussing fiction. PLOS ONE, 17(4), e0266323. https://doi.org/10.1371/journal.pone.0266323\nCarrera, P., Sheppard, V. B., Caballero, A., Gómez‐Trillos, S., \u0026amp; Hurtado‐de‐Mendoza, A. (2022). A culturally targeted video to promote genetic counseling in a community sample of at‐risk US Latina women: The role of the concrete mindset. Journal of Community Psychology, 50(3), 1331\u0026ndash;1342. https://doi.org/10.1002/jcop.22718\nCarson, R. G., \u0026amp; Holton, E. (2022). Deficits in rate of force production during multifinger tasks are associated with cognitive status. International Journal of Geriatric Psychiatry, 37(6), gps.5732. https://doi.org/10.1002/gps.5732\nCarter, A. R., Harrison, S., Gill, D., Davey Smith, G., Taylor, A. E., Howe, L. D., \u0026amp; Davies, N. M. (2022). Educational attainment as a modifier for the effect of polygenic scores for cardiovascular risk factors: Cross-sectional and prospective analysis of UK Biobank. International Journal of Epidemiology, 51(3), 885\u0026ndash;897. https://doi.org/10.1093/ije/dyac002\nCasali, N., Ghisi, M., \u0026amp; Meneghetti, C. (2022). The Role of General and Study-Related Intraindividual Factors on Academic Learning Outcomes under COVID-19: A Cross-Sectional and Longitudinal Analysis. Education Sciences, 12(2), 101. https://doi.org/10.3390/educsci12020101\nCassidy, B. S., Wiley, R. W., Sim, M., \u0026amp; Hugenberg, K. (2022). Inversion Reduces Sensitivity to Complex Emotions in Eye Regions. Social Cognition, 40(3), 302\u0026ndash;315. https://doi.org/10.1521/soco.2022.40.3.302\nCauchi, C., Beyersmann, E., Lété, B., \u0026amp; Grainger, J. (2022). A developmental perspective on morphological processing in the flankers task. Journal of Experimental Child Psychology, 221, 105448. https://doi.org/10.1016/j.jecp.2022.105448\nCenter, E. G., Mimnaugh, K., Häkkinen, J., \u0026amp; Lavalle, S. M. (2022). Human Perception Engineering. In M. Alcañiz, M. Sacco, \u0026amp; J. G. Tromp (Eds.), Roadmapping Extended Reality (1st ed., pp. 157\u0026ndash;181). Wiley. https://doi.org/10.1002/9781119865810.ch7\nChafkin, J. E., Yeager, D. S., O'Brien, J. M., Lee, H. Y., McAfee, C. A., \u0026amp; Josephs, R. A. (2022). Gonadal and adrenal hormones interact with pubertal maturation to predict depressive symptoms in a group of high-school females. Development and Psychopathology, 34(3), 1064\u0026ndash;1078. https://doi.org/10.1017/S0954579420001935\nChambers, C. D., \u0026amp; Tzavella, L. (2021). The past, present and future of Registered Reports. Nature Human Behaviour, 6(1), 29\u0026ndash;42. https://doi.org/10.1038/s41562-021-01193-7\nChamilothori, K., Wienold, J., Moscoso, C., Matusiak, B., \u0026amp; Andersen, M. (2022). Subjective and physiological responses towards daylit spaces with contemporary façade patterns in virtual reality: Influence of sky type, space function, and latitude. Journal of Environmental Psychology, 82, 101839. https://doi.org/10.1016/j.jenvp.2022.101839\nChamnanphon, M., Pongpanich, M., Suttichet, T. B., Jantarabenjakul, W., Torvorapanit, P., Putcharoen, O., Sodsai, P., Phokaew, C., Hirankarn, N., Chariyavilaskul, P., \u0026amp; Shotelersuk, V. (2022). Host genetic factors of COVID-19 susceptibility and disease severity in a Thai population. Journal of Human Genetics, 67(5), 295\u0026ndash;301. https://doi.org/10.1038/s10038-021-01009-6\nChan, E. W., Wong, J., Chan, C. S., \u0026amp; Cheung, F. (2022). Reflections on the Reproducibility Project in Psychology and the Insights It Offers for Clinical Psychology. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 401\u0026ndash;417). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_18\nChandler-Campbell, I. L., Ghossainy, M. E., Mills, C. M., \u0026amp; Corriveau, K. H. (2022). Is secondhand information better read or said? Factors influencing children's endorsements of text-based information. Cognitive Development, 63, 101215. https://doi.org/10.1016/j.cogdev.2022.101215\nChang, L.-Y., Tseng, C.-C., Perfetti, C. A., \u0026amp; Chen, H.-C. (2022). Development and validation of a Chinese pseudo-character/non-character producing system. Behavior Research Methods, 54(2), 632\u0026ndash;648. https://doi.org/10.3758/s13428-021-01611-8\nChaouch-Orozco, A., González Alonso, J., Duñabeitia, J. A., \u0026amp; Rothman, J. (2023a). Are translation equivalents really equivalent? Evidence from concreteness effects in translation priming. International Journal of Bilingualism, 136700692211466. https://doi.org/10.1177/13670069221146641\nChaouch-Orozco, A., González Alonso, J., Duñabeitia, J. A., \u0026amp; Rothman, J. (2023b). The elusive impact of L2 immersion on translation priming. Studies in Second Language Acquisition, 45(2), 393\u0026ndash;415. https://doi.org/10.1017/S0272263122000249\nChapman, C. A., \u0026amp; Martin, R. C. (2022). Effects of semantic diversity and word frequency on single word processing. Journal of Experimental Psychology: General, 151(5), 1035\u0026ndash;1068. https://doi.org/10.1037/xge0001123\nCharalampaki, A., Ninija Karabanov, A., Ritterband-Rosenbaum, A., Bo Nielsen, J., Roman Siebner, H., \u0026amp; Schram Christensen, M. (2022). Sense of agency as synecdoche: Multiple neurobiological mechanisms may underlie the phenomenon summarized as sense of agency. Consciousness and Cognition, 101, 103307. https://doi.org/10.1016/j.concog.2022.103307\nCharitonidis, C. (2022). Context concreteness for the second constituent slows down compound-word processing. Lexis, 20. https://doi.org/10.4000/lexis.6769\nChen, G., Lewis, V. A., Gottlieb, D. J., \u0026amp; O'Malley, A. J. (2022). Using a mixed‐effect model with a parameter‐space of heterogenous dimension to evaluate whether accountable care organizations are associated with greater uniformity across constituent practices. Statistics in Medicine, 41(21), 4215\u0026ndash;4226. https://doi.org/10.1002/sim.9506\nChen, X., Chen, H. Y. H., \u0026amp; Chang, S. X. (2022). Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nature Ecology \u0026amp; Evolution, 6(8), 1112\u0026ndash;1121. https://doi.org/10.1038/s41559-022-01794-z\nChen, Y. A., \u0026amp; Toma, C. L. (2023). To Text or Talk in Person? Social Anxiety, Media Affordances, and Preferences for Texting Over Face-To-Face Communication in Dating Relationships. Media Psychology, 1\u0026ndash;27. https://doi.org/10.1080/15213269.2023.2246895\nChen, Y., Ou, Y., Lv, D., Yu, Z., Shang, T., Ma, J., Zhan, C., Ding, Z., Yang, X., Xiao, J., Yang, R., Sun, Z., Zhang, G., Wang, X., Guo, W., \u0026amp; Li, P. (2022). Altered Regional Activity and Network Homogeneity within the Fronto-Limbic Network at Rest in Medicine-Free Obsessive\u0026ndash;Compulsive Disorder. Brain Sciences, 12(7), 857. https://doi.org/10.3390/brainsci12070857\nChen, Y.-W., \u0026amp; Canli, T. (2022). \u0026ldquo;Nothing to see here\u0026rdquo;: No structural brain differences as a function of the Big Five personality traits from a systematic review and meta-analysis. Personality Neuroscience, 5, e8. https://doi.org/10.1017/pen.2021.5\nCheon, E., Bearden, C. E., Sun, D., Ching, C. R. K., Andreassen, O. A., Schmaal, L., Veltman, D. J., Thomopoulos, S. I., Kochunov, P., Jahanshad, N., Thompson, P. M., Turner, J. A., \u0026amp; Van Erp, T. G. M. (2022). Cross disorder comparisons of brain structure in schizophrenia, bipolar disorder, major depressive disorder, and 22q11.2 deletion syndrome: A review of ENIGMA findings. Psychiatry and Clinical Neurosciences, 76(5), 140\u0026ndash;161. https://doi.org/10.1111/pcn.13337\nChiappetta, B., Patel, A. D., \u0026amp; Thompson, C. K. (2022). Musical and linguistic syntactic processing in agrammatic aphasia: An ERP study. Journal of Neurolinguistics, 62, 101043. https://doi.org/10.1016/j.jneuroling.2021.101043\nChing, C. R. K., Hibar, D. P., Gurholt, T. P., Nunes, A., Thomopoulos, S. I., Abé, C., Agartz, I., Brouwer, R. M., Cannon, D. M., De Zwarte, S. M. C., Eyler, L. T., Favre, P., Hajek, T., Haukvik, U. K., Houenou, J., Landén, M., Lett, T. A., McDonald, C., Nabulsi, L., \u0026hellip; ENIGMA Bipolar Disorder Working Group. (2022). What we learn about bipolar disorder from large‐scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Human Brain Mapping, 43(1), 56\u0026ndash;82. https://doi.org/10.1002/hbm.25098\nChuquichambi, E. G., Sarria, D., Corradi, G. B., \u0026amp; Munar, E. (2023). Humans Prefer to See and Imagine Drawing Curved Objects. Empirical Studies of the Arts, 41(1), 135\u0026ndash;156. https://doi.org/10.1177/02762374221084212\nChurchill, N. W. (2022). Neuroimaging of Concussion. In T. A. Schweizer \u0026amp; A. J. Baker (Eds.), Tackling the Concussion Epidemic (pp. 43\u0026ndash;70). Springer International Publishing. https://doi.org/10.1007/978-3-030-93813-0_3\nCirillo, G., Runnqvist, E., Strijkers, K., Nguyen, N., \u0026amp; Baus, C. (2022). Conceptual alignment in a joint picture-naming task performed with a social robot. Cognition, 227, 105213. https://doi.org/10.1016/j.cognition.2022.105213\nClariana, R. B., Tang, H., \u0026amp; Chen, X. (2022). Corroborating a sorting task measure of individual and of local collective knowledge structure. Educational Technology Research and Development, 70(4), 1195\u0026ndash;1219. https://doi.org/10.1007/s11423-022-10123-x\nClark, E. L., Daley, R. T., Deason, R. G., O'Connor, M. K., Budson, A. E., \u0026amp; DeCaro, R. E. (2022). Cue-utilization in the imagination inflation effect paradigm in older adults with mild cognitive impairment. Neuropsychology, 36(4), 297\u0026ndash;313. https://doi.org/10.1037/neu0000801\nClayton, M., Renna, M. E., Klemanski, D. H., Kerns, C., McLaughlin, K. A., \u0026amp; Mennin, D. S. (2023). The Impact of Emotion Regulation on the Relationship Between Momentary Negative Affect and End-of-Day Worry and Rumination. Cognitive Therapy and Research, 47(1), 94\u0026ndash;108. https://doi.org/10.1007/s10608-022-10339-4\nClements, L. J. (2022). Cooperation between preschool peers in relation to their math learning. The Journal of Educational Research, 115(3), 199\u0026ndash;208. https://doi.org/10.1080/00220671.2022.2089087\nClifton, C., Rysling, A., \u0026amp; Bishop, J. (2022). The prosodic accent advantage in phoneme detection: Importance of local context. Attention, Perception, \u0026amp; Psychophysics, 84(1), 244\u0026ndash;259. https://doi.org/10.3758/s13414-021-02371-5\nCoco, M. I., Maruta, C., Pavão Martins, I., \u0026amp; Della Sala, S. (2023). Locations of objects are better remembered than their identities in naturalistic scenes: An eye-tracking experiment in mild cognitive impairment. Neuropsychology, 37(7), 741\u0026ndash;752. https://doi.org/10.1037/neu0000869\nCoker, D. C. (2022). Multiverses, Myths, and the Big Bang: Problems in Educational Research. In V. Wang (Ed.), Advances in Educational Marketing, Administration, and Leadership (pp. 402\u0026ndash;420). IGI Global. https://doi.org/10.4018/978-1-6684-4144-2.ch022\nColes, N. A., Gaertner, L., Frohlich, B., Larsen, J. T., \u0026amp; Basnight-Brown, D. M. (2023). Fact or artifact? Demand characteristics and participants\u0026rsquo; beliefs can moderate, but do not fully account for, the effects of facial feedback on emotional experience. Journal of Personality and Social Psychology, 124(2), 287\u0026ndash;310. https://doi.org/10.1037/pspa0000316\nColizoli, O., De Gee, J. W., Van Der Zwaag, W., \u0026amp; Donner, T. H. (2022). Functional magnetic resonance imaging responses during perceptual decision‐making at 3 and 7 T in human cortex, striatum, and brainstem. Human Brain Mapping, 43(4), 1265\u0026ndash;1279. https://doi.org/10.1002/hbm.25719\nColom-Cadena, M., Davies, C., Sirisi, S., Lee, J.-E., Simzer, E. M., Tzioras, M., Querol-Vilaseca, M., Sánchez-Aced, É., Chang, Y. Y., Holt, K., McGeachan, R. I., Rose, J., Tulloch, J., Wilkins, L., Smith, C., Andrian, T., Belbin, O., Pujals, S., Horrocks, M. H., \u0026hellip; Spires-Jones, T. L. (2023). Synaptic oligomeric tau in Alzheimer's disease\u0026mdash;A potential culprit in the spread of tau pathology through the brain. Neuron, 111(14), 2170-2183.e6. https://doi.org/10.1016/j.neuron.2023.04.020\nCombrisson, E., Allegra, M., Basanisi, R., Ince, R. A. A., Giordano, B. L., Bastin, J., \u0026amp; Brovelli, A. (2022). Group-level inference of information-based measures for the analyses of cognitive brain networks from neurophysiological data. NeuroImage, 258, 119347. https://doi.org/10.1016/j.neuroimage.2022.119347\nCompton, S. L. E., Grieco, J. P., Gollamudi, B., Bae, E., Van Mullekom, J. H., \u0026amp; Schmelz, E. M. (2022). Metabolic Reprogramming of Ovarian Cancer Spheroids during Adhesion. Cancers, 14(6), 1399. https://doi.org/10.3390/cancers14061399\nConklin, K., \u0026amp; Pellicer-Sánchez, A. (2022). Eye-Tracking. In S. Li, P. Hiver, \u0026amp; M. Papi, The Routledge Handbook of Second Language Acquisition and Individual Differences (1st ed., pp. 441\u0026ndash;453). Routledge. https://doi.org/10.4324/9781003270546-35\nConley, M. I., Hernandez, J., Salvati, J. M., Gee, D. G., \u0026amp; Baskin-Sommers, A. (2023). The role of perceived threats on mental health, social, and neurocognitive youth outcomes: A multicontextual, person-centered approach. Development and Psychopathology, 35(2), 689\u0026ndash;710. https://doi.org/10.1017/S095457942100184X\nConnaughton, M., Whelan, R., O'Hanlon, E., \u0026amp; McGrath, J. (2022). White matter microstructure in children and adolescents with ADHD. NeuroImage: Clinical, 33, 102957. https://doi.org/10.1016/j.nicl.2022.102957\nContador, I., Alzola, P., Bermejo-Pareja, F., Del Ser, T., Llamas-Velasco, S., Fernández-Calvo, B., \u0026amp; Benito-León, J. (2022). Education and Literacy as Risk Factors of Dementia after Stroke and Transient Ischemic Attack: NEDICES Study. Journal of Alzheimer's Disease, 88(1), 291\u0026ndash;299. https://doi.org/10.3233/JAD-220109\nContemori, G., Saccani, M. S., \u0026amp; Bonato, M. (2022). Multitasking Effects on Perception and Memory in Older Adults. Vision, 6(3), 48. https://doi.org/10.3390/vision6030048\nCooper, S. E., Hunt, C., Ross, J. P., Hartnell, M. P., \u0026amp; Lissek, S. (2022). Heightened generalized conditioned fear and avoidance in women and underlying psychological processes. Behaviour Research and Therapy, 151, 104051. https://doi.org/10.1016/j.brat.2022.104051\nCoricelli, C., Rumiati, R. I., \u0026amp; Rioux, C. (2022). Implicit and explicit safety evaluation of foods: The importance of food processing. Appetite, 175, 106062. https://doi.org/10.1016/j.appet.2022.106062\nCormican, D. S., Czerny, M., \u0026amp; Ramakrishna, H. (2022). The Dilemma of Moderate Aortic Stenosis in Patients With Heart Failure and Reduced Ejection Fraction: Are We Waiting Too Long to Intervene, or Should We Wait for More Evidence? Journal of Cardiothoracic and Vascular Anesthesia, 36(1), 15\u0026ndash;17. https://doi.org/10.1053/j.jvca.2021.08.024\nCosper, S. H., Männel, C., \u0026amp; Mueller, J. L. (2022). Mechanisms of associative word learning: Benefits from the visual modality and synchrony of labeled objects. Cortex, 152, 36\u0026ndash;52. https://doi.org/10.1016/j.cortex.2022.03.020\nCoulter, K., \u0026amp; Phillips, N. A. (2022). Conflict-based speech error monitoring in bilinguals: Differences between first and second language monitoring. Journal of Neurolinguistics, 63, 101061. https://doi.org/10.1016/j.jneuroling.2022.101061\nCracco, E., Bernardet, U., Sevenhant, R., Vandenhouwe, N., Copman, F., Durnez, W., Bombeke, K., \u0026amp; Brass, M. (2022). Evidence for a two-step model of social group influence. iScience, 25(9), 104891. https://doi.org/10.1016/j.isci.2022.104891\nCrespo, K., Vlach, H., \u0026amp; Kaushanskaya, M. (2023). The effects of bilingualism on children's cross-situational word learning under different variability conditions. Journal of Experimental Child Psychology, 229, 105621. https://doi.org/10.1016/j.jecp.2022.105621\nCring, M. R., Meyer, K. J., Searby, C. C., Hedberg-Buenz, A., Cave, M., Anderson, M. G., Wang, K., \u0026amp; Sheffield, V. C. (2022). Ectopic expression of BBS1 rescues male infertility, but not retinal degeneration, in a BBS1 mouse model. Gene Therapy, 29(5), 227\u0026ndash;235. https://doi.org/10.1038/s41434-021-00241-1\nCristea, I. A., Georgescu, R., \u0026amp; Ioannidis, J. P. A. (2022). Effect Sizes Reported in Highly Cited Emotion Research Compared With Larger Studies and Meta-Analyses Addressing the Same Questions. Clinical Psychological Science, 10(4), 786\u0026ndash;800. https://doi.org/10.1177/21677026211049366\nCui, C., Raslan, R., \u0026amp; Korolija, I. (2021, September 1). A bootstrap method to investigate the variability of overheating risk against the future climate uncertainty in dwellings. 2021 Building Simulation Conference. https://doi.org/10.26868/25222708.2021.30862\nCui, L., \u0026amp; Liu, J. (2022). Recognition of Studied Words in Perceptual Disfluent Sans Forgetica Font. Vision, 6(3), 52. https://doi.org/10.3390/vision6030052\nCurrie, N. K., \u0026amp; Cain, K. (2023). Developmental differences in children's generation of knowledge-based inferences. Discourse Processes, 60(6), 440\u0026ndash;456. https://doi.org/10.1080/0163853X.2023.2225980\nCutter, M. G., Filik, R., \u0026amp; Paterson, K. B. (2022). Do readers maintain word-level uncertainty during reading? A pre-registered replication study. Journal of Memory and Language, 125, 104336. https://doi.org/10.1016/j.jml.2022.104336\nCyr, M.-P., Dostie, R., Camden, C., Dumoulin, C., Bessette, P., Pina, A., Gotlieb, W. H., Lapointe-Milot, K., Mayrand, M.-H., \u0026amp; Morin, M. (2022). Improvements following multimodal pelvic floor physical therapy in gynecological cancer survivors suffering from pain during sexual intercourse: Results from a one-year follow-up mixed-method study. PLOS ONE, 17(1), e0262844. https://doi.org/10.1371/journal.pone.0262844\nD'Agostini, M., Claes, N., Franssen, M., Von Leupoldt, A., \u0026amp; Van Diest, I. (2022). Learn to breathe, breathe to learn? No evidence for effects of slow deep breathing at a 0.1 Hz frequency on reversal learning. International Journal of Psychophysiology, 174, 92\u0026ndash;107. https://doi.org/10.1016/j.ijpsycho.2022.01.008\nDali, G., \u0026amp; Hester, R. (2022). Adaptation following errors: Error awareness predicts future performance. Memory \u0026amp; Cognition, 50(4), 672\u0026ndash;680. https://doi.org/10.3758/s13421-021-01246-2\nDarmasetiyawan, I. M. S., Messenger, K., \u0026amp; Ambridge, B. (2022). Is Passive Priming Really Impervious to Verb Semantics? A High-Powered Replication of Messenger Et al. (2012). Collabra: Psychology, 8(1), 31055. https://doi.org/10.1525/collabra.31055\nDas, S., Abou-Haidar, R., Rabalais, H., Sun, S. D. L. W., Rosli, Z., Chatpar, K., Boivin, M.-N., Tabatabaei, M., Rogers, C., Legault, M., Lo, D., Degroot, C., Dagher, A., Dyke, S. O. M., Durcan, T. M., Seyller, A., Doyon, J., Poupon, V., Fon, E. A., \u0026hellip; Evans, A. C. (2022). The C-BIG Repository: An Institution-Level Open Science Platform. Neuroinformatics, 20(1), 139\u0026ndash;153. https://doi.org/10.1007/s12021-021-09516-9\nDatson, N., Lolli, L., Drust, B., Atkinson, G., Weston, M., \u0026amp; Gregson, W. (2022). Inter-methodological quantification of the target change for performance test outcomes relevant to elite female soccer players. Science and Medicine in Football, 6(2), 248\u0026ndash;261. https://doi.org/10.1080/24733938.2021.1942538\nD'Aurizio, N., Ramundo, T., Baldi, T. L., Moscatelli, A., \u0026amp; Prattichizzo, D. (2023). On the Correlation Between Tactile Stimulation and Pleasantness. IEEE Transactions on Haptics, 16(4), 861\u0026ndash;867. https://doi.org/10.1109/TOH.2023.3322557\nDavies, A. E., Burnette, C. B., Ravyts, S. G., \u0026amp; Mazzeo, S. E. (2022). A randomized control trial of Expand Your Horizon: An intervention for women with weight bias internalization. Body Image, 40, 138\u0026ndash;145. https://doi.org/10.1016/j.bodyim.2021.12.006\nDavis, C. P., Eigsti, I.-M., Healy, R., Joergensen, G. H., \u0026amp; Yee, E. (2022). Autism-spectrum traits in neurotypicals predict the embodiment of manipulation knowledge about object concepts: Evidence from eyetracking. PLOS ONE, 17(7), e0268069. https://doi.org/10.1371/journal.pone.0268069\nDavletyarova, K., Vacher, P., Nicolas, M., Kapilevich, L. V., \u0026amp; Mourot, L. (2022). Associations Between Heart Rate Variability\u0026ndash;Derived Indexes and Training Load: Repeated Measures Correlation Approach Contribution. Journal of Strength and Conditioning Research, 36(7), 2005\u0026ndash;2010. https://doi.org/10.1519/JSC.0000000000003760\nDawes, C., Quinn, D., Bickerdike, A., O'Neill, C., Granger, K. T., Pereira, S. C., Mah, S. L., Haselgrove, M., Waddington, J. L., O'Tuathaigh, C., \u0026amp; Moran, P. M. (2022). Latent inhibition, aberrant salience, and schizotypy traits in cannabis users. Schizophrenia Research: Cognition, 28, 100235. https://doi.org/10.1016/j.scog.2021.100235\nDawood, A. B., Dickinson, A., Aytemur, A., Milne, E., \u0026amp; Jones, M. (2022). No effects of transcranial direct current stimulation on visual evoked potential and peak gamma frequency. Cognitive Processing, 23(2), 235\u0026ndash;254. https://doi.org/10.1007/s10339-022-01076-3\nDe Dios, E., Ali, M. B., Gu, I. Y.-H., Vecchio, T. G., Ge, C., \u0026amp; Jakola, A. S. (2022). Introduction to Deep Learning in Clinical Neuroscience. In V. E. Staartjes, L. Regli, \u0026amp; C. Serra (Eds.), Machine Learning in Clinical Neuroscience (Vol. 134, pp. 79\u0026ndash;89). Springer International Publishing. https://doi.org/10.1007/978-3-030-85292-4_11\nDe Gioannis, E. (2022). Implicit gender-science stereotypes and college-major intentions of italian adolescents. Social Psychology of Education, 25(5), 1093\u0026ndash;1112. https://doi.org/10.1007/s11218-022-09709-3\nDe Joode, N. T., Thorsen, A. L., Vester, E. L., Vriend, C., Pouwels, P. J. W., Hagen, K., Ousdal, O. T., Hansen, B., Kvale, G., \u0026amp; Van Den Heuvel, O. A. (2022). Longitudinal changes in neurometabolite concentrations in the dorsal anterior cingulate cortex after concentrated exposure therapy for obsessive-compulsive disorder. Journal of Affective Disorders, 299, 344\u0026ndash;352. https://doi.org/10.1016/j.jad.2021.12.014\nDe La Vega, A., Rocca, R., Blair, R. W., Markiewicz, C. J., Mentch, J., Kent, J. D., Herholz, P., Ghosh, S. S., Poldrack, R. A., \u0026amp; Yarkoni, T. (2022). Neuroscout, a unified platform for generalizable and reproducible fMRI research. eLife, 11, e79277. https://doi.org/10.7554/eLife.79277\nDe León Rodríguez, D., Mouthon, M., Annoni, J.-M., \u0026amp; Khateb, A. (2022). Current exposure to a second language modulates bilingual visual word recognition: An EEG study. Neuropsychologia, 164, 108109. https://doi.org/10.1016/j.neuropsychologia.2021.108109\nDe Looff, P. C., Cornet, L. J. M., De Kogel, C. H., Fernández-Castilla, B., Embregts, P. J. C. M., Didden, R., \u0026amp; Nijman, H. L. I. (2022). Heart rate and skin conductance associations with physical aggression, psychopathy, antisocial personality disorder and conduct disorder: An updated meta-analysis. Neuroscience \u0026amp; Biobehavioral Reviews, 132, 553\u0026ndash;582. https://doi.org/10.1016/j.neubiorev.2021.11.003\nDe Prada Pérez, A., Feroce, N., \u0026amp; Kennedy, L. (2023). The use of default forms in codeswitching: Mood selection in Spanish. Linguistic Approaches to Bilingualism, 13(4), 439\u0026ndash;467. https://doi.org/10.1075/lab.20107.dep\nDe Ridder, J. (2022). How to trust a scientist. Studies in History and Philosophy of Science, 93, 11\u0026ndash;20. https://doi.org/10.1016/j.shpsa.2022.02.003\nDe Varda, A. G., \u0026amp; Strapparava, C. (2022). A Cross‐Modal and Cross‐lingual Study of Iconicity in Language: Insights From Deep Learning. Cognitive Science, 46(6), e13147. https://doi.org/10.1111/cogs.13147\nDeady, M., Glozier, N., Calvo, R., Johnston, D., Mackinnon, A., Milne, D., Choi, I., Gayed, A., Peters, D., Bryant, R., Christensen, H., \u0026amp; Harvey, S. B. (2022). Preventing depression using a smartphone app: A randomized controlled trial. Psychological Medicine, 52(3), 457\u0026ndash;466. https://doi.org/10.1017/S0033291720002081\nDean, M. C., Cherian, N. J., McBroom, T. J., Eberlin, C. T., Torabian, K. A., Dowley, K. S., LaPorte, Z. L., Kucharik, M. P., \u0026amp; Martin, S. D. (2023). Preoperative Paralabral Cysts Predict More Significant Chondral Damage but Not 2-Year Functional Outcomes Following Arthroscopic Labral Repair. Arthroscopy: The Journal of Arthroscopic \u0026amp; Related Surgery, S0749806323008332. https://doi.org/10.1016/j.arthro.2023.10.009\nDefayette, A. B., Esposito‐Smythers, C., Cero, I., Kleiman, E. M., López, R., Harris, K. M., \u0026amp; Whitmyre, E. D. (2023). Examination of proinflammatory activity as a moderator of the relation between momentary interpersonal stress and suicidal ideation. Suicide and Life-Threatening Behavior, 53(6), 922\u0026ndash;939. https://doi.org/10.1111/sltb.12993\nDel Popolo Cristaldi, F., Gambarota, F., \u0026amp; Oosterwijk, S. (2023). Does your past define you? The role of previous visual experience in subjective reactions to new affective pictures and sounds. Emotion, 23(5), 1317\u0026ndash;1333. https://doi.org/10.1037/emo0001168\nDemidenko, M. I., Huntley, E. D., Weigard, A. S., Keating, D. P., \u0026amp; Beltz, A. M. (2022). Neural heterogeneity underlying late adolescent motivational processing is linked to individual differences in behavioral sensation seeking. Journal of Neuroscience Research, 100(3), 762\u0026ndash;779. https://doi.org/10.1002/jnr.25005\nDennison, J. B., Sazhin, D., \u0026amp; Smith, D. V. (2022). Decision neuroscience and neuroeconomics: Recent progress and ongoing challenges. WIREs Cognitive Science, 13(3), e1589. https://doi.org/10.1002/wcs.1589\nDerreumaux, Y., Bergh, R., \u0026amp; Hughes, B. L. (2022). Partisan-motivated sampling: Re-examining politically motivated reasoning across the information processing stream. Journal of Personality and Social Psychology, 123(2), 316\u0026ndash;336. https://doi.org/10.1037/pspi0000375\nDesai, R., Orji, R., Roudaia, E., \u0026amp; Sekuler, A. B. (2022). Sans Tracas: A Cross-platform Tool for Online EEG Experiments. Companion of the 2022 ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 37\u0026ndash;43. https://doi.org/10.1145/3531706.3536461\nDetjen, H., Faltaous, S., Keppel, J., Prochazka, M., Gruenefeld, U., Sadeghian, S., \u0026amp; Schneegass, S. (2022). Investigating the Influence of Gaze- and Context-Adaptive Head-up Displays on Take-Over Requests. Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 108\u0026ndash;118. https://doi.org/10.1145/3543174.3546089\nDiachek, E., \u0026amp; Brown-Schmidt, S. (2023). The effect of disfluency on memory for what was said. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(8), 1306\u0026ndash;1324. https://doi.org/10.1037/xlm0001156\nDiaz Diaz, A. C., Malone, K., Shearer, J. A., Moore, A. C., \u0026amp; Waeber, C. (2022). Preclinical Evaluation of Fingolimod in Rodent Models of Stroke With Age or Atherosclerosis as Comorbidities. Frontiers in Pharmacology, 13, 920449. https://doi.org/10.3389/fphar.2022.920449\nDiaz, M. T., Zhang, H., Cosgrove, A. L., Gertel, V. H., Troutman, S. B. W., \u0026amp; Karimi, H. (2022). Neural sensitivity to semantic neighbors is stable across the adult lifespan. Neuropsychologia, 171, 108237. https://doi.org/10.1016/j.neuropsychologia.2022.108237\nDickey, A. S., Krafty, R. T., \u0026amp; Pedersen, N. P. (2022). Ordinal regression increases statistical power to predict epilepsy surgical outcomes. Epilepsia Open, 7(2), 344\u0026ndash;349. https://doi.org/10.1002/epi4.12585\nDijkstra, A., \u0026amp; Rotelli, V. (2022). Lowering Red Meat and Processed Meat Consumption With Environmental, Animal Welfare, and Health Arguments in Italy: An Online Experiment. Frontiers in Psychology, 13, 877911. https://doi.org/10.3389/fpsyg.2022.877911\nDillon, D. G., Lazarov, A., Dolan, S., Bar-Haim, Y., Pizzagalli, D. A., \u0026amp; Schneier, F. R. (2022). Fast evidence accumulation in social anxiety disorder enhances decision making in a probabilistic reward task. Emotion, 22(1), 1\u0026ndash;18. https://doi.org/10.1037/emo0001053\nDistiller, N. (2022). Uncomfortable Territory: Coming to Terms With LGBTQ+ Rights. In I. R. Management Association (Ed.), Research Anthology on Inclusivity and Equity for the LGBTQ+ Community (pp. 233\u0026ndash;250). IGI Global. https://doi.org/10.4018/978-1-6684-3674-5.ch013\nDo, H. J., Kong, H.-K., Lee, J., \u0026amp; Bailey, B. P. (2022). How Should the Agent Communicate to the Group? Communication Strategies of a Conversational Agent in Group Chat Discussions. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2), 1\u0026ndash;23. https://doi.org/10.1145/3555112\nDoan, T., Stonehouse, E., Denison, S., \u0026amp; Friedman, O. (2022). The odds tell children what people favor. Developmental Psychology, 58(9), 1759\u0026ndash;1766. https://doi.org/10.1037/dev0001395\nDobbs, C. L., Caselli, N. K., Hartzell, E., Flanagan, C., \u0026amp; Yan, Y. (2022). Understanding middle graders\u0026rsquo; language borrowing: How lexical and demographic characteristics predict similarity. Reading and Writing, 35(4), 971\u0026ndash;994. https://doi.org/10.1007/s11145-021-10210-0\nDokovova, M., Scobbie, J. M., \u0026amp; Lickley, R. (2022). Matched-accent processing: Bulgarian-English bilinguals do not have a processing advantage with Bulgarian-accented English over native English speech. Laboratory Phonology, 13(1). https://doi.org/10.16995/labphon.6423\nDonahoo, S. A., Pfeifer, V., \u0026amp; Lai, V. T. (2022). Cursed Concepts: New insights on combinatorial processing from ERP correlates of swearing in context. Brain and Language, 226, 105079. https://doi.org/10.1016/j.bandl.2022.105079\nDong, Y., Briaire, J. J., Christiaan Stronks, H., \u0026amp; Frijns, J. H. M. (2022). Short- and long-latency components of the eCAP reveal different refractory properties. Hearing Research, 420, 108522. https://doi.org/10.1016/j.heares.2022.108522\nDong, Y., Briaire, J. J., Stronks, H. C., \u0026amp; Frijns, J. H. M. (2023). Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials. Ear \u0026amp; Hearing, 44(2), 276\u0026ndash;286. https://doi.org/10.1097/AUD.0000000000001279\nDonoghue, T., Schaworonkow, N., \u0026amp; Voytek, B. (2022). Methodological considerations for studying neural oscillations. European Journal of Neuroscience, 55(11\u0026ndash;12), 3502\u0026ndash;3527. https://doi.org/10.1111/ejn.15361\nDooley, N., Ruigrok, A., Holt, R., Allison, C., Tsompanidis, A., Waldman, J., Auyeung, B., Lombardo, M. V., \u0026amp; Baron-Cohen, S. (2022). Is there an association between prenatal testosterone and autistic traits in adolescents? Psychoneuroendocrinology, 136, 105623. https://doi.org/10.1016/j.psyneuen.2021.105623\nDöring, A.-L., Abdel Rahman, R., Zwitserlood, P., \u0026amp; Lorenz, A. (2022). Cumulative semantic interference is blind to morphological complexity and originates at the conceptual level. PLOS ONE, 17(6), e0268915. https://doi.org/10.1371/journal.pone.0268915\nDorman, M. F., Natale, S. C., Noble, J. H., \u0026amp; Zeitler, D. M. (2022). Upward Shifts in the Internal Representation of Frequency Can Persist Over a 3-Year Period for Cochlear Implant Patients Fit With a Relatively Short Electrode Array. Frontiers in Human Neuroscience, 16, 863891. https://doi.org/10.3389/fnhum.2022.863891\nDragomanova, S., Pavlov, S., Marinova, D., Hodzev, Y., Petralia, M. C., Fagone, P., Nicoletti, F., Lazarova, M., Tzvetanova, E., Alexandrova, A., Kalfin, R., \u0026amp; Tancheva, L. (2022). Neuroprotective Effects of Myrtenal in an Experimental Model of Dementia Induced in Rats. Antioxidants, 11(2), 374. https://doi.org/10.3390/antiox11020374\nDrieghe, D., \u0026amp; Chan Seem, R. (2022). Parafoveal processing of repeated words during reading. Psychonomic Bulletin \u0026amp; Review, 29(4), 1451\u0026ndash;1460. https://doi.org/10.3758/s13423-021-02054-0\nDubois, T., Grafmiller, J., Paquot, M., \u0026amp; Szmrecsanyi, B. (2023). Animacy effects in the English genitive alternation: Comparing native speakers and EFL learner judgments with corpus data. Language and Cognition, 1\u0026ndash;23. https://doi.org/10.1017/langcog.2023.51\nDubova, M. (2022). Building human-like communicative intelligence: A grounded perspective. Cognitive Systems Research, 72, 63\u0026ndash;79. https://doi.org/10.1016/j.cogsys.2021.12.002\nDubreucq, J., Haesebaert, F., Plasse, J., Dubreucq, M., \u0026amp; Franck, N. (2022). A Systematic Review and Meta-analysis of Social Skills Training for Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 52(4), 1598\u0026ndash;1609. https://doi.org/10.1007/s10803-021-05058-w\nDuffy, K. A., \u0026amp; Epperson, C. N. (2022). Evaluating the evidence for sex differences: A scoping review of human neuroimaging in psychopharmacology research. Neuropsychopharmacology, 47(2), 430\u0026ndash;443. https://doi.org/10.1038/s41386-021-01162-8\nDujardin, E., Jobard, G., Vahine, T., \u0026amp; Mathey, S. (2021). Norms of vocabulary, reading, and spelling tests in French university students. Behavior Research Methods, 54(4), 1611\u0026ndash;1625. https://doi.org/10.3758/s13428-021-01684-5\nDuncan, C., Tölch, U., Walter, H., \u0026amp; Dziobek, I. (2023). Ethnic discrimination unlearned: Experience in the repeated Trust Game reduces trust bias. Frontiers in Psychology, 14, 1139128. https://doi.org/10.3389/fpsyg.2023.1139128\nDurand-López, E. M. (2022). L2 within-language morphological competition during spoken word recognition. Language Acquisition, 29(2), 165\u0026ndash;181. https://doi.org/10.1080/10489223.2021.1982948\nDutt, R. K., Hannon, K., Easley, T. O., Griffis, J. C., Zhang, W., \u0026amp; Bijsterbosch, J. D. (2022). Mental health in the UK Biobank: A roadmap to self‐report measures and neuroimaging correlates. Human Brain Mapping, 43(2), 816\u0026ndash;832. https://doi.org/10.1002/hbm.25690\nEdeh, N. I., Ugwoke, E. O., Anaele, E. N., Madusaba, B. M., Naboth-Odums, A., Isiwu, E. A., Olinya, T. O., Enyi, C., David, A. O., Yumma, D. C., Yeldim, T. P., Odunukwe, M. C., Victor, S. N., \u0026amp; Abubakar, A. (2022). Supporting business educators and students against COVID-19 trauma using trauma-focused cognitive behavioral therapy. Medicine, 101(14), e29133. https://doi.org/10.1097/MD.0000000000029133\nEdwards, A. A., Steacy, L. M., Siegelman, N., Rigobon, V. M., Kearns, D. M., Rueckl, J. G., \u0026amp; Compton, D. L. (2022). Unpacking the unique relationship between set for variability and word reading development: Examining word- and child-level predictors of performance. Journal of Educational Psychology, 114(6), 1242\u0026ndash;1256. https://doi.org/10.1037/edu0000696\nEdwards, V. L. L., \u0026amp; Hammond, S. I. (2023). Mothers\u0026rsquo; communicative cues and the development of infants\u0026rsquo; helping: Linking participation and problem solving in the first year of life. Social Development, 32(4), 1302\u0026ndash;1317. https://doi.org/10.1111/sode.12693\nEffron, D. A. (2022). The moral repetition effect: Bad deeds seem less unethical when repeatedly encountered. Journal of Experimental Psychology: General, 151(10), 2562\u0026ndash;2585. https://doi.org/10.1037/xge0001214\nEgger, M., Florack, A., \u0026amp; Hübel, C. (2022). How placement affects brand preferences in advergames: A test of inhibition and facilitation processes during search. Computers in Human Behavior, 134, 107328. https://doi.org/10.1016/j.chb.2022.107328\nEguchi, M., Suzuki, S., \u0026amp; Suzuki, Y. (2022). LEXICAL COMPETENCE UNDERLYING SECOND LANGUAGE WORD ASSOCIATION TASKS: EXAMINING THE CONSTRUCT VALIDITY OF RESPONSE TYPE AND RESPONSE TIME MEASURES. Studies in Second Language Acquisition, 44(1), 112\u0026ndash;142. https://doi.org/10.1017/S0272263121000164\nEhrhart, T., \u0026amp; Lindner, M. A. (2023). Computer-based multimedia testing: Effects of static and animated representational pictures and text modality. Contemporary Educational Psychology, 73, 102151. https://doi.org/10.1016/j.cedpsych.2023.102151\nEising, E., Mirza-Schreiber, N., De Zeeuw, E. L., Wang, C. A., Truong, D. T., Allegrini, A. G., Shapland, C. Y., Zhu, G., Wigg, K. G., Gerritse, M. L., Molz, B., Alagöz, G., Gialluisi, A., Abbondanza, F., Rimfeld, K., Van Donkelaar, M., Liao, Z., Jansen, P. R., Andlauer, T. F. M., \u0026hellip; Fisher, S. E. (2022). Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proceedings of the National Academy of Sciences, 119(35), e2202764119. https://doi.org/10.1073/pnas.2202764119\nElder, J., Cheung, B., Davis, T., \u0026amp; Hughes, B. (2023). Mapping the self: A network approach for understanding psychological and neural representations of self-concept structure. Journal of Personality and Social Psychology, 124(2), 237\u0026ndash;263. https://doi.org/10.1037/pspa0000315\nElgort, I. (2022). Word knowledge, learning and acquisition in a second language: Proposed replications of Elgort (2011) and Qiao and Forster (2017). Language Teaching, 55(2), 260\u0026ndash;270. https://doi.org/10.1017/S0261444819000338\nElgueta-Cancino, E., Evans, E., Martinez-Valdes, E., \u0026amp; Falla, D. (2022). The Effect of Resistance Training on Motor Unit Firing Properties: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 13, 817631. https://doi.org/10.3389/fphys.2022.817631\nElias, M., \u0026amp; Degani, T. (2022). Cross-language interactions during novel word learning: The contribution of form similarity and participant characteristics. Bilingualism: Language and Cognition, 25(4), 548\u0026ndash;565. https://doi.org/10.1017/S1366728921000857\nEllis, R. J. (2022). Questionable Research Practices, Low Statistical Power, and Other Obstacles to Replicability: Why Preclinical Neuroscience Research Would Benefit from Registered Reports. Eneuro, 9(4), ENEURO.0017-22.2022. https://doi.org/10.1523/ENEURO.0017-22.2022\nElsherif, M. M., \u0026amp; Catling, J. C. (2022). Age of acquisition effects on the decomposition of compound words. Journal of Cognitive Psychology, 34(3), 325\u0026ndash;338. https://doi.org/10.1080/20445911.2021.2013246\nEnver, E. O., Vatansever, P., Guran, O., Bilgin, L., Boran, P., Turan, S., Haklar, G., Bereket, A., \u0026amp; Guran, T. (2022). Adrenal steroids reference ranges in infancy determined by LC-MS/MS. Pediatric Research, 92(1), 265\u0026ndash;274. https://doi.org/10.1038/s41390-021-01739-5\nEsposito, E., \u0026amp; Calanchini, J. (2022). Examining selective migration as attitudinal fit versus gay migration. Journal of Experimental Social Psychology, 101, 104307. https://doi.org/10.1016/j.jesp.2022.104307\nEsteve, A., Jovani, A., Benito, A., Baquero, A., Haro, G., \u0026amp; Rodríguez-Ruiz, F. (2022). Dual Diagnosis in Adolescents with Problematic Use of Video Games: Beyond Substances. Brain Sciences, 12(8), 1110. https://doi.org/10.3390/brainsci12081110\nEtard, A., Pigot, A. L., \u0026amp; Newbold, T. (2022). Intensive human land uses negatively affect vertebrate functional diversity. Ecology Letters, 25(2), 330\u0026ndash;343. https://doi.org/10.1111/ele.13926\nEvans, A. M., Meyers, M. C., De Calseyde, P. P. F. M. V., \u0026amp; Stavrova, O. (2022). Extroversion and Conscientiousness Predict Deteriorating Job Outcomes During the COVID-19 Transition to Enforced Remote Work. Social Psychological and Personality Science, 13(3), 781\u0026ndash;791. https://doi.org/10.1177/19485506211039092\nEvans, N. H., \u0026amp; Field-Fote, E. C. (2022). A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. Journal of Neurologic Physical Therapy, 46(4), 281\u0026ndash;292. https://doi.org/10.1097/NPT.0000000000000403\nFailes, E., \u0026amp; Sommers, M. S. (2022). Using Eye-Tracking to Investigate an Activation-Based Account of False Hearing in Younger and Older Adults. Frontiers in Psychology, 13, 821044. https://doi.org/10.3389/fpsyg.2022.821044\nFairley, K., Vyrastekova, J., Weitzel, U., \u0026amp; Sanfey, A. G. (2022). Beyond lottery-evoked ambiguity aversion: The neural signature of the types and the sources of uncertainty. NeuroImage, 251, 119007. https://doi.org/10.1016/j.neuroimage.2022.119007\nFalck, M. J., \u0026amp; Okonski, L. (2022). Procedure for Identifying Metaphorical Scenes (pims): A Cognitive Linguistics Approach to Bridge Theory and Practice. Cognitive Semantics, 8(2), 294\u0026ndash;322. https://doi.org/10.1163/23526416-bja10031\nFarruggia, M. C., Pellegrino, R., \u0026amp; Scheinost, D. (2022). Functional Connectivity of the Chemosenses: A Review. Frontiers in Systems Neuroscience, 16, 865929. https://doi.org/10.3389/fnsys.2022.865929\nFassbender, I., Haehner, P., Buecker, S., \u0026amp; Luhmann, M. (2022). Perceived Characteristics of Life Events\u0026mdash;Short-Term Changes in Prosociality and Empathy? European Journal of Personality, 36(4), 529\u0026ndash;542. https://doi.org/10.1177/08902070211031762\nFaulkner, A., Ogeil, R. P., Stojcevski, V., \u0026amp; Scott, D. (2022). Identifying Points of Prevention in Firearm-Related Suicides: A Mixed-Methods Study Based on Coronial Records. Archives of Suicide Research, 26(4), 1815\u0026ndash;1830. https://doi.org/10.1080/13811118.2021.1938322\nFauville, G., Queiroz, A. C. M., Luo, M., Hancock, J., \u0026amp; Bailenson, J. N. (2022). Impression formation from video conference screenshots: The role of gaze, camera distance, and angle. Technology, Mind, and Behavior, 3(1). https://doi.org/10.1037/tmb0000055\nFazio, L. K., Pillai, R. M., \u0026amp; Patel, D. (2022). The effects of repetition on belief in naturalistic settings. Journal of Experimental Psychology: General, 151(10), 2604\u0026ndash;2613. https://doi.org/10.1037/xge0001211\nFedeli, R., Vannini, A., Celletti, S., Maresca, V., Munzi, S., Cruz, C., Alexandrov, D., Guarnieri, M., \u0026amp; Loppi, S. (2023). Foliar application of wood distillate boosts plant yield and nutritional parameters of chickpea. Annals of Applied Biology, 182(1), 57\u0026ndash;64. https://doi.org/10.1111/aab.12794\nFeldman, M. J., Jolink, T. A., Alvarez, G. M., Fendinger, N. J., Gaudier-Diaz, M. M., Lindquist, K. A., \u0026amp; Muscatell, K. A. (2023). The roles of inflammation, affect, and interoception in predicting social perception. Brain, Behavior, and Immunity, 112, 246\u0026ndash;253. https://doi.org/10.1016/j.bbi.2023.05.011\nFeng, C., Damian, M. F., \u0026amp; Qu, Q. (2022). A joint investigation of facilitation and interference effects of semantic and phonological similarity in a continuous naming task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(8), 1193\u0026ndash;1201. https://doi.org/10.1037/xlm0001139\nFeng, C., Thompson, W. K., \u0026amp; Paulus, M. P. (2022). Effect sizes of associations between neuroimaging measures and affective symptoms: A meta‐analysis. Depression and Anxiety, 39(1), 19\u0026ndash;25. https://doi.org/10.1002/da.23215\nFenneman, A., Sickmann, J., Füllbrunn, S., Goldbach, C., \u0026amp; Pitz, T. (2022). Psychological price perception may exert a weaker effect on purchasing decisions than previously suggested: Results from a large online experiment fail to reproduce either a left-digit or perceptual-fluency effect. PLOS ONE, 17(8), e0270850. https://doi.org/10.1371/journal.pone.0270850\nFeraco, T., \u0026amp; Meneghetti, C. (2022). Sport Practice, Fluid Reasoning, and Soft Skills in 10- to 18-Year-Olds. Frontiers in Human Neuroscience, 16, 857412. https://doi.org/10.3389/fnhum.2022.857412\nFerdous, T., Jiang, L., Dinu, I., Groizeleau, J., Kozyrskyj, A. L., Greenwood, C. M. T., \u0026amp; Arrieta, M.-C. (2022). The rise to power of the microbiome: Power and sample size calculation for microbiome studies. Mucosal Immunology, 15(6), 1060\u0026ndash;1070. https://doi.org/10.1038/s41385-022-00548-1\nFernandez, A., Quigley, L., Dobson, K., \u0026amp; Sears, C. (2022). Coherence of attention and memory biases in currently and previously depressed women. Cognition and Emotion, 36(7), 1239\u0026ndash;1254. https://doi.org/10.1080/02699931.2022.2099348\nFernandino, L., Tong, J.-Q., Conant, L. L., Humphries, C. J., \u0026amp; Binder, J. R. (2022). Decoding the information structure underlying the neural representation of concepts. Proceedings of the National Academy of Sciences, 119(6), e2108091119. https://doi.org/10.1073/pnas.2108091119\nFini, N. A., Holland, A. E., Bernhardt, J., \u0026amp; Burge, A. T. (2022). How Many Hours of Device Wear Time Are Required to Accurately Measure Physical Activity Post Stroke? International Journal of Environmental Research and Public Health, 19(3), 1191. https://doi.org/10.3390/ijerph19031191\nFiocchi, F. R., Dijkhuizen, S., Koekkoek, S. K. E., De Zeeuw, C. I., \u0026amp; Boele, H. J. (2022). Stimulus Generalization in Mice during Pavlovian Eyeblink Conditioning. Eneuro, 9(2), ENEURO.0400-21.2022. https://doi.org/10.1523/ENEURO.0400-21.2022\nFischer, S., Schumacher, S., \u0026amp; Daniels, J. (2022). Neurobiological Changes in Posttraumatic Stress Disorder and Their Reversibility by Psychotherapy: A Narrative Review. Zeitschrift für Klinische Psychologie und Psychotherapie, 51(2), 77\u0026ndash;86. https://doi.org/10.1026/1616-3443/a000650\nFitzsimmons, C. J., Morehead, K., Thompson, C. A., Buerke, M., \u0026amp; Dunlosky, J. (2023). Can feedback, correct, and incorrect worked examples improve numerical magnitude estimation precision? The Journal of Experimental Education, 91(1), 20\u0026ndash;45. https://doi.org/10.1080/00220973.2021.1891009\nFolwarczny, M., Otterbring, T., Sigurdsson, V., \u0026amp; Gasiorowska, A. (2022). Seasonal cues to food scarcity and calorie cravings: Winter cues elicit preferences for energy-dense foods. Food Quality and Preference, 96, 104379. https://doi.org/10.1016/j.foodqual.2021.104379\nFörster, A., Model, V., Gos, T., Frodl, T., Schiltz, K., Dobrowolny, H., Meyer-Lotz, G., Guest, P. C., Mawrin, C., Bernstein, H.-G., Bogerts, B., Schlaaff, K., \u0026amp; Steiner, J. (2022). Reduced GABAergic neuropil and interneuron profiles in schizophrenia: Complementary analysis of disease course-related differences. Journal of Psychiatric Research, 145, 50\u0026ndash;59. https://doi.org/10.1016/j.jpsychires.2021.11.028\nFrancesco Iani. (2022). La rivoluzione è tenere tutto insieme. Risposta ai commenti. Giornale italiano di psicologia, 2, 473\u0026ndash;479. https://doi.org/10.1421/105160\nFrancis, Z., Jebanesan, A., \u0026amp; Inzlicht, M. (2022). Leading Us Unto Temptation? No Evidence for an Asymmetry in Automatic Associations Between Goals and Temptations. Collabra: Psychology, 8(1), 31030. https://doi.org/10.1525/collabra.31030\nFreeman, M. R., Blumenfeld, H. K., Carlson, M. T., \u0026amp; Marian, V. (2022). First-language influence on second language speech perception depends on task demands. Language and Speech, 65(1), 28\u0026ndash;51. https://doi.org/10.1177/0023830920983368\nFreitas-Lemos, R., Tegge, A. N., Stein, J. S., DeHart, W. B., Reisinger, S. A., Shields, P. G., Hatsukami, D. K., \u0026amp; Bickel, W. K. (2022). The experimental tobacco marketplace: Effects of low-ventilated cigarette exposure. Addictive Behaviors, 125, 107160. https://doi.org/10.1016/j.addbeh.2021.107160\nFriedrich, J., Lindauer, U., \u0026amp; Höllig, A. (2022). Procedural and Methodological Quality in Preclinical Stroke Research\u0026ndash;A Cohort Analysis of the Rat MCAO Model Comparing Periods Before and After the Publication of STAIR/ARRIVE. Frontiers in Neurology, 13, 834003. https://doi.org/10.3389/fneur.2022.834003\nFrischkorn, G. T., Wilhelm, O., \u0026amp; Oberauer, K. (2022). Process-oriented intelligence research: A review from the cognitive perspective. Intelligence, 94, 101681. https://doi.org/10.1016/j.intell.2022.101681\nFrith, E., Miller, S. E., \u0026amp; Loprinzi, P. D. (2022). Effects of Verbal Priming With Acute Exercise on Convergent Creativity. Psychological Reports, 125(1), 375\u0026ndash;397. https://doi.org/10.1177/0033294120981925\nFry, C. M., Ram, N., \u0026amp; Gatzke-Kopp, L. M. (2022). Integrating dynamic and developmental time scales: Emotion-specific autonomic coordination predicts baseline functioning over time. International Journal of Psychophysiology, 171, 29\u0026ndash;37. https://doi.org/10.1016/j.ijpsycho.2021.12.001\nFucci, E., Poublan-Couzardot, A., Abdoun, O., \u0026amp; Lutz, A. (2022). No effect of focused attention and open monitoring meditation on EEG auditory mismatch negativity in expert and novice practitioners. International Journal of Psychophysiology, 176, 62\u0026ndash;72. https://doi.org/10.1016/j.ijpsycho.2022.03.010\nFuhrmeister, P., Madec, S., Lorenz, A., Elbuy, S., \u0026amp; Bürki, A. (2022). Behavioural and EEG evidence for inter-individual variability in late encoding stages of word production. Language, Cognition and Neuroscience, 37(7), 902\u0026ndash;924. https://doi.org/10.1080/23273798.2022.2030483\nFuhrmeister, P., \u0026amp; Myers, E. B. (2022). Structural variation in the temporal lobe predicts learning and retention of non-native speech sounds. Language, Cognition and Neuroscience, 37(1), 63\u0026ndash;79. https://doi.org/10.1080/23273798.2021.1944658\nFujita, H., \u0026amp; Cunnings, I. (2022). Interference and filler-gap dependency formation in native and non-native language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(5), 702\u0026ndash;716. https://doi.org/10.1037/xlm0001134\nFunkhouser, C. J., Ashaie, S. A., Gameroff, M. J., Talati, A., Posner, J., Weissman, M. M., \u0026amp; Shankman, S. A. (2022). Prospectively Predicting Adult Depressive Symptoms from Adolescent Peer Dysfunction: A Sibling Comparison Study. Research on Child and Adolescent Psychopathology, 50(8), 1081\u0026ndash;1093. https://doi.org/10.1007/s10802-022-00906-4\nGaio, D., DeMaere, M. Z., Anantanawat, K., Eamens, G. J., Falconer, L., Chapman, T. A., Djordjevic, S., \u0026amp; Darling, A. E. (2022). Phylogenetic diversity analysis of shotgun metagenomic reads describes gut microbiome development and treatment effects in the post-weaned pig. PLOS ONE, 17(6), e0270372. https://doi.org/10.1371/journal.pone.0270372\nGaither, S. E., \u0026amp; Sims, J. P. (2022). How Cross-Discipline Understanding and Communication Can Improve Research on Multiracial Populations. Social Sciences, 11(3), 90. https://doi.org/10.3390/socsci11030090\nGallicano, G. I., Fu, J., Mahapatra, S., Sharma, M. V. R., Dillon, C., Deng, C., \u0026amp; Zahid, M. (2022). Reversing Cardiac Hypertrophy at the Source Using a Cardiac Targeting Peptide Linked to miRNA106a: Targeting Genes That Cause Cardiac Hypertrophy. Pharmaceuticals, 15(7), 871. https://doi.org/10.3390/ph15070871\nGandelman, E. M., Miller, S. A., \u0026amp; Back, S. E. (2022). Imaginal exposure processing during Concurrent Treatment of PTSD and Substance Use Disorders using Prolonged Exposure (COPE) therapy: Examination of linguistic markers of cohesiveness. Journal of Traumatic Stress, 35(2), 682\u0026ndash;693. https://doi.org/10.1002/jts.22786\nGandhi, N., Zou, W., Meyer, C., Bhatia, S., \u0026amp; Walasek, L. (2022). Computational Methods for Predicting and Understanding Food Judgment. Psychological Science, 33(4), 579\u0026ndash;594. https://doi.org/10.1177/09567976211043426\nGao, C., Shinkareva, S. V., \u0026amp; Peelen, M. V. (2022). Affective valence of words differentially affects visual and auditory word recognition. Journal of Experimental Psychology: General, 151(9), 2144\u0026ndash;2159. https://doi.org/10.1037/xge0001176\nGao, F., Wahl, J. A., \u0026amp; Floyd, T. F. (2022). Anesthesia and neurotoxicity study design, execution, and reporting in the nonhuman primate: A systematic review. Pediatric Anesthesia, 32(4), 509\u0026ndash;521. https://doi.org/10.1111/pan.14401\nGao, X., Xu, J., Yao, T., Liu, X., Zhang, H., \u0026amp; Zhan, C. (2022). Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Advanced Drug Delivery Reviews, 187, 114362. https://doi.org/10.1016/j.addr.2022.114362\nGao, Y., Chao, H., Cavuoto, L., Yan, P., Kruger, U., Norfleet, J. E., Makled, B. A., Schwaitzberg, S., De, S., \u0026amp; Intes, X. (2022). Deep learning-based motion artifact removal in functional near-infrared spectroscopy. Neurophotonics, 9(04). https://doi.org/10.1117/1.NPh.9.4.041406\nGarcia-Guerrero, S., O'Hora, D., Zgonnikov, A., \u0026amp; Scherbaum, S. (2023). The action dynamics of approach-avoidance conflict during decision-making. Quarterly Journal of Experimental Psychology, 76(1), 160\u0026ndash;179. https://doi.org/10.1177/17470218221087625\nGarcia‐Pelegrin, E., Clark, F., \u0026amp; Miller, R. (2022). Increasing animal cognition research in zoos. Zoo Biology, 41(4), 281\u0026ndash;291. https://doi.org/10.1002/zoo.21674\nGarofalo, G., \u0026amp; Riggio, L. (2022). Influence of colour on object motor representation. Neuropsychologia, 164, 108103. https://doi.org/10.1016/j.neuropsychologia.2021.108103\nGarrison, K. E., \u0026amp; Schmeichel, B. J. (2022). Getting over it: Working memory capacity and affective responses to stressful events in daily life. Emotion, 22(3), 418\u0026ndash;429. https://doi.org/10.1037/emo0000755\nGarza, R., \u0026amp; Byrd-Craven, J. (2023). The role of hormones in attraction and visual attention to facial masculinity. Frontiers in Psychology, 14, 1067487. https://doi.org/10.3389/fpsyg.2023.1067487\nGatti, D., Marelli, M., \u0026amp; Rinaldi, L. (2023a). Out-of-vocabulary but not meaningless: Evidence for semantic-priming effects in pseudoword processing. Journal of Experimental Psychology: General, 152(3), 851\u0026ndash;863. https://doi.org/10.1037/xge0001304\nGatti, D., Marelli, M., \u0026amp; Rinaldi, L. (2023b). Out-of-vocabulary but not meaningless: Evidence for semantic-priming effects in pseudoword processing. Journal of Experimental Psychology: General, 152(3), 851\u0026ndash;863. https://doi.org/10.1037/xge0001304\nGatti, D., Rinaldi, L., Marelli, M., Mazzoni, G., \u0026amp; Vecchi, T. (2022). Decomposing the semantic processes underpinning veridical and false memories. Journal of Experimental Psychology: General, 151(2), 363\u0026ndash;389. https://doi.org/10.1037/xge0001079\nGeary, N., \u0026amp; Higgs, S. (2022). Guidelines on design, measurement and statistics for Appetite. Appetite, 168, 105731. https://doi.org/10.1016/j.appet.2021.105731\nGenon, S., Eickhoff, S. B., \u0026amp; Kharabian, S. (2022). Linking interindividual variability in brain structure to behaviour. Nature Reviews Neuroscience, 23(5), 307\u0026ndash;318. https://doi.org/10.1038/s41583-022-00584-7\nGerdemann, S. C., Büchner, R., \u0026amp; Hepach, R. (2022). How being observed influences preschoolers\u0026rsquo; emotions following (less) deserving help. Social Development, 31(3), 862\u0026ndash;882. https://doi.org/10.1111/sode.12578\nGerdemann, S. C., McAuliffe, K., Blake, P. R., Haun, D. B. M., \u0026amp; Hepach, R. (2022). The ontogeny of children's social emotions in response to (un)fairness. Royal Society Open Science, 9(8), 191456. https://doi.org/10.1098/rsos.191456\nGerdemann, S. C., Tippmann, J., Dietrich, B., Engelmann, J. M., \u0026amp; Hepach, R. (2022). Young children show negative emotions after failing to help others. PLOS ONE, 17(4), e0266539. https://doi.org/10.1371/journal.pone.0266539\nGhiglino, D., Floris, F., De Tommaso, D., Kompatsiari, K., Chevalier, P., Priolo, T., \u0026amp; Wykowska, A. (2023). Artificial scaffolding: Augmenting social cognition by means of robot technology. Autism Research, 16(5), 997\u0026ndash;1008. https://doi.org/10.1002/aur.2906\nGhijselings, I., Taylan, O., Delport, H. P., Slane, J., Van Den Wyngaert, H., Demurie, A., \u0026amp; Scheys, L. (2022). Using a patella reduced technique while balancing a TKA results in restored physiological strain in the collateral ligaments: An ex vivo kinematic analysis. Archives of Orthopaedic and Trauma Surgery, 142(7), 1633\u0026ndash;1644. https://doi.org/10.1007/s00402-021-04010-y\nGhosh, S., \u0026amp; Dasgupta, R. (2022). Machine Learning in Biological Sciences: Updates and Future Prospects. Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8881-2\nGintant, G. (2022). Assessing the fidelity of translation of non‐clinical assays: A Pharma perspective. British Journal of Pharmacology, 179(11), 2564\u0026ndash;2576. https://doi.org/10.1111/bph.15796\nGirard, C., \u0026amp; Prado, J. (2022). Prior home learning environment is associated with adaptation to homeschooling during COVID lockdown. Heliyon, 8(4), e09294. https://doi.org/10.1016/j.heliyon.2022.e09294\nGlück, V. M., Boschet-Lange, J. M., Pittig, R., \u0026amp; Pittig, A. (2023). Persistence of extensively trained avoidance is not elevated in anxiety disorders in an outcome devaluation paradigm. Behaviour Research and Therapy, 170, 104417. https://doi.org/10.1016/j.brat.2023.104417\nGoette, W. F., Schaffert, J., Carlew, A., Rossetti, H., Lacritz, L. H., De Boeck, P., \u0026amp; Cullum, C. M. (2023). Impact of word properties on list learning: An explanatory item analysis. Neuropsychology, 37(3), 268\u0026ndash;283. https://doi.org/10.1037/neu0000810\nGoldberg, S. B., Riordan, K. M., Sun, S., \u0026amp; Davidson, R. J. (2022). The Empirical Status of Mindfulness-Based Interventions: A Systematic Review of 44 Meta-Analyses of Randomized Controlled Trials. Perspectives on Psychological Science, 17(1), 108\u0026ndash;130. https://doi.org/10.1177/1745691620968771\nGoldstein-Piekarski, A. N., Ball, T. M., Samara, Z., Staveland, B. R., Keller, A. S., Fleming, S. L., Grisanzio, K. A., Holt-Gosselin, B., Stetz, P., Ma, J., \u0026amp; Williams, L. M. (2022). Mapping Neural Circuit Biotypes to Symptoms and Behavioral Dimensions of Depression and Anxiety. Biological Psychiatry, 91(6), 561\u0026ndash;571. https://doi.org/10.1016/j.biopsych.2021.06.024\nGolicz, K., Piepho, H.-P., Minarsch, E.-M. L., Niether, W., Große-Stoltenberg, A., Oldeland, J., Breuer, L., Gattinger, A., \u0026amp; Jacobs, S. (2023). Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems. Agroforestry Systems, 97(8), 1481\u0026ndash;1489. https://doi.org/10.1007/s10457-023-00871-x\nGolparvar, S. E., \u0026amp; Abolhasani, H. (2022). Unpacking the contribution of linguistic features to graph writing quality: An analytic scoring approach. Assessing Writing, 53, 100644. https://doi.org/10.1016/j.asw.2022.100644\nGołyszny, M., Zieliński, M., Paul-Samojedny, M., Pałasz, A., \u0026amp; Obuchowicz, E. (2022). Chronic treatment with escitalopram and venlafaxine affects the neuropeptide S pathway differently in adult Wistar rats exposed to maternal separation. AIMS Neuroscience, 9(3), 395\u0026ndash;422. https://doi.org/10.3934/Neuroscience.2022022\nGomez Rueda, H., \u0026amp; Bustillo, J. (2022). Brain differential gene expression and blood cross-validation of a molecular signature of patients with major depressive disorder. Psychiatric Genetics, 32(3), 105\u0026ndash;115. https://doi.org/10.1097/YPG.0000000000000309\nGong, T., Gerstenberg, T., Mayrhofer, R., \u0026amp; Bramley, N. R. (2023). Active causal structure learning in continuous time. Cognitive Psychology, 140, 101542. https://doi.org/10.1016/j.cogpsych.2022.101542\nGonzalez, C., Jiang, X., Gonzalez-Martinez, J., \u0026amp; Halgren, E. (2022). Human Spindle Variability. The Journal of Neuroscience, 42(22), 4517\u0026ndash;4537. https://doi.org/10.1523/JNEUROSCI.1786-21.2022\nGonzález-Madruga, K., Staginnus, M., \u0026amp; Fairchild, G. (2022). Alterations in Structural and Functional Connectivity in ADHD: Implications for Theories of ADHD. In S. C. Stanford \u0026amp; E. Sciberras (Eds.), New Discoveries in the Behavioral Neuroscience of Attention-Deficit Hyperactivity Disorder (Vol. 57, pp. 445\u0026ndash;481). Springer International Publishing. https://doi.org/10.1007/7854_2022_345\nGoodridge, C. M., Mole, C. D., Billington, J., Markkula, G., \u0026amp; Wilkie, R. M. (2022). Steering is initiated based on error accumulation. Journal of Experimental Psychology: Human Perception and Performance, 48(1), 64\u0026ndash;76. https://doi.org/10.1037/xhp0000970\nGötz, F. M., Gosling, S. D., \u0026amp; Rentfrow, P. J. (2022). Small Effects: The Indispensable Foundation for a Cumulative Psychological Science. Perspectives on Psychological Science, 17(1), 205\u0026ndash;215. https://doi.org/10.1177/1745691620984483\nGouret, F., \u0026amp; Pfeuffer, C. U. (2023). Anticipatory Saccades Towards the Future Consequences of One's Actions \u0026ndash; an Online Eye Tracking Study. Journal of Cognition, 6(1), 15. https://doi.org/10.5334/joc.261\nGrainger, J. (2022). Word Recognition I: Visual and Orthographic Processing. In M. J. Snowling, C. Hulme, \u0026amp; K. Nation (Eds.), The Science of Reading (1st ed., pp. 60\u0026ndash;78). Wiley. https://doi.org/10.1002/9781119705116.ch3\nGrasso, C. L., Ziegler, J. C., Coull, J. T., \u0026amp; Montant, M. (2022). Space\u0026ndash;Time Congruency Effects Using Eye Movements During Processing of Past- and Future-Related Words. Experimental Psychology, 69(4), 210\u0026ndash;217. https://doi.org/10.1027/1618-3169/a000559\nGravier, M. L., Hula, W. D., Johnson, J. P., Autenreith, A., \u0026amp; Dickey, M. W. (2022). Is There a Relationship Between Cortisol and Treatment Response in Chronic Aphasia? Topics in Language Disorders, 42(3), 193\u0026ndash;211. https://doi.org/10.1097/TLD.0000000000000291\nGreeley, B., Barnhoorn, J. S., Verwey, W. B., \u0026amp; Seidler, R. D. (2022). Anodal Transcranial Direct Current Stimulation Over Prefrontal Cortex Slows Sequence Learning in Older Adults. Frontiers in Human Neuroscience, 16, 814204. https://doi.org/10.3389/fnhum.2022.814204\nGrießbach, E., Raßbach, P., Herbort, O., \u0026amp; Cañal-Bruland, R. (2023). Embodied decision biases: Individually stable across different tasks? Experimental Brain Research, 241(4), 1053\u0026ndash;1064. https://doi.org/10.1007/s00221-023-06591-z\nGrossmann, F., Flueck, J. L., Roelands, B., Meeusen, R., Mason, B., \u0026amp; Perret, C. (2022). Characteristics of Official Wheelchair Basketball Games in Hot and Temperate Conditions. International Journal of Environmental Research and Public Health, 19(3), 1250. https://doi.org/10.3390/ijerph19031250\nGu, L. (2022). The processing of English prefixed and suffixed words by Chinese-English bilinguals. International Journal of Bilingualism, 136700692211374. https://doi.org/10.1177/13670069221137454\nGuareschi, S., Wood, P. J., England, J., Barrett, J., \u0026amp; Laini, A. (2022). Back to the future: Exploring riverine macroinvertebrate communities\u0026rsquo; invasibility. River Research and Applications, 38(8), 1374\u0026ndash;1386. https://doi.org/10.1002/rra.3975\nGuath, M., Stikvoort, B., \u0026amp; Juslin, P. (2022). Nudging for eco-friendly online shopping \u0026ndash; Attraction effect curbs price sensitivity. Journal of Environmental Psychology, 81, 101821. https://doi.org/10.1016/j.jenvp.2022.101821\nGuidi, C., Frey, B., Brunner, I., Meusburger, K., Vogel, M. E., Chen, X., Stucky, T., Gwiazdowicz, D. J., Skubała, P., Bose, A. K., Schaub, M., Rigling, A., \u0026amp; Hagedorn, F. (2022). Soil fauna drives vertical redistribution of soil organic carbon in a long‐term irrigated dry pine forest. Global Change Biology, 28(9), 3145\u0026ndash;3160. https://doi.org/10.1111/gcb.16122\nGünther, F., Marelli, M., Tureski, S., \u0026amp; Petilli, M. A. (2023). ViSpa (Vision Spaces): A computer-vision-based representation system for individual images and concept prototypes, with large-scale evaluation. Psychological Review, 130(4), 896\u0026ndash;934. https://doi.org/10.1037/rev0000392\nGurel, N. Z., Sudarshan, K. B., Tam, S., Ly, D., Armour, J. A., Kember, G., \u0026amp; Ajijola, O. A. (2022). Studying Cardiac Neural Network Dynamics: Challenges and Opportunities for Scientific Computing. Frontiers in Physiology, 13, 835761. https://doi.org/10.3389/fphys.2022.835761\nGuterstam, J., Jayaram-Lindström, N., Berrebi, J., Petrovic, P., Ingvar, M., Fransson, P., \u0026amp; Franck, J. (2022). The Hypothesis of Subliminal Cue Reactivity in Addiction Revisited: An fMRI Study. European Addiction Research, 28(3), 210\u0026ndash;219. https://doi.org/10.1159/000521344\nGuttentag, S., Bishop, S., Doggett, R., Shalev, R., Kaplan, M., Dyson, M., Cohen, M., Lord, C., \u0026amp; Di Martino, A. (2022). The utility of parent-report screening tools in differentiating autism versus attention-deficit/hyperactivity disorder in school-age children. Autism, 26(2), 473\u0026ndash;487. https://doi.org/10.1177/13623613211030071\nGuty, E., \u0026amp; Horner, M. D. (2022). The minimal effect of depression on cognitive functioning when accounting for TOMM performance in a sample of U.S. veterans. Applied Neuropsychology: Adult, 1\u0026ndash;9. https://doi.org/10.1080/23279095.2022.2137026\nGuzman, G. E. C., Takahashi, D. Y., \u0026amp; Fujita, A. (2022). A fast parameter estimator for large complex networks. Journal of Complex Networks, 10(3), cnac022. https://doi.org/10.1093/comnet/cnac022\nHadjipanayi, V., Shimi, A., Ludwig, C. J. H., \u0026amp; Kent, C. (2022). Unequal allocation of overt and covert attention in Multiple Object Tracking. Attention, Perception, \u0026amp; Psychophysics, 84(5), 1519\u0026ndash;1537. https://doi.org/10.3758/s13414-022-02501-7\nHaeffel, G. J., Jeronimus, B. F., Kaiser, B. N., Weaver, L. J., Soyster, P. D., Fisher, A. J., Vargas, I., Goodson, J. T., \u0026amp; Lu, W. (2022). Folk Classification and Factor Rotations: Whales, Sharks, and the Problems With the Hierarchical Taxonomy of Psychopathology (HiTOP). Clinical Psychological Science, 10(2), 259\u0026ndash;278. https://doi.org/10.1177/21677026211002500\nHaeuser, K. I., Kray, J., \u0026amp; Borovsky, A. (2022). Hedging Bets in Linguistic Prediction: Younger and Older Adults Vary in the Breadth of Predictive Processing. Collabra: Psychology, 8(1), 36945. https://doi.org/10.1525/collabra.36945\nHamel, R., Lepage, J., \u0026amp; Bernier, P. (2022). Anterograde interference emerges along a gradient as a function of task similarity: A behavioural study. European Journal of Neuroscience, 55(1), 49\u0026ndash;66. https://doi.org/10.1111/ejn.15561\nHamner, J. W., \u0026amp; Tan, C. O. (2022). Linear Mixed Effect Models for Rehabilitation Research. American Journal of Physical Medicine \u0026amp; Rehabilitation, 101(8), 789\u0026ndash;794. https://doi.org/10.1097/PHM.0000000000001888\nHámori, G., Rádosi, A., Pászthy, B., Réthelyi, J. M., Ulbert, I., Fiáth, R., \u0026amp; Bunford, N. (2022). Reliability of reward ERPs in middle‐late adolescents using a custom and a standardized preprocessing pipeline. Psychophysiology, 59(8), e14043. https://doi.org/10.1111/psyp.14043\nHan, W., \u0026amp; Li, L. (2022). Evaluating and minimizing batch effects in metabolomics. Mass Spectrometry Reviews, 41(3), 421\u0026ndash;442. https://doi.org/10.1002/mas.21672\nHan, X., Ashar, Y. K., Kragel, P., Petre, B., Schelkun, V., Atlas, L. Y., Chang, L. J., Jepma, M., Koban, L., Losin, E. A. R., Roy, M., Woo, C.-W., \u0026amp; Wager, T. D. (2022). Effect sizes and test-retest reliability of the fMRI-based neurologic pain signature. NeuroImage, 247, 118844. https://doi.org/10.1016/j.neuroimage.2021.118844\nHao, Z., Shi, Y., Huang, L., Sun, J., Li, M., Gao, Y., Li, J., Wang, Q., Zhan, L., Ding, Q., Jia, X., \u0026amp; Li, H. (2022). The Atypical Effective Connectivity of Right Temporoparietal Junction in Autism Spectrum Disorder: A Multi-Site Study. Frontiers in Neuroscience, 16, 927556. https://doi.org/10.3389/fnins.2022.927556\nHardin, K. N., Dos Reis, B. R., Dias, N. W., Fiske, D. A., Mercadante, V. R. G., Rhoads, M. L., Wilson, T. B., \u0026amp; White, R. R. (2022). Growth and reproductive responses of heifers consuming endophyte-infected tall fescue seed with or without sodium bicarbonate supplementation. Applied Animal Science, 38(4), 317\u0026ndash;325. https://doi.org/10.15232/aas.2022-02273\nHassanzadeh, R., Silva, R. F., Abrol, A., Salman, M., Bonkhoff, A., Du, Y., Fu, Z., DeRamus, T., Damaraju, E., Baker, B., \u0026amp; Calhoun, V. D. (2022). Individualized spatial network predictions using Siamese convolutional neural networks: A resting-state fMRI study of over 11,000 unaffected individuals. PLOS ONE, 17(1), e0249502. https://doi.org/10.1371/journal.pone.0249502\nHauptman, M., Blanco-Elorrieta, E., \u0026amp; Pylkkänen, L. (2022). Inflection across Categories: Tracking Abstract Morphological Processing in Language Production with MEG. Cerebral Cortex, 32(8), 1721\u0026ndash;1736. https://doi.org/10.1093/cercor/bhab309\nHautala, J., Hawelka, S., \u0026amp; Aro, M. (2022). Dual-stage and dual-deficit? Word recognition processes during text reading across the reading fluency continuum. Reading and Writing, 35(3), 663\u0026ndash;686. https://doi.org/10.1007/s11145-021-10201-1\nHe, C., Rathbun, Z., Buonauro, D., Meyerhoff, H. S., Franconeri, S. L., Stieff, M., \u0026amp; Hegarty, M. (2022). Symmetry and spatial ability enhance change detection in visuospatial structures. Memory \u0026amp; Cognition, 50(6), 1186\u0026ndash;1200. https://doi.org/10.3758/s13421-022-01332-z\nHe, X. (Stella), \u0026amp; Loewen, S. (2023). How to present L2 Chinese words effectively for learning: Exploring learning outcomes and learner perceptions. Studies in Second Language Acquisition, 1\u0026ndash;23. https://doi.org/10.1017/S0272263123000335\nHecksteden, A., Kellner, R., \u0026amp; Donath, L. (2022). Dealing with small samples in football research. Science and Medicine in Football, 6(3), 389\u0026ndash;397. https://doi.org/10.1080/24733938.2021.1978106\nHeffernan, K. S., Samonds, K. E., Godfrey, L. R., Raharison, J.-L., Ranaivoarisoa, J. F., \u0026amp; Irwin, M. T. (2022). Diademed sifakas (Propithecus diadema) in intact and degraded forest habitat at Tsinjoarivo, Madagascar, show high reproductive success and no evidence that dental senescence or rainfall affects reproductive output. Folia Primatologica, 93(1), 21\u0026ndash;40. https://doi.org/10.1163/14219980-20210403\nHeffner, C. C., Fuhrmeister, P., Luthra, S., Mechtenberg, H., Saltzman, D., \u0026amp; Myers, E. B. (2022). Reliability and validity for perceptual flexibility in speech. Brain and Language, 226, 105070. https://doi.org/10.1016/j.bandl.2021.105070\nHeinsberg, L. W., \u0026amp; Weeks, D. E. (2022). Post hoc power is not informative. Genetic Epidemiology, 46(7), 390\u0026ndash;394. https://doi.org/10.1002/gepi.22464\nHeise, M. J., Mon, S. K., \u0026amp; Bowman, L. C. (2022). Utility of linear mixed effects models for event-related potential research with infants and children. Developmental Cognitive Neuroscience, 54, 101070. https://doi.org/10.1016/j.dcn.2022.101070\nHendricks, B. E., Landsman, W. R., \u0026amp; Peña-Romera, F. D. (2022). The Revolving Door between Large Audit Firms and the PCAOB: Implications for Future Inspection Reports and Audit Quality. The Accounting Review, 97(1), 261\u0026ndash;292. https://doi.org/10.2308/TAR-2019-0649\nHenke, J., Holtrup, S., \u0026amp; Moehring, W. (2022). Forgiving the News: The Effects of Error Corrections on News Users\u0026rsquo; Reactions and the Influence of Individual Characteristics and Perceptions. Journalism Studies, 23(7), 840\u0026ndash;857. https://doi.org/10.1080/1461670X.2022.2044889\nHerbet, M., Leonard, J., Santangelo, M. G., \u0026amp; Albaret, L. (2022). Dissimulate or disseminate? A survey on the fate of negative results. Learned Publishing, 35(1), 16\u0026ndash;29. https://doi.org/10.1002/leap.1438\nHéroux, M. E., Butler, A. A., Cashin, A. G., McCaughey, E. J., Affleck, A. J., Green, M. A., Cartwright, A., Jones, M., Kiely, K. M., Van Schooten, K. S., Menant, J. C., Wewege, M., \u0026amp; Gandevia, S. C. (2022). Quality Output Checklist and Content Assessment (QuOCCA): A new tool for assessing research quality and reproducibility. BMJ Open, 12(9), e060976. https://doi.org/10.1136/bmjopen-2022-060976\nHessels, J., Kroon, S., Boerman, S., Nelissen, R. C., Grutters, J. C., Snijder, R. J., Lebrin, F., Post, M. C., Mummery, C. L., \u0026amp; Mager, J.-J. (2022). Efficacy and Safety of Tacrolimus as Treatment for Bleeding Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study. Journal of Clinical Medicine, 11(18), 5280. https://doi.org/10.3390/jcm11185280\nHeydari, A. A., Davalos, O. A., Zhao, L., Hoyer, K. K., \u0026amp; Sindi, S. S. (2022). ACTIVA: Realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders. Bioinformatics, 38(8), 2194\u0026ndash;2201. https://doi.org/10.1093/bioinformatics/btac095\nHiggins, G. A., \u0026amp; Silenieks, L. B. (2022). The Effects of Drug Treatments for ADHD in Measures of Cognitive Performance. In S. C. Stanford \u0026amp; E. Sciberras (Eds.), New Discoveries in the Behavioral Neuroscience of Attention-Deficit Hyperactivity Disorder (Vol. 57, pp. 321\u0026ndash;362). Springer International Publishing. https://doi.org/10.1007/7854_2022_341\nHilger, K., Spinath, F. M., Troche, S., \u0026amp; Schubert, A.-L. (2022). The biological basis of intelligence: Benchmark findings. Intelligence, 93, 101665. https://doi.org/10.1016/j.intell.2022.101665\nHillsley, A., Chin, V., Li, A., \u0026amp; McLachlan, C. S. (2022). Resveratrol for Weight Loss in Obesity: An Assessment of Randomized Control Trial Designs in ClinicalTrials.gov. Nutrients, 14(7), 1424. https://doi.org/10.3390/nu14071424\nHinojosa, J. A., Haro, J., Calvillo-Torres, R., González-Arias, L., Poch, C., \u0026amp; Ferré, P. (2022). I want it small or, rather, give me a bunch: The role of evaluative morphology on the assessment of the emotional properties of words. Cognition and Emotion, 36(6), 1203\u0026ndash;1210. https://doi.org/10.1080/02699931.2022.2093840\nHoeboer, C. M., Oprel, D. A. C., Kooistra, M. J., Schoorl, M., Van Der Does, W., Van Minnen, A., \u0026amp; De Kleine, R. A. (2022). Temporal Relationship Between Change in Subjective Distress and PTSD Symptom Decrease During Prolonged Exposure Therapy for Posttraumatic Stress Disorder. Behavior Therapy, 53(2), 170\u0026ndash;181. https://doi.org/10.1016/j.beth.2021.06.007\nHoffman, P., Lambon Ralph, M. A., \u0026amp; Rogers, T. T. (2021). Semantic diversity is best measured with unscaled vectors: Reply to Cevoli, Watkins and Rastle (2020). Behavior Research Methods, 54(4), 1688\u0026ndash;1700. https://doi.org/10.3758/s13428-021-01693-4\nHofmann, M. J., Mokros, A., \u0026amp; Schneider, S. (2023). The joy of being frightened: Fear experience in psychopathy. Journal of Personality, jopy.12890. https://doi.org/10.1111/jopy.12890\nHofmann, M. J., Remus, S., Biemann, C., Radach, R., \u0026amp; Kuchinke, L. (2022). Language Models Explain Word Reading Times Better Than Empirical Predictability. Frontiers in Artificial Intelligence, 4, 730570. https://doi.org/10.3389/frai.2021.730570\nHogue, O., Harvey, T., Crozier, D., Sonneborn, C., Postle, A., Block-Beach, H., Somasundaram, E., May, F. J., Snyder Braun, M., Pasadyn, F. L., King, K., Johnson, C., Dolansky, M. A., Obuchowski, N. A., Machado, A. G., Baker, K. B., \u0026amp; Barnholtz-Sloan, J. S. (2022). Statistical practice and transparent reporting in the neurosciences: Preclinical motor behavioral experiments. PLOS ONE, 17(3), e0265154. https://doi.org/10.1371/journal.pone.0265154\nHonert, E. C., Harrison, K., \u0026amp; Feeney, D. (2023). Evaluating wrapping alpine ski boots during on-snow carving. Frontiers in Sports and Active Living, 5, 1192737. https://doi.org/10.3389/fspor.2023.1192737\nHoneycutt, D., DelBello, M., Strawn, J., Ramsey, L., Patino, L., Hinman, K., Welge, J., Miklowitz, D., Jo, B., Blom, T., Bruns, K., Hamill Skoch, S., Starace, N., Tallman, M., \u0026amp; Singh, M. (2022). A Double-Blind Randomized Trial to Investigate Mechanisms of Antidepressant-Related Dysfunctional Arousal in Depressed or Anxious Youth at Familial Risk for Bipolar Disorder. Journal of Personalized Medicine, 12(6), 1006. https://doi.org/10.3390/jpm12061006\nHong, I., Kim, M.-S., \u0026amp; Jeong, S. K. (2022). Flexibility and stability of habit learning depend on temporal signal variation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(1), 1\u0026ndash;12. https://doi.org/10.1037/xlm0001113\nHorchak, O. V., \u0026amp; Garrido, M. V. (2022). Simulating background settings during spoken and written sentence comprehension. Psychonomic Bulletin \u0026amp; Review, 29(4), 1426\u0026ndash;1439. https://doi.org/10.3758/s13423-022-02061-9\nHorstman, L. I., Riem, M. M. E., Alyousefi-van Dijk, K., Lotz, A. M., \u0026amp; Bakermans-Kranenburg, M. J. (2022). Fathers\u0026rsquo; involvement in early childcare is associated with amygdala resting-state connectivity. Social Cognitive and Affective Neuroscience, 17(2), 198\u0026ndash;205. https://doi.org/10.1093/scan/nsab086\nHosťovecký, M., Riegert, J., Pazda, A., \u0026amp; Prokop, P. (2022). Skin Conductivity Responses to Images of War and Sports in Men and Women: An Evolutionary Perspective. Adaptive Human Behavior and Physiology, 8(2), 263\u0026ndash;279. https://doi.org/10.1007/s40750-022-00186-8\nHruby, G. G., \u0026amp; Mitra, A. (2023). A naturalized view of literacy education: What the neuro- and life sciences may offer language and literacy research. In International Encyclopedia of Education(Fourth Edition) (pp. 866\u0026ndash;882). Elsevier. https://doi.org/10.1016/B978-0-12-818630-5.07076-7\nHsieh, T.-Y., \u0026amp; Cross, E. S. (2022). People's dispositional cooperative tendencies towards robots are unaffected by robots\u0026rsquo; negative emotional displays in prisoner's dilemma games. Cognition and Emotion, 36(5), 995\u0026ndash;1019. https://doi.org/10.1080/02699931.2022.2054781\nHuang, C., Donk, M., \u0026amp; Theeuwes, J. (2022). Proactive enhancement and suppression elicited by statistical regularities in visual search. Journal of Experimental Psychology: Human Perception and Performance, 48(5), 443\u0026ndash;457. https://doi.org/10.1037/xhp0001002\nHuang, M., Zhang, X., Chen, X., Mai, Y., Wu, X., Zhao, J., \u0026amp; Feng, Q. (2022). Joint-Channel-Connectivity-Based Feature Selection and Classification on fNIRS for Stress Detection in Decision-Making. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1858\u0026ndash;1869. https://doi.org/10.1109/TNSRE.2022.3188560\nHudson, N. W., Lucas, R. E., \u0026amp; Donnellan, M. B. (2022). A direct comparison of the temporal stability and criterion validities of experiential and retrospective global measures of subjective well-being. Journal of Research in Personality, 98, 104230. https://doi.org/10.1016/j.jrp.2022.104230\nHuebert, A. M., \u0026amp; Cleary, A. M. (2022). Do first and last letters carry more weight in the mechanism behind word familiarity? Psychonomic Bulletin \u0026amp; Review, 29(5), 1938\u0026ndash;1945. https://doi.org/10.3758/s13423-022-02093-1\nHuebert, A. M., McNeely-White, K. L., \u0026amp; Cleary, A. M. (2023). On the relationship between tip-of-the-tongue states and partial recollective experience: Illusory partial recollective access during tip-of-the-tongue states. Journal of Experimental Psychology: General, 152(2), 542\u0026ndash;570. https://doi.org/10.1037/xge0001292\nHughes-Berheim, S. S., Cheimariou, S., Shelley-Tremblay, J. F., Doheny, M. M., \u0026amp; Morett, L. M. (2022). Extending Gesture's Impact on Word Learning to Reading: A Self-Paced Reading Study. Discourse Processes, 59(8), 646\u0026ndash;667. https://doi.org/10.1080/0163853X.2022.2132080\nHull, K. E., Overbeck, J. R., Smillie, L. D., \u0026amp; Howe, P. D. L. (2022). The P‐Word: Power aversion and responsibility aversion as explanations for the avoidance of power. Journal of Applied Social Psychology, 52(3), 184\u0026ndash;196. https://doi.org/10.1111/jasp.12857\nHullman, J., Kapoor, S., Nanayakkara, P., Gelman, A., \u0026amp; Narayanan, A. (2022). The Worst of Both Worlds: A Comparative Analysis of Errors in Learning from Data in Psychology and Machine Learning. Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 335\u0026ndash;348. https://doi.org/10.1145/3514094.3534196\nHulme, R. C., Shapiro, L. R., \u0026amp; Taylor, J. S. H. (2022). Learning new words through reading: Do robust spelling\u0026ndash;sound mappings boost learning of word forms and meanings? Royal Society Open Science, 9(12), 210555. https://doi.org/10.1098/rsos.210555\nIanì, F., Limata, T., Bucciarelli, M., \u0026amp; Mazzoni, G. (2023). The implicit effect of action mental simulation on action evaluation. Quarterly Journal of Experimental Psychology, 76(2), 257\u0026ndash;270. https://doi.org/10.1177/17470218221091096\nIanì, F., Schaeken, W., Ras, I. N., \u0026amp; Bucciarelli, M. (2023). Motor imagery and engagement favour spatial reasoning. Memory \u0026amp; Cognition, 51(5), 1103\u0026ndash;1114. https://doi.org/10.3758/s13421-022-01383-2\nIddi, S., \u0026amp; C Donohue, M. (2022). Power and Sample Size for Longitudinal Models in R \u0026ndash; The longpower Package and Shiny App. The R Journal, 14(1), 264\u0026ndash;282. https://doi.org/10.32614/RJ-2022-022\nInohara, K., \u0026amp; Utsumi, A. (2022). JWSAN: Japanese word similarity and association norm. Language Resources and Evaluation, 56(1), 109\u0026ndash;137. https://doi.org/10.1007/s10579-021-09543-7\nIoannucci, S., Borragán, G., \u0026amp; Zénon, A. (2022). Passive visual stimulation induces fatigue under conditions of high arousal elicited by auditory tasks. Journal of Experimental Psychology: General, 151(12), 3097\u0026ndash;3113. https://doi.org/10.1037/xge0001224\nJacob, J., Watanabe, S., Richardson, J., Gonzales, N., Ploppert, E., Lahvis, G., Shiels, A., Wenger, S., Saverino, K., Bhalerao, J., Crockett, B., Burns, E., Harding, O., Fischer-Stenger, K., \u0026amp; Lambert, K. (2022). Divergent neural and endocrine responses in wild-caught and laboratory-bred Rattus norvegicus. Behavioural Brain Research, 432, 113978. https://doi.org/10.1016/j.bbr.2022.113978\nJacobs, A. M., \u0026amp; Kinder, A. (2022). Computational Models of Readers\u0026rsquo; Apperceptive Mass. Frontiers in Artificial Intelligence, 5, 718690. https://doi.org/10.3389/frai.2022.718690\nJaeger, B., Evans, A. M., Stel, M., \u0026amp; Van Beest, I. (2022). Understanding the role of faces in person perception: Increased reliance on facial appearance when judging sociability. Journal of Experimental Social Psychology, 100, 104288. https://doi.org/10.1016/j.jesp.2022.104288\nJaeger, B., Oud, B., Williams, T., Krumhuber, E. G., Fehr, E., \u0026amp; Engelmann, J. B. (2022). Can people detect the trustworthiness of strangers based on their facial appearance? Evolution and Human Behavior, 43(4), 296\u0026ndash;303. https://doi.org/10.1016/j.evolhumbehav.2022.04.004\nJäger, D. T., Behrens, C., \u0026amp; Rüsseler, J. (2022). Current and expected affective valence interact to predict choice in recurrent decisions. Cognition and Emotion, 36(3), 560\u0026ndash;567. https://doi.org/10.1080/02699931.2021.2020730\nJäggi, T., Sato, S., Gillioz, C., \u0026amp; Gygax, P. M. (2022). Is the future near or far depending on the verb tense markers used? An experimental investigation into the effects of the grammaticalization of the future. PLOS ONE, 17(1), e0262778. https://doi.org/10.1371/journal.pone.0262778\nJahn, K. N., Hancock, K. E., Maison, S. F., \u0026amp; Polley, D. B. (2022). Estimated cochlear neural degeneration is associated with loudness hypersensitivity in individuals with normal audiograms. JASA Express Letters, 2(6), 064403. https://doi.org/10.1121/10.0011694\nJakubowski, K., \u0026amp; Eerola, T. (2022). Music evokes fewer but more positive autobiographical memories than emotionally matched sound and word cues. Journal of Applied Research in Memory and Cognition, 11(2), 272\u0026ndash;288. https://doi.org/10.1016/j.jarmac.2021.09.002\nJamalishahni, T., Turrell, G., Villanueva, K., Foster, S., \u0026amp; Davern, M. (2022). Contribution of the built environment to inequity in loneliness by neighbourhood disadvantage in Australia. Cities \u0026amp; Health, 6(6), 1067\u0026ndash;1080. https://doi.org/10.1080/23748834.2022.2145733\nJayes, L. T., Fitzsimmons, G., Weal, M. J., Kaakinen, J. K., \u0026amp; Drieghe, D. (2022). The impact of hyperlinks, skim reading and perceived importance when reading on the Web. PLOS ONE, 17(2), e0263669. https://doi.org/10.1371/journal.pone.0263669\nJeffery, N. D., Budke, C. M., \u0026amp; Chanoit, G. P. (2022). What is the value of statistical testing of observational data? Veterinary Surgery, 51(7), 1043\u0026ndash;1051. https://doi.org/10.1111/vsu.13845\nJeong, J.-W., Lee, M.-H., Fernandes, N., Deol, S., Mody, S., Arslanturk, S., Chinnam, R. B., \u0026amp; Tan, S. (2022). Neonatal encephalopathy prediction of poor outcome with diffusion-weighted imaging connectome and fixel-based analysis. Pediatric Research, 91(6), 1505\u0026ndash;1515. https://doi.org/10.1038/s41390-021-01550-2\nJessop, A., \u0026amp; Chang, F. (2022). Thematic role tracking difficulties across multiple visual events influences role use in language production. Visual Cognition, 30(3), 151\u0026ndash;173. https://doi.org/10.1080/13506285.2021.2013374\nJiang, H., Frank, M. C., Kulkarni, V., \u0026amp; Fourtassi, A. (2022). Exploring Patterns of Stability and Change in Caregivers\u0026rsquo; Word Usage Across Early Childhood. Cognitive Science, 46(7), e13177. https://doi.org/10.1111/cogs.13177\nJiang, N., \u0026amp; Feng, L. (2022). Analytic visual word recognition among Chinese L2 learners. Foreign Language Annals, 55(2), 540\u0026ndash;558. https://doi.org/10.1111/flan.12604\nJiménez, E., \u0026amp; Hills, T. T. (2022). Differences in the semantic structure of the speech experienced by late talkers, late bloomers, and typical talkers. Developmental Psychology. https://doi.org/10.1037/dev0001446\nJing, A., Hughes, N. S., Rajkovic, K., Kaur, H., Uraiqat, R., Adamiak, D. A., Jain, A., Lin, H., Najeeb, S., \u0026amp; Mustafa, A. (2022, January 3). Extrapolation of Conflict Mitigation Strategies from Teams in Isolated Communities on Earth to Long Duration Space Exploration Missions. AIAA SCITECH 2022 Forum. AIAA SCITECH 2022 Forum, San Diego, CA \u0026amp; Virtual. https://doi.org/10.2514/6.2022-0399\nJohari, K., Riccardi, N., Malyutina, S., Modi, M., \u0026amp; Desai, R. H. (2022). HD-tDCS of primary and higher-order motor cortex affects action word processing. Frontiers in Human Neuroscience, 16, 959455. https://doi.org/10.3389/fnhum.2022.959455\nJohns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing word frequency and contextual diversity. Memory \u0026amp; Cognition, 50(5), 1013\u0026ndash;1032. https://doi.org/10.3758/s13421-021-01249-z\nJohns, B. T., \u0026amp; Jones, M. N. (2022). Content matters: Measures of contextual diversity must consider semantic content. Journal of Memory and Language, 123, 104313. https://doi.org/10.1016/j.jml.2021.104313\nJohnson, B. P., Dayan, E., Censor, N., \u0026amp; Cohen, L. G. (2022). Crowdsourcing in Cognitive and Systems Neuroscience. The Neuroscientist, 28(5), 425\u0026ndash;437. https://doi.org/10.1177/10738584211017018\nJones, L. L., Kmiecik, M. J., Irwin, J. L., \u0026amp; Morrison, R. G. (2022). Differential effects of semantic distance, distractor salience, and relations in verbal analogy. Psychonomic Bulletin \u0026amp; Review, 29(4), 1480\u0026ndash;1491. https://doi.org/10.3758/s13423-022-02062-8\nJost, L., \u0026amp; Jansen, P. (2022). Using linear mixed models to analyze learning processes within sessions improves detection of treatment effects: An exemplary study of chronometric mental rotation. Methods in Psychology, 6, 100092. https://doi.org/10.1016/j.metip.2022.100092\nJuhasz, B. J. (2022). Using Eye Movements to Investigate the Impact of Childhood and Recent Frequency of Occurrence on Word Identification During Reading in College. Scientific Studies of Reading, 26(5), 409\u0026ndash;416. https://doi.org/10.1080/10888438.2021.2021206\nJung, W., Peck, J., Palmeira, M., \u0026amp; Kim, K. (2022). An Unintended Consequence of Product Upgrades: How Upgrades Can Make Current Consumers Feel Left Behind. Journal of Marketing Research, 59(5), 1019\u0026ndash;1039. https://doi.org/10.1177/00222437221078551\nKainec, K. A., Paracha, A. W., Ali, S., Bussa, R., Mantua, J., \u0026amp; Spencer, R. (2022). Age-related changes in sleep-dependent novel word consolidation. Acta Psychologica, 222, 103478. https://doi.org/10.1016/j.actpsy.2021.103478\nKajimura, S., Hoshino, T., \u0026amp; Murayama, K. (2023). Stimulus-specific random effects inflate false-positive classification accuracy in multivariate-voxel-pattern-analysis: A solution with generalized mixed-effects modelling. NeuroImage, 269, 119901. https://doi.org/10.1016/j.neuroimage.2023.119901\nKalashnikova, M., Onsuwan, C., \u0026amp; Burnham, D. (2022). Infants\u0026rsquo; Sensitivity to Lexical Tone and Word Stress in Their First Year: A Thai and English Cross-Language Study. Language Learning and Development, 18(3), 278\u0026ndash;293. https://doi.org/10.1080/15475441.2021.1954928\nKalbe, F., \u0026amp; Schwabe, L. (2022). Prediction errors for aversive events shape long-term memory formation through a distinct neural mechanism. Cerebral Cortex, 32(14), 3081\u0026ndash;3097. https://doi.org/10.1093/cercor/bhab402\nKalénine, S., \u0026amp; Decroix, J. (2023). The pain hidden in your hands: Facial expression of pain reduces the influence of goal-related information in action recognition. Neuropsychologia, 189, 108658. https://doi.org/10.1016/j.neuropsychologia.2023.108658\nKalra, H., Tran, T., Romero, L., Chandra, P., \u0026amp; Fisher, J. (2022). Burden of severe maternal peripartum mental disorders in low- and middle-income countries: A systematic review. Archives of Women's Mental Health, 25(2), 267\u0026ndash;275. https://doi.org/10.1007/s00737-021-01201-9\nKam, J. W. Y., Mittner, M., \u0026amp; Knight, R. T. (2022). Mind-wandering: Mechanistic insights from lesion, tDCS, and iEEG. Trends in Cognitive Sciences, 26(3), 268\u0026ndash;282. https://doi.org/10.1016/j.tics.2021.12.005\nKanen, J. W., Robbins, T. W., \u0026amp; Trofimova, I. N. (2022). Harnessing temperament to elucidate the complexities of serotonin function. Current Opinion in Behavioral Sciences, 45, 101108. https://doi.org/10.1016/j.cobeha.2022.101108\nKang, H., Chen, G., \u0026amp; Luna-Reyes, L. F. (2022). Understanding citizens\u0026rsquo; perception of government fiscal information through a survey experiment. Government Information Quarterly, 39(1), 101661. https://doi.org/10.1016/j.giq.2021.101661\nKang, S., Lu, M., Black, J. B., \u0026amp; Kim, S. (2022). Mindful movements matter: Differentiating active body movements in underprivileged students\u0026rsquo; learning of physics concepts. Research in Science \u0026amp; Technological Education, 1\u0026ndash;19. https://doi.org/10.1080/02635143.2022.2093344\nKang, X., \u0026amp; Ge, H. (2022). Tracking Object-State Representations During Real-Time Language Comprehension by Native and Non-native Speakers of English. Frontiers in Psychology, 13, 819243. https://doi.org/10.3389/fpsyg.2022.819243\nKanovský, M., Halamová, J., Strnádelová, B., Moro, R., \u0026amp; Bielikova, M. (2022). Pupil size variation in primary facial expressions\u0026ndash;testing potential biomarker of self-criticism. Artificial Intelligence Review, 55(3), 2001\u0026ndash;2022. https://doi.org/10.1007/s10462-021-10057-5\nKaraduman, A., Karoglu-Eravsar, E. T., Kaya, U., Aydin, A., Adams, M. M., \u0026amp; Kafaligonul, H. (2023). Zebrafish optomotor response to second-order motion illustrates that age-related changes in motion detection depend on the activated motion system. Neurobiology of Aging, 130, 12\u0026ndash;21. https://doi.org/10.1016/j.neurobiolaging.2023.06.005\nKardas, M., Schroeder, J., \u0026amp; O'Brien, E. (2022). Keep talking: (Mis)understanding the hedonic trajectory of conversation. Journal of Personality and Social Psychology, 123(4), 717\u0026ndash;740. https://doi.org/10.1037/pspi0000379\nKearns, D. M., \u0026amp; Hiebert, E. H. (2022). The Word Complexity of Primary‐Level Texts: Differences Between First and Third Grade in Widely Used Curricula. Reading Research Quarterly, 57(1), 255\u0026ndash;285. https://doi.org/10.1002/rrq.429\nKeating, C. T., Fraser, D. S., Sowden, S., \u0026amp; Cook, J. L. (2022). Differences Between Autistic and Non-Autistic Adults in the Recognition of Anger from Facial Motion Remain after Controlling for Alexithymia. Journal of Autism and Developmental Disorders, 52(4), 1855\u0026ndash;1871. https://doi.org/10.1007/s10803-021-05083-9\nKeitel, C., Ruzzoli, M., Dugué, L., Busch, N. A., \u0026amp; Benwell, C. S. Y. (2022). Rhythms in cognition: The evidence revisited. European Journal of Neuroscience, 55(11\u0026ndash;12), 2991\u0026ndash;3009. https://doi.org/10.1111/ejn.15740\nKeller, J., Kwasnicka, D., Wilhelm, L. O., Lorbeer, N., Pauly, T., Domke, A., Knoll, N., \u0026amp; Fleig, L. (2022). Hand Washing and Related Cognitions Following a Brief Behavior Change Intervention During the COVID-19 Pandemic: A Pre-Post Analysis. International Journal of Behavioral Medicine, 29(5), 575\u0026ndash;586. https://doi.org/10.1007/s12529-021-10042-w\nKelley, M. C., \u0026amp; Tucker, B. V. (2022). The recognition of spoken pseudowords. Language, Cognition and Neuroscience, 37(9), 1169\u0026ndash;1190. https://doi.org/10.1080/23273798.2022.2053729\nKelly, R. E., Ahmed, A. O., \u0026amp; Hoptman, M. J. (2022). What Do These Findings Tell Us? Comment on Tinella et al. Cognitive Efficiency and Fitness-to-Drive along the Lifespan: The Mediation Effect of Visuospatial Transformations. Brain Sci. 2021, 11, 1028. Brain Sciences, 12(2), 165. https://doi.org/10.3390/brainsci12020165\nKelly, R. E., \u0026amp; Hoptman, M. J. (2022). Replicability in Brain Imaging. Brain Sciences, 12(3), 397. https://doi.org/10.3390/brainsci12030397\nKenny, B., Fuller-Tyszkiewicz, M., Moodie, M., Brown, V., \u0026amp; Williams, J. (2022). Bi-directional associations between depressive symptoms and eating disorder symptoms in early adolescence. Body Image, 42, 246\u0026ndash;256. https://doi.org/10.1016/j.bodyim.2022.06.012\nKent, M. G., Huynh, N. K., Mishra, A. K., Tartarini, F., Lipczynska, A., Li, J., Sultan, Z., Goh, E., Karunagaran, G., Natarajan, A., Indrajith, A., Hendri, I., Narendra, K. I., Wu, V., Chin, N., Gao, C. P., Sapar, M., Seoh, A., Shuhadah, N., \u0026hellip; Schiavon, S. (2023). Energy savings and thermal comfort in a zero energy office building with fans in Singapore. Building and Environment, 243, 110674. https://doi.org/10.1016/j.buildenv.2023.110674\nKenwood, M. M., Kalin, N. H., \u0026amp; Barbas, H. (2022). The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology, 47(1), 260\u0026ndash;275. https://doi.org/10.1038/s41386-021-01109-z\nKhalfallah, O., Barbosa, S., Martinuzzi, E., Davidovic, L., Yolken, R., \u0026amp; Glaichenhaus, N. (2022). Monitoring inflammation in psychiatry: Caveats and advice. European Neuropsychopharmacology, 54, 126\u0026ndash;135. https://doi.org/10.1016/j.euroneuro.2021.09.003\nKhera, T., Helfand, J., Kelly, L., Mueller, A., Shankar, P., Marcantonio, E. R., \u0026amp; Subramaniam, B. (2022). Twelve-Month Cognitive and Functional Outcomes Following Cardiac Surgery: The DEXACET Trial of Intravenous Acetaminophen Versus Placebo. Frontiers in Pharmacology, 13, 803903. https://doi.org/10.3389/fphar.2022.803903\nKhuri, J., Wang, Y., Holden, K., Fly, A. D., Mbogori, T., Mueller, S., Kandiah, J., \u0026amp; Zhang, M. (2022). Dietary Intake and Nutritional Status among Refugees in Host Countries: A Systematic Review. Advances in Nutrition, 13(5), 1846\u0026ndash;1865. https://doi.org/10.1093/advances/nmac051\nKida, S., Barcroft, J., \u0026amp; Sommers, M. (2022). Word learning and lexicalization in a second language: Evidence from the Prime lexicality effect in masked form priming. Memory \u0026amp; Cognition, 50(7), 1414\u0026ndash;1431. https://doi.org/10.3758/s13421-022-01274-6\nKiefer, M., Pielke, L., \u0026amp; Trumpp, N. M. (2022). Differential temporo-spatial pattern of electrical brain activity during the processing of abstract concepts related to mental states and verbal associations. NeuroImage, 252, 119036. https://doi.org/10.1016/j.neuroimage.2022.119036\nKim, H., \u0026amp; Newman, M. G. (2022). Avoidance of negative emotional contrast from worry and rumination: An application of the Contrast Avoidance Model. Journal of Behavioral and Cognitive Therapy, 32(1), 33\u0026ndash;43. https://doi.org/10.1016/j.jbct.2021.12.007\nKim, K., \u0026amp; Kim, H. (2022). Sequential bilingual heritage children's L1 attrition in lexical retrieval: Age of acquisition versus language experience. Bilingualism: Language and Cognition, 25(4), 537\u0026ndash;547. https://doi.org/10.1017/S1366728921001139\nKim, M. J., Theriault, J., Hirschfeld-Kroen, J., \u0026amp; Young, L. (2022). Reframing of moral dilemmas reveals an unexpected \u0026ldquo;positivity bias\u0026rdquo; in updating and attributions. Journal of Experimental Social Psychology, 101, 104310. https://doi.org/10.1016/j.jesp.2022.104310\nKim, S., Elam, L., Johnson, V., Hess, A., Webb, T., Dow, S., \u0026amp; Duerr, F. (2022). Intra-Articular Injections of Allogeneic Mesenchymal Stromal Cells vs. High Molecular Weight Hyaluronic Acid in Dogs With Osteoarthritis: Exploratory Data From a Double-Blind, Randomized, Prospective Clinical Trial. Frontiers in Veterinary Science, 9, 890704. https://doi.org/10.3389/fvets.2022.890704\nKim, S., Shin, Y., Jeong, Y., Na, S., \u0026amp; Han, C. E. (2023). Autonomy support encourages use of more-affected arm post-stroke. Journal of NeuroEngineering and Rehabilitation, 20(1), 116. https://doi.org/10.1186/s12984-023-01238-0\nKim, Y., Richards, J. S., \u0026amp; Oldehinkel, A. J. (2022). Self-control, Mental Health Problems, and Family Functioning in Adolescence and Young Adulthood: Between-person Differences and Within-person Effects. Journal of Youth and Adolescence, 51(6), 1181\u0026ndash;1195. https://doi.org/10.1007/s10964-021-01564-3\nKim, Y., Sommet, N., Na, J., \u0026amp; Spini, D. (2022). Social Class\u0026mdash;Not Income Inequality\u0026mdash;Predicts Social and Institutional Trust. Social Psychological and Personality Science, 13(1), 186\u0026ndash;198. https://doi.org/10.1177/1948550621999272\nKim, Y.-S., Hofman, J. M., \u0026amp; Goldstein, D. G. (2022). Putting scientific results in perspective: Improving the communication of standardized effect sizes. CHI Conference on Human Factors in Computing Systems, 1\u0026ndash;14. https://doi.org/10.1145/3491102.3502053\nKimmet, F., Pedersen, S., Cardenas, V., Rubiera, C., Johnson, G., Sans, A., Baldwin, M., \u0026amp; Odegaard, B. (2023). Metacognition and Causal Inference in Audiovisual Speech. Multisensory Research, 36(3), 289\u0026ndash;311. https://doi.org/10.1163/22134808-bja10094\nKing, D., \u0026amp; Gentner, D. (2022). Verb Metaphoric Extension Under Semantic Strain. Cognitive Science, 46(5), e13141. https://doi.org/10.1111/cogs.13141\nKlein, A., \u0026amp; Badia, T. (2022). Where Divergent Ideas Converge: Answers to AUT Found on Short List of Word Co-Occurrences Terms. Creativity Research Journal, 1\u0026ndash;17. https://doi.org/10.1080/10400419.2022.2103314\nKleindorfer, S., Colombelli‐Négrel, D., Common, L. K., O'Connor, J. A., Peters, K. J., Katsis, A. C., Dudaniec, R. Y., Sulloway, F. J., \u0026amp; Adreani, N. M. (2022). Functional traits and foraging behaviour: Avian vampire fly larvae change the beak and fitness of their Darwin's finch hosts. Functional Ecology, 36(7), 1806\u0026ndash;1817. https://doi.org/10.1111/1365-2435.14061\nKluwe-Schiavon, B., De Zorzi, L., Meireles, J., Leite, J., Sequeira, H., \u0026amp; Carvalho, S. (2022). The psychological impact of the COVID-19 pandemic in Portugal: The role of personality traits and emotion regulation strategies. PLOS ONE, 17(6), e0269496. https://doi.org/10.1371/journal.pone.0269496\nKöditz, B., Heidenreich, A., \u0026amp; Von Brandenstein, M. (2022). The Current Status of Kidney Cancer Urine Markers \u0026ndash; A Systematic Review. Kidney Cancer, 6(2), 137\u0026ndash;142. https://doi.org/10.3233/KCA-220005\nKoh, J., Farruggia, S. P., Back, L. T., \u0026amp; Han, C. (2022). Self-efficacy and academic success among diverse first-generation college students: The mediating role of self-regulation. Social Psychology of Education, 25(5), 1071\u0026ndash;1092. https://doi.org/10.1007/s11218-022-09713-7\nKoivisto, M., \u0026amp; Grassini, S. (2022). Affective responses to urban but not to natural scenes depend on inter-individual differences in childhood nature exposure. Journal of Environmental Psychology, 82, 101840. https://doi.org/10.1016/j.jenvp.2022.101840\nKoivisto, M., Jalava, E., Kuusisto, L., Railo, H., \u0026amp; Grassini, S. (2022). Top-Down Processing and Nature Connectedness Predict Psychological and Physiological Effects of Nature. Environment and Behavior, 54(5), 917\u0026ndash;945. https://doi.org/10.1177/00139165221107535\nKolovou, M. (2022). In Search of Assessment Shifts in Embodied Learning Science Research: A Review. Journal of Science Education and Technology, 31(2), 246\u0026ndash;257. https://doi.org/10.1007/s10956-021-09952-x\nKong, X., ENIGMA Laterality Working Group, \u0026amp; Francks, C. (2022). Reproducibility in the absence of selective reporting: An illustration from large‐scale brain asymmetry research. Human Brain Mapping, 43(1), 244\u0026ndash;254. https://doi.org/10.1002/hbm.25154\nKong, X., Postema, M. C., Guadalupe, T., De Kovel, C., Boedhoe, P. S. W., Hoogman, M., Mathias, S. R., Van Rooij, D., Schijven, D., Glahn, D. C., Medland, S. E., Jahanshad, N., Thomopoulos, S. I., Turner, J. A., Buitelaar, J., Van Erp, T. G. M., Franke, B., Fisher, S. E., Van Den Heuvel, O. A., \u0026hellip; Francks, C. (2022). Mapping brain asymmetry in health and disease through the ENIGMA consortium. Human Brain Mapping, 43(1), 167\u0026ndash;181. https://doi.org/10.1002/hbm.25033\nKong, X.-Z., Zhang, C., Liu, Y., \u0026amp; Pu, Y. (2022). Scanning reproducible brain-wide associations: Sample size is all you need? Psychoradiology, 2(3), 67\u0026ndash;68. https://doi.org/10.1093/psyrad/kkac010\nKoo, H., Kataoka, R., Swan, J. T., \u0026amp; Tzeng, C. Y. (2023). Effects of lexical frequency on the post-exposure magnitude of recalibration in lexically guided perceptual learning: An explorative analysis. JASA Express Letters, 3(8), 085201. https://doi.org/10.1121/10.0020515\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKorom, M., Camacho, M. C., Filippi, C. A., Licandro, R., Moore, L. A., Dufford, A., Zöllei, L., Graham, A. M., Spann, M., Howell, B., Shultz, S., \u0026amp; Scheinost, D. (2022). Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studies. Developmental Cognitive Neuroscience, 53, 101055. https://doi.org/10.1016/j.dcn.2021.101055\nKovacs, P., \u0026amp; Ashby, F. G. (2022). On what it means to automatize a rule. Cognition, 226, 105168. https://doi.org/10.1016/j.cognition.2022.105168\nKowalczyk, O. S., Mehta, M. A., O'Daly, O. G., \u0026amp; Criaud, M. (2022). Task-Based Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Systematic Review. Biological Psychiatry Global Open Science, 2(4), 350\u0026ndash;367. https://doi.org/10.1016/j.bpsgos.2021.10.006\nKrachtis, A., Karkala, A., Frantzidis, C. A., Gkivogkli, P. T., Ladas, A. I., Strollo, F., \u0026amp; Kourtidou-Papadeli, C. (2022). Arterial Stiffness Alterations in Simulated Microgravity and Reactive Sledge as a Countermeasure. High Blood Pressure \u0026amp; Cardiovascular Prevention, 29(1), 65\u0026ndash;74. https://doi.org/10.1007/s40292-021-00486-2\nKral, T. R. A., Davis, K., Korponay, C., Hirshberg, M. J., Hoel, R., Tello, L. Y., Goldman, R. I., Rosenkranz, M. A., Lutz, A., \u0026amp; Davidson, R. J. (2022). Absence of structural brain changes from mindfulness-based stress reduction: Two combined randomized controlled trials. Science Advances, 8(20), eabk3316. https://doi.org/10.1126/sciadv.abk3316\nKramer, R. S. S., Gous, G., Mireku, M. O., \u0026amp; Ward, R. (2022). Metacognition during unfamiliar face matching. British Journal of Psychology, 113(3), 696\u0026ndash;717. https://doi.org/10.1111/bjop.12553\nKrapf-Bar, D., Davidovitch, M., Rozenblatt-Perkal, Y., \u0026amp; Gueron-Sela, N. (2022). Maternal mobile phone use during mother\u0026ndash;child interactions interferes with the process of establishing joint attention. Developmental Psychology, 58(9), 1639\u0026ndash;1651. https://doi.org/10.1037/dev0001388\nKrautz, A. E., \u0026amp; Keuleers, E. (2022). LinguaPix database: A megastudy of picture-naming norms. Behavior Research Methods, 54(2), 941\u0026ndash;954. https://doi.org/10.3758/s13428-021-01651-0\nKrendl, A. C., \u0026amp; Betzel, R. F. (2022). Social cognitive network neuroscience. Social Cognitive and Affective Neuroscience, 17(5), 510\u0026ndash;529. https://doi.org/10.1093/scan/nsac020\nKrogh, S. M. (2022). Danish-English Bilinguals\u0026rsquo; Cognate Processing in L1 and L2 Visual Lexical Decision Tasks. Languages, 7(3), 228. https://doi.org/10.3390/languages7030228\nKruijne, W., Galli, R. M., \u0026amp; Los, S. A. (2022). Implicitly learning when to be ready: From instances to categories. Psychonomic Bulletin \u0026amp; Review, 29(2), 552\u0026ndash;562. https://doi.org/10.3758/s13423-021-02004-w\nKu, L.-C., Allen, J. J. B., \u0026amp; Lai, V. T. (2022). Attention and regulation during emotional word comprehension in older adults: Evidence from event-related potentials and brain oscillations. Brain and Language, 227, 105086. https://doi.org/10.1016/j.bandl.2022.105086\nKuhl, U., Artelt, A., \u0026amp; Hammer, B. (2023). For Better or Worse: The Impact of Counterfactual Explanations\u0026rsquo; Directionality on User Behavior in xAI. In L. Longo (Ed.), Explainable Artificial Intelligence (Vol. 1903, pp. 280\u0026ndash;300). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44070-0_14\nKuhlen, A. K., \u0026amp; Abdel Rahman, R. (2022). Mental chronometry of speaking in dialogue: Semantic interference turns into facilitation. Cognition, 219, 104962. https://doi.org/10.1016/j.cognition.2021.104962\nKulkarni, R. U., Wang, C. L., \u0026amp; Bertozzi, C. R. (2022). Analyzing nested experimental designs\u0026mdash;A user-friendly resampling method to determine experimental significance. PLOS Computational Biology, 18(5), e1010061. https://doi.org/10.1371/journal.pcbi.1010061\nKumar, A. A., Steyvers, M., \u0026amp; Balota, D. A. (n.d.). A critical review of network-based and distributional approaches to semantic memory structure and processes. Topics in Cognitive Science. https://doi.org/10.1111/tops.12548\nKumari, K., \u0026amp; Goswami, M. (2022). Sensitivity Analysis of Calibration Methods and Factors Effecting the Statistical Nature of Radiation Measurement. Journal of Signal Processing Systems, 94(4), 387\u0026ndash;397. https://doi.org/10.1007/s11265-021-01685-9\nKumcu, A., \u0026amp; Thompson, R. L. (2022). Remembering spatial words: Sensorimotor simulation affects verbal recognition memory. Quarterly Journal of Experimental Psychology, 75(9), 1694\u0026ndash;1710. https://doi.org/10.1177/17470218211059011\nKunst, J. R., Dovidio, J. F., Bailey, A. H., \u0026amp; Obaidi, M. (2022). The way they look: Phenotypic prototypicality shapes the perceived intergroup attitudes of in- and out-group members. Journal of Experimental Social Psychology, 100, 104303. https://doi.org/10.1016/j.jesp.2022.104303\nKunst, J. R., Onyeador, I. N., \u0026amp; Dovidio, J. F. (2022). Knowledge About Individuals\u0026rsquo; Interracial Friendships Is Systematically Associated With Mental Representations of Race, Traits, and Group Solidarity. Personality and Social Psychology Bulletin, 48(5), 718\u0026ndash;734. https://doi.org/10.1177/01461672211024118\nKutscheid, S., Zahner-Ritter, K., Leemann, A., \u0026amp; Braun, B. (2022). How prior experience with pitch accents shapes the perception of word and sentence stress. Language, Cognition and Neuroscience, 37(1), 103\u0026ndash;119. https://doi.org/10.1080/23273798.2021.1946109\nKuzmina, Y., Marakshina, J., Lobaskova, M., Zakharov, I., Tikhomirova, T., \u0026amp; Malykh, S. (2023). The Interaction between Congruency and Numerical Ratio Effects in the Nonsymbolic Comparison Test. Behavioral Sciences, 13(12), 983. https://doi.org/10.3390/bs13120983\nKweon, H., Aydogan, G., Dagher, A., Bzdok, D., Ruff, C. C., Nave, G., Farah, M. J., \u0026amp; Koellinger, P. D. (2022). Human brain anatomy reflects separable genetic and environmental components of socioeconomic status. Science Advances, 8(20), eabm2923. https://doi.org/10.1126/sciadv.abm2923\nLador-Weizman, Y., \u0026amp; Deutsch, A. (2022). The contribution of consonants and vowels to auditory word recognition is shaped by language-specific properties: Evidence from Hebrew. Journal of Experimental Psychology: Human Perception and Performance, 48(5), 401\u0026ndash;426. https://doi.org/10.1037/xhp0001000\nLafit, G., Sels, L., Adolf, J. K., Loeys, T., \u0026amp; Ceulemans, E. (2022). PowerLAPIM: An application to conduct power analysis for linear and quadratic longitudinal actor\u0026ndash;partner interdependence models in intensive longitudinal dyadic designs. Journal of Social and Personal Relationships, 39(10), 3085\u0026ndash;3115. https://doi.org/10.1177/02654075221080128\nLakens, D. (2022). Sample Size Justification. Collabra: Psychology, 8(1), 33267. https://doi.org/10.1525/collabra.33267\nLam, B. P. W., \u0026amp; Marquardt, T. P. (2022). Factors Predicting Mental Effort Associated With Verbal Fluency: Cue Types, Switching, and Fear of Negative Evaluation. Journal of Speech, Language, and Hearing Research, 65(9), 3491\u0026ndash;3501. https://doi.org/10.1044/2022_JSLHR-21-00563\nLam, S. S. L., Liu, T. W., Ng, S. S. M., Lai, C. W. K., \u0026amp; Woo, J. (2022). Bilateral Movement-based Computer Games Improve Sensorimotor Functions in Subacute Stroke Survivors. Journal of Rehabilitation Medicine, 54, jrm00307. https://doi.org/10.2340/jrm.v54.913\nLandau, B., Davis, E. E., Gürcanlı, Ö., \u0026amp; Wilson, C. (2023). How Does English Encode \u0026lsquo;Tight\u0026rsquo; Vs. \u0026lsquo;Loose-fit\u0026rsquo; Motion Events? It's Complicated. Language Learning and Development, 1\u0026ndash;24. https://doi.org/10.1080/15475441.2023.2196531\nLanders, M. J. F., Meesters, S. P. L., Van Zandvoort, M., De Baene, W., \u0026amp; Rutten, G.-J. M. (2022). The frontal aslant tract and its role in executive functions: A quantitative tractography study in glioma patients. Brain Imaging and Behavior, 16(3), 1026\u0026ndash;1039. https://doi.org/10.1007/s11682-021-00581-x\nLandry, É. R., Guitard, D., \u0026amp; Saint-Aubin, J. (2022). Arousal affects short-term serial recall. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 76(2), 99\u0026ndash;110. https://doi.org/10.1037/cep0000272\nLang, M., Chvaja, R., Grant Purzycki, B., Václavík, D., \u0026amp; Staněk, R. (2022). Advertising cooperative phenotype through costly signals facilitates collective action. Royal Society Open Science, 9(5), 202202. https://doi.org/10.1098/rsos.202202\nLang, X., Wang, D., Chen, D., Xiu, M., Zhou, H., Wang, L., Cao, B., \u0026amp; Zhang, X. (2022). Association Between Hippocampal Subfields and Clinical Symptoms of First-Episode and Drug Naive Schizophrenia Patients During 12 Weeks of Risperidone Treatment. Neurotherapeutics, 19(1), 399\u0026ndash;407. https://doi.org/10.1007/s13311-021-01174-8\nLarson, C., Crespo, K., Kaushanskaya, M., \u0026amp; Ellis Weismer, S. (2022). Are items actively removed from working memory during free time in children with developmental language disorder? International Journal of Language \u0026amp; Communication Disorders, 57(5), 1006\u0026ndash;1022. https://doi.org/10.1111/1460-6984.12735\nLarson, C., Mathée-Scott, J., Kaplan, D., \u0026amp; Weismer, S. E. (2023). Cognitive processes associated with working memory in children with developmental language disorder. Journal of Experimental Child Psychology, 234, 105709. https://doi.org/10.1016/j.jecp.2023.105709\nLarson, C., Rivera-Figueroa, K., Thomas, H. R., Fein, D., Stevens, M. C., \u0026amp; Eigsti, I.-M. (2022). Structural language impairment in Autism Spectrum Disorder versus Loss of Autism Diagnosis: Behavioral and neural characteristics. NeuroImage: Clinical, 34, 103043. https://doi.org/10.1016/j.nicl.2022.103043\nLauer, M. S. (2022). From Hype to High-Quality Research. JAMA Network Open, 5(8), e2228683. https://doi.org/10.1001/jamanetworkopen.2022.28683\nLaurinavichyute, A., Yadav, H., \u0026amp; Vasishth, S. (2022). Share the code, not just the data: A case study of the reproducibility of articles published in the Journal of Memory and Language under the open data policy. Journal of Memory and Language, 125, 104332. https://doi.org/10.1016/j.jml.2022.104332\nLavitskaya, Y., Sedelkina, Y., Korotaevskaya, E., Tkacheva, L., Flaksman, M., \u0026amp; Nasledov, A. (2022). Does De-Iconization Affect Visual Recognition of Russian and English Iconic Words? Languages, 7(2), 97. https://doi.org/10.3390/languages7020097\nLawer, E. A., Mupepele, A.-C., Darkoh, E. L., Farwig, N., Oware, S., Larbi, J. A., Essiaw-Quayson, G., \u0026amp; Klein, A.-M. (2022). Logging effects on parasitic infections in a swamp rat ( Malacomys edwardsi ) in West Africa. Journal of Mammalogy, 103(2), 383\u0026ndash;393. https://doi.org/10.1093/jmammal/gyab159\nLawrence, J. F., Knoph, R., McIlraith, A., Kulesz, P. A., \u0026amp; Francis, D. J. (2022). Reading Comprehension and Academic Vocabulary: Exploring Relations of Item Features and Reading Proficiency. Reading Research Quarterly, 57(2), 669\u0026ndash;690. https://doi.org/10.1002/rrq.434\nLeblanc, É., Dégeilh, F., Beauchamp, M. H., \u0026amp; Bernier, A. (2022). Disorganized attachment behaviors in infancy as predictors of brain morphology and peer rejection in late childhood. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(4), 833\u0026ndash;848. https://doi.org/10.3758/s13415-022-00987-0\nLee, J., \u0026amp; Yoon, S.-Y. (2023). Nature and patient waiting: Mediating effects of anxiety and perceived wait time on the association between nature and service perception. Journal of Environmental Psychology, 91, 102113. https://doi.org/10.1016/j.jenvp.2023.102113\nLee, Y., \u0026amp; Warneken, F. (2022). Does third-party punishment in children aim at equality? Developmental Psychology, 58(5), 866\u0026ndash;873. https://doi.org/10.1037/dev0001331\nLees, J., Todd, H., \u0026amp; Barranti, M. (2023). Women, the intellectually humble, and liberals write more persuasive political arguments. PNAS Nexus, 2(5), pgad143. https://doi.org/10.1093/pnasnexus/pgad143\nLees, J., Young, L., \u0026amp; Waytz, A. (2022). Morally questionable actors\u0026rsquo; meta-perceptions are accurate but overly positive. Journal of Experimental Social Psychology, 102, 104371. https://doi.org/10.1016/j.jesp.2022.104371\nLeichtmann, B., Nitsch, V., \u0026amp; Mara, M. (2022). Crisis Ahead? Why Human-Robot Interaction User Studies May Have Replicability Problems and Directions for Improvement. Frontiers in Robotics and AI, 9, 838116. https://doi.org/10.3389/frobt.2022.838116\nLevari, D. E. (2022). Range-frequency effects can explain and eliminate prevalence-induced concept change. Cognition, 226, 105196. https://doi.org/10.1016/j.cognition.2022.105196\nLewis, G., Towlson, C., Roversi, P., Domogalla, C., Herrington, L., \u0026amp; Barrett, S. (2022). Quantifying volume and high-speed technical actions of professional soccer players using foot-mounted inertial measurement units. PLOS ONE, 17(2), e0263518. https://doi.org/10.1371/journal.pone.0263518\nLewis, M. A., Zhou, Z., Fairlie, A. M., Litt, D. M., Kannard, E., Resendiz, R., Walker, T., Seamster, M., Garcia, T., \u0026amp; Lee, C. M. (2023). Occasion-level investigation of playing drinking games: Associations with cognitions, situational factors, alcohol use, and negative consequences among adolescents and young adults. Addictive Behaviors, 137, 107497. https://doi.org/10.1016/j.addbeh.2022.107497\nLi, J., Chu, Y., \u0026amp; Xu, J. (2023). Impression transference from AI to human: The impact of AI's fairness on interpersonal perception in AI-Mediated communication. International Journal of Human-Computer Studies, 179, 103119. https://doi.org/10.1016/j.ijhcs.2023.103119\nLi, L.-L., He, R., Pansini, R., \u0026amp; Quan, R.-C. (2022). Prolonged proximity to humans ensures better performance of semi-captive Asian elephants at discriminating between human individuals by voice. Frontiers in Ecology and Evolution, 10, 963052. https://doi.org/10.3389/fevo.2022.963052\nLi, N., Dimigen, O., Sommer, W., \u0026amp; Wang, S. (2022). Parafoveal words can modulate sentence meaning: Electrophysiological evidence from an RSVP ‐with‐flanker task. Psychophysiology, 59(9), e14053. https://doi.org/10.1111/psyp.14053\nLi, N.-X., Hu, Y.-R., Chen, W.-N., \u0026amp; Zhang, B. (2022). Dose effect of psilocybin on primary and secondary depression: A preliminary systematic review and meta-analysis. Journal of Affective Disorders, 296, 26\u0026ndash;34. https://doi.org/10.1016/j.jad.2021.09.041\nLi, W., Germine, L. T., Mehr, S. A., Srinivasan, M., \u0026amp; Hartshorne, J. (2022). Developmental psychologists should adopt citizen science to improve generalization and reproducibility. Infant and Child Development, e2348. https://doi.org/10.1002/icd.2348\nLi, X., Luo, D., Wang, C., Xia, Y., \u0026amp; Jin, H. (2022). Motor features of abstract verbs determine their representations in the motor system. Frontiers in Psychology, 13, 957426. https://doi.org/10.3389/fpsyg.2022.957426\nLi, X., \u0026amp; Qu, Q. (2023). Verbal working memory capacity modulates semantic and phonological prediction in spoken comprehension. Psychonomic Bulletin \u0026amp; Review. https://doi.org/10.3758/s13423-023-02348-5\nLi, Y., \u0026amp; Bi, H.-Y. (2022). Comparative research on neural dysfunction in children with dyslexia under different writing systems: A meta-analysis study. Neuroscience \u0026amp; Biobehavioral Reviews, 137, 104650. https://doi.org/10.1016/j.neubiorev.2022.104650\nLi, Y., Luo, P., Song, Y., Zhang, L., Qu, Y., \u0026amp; Hou, Z. (2023). A locally explained heterogeneity model for examining wetland disparity. International Journal of Digital Earth, 16(2), 4533\u0026ndash;4552. https://doi.org/10.1080/17538947.2023.2271883\nLi, Y., \u0026amp; Siew, C. S. Q. (2022). Diachronic semantic change in language is constrained by how people use and learn language. Memory \u0026amp; Cognition, 50(6), 1284\u0026ndash;1298. https://doi.org/10.3758/s13421-022-01331-0\nLi, Z., Crinnion, A. M., \u0026amp; Magnuson, J. S. (2021). LexFindR: A fast, simple, and extensible R package for finding similar words in a lexicon. Behavior Research Methods, 54(3), 1388\u0026ndash;1402. https://doi.org/10.3758/s13428-021-01667-6\nLi, Z., Wu, S., \u0026amp; Liu, D. (2023). The effects of context, story-type, and language proficiency on EFL word learning and retention from reading. International Review of Applied Linguistics in Language Teaching, 0(0). https://doi.org/10.1515/iral-2023-0155\nLiang, M., Ahmad, F., \u0026amp; Dickinson, R. (2022). Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: A preclinical systematic review and meta-analysis. British Journal of Anaesthesia, 129(2), 200\u0026ndash;218. https://doi.org/10.1016/j.bja.2022.04.016\nLiang, Y., Xu, G., \u0026amp; Ur Rehman, S. (2022). Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis. Computers, Materials \u0026amp; Continua, 72(3), 4645\u0026ndash;4661. https://doi.org/10.32604/cmc.2022.026999\nLiao, X., \u0026amp; Ni, C. (2022). The effects of emotionality and lexical category on L2 word processing in different tasks: Evidence from late Chinese\u0026ndash;English bilinguals. Quarterly Journal of Experimental Psychology, 75(5), 907\u0026ndash;923. https://doi.org/10.1177/17470218211041833\nLibersky, E., Crespo, K., Reppe, A., \u0026amp; Kaushanskaya, M. (2023). Effects of bilingualism on autobiographical memory: Variation in idea density and retrieval speed. Memory, 31(4), 491\u0026ndash;501. https://doi.org/10.1080/09658211.2023.2171435\nLiceralde, V. R. T., Loukina, A., Beigman Klebanov, B., \u0026amp; Lockwood, J. R. (2022). Beyond text complexity: Production-related sources of text-based variability in oral reading fluency. Journal of Educational Psychology, 114(1), 16\u0026ndash;36. https://doi.org/10.1037/edu0000532\nLim, J. Y. L., Boardman, J., Dyche, J., Anderson, C., Dickinson, D. L., \u0026amp; Drummond, S. P. A. (2022). Sex moderates the effects of total sleep deprivation and sleep restriction on risk preference. Sleep, 45(9), zsac120. https://doi.org/10.1093/sleep/zsac120\nLim, S. M., Shiau, C. W. C., Cheng, L. J., \u0026amp; Lau, Y. (2022). Chatbot-Delivered Psychotherapy for Adults With Depressive and Anxiety Symptoms: A Systematic Review and Meta-Regression. Behavior Therapy, 53(2), 334\u0026ndash;347. https://doi.org/10.1016/j.beth.2021.09.007\nLimumpornpetch, P., Morgan, A. W., Tiganescu, A., Baxter, P. D., Nyawira Nyaga, V., Pujades-Rodriguez, M., \u0026amp; Stewart, P. M. (2022). The Effect of Endogenous Cushing Syndrome on All-cause and Cause-specific Mortality. The Journal of Clinical Endocrinology \u0026amp; Metabolism, 107(8), 2377\u0026ndash;2388. https://doi.org/10.1210/clinem/dgac265\nLin, E., \u0026amp; Schmid, P. C. (2022). Does power increase attention to rewards? Examining the brain and behavior. Journal of Experimental Social Psychology, 101, 104332. https://doi.org/10.1016/j.jesp.2022.104332\nLin, Y., Peng, G., Bruner, D. W., Miller, A. H., Saba, N. F., Higgins, K. A., Shin, D. M., Claussen, H., Johnston, H. R., Houser, M. C., Wommack, E. C., \u0026amp; Xiao, C. (2023). Associations of differentially expressed genes with psychoneurological symptoms in patients with head and neck cancer: A longitudinal study. Journal of Psychosomatic Research, 175, 111518. https://doi.org/10.1016/j.jpsychores.2023.111518\nLindell, T. A. E., Zickfeld, J. H., \u0026amp; Reber, R. (2022). The role of affect in late perceptual processes: Evidence from bi-stable illusions, object identification, and mental rotation. Journal of Experimental Psychology: Human Perception and Performance, 48(12), 1347\u0026ndash;1361. https://doi.org/10.1037/xhp0001059\nLindstromberg, S. (2022). The compositionality of English phrasal verbs in terms of imageability. Lingua, 275, 103373. https://doi.org/10.1016/j.lingua.2022.103373\nLioi, A., Hazoor, A., Castro, M., \u0026amp; Bassani, M. (2022). Impact on driver behaviour of guardrails of different height in horizontal-vertical coordinated road scenarios with a limited available sight distance. Transportation Research Part F: Traffic Psychology and Behaviour, 84, 287\u0026ndash;300. https://doi.org/10.1016/j.trf.2021.12.008\nLiquin, E. G., \u0026amp; Lombrozo, T. (2022). Motivated to learn: An account of explanatory satisfaction. Cognitive Psychology, 132, 101453. https://doi.org/10.1016/j.cogpsych.2021.101453\nLitovsky, C. P., Finley, A. M., Zuckerman, B., Sayers, M., Schoenhard, J. A., Kenett, Y. N., \u0026amp; Reilly, J. (2022). Semantic flow and its relation to controlled semantic retrieval deficits in the narrative production of people with aphasia. Neuropsychologia, 170, 108235. https://doi.org/10.1016/j.neuropsychologia.2022.108235\nLiu, J., Kelly, E., \u0026amp; Bielekova, B. (2022). Current Status and Future Opportunities in Modeling Clinical Characteristics of Multiple Sclerosis. Frontiers in Neurology, 13, 884089. https://doi.org/10.3389/fneur.2022.884089\nLiu, M. (2022). Mental Imagery and Polysemy Processing. Journal of Consciousness Studies, 29(5), 176\u0026ndash;189. https://doi.org/10.53765/20512201.29.5.176\nLiu, S., Hong, D., Huang, J., Wang, S., Liu, X., Branigan, H. P., \u0026amp; Pickering, M. J. (2022). Syntactic priming across highly similar languages is not affected by language proficiency. Language, Cognition and Neuroscience, 37(4), 469\u0026ndash;480. https://doi.org/10.1080/23273798.2021.1994620\nLiu, Z., Wang, Y., Ata-UI-Karim, S. T., Liu, X., Tian, Y., Zhu, Y., Cao, W., \u0026amp; Cao, Q. (2023). Developing a nitrogen application estimation model for diverse wheat fields: A user-friendly approach for smallholder nitrogen fertilizer recommendations. European Journal of Agronomy, 151, 126984. https://doi.org/10.1016/j.eja.2023.126984\nLivingston, N., Leviyah, X., Ameral, V., Hocking, E., \u0026amp; Timko, C. (2022). Scoping review of intervention studies to improve opioid and alcohol use outcomes and links to care following inpatient detoxification. Addiction Research \u0026amp; Theory, 30(2), 134\u0026ndash;148. https://doi.org/10.1080/16066359.2021.1955356\nLluesma-Vidal, M., Carcelén González, R., García-Garcés, L., Sánchez-López, M. I., Peyro, L., \u0026amp; Ruiz-Zaldibar, C. (2022). Effect of Virtual Reality on Pediatric Pain and Fear During Procedures Involving Needles: Systematic Review and Meta-analysis. JMIR Serious Games, 10(3), e35008. https://doi.org/10.2196/35008\nLo, S., \u0026amp; Andrews, S. (2022). The effects of mental abacus expertise on working memory, mental representations and calculation strategies used for two-digit Hindu-Arabic numbers. Journal of Numerical Cognition, 8(1), 89\u0026ndash;122. https://doi.org/10.5964/jnc.8073\nLong, J., Qin, K., Wu, Y., Li, L., \u0026amp; Zhou, J. (2022). Gray matter abnormalities and associated familial risk endophenotype in individuals with first-episode bipolar disorder: Evidence from whole-brain voxel-wise meta-analysis. Asian Journal of Psychiatry, 74, 103179. https://doi.org/10.1016/j.ajp.2022.103179\nLoon, F. H. V., Scholten, H. J., Korsten, H. H., Dierick - Van Daele, A. T., \u0026amp; Bouwman, A. R. (2022). The learning curve for ultrasound-guided peripheral intravenous cannulation in adults: A multicenter study. Medical Ultrasonography, 24(2), 188. https://doi.org/10.11152/mu-3322\nLu, L., Phua, Q. S., Bacchi, S., Goh, R., Gupta, A. K., Kovoor, J. G., Ovenden, C. D., \u0026amp; To, M.-S. (2022). Small Study Effects in Diagnostic Imaging Accuracy: A Meta-Analysis. JAMA Network Open, 5(8), e2228776. https://doi.org/10.1001/jamanetworkopen.2022.28776\nLucas, R. E. (2022). Editorial. Journal of Personality and Social Psychology, 122(1), 102\u0026ndash;105. https://doi.org/10.1037/pspp0000403\nLudwig, B., Wölfel, P., Greenberg, I., Piepho, H., \u0026amp; Spörlein, P. (2022). Application of mixed‐effects modelling and rule‐based models to explain copper variation in soil profiles of southern Germany. European Journal of Soil Science, 73(3), e13258. https://doi.org/10.1111/ejss.13258\nLundqvist, S., Cider, Å., Larsson, M. E. H., Hagberg, L., Björk, M. P., \u0026amp; Börjesson, M. (2022). The effects of a 5-year physical activity on prescription (PAP) intervention in patients with metabolic risk factors. PLOS ONE, 17(10), e0276868. https://doi.org/10.1371/journal.pone.0276868\nŁuniewska, M., Wójcik, M., Kołak, J., Mieszkowska, K., Wodniecka, Z., \u0026amp; Haman, E. (2022). Word knowledge and lexical access in monolingual and bilingual migrant children: Impact of word properties. Language Acquisition, 29(2), 135\u0026ndash;164. https://doi.org/10.1080/10489223.2021.1973475\nLuo, W., Baek, E., \u0026amp; Li, H. (2022). Transparency and Replicability of Multilevel Modeling Applications: A Guideline for Improved Reporting Practices. In M. S. Khine (Ed.), Methodology for Multilevel Modeling in Educational Research (pp. 161\u0026ndash;183). Springer Singapore. https://doi.org/10.1007/978-981-16-9142-3_9\nLusnig, L., Radach, R., \u0026amp; Hofmann, M. J. (2022). Meditation affects word recognition of meditation novices. Psychological Research, 86(3), 723\u0026ndash;736. https://doi.org/10.1007/s00426-021-01522-5\nLuteijn, P. J., Van Der Wurff, I. S. M., Singh, A. S., Savelberg, H. H. C. M., \u0026amp; De Groot, R. H. M. (2022). The Acute Effects of Standing on Executive Functioning in Vocational Education and Training Students: The Phit2Learn Study. Frontiers in Psychology, 13, 810007. https://doi.org/10.3389/fpsyg.2022.810007\nMa, H., Huang, G., Li, M., Han, Y., Sun, J., Zhan, L., Wang, Q., Jia, X., Han, X., Li, H., Song, Y., \u0026amp; Lv, Y. (2022). The Predictive Value of Dynamic Intrinsic Local Metrics in Transient Ischemic Attack. Frontiers in Aging Neuroscience, 13, 808094. https://doi.org/10.3389/fnagi.2021.808094\nMacchi, R., Santuz, A., Hays, A., Vercruyssen, F., Arampatzis, A., Bar-Hen, A., \u0026amp; Nicol, C. (2022). Sex influence on muscle synergies in a ballistic force-velocity test during the delayed recovery phase after a graded endurance run. Heliyon, 8(6), e09573. https://doi.org/10.1016/j.heliyon.2022.e09573\nMacêdo, M. A., Sato, J. R., Bressan, R. A., \u0026amp; Pan, P. M. (2022). Adolescent depression and resting-state fMRI brain networks: A scoping review of longitudinal studies. Brazilian Journal of Psychiatry. https://doi.org/10.47626/1516-4446-2021-2032\nMacGregor, K. A., Rodriguez-Sanchez, N., Di Virgilio, T. G., Barwell, N. D., Gallagher, I. J., \u0026amp; Moran, C. N. (2022). Changes in adipose tissue microRNA expression across the menstrual cycle in regularly menstruating females: A pilot study. Physiological Genomics, 54(1), 1\u0026ndash;10. https://doi.org/10.1152/physiolgenomics.00088.2021\nMackie, D. M., Smith, E. R., Banerji, I., \u0026amp; Munasinghe, A. (2023). Group-based emotion processes generalize across group exemplars and types. Group Processes \u0026amp; Intergroup Relations, 13684302231166856. https://doi.org/10.1177/13684302231166856\nMacMillan, M. B., Field, H. R., Neath, I., \u0026amp; Surprenant, A. M. (2022). Valence does not affect recognition. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 76(2), 111\u0026ndash;121. https://doi.org/10.1037/cep0000275\nMadan, C. R. (2022). Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain. Neuroinformatics, 20(1), 109\u0026ndash;137. https://doi.org/10.1007/s12021-021-09519-6\nMagistro, G., \u0026amp; Crocco, C. (2022). Phonetic erosion and information structure in function words: The case of mia. Interspeech 2022, 91\u0026ndash;95. https://doi.org/10.21437/Interspeech.2022-10305\nMah, K. M., Wu, W., Al-Ali, H., Sun, Y., Han, Q., Ding, Y., Muñoz, M., Xu, X.-M., Lemmon, V. P., \u0026amp; Bixby, J. L. (2022). Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice. Experimental Neurology, 355, 114117. https://doi.org/10.1016/j.expneurol.2022.114117\nMaillet, M. A., \u0026amp; Grouzet, F. M. E. (2022). Healthy eating in daily life: The role of relative autonomous motivation when it is difficult. Motivation and Emotion, 46(5), 640\u0026ndash;657. https://doi.org/10.1007/s11031-022-09960-3\nMakin, A. D., Tyson-Carr, J., Rampone, G., Derpsch, Y., Wright, D., \u0026amp; Bertamini, M. (2022). Lessons from a catalogue of 6674 brain recordings. eLife, 11, e66388. https://doi.org/10.7554/eLife.66388\nMalbec, M., Hindmarsh, J. N., Jongerling, J., Franken, I. H., \u0026amp; Wieser, M. J. (2022). No intolerance of errors: The effect of intolerance of uncertainty on performance monitoring revisited. International Journal of Psychophysiology, 179, 77\u0026ndash;88. https://doi.org/10.1016/j.ijpsycho.2022.07.001\nMalén, T., Karjalainen, T., Isojärvi, J., Vehtari, A., Bürkner, P.-C., Putkinen, V., Kaasinen, V., Hietala, J., Nuutila, P., Rinne, J., \u0026amp; Nummenmaa, L. (2022). Atlas of type 2 dopamine receptors in the human brain: Age and sex dependent variability in a large PET cohort. NeuroImage, 255, 119149. https://doi.org/10.1016/j.neuroimage.2022.119149\nMalloy, C. S., Hughes, C., \u0026amp; Cassidy, B. S. (2023). Perceiver and target partisanship shift facial trustworthiness effects on likability. Scientific Reports, 13(1), 6130. https://doi.org/10.1038/s41598-023-33307-8\nMalykh, S., Tarasov, S., Baeva, I., Nikulchev, E., Kolyasnikov, P., Ilin, D., Marnevskaia, I., Malykh, A., Ismatullina, V., \u0026amp; Kuzmina, Y. (2023). Large-scale study of the precision of the approximate number system: Differences between formats, heterogeneity and congruency effects. Heliyon, 9(4), e14912. https://doi.org/10.1016/j.heliyon.2023.e14912\nManeejuk, P., Yamaka, W., \u0026amp; Sriboonchitta, S. (2022). Entropy inference in smooth transition kink regression. Communications in Statistics - Simulation and Computation, 51(12), 7366\u0026ndash;7389. https://doi.org/10.1080/03610918.2020.1836214\nManeejuk, P., Yamaka, W., \u0026amp; Srichaikul, W. (2022). Tourism Development and Economic Growth in Southeast Asian Countries under the Presence of Structural Break: Panel Kink with GME Estimator. Mathematics, 10(5), 723. https://doi.org/10.3390/math10050723\nMarek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, W., Miller, R. L., Hendrickson, T. J., Malone, S. M., Kandala, S., Feczko, E., Miranda-Dominguez, O., Graham, A. M., Earl, E. A., Perrone, A. J., Cordova, M., Doyle, O., \u0026hellip; Dosenbach, N. U. F. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654\u0026ndash;660. https://doi.org/10.1038/s41586-022-04492-9\nMari, M. A., \u0026amp; Müller, M.-L. (2023). Social cognition and Relevance: How stereotypes impact the processing of definite and indefinite descriptions. Frontiers in Communication, 8, 1088861. https://doi.org/10.3389/fcomm.2023.1088861\nMarinucci, M., Pancani, L., Aureli, N., \u0026amp; Riva, P. (2022). Online social connections as surrogates of face-to-face interactions: A longitudinal study under Covid-19 isolation. Computers in Human Behavior, 128, 107102. https://doi.org/10.1016/j.chb.2021.107102\nMarkostamou, I., \u0026amp; Coventry, K. R. (2022). Naming spatial relations across the adult lifespan: At the crossroads of language and perception. Neuropsychology, 36(3), 216\u0026ndash;230. https://doi.org/10.1037/neu0000789\nMarozzi, M., \u0026amp; Marmolejo-Ramos, F. (2022). Composite indicators in experimental psychology. An example with the semantic space of taste and shape stimuli stimuli. Communications in Statistics - Simulation and Computation, 51(1), 154\u0026ndash;163. https://doi.org/10.1080/03610918.2019.1648823\nMarris, J., Barrett, S., Abt, G., \u0026amp; Towlson, C. (2022). Quantifying technical actions in professional soccer using foot-mounted inertial measurement units. Science and Medicine in Football, 6(2), 203\u0026ndash;214. https://doi.org/10.1080/24733938.2021.1910333\nMasia, V., Garassino, D., Brocca, N., \u0026amp; De Saussure, L. (2023). Recalling presupposed information: Evidence from the online processing of presuppositions in political tweets. Pragmatics \u0026amp; Cognition, 30(1), 92\u0026ndash;119. https://doi.org/10.1075/pc.22011.mas\nMaskor, M., Fladerer, M. P., Fong, P., Steffens, N. K., \u0026amp; Haslam, S. A. (2023). The fish can rot from the heart, not just the head: Exploring the detrimental impact of transgressions by leaders at multiple levels of an organization. British Journal of Social Psychology, 62(1), 431\u0026ndash;455. https://doi.org/10.1111/bjso.12551\nMasuccio, F. G., Grange, E., Di Giovanni, R., Marengo, D., Prosperini, L., \u0026amp; Solaro, C. (2023). Evaluation of mild-to-moderate COVID-19 through dual-task paradigm: A longitudinal case-controlled study. Neurological Sciences, 44(12), 4167\u0026ndash;4177. https://doi.org/10.1007/s10072-023-07137-5\nMateu, V., \u0026amp; Sundara, M. (2022). Spanish input accelerates bilingual infants\u0026rsquo; segmentation of English words. Cognition, 218, 104936. https://doi.org/10.1016/j.cognition.2021.104936\nMathis, A., \u0026amp; Papafragou, A. (2022). Agents\u0026rsquo; goals affect construal of event endpoints. Journal of Memory and Language, 127, 104373. https://doi.org/10.1016/j.jml.2022.104373\nMattfeld, A. T. (2022). Comparative Tasks for Comparative Neurophysiology. In R. P. Vertes \u0026amp; T. Allen (Eds.), Electrophysiological Recording Techniques (Vol. 192, pp. 193\u0026ndash;220). Springer US. https://doi.org/10.1007/978-1-0716-2631-3_9\nMatz, A. F., Nie, Y., \u0026amp; Wheeler, H. J. (2022). Auditory stream segregation of amplitude-modulated narrowband noise in cochlear implant users and individuals with normal hearing. Frontiers in Psychology, 13, 927854. https://doi.org/10.3389/fpsyg.2022.927854\nMauersberger, H., Kastendieck, T., \u0026amp; Hess, U. (2022). I looked at you, you looked at me, I smiled at you, you smiled at me\u0026mdash;The impact of eye contact on emotional mimicry. Frontiers in Psychology, 13, 970954. https://doi.org/10.3389/fpsyg.2022.970954\nMaxwell, N. P., \u0026amp; Huff, M. J. (2022). Reactivity from judgments of learning is not only due to memory forecasting: Evidence from associative memory and frequency judgments. Metacognition and Learning, 17(2), 589\u0026ndash;625. https://doi.org/10.1007/s11409-022-09301-2\nMaxwell, N. P., Huff, M. J., \u0026amp; Buchanan, E. M. (2021). The lrd package: An R package and Shiny application for processing lexical data. Behavior Research Methods, 54(4), 2001\u0026ndash;2024. https://doi.org/10.3758/s13428-021-01718-y\nMaxwell, N. P., Perry, T., \u0026amp; Huff, M. J. (2022). Perceptually fluent features of study words do not inflate judgements of learning: Evidence from font size, highlights, and Sans Forgetica font type. Metacognition and Learning, 17(2), 293\u0026ndash;319. https://doi.org/10.1007/s11409-021-09284-6\nMay, R. J., Tyndall, I., McTiernan, A., Roderique‐Davies, G., \u0026amp; McLoughlin, S. (2022). The impact of the SMART program on cognitive and academic skills: A systematic review and meta‐analysis. British Journal of Educational Technology, 53(5), 1244\u0026ndash;1261. https://doi.org/10.1111/bjet.13192\nMayer, M., \u0026amp; Heck, D. W. (2022). Sequential collaboration: The accuracy of dependent, incremental judgments. Decision. https://doi.org/10.1037/dec0000193\nMazzei, R., Emery, Y., Soares, M. C., \u0026amp; Bshary, R. (2023). Dominance is associated with reduced cleaning activity in group-living Elacatinus prochilos gobies. Animal Behaviour, 206, 29\u0026ndash;38. https://doi.org/10.1016/j.anbehav.2023.09.001\nMcClannahan, K. S., Mainardi, A., Luor, A., Chiu, Y.-F., Sommers, M. S., \u0026amp; Peelle, J. E. (2022). Spoken Word Recognition in Listeners with Mild Dementia Symptoms. Journal of Alzheimer's Disease, 90(2), 749\u0026ndash;759. https://doi.org/10.3233/JAD-215606\nMcFadden, B. A., Vincenty, C. S., Chandler, A. J., Cintineo, H. P., Lints, B. S., Mastrofini, G. F., \u0026amp; Arent, S. M. (2023). Effects of fucoidan supplementation on inflammatory and immune response after high-intensity exercise. Journal of the International Society of Sports Nutrition, 20(1), 2224751. https://doi.org/10.1080/15502783.2023.2224751\nMcFeaters, C. D., \u0026amp; Voyer, D. (2022). Identifying spatial effects in a lateralized duration estimation task. Laterality, 27(2), 190\u0026ndash;220. https://doi.org/10.1080/1357650X.2021.1966436\nMcGill, K., Sackley, C., Godwin, J., Gavaghan, D., Ali, M., Ballester, B. R., Brady, M. C., Brady, M. C., Ali, M., Ashburn, A., Barer, D., Barzel, A., Bernhardt, J., Bowen, A., Drummond, A., Edmans, J., English, C., Gladman, J., Godecke, E., \u0026hellip; Whiteley, W. (2022). Using the Barthel Index and modified Rankin Scale as Outcome Measures for Stroke Rehabilitation Trials; A Comparison of Minimum Sample Size Requirements. Journal of Stroke and Cerebrovascular Diseases, 31(2), 106229. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106229\nMcHuron, E. A., Rosen, D. A. S., Carpenter, J., Leonard, P., Sirpenski, G., \u0026amp; Sterling, J. T. (2022). Variation in body mass and food intake of northern fur seals ( Callorhinus ursinus ). Marine Mammal Science, 38(3), 1160\u0026ndash;1181. https://doi.org/10.1111/mms.12919\nMcKenna, M., Cervone, D., Roy, A., \u0026amp; Burkett, C. (2022). Personality coherence in acts and texts: Searching for coherence within and beyond trait categories. European Journal of Personality, 36(3), 347\u0026ndash;370. https://doi.org/10.1177/08902070211022131\nMcLaughlin, D. J., Zink, M. E., Gaunt, L., Brent Spehar, Van Engen, K. J., Sommers, M. S., \u0026amp; Peelle, J. E. (2022). Pupillometry reveals cognitive demands of lexical competition during spoken word recognition in young and older adults. Psychonomic Bulletin \u0026amp; Review, 29(1), 268\u0026ndash;280. https://doi.org/10.3758/s13423-021-01991-0\nMcNeely-White, K. L., McNeely-White, D. G., Huebert, A. M., Carlaw, B. N., \u0026amp; Cleary, A. M. (2022). Specifying a relationship between semantic and episodic memory in the computation of a feature-based familiarity signal using MINERVA 2. Memory \u0026amp; Cognition, 50(3), 527\u0026ndash;545. https://doi.org/10.3758/s13421-021-01234-6\nMcPhetres, J., \u0026amp; Zickfeld, J. H. (2022). The physiological study of emotional piloerection: A systematic review and guide for future research. International Journal of Psychophysiology, 179, 6\u0026ndash;20. https://doi.org/10.1016/j.ijpsycho.2022.06.010\nMeade, G., Grainger, J., \u0026amp; Holcomb, P. J. (2022). Language Dominance Modulates Transposed-Letter N400 Priming Effects in Bilinguals. Journal of Cognition, 5(1), 12. https://doi.org/10.5334/joc.203\nMedimorec, S. (2022). The Effects of Day of the Week on Temporal Ambiguity Resolution. Psychological Reports, 125(2), 882\u0026ndash;889. https://doi.org/10.1177/0033294120979686\nMeersmans, K., Storms, G., De Deyne, S., Bruffaerts, R., Dupont, P., \u0026amp; Vandenberghe, R. (2022). Orienting to different dimensions of word meaning alters the representation of word meaning in early processing regions. Cerebral Cortex, 32(15), 3302\u0026ndash;3317. https://doi.org/10.1093/cercor/bhab416\nMehrabi, S., Muñoz, J. E., Basharat, A., Boger, J., Cao, S., Barnett-Cowan, M., \u0026amp; Middleton, L. E. (2022). Immersive Virtual Reality Exergames to Promote the Well-being of Community-Dwelling Older Adults: Protocol for a Mixed Methods Pilot Study. JMIR Research Protocols, 11(6), e32955. https://doi.org/10.2196/32955\nMeier, K. J., Song, M., Davis, J. A., \u0026amp; Amirkhanyan, A. A. (2022). Sector Bias and the Credibility of Performance Information: An Experimental Study of Elder Care Provision. Public Administration Review, 82(1), 69\u0026ndash;82. https://doi.org/10.1111/puar.13425\nMeijer, D., \u0026amp; Noppeney, U. (2023). Metacognition in the audiovisual McGurk illusion: Perceptual and causal confidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1886), 20220348. https://doi.org/10.1098/rstb.2022.0348\nMellinger, C. D., \u0026amp; Hanson, T. A. (2022). Research data. In F. Zanettin \u0026amp; C. Rundle, The Routledge Handbook of Translation and Methodology (1st ed., pp. 307\u0026ndash;323). Routledge. https://doi.org/10.4324/9781315158945-23\nMendes, A. J., Pacheco-Barrios, K., Lema, A., Gonçalves, Ó. F., Fregni, F., Leite, J., \u0026amp; Carvalho, S. (2022). Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis. Neuroscience \u0026amp; Biobehavioral Reviews, 132, 894\u0026ndash;907. https://doi.org/10.1016/j.neubiorev.2021.11.002\nMendes, P. S., \u0026amp; Undorf, M. (2022). On the pervasive effect of word frequency in metamemory. Quarterly Journal of Experimental Psychology, 75(8), 1411\u0026ndash;1427. https://doi.org/10.1177/17470218211053329\nMenendez, D., Brown, S. A., \u0026amp; Alibali, M. W. (2023). Some Correct Strategies Are Better Than Others: Individual Differences in Strategy Evaluations Are Related to Strategy Adoption. Cognitive Science, 47(3), e13269. https://doi.org/10.1111/cogs.13269\nMenendez, D., Sabbagh, N. F., Alibali, M. W., \u0026amp; Rosengren, K. S. (2023). Timelines or time cycles: Exposure to different spatial representations of time influences sketching and diagram preferences. Educational Research for Policy and Practice. https://doi.org/10.1007/s10671-023-09331-w\nMeng, D., Wang, S., Wong, P. C. M., \u0026amp; Feng, G. (2022). Generalizable predictive modeling of semantic processing ability from functional brain connectivity. Human Brain Mapping, 43(14), 4274\u0026ndash;4292. https://doi.org/10.1002/hbm.25953\nMerck, C., Noël, A., Jamet, E., Robert, M., Salmon, A., Belliard, S., \u0026amp; Kalénine, S. (2023). Nonspecific Effects of Normal Aging on Taxonomic and Thematic Semantic Processing. Experimental Aging Research, 49(1), 18\u0026ndash;40. https://doi.org/10.1080/0361073X.2022.2046948\nMertens, G., \u0026amp; Krypotos, A.-M. (2022). Preregistration of Studies with Existing Data. In J. Faintuch \u0026amp; S. Faintuch (Eds.), Integrity of Scientific Research (pp. 361\u0026ndash;370). Springer International Publishing. https://doi.org/10.1007/978-3-030-99680-2_36\nMertens, Y. L., Manthey, A., Sierk, A., Walter, H., \u0026amp; Daniels, J. K. (2022). Neural correlates of acute post-traumatic dissociation: A functional neuroimaging script-driven imagery study. BJPsych Open, 8(4), e109. https://doi.org/10.1192/bjo.2022.65\nMesquida, C., Murphy, J., Lakens, D., \u0026amp; Warne, J. (2022). Replication concerns in sports and exercise science: A narrative review of selected methodological issues in the field. Royal Society Open Science, 9(12), 220946. https://doi.org/10.1098/rsos.220946\nMetzen, D., Genç, E., Getzmann, S., Larra, M. F., Wascher, E., \u0026amp; Ocklenburg, S. (2022). Frontal and parietal EEG alpha asymmetry: A large-scale investigation of short-term reliability on distinct EEG systems. Brain Structure and Function, 227(2), 725\u0026ndash;740. https://doi.org/10.1007/s00429-021-02399-1\nMeyer, N., Xu, Y., Karjalainen, K., Adamczyk, S., Biasi, C., Van Delden, L., Martin, A., Mganga, K., Myller, K., Sietiö, O., Suominen, O., \u0026amp; Karhu, K. (2022). Living, dead, and absent trees\u0026mdash;How do moth outbreaks shape small‐scale patterns of soil organic matter stocks and dynamics at the Subarctic mountain birch treeline? Global Change Biology, 28(2), 441\u0026ndash;462. https://doi.org/10.1111/gcb.15951\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMichaelides, A., Mitchell, E. S., Behr, H., Ho, A. S., Hanada, G., Lee, J., \u0026amp; McPartland, S. (2022). Executive Function-Related Improvements on a Commercial CBT-Based Weight Management Intervention: Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(14), 8763. https://doi.org/10.3390/ijerph19148763\nMicheloud, C., \u0026amp; Held, L. (2022). Power Calculations for Replication Studies. Statistical Science, 37(3). https://doi.org/10.1214/21-STS828\nMiegel, F., Bücker, L., Kühn, S., Mostajeran, F., Moritz, S., Baumeister, A., Lohse, L., Blömer, J., Grzella, K., \u0026amp; Jelinek, L. (2022). Exposure and Response Prevention in Virtual Reality for Patients with Contamination-Related Obsessive\u0026ndash;Compulsive Disorder: A Case Series. Psychiatric Quarterly, 93(3), 861\u0026ndash;882. https://doi.org/10.1007/s11126-022-09992-5\nMiles, A., Andiappan, M., Upenieks, L., \u0026amp; Orfanidis, C. (2022). Using prosocial behavior to safeguard mental health and foster emotional well-being during the COVID-19 pandemic: A registered report of a randomized trial. PLOS ONE, 17(7), e0272152. https://doi.org/10.1371/journal.pone.0272152\nMilledge, S. V., Liversedge, S. P., \u0026amp; Blythe, H. I. (2022). The importance of the first letter in children's parafoveal preprocessing in English: Is it phonologically or orthographically driven? Journal of Experimental Psychology: Human Perception and Performance, 48(5), 427\u0026ndash;442. https://doi.org/10.1037/xhp0000998\nMilledge, S. V., Zang, C., Liversedge, S. P., \u0026amp; Blythe, H. I. (2022). Phonological parafoveal pre-processing in children reading English sentences. Cognition, 225, 105141. https://doi.org/10.1016/j.cognition.2022.105141\nMiller, A. C., Harris, L. M., Cavanaugh, J. E., Abou Alaiwa, M., Stoltz, D. A., Hornick, D. B., \u0026amp; Polgreen, P. M. (2022). The Rapid Reduction of Infection-Related Visits and Antibiotic Use Among People With Cystic Fibrosis After Starting Elexacaftor-Tezacaftor-Ivacaftor. Clinical Infectious Diseases, 75(7), 1115\u0026ndash;1122. https://doi.org/10.1093/cid/ciac117\nMiller, J. D. (2022). Editorial for Personality Disorders: Theory, Research, and Treatment. Personality Disorders: Theory, Research, and Treatment, 13(1), 1\u0026ndash;2. https://doi.org/10.1037/per0000536\nMiller, J., \u0026amp; Ulrich, R. (2022). Optimizing Research Output: How Can Psychological Research Methods Be Improved? Annual Review of Psychology, 73(1), 691\u0026ndash;718. https://doi.org/10.1146/annurev-psych-020821-094927\nMiller-Goldwater, H. E., Cronin-Golomb, L. M., Hanft, M. H., \u0026amp; Bauer, P. J. (2023). The influence of books\u0026rsquo; textual features and caregivers\u0026rsquo; extratextual talk on children's science learning in the context of shared book reading. Developmental Psychology, 59(2), 390\u0026ndash;411. https://doi.org/10.1037/dev0001480\nMiller-Goldwater, H. E., Hanft, M. H., Miller, A. G., \u0026amp; Bauer, P. J. (2023). Young Children's Science Learning from Narrative Books: The Role of Text Cohesion and Caregivers\u0026rsquo; Extratextual Talk. Journal of Cognition and Development, 1\u0026ndash;27. https://doi.org/10.1080/15248372.2023.2267229\nMilleville, S. C., Gotts, S. J., Wittig, J. H., Inati, S. K., Zaghloul, K. A., \u0026amp; Martin, A. (2022). Distinct deficits of repetition priming following lateral versus anteromedial frontal cortex damage. Neuropsychologia, 170, 108212. https://doi.org/10.1016/j.neuropsychologia.2022.108212\nMilligan, S., Antúnez, M., Barber, H. A., \u0026amp; Schotter, E. R. (2023). Are eye movements and EEG on the same page?: A coregistration study on parafoveal preview and lexical frequency. Journal of Experimental Psychology: General, 152(1), 188\u0026ndash;210. https://doi.org/10.1037/xge0001278\nMills, K. A., Unsworth, L., \u0026amp; Scholes, L. (2022). Literacy for Digital Futures: Mind, Body, Text (1st ed.). Routledge. https://doi.org/10.4324/9781003137368\nMinassian, A., Kelsoe, J. R., Miranda, A., Young, J. W., \u0026amp; Perry, W. (2022). The relationship between novelty-seeking traits and behavior: Establishing construct validity for the human Behavioral Pattern Monitor. Psychiatry Research, 316, 114776. https://doi.org/10.1016/j.psychres.2022.114776\nMirabolfathi, V., Schweizer, S., Moradi, A., \u0026amp; Jobson, L. (2022). Affective working memory capacity in refugee adolescents. Psychological Trauma: Theory, Research, Practice, and Policy, 14(6), 983\u0026ndash;988. https://doi.org/10.1037/tra0000552\nMirault, J., Leflaëc, C., \u0026amp; Grainger, J. (2022). Orthographic relatedness and transposed-word effects in the grammatical decision task. Attention, Perception, \u0026amp; Psychophysics, 84(3), 1043\u0026ndash;1051. https://doi.org/10.3758/s13414-021-02421-y\nMirault, J., Massol, S., \u0026amp; Grainger, J. (2022). Effects of non-adjacent letter repetition in the same-different matching task. Language, Cognition and Neuroscience, 37(10), 1292\u0026ndash;1302. https://doi.org/10.1080/23273798.2022.2061022\nMiskewicz, K., Furr, R. M., \u0026amp; Fleeson, W. (2022). Do normal personality traits connect to the dynamic processes of psychopathology? Personality Disorders: Theory, Research, and Treatment, 13(5), 423\u0026ndash;437. https://doi.org/10.1037/per0000516\nMiura, Y., Li, M.-Y., Revah, O., Yoon, S.-J., Narazaki, G., \u0026amp; Pașca, S. P. (2022). Engineering brain assembloids to interrogate human neural circuits. Nature Protocols, 17(1), 15\u0026ndash;35. https://doi.org/10.1038/s41596-021-00632-z\nMochizuki, M. (2022). Little to no evidence of the QWERTY effect in Japanese word valence rating. Cognitive Processing, 23(3), 527\u0026ndash;533. https://doi.org/10.1007/s10339-022-01092-3\nMolenmaker, W. E., Lelieveld, G., De Kwaadsteniet, E. W., \u0026amp; Van Dijk, E. (2022). Applying a logic of appropriateness to understand behavioral differences between common resource dilemmas and public good dilemmas. Journal of Behavioral Decision Making, 35(1), e2243. https://doi.org/10.1002/bdm.2243\nMolina-García, J., Menescardi, C., Estevan, I., \u0026amp; Queralt, A. (2021). Associations between Park and Playground Availability and Proximity and Children's Physical Activity and Body Mass Index: The BEACH Study. International Journal of Environmental Research and Public Health, 19(1), 250. https://doi.org/10.3390/ijerph19010250\nMonaco, E., Mouthon, M., Britz, J., Sato, S., Stefanos-Yakoub, I., Annoni, J. M., \u0026amp; Jost, L. B. (2023). Embodiment of action-related language in the native and a late foreign language \u0026ndash; An fMRI-study. Brain and Language, 244, 105312. https://doi.org/10.1016/j.bandl.2023.105312\nMonson, C. M., Wagner, A. C., Crenshaw, A. O., Whitfield, K. M., Newnham, C. M., Valela, R., Varma, S., Di Bartolomeo, A. A., Fulham, L., Collins, A., Donkin, V., Mensah, D. H., Landy, M. S. H., Samonas, C., Morland, L., Doss, B. D., \u0026amp; Fitzpatrick, S. (2022). An uncontrolled trial of couple HOPES: A guided online couple intervention for PTSD and relationship enhancement. Journal of Family Psychology, 36(6), 1036\u0026ndash;1042. https://doi.org/10.1037/fam0000976\nMonster, I., Tellings, A., Burk, W. J., Keuning, J., Segers, E., \u0026amp; Verhoeven, L. (2022). Word Properties Predicting Children's Word Recognition. Scientific Studies of Reading, 26(5), 373\u0026ndash;389. https://doi.org/10.1080/10888438.2021.2020795\nMontero-Melis, G., Van Paridon, J., Ostarek, M., \u0026amp; Bylund, E. (2022). No evidence for embodiment: The motor system is not needed to keep action verbs in working memory. Cortex, 150, 108\u0026ndash;125. https://doi.org/10.1016/j.cortex.2022.02.006\nMoon, J. W., Tratner, A. E., \u0026amp; McDonald, M. M. (2022). Men are less religious in more gender-equal countries. Proceedings of the Royal Society B: Biological Sciences, 289(1968), 20212474. https://doi.org/10.1098/rspb.2021.2474\nMorey, R. D., Kaschak, M. P., Díez-Álamo, A. M., Glenberg, A. M., Zwaan, R. A., Lakens, D., Ibáñez, A., García, A., Gianelli, C., Jones, J. L., Madden, J., Alifano, F., Bergen, B., Bloxsom, N. G., Bub, D. N., Cai, Z. G., Chartier, C. R., Chatterjee, A., Conwell, E., \u0026hellip; Ziv-Crispel, N. (2022). A pre-registered, multi-lab non-replication of the action-sentence compatibility effect (ACE). Psychonomic Bulletin \u0026amp; Review, 29(2), 613\u0026ndash;626. https://doi.org/10.3758/s13423-021-01927-8\nMorgan‐Short, K., Finestrat, I., Luque, A., \u0026amp; Abugaber, D. (2022). Exploring New Insights Into Explicit and Implicit Second Language Processing: Event‐Related Potentials Analyzed by Source Attribution. Language Learning, 72(2), 365\u0026ndash;411. https://doi.org/10.1111/lang.12492\nMorin, E. L., Garza, K. M., Aoued, H., Sannigrahi, S., Siebert, E. R., Howell, B. R., Walum, H., Sanchez, M. M., \u0026amp; Dias, B. G. (2022). Profiling nonhuman primate germline RNA to understand the legacy of early life stress. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 337(1), 15\u0026ndash;23. https://doi.org/10.1002/jez.2501\nMoroshkina, N. V., Savina, A. I., Ammalainen, A. V., Gershkovich, V. A., Zverev, I. V., \u0026amp; Lvova, O. V. (2022). How Difficult Was It? Metacognitive Judgments About Problems and Their Solutions After the Aha Moment. Frontiers in Psychology, 13, 911904. https://doi.org/10.3389/fpsyg.2022.911904\nMorris, A., O'Connor, B. B., \u0026amp; Cushman, F. (2022). The role of episodic simulation in motivating commonplace harms. Cognition, 225, 105104. https://doi.org/10.1016/j.cognition.2022.105104\nMorris, M., Coste, G. I., Redding-Ochoa, J., Guo, H., Graves, A. R., Troncoso, J. C., \u0026amp; Huganir, R. L. (2023). Hippocampal synaptic alterations associated with tau pathology in primary age-related tauopathy. Journal of Neuropathology \u0026amp; Experimental Neurology, 82(10), 836\u0026ndash;844. https://doi.org/10.1093/jnen/nlad064\nMorys, F., Shishikura, M., \u0026amp; Dagher, A. (2022). Population-based research in obesity \u0026ndash; An overview of neuroimaging studies using big data approach. Current Opinion in Endocrine and Metabolic Research, 23, 100323. https://doi.org/10.1016/j.coemr.2022.100323\nMostoufi, S. L., \u0026amp; Singh, N. D. (2022). Diet-induced changes in titer support a discrete response of Wolbachia -associated plastic recombination in Drosophila melanogaster. G3 Genes|Genomes|Genetics, 12(1), jkab375. https://doi.org/10.1093/g3journal/jkab375\nMotoki, K., Saito, T., \u0026amp; Velasco, C. (2022). Spontaneous crossmodal correspondences grounded in contexts. Food Quality and Preference, 100, 104619. https://doi.org/10.1016/j.foodqual.2022.104619\nMueller, S. A. L., Oler, J. A., Roseboom, P. H., Aggarwal, N., Kenwood, M. M., Riedel, M. K., Elam, V. R., Olsen, M. E., DiFilippo, A. H., Christian, B. T., Hu, X., Galvan, A., Boehm, M. A., Michaelides, M., \u0026amp; Kalin, N. H. (2023). DREADD-mediated amygdala activation is sufficient to induce anxiety-like responses in young nonhuman primates. Current Research in Neurobiology, 5, 100111. https://doi.org/10.1016/j.crneur.2023.100111\nMuhr, P. (2022). From Photography to fMRI: Epistemic Functions of Images in Medical Research on Hysteria (1st ed., Vol. 209). transcript Verlag. https://doi.org/10.14361/9783839461761\nMukai, T., Nishio, K., Komatsu, H., \u0026amp; Sasaki, M. (2022). What effect does feedback have on energy conservation? Comparing previous household usage, neighbourhood usage, and social norms in Japan. Energy Research \u0026amp; Social Science, 86, 102430. https://doi.org/10.1016/j.erss.2021.102430\nMüller, N., Nagels, A., \u0026amp; Kauschke, C. (2022). Metaphorical expressions originating from human senses: Psycholinguistic and affective norms for German metaphors for internal state terms (MIST database). Behavior Research Methods, 54(1), 365\u0026ndash;377. https://doi.org/10.3758/s13428-021-01639-w\nMüller, T., Husain, M., \u0026amp; Apps, M. A. J. (2022). Preferences for seeking effort or reward information bias the willingness to work. Scientific Reports, 12(1), 19486. https://doi.org/10.1038/s41598-022-21917-7\nMulligan, N. W., Buchin, Z. L., \u0026amp; Zhang, A. L. (2022). The testing effect with free recall: Organization, attention, and order effects. Journal of Memory and Language, 125, 104333. https://doi.org/10.1016/j.jml.2022.104333\nMumby, P. J., Chaloupka, M., Bozec, Y., Steneck, R. S., \u0026amp; Montero‐Serra, I. (2022). Revisiting the evidentiary basis for ecological cascades with conservation impacts. Conservation Letters, 15(1), e12847. https://doi.org/10.1111/conl.12847\nMurayama, K., Usami, S., \u0026amp; Sakaki, M. (2022). Summary-statistics-based power analysis: A new and practical method to determine sample size for mixed-effects modeling. Psychological Methods. https://doi.org/10.1037/met0000330\nMurphy, D. H., \u0026amp; Castel, A. D. (2022a). Differential effects of proactive and retroactive interference in value-directed remembering for younger and older adults. Psychology and Aging, 37(7), 787\u0026ndash;799. https://doi.org/10.1037/pag0000707\nMurphy, D. H., \u0026amp; Castel, A. D. (2022b). Selective remembering and directed forgetting are influenced by similar stimulus properties. Memory, 30(9), 1130\u0026ndash;1147. https://doi.org/10.1080/09658211.2022.2092152\nMurphy, D. H., Huckins, S. C., Rhodes, M. G., \u0026amp; Castel, A. D. (2022). The effect of perceptual processing fluency and value on metacognition and remembering. Psychonomic Bulletin \u0026amp; Review, 29(3), 910\u0026ndash;921. https://doi.org/10.3758/s13423-021-02030-8\nMurray, S., Jiménez‐Leal, W., \u0026amp; Amaya, S. (2023). Within your rights: Dissociating wrongness and permissibility in moral judgement. British Journal of Social Psychology, bjso.12680. https://doi.org/10.1111/bjso.12680\nMusslick, S., Cherkaev, A., Draut, B., Butt, A. S., Darragh, P., Srikumar, V., Flatt, M., \u0026amp; Cohen, J. D. (2021). SweetPea: A standard language for factorial experimental design. Behavior Research Methods, 54(2), 805\u0026ndash;829. https://doi.org/10.3758/s13428-021-01598-2\nMuziki, J. d'Amour, Uwera, T., Niyonsenga, J., Nshimiyimana, A., Sebatukura, S. G., \u0026amp; Mutabaruka, J. (2022). Negative emotions and personal well-being among incarcerated filicide mothers in Rwanda. PLOS ONE, 17(7), e0271255. https://doi.org/10.1371/journal.pone.0271255\nNakipoğlu, M., Uzundağ, B. A., \u0026amp; Ketrez, F. N. (2023). Analogy is indispensable but rule is a must: Insights from Turkish. Journal of Child Language, 50(2), 437\u0026ndash;463. https://doi.org/10.1017/S0305000921000921\nNakua, H., Hawco, C., Forde, N. J., Jacobs, G. R., Joseph, M., Voineskos, A. N., Wheeler, A. L., Lai, M.-C., Szatmari, P., Kelley, E., Liu, X., Georgiades, S., Nicolson, R., Schachar, R., Crosbie, J., Anagnostou, E., Lerch, J. P., Arnold, P. D., \u0026amp; Ameis, S. H. (2022). Cortico-amygdalar connectivity and externalizing/internalizing behavior in children with neurodevelopmental disorders. Brain Structure and Function, 227(6), 1963\u0026ndash;1979. https://doi.org/10.1007/s00429-022-02483-0\nNamasivayam, A. K., Yan, T., Bali, R., Hayden, D., \u0026amp; Van Lieshout, P. (2022). Cross-Modal Somatosensory Repetition Priming and Speech Processing. Journal of Integrative Neuroscience, 21(5), 146. https://doi.org/10.31083/j.jin2105146\nNavarrete, J., Navarro-Siurana, J., Herrero, R., Vara, M. D., Miragall, M., \u0026amp; Baños, R. (2022). Connecting to Nature through 360° Videos during COVID-19 Confinement: A Pilot Study of a Brief Psychological Intervention. Journal of Healthcare Engineering, 2022, 1\u0026ndash;13. https://doi.org/10.1155/2022/4242888\nNayak, S., Gustavson, D. E., Wang, Y., Below, J. E., Gordon, R. L., \u0026amp; Magne, C. L. (2022). Test of Prosody via Syllable Emphasis (\u0026ldquo;TOPsy\u0026rdquo;): Psychometric Validation of a Brief Scalable Test of Lexical Stress Perception. Frontiers in Neuroscience, 16, 765945. https://doi.org/10.3389/fnins.2022.765945\nNebe, S., Hermann, A., Herrmann, M. J., Mier, D., \u0026amp; Sicorello, U. M. (2022). Im Namen des Vorstands der Deutschen Gesellschaft für Psychophysiologie und ihre Anwendung e.V. (DGPA). Das Potential der biopsychologischen und neurowissenschaftlichen Lehre zur Vermittlung von Open Science Praktiken. Psychologische Rundschau, 73(1), 33\u0026ndash;35. https://doi.org/10.1026/0033-3042/a000570\nNeergaard, K. D., Xu, H., German, J. S., \u0026amp; Huang, C.-R. (2021). Database of word-level statistics for Mandarin Chinese (DoWLS-MAN). Behavior Research Methods, 54(2), 987\u0026ndash;1009. https://doi.org/10.3758/s13428-021-01620-7\nNegussie, E., González-Recio, O., Battagin, M., Bayat, A.-R., Boland, T., De Haas, Y., Garcia-Rodriguez, A., Garnsworthy, P. C., Gengler, N., Kreuzer, M., Kuhla, B., Lassen, J., Peiren, N., Pszczola, M., Schwarm, A., Soyeurt, H., Vanlierde, A., Yan, T., \u0026amp; Biscarini, F. (2022). Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. Journal of Dairy Science, 105(6), 5124\u0026ndash;5140. https://doi.org/10.3168/jds.2021-20158\nNemati, F., Westbury, C., Hollis, G., \u0026amp; Haghbin, H. (2022). The Persian Lexicon Project: Minimized orthographic neighbourhood effects in a dense language. Journal of Psycholinguistic Research, 51(5), 957\u0026ndash;979. https://doi.org/10.1007/s10936-022-09863-x\nNeo, H. S., Tan, J. H., Ang, W. H. D., \u0026amp; Lau, Y. (2022). Internet-delivered psychological interventions for reducing depressive, anxiety symptoms and fear of childbirth in pregnant women: A meta-analysis and meta-regression. Journal of Psychosomatic Research, 157, 110790. https://doi.org/10.1016/j.jpsychores.2022.110790\nNeudorf, J., Gould, L., Mickleborough, M. J. S., Ekstrand, C., \u0026amp; Borowsky, R. (2022). Unique, Shared, and Dominant Brain Activation in Visual Word Form Area and Lateral Occipital Complex during Reading and Picture Naming. Neuroscience, 481, 178\u0026ndash;196. https://doi.org/10.1016/j.neuroscience.2021.11.022\nNeveu, A., \u0026amp; Kaushanskaya, M. (2023). Paired-associate versus cross-situational: How do verbal working memory and word familiarity affect word learning? Memory \u0026amp; Cognition, 51(7), 1670\u0026ndash;1682. https://doi.org/10.3758/s13421-023-01421-7\nNeveu, A., \u0026amp; Kaushanskaya, M. (2024). The role of bilingualism in paired-associate and cross-situational word learning. Bilingualism: Language and Cognition, 27(1), 41\u0026ndash;56. https://doi.org/10.1017/S1366728923000524\nNeville, V., Mounty, J., Benato, L., Hunter, K., Mendl, M., \u0026amp; Paul, E. S. (2022). Thinking outside the lab: Can studies of pet rats inform pet and laboratory rat welfare? Applied Animal Behaviour Science, 246, 105507. https://doi.org/10.1016/j.applanim.2021.105507\nNewel, K. T., Burma, J. S., Carere, J., Kennedy, C. M., \u0026amp; Smirl, J. D. (2022). Does oscillation size matter? Impact of added resistance on the cerebral pressure‐flow Relationship in females and males. Physiological Reports, 10(10), e15278. https://doi.org/10.14814/phy2.15278\nNewman, D. B., \u0026amp; Nezlek, J. B. (2022). The Influence of Daily Events on Emotion Regulation and Well-Being in Daily Life. Personality and Social Psychology Bulletin, 48(1), 19\u0026ndash;33. https://doi.org/10.1177/0146167220980882\nNey, L. J., Laing, P. A. F., Steward, T., Zuj, D. V., Dymond, S., Harrison, B., Graham, B., \u0026amp; Felmingham, K. L. (2022). Methodological implications of sample size and extinction gradient on the robustness of fear conditioning across different analytic strategies. PLOS ONE, 17(5), e0268814. https://doi.org/10.1371/journal.pone.0268814\nNg, M. M. R., Bowers, P. N., \u0026amp; Bowers, J. S. (2022). A promising new tool for literacy instruction: The morphological matrix. PLOS ONE, 17(1), e0262260. https://doi.org/10.1371/journal.pone.0262260\nNgo, G. H., Nguyen, M., Chen, N. F., \u0026amp; Sabuncu, M. R. (2022). A transformer-Based neural language model that synthesizes brain activation maps from free-form text queries. Medical Image Analysis, 81, 102540. https://doi.org/10.1016/j.media.2022.102540\nNickel, M. M., Tiemann, L., Hohn, V. D., May, E. S., Gil Ávila, C., Eippert, F., \u0026amp; Ploner, M. (2022). Temporal\u0026ndash;spectral signaling of sensory information and expectations in the cerebral processing of pain. Proceedings of the National Academy of Sciences, 119(1), e2116616119. https://doi.org/10.1073/pnas.2116616119\nNickels, L., Lampe, L. F., Mason, C., \u0026amp; Hameau, S. (2022). Investigating the influence of semantic factors on word retrieval: Reservations, results and recommendations. Cognitive Neuropsychology, 39(3\u0026ndash;4), 113\u0026ndash;154. https://doi.org/10.1080/02643294.2022.2109958\nNicolas, G., Bai, X., \u0026amp; Fiske, S. T. (2022). A spontaneous stereotype content model: Taxonomy, properties, and prediction. Journal of Personality and Social Psychology, 123(6), 1243\u0026ndash;1263. https://doi.org/10.1037/pspa0000312\nNie, P., Wang, C., Rong, G., Du, B., Lu, J., Li, S., Putkinen, V., Tao, S., \u0026amp; Tervaniemi, M. (2022). Effects of Music Training on the Auditory Working Memory of Chinese-Speaking School-Aged Children: A Longitudinal Intervention Study. Frontiers in Psychology, 12, 770425. https://doi.org/10.3389/fpsyg.2021.770425\nNiehorster-Cook, L. M. (2022). The Spreading-Activation Framework Does not Explain the Effects of Degree and Clustering on Spoken Word Recognition. In Z. Yang \u0026amp; E. Von Briesen (Eds.), Proceedings of the 2021 Conference of The Computational Social Science Society of the Americas (pp. 112\u0026ndash;123). Springer International Publishing. https://doi.org/10.1007/978-3-030-96188-6_9\nNijenkamp, R., Nieuwenstein, M. R., De Jong, R., \u0026amp; Lorist, M. M. (2022). Second Chances in Learning: Does a Resit Prospect Lower Study-Time Investments on a First Test? Journal of Cognition, 5(1), 5. https://doi.org/10.5334/joc.196\nNiranjan, T. T., Ghosalya, N. K., \u0026amp; Gavirneni, S. (2022). Crying Wolf and a Knowing Wink: A Behavioral Study of Order Inflation and Discounting in Supply Chains. Production and Operations Management, 31(3), 1071\u0026ndash;1088. https://doi.org/10.1111/poms.13595\nNishiguchi, M., \u0026amp; Kusumi, T. (2022). Effect of perceptual simulation on sentence production using word sets. The Japanese Journal of Psychology, 93(3), 198\u0026ndash;208. https://doi.org/10.4992/jjpsy.93.21001\nNiso, G., Krol, L. R., Combrisson, E., Dubarry, A. S., Elliott, M. A., François, C., Héjja-Brichard, Y., Herbst, S. K., Jerbi, K., Kovic, V., Lehongre, K., Luck, S. J., Mercier, M., Mosher, J. C., Pavlov, Y. G., Puce, A., Schettino, A., Schön, D., Sinnott-Armstrong, W., \u0026hellip; Chaumon, M. (2022). Good scientific practice in EEG and MEG research: Progress and perspectives. NeuroImage, 257, 119056. https://doi.org/10.1016/j.neuroimage.2022.119056\nNoble, D. W. A., Pottier, P., Lagisz, M., Burke, S., Drobniak, S. M., O'Dea, R. E., \u0026amp; Nakagawa, S. (2022). Meta-analytic approaches and effect sizes to account for \u0026lsquo;nuisance heterogeneity\u0026rsquo; in comparative physiology. Journal of Experimental Biology, 225(Suppl_1), jeb243225. https://doi.org/10.1242/jeb.243225\nNoble, S., Mejia, A. F., Zalesky, A., \u0026amp; Scheinost, D. (2022). Improving power in functional magnetic resonance imaging by moving beyond cluster-level inference. Proceedings of the National Academy of Sciences, 119(32), e2203020119. https://doi.org/10.1073/pnas.2203020119\nNolan, L. N., \u0026amp; Hughes, L. (2022). Premenstrual exacerbation of mental health disorders: A systematic review of prospective studies. Archives of Women's Mental Health, 25(5), 831\u0026ndash;852. https://doi.org/10.1007/s00737-022-01246-4\nNoret, N., Hunter, S. C., Pimenta, S., Taylor, R., \u0026amp; Johnson, R. (2022). Open Science: Recommendations for Research on School Bullying. International Journal of Bullying Prevention. https://doi.org/10.1007/s42380-022-00130-0\nNorman, T., \u0026amp; Peleg, O. (2022). The reduced embodiment of a second language. Bilingualism: Language and Cognition, 25(3), 406\u0026ndash;416. https://doi.org/10.1017/S1366728921001115\nNorman-Haignere, S. V., Long, L. K., Devinsky, O., Doyle, W., Irobunda, I., Merricks, E. M., Feldstein, N. A., McKhann, G. M., Schevon, C. A., Flinker, A., \u0026amp; Mesgarani, N. (2022). Multiscale temporal integration organizes hierarchical computation in human auditory cortex. Nature Human Behaviour, 6(3), 455\u0026ndash;469. https://doi.org/10.1038/s41562-021-01261-y\nNosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler, F., Hilgard, J., Kline Struhl, M., Nuijten, M. B., Rohrer, J. M., Romero, F., Scheel, A. M., Scherer, L. D., Schönbrodt, F. D., \u0026amp; Vazire, S. (2022). Replicability, Robustness, and Reproducibility in Psychological Science. Annual Review of Psychology, 73(1), 719\u0026ndash;748. https://doi.org/10.1146/annurev-psych-020821-114157\nNostedt, S., \u0026amp; Joffe, A. R. (2022). Critical Care Randomized Trials Demonstrate Power Failure: A Low Positive Predictive Value of Findings in the Critical Care Research Field. Journal of Intensive Care Medicine, 37(8), 1082\u0026ndash;1093. https://doi.org/10.1177/08850666221077203\nNour, M. M., Liu, Y., \u0026amp; Dolan, R. J. (2022). Functional neuroimaging in psychiatry and the case for failing better. Neuron, 110(16), 2524\u0026ndash;2544. https://doi.org/10.1016/j.neuron.2022.07.005\nNovak, L., Malinakova, K., Mikoska, P., Van Dijk, J. P., \u0026amp; Tavel, P. (2022). Neural correlates of compassion \u0026ndash; An integrative systematic review. International Journal of Psychophysiology, 172, 46\u0026ndash;59. https://doi.org/10.1016/j.ijpsycho.2021.12.004\nNovak, L., Scholl, J. P., Kiefer, G., \u0026amp; Iler, A. M. (2022). Prescribed burning has limited effects on the population dynamics of rare plants. Conservation Science and Practice, 4(10), e12792. https://doi.org/10.1111/csp2.12792\nNozaki, Y., \u0026amp; Mikolajczak, M. (2023). Effectiveness of extrinsic emotion regulation strategies in text-based online communication. Emotion, 23(6), 1714\u0026ndash;1725. https://doi.org/10.1037/emo0001186\nNRU HSE, Moscow, \u0026amp; Chuprina, A. O. (2022). Russian Verbal Affixation in Mental Lexicon: Priming Study and Its Online Replication With True and Stem-Modified Relative Prime. COMPUTATIONAL LINGUISTICS AND INTELLECTUAL TECHNOLOGIES, 106\u0026ndash;113. https://doi.org/10.28995/2075-7182-2022-21-106-113\nNtoumanis, I., Panidi, K., Grebenschikova, Y., Shestakova, A. N., Kosonogov, V., Jääskeläinen, I. P., Kadieva, D., Baran, S., \u0026amp; Klucharev, V. (2022). \u0026ldquo;Expert persuasion\u0026rdquo; can decrease willingness to pay for sugar-containing food. Frontiers in Nutrition, 9, 926875. https://doi.org/10.3389/fnut.2022.926875\nNuijten, M. B. (2022). Assessing and Improving Robustness of Psychological Research Findings in Four Steps. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 379\u0026ndash;400). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_17\nNuñez-Estupiñan, X., Berticelli, L. Z., De Almeida, R. M. M., \u0026amp; Gauer, G. (2022). Aversiveness of errors and the error-related negativity (ERN): A systematic review on the affective states\u0026rsquo; manipulations findings. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(4), 754\u0026ndash;776. https://doi.org/10.3758/s13415-022-01002-2\nNyberg, A., Milad, N., Martin, M., Patoine, D., Morissette, M. C., Saey, D., \u0026amp; Maltais, F. (2022). Role of progression of training volume on intramuscular adaptations in patients with chronic obstructive pulmonary disease. Frontiers in Physiology, 13, 873465. https://doi.org/10.3389/fphys.2022.873465\nOberpriller, J., De Souza Leite, M., \u0026amp; Pichler, M. (2022). Fixed or random? On the reliability of mixed‐effects models for a small number of levels in grouping variables. Ecology and Evolution, 12(7), e9062. https://doi.org/10.1002/ece3.9062\nOciepka, M., Kałamała, P., \u0026amp; Chuderski, A. (2022). High individual alpha frequency brains run fast, but it does not make them smart. Intelligence, 92, 101644. https://doi.org/10.1016/j.intell.2022.101644\nO'Connor, B. P., \u0026amp; Khattar, N. (2022). Controversies Regarding Null Hypothesis Significance Testing. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 147\u0026ndash;174). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_7\nO'Connor, C., Relihan, D., Thomas, A., Ditto, P. H., Stanford, P. K., \u0026amp; Weatherall, J. O. (2023). Moral Judgments Impact Perceived Risks From COVID-19 Exposure. Collabra: Psychology, 9(1), 74793. https://doi.org/10.1525/collabra.74793\nO'Connor, D. B., Abele, A. E., Baguley, T., Daly, M., Doherty, N., Grange, J. A., Leman, P. J., Pressman, S. D., Rossit, S., \u0026amp; Simms, V. (2022). Improving psychological science: Further thoughts, reflections and ways forward. Cogent Psychology, 9(1), 2103248. https://doi.org/10.1080/23311908.2022.2103248\nO'Day, C., Finkelstein, D. I., Diwakarla, S., \u0026amp; McQuade, R. M. (2022). A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease. Journal of Parkinson's Disease, 12(6), 1841\u0026ndash;1861. https://doi.org/10.3233/JPD-223262\nO'Dea, R. E., Noble, D. W. A., \u0026amp; Nakagawa, S. (2022). Unifying individual differences in personality, predictability and plasticity: A practical guide. Methods in Ecology and Evolution, 13(2), 278\u0026ndash;293. https://doi.org/10.1111/2041-210X.13755\nOgbuewu, I. P., Mokolopi, B. G., \u0026amp; Mbajiorgu, C. A. (2022). Meta-analysis of growth performance indices of broiler chickens in response to turmeric (Curcuma longa L.) supplementation. Animal Feed Science and Technology, 283, 115155. https://doi.org/10.1016/j.anifeedsci.2021.115155\nOliveira, G. A., Remondes, M., \u0026amp; Garcia-Marques, T. (2023). Easy to process, hard to control: Transient and sustained processing fluency impairs cognitive control adjustments to conflict. Quarterly Journal of Experimental Psychology, 76(11), 2524\u0026ndash;2534. https://doi.org/10.1177/17470218231159787\nOlkoniemi, H., Halonen, S., Pexman, P. M., \u0026amp; Häikiö, T. (2023). Children's processing of written irony: An eye-tracking study. Cognition, 238, 105508. https://doi.org/10.1016/j.cognition.2023.105508\nOlson, J. M., Rosenfeld, J. P., Ward, A. C., Sitar, E. J., Gandhi, A., Hernandez, J., \u0026amp; Fanesi, B. (2022). The effects of practicing a novel countermeasure on both the semantic and episodic memory-based complex trial protocols. International Journal of Psychophysiology, 173, 82\u0026ndash;92. https://doi.org/10.1016/j.ijpsycho.2022.01.009\nOltra-Cucarella, J., Sánchez-SanSegundo, M., \u0026amp; Ferrer-Cascales, R. (2022). Predicting Alzheimer's disease with practice effects, APOE genotype and brain metabolism. Neurobiology of Aging, 112, 111\u0026ndash;121. https://doi.org/10.1016/j.neurobiolaging.2021.12.011\nOmmerborn, M. A., Walentek, N., Bergmann, N., Franken, M., Gotter, A., \u0026amp; Schäfer, R. (2022). Validation of a new diagnostic method for quantification of sleep bruxism activity. Clinical Oral Investigations, 26(6), 4351\u0026ndash;4359. https://doi.org/10.1007/s00784-022-04398-w\nO'Neill, S., Minehan, M., Knight-Agarwal, C. R., \u0026amp; Turner, M. (2022). Depression, Is It Treatable in Adults Utilising Dietary Interventions? A Systematic Review of Randomised Controlled Trials. Nutrients, 14(7), 1398. https://doi.org/10.3390/nu14071398\nOng, C. W., Lee, E. B., Levin, M. E., \u0026amp; Twohig, M. P. (2022). Online process-based training for perfectionism: A randomized trial. Behaviour Research and Therapy, 156, 104152. https://doi.org/10.1016/j.brat.2022.104152\nOrange, S. T., Jordan, A. R., Odell, A., Kavanagh, O., Hicks, K. M., Eaglen, T., Todryk, S., \u0026amp; Saxton, J. M. (2022). Acute aerobic exercise‐conditioned serum reduces colon cancer cell proliferation in vitro through interleukin‐6‐induced regulation of DNA damage. International Journal of Cancer, 151(2), 265\u0026ndash;274. https://doi.org/10.1002/ijc.33982\nOren, S., Tittgemeyer, M., Rigoux, L., Schlamann, M., Schonberg, T., \u0026amp; Kuzmanovic, B. (2022). Neural encoding of food and monetary reward delivery. NeuroImage, 257, 119335. https://doi.org/10.1016/j.neuroimage.2022.119335\nOrth, L., Meeh, J., Gur, R. C., Neuner, I., \u0026amp; Sarkheil, P. (2022). Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Frontiers in Human Neuroscience, 16, 933718. https://doi.org/10.3389/fnhum.2022.933718\nOrtner, C. N. M., Chadwick, L., \u0026amp; Pennekamp, P. (2022). Do motives matter? Short- and long-term motives as predictors of emotion regulation in everyday life. Emotion, 22(7), 1625\u0026ndash;1638. https://doi.org/10.1037/emo0000989\nOwens, M., \u0026amp; Bunce, H. L. I. (2022). The Potential for Outdoor Nature-Based Interventions in the Treatment and Prevention of Depression. Frontiers in Psychology, 13, 740210. https://doi.org/10.3389/fpsyg.2022.740210\nPaape, D., \u0026amp; Vasishth, S. (2022). Estimating the True Cost of Garden Pathing: A Computational Model of Latent Cognitive Processes. Cognitive Science, 46(8), e13186. https://doi.org/10.1111/cogs.13186\nPagé, M. G., Gauvin, L., Sylvestre, M.-P., Nitulescu, R., Dyachenko, A., \u0026amp; Choinière, M. (2022). An Ecological Momentary Assessment Study of Pain Intensity Variability: Ascertaining Extent, Predictors, and Associations With Quality of Life, Interference and Health Care Utilization Among Individuals Living With Chronic Low Back Pain. The Journal of Pain, 23(7), 1151\u0026ndash;1166. https://doi.org/10.1016/j.jpain.2022.01.001\nPalana, J., Schwartz, S., \u0026amp; Tager-Flusberg, H. (2022). Evaluating the use of cortical entrainment to measure atypical speech processing: A systematic review. Neuroscience \u0026amp; Biobehavioral Reviews, 133, 104506. https://doi.org/10.1016/j.neubiorev.2021.12.029\nPalmer, A. M., Tomko, R. L., Squeglia, L. M., Gray, K. M., Carpenter, M. J., Smith, T. T., Dahne, J., Toll, B. A., \u0026amp; McClure, E. A. (2022). A pilot feasibility study of a behavioral intervention for nicotine vaping cessation among young adults delivered via telehealth. Drug and Alcohol Dependence, 232, 109311. https://doi.org/10.1016/j.drugalcdep.2022.109311\nPan, J., Yan, M., Richter, E. M., Shu, H., \u0026amp; Kliegl, R. (2021). The Beijing Sentence Corpus: A Chinese sentence corpus with eye movement data and predictability norms. Behavior Research Methods, 54(4), 1989\u0026ndash;2000. https://doi.org/10.3758/s13428-021-01730-2\nPapadimitriou, V., \u0026amp; Argyropoulos, V. (2022). The Word Length Effect on Text Reading Via the Braille Code. Scientific Studies of Reading, 26(5), 432\u0026ndash;447. https://doi.org/10.1080/10888438.2022.2047691\nPapagno, C. (2022). The neural correlates of abstract and concrete words. In Handbook of Clinical Neurology (Vol. 187, pp. 263\u0026ndash;275). Elsevier. https://doi.org/10.1016/B978-0-12-823493-8.00018-3\nPapies, E. K., Barsalou, L. W., Claassen, M. A., Davis, T., Farrar, S. T., Gauthier, E., Rodger, A., Tatar, B., Wehbe, L. H., \u0026amp; Werner, J. (2022). Grounding motivation for behavior change. In Advances in Experimental Social Psychology (Vol. 66, pp. 107\u0026ndash;189). Elsevier. https://doi.org/10.1016/bs.aesp.2022.04.002\nParet, C., Unverhau, N., Feingold, F., Poldrack, R. A., Stirner, M., Schmahl, C., \u0026amp; Sicorello, M. (2022). Survey on Open Science Practices in Functional Neuroimaging. NeuroImage, 257, 119306. https://doi.org/10.1016/j.neuroimage.2022.119306\nPark, H., Klishko, A. N., Oh, K., Zhang, C., Grenga, G., Herrin, K. R., Dalton, J. F., Kistenberg, R. S., Lemay, M. A., Pitkin, M., DeWeerth, S. P., \u0026amp; Prilutsky, B. I. (2023). Electrical Stimulation of Distal Tibial Nerve During Stance Phase of Walking May Reverse Effects of Unilateral Paw Pad Anesthesia in the Cat. Motor Control, 27(1), 71\u0026ndash;95. https://doi.org/10.1123/mc.2022-0096\nPark, J., Woolley, J., \u0026amp; Mendes, W. B. (2022). The effects of intranasal oxytocin on black participants\u0026rsquo; responses to outgroup acceptance and rejection. Frontiers in Psychology, 13, 916305. https://doi.org/10.3389/fpsyg.2022.916305\nPatel, T. A., Wilver, N. L., \u0026amp; Cougle, J. R. (2023). Appearance-related safety behaviors predict symptoms of body dysmorphic disorder following internet-based treatment. Body Image, 46, 84\u0026ndash;90. https://doi.org/10.1016/j.bodyim.2023.05.004\nPathan, S., Ford, C., Benson, S., Illingworth, C., Jackson, C., Trickey, D., Mallak, L., \u0026amp; O'Curry, S. (2022). The impact of a hospital staff supervision group on well-being, sense-making, and compassion fatigue. Traumatology. https://doi.org/10.1037/trm0000405\nPathania, A., Euler, M. J., Clark, M., Cowan, R. L., Duff, K., \u0026amp; Lohse, K. R. (2022). Resting EEG spectral slopes are associated with age-related differences in information processing speed. Biological Psychology, 168, 108261. https://doi.org/10.1016/j.biopsycho.2022.108261\nPatra, A., Kirkwood, J., Middleton, E. L., \u0026amp; Thothathiri, M. (2023). Variation in how cognitive control modulates sentence processing. Royal Society Open Science, 10(4), 211969. https://doi.org/10.1098/rsos.211969\nPatterson, A. (2022). The shape of a word: Single word characteristics\u0026rsquo; effect on novice L2 listening comprehension. Applied Linguistics Review, 0(0). https://doi.org/10.1515/applirev-2021-0157\nPatterson, T. G., Beckenkamp, P. R., Ferreira, M., Bauman, A., Carvalho‐e‐Silva, A. P., Ferreira, L. C., \u0026amp; Ferreira, P. H. (2022). The impact of different intensities and domains of physical activity on analgesic use and activity limitation in people with low back pain: A prospective cohort study with a one‐year followup. European Journal of Pain, 26(8), 1636\u0026ndash;1649. https://doi.org/10.1002/ejp.1987\nPavani, J.-B., \u0026amp; Colombo, D. (2022). Trait Hedonism and the Distribution of Savoring and Positive Emotion States in Everyday Life. Psychological Reports, 003329412211354. https://doi.org/10.1177/00332941221135470\nPeelle, J. E., Spehar, B., Jones, M. S., McConkey, S., Myerson, J., Hale, S., Sommers, M. S., \u0026amp; Tye-Murray, N. (2022). Increased Connectivity among Sensory and Motor Regions during Visual and Audiovisual Speech Perception. The Journal of Neuroscience, 42(3), 435\u0026ndash;442. https://doi.org/10.1523/JNEUROSCI.0114-21.2021\nPek, J., Hoisington-Shaw, K. J., \u0026amp; Wegener, D. T. (2022). Avoiding Questionable Research Practices Surrounding Statistical Power Analysis. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 243\u0026ndash;267). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_11\nPellas, J., Renner, F., Ji, J. L., \u0026amp; Damberg, M. (2022). Telephone‐based behavioral activation with mental imagery for depression: A pilot randomized clinical trial in isolated older adults during the Covid‐19 pandemic. International Journal of Geriatric Psychiatry, 37(1), gps.5646. https://doi.org/10.1002/gps.5646\nPeng, D.-C., Moreau, D., Cowie, S., \u0026amp; Addis, D. R. (2023). Cross-national replication of prosocial simulation effect using cumulative link mixed modelling. Journal of Applied Research in Memory and Cognition. https://doi.org/10.1037/mac0000117\nPeng, S., Xu, P., Jiang, Y., \u0026amp; Gong, G. (2022). Activation network mapping for integration of heterogeneous fMRI findings. Nature Human Behaviour, 6(10), 1417\u0026ndash;1429. https://doi.org/10.1038/s41562-022-01371-1\nPeng, Y., Peng, L., Chen, Z., Peng, H., Wang, P., Zhang, Y., Li, Y., Wang, C., Shi, Y., Hou, X., Long, Z., Yuan, H., Wan, N., Wan, L., Xu, K., Lei, L., Wang, S., He, L., Xie, Y., \u0026hellip; Jiang, H. (2022). The Natural History of Spinocerebellar Ataxia Type 3 in Mainland China: A 2-Year Cohort Study. Frontiers in Aging Neuroscience, 14, 917126. https://doi.org/10.3389/fnagi.2022.917126\nPennington, C. R., Jones, A. J., Tzavella, L., Chambers, C. D., \u0026amp; Button, K. S. (2022). Beyond online participant crowdsourcing: The benefits and opportunities of big team addiction science. Experimental and Clinical Psychopharmacology, 30(4), 444\u0026ndash;451. https://doi.org/10.1037/pha0000541\nPenry-Williams, I. L., Brown, C., \u0026amp; Ioannou, C. C. (2022). Detecting behavioural lateralisation in Poecilia reticulata is strongly dependent on experimental design. Behavioral Ecology and Sociobiology, 76(2), 25. https://doi.org/10.1007/s00265-022-03135-3\nPerez Santangelo, A., Ludwig, C. J. H., Navajas, J., Sigman, M., \u0026amp; Leone, M. J. (2022). Background music changes the policy of human decision-making: Evidence from experimental and drift-diffusion model-based approaches on different decision tasks. Journal of Experimental Psychology: General, 151(9), 2222\u0026ndash;2236. https://doi.org/10.1037/xge0001189\nPeriñán-Pascual, C. (2022). Measuring associational thinking through word embeddings. Artificial Intelligence Review, 55(3), 2065\u0026ndash;2102. https://doi.org/10.1007/s10462-021-10056-6\nPerski, O., Keller, J., Kale, D., Asare, B. Y.-A., Schneider, V., Powell, D., Naughton, F., Ten Hoor, G., Verboon, P., \u0026amp; Kwasnicka, D. (2022). Understanding health behaviours in context: A systematic review and meta-analysis of ecological momentary assessment studies of five key health behaviours. Health Psychology Review, 16(4), 576\u0026ndash;601. https://doi.org/10.1080/17437199.2022.2112258\nPeters, U., Krauss, A., \u0026amp; Braganza, O. (2022). Generalization Bias in Science. Cognitive Science, 46(9), e13188. https://doi.org/10.1111/cogs.13188\nPetersen, I. T., Apfelbaum, K. S., \u0026amp; McMurray, B. (2022). Adapting open science and pre‐registration to longitudinal research. Infant and Child Development, e2315. https://doi.org/10.1002/icd.2315\nPeterson, C., Wang, Q., Lillington, N. B., \u0026amp; Hallett, D. (2022). Strategies for dating earliest memories. Applied Cognitive Psychology, 36(5), 1095\u0026ndash;1105. https://doi.org/10.1002/acp.3993\nPetilli, M. A., Günther, F., \u0026amp; Marelli, M. (2022a). The Flickr frequency norms: What 17 years of images tagged online tell us about lexical processing. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02031-y\nPetilli, M. A., Günther, F., \u0026amp; Marelli, M. (2022b). The Flickr frequency norms: What 17 years of images tagged online tell us about lexical processing. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02031-y\nPetre, B., Kragel, P., Atlas, L. Y., Geuter, S., Jepma, M., Koban, L., Krishnan, A., Lopez-Sola, M., Losin, E. A. R., Roy, M., Woo, C.-W., \u0026amp; Wager, T. D. (2022). A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems. PLOS Biology, 20(5), e3001620. https://doi.org/10.1371/journal.pbio.3001620\nPetsko, C. D., \u0026amp; Rosette, A. S. (2023). Are leaders still presumed white by default? Racial bias in leader categorization revisited. Journal of Applied Psychology, 108(2), 330\u0026ndash;340. https://doi.org/10.1037/apl0001020\nPetsko, C. D., Rosette, A. S., \u0026amp; Bodenhausen, G. V. (2022). Through the looking glass: A lens-based account of intersectional stereotyping. Journal of Personality and Social Psychology, 123(4), 763\u0026ndash;787. https://doi.org/10.1037/pspi0000382\nPickholtz, R., Kiflawi, M., Crossin, G. T., Pickholtz, E. Y., Zamsky, R., Kahan, I., Gavriel, T., \u0026amp; Belmaker, J. (2022). Highly repetitive space-use dynamics in parrotfishes. Coral Reefs, 41(4), 1059\u0026ndash;1073. https://doi.org/10.1007/s00338-022-02258-3\nPietschnig, J., Gerdesmann, D., Zeiler, M., \u0026amp; Voracek, M. (2022). Of differing methods, disputed estimates and discordant interpretations: The meta-analytical multiverse of brain volume and IQ associations. Royal Society Open Science, 9(5), 211621. https://doi.org/10.1098/rsos.211621\nPike, A. C., \u0026amp; Robinson, O. J. (2022). Reinforcement Learning in Patients With Mood and Anxiety Disorders vs Control Individuals: A Systematic Review and Meta-analysis. JAMA Psychiatry, 79(4), 313. https://doi.org/10.1001/jamapsychiatry.2022.0051\nPillai, R. M., Brown-Schmidt, S., \u0026amp; Fazio, L. K. (2023). Does wording matter? Examining the effect of phrasing on memory for negated political fact checks. Journal of Applied Research in Memory and Cognition, 12(1), 48\u0026ndash;58. https://doi.org/10.1037/mac0000022\nPintos, A. S., Hui, C. L.-M., De Deyne, S., Cheung, C., Ko, W. T., Nam, S. Y., Chan, S. K.-W., Chang, W.-C., Lee, E. H.-M., Lo, A. W.-F., Lo, T.-L., Elvevåg, B., \u0026amp; Chen, E. Y.-H. (2022). A Longitudinal Study of Semantic Networks in Schizophrenia and other Psychotic Disorders Using the Word Association Task. Schizophrenia Bulletin Open, 3(1), sgac054. https://doi.org/10.1093/schizbullopen/sgac054\nPirnau, M., Priescu, I., Joita, D., \u0026amp; Priescu, C. (2022). The correlation between Internet user searches and Blockchain technology. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1\u0026ndash;6. https://doi.org/10.1109/ECAI54874.2022.9847447\nPittrich, K., \u0026amp; Schroeder, S. (2023). Reading vertically and horizontally mirrored text: An eye movement investigation. Quarterly Journal of Experimental Psychology, 76(2), 271\u0026ndash;283. https://doi.org/10.1177/17470218221085943\nPlank, I. S., Traiger, L. S., Nelson, A. M., Koehler, J. C., Lang, S. F., Tepest, R., Vogeley, K., Georgescu, A. L., \u0026amp; Falter-Wagner, C. M. (2023). The role of interpersonal synchrony in forming impressions of autistic and non-autistic adults. Scientific Reports, 13(1), 15306. https://doi.org/10.1038/s41598-023-42006-3\nPlate, R. C., Woodard, K., \u0026amp; Pollak, S. D. (2023). Category Flexibility in Emotion Learning. Affective Science, 4(4), 722\u0026ndash;730. https://doi.org/10.1007/s42761-023-00192-3\nPlate, R. C., Zhao, S., Katz, C., Graber, E., Daley, G., Corbett, N., All, K., Neumann, C. S., \u0026amp; Waller, R. (2022). Are you laughing with me or at me? Psychopathic traits and the ability to distinguish between affiliation and dominance laughter cues. Journal of Personality, 90(4), 631\u0026ndash;644. https://doi.org/10.1111/jopy.12687\nPodrekar Loredan, N., Lipovac, D., Jordan, S., Burnard, M. D., \u0026amp; Šarabon, N. (2022). Thermal effusivity of different tabletop materials in relation to users\u0026rsquo; perception. Applied Ergonomics, 100, 103664. https://doi.org/10.1016/j.apergo.2021.103664\nPollok, T. M., Kaiser, A., Kraaijenvanger, E. J., Monninger, M., Brandeis, D., Banaschewski, T., Eickhoff, S. B., \u0026amp; Holz, N. E. (2022). Neurostructural traces of early life adversities: A meta-analysis exploring age- and adversity-specific effects. Neuroscience \u0026amp; Biobehavioral Reviews, 135, 104589. https://doi.org/10.1016/j.neubiorev.2022.104589\nPolonenko, M. J., \u0026amp; Maddox, R. K. (2022). Optimizing Parameters for Using the Parallel Auditory Brainstem Response to Quickly Estimate Hearing Thresholds. Ear \u0026amp; Hearing, 43(2), 646\u0026ndash;658. https://doi.org/10.1097/AUD.0000000000001128\nPoortinga, Y. H., \u0026amp; Fontaine, J. R. J. (2022). Principles and Practices of Methodology and Methods in Cross-Cultural Psychology. Journal of Cross-Cultural Psychology, 53(7\u0026ndash;8), 847\u0026ndash;859. https://doi.org/10.1177/00220221221093811\nPopova, K. (2022). Reproducibility and Instruction Following in the Shop Floor Laboratory Work: The Case of a TMS Experiment. Science, Technology, \u0026amp; Human Values, 47(5), 882\u0026ndash;909. https://doi.org/10.1177/01622439211032392\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355\u0026ndash;381. https://doi.org/10.19090/pp.v15i3.2400\nPorter, T., \u0026amp; Cimpian, A. (2023). A context's emphasis on intellectual ability discourages the expression of intellectual humility. Motivation Science, 9(2), 120\u0026ndash;130. https://doi.org/10.1037/mot0000289\nPott, C. (2022). Das Konstrukt der »Außerhäuslichen Gehfähigkeit von Personen in der chronischen Phase nach Schlaganfall« \u0026ndash; Scoping Review. Neurologie \u0026amp; Rehabilitation, 28(03), 147\u0026ndash;163. https://doi.org/10.14624/NR2203001\nPotts, C. A., \u0026amp; Kantak, S. S. (2023). Post-stroke deficits in the anticipatory control and bimanual coordination during naturalistic cooperative bimanual action. Journal of NeuroEngineering and Rehabilitation, 20(1), 153. https://doi.org/10.1186/s12984-023-01257-x\nPrentice, P. M., Mnatzaganian, C., Houslay, T. M., Thornton, A., \u0026amp; Wilson, A. J. (2022). Individual differences in spatial learning are correlated across tasks but not with stress response behaviour in guppies. Animal Behaviour, 188, 133\u0026ndash;146. https://doi.org/10.1016/j.anbehav.2022.04.009\nPriede, A., Rodríguez‐Pérez, N., Hoyuela, F., Cordero‐Andrés, P., Umaran‐Alfageme, O., \u0026amp; González‐Blanch, C. (2022). Cognitive variables associated with depressive and anxiety symptoms in patients with cancer: A five‐year follow‐up study. Psycho-Oncology, 31(5), 798\u0026ndash;805. https://doi.org/10.1002/pon.5864\nProchazka, A., Charvatova, H., \u0026amp; Vysata, O. (2022). The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2467\u0026ndash;2473. https://doi.org/10.1109/TNSRE.2022.3201487\nPrystauka, Y., Altmann, G. T. M., \u0026amp; Rothman, J. (2023). Online eye tracking and real-time sentence processing: On opportunities and efficacy for capturing psycholinguistic effects of different magnitudes and diversity. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02176-4\nPuiu, A. A., Votinov, M., Habel, U., \u0026amp; Konrad, K. (2022). Testosterone administration does not alter the brain activity supporting cognitive and affective empathy. Comprehensive Psychoneuroendocrinology, 10, 100134. https://doi.org/10.1016/j.cpnec.2022.100134\nPulido, M. F. (2023). Generalizing Knowledge of Second Language Collocations: The Roles of Within‐ and Cross‐Language Similarity on Acceptability and Event‐Related Potentials. Language Learning, 73(2), 578\u0026ndash;612. https://doi.org/10.1111/lang.12543\nPuścian, A., \u0026amp; Knapska, E. (2022). Blueprints for measuring natural behavior. iScience, 25(7), 104635. https://doi.org/10.1016/j.isci.2022.104635\nQiu, Y., Fan, Z., Zhong, M., Yang, J., Wu, K., Huiqing, H., Zhang, R., Guo, Y., Lee, T. M. C., \u0026amp; Huang, R. (2022). Brain activation elicited by acute stress: An ALE meta-analysis. Neuroscience \u0026amp; Biobehavioral Reviews, 132, 706\u0026ndash;724. https://doi.org/10.1016/j.neubiorev.2021.11.020\nQuindazzi, M. J., Summers, A. P., \u0026amp; Juanes, F. (2022). Efficiency is doing things right: High-throughput, automated, 3D methods in the modern era of otolith morphometrics. Canadian Journal of Fisheries and Aquatic Sciences, 79(3), 429\u0026ndash;435. https://doi.org/10.1139/cjfas-2021-0088\nQuique, Y. M., Cavanaugh, R., Lescht, E., \u0026amp; Evans, W. S. (2022). Applying adaptive distributed practice to self-managed computer-based anomia treatment: A single-case experimental design. Journal of Communication Disorders, 99, 106249. https://doi.org/10.1016/j.jcomdis.2022.106249\nQuique, Y. M., Evans, W. S., Ortega-Llebaría, M., Zipse, L., \u0026amp; Dickey, M. W. (2022). Get in Sync: Active Ingredients and Patient Profiles in Scripted-Sentence Learning in Spanish Speakers With Aphasia. Journal of Speech, Language, and Hearing Research, 65(4), 1478\u0026ndash;1493. https://doi.org/10.1044/2021_JSLHR-21-00060\nRaccah, O., Doelling, K. B., Davachi, L., \u0026amp; Poeppel, D. (2023). Acoustic features drive event segmentation in speech. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(9), 1494\u0026ndash;1504. https://doi.org/10.1037/xlm0001150\nRadovanovic, M., Chao, T. W.-T., Onyshko, E., Huynh, Q. D. T., Liu, Y. L., \u0026amp; Sommerville, J. A. (2023). Not just if, but how much: Children and adults use cost and need to make evaluations about generosity across contexts. Cognition, 238, 105533. https://doi.org/10.1016/j.cognition.2023.105533\nRadtke Caneppele, N., Ribeiro Serra, F. A., Contreras Pinochet, L. H., \u0026amp; Ramos Ribeiro, I. M. (2022). Potential and challenges for using neuroscientific tools in strategic management studies. RAUSP Management Journal, 57(3), 235\u0026ndash;263. https://doi.org/10.1108/RAUSP-01-2021-0014\nRaduga, M. (2022). Predicting the efficiency of lucid dreaming practice. Dreaming, 32(4), 382\u0026ndash;392. https://doi.org/10.1037/drm0000223\nRajtmajer, S. M., Errington, T. M., \u0026amp; Hillary, F. G. (2022). How failure to falsify in high-volume science contributes to the replication crisis. eLife, 11, e78830. https://doi.org/10.7554/eLife.78830\nRamos, J., Grant, M. D., Dickert, S., Eom, K., Flores, A., Jiga-Boy, G. M., Kogut, T., Mayorga, M., Pedersen, E. J., Pereira, B., Rubaltelli, E., Sherman, D. K., Slovic, P., Västfjäll, D., \u0026amp; Van Boven, L. (2022). Structured reflection increases intentions to reduce other people's health risks during COVID-19. PNAS Nexus, 1(5), pgac218. https://doi.org/10.1093/pnasnexus/pgac218\nRane, R. P., De Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., Banaschewski, T., Bokde, A. L., Desrivieres, S., Flor, H., Grigis, A., Garavan, H., Gowland, P. A., Brühl, R., Martinot, J.-L., Martinot, M.-L. P., Artiges, E., Nees, F., Papadopoulos Orfanos, D., \u0026hellip; IMAGEN consortium. (2022). Structural differences in adolescent brains can predict alcohol misuse. eLife, 11, e77545. https://doi.org/10.7554/eLife.77545\nRanganathan, R., Doherty, C., Gussert, M., Kaplinski, E., Koje, M., \u0026amp; Krishnan, C. (2022). Scientific basis and active ingredients of current therapeutic interventions for stroke rehabilitation. Restorative Neurology and Neuroscience, 40(2), 97\u0026ndash;107. https://doi.org/10.3233/RNN-211243\nRanjan, S., Rajkumar, R., \u0026amp; Agarwal, S. (2022). Locality and expectation effects in Hindi preverbal constituent ordering. Cognition, 223, 104959. https://doi.org/10.1016/j.cognition.2021.104959\nRapp, P. E., Cellucci, C., Darmon, D., \u0026amp; Keyser, D. (2022). Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice. Psychiatry International, 3(2), 181\u0026ndash;205. https://doi.org/10.3390/psychiatryint3020015\nRatcliff, R., \u0026amp; Vanunu, Y. (2022). The effect of aging on decision-making while driving: A diffusion model analysis. Psychology and Aging, 37(4), 441\u0026ndash;455. https://doi.org/10.1037/pag0000690\nRatcliffe, J. H. (2022). Evidence-Based Policing: The Basics (1st ed.). Routledge. https://doi.org/10.4324/9781003145684\nReger, M., Kutschan, S., Freuding, M., Schmidt, T., Josfeld, L., \u0026amp; Huebner, J. (2022). Water therapies (hydrotherapy, balneotherapy or aqua therapy) for patients with cancer: A systematic review. Journal of Cancer Research and Clinical Oncology, 148(6), 1277\u0026ndash;1297. https://doi.org/10.1007/s00432-022-03947-w\nRehman, M. Y. A., Briedé, J. J., Van Herwijnen, M., Krauskopf, J., Jennen, D. G. J., Malik, R. N., \u0026amp; Kleinjans, J. C. S. (2022). Integrating SNPs-based genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals disease-associated signaling pathways. Environmental Pollution, 292, 118279. https://doi.org/10.1016/j.envpol.2021.118279\nReis, D., \u0026amp; Friese, M. (2022). The Myriad Forms of p-Hacking. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 101\u0026ndash;121). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_5\nReit, E. S., \u0026amp; Gruenfeld, D. H. (2022). Considering the role of second-order respect in individuals\u0026rsquo; deference to dominant actors. Journal of Experimental Social Psychology, 101, 104326. https://doi.org/10.1016/j.jesp.2022.104326\nRen, D., Stavrova, O., \u0026amp; Loh, W. W. (2022). Nonlinear effect of social interaction quantity on psychological well-being: Diminishing returns or inverted U? Journal of Personality and Social Psychology, 122(6), 1056\u0026ndash;1074. https://doi.org/10.1037/pspi0000373\nRen, D., Wesselmann, E. D., Loh, W. W., Van Beest, I., Van Leeuwen, F., \u0026amp; Sleegers, W. W. A. (2023). Do cues of infectious disease shape people's affective responses to social exclusion? Emotion, 23(4), 997\u0026ndash;1010. https://doi.org/10.1037/emo0001157\nRen, W., Ji, B., Guan, Y., Cao, L., \u0026amp; Ni, R. (2022). Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Frontiers in Medicine, 9, 771982. https://doi.org/10.3389/fmed.2022.771982\nRenard Triché, L., Futier, E., De Carvalho, M., Piñol-Domenech, N., Bodet-Contentin, L., Jabaudon, M., \u0026amp; Pereira, B. (2023). Sample size estimation in clinical trials using ventilator-free days as the primary outcome: A systematic review. Critical Care, 27(1), 303. https://doi.org/10.1186/s13054-023-04562-y\nRenna, M. E., Spaeth, P. E., Quintero, J. M., O'Toole, M. S., Sandman, C. F., Fresco, D. M., \u0026amp; Mennin, D. S. (2023). A randomized controlled trial comparing two doses of emotion regulation therapy: Preliminary evidence that gains in attentional and metacognitive regulation reduce worry, rumination, and distress. Behaviour Research and Therapy, 170, 104420. https://doi.org/10.1016/j.brat.2023.104420\nRepetti, C., Eskenazi, M., \u0026amp; Garcia, S. (2022). You feel me? A randomized trial of tDCS on pain empathy. International Journal of Psychophysiology, 179, 1\u0026ndash;5. https://doi.org/10.1016/j.ijpsycho.2022.06.012\nRethlefsen, M. L., Norton, H. F., Meyer, S. L., MacWilkinson, K. A., Smith, P. L., \u0026amp; Ye, H. (2022). Interdisciplinary Approaches and Strategies from Research Reproducibility 2020: Educating for Reproducibility. Journal of Statistics and Data Science Education, 30(3), 219\u0026ndash;227. https://doi.org/10.1080/26939169.2022.2104767\nReverte-Pagola, G., Sánchez-Trigo, H., Saxton, J., \u0026amp; Sañudo, B. (2022). Supervised and Non-Supervised Exercise Programs for the Management of Cancer-Related Fatigue in Women with Breast Cancer: A Systematic Review and Meta-Analysis. Cancers, 14(14), 3428. https://doi.org/10.3390/cancers14143428\nRey, L., Désoche, C., Saive, A.-L., Thévenet, M., Garcia, S., Tillmann, B., \u0026amp; Plailly, J. (2023). Episodic memory and recognition are influenced by cues\u0026rsquo; sensory modality: Comparing odours, music and faces using virtual reality. Memory, 31(9), 1113\u0026ndash;1133. https://doi.org/10.1080/09658211.2023.2208793\nRhodes, S., Buchsbaum, B. R., \u0026amp; Hasher, L. (2022). The influence of long-term memory on working memory: Age-differences in proactive facilitation and interference. Psychonomic Bulletin \u0026amp; Review, 29(1), 191\u0026ndash;202. https://doi.org/10.3758/s13423-021-01981-2\nRiccardi, N., Rorden, C., Fridriksson, J., \u0026amp; Desai, R. H. (2022). Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? Neurobiology of Language, 3(2), 318\u0026ndash;344. https://doi.org/10.1162/nol_a_00067\nRichards, A., Inslicht, S. S., Yack, L. M., Metzler, T. J., Russell Huie, J., Straus, L. D., Dukes, C., Hubachek, S. Q., Felmingham, K. L., Mathalon, D. H., Woodward, S. H., \u0026amp; Neylan, T. C. (2022). The relationship of fear-potentiated startle and polysomnography-measured sleep in trauma-exposed men and women with and without PTSD: Testing REM sleep effects and exploring the roles of an integrative measure of sleep, PTSD symptoms, and biological sex. Sleep, 45(1), zsab271. https://doi.org/10.1093/sleep/zsab271\nRichards, S. E., Sumner, P. J., Tan, E. J., Meyer, D., Rossell, S. L., \u0026amp; Carruthers, S. P. (2023). A detailed examination of pitch discrimination deficits associated with auditory verbal hallucinations in schizophrenia. Schizophrenia Research, 257, 19\u0026ndash;24. https://doi.org/10.1016/j.schres.2023.05.013\nRichie, R., Aka, A., \u0026amp; Bhatia, S. (2023). Free association in a neural network. Psychological Review, 130(5), 1360\u0026ndash;1382. https://doi.org/10.1037/rev0000396\nRickard, T. C., Pan, S. C., \u0026amp; Gupta, M. W. (2022). Severe publication bias contributes to illusory sleep consolidation in the motor sequence learning literature. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(12), 1787\u0026ndash;1796. https://doi.org/10.1037/xlm0001090\nRidley, B. J., Cornelissen, P. L., Maalin, N., Mohamed, S., Kramer, R. S. S., McCarty, K., \u0026amp; Tovée, M. J. (2022). The degree to which the cultural ideal is internalized predicts judgments of male and female physical attractiveness. Frontiers in Psychology, 13, 980277. https://doi.org/10.3389/fpsyg.2022.980277\nRiedel, L., Van Den Heuvel, M. P., \u0026amp; Markett, S. (2022). Trajectory of rich club properties in structural brain networks. Human Brain Mapping, 43(14), 4239\u0026ndash;4253. https://doi.org/10.1002/hbm.25950\nRiesthuis, P., Mangiulli, I., Broers, N., \u0026amp; Otgaar, H. (2022). Expert opinions on the smallest effect size of interest in false memory research. Applied Cognitive Psychology, 36(1), 203\u0026ndash;215. https://doi.org/10.1002/acp.3911\nRighetti, F., Faure, R., Zoppolat, G., Meltzer, A., \u0026amp; McNulty, J. (2022). Factors that contribute to the maintenance or decline of relationship satisfaction. Nature Reviews Psychology, 1(3), 161\u0026ndash;173. https://doi.org/10.1038/s44159-022-00026-2\nRitter, L. A., Maldarelli, M., McCurdy, M. T., Yamane, D. P., Davison, D., Parrino, C., Yim, D. N., Lee, M., Mazzeffi, M. A., \u0026amp; Chow, J. H. (2022). Effects of a single bolus of hydroxocobalamin on hemodynamics in vasodilatory shock. Journal of Critical Care, 67, 66\u0026ndash;71. https://doi.org/10.1016/j.jcrc.2021.09.024\nRivero-Contreras, M., Engelhardt, P. E., Delgado, P., \u0026amp; Saldaña, D. (2023). Does the Timing of Visual Support Affect Sentence Comprehension? An Eye-Tracking Study. The Journal of Experimental Education, 1\u0026ndash;20. https://doi.org/10.1080/00220973.2023.2287444\nRoberto Cubelli. (2022). Embodied cognition: Nessuna rivoluzione. Giornale italiano di psicologia, 2, 437\u0026ndash;443. https://doi.org/10.1421/105154\nRoberts, B. W., \u0026amp; Yoon, H. J. (2022). Personality Psychology. Annual Review of Psychology, 73(1), 489\u0026ndash;516. https://doi.org/10.1146/annurev-psych-020821-114927\nRoche, F., Becker, S., \u0026amp; Thüring, M. (2022). What happens when drivers of automated vehicles take over control in critical lane change situations? Transportation Research Part F: Traffic Psychology and Behaviour, 84, 407\u0026ndash;422. https://doi.org/10.1016/j.trf.2021.11.021\nRodas, J. A., \u0026amp; Greene, C. M. (2022). Working memory training does not improve executive functioning or fluid intelligence. Quarterly Journal of Experimental Psychology, 75(4), 666\u0026ndash;679. https://doi.org/10.1177/17470218211039502\nRohde, A., McCracken, M., Worrall, L., Farrell, A., O'Halloran, R., Godecke, E., David, M., \u0026amp; Doi, S. A. (2022). Inter-rater reliability, intra-rater reliability and internal consistency of the Brisbane Evidence-Based Language Test. Disability and Rehabilitation, 44(4), 637\u0026ndash;645. https://doi.org/10.1080/09638288.2020.1776774\nRolland, X., Maurel, P., \u0026amp; Maumet, C. (2022). Towards Efficient FMRI Data Re-Use: Can We Run Between-Group Analyses with Datasets Processed Differently with SPM? 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 1\u0026ndash;4. https://doi.org/10.1109/ISBI52829.2022.9761471\nRomano, F. (2022). Task effects and the yes-bias in heritage language bilingualism. International Journal of Bilingualism, 136700692110527. https://doi.org/10.1177/13670069211052770\nRootes-Murdy, K., Gazula, H., Verner, E., Kelly, R., DeRamus, T., Plis, S., Sarwate, A., Turner, J., \u0026amp; Calhoun, V. (2022). Federated Analysis of Neuroimaging Data: A Review of the Field. Neuroinformatics, 20(2), 377\u0026ndash;390. https://doi.org/10.1007/s12021-021-09550-7\nRösch, S. A., Schmidt, R., Wimmer, J., Lührs, M., Ehlis, A.-C., \u0026amp; Hilbert, A. (2023). Mechanisms underlying fNIRS-neurofeedback over the prefrontal cortex for participants with binge-eating disorder. Clinical Neurophysiology, 156, 57\u0026ndash;68. https://doi.org/10.1016/j.clinph.2023.09.011\nRosenberg, L., \u0026amp; Kruk, R. S. (2022). Coarse or fine? Grain size and morpho-orthographic segmentation in struggling readers. Annals of Dyslexia, 72(1), 28\u0026ndash;55. https://doi.org/10.1007/s11881-021-00240-2\nRosenblat, M. A., Granata, C., \u0026amp; Thomas, S. G. (2022). Effect of Interval Training on the Factors Influencing Maximal Oxygen Consumption: A Systematic Review and Meta-Analysis. Sports Medicine, 52(6), 1329\u0026ndash;1352. https://doi.org/10.1007/s40279-021-01624-5\nRosenblatt, S. E., Wetmore, L. S., \u0026amp; Anderson, T. W. (2022). Impacts of an invasive alga on recruitment of a temperate reef fish. Journal of Experimental Marine Biology and Ecology, 551, 151733. https://doi.org/10.1016/j.jembe.2022.151733\nRoss-Hellauer, T., Reichmann, S., Cole, N. L., Fessl, A., Klebel, T., \u0026amp; Pontika, N. (2022). Dynamics of cumulative advantage and threats to equity in open science: A scoping review. Royal Society Open Science, 9(1), 211032. https://doi.org/10.1098/rsos.211032\nRouphael, A. B. (2022). The replicability crisis in science and protected area research: Poor practices and potential solutions. Journal for Nature Conservation, 69, 126236. https://doi.org/10.1016/j.jnc.2022.126236\nRozenblatt-Perkal, Y., Davidovitch, M., \u0026amp; Gueron-Sela, N. (2022). Infants\u0026rsquo; physiological and behavioral reactivity to maternal mobile phone use \u0026ndash; An experimental study. Computers in Human Behavior, 127, 107038. https://doi.org/10.1016/j.chb.2021.107038\nRubin, M., Bhattacharya, N., Gwizdka, J., Griffin, Z., \u0026amp; Telch, M. (2022). The influence of PTSD symptoms on selective visual attention while reading. Cognition and Emotion, 36(3), 527\u0026ndash;534. https://doi.org/10.1080/02699931.2021.2016639\nRussell, A. A. M., Sutherland, B. A., Landowski, L. M., Macleod, M., \u0026amp; Howells, D. W. (2022). What has preclinical systematic review ever done for us? BMJ Open Science, 6(1). https://doi.org/10.1136/bmjos-2021-100219\nRusso, D., Hanel, P. H. P., Altnickel, S., \u0026amp; Van Berkel, N. (2023). Satisfaction and performance of software developers during enforced work from home in the COVID-19 pandemic. Empirical Software Engineering, 28(2), 53. https://doi.org/10.1007/s10664-023-10293-z\nRuwe, T., \u0026amp; Mayweg-Paus, E. (2023). \u0026ldquo;Your argumentation is good\u0026rdquo;, says the AI vs humans \u0026ndash; The role of feedback providers and personalised language for feedback effectiveness. Computers and Education: Artificial Intelligence, 5, 100189. https://doi.org/10.1016/j.caeai.2023.100189\nRyeland, J., Magrath, M. J. L., \u0026amp; Weston, M. A. (2022). Day\u0026ndash;night cycle influences the division of incubation in the Hooded Dotterel ( Thinornis cucullatus ). Ibis, 164(3), 785\u0026ndash;792. https://doi.org/10.1111/ibi.13040\nSaberi, A., Mohammadi, E., Zarei, M., Eickhoff, S. B., \u0026amp; Tahmasian, M. (2022). Structural and functional neuroimaging of late-life depression: A coordinate-based meta-analysis. Brain Imaging and Behavior, 16(1), 518\u0026ndash;531. https://doi.org/10.1007/s11682-021-00494-9\nSafavian, N., Lee, G., Dicke, A.-L., Karabenick, S. A., \u0026amp; Eccles, J. S. (2022). Disentangling Perceived Educational Support Sources and Types in Adolescence and Latinas\u0026rsquo; Educational Attainment in Adulthood. Hispanic Journal of Behavioral Sciences, 44(2), 123\u0026ndash;148. https://doi.org/10.1177/07399863231153292\nSafra, L., Lettinga, N., Jacquet, P. O., \u0026amp; Chevallier, C. (2022). Variability in repeated economic games: Comparing trust game decisions to other social trust measures. Royal Society Open Science, 9(9), 210213. https://doi.org/10.1098/rsos.210213\nSaito, T., Almaraz, S. M., \u0026amp; Hugenberg, K. (2022). Happy = Human: A Feeling of Belonging Modulates the \u0026ldquo;Expression-to-Mind\u0026rdquo; Effect. Social Cognition, 40(3), 213\u0026ndash;227. https://doi.org/10.1521/soco.2022.40.3.213\nSaito, T., Motoki, K., \u0026amp; Takano, Y. (2023). Cultural differences in recognizing emotions of masked faces. Emotion, 23(6), 1648\u0026ndash;1657. https://doi.org/10.1037/emo0001181\nSalcedo, J. C., \u0026amp; Jimenez‐Leal, W. (2023). Severity and deservedness determine signalled trustworthiness in third party punishment. British Journal of Social Psychology, bjso.12687. https://doi.org/10.1111/bjso.12687\nSalminen, L. E., Tubi, M. A., Bright, J., Thomopoulos, S. I., Wieand, A., \u0026amp; Thompson, P. M. (2022). Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Human Brain Mapping, 43(1), 500\u0026ndash;542. https://doi.org/10.1002/hbm.25438\nSalvalaggio, S., Cacciante, L., Maistrello, L., \u0026amp; Turolla, A. (2023). Clinical Predictors for Upper Limb Recovery after Stroke Rehabilitation: Retrospective Cohort Study. Healthcare, 11(3), 335. https://doi.org/10.3390/healthcare11030335\nSandgren, O., Andersson, K., Lyberg Åhlander, V., Rosqvist, I., Hansson, K., \u0026amp; Sahlén, B. (2023). A randomized controlled trial of the effectiveness of teacher continued professional development on student language outcomes. International Journal of Language \u0026amp; Communication Disorders, 58(3), 879\u0026ndash;891. https://doi.org/10.1111/1460-6984.12829\nSantana, A. P., Korn, L., Betsch, C., \u0026amp; Böhm, R. (2022). Lessons learned about willingness to adopt various protective measures during the early COVID-19 pandemic in three countries. PLOS ONE, 17(3), e0265892. https://doi.org/10.1371/journal.pone.0265892\nSantos, B. F. E., Costa, F. O., Vasconcelos, A. M. A., Cyrino, R. M., \u0026amp; Cota, L. O. M. (2022). Preemptive effects of ibuprofen and nimesulide on postoperative pain control after open flap periodontal surgeries: A randomized placebo‐controlled split‐mouth clinical trial. Journal of Periodontology, 93(2), 300\u0026ndash;309. https://doi.org/10.1002/JPER.20-0887\nSáringer, S., Fehér, Á., Sáry, G., \u0026amp; Kaposvári, P. (2022). Online measurement of learning temporal statistical structure in categorization tasks. Memory \u0026amp; Cognition, 50(7), 1530\u0026ndash;1545. https://doi.org/10.3758/s13421-022-01302-5\nSatchell, L., Jaeger, B., Jones, A., López, B., \u0026amp; Schild, C. (2023). Beyond reliability in first impressions research: Considering validity and the need to \u0026ldquo;Mix it up with folks.\u0026rdquo; Social Psychological Bulletin, 18, e10211. https://doi.org/10.32872/spb.10211\nSaunders, T. J., McIsaac, T., Campbell, J., Douillette, K., Janssen, I., Tomasone, J. R., Ross-White, A., Prince, S. A., \u0026amp; Chaput, J.-P. (2022). Timing of sedentary behaviour and access to sedentary activities in the bedroom and their association with sleep quality and duration in children and youth: A systematic review. Health Promotion and Chronic Disease Prevention in Canada, 42(4), 139\u0026ndash;149. https://doi.org/10.24095/hpcdp.42.4.03\nScaltritti, M., Job, R., \u0026amp; Sulpizio, S. (2022). Different types of semantic interference, same lapses of attention: Evidence from Stroop tasks. Memory \u0026amp; Cognition, 50(5), 898\u0026ndash;910. https://doi.org/10.3758/s13421-021-01256-0\nSchebesta, A., \u0026amp; Kunter, G. (2022). Constituent durations in English NNN compounds: A case of strategic speaker behavior? Journal of Phonetics, 94, 101164. https://doi.org/10.1016/j.wocn.2022.101164\nScheller, M., \u0026amp; Sui, J. (2022). The power of the self: Anchoring information processing across contexts. Journal of Experimental Psychology: Human Perception and Performance, 48(9), 1001\u0026ndash;1021. https://doi.org/10.1037/xhp0001017\nSchiltz, M., Beeckmans, N., Gillard, B., De Baere, T., \u0026amp; Hatem, S. M. (2022). Randomized controlled trial of suprascapular nerve blocks for subacute adhesive capsulitis. European Journal of Physical and Rehabilitation Medicine, 58(4). https://doi.org/10.23736/S1973-9087.22.07410-X\nSchirmer, A., Cham, C., Zhao, Z., Lai, O., Lo, C., \u0026amp; Croy, I. (2022). Understanding sex differences in affective touch: Sensory pleasantness, social comfort, and precursive experiences. Physiology \u0026amp; Behavior, 250, 113797. https://doi.org/10.1016/j.physbeh.2022.113797\nSchlögl, M., Roller-Wirnsberger, R. E., Hernes, S. S., Perkisas, S., Bakken, M. S., Miot, S., Balci, C., Dani, M., Pajulammi, H., Piaggi, P., Drenth-van Maanen, C., \u0026amp; Singler, K. (2022). Teaching geriatric medicine through gamification: A tool for enhancing postgraduate education in geriatric medicine. Aging Clinical and Experimental Research, 34(2), 455\u0026ndash;463. https://doi.org/10.1007/s40520-021-01933-9\nSchmidtke, D., Rahmanian, S., \u0026amp; Moro, A. L. (2022). Morphological knowledge in English learner university students is sensitive to language statistics: A longitudinal study. Applied Psycholinguistics, 43(4), 889\u0026ndash;919. https://doi.org/10.1017/S0142716422000182\nSchmidtke, D., Rahmanian, S., \u0026amp; Moro, A. L. (2023). Tracking reading development in an English language university-level bridging program: Evidence from eye-movements during passage reading. Bilingualism: Language and Cognition, 26(2), 356\u0026ndash;370. https://doi.org/10.1017/S1366728922000542\nSchnur, T. T., \u0026amp; Lei, C.-M. (2022). Assessing naming errors using an automated machine learning approach. Neuropsychology, 36(8), 709\u0026ndash;718. https://doi.org/10.1037/neu0000860\nSchoenlein, M. A., Campos, J., Lande, K. J., Lessard, L., \u0026amp; Schloss, K. B. (2022). Unifying Effects of Direct and Relational Associations for Visual Communication. IEEE Transactions on Visualization and Computer Graphics, 1\u0026ndash;11. https://doi.org/10.1109/TVCG.2022.3209443\nSchoknecht, P., Roehm, D., Schlesewsky, M., \u0026amp; Bornkessel-Schlesewsky, I. (2022). The interaction of predictive processing and similarity-based retrieval interference: An ERP study. Language, Cognition and Neuroscience, 37(7), 883\u0026ndash;901. https://doi.org/10.1080/23273798.2022.2026421\nSchubert, E. (2023). Unexpected Aspects of Expectancy in Music: A Spreading Activation Explanation. Psihologijske Teme, 32(1), 35\u0026ndash;55. https://doi.org/10.31820/pt.32.1.3\nSchuler, M., Mohnke, S., Amelung, T., Beier, K. M., Walter, M., Ponseti, J., Schiffer, B., Kruger, T. H. C., \u0026amp; Walter, H. (2022). Neural processing associated with cognitive empathy in pedophilia and child sexual offending. Social Cognitive and Affective Neuroscience, 17(8), 712\u0026ndash;722. https://doi.org/10.1093/scan/nsab133\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSchultz, H., Stoffregen, H., \u0026amp; Benoit, R. G. (2023). A reward effect on memory retention, consolidation, and generalization? Learning \u0026amp; Memory, 30(8), 169\u0026ndash;174. https://doi.org/10.1101/lm.053842.123\nSchulz, R., Langen, G., Prill, R., Cassel, M., \u0026amp; Weissgerber, T. L. (2022). Reporting and transparent research practices in sports medicine and orthopaedic clinical trials: A meta-research study. BMJ Open, 12(8), e059347. https://doi.org/10.1136/bmjopen-2021-059347\nSchupp, H. T., \u0026amp; Kirmse, U. (2022). Neural correlates of affective stimulus evaluation: A case-by-case analysis. Social Cognitive and Affective Neuroscience, 17(3), 300\u0026ndash;310. https://doi.org/10.1093/scan/nsab095\nSchutte, M. H., Kleemann, R., Nota, N. M., Wiepjes, C. M., Snabel, J. M., T'Sjoen, G., Thijs, A., \u0026amp; Den Heijer, M. (2022). The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLOS ONE, 17(3), e0261312. https://doi.org/10.1371/journal.pone.0261312\nSchwab, J., Xiang, M., \u0026amp; Liu, M. (2022). Antilocality effect without head-final dependencies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(3), 446\u0026ndash;463. https://doi.org/10.1037/xlm0001079\nSchwab, S., Janiaud, P., Dayan, M., Amrhein, V., Panczak, R., Palagi, P. M., Hemkens, L. G., Ramon, M., Rothen, N., Senn, S., Furrer, E., \u0026amp; Held, L. (2022). Ten simple rules for good research practice. PLOS Computational Biology, 18(6), e1010139. https://doi.org/10.1371/journal.pcbi.1010139\nSchwalm, L., \u0026amp; Radach, R. (2023). Parafoveal syntactic processing from word N + 2 during reading: The case of gender-specific German articles. Psychological Research, 87(8), 2511\u0026ndash;2532. https://doi.org/10.1007/s00426-023-01833-9\nSchweppe, J., Schütte, F., Machleb, F., \u0026amp; Hellfritsch, M. (2022). Syntax, morphosyntax, and serial recall: How language supports short-term memory. Memory \u0026amp; Cognition, 50(1), 174\u0026ndash;191. https://doi.org/10.3758/s13421-021-01203-z\nSchwering, S. C., Jacobs, C. L., Montemayor, J., \u0026amp; MacDonald, M. C. (2023). Lexico-syntactic constraints influence verbal working memory in sentence-like lists. Memory \u0026amp; Cognition. https://doi.org/10.3758/s13421-023-01496-2\nScott, D., Vangsness, L., \u0026amp; Suss, J. (2022). Perceptual\u0026ndash;Cognitive Expertise in Law Enforcement: An Object-Identification Task. Journal of Cognitive Engineering and Decision Making, 16(3), 157\u0026ndash;176. https://doi.org/10.1177/15553434221104600\nSegen, V., Colombo, G., Avraamides, M., Slattery, T., \u0026amp; Wiener, J. M. (2022). The role of memory and perspective shifts in systematic biases during object location estimation. Attention, Perception, \u0026amp; Psychophysics, 84(4), 1208\u0026ndash;1219. https://doi.org/10.3758/s13414-022-02445-y\nSeidenberg, M. S., Farry‐Thorn, M., \u0026amp; Zevin, J. D. (2022). Models of Word Reading: What Have We Learned? In M. J. Snowling, C. Hulme, \u0026amp; K. Nation (Eds.), The Science of Reading (1st ed., pp. 36\u0026ndash;59). Wiley. https://doi.org/10.1002/9781119705116.ch2\nSellbom, M., Lilienfeld, S. O., Latzman, R. D., \u0026amp; Wygant, D. B. (2022). Assessment of Psychopathy: Addressing Myths, Misconceptions, and Fallacies. In L. Malatesti, J. McMillan, \u0026amp; P. Šustar (Eds.), Psychopathy (Vol. 27, pp. 143\u0026ndash;168). Springer International Publishing. https://doi.org/10.1007/978-3-030-82454-9_9\nSendek, K., Herzmann, G., Pfeifer, V., \u0026amp; Lai, V. T. (2022). Social acquisition context matters: Increased neural responses for native but not nonnative taboo words. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(2), 362\u0026ndash;382. https://doi.org/10.3758/s13415-021-00951-4\nSeverijnen, G. G. A., Di Dona, G., Bosker, H. R., \u0026amp; McQueen, J. M. (2023). Tracking talker-specific cues to lexical stress: Evidence from perceptual learning. Journal of Experimental Psychology: Human Perception and Performance, 49(4), 549\u0026ndash;565. https://doi.org/10.1037/xhp0001105\nShader, M. J., Kwon, B. J., Gordon-Salant, S., \u0026amp; Goupell, M. J. (2022). Open-Set Phoneme Recognition Performance With Varied Temporal Cues in Younger and Older Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 65(3), 1196\u0026ndash;1211. https://doi.org/10.1044/2021_JSLHR-21-00299\nShaeri Karimi, S., Saintilan, N., Wen, L., \u0026amp; Cox, J. (2022). Spatio‐temporal effects of inundation and climate on vegetation greenness dynamics in dryland floodplains. Ecohydrology, 15(2), e2378. https://doi.org/10.1002/eco.2378\nShaffer, R. A., \u0026amp; McDermott, K. B. (2022). The dual-process perspective and the benefits of retrieval practice in younger and older adults. Memory, 30(5), 554\u0026ndash;572. https://doi.org/10.1080/09658211.2022.2027986\nShan, Z. Y., Mohamed, A. Z., Andersen, T., Rendall, S., Kwiatek, R. A., Fante, P. D., Calhoun, V. D., Bhuta, S., \u0026amp; Lagopoulos, J. (2022). Multimodal MRI of myalgic encephalomyelitis/chronic fatigue syndrome: A cross-sectional neuroimaging study toward its neuropathophysiology and diagnosis. Frontiers in Neurology, 13, 954142. https://doi.org/10.3389/fneur.2022.954142\nShdo, S. M., Roy, A. R. K., Datta, S., Sible, I. J., Lukic, S., Perry, D. C., Rankin, K. P., Kramer, J. H., Rosen, H. J., Miller, B. L., Seeley, W. W., Holley, S. R., Gorno-Tempini, M. L., \u0026amp; Sturm, V. E. (2022). Enhanced positive emotional reactivity in frontotemporal dementia reflects left-lateralized atrophy in the temporal and frontal lobes. Cortex, 154, 405\u0026ndash;420. https://doi.org/10.1016/j.cortex.2022.02.018\nShechter Shvartzman, L., Lavie, L., \u0026amp; Banai, K. (2022). Speech Perception in Older Adults: An Interplay of Hearing, Cognition, and Learning? Frontiers in Psychology, 13, 816864. https://doi.org/10.3389/fpsyg.2022.816864\nShen, G., Wang, R., Yang, M., \u0026amp; Xie, J. (2022). Chinese Children with Congenital and Acquired Blindness Represent Concrete Concepts in Vertical Space through Tactile Perception. International Journal of Environmental Research and Public Health, 19(17), 11055. https://doi.org/10.3390/ijerph191711055\nSheppard, J., \u0026amp; Von Stein, J. (2022). Attitudes and Action in International Refugee Policy: Evidence from Australia. International Organization, 76(4), 929\u0026ndash;956. https://doi.org/10.1017/S0020818322000133\nShi, J., Peng, G., \u0026amp; Li, D. (2023). Figurativeness Matters in the Second Language Processing of Collocations: Evidence From a Self‐Paced Reading Experiment. Language Learning, 73(1), 47\u0026ndash;83. https://doi.org/10.1111/lang.12516\nShibuya, K., Kasuga, R., Sato, N., Santa, R., Homma, C., \u0026amp; Miyamoto, M. (2022). Preliminary findings: Preferences of right-handed people for food images oriented to the left vs. right side. Food Quality and Preference, 97, 104502. https://doi.org/10.1016/j.foodqual.2021.104502\nShort, J. C., Freeman, M. T., \u0026amp; McKechnie, A. E. (2022). Respirometry protocols for avian thermoregulation at high air temperatures: Stepped and steady-state profiles yield similar results. Journal of Experimental Biology, 225(13), jeb244166. https://doi.org/10.1242/jeb.244166\nShrout, M. R., Black, A. E., Wilson, S. J., Renna, M. E., Madison, A. D., Kiecolt-Glaser, J. K., \u0026amp; Reis, H. T. (2023). How aging couples\u0026rsquo; emotional and physiological associations change across positive, supportive, and conflictual discussions: Roles of capitalization and responsive behaviors. Biological Psychology, 177, 108500. https://doi.org/10.1016/j.biopsycho.2023.108500\nSidhu, D. M., Athanasopoulou, A., Archer, S. L., Czarnecki, N., Curtin, S., \u0026amp; Pexman, P. M. (2023). The maluma/takete effect is late: No longitudinal evidence for shape sound symbolism in the first year. PLOS ONE, 18(11), e0287831. https://doi.org/10.1371/journal.pone.0287831\nSiegelman, N., Rueckl, J. G., Lo, J. C. M., Kearns, D. M., Morris, R. D., \u0026amp; Compton, D. L. (2022). Quantifying the regularities between orthography and semantics and their impact on group- and individual-level behavior. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(6), 839\u0026ndash;855. https://doi.org/10.1037/xlm0001109\nSierksma, J. (2023). Children perpetuate competence-based inequality when they help peers. Npj Science of Learning, 8(1), 41. https://doi.org/10.1038/s41539-023-00192-9\nSiew, C. S. Q., Engelthaler, T., \u0026amp; Hills, T. T. (2022). Nymph piss and gravy orgies: Local and global contrast effects in relational humor. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 1047\u0026ndash;1063. https://doi.org/10.1037/xlm0001120\nSilletti, F., Salvadori, E. A., Presaghi, F., Fasolo, M., Aureli, T., \u0026amp; Coppola, G. (2022). Maternal mind-mindedness during the first year of life: Developmental trajectories and moderators. Developmental Psychology, 58(9), 1615\u0026ndash;1628. https://doi.org/10.1037/dev0001389\nSilvestri, V., Arioli, M., Baccolo, E., \u0026amp; Macchi Cassia, V. (2022). Sensitivity to trustworthiness cues in own- and other-race faces: The role of spatial frequency information. PLOS ONE, 17(9), e0272256. https://doi.org/10.1371/journal.pone.0272256\nSimmering, V. R., Andrews, C. M., Leuenberger, R., \u0026amp; Kovack-Lesh, K. A. (2022). Inconsistent flanker congruency effects across stimulus types and age groups: A cautionary tale. Behavior Research Methods, 55(4), 1778\u0026ndash;1817. https://doi.org/10.3758/s13428-022-01889-2\nSimpson, E., Lee, K., \u0026amp; Bauer, P. J. (2023). Event characteristics help to explain the distribution of autobiographical memories over the first decade of life. Memory, 31(7), 962\u0026ndash;977. https://doi.org/10.1080/09658211.2023.2212924\nSingh, D., Wasan, H., \u0026amp; Reeta, K. H. (2022). Preclinical Stroke Research and Translational Failure: A Bird's Eye View on Preventable Variables. Cellular and Molecular Neurobiology, 42(7), 2003\u0026ndash;2017. https://doi.org/10.1007/s10571-021-01083-6\nSio, U. N., Kotovsky, K., \u0026amp; Cagan, J. (2022). Determinants of creative thinking: The effect of task characteristics in solving remote associate test problems. Thinking \u0026amp; Reasoning, 28(2), 163\u0026ndash;192. https://doi.org/10.1080/13546783.2021.1959400\nSiraji, M. A., Kalavally, V., Schaefer, A., \u0026amp; Haque, S. (2022). Effects of Daytime Electric Light Exposure on Human Alertness and Higher Cognitive Functions: A Systematic Review. Frontiers in Psychology, 12, 765750. https://doi.org/10.3389/fpsyg.2021.765750\nSisson, N. M., Wang, G. A., Le, B. M., Stellar, J. E., \u0026amp; Impett, E. A. (2022). When We're Asked to Change: The Role of Suppression and Reappraisal in Partner Change Outcomes. Journal of Social and Personal Relationships, 39(8), 2388\u0026ndash;2407. https://doi.org/10.1177/02654075221078881\nSiwiec, S., Bodhy, S., Lotfi, S., \u0026amp; Lee, H.-J. (2023). Cognitive bias modification for thought-action fusion: A placebo-controlled randomized experimental trial. Journal of Obsessive-Compulsive and Related Disorders, 37, 100787. https://doi.org/10.1016/j.jocrd.2023.100787\nSkipper, J. I. (2022). A voice without a mouth no more: The neurobiology of language and consciousness. Neuroscience \u0026amp; Biobehavioral Reviews, 140, 104772. https://doi.org/10.1016/j.neubiorev.2022.104772\nSkorska, M. N., Lobaugh, N. J., Lombardo, M. V., Van Bruggen, N., Chavez, S., Thurston, L. T., Aitken, M., Zucker, K. J., Chakravarty, M. M., Lai, M.-C., \u0026amp; VanderLaan, D. P. (2022). Inter-Network Brain Functional Connectivity in Adolescents Assigned Female at Birth Who Experience Gender Dysphoria. Frontiers in Endocrinology, 13, 903058. https://doi.org/10.3389/fendo.2022.903058\nSlattery, E. J., O'Callaghan, E., Ryan, P., Fortune, D. G., \u0026amp; McAvinue, L. P. (2022). Popular interventions to enhance sustained attention in children and adolescents: A critical systematic review. Neuroscience \u0026amp; Biobehavioral Reviews, 137, 104633. https://doi.org/10.1016/j.neubiorev.2022.104633\nSmart, K. M., Ferraro, M. C., Wand, B. M., \u0026amp; O'Connell, N. E. (2022). Physiotherapy for pain and disability in adults with complex regional pain syndrome (CRPS) types I and II. Cochrane Database of Systematic Reviews, 2022(8). https://doi.org/10.1002/14651858.CD010853.pub3\nSmith, L. N. (2022). What's Right and Wrong in Preclinical Science: A Matter of Principled Investigation. Frontiers in Behavioral Neuroscience, 16, 805661. https://doi.org/10.3389/fnbeh.2022.805661\nSmith, M. E., Kurby, C. A., \u0026amp; Bailey, H. R. (2023). Events shape long-term memory for story information. Discourse Processes, 60(2), 141\u0026ndash;161. https://doi.org/10.1080/0163853X.2023.2185408\nSoh, Y. Q., Lee, J., \u0026amp; Tan, Y.-Y. (2022). Ethnicity and Tone Production on Singlish Particles. Languages, 7(3), 243. https://doi.org/10.3390/languages7030243\nSommers, M. S., \u0026amp; Dessenberger, S. (2022). The Effects of Aging on Processing Speed, Inhibitory Control, Executive Function, and Working Memory: An Integrated Account of Age-Cognition Relations Across the Adult Lifespan. In Comprehensive Clinical Psychology (pp. 40\u0026ndash;51). Elsevier. https://doi.org/10.1016/B978-0-12-818697-8.00090-X\nSommet, N., \u0026amp; Elliot, A. J. (2022). The effects of U.S. county and state income inequality on self-reported happiness and health are equivalent to zero. Quality of Life Research, 31(7), 1999\u0026ndash;2009. https://doi.org/10.1007/s11136-022-03137-8\nSon, G., Walther, D. B., \u0026amp; Mack, M. L. (2021). Scene wheels: Measuring perception and memory of real-world scenes with a continuous stimulus space. Behavior Research Methods, 54(1), 444\u0026ndash;456. https://doi.org/10.3758/s13428-021-01630-5\nSpaccasassi, C., Zanon, M., Borgomaneri, S., \u0026amp; Avenanti, A. (2022). Mu rhythm and corticospinal excitability capture two different frames of motor resonance: A TMS\u0026ndash;EEG co-registration study. Cortex, 154, 197\u0026ndash;211. https://doi.org/10.1016/j.cortex.2022.04.019\nSpanagel, R. (2022). Ten Points to Improve Reproducibility and Translation of Animal Research. Frontiers in Behavioral Neuroscience, 16, 869511. https://doi.org/10.3389/fnbeh.2022.869511\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306\u0026ndash;1318. https://doi.org/10.3758/s13428-021-01656-9\nSpitzer, M. W. H., Kiesel, A., \u0026amp; Dignath, D. (2022). Performance errors influence voluntary task choices. Journal of Experimental Psychology: Human Perception and Performance, 48(6), 665\u0026ndash;688. https://doi.org/10.1037/xhp0000991\nSpivey, M. J. (2022). Language happens. In H. L. Colston, T. Matlock, \u0026amp; G. J. Steen (Eds.), Metaphor in Language, Cognition, and Communication (Vol. 9, pp. 341\u0026ndash;356). John Benjamins Publishing Company. https://doi.org/10.1075/milcc.9.18spi\nSpix, M., Schutzeichel, F., \u0026amp; Jansen, A. (2023). Can you learn to starve yourself? Inducing food avoidance in the laboratory. Behaviour Research and Therapy, 166, 104340. https://doi.org/10.1016/j.brat.2023.104340\nSrisurapanont, M., Suttajit, S., Kosachunhanun, N., Likhitsathian, S., Suradom, C., \u0026amp; Maneeton, B. (2022). Antidepressants for depressed patients with type 2 diabetes mellitus: A systematic review and network meta-analysis of short-term randomized controlled trials. Neuroscience \u0026amp; Biobehavioral Reviews, 139, 104731. https://doi.org/10.1016/j.neubiorev.2022.104731\nSt. Germain, L., Williams, A., Balbaa, N., Poskus, A., Leshchyshen, O., Lohse, K. R., \u0026amp; Carter, M. J. (2022). Increased perceptions of autonomy through choice fail to enhance motor skill retention. Journal of Experimental Psychology: Human Perception and Performance, 48(4), 370\u0026ndash;379. https://doi.org/10.1037/xhp0000992\nStajkovic, K., \u0026amp; Stajkovic, A. D. (2023). Ethics of Care Leadership, Racial Inclusion, and Economic Health in the Cities: Is There a Female Leadership Advantage? Journal of Business Ethics. https://doi.org/10.1007/s10551-023-05564-0\nStärk, K., Kidd, E., \u0026amp; Frost, R. L. A. (2022). The effect of children's prior knowledge and language abilities on their statistical learning. Applied Psycholinguistics, 43(5), 1045\u0026ndash;1071. https://doi.org/10.1017/S0142716422000273\nStavrova, O., Reitz, A. K., \u0026amp; Evans, A. M. (2022). Temporal dynamics of interpersonal trust during the transition to parenthood. Journal of Research in Personality, 97, 104188. https://doi.org/10.1016/j.jrp.2022.104188\nSteacy, L. M., Rigobon, V. M., Edwards, A. A., Abes, D. R., Marencin, N. C., Smith, K., Elliott, J. D., Wade-Woolley, L., \u0026amp; Compton, D. L. (2022). Modeling Complex Word Reading: Examining Influences at the Level of the Word and Child on Mono- and Polymorphemic Word Reading. Scientific Studies of Reading, 26(6), 527\u0026ndash;544. https://doi.org/10.1080/10888438.2022.2077109\nStead, J. E., Boucher, V. L., Moyle, P. B., \u0026amp; Rypel, A. L. (2022). Growth of Lahontan cutthroat trout from multiple sources re-introduced into Sagehen Creek, CA. PeerJ, 10, e13322. https://doi.org/10.7717/peerj.13322\nStein, T., Ciorli, T., \u0026amp; Otten, M. (2023). Guns Are Not Faster to Enter Awareness After Seeing a Black Face: Absence of Race-Priming in a Gun/Tool Task During Continuous Flash Suppression. Personality and Social Psychology Bulletin, 49(3), 405\u0026ndash;414. https://doi.org/10.1177/01461672211067068\nSteinhilber, B., Seibt, R., Gabriel, J., Brountsou, J., Muljono, M., Downar, T., Bär, M., Bonsch, R., Brandt, A., Martus, P., \u0026amp; Rieger, M. A. (2022). Effects of Face Masks on Physical Performance and Physiological Response during a Submaximal Bicycle Ergometer Test. International Journal of Environmental Research and Public Health, 19(3), 1063. https://doi.org/10.3390/ijerph19031063\nStern, J., \u0026amp; Shiramizu, V. (2022). Hormones, ovulatory cycle phase and pathogen disgust: A longitudinal investigation of the Compensatory Prophylaxis Hypothesis. Hormones and Behavior, 138, 105103. https://doi.org/10.1016/j.yhbeh.2021.105103\nStevens, M., White, S., Robertson, A. M., \u0026amp; Cruwys, T. (2022a). Repeated exercise class attendance: The role of class members\u0026rsquo; similarity and social identification. Psychology of Sport and Exercise, 61, 102212. https://doi.org/10.1016/j.psychsport.2022.102212\nStevens, M., White, S., Robertson, A. M., \u0026amp; Cruwys, T. (2022b). Understanding exercise class attendees\u0026rsquo; in-class behaviors, experiences, and future class attendance: The role of class leaders\u0026rsquo; identity entrepreneurship. Sport, Exercise, and Performance Psychology, 11(4), 494\u0026ndash;508. https://doi.org/10.1037/spy0000305\nStirner, M., Gurevitch, G., Lubianiker, N., Hendler, T., Schmahl, C., \u0026amp; Paret, C. (2022). An Investigation of Awareness and Metacognition in Neurofeedback with the Amygdala Electrical Fingerprint. Consciousness and Cognition, 98, 103264. https://doi.org/10.1016/j.concog.2021.103264\nStoehr, A., Jevtović, M., De Bruin, A., \u0026amp; Martin, C. D. (2023). Phonetic and Lexical Crosslinguistic Influence in Early Spanish\u0026ndash;Basque\u0026ndash;English Trilinguals. Language Learning, lang.12598. https://doi.org/10.1111/lang.12598\nStoehr, A., Souganidis, C., Thomas, T. B., Jacobsen, J., \u0026amp; Martin, C. D. (2023). Voice onset time and vowel formant measures in online testing and laboratory-based testing with(out) surgical face masks. The Journal of the Acoustical Society of America, 154(1), 152\u0026ndash;166. https://doi.org/10.1121/10.0020064\nStraßer, T., Leinberger, D. T., Hillerkuss, D., Zrenner, E., \u0026amp; Zobor, D. (2022). Comparison of CRT and LCD monitors for objective estimation of visual acuity using the sweep VEP. Documenta Ophthalmologica, 145(2), 133\u0026ndash;145. https://doi.org/10.1007/s10633-022-09883-x\nStreet, T., Lewin, A., Woodall, K., Cruz‐Cano, R., Thoma, M., \u0026amp; Stander, V. A. (2022). Gender differences in marital and military predictors of service member career satisfaction. Family Relations, 71(4), 1515\u0026ndash;1537. https://doi.org/10.1111/fare.12697\nStrelow, J. N., Baldermann, J. C., Dembek, T. A., Jergas, H., Petry-Schmelzer, J. N., Schott, F., Dafsari, H. S., Moll, C. K. E., Hamel, W., Gulberti, A., Visser-Vandewalle, V., Fink, G. R., Pötter-Nerger, M., \u0026amp; Barbe, M. T. (2022). Structural Connectivity of Subthalamic Nucleus Stimulation for Improving Freezing of Gait. Journal of Parkinson's Disease, 12(4), 1251\u0026ndash;1267. https://doi.org/10.3233/JPD-212997\nStruck, J., \u0026amp; Jiang, N. (2022). Language switch costs in a lexical decision task: Symmetry and cognitive correlates. Second Language Research, 38(4), 813\u0026ndash;838. https://doi.org/10.1177/0267658321998740\nStürup, A. E., Hjorthøj, C., Albert, N., Dolmer, S., Birk, M., Ebdrup, B. H., Eplov, L. F., Jensen, H., Vernal, D. L., Speyer, H., Mors, O., \u0026amp; Nordentoft, M. (2022). Tapered discontinuation vs. maintenance therapy of antipsychotic medication in patients with first-episode schizophrenia: Obstacles, findings, and lessons learned in the terminated randomized clinical trial TAILOR. Frontiers in Psychiatry, 13, 910703. https://doi.org/10.3389/fpsyt.2022.910703\nSugimoto, N., Fukasawa, K., Asahara, A., Kasada, M., Matsuba, M., \u0026amp; Miyashita, T. (2022). Positive and negative effects of land abandonment on butterfly communities revealed by a hierarchical sampling design across climatic regions. Proceedings of the Royal Society B: Biological Sciences, 289(1971), 20212222. https://doi.org/10.1098/rspb.2021.2222\nSulpizio, S., Job, R., Leoni, P., \u0026amp; Scaltritti, M. (2022). Prepotent task-irrelevant semantic information is dampened by domain-specific control mechanisms during visual word recognition. Quarterly Journal of Experimental Psychology, 75(3), 390\u0026ndash;405. https://doi.org/10.1177/17470218211030863\nSun, K., \u0026amp; Wang, R. (2022). The Evolutionary Pattern of Language in English Fiction Over the Last Two Centuries: Insights From Linguistic Concreteness and Imageability. SAGE Open, 12(1), 215824402110693. https://doi.org/10.1177/21582440211069386\nSun, L., Liang, X., Duan, D., Liu, J., Chen, Y., Wang, X., Liao, X., Xia, M., Zhao, T., \u0026amp; He, Y. (2022). Structural insight into the individual variability architecture of the functional brain connectome. NeuroImage, 259, 119387. https://doi.org/10.1016/j.neuroimage.2022.119387\nSundara, M., Zhou, Z. L., Breiss, C., Katsuda, H., \u0026amp; Steffman, J. (2022). Infants\u0026rsquo; developing sensitivity to native language phonotactics: A meta-analysis. Cognition, 221, 104993. https://doi.org/10.1016/j.cognition.2021.104993\nSwanson, J. M., Rommelse, N., Cotton, J., Sonuga-Barke, E. J. S., Jensen, P. S., \u0026amp; Castellanos, F. X. (2022). Attention-Deficit Hyperactivity Disorder. In D. W. Pfaff, N. D. Volkow, \u0026amp; J. L. Rubenstein (Eds.), Neuroscience in the 21st Century (pp. 4459\u0026ndash;4495). Springer International Publishing. https://doi.org/10.1007/978-3-030-88832-9_169\nSzabó, Z. P., Kun, Á., Balogh, B. E., Simon, E., \u0026amp; Csike, T. (2022). Dark and Strong?! The associations between dark personality traits, mental toughness and resilience in Hungarian student, employee, leader, and military samples. Personality and Individual Differences, 186, 111339. https://doi.org/10.1016/j.paid.2021.111339\nTa, V. P., Boyd, R. L., Seraj, S., Keller, A., Griffith, C., Loggarakis, A., \u0026amp; Medema, L. (2022). An inclusive, real-world investigation of persuasion in language and verbal behavior. Journal of Computational Social Science, 5(1), 883\u0026ndash;903. https://doi.org/10.1007/s42001-021-00153-5\nTamati, T. N., \u0026amp; Moberly, A. C. (2022). Talker Adaptation and Lexical Difficulty Impact Word Recognition in Adults with Cochlear Implants. Audiology and Neurotology, 27(3), 260\u0026ndash;270. https://doi.org/10.1159/000518643\nTamayo, J. M., Osman, H. C., Schwartzer, J. J., Pinkerton, K. E., \u0026amp; Ashwood, P. (2023). Characterizing the neuroimmune environment of offspring in a novel model of maternal allergic asthma and particulate matter exposure. Journal of Neuroinflammation, 20(1), 252. https://doi.org/10.1186/s12974-023-02930-7\nTan, J. S. I., Cheng, L. J., Chan, E. Y., Lau, Y., \u0026amp; Lau, S. T. (2022). Light therapy for sleep disturbances in older adults with dementia: A systematic review, meta-analysis and meta-regression. Sleep Medicine, 90, 153\u0026ndash;166. https://doi.org/10.1016/j.sleep.2022.01.013\nTancoš, M., Chvojka, E., Jabůrek, M., \u0026amp; Portešová, Š. (2023). Faster ≠ Smarter: Children with Higher Levels of Ability Take Longer to Give Incorrect Answers, Especially When the Task Matches Their Ability. Journal of Intelligence, 11(4), 63. https://doi.org/10.3390/jintelligence11040063\nTani, M., Manuguerra, M., \u0026amp; Khan, S. (2022). Can videos affect learning outcomes? Evidence from an actual learning environment. Educational Technology Research and Development, 70(5), 1675\u0026ndash;1693. https://doi.org/10.1007/s11423-022-10147-3\nTARG Meta-Research Group. (2022). Statistics Education in Undergraduate Psychology: A Survey of UK Curricula. Collabra: Psychology, 8(1), 38037. https://doi.org/10.1525/collabra.38037\nTaylor, E., Nation, K., \u0026amp; Hsiao, Y. (2022). Context Availability and Sentence Availability Ratings for 3,000 English Words and their Association with Lexical Processing. Journal of Cognition, 5(1), 20. https://doi.org/10.5334/joc.211\nTaylor, H., Hand, C. J., Howman, H., \u0026amp; Filik, R. (2022). Autism, Attachment, and Alexithymia: Investigating Emoji Comprehension. International Journal of Human\u0026ndash;Computer Interaction, 1\u0026ndash;14. https://doi.org/10.1080/10447318.2022.2154890\nTeo, E., Hassan, N., Tam, W., \u0026amp; Koh, S. (2022). Effectiveness of continuous glucose monitoring in maintaining glycaemic control among people with type 1 diabetes mellitus: A systematic review of randomised controlled trials and meta-analysis. Diabetologia, 65(4), 604\u0026ndash;619. https://doi.org/10.1007/s00125-021-05648-4\nTham, Y. J., Hashimoto, T., \u0026amp; Karasawa, K. (2022). Social rewards in the volunteer's dilemma in everyday life. Asian Journal of Social Psychology, 25(1), 117\u0026ndash;125. https://doi.org/10.1111/ajsp.12472\nThibault, R. T., \u0026amp; Pedder, H. (2022). Excess significance and power miscalculations in neurofeedback research. NeuroImage: Clinical, 35, 103008. https://doi.org/10.1016/j.nicl.2022.103008\nThierry, K. L., Page, A., Currie, C., Posamentier, J., Liu, Y., Choi, J., Randall, H., Rajanbabu, P., Kim, T. E., \u0026amp; Widen, S. C. (2022). How are schools implementing a universal social\u0026ndash;emotional learning program? Macro- and school-level factors associated with implementation approach. Frontiers in Education, 7, 1044835. https://doi.org/10.3389/feduc.2022.1044835\nThompson, P., Owen, K., \u0026amp; Hastings, R. P. (2024). Examining heterogeneity of education intervention effects using quantile mixed models: A re-analysis of a cluster-randomized controlled trial of a fluency-based mathematics intervention. International Journal of Research \u0026amp; Method in Education, 47(1), 49\u0026ndash;64. https://doi.org/10.1080/1743727X.2023.2215699\nTian, X. (2022). Construction of a Multimodal Corpus of College Students\u0026rsquo; Spoken English Based on Semantic Concepts. Mobile Information Systems, 2022, 1\u0026ndash;10. https://doi.org/10.1155/2022/5270408\nTibon, R., Geerligs, L., \u0026amp; Campbell, K. (2022). Bridging the big (data) gap: Levels of control in small- and large-scale cognitive neuroscience research. Trends in Neurosciences, 45(7), 507\u0026ndash;516. https://doi.org/10.1016/j.tins.2022.03.011\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864\u0026ndash;884. https://doi.org/10.3758/s13428-021-01650-1\nTobias, M. R., Landy, L. N., Levin, M. E., \u0026amp; Arch, J. J. (2022). A Randomized Trial of Brief Online Interventions to Facilitate Treatment Seeking for Social Anxiety. Behavior Modification, 46(5), 1137\u0026ndash;1166. https://doi.org/10.1177/01454455211040051\nTomsk State University (Tomsk, Russian Federation), Rezanova, Z. I., Vladimirova, V. E., Tomsk State University (Tomsk, Russian Federation), Mashanlo, T. E., \u0026amp; Tomsk State University. (2022). Psycholinguistic database TurkWordPerception as a lexicographic source (assessments of the contribution of perception modalities to semantics). Voprosy Leksikografii, 26, 96\u0026ndash;114. https://doi.org/10.17223/22274200/26/5\nTong, C. H. M., Nilsson, M. B., Drott, A., \u0026amp; Peichl, M. (2022). Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden. Forests, 13(6), 842. https://doi.org/10.3390/f13060842\nTorres, F., Khan, S., Fernandez‐Kim, S. O., Spann, R., Albarado, D., Wagner, T. J., Morrison, C. D., \u0026amp; Soto, P. L. (2022). Dynamic effects of dietary protein restriction on body weights, food consumption, and protein preference in C57BL /6J and Fgf21 ‐KO mice. Journal of the Experimental Analysis of Behavior, 117(3), 346\u0026ndash;362. https://doi.org/10.1002/jeab.745\nTrabucchi, P., Savoldelli, A., Mourot, L., Vacher, P., Pellegrini, B., \u0026amp; Schena, F. (2022). Relationship Between Cognitive Appraisal of Control and Cardiac Vagal Regulation During an Unsupported Ski Crossing of Greenland. Frontiers in Physiology, 13, 804710. https://doi.org/10.3389/fphys.2022.804710\nTravaglino, G. A., d'Aniello, C., Pacilli, M. G., \u0026amp; Poppi, F. I. M. (2023). Naming the threat: Lay prototypes of organized crime in Italy and the US. Psychology, Crime \u0026amp; Law, 1\u0026ndash;23. https://doi.org/10.1080/1068316X.2023.2239425\nTruhan, T. E., Gianniou, F.-M., \u0026amp; Papageorgiou, K. A. (2022). Differences in psychiatric symptoms between the UK and Greece prior to and during COVID-19: The roles of subclinical narcissism and mental toughness. Personality and Individual Differences, 185, 111308. https://doi.org/10.1016/j.paid.2021.111308\nTruhan, T. E., Sedikides, C., McIlvenna, M., Andrae, L., Turner, R. N., \u0026amp; Papageorgiou, K. A. (2022). A Tri-Directional Examination of Parental Personality, Parenting Behaviors, and Contextual Factors in Influencing Adolescent Behavioral Outcomes. Journal of Youth and Adolescence, 51(8), 1536\u0026ndash;1551. https://doi.org/10.1007/s10964-022-01602-8\nTruzman, T., Biran, M., Soroker, N., Levy, T., \u0026amp; Bitan, T. (2023). A Novel Morphology-Based Naming Therapy for People with Aphasia. Aphasiology, 1\u0026ndash;31. https://doi.org/10.1080/02687038.2023.2257354\nTse, C., \u0026amp; Altarriba, J. (2022). Independent effects of word concreteness and word valence on immediate serial recall. British Journal of Psychology, 113(3), 820\u0026ndash;834. https://doi.org/10.1111/bjop.12566\nTsukita, K., Sakamaki-Tsukita, H., \u0026amp; Takahashi, R. (2022). Long-term Effect of Regular Physical Activity and Exercise Habits in Patients With Early Parkinson Disease. Neurology, 98(8). https://doi.org/10.1212/WNL.0000000000013218\nTyagi, P., Dhyani, M., Khattri, S., Tejan, V., Tikka, S. K., \u0026amp; Garg, S. (2022). \u0026ldquo;Efficacy of intensive bilateral Temporo-Parietal Continuous theta-burst Stimulation for Auditory VErbal hallucinations (TPC-SAVE) in schizophrenia: A randomized sham-controlled trial\u0026quot;☆. Asian Journal of Psychiatry, 74, 103176. https://doi.org/10.1016/j.ajp.2022.103176\nTybur, J. M., Fan, L., Jones, B. C., Holzleitner, I. J., Lee, A. J., \u0026amp; DeBruine, L. M. (2022). Re-evaluating the relationship between pathogen avoidance and preferences for facial symmetry and sexual dimorphism: A registered report. Evolution and Human Behavior, 43(3), 212\u0026ndash;223. https://doi.org/10.1016/j.evolhumbehav.2022.01.003\nUdochi, A. L., Blain, S. D., Sassenberg, T. A., Burton, P. C., Medrano, L., \u0026amp; DeYoung, C. G. (2022). Activation of the default network during a theory of mind task predicts individual differences in agreeableness and social cognitive ability. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(2), 383\u0026ndash;402. https://doi.org/10.3758/s13415-021-00955-0\nUner, O., \u0026amp; Roediger, H. L. (2022). Do Recall and Recognition Lead to Different Retrieval Experiences? The American Journal of Psychology, 135(1), 33\u0026ndash;43. https://doi.org/10.5406/19398298.135.1.03\nUrquiza-Haas, E. G., \u0026amp; Kotrschal, K. (2022). Human-Animal Similarity and the Imageability of Mental State Concepts for Mentalizing Animals. Journal of Cognition and Culture, 22(3\u0026ndash;4), 220\u0026ndash;245. https://doi.org/10.1163/15685373-12340133\nVacher, M., Porter, T., Milicic, L., Bourgeat, P., Dore, V., Villemagne, V. L., Laws, S. M., \u0026amp; Doecke, J. D. (2022). A Targeted Association Study of Blood-Brain Barrier Gene SNPs and Brain Atrophy. Journal of Alzheimer's Disease, 86(4), 1817\u0026ndash;1829. https://doi.org/10.3233/JAD-210644\nVaghela, P., Mothilal, R. K., Romero, D., \u0026amp; Pal, J. (2022). Caste Capital on Twitter: A Formal Network Analysis of Caste Relations among Indian Politicians. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW1), 1\u0026ndash;29. https://doi.org/10.1145/3512927\nVainio, L., \u0026amp; Vainio, M. (2022). Interaction between grasping and articulation: How vowel and consonant pronunciation influences precision and power grip responses. PLOS ONE, 17(3), e0265651. https://doi.org/10.1371/journal.pone.0265651\nValeggia, C. R., \u0026amp; Fernández‐Duque, E. (2022). Moving biological anthropology research beyond p \u0026lt; 0.05. American Journal of Biological Anthropology, 177(2), 193\u0026ndash;195. https://doi.org/10.1002/ajpa.24444\nVan Andel, D. M., Sprengers, J. J., Keijzer-Veen, M. G., Schulp, A. J. A., Lillien, M. R., Scheepers, F. E., \u0026amp; Bruining, H. (2022). Bumetanide for Irritability in Children With Sensory Processing Problems Across Neurodevelopmental Disorders: A Pilot Randomized Controlled Trial. Frontiers in Psychiatry, 13, 780281. https://doi.org/10.3389/fpsyt.2022.780281\nVan As, S., Veling, H., Beckers, D. G. J., Earle, F., McMaster, S., Kompier, M. A. J., \u0026amp; Geurts, S. A. E. (2022). The impact of cognitive work demands on subsequent physical activity behavior. Journal of Experimental Psychology: Applied, 28(3), 629\u0026ndash;643. https://doi.org/10.1037/xap0000390\nVan Der Sluis, I., Matoušková, G., Niemeier, H., Popp, S., \u0026amp; Carstens, J. (2022). The clarity and correctness of visualized thrust actions: A description and insights from users and experts. Visual Communication, 147035722211352. https://doi.org/10.1177/14703572221135240\nVan Der Wijk, G., Harris, J. K., Hassel, S., Davis, A. D., Zamyadi, M., Arnott, S. R., Milev, R., Lam, R. W., Frey, B. N., Hall, G. B., Müller, D. J., Rotzinger, S., Kennedy, S. H., Strother, S. C., MacQueen, G. M., \u0026amp; Protzner, A. B. (2022). Baseline Functional Connectivity in Resting State Networks Associated with Depression and Remission Status after 16 Weeks of Pharmacotherapy: A CAN-BIND Report. Cerebral Cortex, 32(6), 1223\u0026ndash;1243. https://doi.org/10.1093/cercor/bhab286\nVan Doorn, J., Haaf, J. M., Stefan, A. M., Wagenmakers, E.-J., Cox, G. E., Davis-Stober, C. P., Heathcote, A., Heck, D. W., Kalish, M., Kellen, D., Matzke, D., Morey, R. D., Nicenboim, B., Van Ravenzwaaij, D., Rouder, J. N., Schad, D. J., Shiffrin, R. M., Singmann, H., Vasishth, S., \u0026hellip; Aust, F. (2023). Bayes Factors for Mixed Models: A Discussion. Computational Brain \u0026amp; Behavior, 6(1), 140\u0026ndash;158. https://doi.org/10.1007/s42113-022-00160-3\nVan Kleef, L. A., \u0026amp; De Knegt, R. J. (2022). Reply to: \u0026ldquo;Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD.\u0026rdquo; Hepatology Communications, 6(9), 2605\u0026ndash;2606. https://doi.org/10.1002/hep4.2006\nVan Malderen, S., Hehl, M., Verstraelen, S., Swinnen, S. P., \u0026amp; Cuypers, K. (2023). Dual-site TMS as a tool to probe effective interactions within the motor network: A review. Reviews in the Neurosciences, 34(2), 129\u0026ndash;221. https://doi.org/10.1515/revneuro-2022-0020\nVan Viersen, S., Protopapas, A., Georgiou, G. K., Parrila, R., Ziaka, L., \u0026amp; De Jong, P. F. (2022). Lexicality effects on orthographic learning in beginning and advanced readers of Dutch: An eye-tracking study. Quarterly Journal of Experimental Psychology, 75(6), 1135\u0026ndash;1154. https://doi.org/10.1177/17470218211047420\nVan Zwet, E. W., \u0026amp; Goodman, S. N. (2022). How large should the next study be? Predictive power and sample size requirements for replication studies. Statistics in Medicine, 41(16), 3090\u0026ndash;3101. https://doi.org/10.1002/sim.9406\nVanArsdall, J. E., \u0026amp; Blunt, J. R. (2022). Analyzing the structure of animacy: Exploring relationships among six new animacy and 15 existing normative dimensions for 1,200 concrete nouns. Memory \u0026amp; Cognition, 50(5), 997\u0026ndash;1012. https://doi.org/10.3758/s13421-021-01266-y\nVankrunkelsven, H., Yang, Y., Brysbaert, M., De Deyne, S., \u0026amp; Storms, G. (2022). Semantic gender: Norms for 24,000 Dutch words and its role in word meaning. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02032-x\nVargas Fuentes, N. A., Kroll, J. F., \u0026amp; Torres, J. (2022). What Heritage Bilinguals Tell Us about the Language of Emotion. Languages, 7(2), 144. https://doi.org/10.3390/languages7020144\nVedaei, F., Alizadeh, M., Romo, V., Mohamed, F. B., \u0026amp; Wu, C. (2022). The effect of general anesthesia on the test\u0026ndash;retest reliability of resting-state fMRI metrics and optimization of scan length. Frontiers in Neuroscience, 16, 937172. https://doi.org/10.3389/fnins.2022.937172\nVeldre, A., Reichle, E. D., Yu, L., \u0026amp; Andrews, S. (2023). Understanding the visual constraints on lexical processing: New empirical and simulation results. Journal of Experimental Psychology: General, 152(3), 693\u0026ndash;722. https://doi.org/10.1037/xge0001295\nVentura, P., Tse, H. W.-Y., Guerreiro, J. C., Delgado, J., Ferreira, M. F., Farinha-Fernandes, A., Faustino, B., Banha, A., \u0026amp; Wong, A. C.-N. (2022). The relationships between reading fluency and different measures of holistic word processing. Attention, Perception, \u0026amp; Psychophysics, 84(5), 1734\u0026ndash;1756. https://doi.org/10.3758/s13414-022-02497-0\nVerheyen, S., White, A., \u0026amp; Storms, G. (2022). A Comparison of the Spatial Arrangement Method and the Total-Set Pairwise Rating Method for Obtaining Similarity Data in the Conceptual Domain. Multivariate Behavioral Research, 57(2\u0026ndash;3), 356\u0026ndash;384. https://doi.org/10.1080/00273171.2020.1857216\nVerma, A., Sikarwar, V., Yadav, H., Jaganathan, R., \u0026amp; Kumar, P. (2021). Shabd: A psycholinguistic database for Hindi. Behavior Research Methods, 54(2), 830\u0026ndash;844. https://doi.org/10.3758/s13428-021-01625-2\nVerrier, D., \u0026amp; Day, C. (2021). The moderating effects of mindfulness facets on psychological distress and emotional eating behaviour. Health Psychology Report, 10(2), 103\u0026ndash;110. https://doi.org/10.5114/hpr.2021.109921\nVillamil, N., Sommervogel, B., \u0026amp; Pannell, J. R. (2022). Disentangling the effects of jasmonate and tissue loss on the sex allocation of an annual plant. Frontiers in Plant Science, 13, 812558. https://doi.org/10.3389/fpls.2022.812558\nVitevitch, M. S. (2022). What Can Network Science Tell Us About Phonology and Language Processing? Topics in Cognitive Science, 14(1), 127\u0026ndash;142. https://doi.org/10.1111/tops.12532\nVivas, J. R., Yerro Avincetto, M. M., García Coni Bosch, A., Andrés, M. L., \u0026amp; Calcopietro, M. (2022). El significado de los conceptos que aluden a emociones básicas en niños y adultos. Interdisciplinaria. Revista de Psicología y Ciencias Afines, 39(3). https://doi.org/10.16888/interd.2022.39.3.11\nVogt, A., Hauber, R., Kuhlen, A. K., \u0026amp; Rahman, R. A. (2021). Internet-based language production research with overt articulation: Proof of concept, challenges, and practical advice. Behavior Research Methods, 54(4), 1954\u0026ndash;1975. https://doi.org/10.3758/s13428-021-01686-3\nVon Bastian, C. C., Belleville, S., Udale, R. C., Reinhartz, A., Essounni, M., \u0026amp; Strobach, T. (2022). Mechanisms underlying training-induced cognitive change. Nature Reviews Psychology, 1(1), 30\u0026ndash;41. https://doi.org/10.1038/s44159-021-00001-3\nVon Hoyer, J., Bientzle, M., Cress, U., Grosser, J., Kimmerle, J., \u0026amp; Peter Holtz. (2022). False certainty in the acquisition of anatomical and physiotherapeutic knowledge. BMC Medical Education, 22(1), 765. https://doi.org/10.1186/s12909-022-03820-x\nVon Soest, T., Kozák, M., Rodríguez-Cano, R., Fluit, D. H., Cortés-García, L., Ulset, V. S., Haghish, E. F., \u0026amp; Bakken, A. (2022). Adolescents\u0026rsquo; psychosocial well-being one year after the outbreak of the COVID-19 pandemic in Norway. Nature Human Behaviour, 6(2), 217\u0026ndash;228. https://doi.org/10.1038/s41562-021-01255-w\nWagner, A. R., Kobel, M. J., \u0026amp; Merfeld, D. M. (2022). Impacts of Rotation Axis and Frequency on Vestibular Perceptual Thresholds. Multisensory Research, 35(3), 259\u0026ndash;287. https://doi.org/10.1163/22134808-bja10069\nWagner, D., \u0026amp; Pearcey, S. M. (2022). Perceived stress and salivary biomarkers in educators: Comparison among three stress reduction activities. Health Psychology and Behavioral Medicine, 10(1), 617\u0026ndash;631. https://doi.org/10.1080/21642850.2022.2102016\nWainwright, J. B., \u0026amp; Montgomery, S. H. (2022). Neuroanatomical shifts mirror patterns of ecological divergence in three diverse clades of mimetic butterflies. Evolution, 76(8), 1806\u0026ndash;1820. https://doi.org/10.1111/evo.14547\nWaldron, K. A., Lewis, M. A., Fairlie, A. M., Litt, D. M., Zhou, Z., \u0026amp; Bryant, D. (2023). Daily-level associations between alcohol use cognitions and normative perceptions among adolescents: An intensive longitudinal study. Addictive Behaviors, 143, 107697. https://doi.org/10.1016/j.addbeh.2023.107697\nWalker, J. B., Rinehart, S., Greenberg‐Pines, G., White, W. K., DeSantiago, R., Lipson, D. A., \u0026amp; Long, J. D. (2022). Aboveground competition influences density‐dependent effects of cordgrass on sediment biogeochemistry. Ecology and Evolution, 12(3), e8722. https://doi.org/10.1002/ece3.8722\nWalker, M., \u0026amp; Perry, C. (2022). It's the words you use and how you say them: Electrophysiological correlates of the perception of imitated masculine speech. Language, Cognition and Neuroscience, 37(1), 1\u0026ndash;21. https://doi.org/10.1080/23273798.2021.1939074\nWalsh, D., \u0026amp; Foster, J. (2022). Where does research design fall short? Mental health related‐stigma as example. Journal for the Theory of Social Behaviour, 52(3), 494\u0026ndash;514. https://doi.org/10.1111/jtsb.12337\nWang, H., Jiang, X., De Leone, R., Zhang, Y., Qiao, L., \u0026amp; Zhang, L. (2022). Extracting BOLD signals based on time-constrained multiset canonical correlation analysis for brain functional network estimation and classification. Brain Research, 1775, 147745. https://doi.org/10.1016/j.brainres.2021.147745\nWang, L., Ong, J. H., Ponsot, E., Hou, Q., Jiang, C., \u0026amp; Liu, F. (2023). Mental representations of speech and musical pitch contours reveal a diversity of profiles in autism spectrum disorder. Autism, 27(3), 629\u0026ndash;646. https://doi.org/10.1177/13623613221111207\nWang, S., \u0026amp; De Boeck, P. (2022). Understanding the role of subpopulations and reliability in between-group studies. Behavior Research Methods, 54(5), 2162\u0026ndash;2177. https://doi.org/10.3758/s13428-021-01700-8\nWang, T., \u0026amp; Xu, X. (2023). The good, the bad, and the ambivalent: Extrapolating affective values for 38,000+ Chinese words via a computational model. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02274-3\nWang, T., Xu, X., Xie, X., \u0026amp; Ng, M. L. (2023). Probing Lexical Ambiguity in Chinese Characters via Their Word Formations: Convergence of Perceived and Computed Metrics. Cognitive Science, 47(11), e13379. https://doi.org/10.1111/cogs.13379\nWang, Y. A., Simpson, A. J., \u0026amp; Todd, A. R. (2023). Egocentric anchoring-and-adjustment underlies social inferences about known others varying in similarity and familiarity. Journal of Experimental Psychology: General, 152(4), 1011\u0026ndash;1029. https://doi.org/10.1037/xge0001313\nWang, Y., Tian, X., Song, Q., Wang, W., Guo, X., Cui, T., Pan, Z., Chen, Y., Chen, W., Tan, L., \u0026amp; Zhang, W. (2023). Application and Comparison of Different Regression Models in Iodine Balance Experiment on Women of Childbearing Age and Pregnant Women. Biological Trace Element Research. https://doi.org/10.1007/s12011-023-03867-x\nWang, Y., Wang, Q., Wang, L., Li, F., Weschler, L. B., Huang, J., \u0026amp; Zhang, Y. (2023). Potential benefits of short-term indoor exposure to sweet orange essential oil for relaxation during mental work breaks. Journal of Building Engineering, 78, 107602. https://doi.org/10.1016/j.jobe.2023.107602\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWang, Z. (2022). Application of Semantics Analysis in Text Classification of Computer Technology. In B. J. Jansen, H. Liang, \u0026amp; J. Ye (Eds.), International Conference on Cognitive based Information Processing and Applications (CIPA 2021) (Vol. 85, pp. 643\u0026ndash;650). Springer Singapore. https://doi.org/10.1007/978-981-16-5854-9_82\nWannagat, W., Steinicke, V., Tibken, C., \u0026amp; Nieding, G. (2022). Same topic, different genre: Elementary school children's mental representations of information embedded in narrative and expository texts. Learning and Instruction, 80, 101559. https://doi.org/10.1016/j.learninstruc.2021.101559\nWanner-Kawahara, J., Yoshihara, M., Lupker, S. J., Verdonschot, R. G., \u0026amp; Nakayama, M. (2022). Morphological Priming Effects in L2 English Verbs for Japanese-English Bilinguals. Frontiers in Psychology, 13, 742965. https://doi.org/10.3389/fpsyg.2022.742965\nWarmuth, K. A., DeCapua, A. M., \u0026amp; Fielding, A. M. (2023). Emerging Adults\u0026rsquo; Perceptions of and Responses to Interparental Conflict. Journal of Child and Family Studies. https://doi.org/10.1007/s10826-023-02582-4\nWarner, L., Bach-Hagemann, A., Albanna, W., Clusmann, H., Schubert, G. A., Lindauer, U., \u0026amp; Conzen-Dilger, C. (2022). Vascular Reactivity to Hypercapnia Is Impaired in the Cerebral and Retinal Vasculature in the Acute Phase After Experimental Subarachnoid Hemorrhage. Frontiers in Neurology, 12, 757050. https://doi.org/10.3389/fneur.2021.757050\nWasserman, J. S., \u0026amp; Holtzer, R. (2023). Depressive Symptoms are Associated with Decline Over Time in Verbal Fluency Performance in Female but Not Male Community-Dwelling Older Adults. Experimental Aging Research, 1\u0026ndash;16. https://doi.org/10.1080/0361073X.2023.2195295\nWeakley, J., McCosker, C., Chalkley, D., Johnston, R., Munteanu, G., \u0026amp; Morrison, M. (2022). Comparison of Sprint Timing Methods on Performance, and Displacement and Velocity at Timing Initiation. Journal of Strength and Conditioning Research, Publish Ahead of Print. https://doi.org/10.1519/JSC.0000000000004223\nWeaving, M., Haslam, N., \u0026amp; Fine, C. (2023). Himpathy and status: Attitudes to social hierarchy predict reactions to sexual harassment. PLOS ONE, 18(12), e0292953. https://doi.org/10.1371/journal.pone.0292953\nWebb, C. J. R., Bennett, D. L., \u0026amp; Bywaters, P. (2022). Austerity, Poverty, and Children's Services Quality in England: Consequences for Child Welfare and Public Services. Social Policy and Society, 1\u0026ndash;22. https://doi.org/10.1017/S147474642200001X\nWeber, I., Zorowitz, S., Niv, Y., \u0026amp; Bennett, D. (2022). The effects of induced positive and negative affect on Pavlovian-instrumental interactions. Cognition and Emotion, 36(7), 1343\u0026ndash;1360. https://doi.org/10.1080/02699931.2022.2109600\nWegener, D. T., Fabrigar, L. R., Pek, J., \u0026amp; Hoisington-Shaw, K. (2022). Evaluating Research in Personality and Social Psychology: Considerations of Statistical Power and Concerns About False Findings. Personality and Social Psychology Bulletin, 48(7), 1105\u0026ndash;1117. https://doi.org/10.1177/01461672211030811\nWeigand, R., \u0026amp; Jacobsen, T. (2022). Interruption, work rumination, and stress as indicators of reduced working memory resources affect aesthetic experiences. Quarterly Journal of Experimental Psychology, 75(7), 1272\u0026ndash;1288. https://doi.org/10.1177/17470218211050194\nWeil, R., Pillay, N., \u0026amp; Rochais, C. (2022). Characteristics influencing local enhancement in free-living striped mice. Behavioural Processes, 197, 104621. https://doi.org/10.1016/j.beproc.2022.104621\nWeinreuter, H., Strelau, N.-R., Qiu, K., Jiang, Y., Deml, B., \u0026amp; Heizmann, M. (2022). Intersection Complexity and Its Influence on Human Drivers. IEEE Access, 10, 74059\u0026ndash;74070. https://doi.org/10.1109/ACCESS.2022.3189017\nWeiss, L. (2022). Egocentric Processing: The Advantages of Person-Related Features in Consumers\u0026rsquo; Product Decisions. Journal of Consumer Research, 49(2), 288\u0026ndash;311. https://doi.org/10.1093/jcr/ucab070\nWestbury, C., \u0026amp; Wurm, L. H. (2022). Is it you you're looking for?: Personal relevance as a principal component of semantics. The Mental Lexicon, 17(1), 1\u0026ndash;33. https://doi.org/10.1075/ml.20031.wes\nWhitaker, M. M., Hansen, R. C., Creem-Regehr, S. H., \u0026amp; Stefanucci, J. K. (2022). The relationship between space and time perception: A registered replication of Casasanto and Boroditsky (2008). Attention, Perception, \u0026amp; Psychophysics, 84(2), 347\u0026ndash;351. https://doi.org/10.3758/s13414-021-02420-z\nWhite, C. J. M., Schaller, M., Abraham, E. G., \u0026amp; Rottman, J. (2022). Navigating between punishment, avoidance, and instruction: The form and function of responses to moral violations varies across adult and child transgressors. Cognition, 223, 105048. https://doi.org/10.1016/j.cognition.2022.105048\nWhite, T., Blok, E., \u0026amp; Calhoun, V. D. (2022). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Human Brain Mapping, 43(1), 278\u0026ndash;291. https://doi.org/10.1002/hbm.25120\nWicht, C. A., De Pretto, M., Mouthon, M., \u0026amp; Spierer, L. (2022). Neural correlates of expectations-induced effects of caffeine intake on executive functions. Cortex, 150, 61\u0026ndash;84. https://doi.org/10.1016/j.cortex.2022.02.004\nWicht, C. A., Mouthon, M., Nsimire Chabwine, J., Gaab, J., \u0026amp; Spierer, L. (2022). Experience with opioids does not modify the brain network involved in expectations of placebo analgesia. European Journal of Neuroscience, 55(7), 1840\u0026ndash;1858. https://doi.org/10.1111/ejn.15645\nWidge, A. S., Zhang, F., Gosai, A., Papadimitrou, G., Wilson-Braun, P., Tsintou, M., Palanivelu, S., Noecker, A. M., McIntyre, C. C., O'Donnell, L., McLaughlin, N. C. R., Greenberg, B. D., Makris, N., Dougherty, D. D., \u0026amp; Rathi, Y. (2022). Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology, 47(4), 965\u0026ndash;972. https://doi.org/10.1038/s41386-021-01199-9\nWieczorek, L. L., Bleckmann, E., Brandt, N. D., \u0026amp; Wagner, J. (2022). Gloomy and out of control? Consequences of the COVID-19 pandemic on momentary optimism in daily lives of adolescents. Current Psychology. https://doi.org/10.1007/s12144-022-03313-6\nWild, H., Kyröläinen, A.-J., \u0026amp; Kuperman, V. (2022). How representative are student convenience samples? A study of literacy and numeracy skills in 32 countries. PLOS ONE, 17(7), e0271191. https://doi.org/10.1371/journal.pone.0271191\nWilke, J., Mohr, L., Yuki, G., Bhundoo, A. K., Jiménez-Pavón, D., Laiño, F., Murphy, N., Novak, B., Nuccio, S., Ortega-Gómez, S., Pillay, J. D., Richter, F., Rum, L., Sanchez-Ramírez, C., Url, D., Vogt, L., \u0026amp; Hespanhol, L. (2022). Train at home, but not alone: A randomised controlled multicentre trial assessing the effects of live-streamed tele-exercise during COVID-19-related lockdowns. British Journal of Sports Medicine, 56(12), 667\u0026ndash;675. https://doi.org/10.1136/bjsports-2021-104994\nWilliams, L., Mills, M., Carrigan, A., Rich, A., \u0026amp; Drew, T. (2022). Experience does not protect against missed incidental-findings in radiology. In C. R. Mello-Thoms \u0026amp; S. Taylor-Phillips (Eds.), Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment (p. 33). SPIE. https://doi.org/10.1117/12.2607316\nWilson, A. C., \u0026amp; Bishop, D. V. M. (2022). Stage 2 registered report: Investigating a preference for certainty in conversation among autistic adults. PeerJ, 10, e13110. https://doi.org/10.7717/peerj.13110\nWilson, B. M., Harris, C. R., \u0026amp; Wixted, J. T. (2022). Theoretical false positive psychology. Psychonomic Bulletin \u0026amp; Review, 29(5), 1751\u0026ndash;1775. https://doi.org/10.3758/s13423-022-02098-w\nWilson, J. T., \u0026amp; Bauer, P. J. (2023). Generative processes and knowledge revision. Learning and Motivation, 84, 101936. https://doi.org/10.1016/j.lmot.2023.101936\nWilson, J. T., Miller-Goldwater, H. E., Porter, B. M., \u0026amp; Bauer, P. J. (2023). Learning neuroscience: Investigating influences of notetaking materials and individual differences. Learning and Individual Differences, 101, 102243. https://doi.org/10.1016/j.lindif.2022.102243\nWimmer, J., Rösch, S. A., Schmidt, R., \u0026amp; Hilbert, A. (2023). Neurofeedback strategies in binge-eating disorder as predictors of EEG-neurofeedback regulation success. Frontiers in Human Neuroscience, 17, 1234085. https://doi.org/10.3389/fnhum.2023.1234085\nWindhager, P. F., Marcu, A. V., Trinka, E., Bathke, A., \u0026amp; Höller, Y. (2022). Are High Frequency Oscillations in Scalp EEG Related to Age? Frontiers in Neurology, 12, 722657. https://doi.org/10.3389/fneur.2021.722657\nWingfield, C., \u0026amp; Connell, L. (2022). Understanding the role of linguistic distributional knowledge in cognition. Language, Cognition and Neuroscience, 37(10), 1220\u0026ndash;1270. https://doi.org/10.1080/23273798.2022.2069278\nWinter, B., \u0026amp; Srinivasan, M. (2022). Why is Semantic Change Asymmetric? The Role of Concreteness and Word Frequency and Metaphor and Metonymy. Metaphor and Symbol, 37(1), 39\u0026ndash;54. https://doi.org/10.1080/10926488.2021.1945419\nWong, A. H. K., \u0026amp; Pittig, A. (2023). Reducing avoidance of learnt fear: Extinction of an imminent threat signal partly decreases costly avoidance to a distal threat signal. Journal of Experimental Psychopathology, 14(2), 204380872311751. https://doi.org/10.1177/20438087231175147\nWong, A. H. K., Van Dis, E. A. M., Pittig, A., Hagenaars, M. A., \u0026amp; Engelhard, I. M. (2023). The degree of safety behaviors to a safety stimulus predicts development of threat beliefs. Behaviour Research and Therapy, 170, 104423. https://doi.org/10.1016/j.brat.2023.104423\nWong, Alex. H. K., Lee, J. C., Engelke, P., \u0026amp; Pittig, A. (2023). Reduction of costly safety behaviors after extinction with a generalization stimulus is determined by individual differences in generalization rules. Behaviour Research and Therapy, 160, 104233. https://doi.org/10.1016/j.brat.2022.104233\nWong, F., Diamant, E. S., Walters, M., \u0026amp; Yeh, P. J. (2022). No evidence of repeated song divergence across multiple urban and non-urban populations of dark-eyed juncos ( Junco hyemalis ) in Southern California. Royal Society Open Science, 9(8), 220178. https://doi.org/10.1098/rsos.220178\nWong, J. B., Lisovski, S., Alisauskas, R. T., English, W., Harrison, A.-L., Kellett, D. K., Maftei, M., Nagy-MacArthur, A., Ronconi, R. A., Smith, P. A., Mallory, M. L., \u0026amp; Auger-Méthé, M. (2022). Variation in migration behaviors used by Arctic Terns (Sterna paradisaea) breeding across a wide latitudinal gradient. Polar Biology, 45(5), 909\u0026ndash;922. https://doi.org/10.1007/s00300-022-03043-2\nWong, R., Veldre, A., \u0026amp; Andrews, S. (2022). Are there independent effects of constraint and predictability on eye movements during reading? Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0001206\nWood, W., Mazar, A., \u0026amp; Neal, D. T. (2022). Habits and Goals in Human Behavior: Separate but Interacting Systems. Perspectives on Psychological Science, 17(2), 590\u0026ndash;605. https://doi.org/10.1177/1745691621994226\nWootton, R. E., Riglin, L., Blakey, R., Agnew-Blais, J., Caye, A., Cadman, T., Havdahl, A., Gonçalves, H., Menezes, A. M. B., Wehrmeister, F. C., Rimfeld, K., Davey Smith, G., Eley, T. C., Rohde, L. A., Arseneault, L., Moffitt, T. E., Stergiakouli, E., Thapar, A., \u0026amp; Tilling, K. (2022). Decline in attention-deficit hyperactivity disorder traits over the life course in the general population: Trajectories across five population birth cohorts spanning ages 3 to 45 years. International Journal of Epidemiology, 51(3), 919\u0026ndash;930. https://doi.org/10.1093/ije/dyac049\nWu, S. H., Henderson, L.-M., \u0026amp; Gennari, S. P. (2022). Animacy interactions with individual variability in sentence production and comprehension reveal similar lexically driven competitive processes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(11), 1660\u0026ndash;1679. https://doi.org/10.1037/xlm0000857\nWu, Y., Tao, B., Lan, K., Shen, Y., Huang, W., \u0026amp; Wang, F. (2022). Reliability and accuracy of dynamic navigation for zygomatic implant placement. Clinical Oral Implants Research, 33(4), 362\u0026ndash;376. https://doi.org/10.1111/clr.13897\nWu, Y., Wu, X., Gao, L., Yan, Y., Geng, Z., Zhou, S., Zhu, W., Tian, Y., Yu, Y., Wei, L., \u0026amp; Wang, K. (2022). Abnormal Functional Connectivity of Thalamic Subdivisions in Alzheimer's Disease: A Functional Magnetic Resonance Imaging Study. Neuroscience, 496, 73\u0026ndash;82. https://doi.org/10.1016/j.neuroscience.2022.06.006\nWulff, D. U., De Deyne, S., Aeschbach, S., \u0026amp; Mata, R. (2022). Using Network Science to Understand the Aging Lexicon: Linking Individuals\u0026rsquo; Experience, Semantic Networks, and Cognitive Performance. Topics in Cognitive Science, 14(1), 93\u0026ndash;110. https://doi.org/10.1111/tops.12586\nWulff, D. U., \u0026amp; Mata, R. (2022). On the semantic representation of risk. Science Advances, 8(27), eabm1883. https://doi.org/10.1126/sciadv.abm1883\nWyszynski, M., \u0026amp; Diederich, A. (2022). Keep your budget together! Investigating determinants on risky decision-making about losses. PLOS ONE, 17(3), e0265822. https://doi.org/10.1371/journal.pone.0265822\nXia, Q., \u0026amp; Peng, G. (2022). The roles of object and action, and concreteness and imageability, in the distinction between nouns and verbs: An ERP study on monosyllabic words in Chinese. Journal of Neurolinguistics, 61, 101026. https://doi.org/10.1016/j.jneuroling.2021.101026\nXia, T., Lopes, S., Chen, L., Roth, R., Zinzow, H., Jones, K., Zhang, L., Shi, L., \u0026amp; Jindal, M. (2022). A feasibility study on low-dose mindfulness-based stress reduction intervention among prediabetes and diabetes patients. Complementary Therapies in Medicine, 65, 102810. https://doi.org/10.1016/j.ctim.2022.102810\nXiang, K., Chang, H., \u0026amp; Sun, L. (2022). When the independence of syntactic representation meets the sentence processing of Mandarin: Evidence from syntactic priming. Quarterly Journal of Experimental Psychology, 75(6), 1041\u0026ndash;1055. https://doi.org/10.1177/17470218211044987\nXie, D., Chen, S., \u0026amp; Wu, Y. (2023). Focusing on the positive or the negative: Self‐construal moderates negativity bias in impression updating. PsyCh Journal, 12(4), 547\u0026ndash;560. https://doi.org/10.1002/pchj.651\nXie, H., \u0026amp; Deng, S. (2023). Drawing as a strategy for children to learn ancient Chinese poetry. Acta Psychologica, 240, 104039. https://doi.org/10.1016/j.actpsy.2023.104039\nXirocostas, Z. A., Debono, S. A., Slavich, E., \u0026amp; Moles, A. T. (2022). The ZAX Herbivory Trainer\u0026mdash;Free software for training researchers to visually estimate leaf damage. Methods in Ecology and Evolution, 13(3), 596\u0026ndash;602. https://doi.org/10.1111/2041-210X.13785\nXu, X., Yu, H., Gao, X., Shen, B., Feng, W., \u0026amp; Zhou, X. (2022). Understanding an implicated causality: The brain network for processing concessive relations. Brain and Language, 234, 105177. https://doi.org/10.1016/j.bandl.2022.105177\nXu, Z., \u0026amp; Liu, D. (2022). Perceptual simulation in language comprehension and Chinese character reading among third-grade Hong Kong children. Educational Psychology, 42(5), 587\u0026ndash;606. https://doi.org/10.1080/01443410.2022.2031891\nYamada, K., \u0026amp; Toda, K. (2022). Pupillary dynamics of mice performing a Pavlovian delay conditioning task reflect reward-predictive signals. Frontiers in Systems Neuroscience, 16, 1045764. https://doi.org/10.3389/fnsys.2022.1045764\nYamaguchi, M., \u0026amp; Moriguchi, Y. (2022). Developmental change in attachment objects during childhood. Early Child Development and Care, 192(7), 1119\u0026ndash;1132. https://doi.org/10.1080/03004430.2020.1841756\nYang, H., Reid, J. N., Kong, P., \u0026amp; Chen, J. (2022). Mirror Generalization During Early Word Recognition. Journal of Psycholinguistic Research, 51(3), 543\u0026ndash;561. https://doi.org/10.1007/s10936-022-09857-9\nYang, J., Shao, Y., Li, B., Yu, Q.-Y., Ge, Q.-M., Li, B., Pan, Y.-C., Liang, R.-B., Wu, S.-N., Li, Q.-Y., \u0026amp; He, Y.-L. (2022). Altered regional homogeneity of spontaneous brain activity in patients with toothache: A resting-state functional magnetic resonance imaging study. Frontiers in Neuroscience, 16, 1019989. https://doi.org/10.3389/fnins.2022.1019989\nYang, Y., Hillebrand, H., Lagisz, M., Cleasby, I., \u0026amp; Nakagawa, S. (2022). Low statistical power and overestimated anthropogenic impacts, exacerbated by publication bias, dominate field studies in global change biology. Global Change Biology, 28(3), 969\u0026ndash;989. https://doi.org/10.1111/gcb.15972\nYavne, Y., Edel, Y., Berman, J., Eviatar, T., \u0026amp; Shepshelovich, D. (2021). Quality evaluation of the underlying evidence in the updated treatment recommendations for systemic lupus erythematosus. Rheumatology, 61(1), 240\u0026ndash;248. https://doi.org/10.1093/rheumatology/keab306\nYavuz, M., Küntay, A. C., \u0026amp; Brouwer, S. (2023). The effect of foreign language and psychological distance on moral judgment in Turkish\u0026ndash;English bilinguals. Bilingualism: Language and Cognition, 1\u0026ndash;13. https://doi.org/10.1017/S1366728923000706\nYi, W., Lu, S., \u0026amp; Dekeyser, R. (2022). Orthographic, Semantic, and Contextual Influences on Initial Processing and Learning of Novel Words During Reading: Evidence From Eye Movements. Chinese Journal of Applied Linguistics, 45(2), 194\u0026ndash;219. https://doi.org/10.1515/CJAL-2022-0203\nYin, H., Tao, J., Peng, Y., Xiong, Y., Li, B., Li, S., \u0026amp; Yang, H. (2022). MSPJ: Discovering potential biomarkers in small gene expression datasets via ensemble learning. Computational and Structural Biotechnology Journal, 20, 3783\u0026ndash;3795. https://doi.org/10.1016/j.csbj.2022.07.022\nYoo, H., McNeil, M. R., Dickey, M. W., \u0026amp; Terhorst, L. (2022). Linguistic and nonlinguistic processing speed across age-matched normal healthy controls and individuals with left-hemisphere damage, with and without aphasia. Aphasiology, 36(2), 147\u0026ndash;169. https://doi.org/10.1080/02687038.2020.1853966\nYoshimoto, T., Okazaki, S., Sumiya, M., Takahashi, H. K., Nakagawa, E., Koike, T., Kitada, R., Okamoto, S., Nakata, M., Yada, T., Kosaka, H., Sadato, N., \u0026amp; Chikazoe, J. (2022). Coexistence of sensory qualities and value representations in human orbitofrontal cortex. Neuroscience Research, 180, 48\u0026ndash;57. https://doi.org/10.1016/j.neures.2022.02.004\nYoung, R. C., Westneat, D. F., Vangorder-Braid, J., Sirman, A. E., Siller, S. J., Kittilson, J., Ghimire, A., \u0026amp; Heidinger, B. J. (2022). Stressors interact across generations to influence offspring telomeres and survival. Proceedings of the Royal Society B: Biological Sciences, 289(1982), 20220868. https://doi.org/10.1098/rspb.2022.0868\nYovel, I., Aviram, G., Kahana, N., \u0026amp; Katz, B. A. (2022). Testing a new indirect measure of general self‐worth: The Self‐esteem Questionnaire‐based Implicit Association Test. British Journal of Social Psychology, 61(1), 100\u0026ndash;120. https://doi.org/10.1111/bjso.12472\nYu, W., Ni, L., Zhang, Z., Zheng, W., \u0026amp; Liu, Y. (2023). No need to integrate action information during coarse semantic processing of man-made tools. Psychonomic Bulletin \u0026amp; Review, 30(6), 2230\u0026ndash;2239. https://doi.org/10.3758/s13423-023-02301-6\nYu, Z., Guindani, M., Grieco, S. F., Chen, L., Holmes, T. C., \u0026amp; Xu, X. (2022). Beyond t test and ANOVA: Applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron, 110(1), 21\u0026ndash;35. https://doi.org/10.1016/j.neuron.2021.10.030\nYuan, Y., \u0026amp; Guoyuan, T. (2022). An Empirical Study on Imagery and Emotional Response in Chinese Poetry Translation\u0026mdash;The Visual Grammar Perspective. Frontiers in Psychology, 13, 872497. https://doi.org/10.3389/fpsyg.2022.872497\nZahn, R., Schnur, T. T., \u0026amp; Martin, R. C. (2022). Contributions of semantic and phonological working memory to narrative language independent of single word production: Evidence from acute stroke. Cognitive Neuropsychology, 39(5\u0026ndash;8), 296\u0026ndash;324. https://doi.org/10.1080/02643294.2023.2186782\nZamarripa, C. A., Novak, M. D., Weerts, E. M., Vandrey, R., \u0026amp; Spindle, T. R. (2022). The effects of oral and vaporized cannabis alone, and in combination with alcohol, on driving performance using the STISIM driving simulator: A two-part, double-blind, double-dummy, placebo-controlled, randomized crossover clinical laboratory protocol. Frontiers in Pharmacology, 13, 964749. https://doi.org/10.3389/fphar.2022.964749\nZaouter, C., Moore, A., Carrier, F. M., Girard, J., \u0026amp; Girard, M. (2022). Pressure Support Ventilation and Atelectasis: Comment. Anesthesiology, 136(6), 1043\u0026ndash;1044. https://doi.org/10.1097/ALN.0000000000004193\nZazio, A., Barchiesi, G., Ferrari, C., Marcantoni, E., \u0026amp; Bortoletto, M. (2022). M1-P15 as a cortical marker for transcallosal inhibition: A preregistered TMS-EEG study. Frontiers in Human Neuroscience, 16, 937515. https://doi.org/10.3389/fnhum.2022.937515\nZekelman, L. R., Zhang, F., Makris, N., He, J., Chen, Y., Xue, T., Liera, D., Drane, D. L., Rathi, Y., Golby, A. J., \u0026amp; O'Donnell, L. J. (2022). White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. NeuroImage, 246, 118739. https://doi.org/10.1016/j.neuroimage.2021.118739\nZhang, J. W., Bui, V., Snell, A. N., Howell, R. T., \u0026amp; Bailis, D. (2022). Daily self-compassion protects Asian Americans/Canadians after experiences of COVID-19 discrimination: Implications for subjective well-being and health behaviors. Self and Identity, 21(8), 891\u0026ndash;913. https://doi.org/10.1080/15298868.2021.2012511\nZhang, Q., \u0026amp; An, X. (2022). Sensorimotor Grounding of Chinese Novel Concepts Constructed From Language Alone. Theory and Practice in Language Studies, 12(5), 957\u0026ndash;963. https://doi.org/10.17507/tpls.1205.17\nZhang, X., Lu, X., \u0026amp; Li, W. (2022). Beyond Differences: Assessing Effects of Shared Linguistic Features on L2 Writing Quality of Two Genres. Applied Linguistics, 43(1), 168\u0026ndash;195. https://doi.org/10.1093/applin/amab007\nZhang, Y., Chang, M., \u0026amp; Wang, J. (2022). Increasing intercharacter spacing reduces the transposed-character effect in Chinese reading: Evidence from eye movements. Visual Cognition, 30(5), 371\u0026ndash;377. https://doi.org/10.1080/13506285.2022.2074181\nZhang, Y., Nash, R. A., \u0026amp; Otgaar, H. (2023). Preference for cheap-and-easy memory verification strategies is strongest among people with high memory distrust. Memory, 31(7), 978\u0026ndash;988. https://doi.org/10.1080/09658211.2023.2216910\nZhang, Y., Peng, S., Chen, X., \u0026amp; Chen, H. Y. H. (2022). Plant diversity increases the abundance and diversity of soil fauna: A meta-analysis. Geoderma, 411, 115694. https://doi.org/10.1016/j.geoderma.2022.115694\nZhang, Z., \u0026amp; Peng, P. (2022). Reading real words versus pseudowords: A meta-analysis of research in developmental dyslexia. Developmental Psychology, 58(6), 1035\u0026ndash;1050. https://doi.org/10.1037/dev0001340\nZhang, Z., \u0026amp; Sun, L. (2023). The hidden factor: Accounting for covariate effects in power and sample size computation for a binary trait. Bioinformatics, 39(4), btad139. https://doi.org/10.1093/bioinformatics/btad139\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553\u0026ndash;583. https://doi.org/10.1515/cog-2021-0098\nZhao, R., Jiao, L., Wang, M., \u0026amp; Wei, H. (2023). The influence of L2 experience on L1 speech perception: Evidence from Mandarin\u0026ndash;English bilinguals. International Journal of Bilingualism, 27(5), 533\u0026ndash;547. https://doi.org/10.1177/13670069221104964\nZhong, Y., Huang, C.-R., \u0026amp; Ahrens, K. (2022). Embodied Grounding of Concreteness/Abstractness: A Sensory-Perceptual Account of Concrete and Abstract Concepts in Mandarin Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 72\u0026ndash;83). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_5\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196\u0026ndash;230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000\u0026ndash;1022. https://doi.org/10.1080/23273798.2022.2035416\nZhou, J., Mai, Z., Cai, Q., Liang, Y., \u0026amp; Yip, V. (2022). Reference production in Mandarin\u0026ndash;English bilingual preschoolers: Linguistic, input, and cognitive factors. Frontiers in Psychology, 13, 897031. https://doi.org/10.3389/fpsyg.2022.897031\nZhou, J.-G., Wong, A. H.-H., Wang, H., Jin, S.-H., Tan, F., Chen, Y.-Z., He, S.-S., Shen, G., Frey, B., Fietkau, R., Hecht, M., Carr, S. R., Wang, R., Shen, B., Schrump, D. S., Ma, H., \u0026amp; Gaipl, U. S. (2022). Definition of a new blood cell count score for early survival prediction for non-small cell lung cancer patients treated with atezolizumab: Integrated analysis of four multicenter clinical trials. Frontiers in Immunology, 13, 961926. https://doi.org/10.3389/fimmu.2022.961926\nZhou, T., Li, Y., Liu, H., Zhou, S., \u0026amp; Wang, T. (2022). N400 Indexing the Motion Concept Shared by Music and Words. Frontiers in Psychology, 13, 888226. https://doi.org/10.3389/fpsyg.2022.888226\nZhozhikashvili, N., Zakharov, I., Ismatullina, V., Feklicheva, I., Malykh, S., \u0026amp; Arsalidou, M. (2022). Parietal Alpha Oscillations: Cognitive Load and Mental Toughness. Brain Sciences, 12(9), 1135. https://doi.org/10.3390/brainsci12091135\nZhu, C., Liu, Z., Pei, M., \u0026amp; Su, Y. (2022). Effects of photographer physical attractiveness on photograph aesthetic value assessment. Perception, 51(7), 505\u0026ndash;513. https://doi.org/10.1177/03010066221098158\nZhu, C., \u0026amp; Wu, F. (2023). To stress or not to stress: What can Mandarin pronouns inform us of the accessibility of topic and focus? Phonetica, 0(0). https://doi.org/10.1515/phon-2023-0002\nZiv, G., Lidor, R., \u0026amp; Levin, O. (2022). Providing choice of feedback affects perceived choice but does not affect performance. PeerJ, 10, e13631. https://doi.org/10.7717/peerj.13631\nZivony, A., \u0026amp; Eimer, M. (2022). Expectation-based blindness: Predictions about object categories gate awareness of focally attended objects. Psychonomic Bulletin \u0026amp; Review, 29(5), 1879\u0026ndash;1889. https://doi.org/10.3758/s13423-022-02116-x\nZoppolat, G., Righetti, F., Balzarini, R. N., Alonso-Ferres, M., Urganci, B., Rodrigues, D. L., Debrot, A., Wiwattanapantuwong, J., Dharma, C., Chi, P., Karremans, J. C., Schoebi, D., \u0026amp; Slatcher, R. B. (2022). Relationship difficulties and \u0026ldquo;technoference\u0026rdquo; during the COVID-19 pandemic. Journal of Social and Personal Relationships, 39(11), 3204\u0026ndash;3227. https://doi.org/10.1177/02654075221093611\nZou, J., Gopalakrishnan, S., Parker, C. C., Nicod, J., Mott, R., Cai, N., Lionikas, A., Davies, R. W., Palmer, A. A., \u0026amp; Flint, J. (2022). Analysis of independent cohorts of outbred CFW mice reveals novel loci for behavioral and physiological traits and identifies factors determining reproducibility. G3 Genes|Genomes|Genetics, 12(1), jkab394. https://doi.org/10.1093/g3journal/jkab394\nZuraida, Z., \u0026amp; Husin, A. (2022). Sustainability, Sharī'ah Governance and Financial Performance: Evidence from Companies Listed on the Jakarta Islamic Index. In T. Azid, M. Mukhlisin, \u0026amp; O. Altwijry (Eds.), Wealth Management and Investment in Islamic Settings (pp. 249\u0026ndash;282). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3686-9_16\nZwet, E. V., \u0026amp; Gelman, A. (2022). A Proposal for Informative Default Priors Scaled by the Standard Error of Estimates. The American Statistician, 76(1), 1\u0026ndash;9. https://doi.org/10.1080/00031305.2021.1938225\nКузьмина, Ю. (2023). Psychometrics and Cognitive Research: Contradictions and Possibility for Cooperation. Voprosy Obrazovaniya / Educational Studies Moscow, 3. https://doi.org/10.17323/vo-2023-16875\n\r\r","date":1665705600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1665705600,"objectID":"785b1b124f6f042a721b1cec60f9de86","permalink":"https://pablobernabeu.github.io/publication/pablo-bernabeu-2022-phd-thesis/","publishdate":"2022-10-22T00:00:00Z","relpermalink":"/publication/pablo-bernabeu-2022-phd-thesis/","section":"publication","summary":"Research has suggested that conceptual processing depends on both language-based and sensorimotor information. In this thesis, I investigate the nature of these systems and their interplay at three levels of the experimental structure---namely, individuals, words and tasks. In Study 1, I contributed to a multi-lab replication of the object orientation effect, which has been used to test sensorimotor simulation. The effect did not appear across any of the 18 languages examined, and it was not influenced by individual differences in mental rotation. Next, in Study 2, we drew on three existing data sets that implemented semantic priming, semantic decision and lexical decision. We extended these data sets with measures of language-based and vision-based information, and analysed their interactions with participants' vocabulary size and gender, and with presentation speed. The analysis had a conservative structure of fixed and random effects. First, we found that language-based information was more important than vision-based information. Second, in the semantic priming study---whose task required distinguishing between words and nonwords---, both language-based and vision-based information were more influential when words were presented faster. Third, a 'task-relevance advantage' was identified in higher-vocabulary participants. Specifically, in lexical decision, higher-vocabulary participants were more sensitive to language-based information than lower-vocabulary participants. In contrast, in semantic decision, higher-vocabulary participants were more sensitive to word concreteness. Fourth, we demonstrated the influence of the analytical method on the results. Last, we estimated the sample size required to investigate various effects. We found that 300 participants were sufficient to examine the effect of language-based information in words, whereas more than 1,000 participants were necessary to examine the effect of vision-based information and the interactions of both former variables with vocabulary size, gender and presentation speed. This power analysis reveals the need to increase sample sizes when conduct research on perceptual simulation and individual differences.","tags":["object orientation effects","replication","semantic processing","semantic priming","semantic decision","lexical decision","language","vision","visual strength","cognition","psycholinguistics","reading","linear mixed-effects models","frequentist statistics","lme4","lmerTest","Bayesian statistics","brms","power analysis","sample size","simr","rstats","R"],"title":"Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power","type":"publication"},{"authors":[],"categories":[],"content":"\rI recommend caution when receiving an invitation from Polar Insight (also dubbed ‘Polar Intelligence’) to complete a survey. When I received one, it ended up in a deceptive change of the terms. The deception emerged after two emails exchanged with the company’s managing director, James Tattersfield, and an employee.\nThe case began when the managing director invited me to complete two tasks in exchange for a $125 USD voucher. The two tasks were a survey (‘short form’, in the director’s words) and an hour-long interview. Below is the email:\n\rFrom: James Tattersfield james@polarintelligence.com\nSent: Thursday, January 27, 2022 12:33:32 PM\nTo: De Juan Bernabeu, Pablo p.bernabeu@lancaster.ac.uk\nSubject: [External] Research Interview Request\nThis email originated outside the University. Check before clicking links or attachments.\nHi Pablo,\nI’m emailing you to discuss your participation in a global research study that my organisation (Polar Insight, a research firm based in London) is conducting to better understand how academic researchers are discovering and accessing scholarly articles outside university campus.\nAt this point in the project, we are particularly interested in hearing from those who have completed - or are currently completing - a PhD or post-doctorate degree.\nMy research team has identified you as a potential respondent and asked me to reach out to see whether you may be interested in taking part in one of our online, paid research interviews in February. Does this sound like something you would be interested in?\nDetails:\nFormat: Online Video Interview\nTime required: 60 minutes\nWhen: February 2022\nPrep. required: None\nReward for taking part: $125 USD (via our gifting partner, Tremendous)\nNext steps:\nIf you’d like to take part, please reconfirm your suitability using this short form: https://polarinsight.typeform.com/res-dis\n\rOnce we receive your answers, myself or a member of the team will be in contact to get you scheduled in.\n\rAfter the interview is completed, we’ll be in touch to process your reward.\n\r\rIf you have any questions, please do feel free to reply to this email and I’ll do my best to answer them.\nThanks,\nJames\n--\nJames Tattersfield\nManaging Director\nUK - 68 Hanbury St, London, E1 5JL, United Kingdom\nRegistered in England and Wales as a Private Limited Company.\n‘Polar Insight’ is a registered trademark owned by Polar Insight Limited.\nCompany number: 10587770 VAT: GB 279 4939 34\nIf you no longer want to receive emails regarding our research projects, you are welcome to unsubscribe from any future communications here\n\r\nFollowing this invitation, I—and presumably many other researchers—responded to a survey (see some screenshots below) that provided the company with data that might be used for business purposes.\n\r\r\r\r\r\r\r\r\nOnce the company had received my survey completed, an employee wrote back to change the original terms, on the grounds that ‘we have had a high volume of responses to our survey, so unfortunately, not everyone will be selected on this occasion’. Such a change of the terms was unethical, as it happened after I had accepted the invitation from the company under the original terms. Crucially, if the company had truthfully specified the terms in the first email, they would not have received back anywhere as many surveys completed. Ethics is important in the distribution of surveys, even in business. It is noteworthy that Polar Insight boasts a portfolio of clients on its website that covers a range of private sectors as well as public bodies. It is, therefore, striking that this company decided to scam a PhD student.\nI emailed the company and the CEO James Tattersfield to request my reward. After they had ignored my emails, and then replied with evasive responses, I contacted the CEO on LinkedIn. Again, he yielded evasive responses only.\nThe present case incidentally demonstrates that the role of ethics committees—tasked with assessing surveys, among other things—goes beyond gross themes. Economic deception is one of the negligent acts that must be prevented.\nSimilar survey scams have been documented:\n\rhttps://moneydoneright.com/fast-money/online-work/surveys/surveys-for-money\n\rhttps://www.accc.gov.au/media-release/watch-out-for-scam-surveys-and-fake-gift-card-offers\n\rhttps://www.facebook.com/dollargeneral/posts/pfbid032BmUQrAUh7p9yuw8eQKavZZrUC7zsGeBiT2E4efDEASCFSsem7vLKNiipgWNqYjpl\n\r\r\n","date":1647302400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1647302400,"objectID":"0c4ef4e34a1e8c260c2561477153b261","permalink":"https://pablobernabeu.github.io/2022/deception-in-a-survey-from-polar-insight-/-polar-intelligence/","publishdate":"2022-03-15T00:00:00Z","relpermalink":"/2022/deception-in-a-survey-from-polar-insight-/-polar-intelligence/","section":"post","summary":"I recommend caution when receiving an invitation from Polar Insight (also dubbed ‘Polar Intelligence’) to complete a survey. When I received one, it ended up in a deceptive change of the terms. The deception emerged after two emails exchanged with the company’s managing director, James Tattersfield, and an employee.\nThe case began when the managing director invited me to complete two tasks in exchange for a $125 USD voucher. The two tasks were a survey (‘short form’, in the director’s words) and an hour-long interview.","tags":["survey","scam","fraud"],"title":"Deception in a survey from Polar Insight / Polar Intelligence","type":"post"},{"authors":[],"categories":["R"],"content":"\rThe function knit_deleting_service_files() helps avoid (R) Markdown knitting errors caused by files and folders remaining from previous knittings (e.g., manuscript.tex, ZHJhZnQtYXBhLlJtZA==.Rmd, manuscript.synctex.gz). The only obligatory argument for this function is the name of a .Rmd or .md file. The optional argument is a path to a directory containing this file.\nThe function first offers deleting potential service files and folders, for which the user’s approval is requested in the console (see screenshot below). Next, the document is knitted. Last, the function offers deleting potential service files and folders again.\nNOTE: The deletions, if accepted, are irreversible as they are made through unlink(). Therefore, our familiar adage truly applies: this function comes with ABSOLUTELY NO WARRANTY. Please ensure you understand the source code before using the function.\n\nScreenshot of the function in use.\nThe function\r\r\r","date":1639777566,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1639777566,"objectID":"065f76c7178db1ca66c5ba5b0d0a2908","permalink":"https://pablobernabeu.github.io/2021/avoiding-knitting-errors-in-r-markdown-using-knit-deleting-service-files/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/avoiding-knitting-errors-in-r-markdown-using-knit-deleting-service-files/","section":"post","summary":"The function knit_deleting_service_files() helps avoid (R) Markdown knitting errors caused by files and folders remaining from previous knittings (e.g., manuscript.tex, ZHJhZnQtYXBhLlJtZA==.Rmd, manuscript.synctex.gz). The only obligatory argument for this function is the name of a .Rmd or .md file. The optional argument is a path to a directory containing this file. The function first offers szeleting potential service files and folders in the directory. A confirmation is required in the console (see screenshot below). Next, the document is knitted. Last, the function offers deleting potential service files and folders again.","tags":["s","R Markdown","papaja","render"],"title":"Avoiding (R) Markdown knitting errors using knit_deleting_service_files()","type":"post"},{"authors":[],"categories":["R"],"content":"\r\rAs technology and research methods advance, the data sets tend to be larger and the methods more exhaustive. Consequently, the analyses take longer to run. This poses a challenge when the results are to be presented using R Markdown. One has to balance reproducibility and efficiency. On the one hand, it is desirable to keep the R Markdown document as self-contained as possible, so that those who may later examine the document can easily test and edit the code. On the other hand, it would be inefficient to create a document that is very slow to run or very long. The context of the task will determine how how time-consuming and long the code in an Rmd file can be. For instance, one could decide that the knitting can take up to 15 minutes, and each code chunk can span up to 30 lines.\nSeveral methods can be used in each document to accommodate different types of code. Three methods are presented below, ordered from easier-to-reproduce to easier-to-knit.\nFor fast- and concise-enough code: Provide the original code in the Rmd file. The code is run as the document is knitted. Example:\n nrow(myData)\rFor fast-enough but very long code: Store the code in a separate script and source it in the Rmd file. The code is run as the document is knitted. Example:\n source(\u0026#39;analysis/model_diagnostics.R\u0026#39;)\rFor very slow and/or long code: Store the code in a separate script and run it prior to knitting the Rmd file, so that the output from the code (e.g., a model, a plot) is saved and can be read into the Rmd. Example:\n model_1 = readRDS(\u0026#39;results/model_1.rds\u0026#39;)\r\rImportantly, even the third method allows the reproducibility of the code. It just requires a bit of additional documentation to ensure that the end user can also access the script in which the result was produced (e.g., ‘analysis/model_1.R’).\n","date":1636848608,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1636848608,"objectID":"c2ff67766be99e135b2d65b6a2f2ff4d","permalink":"https://pablobernabeu.github.io/2021/walking-the-line-between-reproducibility-and-efficiency-in-r-markdown-three-methods/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/walking-the-line-between-reproducibility-and-efficiency-in-r-markdown-three-methods/","section":"post","summary":"As technology and research methods advance, the data sets tend to be larger and the methods more exhaustive. Consequently, the analyses take longer to run. This poses a challenge when the results are to be presented using R Markdown. One has to balance reproducibility and efficiency. On the one hand, it is desirable to keep the R Markdown document as self-contained as possible, so that those who may later examine the document can easily test and edit the code.","tags":["s","R","R Markdown"],"title":"Walking the line between reproducibility and efficiency in R Markdown: Three methods","type":"post"},{"authors":[],"categories":["R"],"content":"\r\rWhen knitting an R Markdown document after the first time, errors may sometimes appear. Three tips are recommended below.\n1. Close PDF reader window\rWhen the document is knitted through the ‘Knit’ button, a PDF reader window opens to present the result. Closing this window can help resolve errors.\n\r2. Delete service files\rEvery time the Rmd is knitted, some service files are created. Some of these files have the ‘.tex’ extension (e.g., index.tex, Appendix-B.tex), whereas others do not (e.g., index.log, ZHJhZnQtYXBhLlJtZA==.Rmd, index.synctex.gz). Deleting these files can help resolve errors (see a possible function).\n\r3. Delete code chunks related to the appendices\rWhen knitting papaja documents containing any appendices, some code chunks related to the appendices will automatically appear at the end of the primary Rmd file—e.g.:\n```{r echo = FALSE, results = \u0026#39;asis\u0026#39;, cache = FALSE}\rpapaja::render_appendix(\u0026#39;Appendix-A.Rmd\u0026#39;)\r```\rNormally, these code chunks are automatically removed as the knitting finishes. However, if the chunks remain in place, deleting them manually can help resolve errors.\n\r","date":1636827082,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1636827082,"objectID":"55d2dcb6bb3b71357f49cdd9fc452690","permalink":"https://pablobernabeu.github.io/2021/tackling-knitting-errors-in-r-markdown/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/tackling-knitting-errors-in-r-markdown/","section":"post","summary":"When knitting an R Markdown document after the first time, errors may sometimes appear. Three tips are recommended below.\n1. Close PDF reader window\rWhen the document is knitted through the ‘Knit’ button, a PDF reader window opens to present the result. Closing this window can help resolve errors.\n\r2. Delete service files\rEvery time the Rmd is knitted, some service files are created. Some of these files have the ‘.","tags":["s","R","R Markdown"],"title":"Tackling knitting errors in R Markdown","type":"post"},{"authors":[],"categories":["R","research methods"],"content":"\rThe powercurve function from the R package ‘simr’ (Green \u0026amp; MacLeod, 2016) can incur very long running times when the method used for the calculation of p values is Kenward-Roger or Satterthwaite (see Luke, 2017). Here I suggest three ways for cutting down this time.\nWhere possible, use a high-performance (or high-end) computing cluster. This removes the need to use personal computers for these long jobs.\n\rIn case you’re using the fixed() parameter of the powercurve function, and calculating the power for different effects, run these at the same time (‘in parallel’) on different machines, rather than one after another.\n\rParallelize the breaks argument. The breaks argument of the powercurve function allows the calculation of power for different levels of the grouping factor passed to along. Some grouping factors are participant, trial and item. The breaks argument sets the different sample sizes for which power will be calculated. Parallelizing breaks is done by running each number of levels in a separate function. When each has been run and saved, they are combined to allow the plotting. This procedure is demonstrated below.\n\r\rParallelizing breaks\rLet’s do a minimal example using a toy lmer model. A power curve will be created for the fixed effect of x along different sample sizes of the grouping factor g.\nNotice that the six sections of the power curve below are serially arranged, one after another. In contrast, to enable parallel processing, each power curve would be placed in a single script, and they would all be run at the same time.\nAlthough the power curves below run in a few minutes, the settings that are often used (e.g., a larger model; fixed('x', 'sa') instead of fixed('x'); nsim = 500 instead of nsim = 50) take far longer. That is where parallel processing becomes useful.1\nlibrary(lme4)\rlibrary(simr)\r# Toy model with data from \u0026#39;simr\u0026#39; package\rfm = lmer(y ~ x + (x | g), data = simdata)\r# Extend sample size of `g`\rfm_extended_g = extend(fm, along = \u0026#39;g\u0026#39;, n = 12)\r# Parallelize `breaks` by running each number of levels in a separate function.\r# 4 levels of g\rpwcurve_4g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 4, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 6 levels of g\rpwcurve_6g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 6, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 8 levels of g\rpwcurve_8g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 8, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 10 levels of g\rpwcurve_10g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 10, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 12 levels of g\rpwcurve_12g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 12, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r\nHaving saved each section of the power curve, we must now combine them to be able to plot them together (if you wish to automatise this procedure, consider this function).\n# Create a destination object using any of the power curves above.\rall_pwcurve = pwcurve_4g\r# Combine results\rall_pwcurve$ps = c(pwcurve_4g$ps[1], pwcurve_6g$ps[1], pwcurve_8g$ps[1], pwcurve_10g$ps[1], pwcurve_12g$ps[1])\r# Combine the different numbers of levels.\rall_pwcurve$xval = c(pwcurve_4g$nlevels, pwcurve_6g$nlevels, pwcurve_8g$nlevels, pwcurve_10g$nlevels, pwcurve_12g$nlevels)\rprint(all_pwcurve)\r## Power for predictor \u0026#39;x\u0026#39;, (95% confidence interval),\r## by number of levels in g:\r## 4: 46.00% (31.81, 60.68) - 40 rows\r## 6: 74.00% (59.66, 85.37) - 60 rows\r## 8: 92.00% (80.77, 97.78) - 80 rows\r## 10: 98.00% (89.35, 99.95) - 100 rows\r## 12: 100.0% (92.89, 100.0) - 120 rows\r## ## Time elapsed: 0 h 0 m 7 s\rplot(all_pwcurve, xlab = \u0026#39;Levels of g\u0026#39;)\r# For reproducibility purposes\rsessionInfo()\r## R version 4.2.3 (2023-03-15 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 10 x64 (build 22621)\r## ## Matrix products: default\r## ## locale:\r## [1] LC_COLLATE=English_United States.utf8 ## [2] LC_CTYPE=English_United States.utf8 ## [3] LC_MONETARY=English_United States.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United States.utf8 ## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] simr_1.0.7 lme4_1.1-32 Matrix_1.5-3 ## [4] knitr_1.42 xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] tidyselect_1.2.0 xfun_0.38 bslib_0.4.2 purrr_1.0.1 ## [5] splines_4.2.3 lattice_0.20-45 carData_3.0-5 vctrs_0.6.1 ## [9] generics_0.1.3 htmltools_0.5.5 yaml_2.3.7 mgcv_1.8-42 ## [13] utf8_1.2.3 rlang_1.1.0 jquerylib_0.1.4 nloptr_2.0.3 ## [17] pillar_1.9.0 glue_1.6.2 uuid_1.1-0 plyr_1.8.8 ## [21] binom_1.1-1.1 lifecycle_1.0.3 stringr_1.5.0 blogdown_1.16 ## [25] evaluate_0.21 fastmap_1.1.1 RLRsim_3.1-8 parallel_4.2.3 ## [29] pbkrtest_0.5.2 fansi_1.0.4 broom_1.0.4 Rcpp_1.0.10 ## [33] backports_1.4.1 plotrix_3.8-2 cachem_1.0.7 jsonlite_1.8.4 ## [37] abind_1.4-5 digest_0.6.31 stringi_1.7.12 bookdown_0.33.3 ## [41] dplyr_1.1.1 grid_4.2.3 cli_3.4.1 tools_4.2.3 ## [45] magrittr_2.0.3 sass_0.4.6 tibble_3.2.1 tidyr_1.3.0 ## [49] car_3.1-2 pkgconfig_2.0.3 MASS_7.3-58.3 minqa_1.2.5 ## [53] rmarkdown_2.21 rstudioapi_0.14 iterators_1.0.14 R6_2.5.1 ## [57] boot_1.3-28.1 nlme_3.1-162 compiler_4.2.3\r\nJust the code\r\rlibrary(lme4)\rlibrary(simr)\r# Toy model\rfm = lmer(y ~ x + (x | g), data = simdata)\r# Extend sample size of `g`\rfm_extended_g = extend(fm, along = \u0026#39;g\u0026#39;, n = 12)\r# Parallelize `breaks` by running each number of levels in a separate function.\r# 4 levels of g\rpwcurve_4g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 4, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 6 levels of g\rpwcurve_6g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 6, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 8 levels of g\rpwcurve_8g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 8, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 10 levels of g\rpwcurve_10g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 10, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 12 levels of g\rpwcurve_12g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 12, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# Create a destination object using any of the power curves above.\rall_pwcurve = pwcurve_4g\r# Combine results\rall_pwcurve$ps = c(pwcurve_4g$ps[1], pwcurve_6g$ps[1], pwcurve_8g$ps[1], pwcurve_10g$ps[1], pwcurve_12g$ps[1])\r# Combine the different numbers of levels.\rall_pwcurve$xval = c(pwcurve_4g$nlevels, pwcurve_6g$nlevels, pwcurve_8g$nlevels, pwcurve_10g$nlevels, pwcurve_12g$nlevels)\rprint(all_pwcurve)\rplot(all_pwcurve, xlab = \u0026#39;Levels of g\u0026#39;)\r\r\n\r\rReferences\rBrysbaert, M., \u0026amp; Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9. http://doi.org/10.5334/joc.10\nGreen, P., \u0026amp; MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution 7(4), 493–498, https://doi.org/10.1111/2041-210X.12504\nKumle, L., Vo, M. L. H., \u0026amp; Draschkow, D. (2021). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. Behavior Research Methods, 1–16. https://doi.org/10.3758/s13428-021-01546-0\nLuke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y\n\n\r\rThe number of simulations set by nsim should be larger (Brysbaert \u0026amp; Stevens, 2018; Green \u0026amp; MacLeod, 2016). In addition, the effect size for x should be adjusted to the value that best fits with the planned study (Kumle et al., 2021).↩︎\n\r\r\r","date":1627055214,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1627055214,"objectID":"b0969a1cecf8eef662e221c5f20b47eb","permalink":"https://pablobernabeu.github.io/2021/parallelizing-simr-powercurve/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/parallelizing-simr-powercurve/","section":"post","summary":"The powercurve function from the R package ‘simr’ (Green \u0026amp; MacLeod, 2016) can incur very long running times when the method used for the calculation of p values is Kenward-Roger or Satterthwaite (see Luke, 2017). Here I suggest three ways for cutting down this time.\nWhere possible, use a high-performance (or high-end) computing cluster. This removes the need to use personal computers for these long jobs.\n\rIn case you’re using the fixed() parameter of the powercurve function, and calculating the power for different effects, run these at the same time (‘in parallel’) on different machines, rather than one after another.","tags":["s","power analysis"],"title":"Parallelizing simr::powercurve() in R","type":"post"},{"authors":[],"categories":[],"content":"This blog post does not provide a complete overview of the atmosphere at university or in academia, where I think that fairness is far more common than discrimination. Let's keep up the good work and be mindful of the rest.\r\rThere is discrimination at European universities and in the corresponding academia. Minorities are too often oppressed and abused through the use of casual remarks, concerted attacks, unequal respect towards different groups, unfair hiring decisions and other negligent behaviours. Professional and personal negligence is the reason why this discrimination is tolerated and condoned by staff of higher authority. Cases of discrimination are not normally shared by the universities, but they are sometimes registered on the websites of student unions, other student forums, or in the press. Discrimination must not be tolerated either at university or in academia. I hope this blog post provides some useful tips for dealing with discrimination from university students and staff alike.\nHomo homini lupus Xenophobia is one of the types of discrimination that sometimes crop up in halls of residence, departments, panels, committees, offices. Xenophobia exists where you are now, as it does where you come from. It is intrinsic to human societies (see Hinton, 2017). In society at large, who doesn't know the way in which different nationalities are ranked in a certain place? The specifics of these hierarchies vary across regions and individuals (thank goodness); and yet, xenophobia always tends to be underlain by an unfair, puny spirit.\nHierarchies among nationalities In society at large, the locals tend to be first. Some locals sometimes utilise official devices and everyday tricks to ensure that immigrants are second to them. We must all remember that more people should not mean more rights. Each person is a person.\nThe first rank of immigrants is formed of one or two nationalities, smiled at by the fortune of historical or cultural ties. The second rank of immigrants is that of merely-tolerated nationalities. The third rank is formed of immigrants who are despised due to historical, political, cultural factors.\nSadly and dangerously enough, in competitive or onerous circumstances (when is that not the case, though!), homo homini lupus est (people are wolves unto people). Then, discrimination breaks loose (Abbink, \u0026amp; Harris, 2019; Meiring et al., 2014; Mendes \u0026amp; Koslov, 2013).\nPolicies Policy statements are increasingly popular and they give reasons for hope. For instance, the employment webpage of Duke University reads (on 21st July 2021; https://hr.duke.edu/policies/diversity/eeo):\n Duke University prohibits discrimination and harassment, and provides equal employment opportunity without regard to an individual's age, color, disability, gender, gender expression, gender identity, genetic information, national origin, race, religion, sex, sexual orientation, or veteran status.\n Such statements, if indeed observed by the employees, constitute historical\u0026mdash;why, historic!\u0026mdash;changes. They should be celebrated, applauded\u0026mdash;even if they simply adhere to fundamental, human rights.\nDealing with discrimination Discrimination takes many forms. Accordingly, surviving and confronting it requires various approaches. Stoicism, bravery, protection and ingenuity are all valuable against the xenophobia that lurks, and occasionally bites, in halls of residence, informal meetings, committees, offices, and other settings at universities across Europe. Inspiration for such approaches can be found in many places\u0026mdash;even in popular literature. For instance, Harper Lee's To Kill a Mockingbird contains a passage in which a lawyer is mobbed by nostalgic townspeople who do not want a Black citizen to be treated as a human. The strategies for the defence from the lynch mob span from the lawyer's stoicism to his son's adolescent bravery, and from the invisible protection offered by a witness to the disarming ingenuity of the lawyer's eight-year-old daughter, who spots one of her neighbours in the mob.\nCollection and presentation of evidence Ironically, complaint cases are sometimes initiated by those who have exerted discrimination. If you receive a complaint and you feel you have been discriminated against, whether before or through the said complaint, it is important to note this in your response.\nThe discrimination can be well described by producing an extensive document that recounts every relevant episode, with the applicable evidence being attached. Don't fret about reading time: the larger the document, the better.\nName it. Discrimination has precise names\u0026mdash;for instance, xenophobia\u0026mdash;, which must be used where relevant and necessary. People know the meaning: perpetrators are likely know it and so will the authorities or mediators who are in charge of resolving the case. Whether these people like the word to be used or not is their own problem, not yours. Nonetheless, more general, and often more objective, hypernyms are also available, such as \u0026lsquo;discrimination\u0026rsquo; and \u0026lsquo;unfairness\u0026rsquo;.\nCase study This year, I was bullied by some of my flatmates. This bullying was finally underscored when they submitted false accusations about me to the Graduate College Accommodation Office at Lancaster University. The latter office embraced and acted upon these accusations. As a result, a flat meeting was suggested by the Deanery. The Deanery would not initially allow me to receive information in writing and to respond likewise. On the contrary, they required a live meeting. As I repeatedly countered, I thought that a written procedure would cause less stress, yield less bias, and allow a more accurate registration of every input for future reference.\n It is due to three reasons that I would prefer working on the basis of a brief written report, to which I could also respond in writing. These reasons are:\n I think that the written mode helps remain more impartial than the oral mode. I think a written discussion would help in keeping a clear, written record of every part of the report. I think a written discussion causes less stress than an oral one. I am hopeful that, having presented my preference for responding in writing to a written report, you may acknowledge my personal preference, and perhaps allow me to proceed in that way.\n A written discussion\u0026mdash;e.g., via email\u0026mdash; is a valuable option in situations that could be unfair or abusive.\nFinally, when I was presented with the necessary written information, I replied with a 36-page document, and participated in a one-hour disciplinary hearing. By those means, I described the way in which some of my flatmates had bullied me throughout the year, finally reinforced through the false accusations they had made. They had lied about their own behaviour, too, while they were at it.\nI think this bullying was motivated by the legitimate differences in the way we were each concerned about the Covid-19 pandemic, along with differences in academic stage, age, nationality and physical appearance. As a general rule, people tend to have difficulties to respect or tolerate others who are different from them. In the present instance, this difficulty drove my flatmates to submit false accusations about me while forgetting crucial information about their own behaviour. The time-consuming, 36-page response that I composed helped clarify the state of affairs. Upon a formal review, I was acquitted on all accusations.\nIt is important to express one's feeling of unfairness where it exists. I did so, following the Dean's resolution, through the email below, which I sent to the College (private information replaced with asterisks).\n\rDear All,\nThe Dean has produced a resolution to the disciplinary hearing that was organised due to complaints from some of my flatmates. This resolution considers my flatmates\u0026rsquo; complaints as well as the 36-page response that I submitted and the one-hour hearing that finally took place. In the resolution, I was acquitted of all three alleged violations (my response to the summons and the Dean's resolution are attached to the present email).\nAs part of a fair procedure, I received documents that reflected my flatmates\u0026rsquo; complaints, as well as the treatment of those complaints from the Graduate Accommodation Office. I would be grateful for your consideration of my views on the role of the Graduate Accommodation Office.\nBiased treatment of accusations\nI have considered the response from the Graduate Accommodation Office as the complaints were raised, and until I was summoned to a disciplinary hearing. In my view, the Graduate Accommodation Office failed to demonstrate enough impartiality, which resulted in unfairness towards me. The claims made by some of my flatmates via email were acted upon by the Accommodation Office without an important consideration\u0026ndash;namely, that the accusations could be deliberately false or inaccurate. Indeed, the accusations happened to be so, as I extensively argued in my response to the summons by providing detailed descriptions of the events and documentary evidence.\nDisappointingly, the embracement of my flatmates\u0026rsquo; accusations by the Graduate Accommodation Office contrasts with the caution that is rightly applied when one calls the porters. I have sometimes called over the past three years regarding residents smoking indoors. Every time, they made me aware of the need for them to catch any students as they are smoking indoors. In the absence of the witnessing by the porters, the students can only be informed about the complaint made, but no action can be taken against them. This is a correct precaution against any false or misinformed accusations. In contrast, I think that the Graduate Accommodation Office, in some of their emails with some of my flatmates, embraced the accusations on a one-sided manner, and finally passed on these accusations to the Dean without having had any input from me about the veracity thereof.\nBiased provision of evidence\nAmong the documents included in the disciplinary case, the Graduate Accommodation Office included a complaint that I had raised regarding the persistent failures to prevent a Covid-19 infection by my flatmates and by the housekeeper. My complaint should by no means have been mixed with the complaints against me. Its inclusion is a demonstration of the bias with which I was treated.\nLegitimate differences across flatmates contributing to discrimination\nI think that the biased response from the response from the Graduate Accommodation Office failed to consider the legitimate differences across the residents in these flats. The Graduate Accommodation Office know (as indeed they should) that the seven-person flats in this college are bound to include residents who are legitimately different from each other. In my flat this year, for instance, we have had important differences regarding academic stage, age and country of origin.\n Academic stage: five master's students, one first-year PhD student and one third-year PhD student (I am the latter one).\n Age: all my flatmates are under ***, whereas I am ***.\n Country of origin: three ***, one ***, one ***, one *** and one *** (I am the latter one).\n These differences must always be considered, as they can contribute to ingroup-outgroup bias in flats. Some of this bias could stem from xenophobia. Unfortunately, Lancaster University has had infamous cases of xenophobia in the past (https://scan.lancastersu.co.uk/2013/05/27/editorial-anonymous-bullying-on-facebook-groups-is-pure-cowardice/).\nIn conclusion, would you please consider the following remarks:\n I think that the treatment of my flatmates\u0026rsquo; complaints was unfair and biased against me.\n I think my flatmates aimed to have me expelled from the flat. Their spite was due to me being the only one who has been properly concerned about the virus in this flat, and due to the legitimate differences that existed between me and my flatmates regarding academic stage, age and country of origin, as listed above.\n I think that this case demonstrates that it is extremely harmful to embrace and act upon accusations in a one-sided manner, as it can result in discrimination. The biased response from the Graduate Accommodation Office has instilled a fear from false accusations in me. As a result, I feel that henceforth I will have to monitor whether I or other residents are discriminated against by the Graduate Accommodation Office.\n I hope that the Graduate Accommodation Office can acknowledge my experience of the present issue, and consider it to allow a fair treatment towards every resident in the future. As such, henceforth, I will consider the present email as an integral part of this process, and I hope that the Graduate Accommodation Office does too.\nThank you for your attention,\nPablo\n\rWhen I had not received a reply within two weeks, I followed up with another email referring to details in the documents that were suggestive of a bias among the staff. This staff had followed directions from some of my flatmates without requesting my perspective on the issue, my side of things, my feedback, with the same degree of trust. Why? Why had they discriminated against me?\u0026mdash;I asked them. Did I not pay the same accommodation fees as the others? Was I not the same kind of a customer? This time, I did not limit my feedback to the Graduate College: I found it necessary to share my disappointment with some other services of the university as well.\n I sincerely believe that the Graduate College Accommodation Office and the Graduate College Deanery would benefit from some training in dealing with complaints fairly, efficiently and professionally. I believe such a training would benefit all students, especially those\u0026ndash;like myself\u0026ndash;who are more likely to be bullied by flatmates due to having a different profile (country of origin, physical appearance, academic requirements, leisure habits, etc.). My flatmates\u0026rsquo; bullying towards me began in the first week, when they blamed me for placing my food on shelves of the fridge which they had unilaterally chosen. They had assigned me a shelf\u0026mdash;one at the bottom of the fridge. Episodes extended throughout the year, as I extensively described in my 36-page response to the Dean's summons, which I can share with you if that were necessary for the revision of the conditions at Graduate College.\n[\u0026hellip;]\nThe present case has already robbed me of precious time. I wonder if this was part of the intention of some persons involved in this process. In any case, I hope this information will be helpful for the future. Discrimination must be confronted at this university. I pay the same accommodation fees and, logically, I deserve the same trust and care as the most beloved of residents.\n A design feature? Perhaps societies are discriminatory by design. As an illustration, a comment by John Bercow on the xenophobia that lurks in a large party provides an idea of the scale of the problem. Perhaps we are not doing enough about this. This insufficiency might explain, for instance, why the death of an innocent Slovak citizen in police custody at Charleroi Airport (Brussels, Belgium) was barely and poorly covered by the European media. In case that you tolerate graphic footage, please consider the unnecessary, illegal treatment given to Jozef Chovanec. Chovanec's case is but an example. The news archives contain evidence of abuses to minority citizens in many European countries since the 2000s to this day.\nCeaseless awareness Lobbying, whether we like it or not, Activism is one of the methods needed to confront this plight. So, talk about it. Make sure that other potential targets of it know that it is not fair, that they should not have to put up with it, and that they might be able to confront it in one way or another. A ceaseless awareness, fostered by a relentless activism, will also help those who exert discrimination themselves, as arguably, they are often unaware of their own act.\nThe internet The creation of awareness does not have to fully depend on close relationships. Email and social media allow safe activity where anonymity is necessary.\nConclusion The university and the academia are formed by members of society. Logically, therefore, care must taken to ward off discriminatory tendencies that exist in society.\nIf you have suffered discrimination, or you are a potential target for it, please ensure that you are aware of this plague. Regardless of the rank that a given type of discrimination occupies in the social agenda, no discrimination should be tolerated. In addition to being unethical, discrimination breaches human and fundamental rights, national laws and institutional rules.\nIf you are not a target but an ally against discrimination, please continue to confront it where you witness it, and to facilitate a widespread awareness.\nReferences Abbink, K., \u0026amp; Harris, D. (2019). In-group favouritism and out-group discrimination in naturally occurring groups. PloS ONE, 14(9), e0221616. https://doi.org/10.1371/journal.pone.0221616\nHinton, P. (2017). Implicit stereotypes and the predictive brain: cognition and culture in “biased” person perception. Palgrave Communications, 3(1), 1-9. https://doi.org/10.1057/palcomms.2017.86\nMeiring, L., Subramoney, S., Thomas, K. G., Decety, J., \u0026amp; Fourie, M. M. (2014). Empathy and helping: Effects of racial group membership and cognitive load. South African Journal of Psychology, 44(4), 426-438. https://doi.org/10.1177/0081246314530280\nMendes, W. B., \u0026amp; Koslov, K. (2013). Brittle smiles: Positive biases toward stigmatized and outgroup targets. Journal of Experimental Psychology: General, 142(3), 923–933. https://doi.org/10.1037/a0029663\n\r\r","date":1626874444,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1626874444,"objectID":"84d12412b2d7cbd970ee6e147b8aa916","permalink":"https://pablobernabeu.github.io/2021/surviving-discrimination-and-confronting-it/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/surviving-discrimination-and-confronting-it/","section":"post","summary":"This blog post does not provide a complete overview of the atmosphere at university or in academia, where I think that fairness is far more common than discrimination. Let's keep up the good work and be mindful of the rest.\r\rThere is discrimination at European universities and in the corresponding academia. Minorities are too often oppressed and abused through the use of casual remarks, concerted attacks, unequal respect towards different groups, unfair hiring decisions and other negligent behaviours.","tags":[],"title":"Surviving discrimination and confronting it","type":"post"},{"authors":["Pablo Bernabeu, Dermot Lynott and Louise Connell"],"categories":["conceptual processing"],"content":"\r\r Video\n Slides\n\rfitvids('.shareagain', {players: 'iframe'});\r\rAbstract\rResearch in conceptual processing has suggested that the comprehension of words draws on complementary cognitive systems. In the milliseconds during which a word is processed, the linguistic system is activated first. Reading the word entity, for instance, may activate words such as being, thing and object (https://smallworldofwords.org/en/project/explore; De Deyne et al., 2019). Thereupon, the embodied system is activated, incorporating sensorimotor, emotional and social dimensions (Borghi et al., 2019). For instance, entity activates visual, auditory and head-specific meanings (https://embodiedcognitionlab.shinyapps.io/sensorimotor_norms; Lynott et al., 2020). Research has also suggested that the linguistic system is more important for relatively abstract words—e.g., attempt—, whereas the embodied system is more important for more concrete words—e.g., building (Bolognesi \u0026amp; Steen, 2018). The role of individual differences has also been investigated (Dils \u0026amp; Boroditsky, 2010), although to a lesser extent. An individual’s linguistic experience (e.g., larger vocabulary) facilitates word processing and task-relevant attention (Pexman \u0026amp; Yap, 2018; Yap et al., 2017), while greater sensorimotor experience enables more detailed meaning activation within specific conceptual areas (e.g., space: Vukovic \u0026amp; Williams, 2015). The variation across individuals and items, within both the linguistic and embodied systems, is seldom considered simultaneously. We are undertaking this in two studies. The first study (Bernabeu et al., 2021) will merge existing datasets (Lynott et al., 2020; Pexman et al., 2017; Pexman \u0026amp; Yap, 2018; Wingfield \u0026amp; Connell, 2019). The second study will collect novel data to investigate questions such as the unique roles of vocabulary size, sensorimotor experience and attentional control. To determine the sample size for the latter study, two pilot studies with larger-than-average samples were conducted, using the aforementioned datasets and that of Hutchison et al. (2013). Simulation-based, prospective power curves were performed. These pilots revealed important roles for linguistic and embodied information, vocabulary size, and attentional control, as well as statistical power considerations.\n\rReferences\rBernabeu, P., Lynott, D., \u0026amp; Connell, L. (2021). Preregistration: The interplay between linguistic and embodied systems in conceptual processing. OSF. https://osf.io/ftydw/\nBolognesi, M., \u0026amp; Steen, G. (2018). Abstract concepts: Structure, processing, and modeling. Topics in Cognitive Science, 10(3), 490–500. https://doi.org/10.1111/tops.12354\nBorghi, A., M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., \u0026amp; Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120–53. https://doi.org/10.1016/j.plrev.2018.12.001\nDe Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., \u0026amp; Storms, G. (2019). The “Small World of Words” English word association norms for over 12,000 cue words. Behavior Research Methods, 51, 987–1006. http://dx.doi.org/10.3758/s13428-018-1115-7\nDils, A. T., \u0026amp; Boroditsky, L. (2010). Visual motion aftereffect from understanding motion language. Proceedings of the National Academy of Sciences, 107(37), 16396-16400. https://doi.org/10.1073/pnas.1009438107\nHutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-Shikora, E. R., Tse, C.-S., Yap, M. J., Bengson, J. J., Niemeyer, D., \u0026amp; Buchanan, E. (2013). The semantic priming project. Behavior Research Methods, 45, 1099–1114. https://doi.org/10.3758/s13428-012-0304-z\nLynott, D., Connell, L., Brysbaert, M., Brand, J., \u0026amp; Carney, J. (2020). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52, 1-21. https://doi.org/10.3758/s13428-019-01316-z\nPexman, P. M., Heard, A., Lloyd, E., \u0026amp; Yap, M. J. (2017). The Calgary semantic decision project: Concrete/abstract decision data for 10,000 English words. Behavior Research Methods, 49(2), 407–417. https://doi.org/10.3758/s13428-016-0720-6\nPexman, P. M., \u0026amp; Yap, M. J. (2018). Individual differences in semantic processing: Insights from the Calgary semantic decision project. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1091–1112.\rhttps://doi.org/10.1037/xlm0000499\nVukovic, N., \u0026amp; Williams, J. N. (2015). Individual differences in spatial cognition influence mental simulation of language. Cognition, 142, 110–122.\rhttps://doi.org/10.1016/j.cognition.2015.05.017\nWingfield, C., \u0026amp; Connell, L. (2019). Understanding the role of linguistic distributional knowledge in cognition. PsyArXiv. https://doi.org/10.31234/osf.io/hpm4z\nYap, M. J., Hutchison, K. A., \u0026amp; Tan, L. C. (2017). Individual differences in semantic priming performance: Insights from the semantic priming project. In M. N. Jones (Ed.), Frontiers of cognitive psychology. Big data in cognitive science (p. 203–226). Routledge/Taylor \u0026amp; Francis Group.\n\r","date":1621814400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1621814400,"objectID":"fe1c8b1f3c757a5c23ff3b01a25fb841","permalink":"https://pablobernabeu.github.io/presentation/linguistic-and-embodied-systems-in-conceptual-processing-variation-across-individuals-and-items/","publishdate":"2021-05-07T23:01:48+01:00","relpermalink":"/presentation/linguistic-and-embodied-systems-in-conceptual-processing-variation-across-individuals-and-items/","section":"presentation","summary":"The first study (Bernabeu et al., 2021) will merge existing datasets (Lynott et al., 2020; Pexman et al., 2017; Pexman \u0026 Yap, 2018; Wingfield \u0026 Connell, 2019). The second study will collect novel data to investigate questions such as the unique roles of vocabulary size, sensorimotor experience and attentional control.","tags":["cognition","conceptual processing","language comprehension","statistics","power analysis"],"title":"Linguistic and embodied systems in conceptual processing: Variation across individuals and items","type":"presentation"},{"authors":null,"categories":["open science"],"content":" Slideshare\r","date":1620950400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1620950400,"objectID":"ece7fdcd00eb04ae0d48f4093866a900","permalink":"https://pablobernabeu.github.io/presentation/towards-reproducibility-and-maximally-open-data/","publishdate":"2021-05-16T13:01:48+01:00","relpermalink":"/presentation/towards-reproducibility-and-maximally-open-data/","section":"presentation","summary":" Slideshare\r","tags":["open science","open scholarship","open data","reproducibility"],"title":"Towards reproducibility and maximally-open data","type":"presentation"},{"authors":[],"categories":["research methods","psycholinguistics"],"content":"Liu et al. (2018) present a study that implements the conceptual modality switch (CMS) paradigm, which has been used to investigate the modality-specific nature of conceptual representations (Pecher et al., 2003). Liu et al.\u0026lsquo;s experiment uses event-related potentials (ERPs; similarly, see Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013). In the design of the switch conditions, the experiment implements a corpus analysis to distinguish between purely-embodied modality switches and switches that are more liable to linguistic bootstrapping (also see Bernabeu et al., 2017; Louwerse \u0026amp; Connell, 2011). The procedure for stimulus selection was novel as well as novel; thus, it could prove useful in future studies, too. In addition, the application of bayesian statistics is an interesting and promising novelty in the present research area.\nIn reviewing the literature, Liu (2018) and Liu et al. (2018) contend that previous studies may be strongly biased due to methodological decisions in the analysis of ERPs. These decisions particularly regard the latency\u0026mdash;i.e., time windows\u0026mdash;and the topographic regions of interest\u0026mdash;i.e., subsets of electrodes. Thus, Liu et al. identify a \u0026lsquo;highly inconsistent\u0026rsquo; (p. 6) landscape in the ERP components that have been ascribed to the CMS effect in previous studies. Similarly, Liu (p. 47) writes:\n Several studies have looked for the ERP manifestations of modality switching costs (Bernabeu, Willems, \u0026amp; Louwerse, 2017; Collins, Pecher, Zeelenberg, \u0026amp; Coulson, 2011; Hald, Hocking, Vernon, Marshall, \u0026amp; Garnham, 2013; Hald, Marshall, Janssen, \u0026amp; Garnham, 2011). However, what they found was not a clear picture. Not only was a significant effect found in the time window for the N400 component, but also a so-called early N400-like effect around 300ms (Bernabeu et al., 2017; Hald et al., 2011), the N1-P2 complex around 200ms (Bernabeu et al., 2017; Hald et al., 2013, 2011), as well as the late positivity component (LPC) after 600ms (Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011).\n Drastic conclusions Liu et al. (2018) conclude that a confirmatory research approach is not warranted, and adopt a semi-exploratory approach, creating time windows of 50 ms each, rather than windows linked to known ERP components (Swaab et al., 2012), and using bayesian statistics. Such a drastic conclusion appears to stem from the assumption that, if the CMS were robust enough, it would present in the same guise across studies. Such an assumption, however, may merit further examination, considering the multiplicity of known and unknown variables that may differ across experiments (Barsalou, 2019). This variability influences the replication praxis, as it were. Indeed, Liu et al. themselves allude to one such variable (p. 7).\n These previous studies did not only examine the effect of modality switching but also other linguistic factors such as negated sentences, which could easily distort observed waveforms (Luck, 2005).\n Liu et al.\u0026lsquo;s (2018) conclusions about the \u0026lsquo;inconsistent\u0026rsquo; results do not seem to duly weigh the differences across studies. None of the existing studies is a direct replication of another. The example quoted from Liu et al. above, regarding the presence of negated sentences, is one of the less important differences because one of the corresponding studies implemented the negation as a controlled, experimental condition, contrasting with affirmative sentences (Hald et al., 2013). Yet, other differences exist in virtually every aspect, from the types of modality switch used to the time-locking of ERPs. For instance, the studies vary in the implementation of the modality switches. Whereas Hald et al. (2011) distinguish between a switch and a non-switch condition, Bernabeu et al. (2017) analysed each type of switch separately\u0026mdash;i.e., auditory-to-visual, haptic-to-visual, visual-to-visual. Another difference across the studies is the onset point for ERPs. For instance, Bernabeu et al. time-locked ERPs to the point at which the modality switch is actually elicited in the CMS paradigm\u0026mdash;namely, the first word in target trials. In contrast, the other studies time-locked ERPs to the second word. In addition, these studies vary in their timelines\u0026mdash;i.e., presentation of words and inter-stimulus intervals\u0026mdash;, as well as in the words that were used as stimuli, in the preprocessing of ERPs, in the statistical analysis, and even in the language of testing in one case (all studies using English except Bernabeu et al., 2017, which used Dutch). Moreover, the studies differ in the sample size, ranging from ten finally-analysed participants (Hald et al, 2011) to 46 finally-analysed participants (Bernabeu et al., 2017). Last, the studies differ in the number of items per modality switch condition, ranging from 17 (in one of Liu et al.\u0026lsquo;s, 2018 conditions) to 40 per condition (Hald et al., 2011, 2013). Undoubtedly, seeing larger sample sizes and more stimulus items used in ERP studies is something to promote and celebrate. Last, it may be noted that Liu et al.\u0026lsquo;s stance on the inconsistency of previous results starkly contrasts with their use of a single study\u0026mdash;Hald et al. (2011)\u0026mdash;, with N = 10, as the motivation for their sample size (Albers \u0026amp; Lakens, 2018).\nClarifications Liu et al. (2018) apply bayesian statistics reportedly to help reduce the bias that may exist in the present literature. However, the reviews by Liu (2018) and Liu et al. appear to gloss over some important aspects regarding previous studies. For instance, Liu writes (p. 53):\n The inflation of the probability of Type I error leads to an over-confidence in the interpretation of the results. For example, in the studies on modality switching costs, different time windows were chosen to test the early effect of modality switching costs. While Bernabeu et al. (2017), Hald et al. (2011) and Hald et al. (2013) examined the segment of ERP waveform between 190ms and 300ms or 160ms and 215ms based on visual inspection and found significant effects, Collins et al. (2011) chose a prescribed time window between 100ms and 200ms before the analysis and did not find the effect.\n Liu also refers to the issue of multiple tests related to the multiple time windows and electrodes we find in ERP studies (p. 59):\n It is typical for ERP studies to conduct multiple comparisons (e.g., running the same ANOVA repeatedly on different subsets of data like different time windows and different groups of electrodes). This would massively increase Type I error if no post hoc correction is conducted. However, if Bonferroni or other correction is conducted, it will render the study over-conservative, thus increasing the chance of Type II error. In the present thesis, 90 electrodes will be analysed individually, with 20 time slices in each trial. That results in 1800 NHSTs for each critical variable. A correction of multiple comparison will require a critical level of 2.78 x 10ˆ-5 for each test for a family-wise critical level of .05 (and an uncorrected test will almost definitely lead to false positive results). This stringent criterion could conceivably render it meaningless any p-values we can obtain from a statistical package.\n Arguably, the scenario presented by Liu (2018), in which a researcher could conduct a purely data-driven analysis of ERP data, is extreme. The field of psycholinguistics, in general, does not have a tradition of purely data-driven analysis. Instead, it blends a humanistic background with a scientific methodology. As a result, the hypotheses and methods tend to be largely driven by the available literature. For instance, Bernabeu et al. (2017, quoted below from p. 1632) based their time windows and regions of interest on the most relevant of the preceding studies (also see Bernabeu, 2017).\n Electrodes were divided into an anterior and a posterior area (also done in Hald et al., 2011). Albeit a superficial division, we found it sufficient for the research question. Time windows were selected as in Hald et al., except for the last window, which was extended up to 750 ms post word onset, instead of 700 ms, because the characteristic component of that latency tends to extend until then, as we confirmed by visual inspection of these results.\n The literature-based approach follows the advice from Luck and Gaspelin (2017, p. 149), who wrote: \u0026lsquo;a researcher who wants to avoid significant but bogus effects would be advised to focus on testing a priori predictions without using the observed data to guide the selection of time windows or electrode sites\u0026rsquo; (also see Armstrong, 2014; for a more conservative stance, see Luck \u0026amp; Gaspelin, 2017). In addition, notice that the extension of the last window by 50 ms was informed by Swaab et al. (2012), who report results by which the P600 component (the main component occurring after the N400 in word reading) extended up to 800 ms.\nNext, Liu et al. (2018, pp. 6\u0026ndash;7) write:\n However, the findings of these components have been highly inconsistent. The N400 effect alone was found in the posterior region in some cases (Bernabeu et al., 2017; Hald et al., 2013), while in anterior region in others (Collins et al., 2011, Hald et al. (2011)).\n Yet, Bernabeu et al. (2017, p. 1632) had written:\n In certain parts over the time course, the effect appeared in both anterior and posterior areas\n Liu et al. (2018) continue (p. 7):\n In some cases, it was found in the typical window around 400ms (Collins et al., 2011), while in others an earlier window from 270ms to 370ms (Bernabeu et al., 2017; Hald et al., 2011).\n However, Bernabeu et al. (2017, p. 1632) had written:\n The ERP results revealed a CMS effect from Time Window 1 on, larger after 350 ms.\n Regarding the time-locking of ERPs, Liu (2018, p. 43) writes:\n Because the properties were usually salient for the concepts, the switching costs might have already been incurred when participants were processing the concept word. Bernabeu et al. (2017), in their recent replication of previous ERP studies, reversed the order of concept and property and did not find an immediate effect from the property onset. In future studies, it is recommended to adopt the reverse order, control the concept words so that they do not automatically activate the properties before the words are shown, or analyse epochs after both the concept and property words.\n The above excerpt seems to reveal a misunderstanding of Bernabeu et al.\u0026lsquo;s (2017) method and results (we may assume that, by \u0026lsquo;immediate\u0026rsquo;, Liu (2018) is referring to the 200 ms point or afterwards, since that is about as immediate as it gets; see Amsel et al., 2014; Swaab et al., 2012; Van Dam et al., 2014). Bernabeu et al.\u0026lsquo;s abstract mentioned (p. 1629):\n Event-Related Potentials (ERPs) were time-locked to the onset of the first word (property) in the target trials so as to measure the effect online and to avoid a within-trial confound. A switch effect was found, characterized by more negative ERP amplitudes for modality switches than no-switches. It proved significant in four typical time windows from 160 to 750 milliseconds post word onset, with greater strength in posterior brain regions, and after 350 milliseconds.\n Indeed, time-locking ERPs to the beginning of the trial was one of the principal features of Bernabeu et al.\u0026lsquo;s (2017) experiment. Complementing that, the property words were placed in the first trial because they are more perceptually loaded than concepts (Lynott \u0026amp; Connell, 2013), thus better suiting the main basis of the CMS paradigm. We know that the semantic processing of a word often commences within the first 200 ms (Amsel et al., 2014; Van Dam et al., 2014). Considering the importance of the time course in the grounding of conceptual representations (Hauk, 2016), it seems important to measure the CMS from the moment that it is elicited\u0026mdash;namely, in all experiments, from the first word of the target trial (Bernabeu, 2017; Bernabeu et al., 2017), rather than letting several hundreds of milliseconds elapse. Nonetheless, from a methodological perspective, it would be interesting to compare the two approaches in a dedicated study. This would precisely reveal the speed at which modality-specific meaning becomes activated during conceptual processing.\nOutstanding issues: Random effects and correction for multiple tests A methodological issue affecting the statistical analysis of all the studies hereby considered (Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013; Liu et al., 2018) is the absence of some applicable random effects. Some of the studies did not apply any random effects (Collins et al., 2011; Hald et al., 2011, 2013). Even in psycholinguistics, use of linear mixed-effects models is still increasing (Meteyard \u0026amp; Davies, 2020; Yarkoni, 2020). Yet, in those studies that did apply random effects, the corresponding structure was not as exhaustive as it should have been, as they lacked random slopes. In Bernabeu et al. (2017), a model selection approach was applied (Matuschek et al., 2017), whereby each random effect was tested and only kept in the model if it significantly improved the fit. In Liu et al. (2018), random slopes were deemed unfeasible due to computational constraints (for background, see Brauer \u0026amp; Curtin, 2017). Applying a complete random effects structure is important for a robust statistical analysis (Barr et al., 2013; Yarkoni, 2020).\nAnother issue is that of multiple tests. Where a small number of levels is used (e.g., time windows, topographic regions of interest) and these are informed by the literature, the advice has often been ambiguous as to whether a correction should be applied (e.g., Armstrong, 2014; for a more conservative stance, see Luck \u0026amp; Gaspelin, 2017). Indeed, no correction was applied in any of the four studies that used frequentist statistics (Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013).\nReanalysis of Bernabeu et al. (2017) The results of Bernabeu et al. (2017) were reanalysed after publication using a more complete random effects structure that incorporated by-participant random slopes for the modality-switch factor\u0026mdash;i.e., (condition | participant). The results were also corrected for multiple tests using the Holm-Bonferroni correction (Holm, 1979). For this purpose, the lowest p-value in the four time windows was multiplied by 4, the next p-value by 3, the next by 2, and the highest p-value was left as it unmodified. In this stepwise correction, if a nonsignificant p-value was reached, all the subsequent p-values became nonsignificant (see analysis script). The results differed from the original, slopes-free models (available script and results) in that the main effect of the modality switch factor became nonsignificant in the second time window (160\u0026ndash;216 ms) and in the fourth one (500\u0026ndash;750 ms), while remaining significant in the third time window (350\u0026ndash;550 ms). Incidentally, note that main effects may not be directly interpretable as the same same variables are present interactions (Kam \u0026amp; Franzese, 2007). Yet, the interactions of modality switch with participant group (quick/slow) and scalp location (anterior/posterior) retained the same significance.\nOpen questions Liu (2018) and Liu et al. (2018) raise interesting and important questions. Firstly, future research may be conducted to investigate what determines the variability of ERP results\u0026mdash;in terms of ERP components, time windows and topographic regions of interest. This research could include a comparison with other measurements, such as response times, to test whether ERPs are less reliable\u0026mdash;i.e., more variable across studies\u0026mdash;than response times. Similarly, future research may investigate whether the ERP literature is more biased than literature employing other measures, such as response times. In addition, future research could investigate whether moving to exploratory, bayesian research designs is a necessary or sufficient condition to reduce bias in research and improve the precision of experimental measurements. Current alternatives to such an approach include direct (or conceptual) replications designed to achieve a higher power than previous studies (e.g., Chen et al., 2019). Arguably, policies determining funding decisions would need to change if we are to fully acknowledge the importance of direct replication (Howe \u0026amp; Perfors, 2018; Kunert, 2016; Simons, 2014; Zwaan et al., 2018). Last, future research may investigate whether \u0026lsquo;clear picture\u0026rsquo; results are realistic, desirable or necessary, and whether unclear-picture results should be eschewed; or whether, on the contrary, clear-picture results may largely be the product of publication bias\u0026mdash;that is, the pressure to hide or misreport those aspects of a study that could challenge its acceptance by peer-reviewers or any other academics.\nReferences Albers, C., \u0026amp; Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195. https://doi.org/10.1016/j.jesp.2017.09.004\nAmsel, B. D., Urbach, T. P., \u0026amp; Kutas, M. (2014). Empirically grounding grounded cognition: the case of color. Neuroimage, 99, 149-157. https://doi.org/10.1016/j.neuroimage.2014.05.025\nArmstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic and Physiological Optics, 34(5), 502-508. https://doi.org/10.1111/opo.12131\nBarr, D. J., Levy, R., Scheepers, C., \u0026amp; Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. http://dx.doi.org/10.1016/j.jml.2012.11.001\nBarsalou, L. W. (2019). Establishing generalizable mechanisms. Psychological Inquiry, 30(4), 220-230. https://doi.org/10.1080/1047840X.2019.1693857\nBernabeu, P. (2017). Modality switches occur early and extend late in conceptual processing: evidence from ERPs [Master's thesis]. School of Humanities, Tilburg University. https://psyarxiv.com/5gjvk\nBernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: evidence from ERPs. In G. Gunzelmann, A. Howes, T. Tenbrink, \u0026amp; E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1629-1634). Austin, TX: Cognitive Science Society. https://doi.org/10.31234/osf.io/a5pcz\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://psych.wisc.edu/Brauer/BrauerLab/wp-content/uploads/2014/04/Brauer-Curtin-2018-on-LMEMs.pdf\nChen, S., Szabelska, A., Chartier, C. R., Kekecs, Z., Lynott, D., Bernabeu, P., … Schmidt, K. (2018). Investigating object orientation effects across 14 languages. PsyArXiv. https://doi.org/10.31234/osf.io/t2pjv/\nCollins, J., Pecher, D., Zeelenberg, R., \u0026amp; Coulson, S. (2011). Modality switching in a property verification task: an ERP study of what happens when candles flicker after high heels click. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00010\nHald, L. A., Hocking, I., Vernon, D., Marshall, J.-A., \u0026amp; Garnham, A. (2013). Exploring modality switching effects in negated sentences: further evidence for grounded representations. Frontiers in Psychology, 4, 93. https://doi.org/10.3389/fpsyg.2013.00093\nHald, L. A., Marshall, J.-A., Janssen, D. P., \u0026amp; Garnham, A. (2011). Switching modalities in a sentence verification task: ERP evidence for embodied language processing. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00045\nHauk, O. (2016). Only time will tell–why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin \u0026amp; Review, 23(4), 1072-1079. https://doi.org/10.3758/s13423-015-0873-9\nHolm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65-70. http://www.jstor.org/stable/4615733.\nHowe, P. D., \u0026amp; Perfors, A. (2018). An argument for how (and why) to incentivise replication. Behavioral and Brain Sciences, 41, e135-e135. http://dx.doi.org/10.1017/S0140525X18000705\nKam, C. D., \u0026amp; Franzese, R. J. (2007). Modeling and interpreting interactive hypotheses in regression analysis. Ann Arbor, MI: University of Michigan Press.\nKunert, R. (2016). Internal conceptual replications do not increase independent replication success. Psychonomic Bulletin \u0026amp; Review, 23(5), 1631-1638. https://doi.org/10.3758/s13423-016-1030-9\nLiu, P. (2018). Embodied-linguistic conceptual representations during metaphor processing. Doctoral thesis, Lancaster University, UK. https://doi.org/10.17635/lancaster/thesis/489\nLiu, P., Lynott, D., \u0026amp; Connell, L. (2018). Continuous neural activations of simulation-linguistic representations in modality switching costs. In P. Liu, Embodied-linguistic conceptual representations during metaphor processing. Doctoral thesis, Lancaster University, UK. https://doi.org/10.17635/lancaster/thesis/489\nLuck, S. J. (2005). Ten simple rules for designing ERP experiments. In T. C. Handy (Ed.), Event-related potentials: A methods handbook. MIT Press.\nLuck, S. J., \u0026amp; Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146-157. https://doi.org/10.1111/psyp.12639\nMatuschek, H., Kliegl, R., Vasishth, S., Baayen, H., \u0026amp; Bates, D. (2017). Balancing type 1 error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001\nMeteyard, L., \u0026amp; Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092\nPecher, D., Zeelenberg, R., \u0026amp; Barsalou, L. W. (2003). Verifying different-modality properties for concepts produces switching costs. Psychological Science, 14, 2, 119-24. https://doi.org/10.1111/1467-9280.t01-1-01429\nSimons, D. J. (2014). The value of direct replication. Perspectives on Psychological Science, 9(1), 76–80. https://doi.org/10.1177/1745691613514755\nSwaab, T. Y., Ledoux, K., Camblin, C. C., \u0026amp; Boudewyn, M. A. (2012). Language-related ERP components. In S. J. Luck \u0026amp; E. S. Kappenman (Eds.), Oxford handbook of event-related potential components (pp. 397–440). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195374148.013.0197\nVan Dam, W. O., Brazil, I. A., Bekkering, H., \u0026amp; Rueschemeyer, S.-A. (2014). Flexibility in embodied language processing: context effects in lexical access. Topics in Cognitive Science, 6(3), 407–424. https://doi.org/10.1111/tops.12100\nYarkoni, T. (2020). The generalizability crisis. Behavioral and Brain Sciences, 1-37. https://doi.org/10.1017/S0140525X20001685\nZwaan, R., Etz, A., Lucas, R., \u0026amp; Donnellan, M. (2018). Making replication mainstream. Behavioral and Brain Sciences, 41, E120. https://doi.org/10.1017/S0140525X17001972\n\r","date":1610150400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1610150400,"objectID":"8615e74a11d73aca72b8c255d3ea331e","permalink":"https://pablobernabeu.github.io/2021/brief-clarifications-open-questions-commentary-on-liu-et-al-2018/","publishdate":"2021-01-09T00:00:00Z","relpermalink":"/2021/brief-clarifications-open-questions-commentary-on-liu-et-al-2018/","section":"post","summary":"Liu et al. (2018) present a study that implements the conceptual modality switch (CMS) paradigm, which has been used to investigate the modality-specific nature of conceptual representations (Pecher et al., 2003). Liu et al.\u0026lsquo;s experiment uses event-related potentials (ERPs; similarly, see Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013). In the design of the switch conditions, the experiment implements a corpus analysis to distinguish between purely-embodied modality switches and switches that are more liable to linguistic bootstrapping (also see Bernabeu et al.","tags":["s","conceptual modality switch","conceptual processing","cognition","conceptual replication","word recognition","research methods","event-related potentials","experiment","statistics","bayesian","frequentist","bias","methodology"],"title":"Brief Clarifications, Open Questions: Commentary on Liu et al. (2018)","type":"post"},{"authors":["Bernabeu, P., Lynott, D., \u0026 Connell, L."],"categories":["conceptual processing","individual differences","psycholinguistics"],"content":"\rReference\rBernabeu, P., Lynott, D., \u0026amp; Connell, L. (2021). Preregistration: The interplay between linguistic and embodied systems in conceptual processing. OSF. https://osf.io/ftydw\n\rRelated references\rAadland, E., Okely, A. D., \u0026amp; Nilsen, A. K. O. (2022). Trajectories of physical activity and sedentary time in Norwegian children aged 3–9 years: A 5-year longitudinal study. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 67. https://doi.org/10.1186/s12966-022-01286-0\nAdams, H., Stefanucci, J., Creem-Regehr, S., \u0026amp; Bodenheimer, B. (2022). Depth Perception in Augmented Reality: The Effects of Display, Shadow, and Position. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 792–801. https://doi.org/10.1109/VR51125.2022.00101\nAgeel, M. (2022). Pandemic Critical Care Research during the COVID-19 (2020-2022): A Bibliometric Analysis Using VOSviewer. BioMed Research International, 2022, 1–13. https://doi.org/10.1155/2022/8564649\nAguirre, R., Macedo, M. N., Villoro Armengol, J., \u0026amp; Vivas, J. R. (2023). El estudio de los efectos de la modalidad lingüística en el léxico mental. Interdisciplinaria. Revista de Psicología y Ciencias Afines, 40(2), 117–131. https://doi.org/10.16888/interd.2023.40.2.7\nAhn, Y., Yan, M., Lin, Y.-R., Chung, W.-T., \u0026amp; Hwa, R. (2022). Tribe or Not? Critical Inspection of Group Differences Using TribalGram. ACM Transactions on Interactive Intelligent Systems, 12(1), 1–34. https://doi.org/10.1145/3484509\nAka Uymaz, H., \u0026amp; Kumova Metin, S. (2022). Vector based sentiment and emotion analysis from text: A survey. Engineering Applications of Artificial Intelligence, 113, 104922. https://doi.org/10.1016/j.engappai.2022.104922\nAkil, A. M., Ujhelyi, A., \u0026amp; Logemann, H. N. A. (2022). Exposure to Depression Memes on Social Media Increases Depressive Mood and It Is Moderated by Self-Regulation: Evidence From Self-Report and Resting EEG Assessments. Frontiers in Psychology, 13, 880065. https://doi.org/10.3389/fpsyg.2022.880065\nAl-Azary, H., \u0026amp; Katz, A. N. (2023). On choosing the vehicles of metaphors 2.0: The interactive effects of semantic neighborhood density and body-object interaction on metaphor production. Frontiers in Psychology, 14, 1216561. https://doi.org/10.3389/fpsyg.2023.1216561\nAl-Azary, H., Yu, T., \u0026amp; McRae, K. (2022). Can you touch the N400? The interactive effects of body-object interaction and task demands on N400 amplitudes and decision latencies. Brain and Language, 231, 105147. https://doi.org/10.1016/j.bandl.2022.105147\nAlduais, A., Alfadda, H., Baraja’a, D., \u0026amp; Allegretta, S. (2022). Psycholinguistics: Analysis of Knowledge Domains on Children’s Language Acquisition, Production, Comprehension, and Dissolution. Children, 9(10), 1471. https://doi.org/10.3390/children9101471\nAli, K. A., Mori, B. A., Prager, S. M., \u0026amp; Willenborg, C. J. (2022). Seed choice in ground beetles is driven by surface-derived hydrocarbons. Communications Biology, 5(1), 724. https://doi.org/10.1038/s42003-022-03678-1\nAllegretta, R. A., Pyke, W., \u0026amp; Galli, G. (2021). ERP evidence of age-related differences in emotional processing. Experimental Brain Research, 239(4), 1261–1271. https://doi.org/10.1007/s00221-021-06053-4\nAllen-Ankins, S., \u0026amp; Schwarzkopf, L. (2021). Spectral overlap and temporal avoidance in a tropical savannah frog community. Animal Behaviour, 180, 1–11. https://doi.org/10.1016/j.anbehav.2021.07.024\nAllison, T. H., Warnick, B. J., Davis, B. C., \u0026amp; Cardon, M. S. (2022). Can you hear me now? Engendering passion and preparedness perceptions with vocal expressions in crowdfunding pitches. Journal of Business Venturing, 37(3), 106193. https://doi.org/10.1016/j.jbusvent.2022.106193\nAlm, C. O. (2022). 11 Linguistic data resources for computational emotion sensing and modeling. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 226–250). De Gruyter. https://doi.org/10.1515/9783110347524-011\nAltın, E., Okur, N., Yalçın, E., Eraçıkbaş, A. F., \u0026amp; Aktan-Erciyes, A. (2022). Relations Between L2 Proficiency and L1 Lexical Property Evaluations. Frontiers in Psychology, 13, 820702. https://doi.org/10.3389/fpsyg.2022.820702\nAmbridge, B., Doherty, L., Maitreyee, R., Tatsumi, T., Zicherman, S., Mateo Pedro, P., Kawakami, A., Bidgood, A., Pye, C., Narasimhan, B., Arnon, I., Bekman, D., Efrati, A., Fabiola Can Pixabaj, S., Marroquín Pelíz, M., Julajuj Mendoza, M., Samanta, S., Campbell, S., McCauley, S., … Fukumura, K. (2022). Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’. Open Research Europe, 1, 1. https://doi.org/10.12688/openreseurope.13008.2\nAmelung, W., Meyer, N., Rodionov, A., Knief, C., Aehnelt, M., Bauke, S. L., Biesgen, D., Dultz, S., Guggenberger, G., Jaber, M., Klumpp, E., Kögel-Knabner, I., Nischwitz, V., Schweizer, S. A., Wu, B., Totsche, K. U., \u0026amp; Lehndorff, E. (2023). Process sequence of soil aggregate formation disentangled through multi-isotope labelling. Geoderma, 429, 116226. https://doi.org/10.1016/j.geoderma.2022.116226\nAnastassopoulou, C., Antoni, D., Manoussopoulos, Y., Stefanou, P., Argyropoulou, S., Vrioni, G., \u0026amp; Tsakris, A. (2022). Age and sex associations of SARS-CoV-2 antibody responses post BNT162b2 vaccination in healthcare workers: A mixed effects model across two vaccination periods. PLOS ONE, 17(4), e0266958. https://doi.org/10.1371/journal.pone.0266958\nAnderson, S. J., Iacovone, L., Kankanhalli, S., \u0026amp; Narayanan, S. (2022). Modernizing Retailers in an Emerging Market: Investigating Externally Focused and Internally Focused Approaches. Journal of Marketing Research, 59(3), 472–496. https://doi.org/10.1177/00222437211058437\nAndria, S., Madi‐Tarabya, B., \u0026amp; Khateb, A. (2022). Behavioural and electrophysiological analyses of written word processing in spoken and literary Arabic: New insights into the diglossia question. European Journal of Neuroscience, 56(6), 4819–4836. https://doi.org/10.1111/ejn.15781\nAndriguetto-Filho, J. M., Medeiros, R. P., Vaz-dos-Santos, A. M., \u0026amp; Chaves, P. D. T. D. C. (2022). Shrimp up, fish down, and vice-versa: Fishers’ strategies and long-term changes in small-scale fisheries landings at two spatial levels in Southern Brazil. Marine Policy, 143, 105184. https://doi.org/10.1016/j.marpol.2022.105184\nAnnala, M. J., Lehosmaa, K., Ahonen, S. H. K., Karttunen, K., Markkola, A. M., Puumala, I., \u0026amp; Mykrä, H. (2022). Effect of riparian soil moisture on bacterial, fungal and plant communities and microbial decomposition rates in boreal stream-side forests. Forest Ecology and Management, 519, 120344. https://doi.org/10.1016/j.foreco.2022.120344\nAntony, J. W., Romero, A., Vierra, A. H., Luenser, R. S., Hawkins, R. D., \u0026amp; Bennion, K. A. (2022). Semantic relatedness retroactively boosts memory and promotes memory interdependence across episodes. eLife, 11, e72519. https://doi.org/10.7554/eLife.72519\nAparicio, J. T., Salema De Sequeira, J., \u0026amp; Costa, C. J. (2021). Emotion analysis of Portuguese Political Parties Communication over the covid-19 Pandemic. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), 1–6. https://doi.org/10.23919/CISTI52073.2021.9476557\nApurva, \u0026amp; Husain, S. (2021). Revisiting anti-locality effects: Evidence against prediction-based accounts. Journal of Memory and Language, 121, 104280. https://doi.org/10.1016/j.jml.2021.104280\nAra, A., \u0026amp; Gopalakrishna, R. (2021). A Study on Emotion Identification from Music Lyrics. In F. Saeed, F. Mohammed, \u0026amp; A. Al-Nahari (Eds.), Innovative Systems for Intelligent Health Informatics (Vol. 72, pp. 396–406). Springer International Publishing. https://doi.org/10.1007/978-3-030-70713-2_37\nAraque, O., Gatti, L., Staiano, J., \u0026amp; Guerini, M. (2022). DepecheMood++: A Bilingual Emotion Lexicon Built Through Simple Yet Powerful Techniques. IEEE Transactions on Affective Computing, 13(1), 496–507. https://doi.org/10.1109/TAFFC.2019.2934444\nAraya‐Ajoy, Y. G., Niskanen, A. K., Froy, H., Ranke, P. S., Kvalnes, T., Rønning, B., Le Pepke, M., Jensen, H., Ringsby, T. H., Sæther, B., \u0026amp; Wright, J. (2021). Variation in generation time reveals density regulation as an important driver of pace of life in a bird metapopulation. Ecology Letters, 24(10), 2077–2087. https://doi.org/10.1111/ele.13835\nArcher, L. C., Standley, C. J., \u0026amp; Molnár, P. K. (2022). Fighting a Fire versus Waiting for the Wave: Useful and Not-So-Useful Analogies in Times of SARS-CoV-2. BioScience, 72(6), 573–584. https://doi.org/10.1093/biosci/biac017\nArmitage, J., Lahdelma, I., \u0026amp; Eerola, T. (2021). Automatic responses to musical intervals: Contrasts in acoustic roughness predict affective priming in Western listeners. The Journal of the Acoustical Society of America, 150(1), 551–560. https://doi.org/10.1121/10.0005623\nArmitage, K. L., \u0026amp; Redshaw, J. (2022). Children boost their cognitive performance with a novel offloading technique. Child Development, 93(1), 25–38. https://doi.org/10.1111/cdev.13664\nArnau-Gonzalez, P., Katsigiannis, S., Arevalillo-Herraez, M., \u0026amp; Ramzan, N. (2021). BED: A New Data Set for EEG-Based Biometrics. IEEE Internet of Things Journal, 8(15), 12219–12230. https://doi.org/10.1109/JIOT.2021.3061727\nArriagada-Mödinger, F., \u0026amp; Ferreira, R. A. (2022). The Effect of Emotional Valence on Auditory Word Recognition Memory in English as a Foreign Language. Journal of Psycholinguistic Research, 51(2), 309–322. https://doi.org/10.1007/s10936-022-09841-3\nArseniev-Koehler, A. (2022). Theoretical Foundations and Limits of Word Embeddings: What Types of Meaning can They Capture? Sociological Methods \u0026amp; Research, 004912412211401. https://doi.org/10.1177/00491241221140142\nAshraf, N., Khan, L., Butt, S., Chang, H.-T., Sidorov, G., \u0026amp; Gelbukh, A. (2022). Multi-label emotion classification of Urdu tweets. PeerJ Computer Science, 8, e896. https://doi.org/10.7717/peerj-cs.896\nAtaman, E., Çağlar, O. C., \u0026amp; Kirkici, B. (2021). Dilbilim Araştırmalarında Açık Bilim. Dilbilim Araştırmaları Dergisi, 32(2), 149–175. https://doi.org/10.18492/dad.936072\nAtaturk Universitesi, Veteriner Fakultesi, Biyometri Anabillim Dali, Erzurum, Turkiye, Eltas, O., Topal, M., \u0026amp; Amasya Universitesi, Tip Fakultesi, Biyoistatistik Anabilim Dali, Amasya, Turkiye. (2022). Using Covariance Factor in Genetic Parameter Estimation. Veterinary Sciences and Practices, 17(1), 1–5. https://doi.org/10.54614/VetSciPract.2022.1015013\nAtkinson, L., Doyle, R. E., Woodward, A., \u0026amp; Jongman, E. C. (2022). Exposure to humans after weaning does not reduce the behavioural reactivity of extensively reared Merino lambs. Behavioural Processes, 201, 104709. https://doi.org/10.1016/j.beproc.2022.104709\nAtmaja, B. T., Sasou, A., \u0026amp; Akagi, M. (2022). Survey on bimodal speech emotion recognition from acoustic and linguistic information fusion. Speech Communication, 140, 11–28. https://doi.org/10.1016/j.specom.2022.03.002\nAu, J., Smith-Peirce, R. N., Carbone, E., Moon, A., Evans, M., Jonides, J., \u0026amp; Jaeggi, S. M. (2022). Effects of Multisession Prefrontal Transcranial Direct Current Stimulation on Long-term Memory and Working Memory in Older Adults. Journal of Cognitive Neuroscience, 34(6), 1015–1037. https://doi.org/10.1162/jocn_a_01839\nAuerbach, J. G., Hans, S. L., \u0026amp; Zhang, Y. (2022). Neurocognitive functioning in adult and adolescent offspring of parents with schizophrenia. Schizophrenia Research, 248, 300–308. https://doi.org/10.1016/j.schres.2022.09.015\nAvery, J. A., Liu, A. G., Carrington, M., \u0026amp; Martin, A. (2022). Taste Metaphors Ground Emotion Concepts Through the Shared Attribute of Valence. Frontiers in Psychology, 13, 938663. https://doi.org/10.3389/fpsyg.2022.938663\nAzimi, T., Ghoreishi, Z., Nilipour, R., Farazi, M., Ahmadi, A., Krishnan, G., \u0026amp; Aliniaye Asli, P. (2022). Lexical-semantic processing of action verbs and non-action nouns in Persian speakers: Behavioral evidence from the semantic similarity judgment task. Applied Neuropsychology: Adult, 29(4), 718–730. https://doi.org/10.1080/23279095.2020.1806844\nBaes, N., Vylomova, E., Zyphur, M., \u0026amp; Haslam, N. (2023). The semantic inflation of “trauma” in psychology. Psychology of Language and Communication, 23–45. https://doi.org/10.58734/plc-2023-0002\nBagić Babac, M. (2023). Emotional showdown on social media: Analyzing user reactions to the 2016 US presidential campaign. Global Knowledge, Memory and Communication. https://doi.org/10.1108/GKMC-02-2023-0060\nBagić Babac, M., \u0026amp; Podobnik, V. (2023). World-class sporting events as arenas of emotional eruptions on social media. Soccer \u0026amp; Society, 1–19. https://doi.org/10.1080/14660970.2023.2229743\nBahgat, M., Wilson, S., \u0026amp; Magdy, W. (2022). LIWC-UD: Classifying Online Slang Terms into LIWC Categories. 14th ACM Web Science Conference 2022, 422–432. https://doi.org/10.1145/3501247.3531572\nBąk, H. (2022a). 6 Psychological theories of emotion and their relationship with language. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 103–146). De Gruyter. https://doi.org/10.1515/9783110347524-006\nBąk, H. (2022b). EmCat-Eng: A catalogue of 1,759 basic emotion terms in English. Studia Anglica Posnaniensia, 57(1), 33–59. https://doi.org/10.2478/stap-2022-0003\nBąk, H. (2022c). EMCAT-POL: A catalogue of 817 basic emotion terms in Polish. Poznan Studies in Contemporary Linguistics, 58(4), 689–716. https://doi.org/10.1515/psicl-2022-0028\nBąk, H., \u0026amp; Altarriba, J. (2023). Basic Emotion Prototypes in English and in Polish. Cognitive Semantics, 9(2), 254–280. https://doi.org/10.1163/23526416-bja10053\nBalagopalan, A., Eyre, B., Robin, J., Rudzicz, F., \u0026amp; Novikova, J. (2021). Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer’s Disease Based on Speech. Frontiers in Aging Neuroscience, 13, 635945. https://doi.org/10.3389/fnagi.2021.635945\nBallot, C., Mathey, S., \u0026amp; Robert, C. (2022). Age-related evaluations of imageability and subjective frequency for 1286 neutral and emotional French words: Ratings by young, middle-aged, and older adults. Behavior Research Methods, 54(1), 196–215. https://doi.org/10.3758/s13428-021-01621-6\nBallot, C., Robert, C., \u0026amp; Mathey, S. (2022). Word imageability influences the emotionality effect in episodic memory. Cognitive Processing, 23(4), 655–660. https://doi.org/10.1007/s10339-022-01102-4\nBan Kirigin, T., Bujačić Babić, S., \u0026amp; Perak, B. (2021). Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph. Mathematics, 9(12), 1449. https://doi.org/10.3390/math9121449\nBanks, B., Wingfield, C., \u0026amp; Connell, L. (2021). Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category Production. Cognitive Science, 45(10), e13055. https://doi.org/10.1111/cogs.13055\nBansal, L., Dubagunta, S. P., Chetlur, M., Jagtap, P., \u0026amp; Ganapathiraju, A. (2023). On the Efficacy and Noise-Robustness of Jointly Learned Speech Emotion and Automatic Speech Recognition. INTERSPEECH 2023, 1863–1867. https://doi.org/10.21437/Interspeech.2023-2464\nBarattieri Di San Pietro, C., Luzzatti, C., Ferrari, E., De Girolamo, G., \u0026amp; Marelli, M. (2023). Automated clustering and switching algorithms applied to semantic verbal fluency data in schizophrenia spectrum disorders. Language, Cognition and Neuroscience, 38(7), 950–965. https://doi.org/10.1080/23273798.2023.2178662\nBarker, M. S., Bender, J. R., Chow, J., \u0026amp; Robinson, G. A. (2022). An emotion-eliciting version of the Hayling Sentence Completion Test. Journal of Clinical and Experimental Neuropsychology, 44(9), 665–680. https://doi.org/10.1080/13803395.2022.2157797\nBarnes, L., Petit, S., Badcock, N. A., Whyte, C. J., \u0026amp; Woolgar, A. (2021). Word Detection in Individual Subjects Is Difficult to Probe With Fast Periodic Visual Stimulation. Frontiers in Neuroscience, 15, 602798. https://doi.org/10.3389/fnins.2021.602798\nBarsalou, L. W. (2021). Chapter 3. Categories at the interface of cognition and action. In C. Mauri, I. Fiorentini, \u0026amp; E. Goria (Eds.), Studies in Language Companion Series (Vol. 220, pp. 35–72). John Benjamins Publishing Company. https://doi.org/10.1075/slcs.220.03bar\nBartscherer, S. F. (2023). Emotion in British politics – a mixed methods analysis of Conservative and Labour Party speeches from 1900–2019. European Politics and Society, 24(5), 680–702. https://doi.org/10.1080/23745118.2022.2081016\nBassani, M., Portera, A., \u0026amp; Raimondo, G. (2023). Longitudinal and transversal driver behavior with innovative horizontal markings along curved motorway on-ramps and terminals. Transportation Letters, 15(2), 87–97. https://doi.org/10.1080/19427867.2022.2035121\nBastick, Z. (2021). Would you notice if fake news changed your behavior? An experiment on the unconscious effects of disinformation. Computers in Human Behavior, 116, 106633. https://doi.org/10.1016/j.chb.2020.106633\nBauer, A., Kagedal, M., \u0026amp; Wolfsegger, M. J. (2022). Assessment of pharmacokinetic linearity after repeated drug administration. Pharmaceutical Statistics, 21(5), 932–943. https://doi.org/10.1002/pst.2206\nBauer, G. H., Bode, A., Bode, B., Kramer, W. T., Mendes, C. L., \u0026amp; Saxton, A. (2022). Analysis of User-Support Tickets in the Lifetime of the Blue Waters System. 2022 IEEE/ACM International Workshop on HPC User Support Tools (HUST), 20–28. https://doi.org/10.1109/HUST56722.2022.00008\nBeekhuizen, B., Armstrong, B. C., \u0026amp; Stevenson, S. (2021). Probing Lexical Ambiguity: Word Vectors Encode Number and Relatedness of Senses. Cognitive Science, 45(5), e12943. https://doi.org/10.1111/cogs.12943\nBellagamba, F., Borghi, A. M., Mazzuca, C., Pecora, G., Ferrara, F., \u0026amp; Fogel, A. (2022). Abstractness emerges progressively over the second year of life. Scientific Reports, 12(1), 20940. https://doi.org/10.1038/s41598-022-25426-5\nBelyk, M., Banks, R., Tendera, A., Chen, R., \u0026amp; Beal, D. S. (2021). Paradoxical facilitation alongside interhemispheric inhibition. Experimental Brain Research, 239(11), 3303–3313. https://doi.org/10.1007/s00221-021-06183-9\nBenasi, G., Malik, A., Cheng, B., Aggarwal, B., Shechter, A., \u0026amp; St-Onge, M.-P. (2023). Well-being therapy and sleep hygiene in a non-clinical population of adults reporting poor sleep quality and distress: A remote pilot randomized controlled study. Behavioral Sleep Medicine, 1–14. https://doi.org/10.1080/15402002.2023.2197600\nBenelli, S., \u0026amp; Bartoli, M. (2021). Worms and submersed macrophytes reduce methane release and increase nutrient removal in organic sediments. Limnology and Oceanography Letters, 6(6), 329–338. https://doi.org/10.1002/lol2.10207\nBenetos, E., Ragano, A., Sgroi, D., \u0026amp; Tuckwell, A. (2022). Measuring national mood with music: Using machine learning to construct a measure of national valence from audio data. Behavior Research Methods, 54(6), 3085–3092. https://doi.org/10.3758/s13428-021-01747-7\nBerger, J., \u0026amp; Packard, G. (2022). Using natural language processing to understand people and culture. American Psychologist, 77(4), 525–537. https://doi.org/10.1037/amp0000882\nBerger, J., Rocklage, M. D., \u0026amp; Packard, G. (2022). Expression Modalities: How Speaking Versus Writing Shapes Word of Mouth. Journal of Consumer Research, 49(3), 389–408. https://doi.org/10.1093/jcr/ucab076\nBeyer, S., Alonzo, S., \u0026amp; Sogard, S. (2021). Zero, one or more broods: Reproductive plasticity in response to temperature, food, and body size in the live-bearing rosy rockfish Sebastes rosaceus. Marine Ecology Progress Series, 669, 151–173. https://doi.org/10.3354/meps13718\nBhatia, S., Olivola, C. Y., Bhatia, N., \u0026amp; Ameen, A. (2022). Predicting leadership perception with large-scale natural language data. The Leadership Quarterly, 33(5), 101535. https://doi.org/10.1016/j.leaqua.2021.101535\nBickley, S. L., Helms, B. S., Isenberg, D., Feminella, J. W., Roberts, B. J., \u0026amp; Griffiths, N. A. (2021). Lack of long-term effect of coarse woody debris dam restoration on ecosystem functioning and water quality in Coastal Plain streams. Freshwater Science, 40(4), 593–607. https://doi.org/10.1086/717325\nBilquise, G., Ibrahim, S., \u0026amp; Shaalan, K. (2022). Emotionally Intelligent Chatbots: A Systematic Literature Review. Human Behavior and Emerging Technologies, 2022, 1–23. https://doi.org/10.1155/2022/9601630\nBinks, J. A., Emerson, J. R., Scott, M. W., Wilson, C., Van Schaik, P., \u0026amp; Eaves, D. L. (2023). Enhancing upper-limb neurorehabilitation in chronic stroke survivors using combined action observation and motor imagery therapy. Frontiers in Neurology, 14, 1097422. https://doi.org/10.3389/fneur.2023.1097422\nBireta, T. J., Guitard, D., Neath, I., \u0026amp; Surprenant, A. M. (2021). Valence does not affect serial recall. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 75(1), 35–47. https://doi.org/10.1037/cep0000239\nBlanco, A., Beger, M., Planes, S., Miller, M., \u0026amp; Olabarria, C. (2021). Estimating benthic trophic levels to assess the effectiveness of marine protected area management. Science of The Total Environment, 790, 148234. https://doi.org/10.1016/j.scitotenv.2021.148234\nBleijlevens, N., Contier, F., \u0026amp; Behne, T. (2023). Pragmatics aid referent disambiguation and word learning in young children and adults. Developmental Science, 26(4), e13363. https://doi.org/10.1111/desc.13363\nBloch‐Mullins, C. L. (2021). Similarity Reimagined (with Implications for a Theory of Concepts). Theoria, 87(1), 31–68. https://doi.org/10.1111/theo.12197\nBoele, H.-J., Joung, S., Fil, J. E., Mudd, A. T., Fleming, S. A., Koekkoek, S. K. E., \u0026amp; Dilger, R. N. (2021). Young Domestic Pigs (Sus scrofa) Can Perform Pavlovian Eyeblink Conditioning. Frontiers in Behavioral Neuroscience, 15, 690019. https://doi.org/10.3389/fnbeh.2021.690019\nBögge, L., Colás-Blanco, I., \u0026amp; Piolino, P. (2022). Respiratory sinus arrhythmia during biofeedback is linked to persistent improvements in attention, short-term memory, and positive self-referential episodic memory. Frontiers in Neuroscience, 16, 791498. https://doi.org/10.3389/fnins.2022.791498\nBone, J. K., Lewis, G., Roiser, J. P., Blakemore, S.-J., \u0026amp; Lewis, G. (2021). Recall bias during adolescence: Gender differences and associations with depressive symptoms. Journal of Affective Disorders, 282, 299–307. https://doi.org/10.1016/j.jad.2020.12.133\nBonin, P., Laroche, B., \u0026amp; Méot, A. (2021). Psycholinguistic norms for a set of 506 French compound words. Behavior Research Methods, 54(1), 393–413. https://doi.org/10.3758/s13428-021-01601-w\nBoone, G., \u0026amp; Eyckmans, J. (2023). Productive Collocation Knowledge in L2 German: Study Abroad and L1 Congruency. In B. L. Reynolds (Ed.), Vocabulary Learning in the Wild (pp. 67–86). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-1490-6_2\nBorghi, A. M. (2022). Concepts for Which We Need Others More: The Case of Abstract Concepts. Current Directions in Psychological Science, 31(3), 238–246. https://doi.org/10.1177/09637214221079625\nBorghi, A. M., \u0026amp; Barsalou, L. (2021). Perspective in the conceptualization of categories. Psychological Research, 85(2), 697–719. https://doi.org/10.1007/s00426-019-01269-0\nBorghi, A. M., Fini, C., \u0026amp; Mazzuca, C. (2022). Abstract Concepts, Social Interaction, and Beliefs. Frontiers in Psychology, 13, 919808. https://doi.org/10.3389/fpsyg.2022.919808\nBorghi, A. M., Fini, C., \u0026amp; Tummolini, L. (2021). Abstract Concepts and Metacognition: Searching for Meaning in Self and Others. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 197–220). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_9\nBorghi, A. M., Mazzuca, C., Gervasi, A. M., Mannella, F., \u0026amp; Tummolini, L. (2023). Grounded cognition can be multimodal all the way down. Language, Cognition and Neuroscience, 1–5. https://doi.org/10.1080/23273798.2023.2210238\nBorghi, A. M., Shaki, S., \u0026amp; Fischer, M. H. (2022). Abstract concepts: External influences, internal constraints, and methodological issues. Psychological Research, 86(8), 2370–2388. https://doi.org/10.1007/s00426-022-01698-4\nBosch-Bayard, J., Razzaq, F. A., Lopez-Naranjo, C., Wang, Y., Li, M., Galan-Garcia, L., Calzada-Reyes, A., Virues-Alba, T., Rabinowitz, A. G., Suarez-Murias, C., Guo, Y., Sanchez-Castillo, M., Roger, K., Gallagher, A., Prichep, L., Anderson, S. G., Michel, C. M., Evans, A. C., Bringas-Vega, M. L., … Valdes-Sosa, P. A. (2022). Early protein energy malnutrition impacts life-long developmental trajectories of the sources of EEG rhythmic activity. NeuroImage, 254, 119144. https://doi.org/10.1016/j.neuroimage.2022.119144\nBose, N., \u0026amp; Sgroi, D. (2022). The role of personality beliefs and “small talk” in strategic behaviour. PLOS ONE, 17(9), e0269523. https://doi.org/10.1371/journal.pone.0269523\nBottini, R., Morucci, P., D’Urso, A., Collignon, O., \u0026amp; Crepaldi, D. (2022). The concreteness advantage in lexical decision does not depend on perceptual simulations. Journal of Experimental Psychology: General, 151(3), 731–738. https://doi.org/10.1037/xge0001090\nBowers, S. J., Summa, K. C., Thompson, R. S., González, A., Vargas, F., Olker, C., Jiang, P., Lowry, C. A., Dorrestein, P. C., Knight, R., Wright, K. P., Fleshner, M., Turek, F. W., \u0026amp; Vitaterna, M. H. (2022). A Prebiotic Diet Alters the Fecal Microbiome and Improves Sleep in Response to Sleep Disruption in Rats. Frontiers in Neuroscience, 16, 889211. https://doi.org/10.3389/fnins.2022.889211\nBračić, M., Bohn, L., Siewert, V., Von Kortzfleisch, V. T., Schielzeth, H., Kaiser, S., Sachser, N., \u0026amp; Richter, S. H. (2022). Once an optimist, always an optimist? Studying cognitive judgment bias in mice. Behavioral Ecology, 33(4), 775–788. https://doi.org/10.1093/beheco/arac040\nBrady, W. J., McLoughlin, K., Doan, T. N., \u0026amp; Crockett, M. J. (2021). How social learning amplifies moral outrage expression in online social networks. Science Advances, 7(33), eabe5641. https://doi.org/10.1126/sciadv.abe5641\nBrainerd, C. J., Chang, M., \u0026amp; Bialer, D. M. (2021). Emotional ambiguity and memory. Journal of Experimental Psychology: General, 150(8), 1476–1499. https://doi.org/10.1037/xge0001011\nBrainerd, C. J., Chang, M., Bialer, D. M., \u0026amp; Liu, X. (2023). How does attribute ambiguity improve memory? Memory \u0026amp; Cognition, 51(1), 38–70. https://doi.org/10.3758/s13421-022-01343-w\nBrainerd, C. J., Chang, M., Bialer, D. M., \u0026amp; Toglia, M. P. (2021). Semantic ambiguity and memory. Journal of Memory and Language, 121, 104286. https://doi.org/10.1016/j.jml.2021.104286\nBrandes, L., \u0026amp; Dover, Y. (2022). Offline Context Affects Online Reviews: The Effect of Post-Consumption Weather. Journal of Consumer Research, 49(4), 595–615. https://doi.org/10.1093/jcr/ucac003\nBraun, N., Goudbeek, M., \u0026amp; Krahmer, E. (2022). Affective Words and the Company They Keep: Studying the Accuracy of Affective Word Lists in Determining Sentence and Word Valence in a Domain-Specific Corpus. IEEE Transactions on Affective Computing, 13(3), 1440–1451. https://doi.org/10.1109/TAFFC.2020.3005613\nBraun, N., Van Der Lee, C., Gatti, L., Goudbeek, M., \u0026amp; Krahmer, E. (2021). MEmoFC: Introducing the Multilingual Emotional Football Corpus. Language Resources and Evaluation, 55(2), 389–430. https://doi.org/10.1007/s10579-020-09508-2\nBredemeyer, O., Patel, S., FitzGerald, J. J., \u0026amp; Antoniades, C. A. (2022). Oculomotor deficits in Parkinson’s disease: Increasing sensitivity using multivariate approaches. Frontiers in Digital Health, 4, 939677. https://doi.org/10.3389/fdgth.2022.939677\nBrice, H., Siegelman, N., Van Den Bunt, M., Frost, S. J., Rueckl, J. G., Pugh, K. R., \u0026amp; Frost, R. (2022). INDIVIDUAL DIFFERENCES IN L2 LITERACY ACQUISITION: PREDICTING READING SKILL FROM SENSITIVITY TO REGULARITIES BETWEEN ORTHOGRAPHY, PHONOLOGY, AND SEMANTICS. Studies in Second Language Acquisition, 44(3), 737–758. https://doi.org/10.1017/S0272263121000528\nBrochhagen, T., \u0026amp; Boleda, G. (2022). When do languages use the same word for different meanings? The Goldilocks principle in colexification. Cognition, 226, 105179. https://doi.org/10.1016/j.cognition.2022.105179\nBrock, K. M., Chelini, M.-C., Ayton, C., Madden, I. E., Ramos, C., Blois, J. L., Pafilis, P., \u0026amp; Edwards, D. L. (2022). Colour morph predicts social behaviour and contest outcomes in a polymorphic lizard (Podarcis erhardii). Animal Behaviour, 191, 91–103. https://doi.org/10.1016/j.anbehav.2022.06.017\nBrodhun, C., Borelli, E., \u0026amp; Weiss, T. (2021). Influence of acute pain on valence rating of words. PLOS ONE, 16(3), e0248744. https://doi.org/10.1371/journal.pone.0248744\nBromberek-Dyzman, K., Jończyk, R., Vasileanu, M., Niculescu-Gorpin, A.-G., \u0026amp; Bąk, H. (2021). Cross-linguistic differences affect emotion and emotion-laden word processing: Evidence from Polish-English and Romanian-English bilinguals. International Journal of Bilingualism, 25(5), 1161–1182. https://doi.org/10.1177/1367006920987306\nBrouillet, T., Michalland, A.-H., Martin, S., \u0026amp; Brouillet, D. (2021). When the Action to Be Performed at the Stage of Retrieval Enacts Memory of Action Verbs. Experimental Psychology, 68(1), 18–31. https://doi.org/10.1027/1618-3169/a000507\nBruno, D., Sorando, R., Álvarez-Farizo, B., Castellano, C., Céspedes, V., Gallardo, B., Jiménez, J. J., López, M. V., López-Flores, R., Moret-Fernández, D., Navarro, E., Picazo, F., Sevilla-Callejo, M., Tormo, J., Vidal-Macua, J. J., Nicolau, J. M., \u0026amp; Comín, F. A. (2021). Depopulation impacts on ecosystem services in Mediterranean rural areas. Ecosystem Services, 52, 101369. https://doi.org/10.1016/j.ecoser.2021.101369\nBrysbaert, M. (2021). Power considerations in bilingualism research: Time to step up our game. Bilingualism: Language and Cognition, 24(5), 813–818. https://doi.org/10.1017/S1366728920000437\nBuades-Sitjar, F., Planchuelo, C., \u0026amp; Duñabeitia, J. A. (2021). Valence, Arousal and Concreteness Mediate Word Association. Psicothema, 33.4, 602–609. https://doi.org/10.7334/psicothema2020.484\nBuçinca, Z., Yemez, Y., Erzin, E., \u0026amp; Sezgin, M. (2023). AffectON: Incorporating Affect Into Dialog Generation. IEEE Transactions on Affective Computing, 14(1), 823–835. https://doi.org/10.1109/TAFFC.2020.3043067\nBucur, M., \u0026amp; Papagno, C. (2021). An ALE meta-analytical review of the neural correlates of abstract and concrete words. Scientific Reports, 11(1), 15727. https://doi.org/10.1038/s41598-021-94506-9\nBueno, D., Zimmerman, C., Critchfield, T. S., \u0026amp; Doepke, K. J. (2023). Do Bilinguals Have One Verbal Repertoire or Two? Evidence from Listener Word-Emotion Responses. The Psychological Record. https://doi.org/10.1007/s40732-023-00545-1\nBusch‐Moreno, S., Tuomainen, J., \u0026amp; Vinson, D. (2021). Trait anxiety effects on late phase threatening speech processing: Evidence from electroencephalography. European Journal of Neuroscience, 54(9), 7152–7175. https://doi.org/10.1111/ejn.15470\nCabana, Á., Zugarramurdi, C., Valle-Lisboa, J. C., \u0026amp; De Deyne, S. (2023). The “Small World of Words” free association norms for Rioplatense Spanish. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02070-z\nCai, Y., Elsayed, N. M., \u0026amp; Barch, D. M. (2021). Contributions from resting state functional connectivity and familial risk to early adolescent-onset MDD: Results from the Adolescent Brain Cognitive Development study. Journal of Affective Disorders, 287, 229–239. https://doi.org/10.1016/j.jad.2021.03.031\nCai, Z. G., Huang, S., Xu, Z., \u0026amp; Zhao, N. (2022). Objective ages of acquisition for 3300+ simplified Chinese characters. Behavior Research Methods, 54(1), 311–323. https://doi.org/10.3758/s13428-021-01626-1\nCaliskan, A., Ajay, P. P., Charlesworth, T., Wolfe, R., \u0026amp; Banaji, M. R. (2022). Gender Bias in Word Embeddings: A Comprehensive Analysis of Frequency, Syntax, and Semantics. Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 156–170. https://doi.org/10.1145/3514094.3534162\nCalzavarini, F. (2023). Rethinking modality-specificity in the cognitive neuroscience of concrete word meaning: A position paper. Language, Cognition and Neuroscience, 1–23. https://doi.org/10.1080/23273798.2023.2173789\nCalzolari, S., Boneva, S., \u0026amp; Fernández-Espejo, D. (2022). Investigating the shift between externally and internally oriented cognition: A novel task-switching paradigm. Neuroscience of Consciousness, 2022(1), niac016. https://doi.org/10.1093/nc/niac016\nCambria, E., Mao, R., Han, S., \u0026amp; Liu, Q. (2022). Sentic Parser: A Graph-Based Approach to Concept Extraction for Sentiment Analysis. 2022 IEEE International Conference on Data Mining Workshops (ICDMW), 1–8. https://doi.org/10.1109/ICDMW58026.2022.00060\nCambria, V. E., Campagnaro, T., Trentanovi, G., Testolin, R., Attorre, F., \u0026amp; Sitzia, T. (2021). Citizen Science Data to Measure Human Use of Green Areas and Forests in European Cities. Forests, 12(6), 779. https://doi.org/10.3390/f12060779\nCampbell, E. E., \u0026amp; Bergelson, E. (2022). Making sense of sensory language: Acquisition of sensory knowledge by individuals with congenital sensory impairments. Neuropsychologia, 174, 108320. https://doi.org/10.1016/j.neuropsychologia.2022.108320\nCampillo, B. W., Galguera, D., Cerdan, S., López-Larrubia, P., \u0026amp; Lizarbe, B. (2022). Short-term high-fat diet alters the mouse brain magnetic resonance imaging parameters consistently with neuroinflammation on males and metabolic rearrangements on females. A pre-clinical study with an optimized selection of linear mixed-effects models. Frontiers in Neuroscience, 16, 1025108. https://doi.org/10.3389/fnins.2022.1025108\nCanessa, E., Chaigneau, S. E., \u0026amp; Moreno, S. (2022). Using agreement probability to study differences in types of concepts and conceptualizers. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02030-z\nCapuano, F., Dudschig, C., Günther, F., \u0026amp; Kaup, B. (2021). Semantic Similarity of Alternatives Fostered by Conversational Negation. Cognitive Science, 45(7), e13015. https://doi.org/10.1111/cogs.13015\nCaravolas, M. (2022). Reading and Reading Disorders in Alphabetic Orthographies. In M. J. Snowling, C. Hulme, \u0026amp; K. Nation (Eds.), The Science of Reading (1st ed., pp. 327–353). Wiley. https://doi.org/10.1002/9781119705116.ch15\nCarli, V., Petros, N. G., Hadlaczky, G., Vitcheva, T., Berchialla, P., Bianchi, S., Carletto, S., Christinaki, E., Citi, L., Dinis, S., Gentili, C., Geraldes, V., Giovinazzo, L., Gonzalez-Martinez, S., Meyer, B., Ostacoli, L., Ottaviano, M., Ouakinin, S., Papastylianou, T., … Valenza, G. (2022). The NEVERMIND e-health system in the treatment of depressive symptoms among patients with severe somatic conditions: A multicentre, pragmatic randomised controlled trial. eClinicalMedicine, 48, 101423. https://doi.org/10.1016/j.eclinm.2022.101423\nCarney, J., \u0026amp; Robertson, C. (2022). Five studies evaluating the impact on mental health and mood of recalling, reading, and discussing fiction. PLOS ONE, 17(4), e0266323. https://doi.org/10.1371/journal.pone.0266323\nCasselberry, G. A., Drake, J. C., Perlot, N., Cooke, S. J., Danylchuk, A. J., \u0026amp; Lennox, R. J. (2023). Allometric Scaling of Anaerobic Capacity Estimated from a Unique Field-Based Data Set of Fish Swimming. Physiological and Biochemical Zoology, 96(1), 17–29. https://doi.org/10.1086/722134\nCataldo, A. M., Scheuer, L., Maksimovskiy, A. L., Germine, L. T., \u0026amp; Dillon, D. G. (2023). Abnormal evidence accumulation underlies the positive memory deficit in depression. Journal of Experimental Psychology: General, 152(1), 139–156. https://doi.org/10.1037/xge0001268\nChaisson, C., Jones, C. C., \u0026amp; Warren, R. S. (2022). Seasonal Stem Loss and Self-thinning in Low Marsh Spartina alterniflora in a New England Tidal Marsh. Estuaries and Coasts, 45(7), 2102–2111. https://doi.org/10.1007/s12237-022-01054-0\nChan, S. (2022). Dynamics of nominal classification systems in language processing. Language, Cognition and Neuroscience, 37(6), 671–685. https://doi.org/10.1080/23273798.2021.2011331\nChang, C.-Y., Chen, Y.-C., Tsai, M.-N., Sung, Y.-T., Chang, Y.-L., Lin, S.-Y., Cho, S.-L., Chang, T.-H., \u0026amp; Chen, H.-C. (2022). The Corpus of Emotional Valences for 33,669 Chinese Words Based on Big Data. In F. Fui-Hoon Nah \u0026amp; K. Siau (Eds.), HCI in Business, Government and Organizations (Vol. 13327, pp. 141–152). Springer International Publishing. https://doi.org/10.1007/978-3-031-05544-7_11\nChang, M., \u0026amp; Brainerd, C. J. (2023). The recognition effects of attribute ambiguity. Psychonomic Bulletin \u0026amp; Review, 30(6), 2315–2327. https://doi.org/10.3758/s13423-023-02291-5\nChang, M., Brainerd, C. J., Toglia, M. P., \u0026amp; Schmidt, S. R. (2021). Norms for emotion-false memory lists. Behavior Research Methods, 53(1), 96–112. https://doi.org/10.3758/s13428-020-01410-7\nChang, M., Jones, M. N., \u0026amp; Johns, B. T. (2023). Comparing word frequency, semantic diversity, and semantic distinctiveness in lexical organization. Journal of Experimental Psychology: General, 152(6), 1814–1823. https://doi.org/10.1037/xge0001407\nChapman, R. M., Gardner, M. N., \u0026amp; Lyons, M. (2022). Gender differences in emotional connotative meaning of words measured by Osgood’s semantic differential techniques in young adults. Humanities and Social Sciences Communications, 9(1), 119. https://doi.org/10.1057/s41599-022-01126-3\nCharitonidis, C. (2022). Context concreteness for the second constituent slows down compound-word processing. Lexis, 20. https://doi.org/10.4000/lexis.6769\nCharlesworth, T. E. S., Caliskan, A., \u0026amp; Banaji, M. R. (2022). Historical representations of social groups across 200 years of word embeddings from Google Books. Proceedings of the National Academy of Sciences, 119(28), e2121798119. https://doi.org/10.1073/pnas.2121798119\nChebbi, S., Sekkate, S., Jebara, S. B., \u0026amp; Adib, A. (2021). On the use of MFCC and SWT-based features for offensive speech detection in social media. 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), 1–6. https://doi.org/10.1109/INISTA52262.2021.9548341\nChelmis, C., \u0026amp; Zois, D.-S. (2021). Dynamic, Incremental, and Continuous Detection of Cyberbullying in Online Social Media. ACM Transactions on the Web, 15(3), 1–33. https://doi.org/10.1145/3448014\nChen, C.-H., Chang, Y.-L., Chen, Y.-C., Tsai, M.-N., Sung, Y.-T., Lin, S.-Y., Cho, S.-L., Chang, T.-H., \u0026amp; Chen, H.-C. (2022). Building a “Corpus of 7 Types Emotion Co-occurrences Words” of Chinese Emotional Words with Big Data Corpus. In F. Fui-Hoon Nah \u0026amp; K. Siau (Eds.), HCI in Business, Government and Organizations (Vol. 13327, pp. 163–181). Springer International Publishing. https://doi.org/10.1007/978-3-031-05544-7_13\nChen, G., Lewis, V. A., Gottlieb, D. J., \u0026amp; O’Malley, A. J. (2022). Using a mixed‐effect model with a parameter‐space of heterogenous dimension to evaluate whether accountable care organizations are associated with greater uniformity across constituent practices. Statistics in Medicine, 41(21), 4215–4226. https://doi.org/10.1002/sim.9506\nChen, H., Xu, X., \u0026amp; Wang, T. (2023). Assessing lexical ambiguity of simplified Chinese characters: Plurality and relatedness of character meanings. Quarterly Journal of Experimental Psychology, 17470218231178787. https://doi.org/10.1177/17470218231178787\nChen, L., Thomas, E. H. X., \u0026amp; Fitzgerald, P. B. (2021). Reply to Hudaib. Brain Stimulation, 14(6), 1587–1588. https://doi.org/10.1016/j.brs.2021.09.013\nChen, L., Thomas, E. H. X., Kaewpijit, P., Miljevic, A., Hughes, R., Hahn, L., Kato, Y., Gill, S., Clarke, P., Ng, F., Paterson, T., Giam, A., Sarma, S., Hoy, K. E., Galletly, C., \u0026amp; Fitzgerald, P. B. (2021). Accelerated theta burst stimulation for the treatment of depression: A randomised controlled trial. Brain Stimulation, 14(5), 1095–1105. https://doi.org/10.1016/j.brs.2021.07.018\nChen, T., Yin, H., Yuan, X., Gu, Y., Ren, F., \u0026amp; Sun, X. (2021). Emotion recognition based on fusion of long short-term memory networks and SVMs. Digital Signal Processing, 117, 103153. https://doi.org/10.1016/j.dsp.2021.103153\nChen, Z., Cao, Y., Yao, H., Lu, X., Peng, X., Mei, H., \u0026amp; Liu, X. (2021). Emoji-powered Sentiment and Emotion Detection from Software Developers’ Communication Data. ACM Transactions on Software Engineering and Methodology, 30(2), 1–48. https://doi.org/10.1145/3424308\nChersoni, E., Santus, E., Huang, C.-R., \u0026amp; Lenci, A. (2021). Decoding Word Embeddings with Brain-Based Semantic Features. Computational Linguistics, 47(3), 663–698. https://doi.org/10.1162/coli_a_00412\nChhaya, N., Jaidka, K., \u0026amp; Wadbude, R. (2023). Predicting Email Opens with Domain-Sensitive Affect Detection. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (Vol. 13397, pp. 71–79). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-23804-8_6\nChiu, M. M., Morakhovski, A., Ebert, D., Reinert, A., \u0026amp; Snyder, L. S. (2023). Detecting COVID-19 Fake News on Twitter: Followers, Emotions, Relationships, and Uncertainty. American Behavioral Scientist, 000276422311743. https://doi.org/10.1177/00027642231174329\nChou, Y.-C., Chuang, H. H.-C., \u0026amp; Liang, T.-P. (2022). Elaboration likelihood model, endogenous quality indicators, and online review helpfulness. Decision Support Systems, 153, 113683. https://doi.org/10.1016/j.dss.2021.113683\nChrobak, G., Kowalczyk, T., Fischer, T. B., Szewrański, S., Chrobak, K., Wąsowicz, B., \u0026amp; Kazak, J. K. (2022). First, do no harm—Missing data treatment to support lake ecological condition assessment. Environmental Modelling \u0026amp; Software, 158, 105558. https://doi.org/10.1016/j.envsoft.2022.105558\nClariana, R. B., Tang, H., \u0026amp; Chen, X. (2022). Corroborating a sorting task measure of individual and of local collective knowledge structure. Educational Technology Research and Development, 70(4), 1195–1219. https://doi.org/10.1007/s11423-022-10123-x\nCognitive Flexibility: The Cornerstone of Learning (1st ed.). (2022). Wiley. https://doi.org/10.1002/9781119902737\nColes, N. A., Gaertner, L., Frohlich, B., Larsen, J. T., \u0026amp; Basnight-Brown, D. M. (2023). Fact or artifact? Demand characteristics and participants’ beliefs can moderate, but do not fully account for, the effects of facial feedback on emotional experience. Journal of Personality and Social Psychology, 124(2), 287–310. https://doi.org/10.1037/pspa0000316\nCompton, S. L. E., Grieco, J. P., Gollamudi, B., Bae, E., Van Mullekom, J. H., \u0026amp; Schmelz, E. M. (2022). Metabolic Reprogramming of Ovarian Cancer Spheroids during Adhesion. Cancers, 14(6), 1399. https://doi.org/10.3390/cancers14061399\nConca, F., Borsa, V. M., Cappa, S. F., \u0026amp; Catricalà, E. (2021). The multidimensionality of abstract concepts: A systematic review. Neuroscience \u0026amp; Biobehavioral Reviews, 127, 474–491. https://doi.org/10.1016/j.neubiorev.2021.05.004\nConca, F., Catricalà, E., Canini, M., Petrini, A., Vigliocco, G., Cappa, S. F., \u0026amp; Della Rosa, P. A. (2021). In search of different categories of abstract concepts: A fMRI adaptation study. Scientific Reports, 11(1), 22587. https://doi.org/10.1038/s41598-021-02013-8\nConder, E. B., Jaeger, C. B., \u0026amp; Lane, J. D. (2023). Law and order: The timing of mitigating evidence affects punishment decisions. Thinking \u0026amp; Reasoning, 1–23. https://doi.org/10.1080/13546783.2023.2172077\nConklin, K., \u0026amp; Pellicer-Sánchez, A. (2022). Eye-Tracking. In S. Li, P. Hiver, \u0026amp; M. Papi, The Routledge Handbook of Second Language Acquisition and Individual Differences (1st ed., pp. 441–453). Routledge. https://doi.org/10.4324/9781003270546-35\nConley, M. I., Hernandez, J., Salvati, J. M., Gee, D. G., \u0026amp; Baskin-Sommers, A. (2023). The role of perceived threats on mental health, social, and neurocognitive youth outcomes: A multicontextual, person-centered approach. Development and Psychopathology, 35(2), 689–710. https://doi.org/10.1017/S095457942100184X\nContemori, G., Saccani, M. S., \u0026amp; Bonato, M. (2022). Multitasking Effects on Perception and Memory in Older Adults. Vision, 6(3), 48. https://doi.org/10.3390/vision6030048\nCortese, M. J., \u0026amp; Khanna, M. M. (2022). Relating emotional variables to recognition memory performance: A large-scale re-analysis of megastudy data. Memory, 30(7), 915–922. https://doi.org/10.1080/09658211.2022.2055080\nCosper, S. H., Männel, C., \u0026amp; Mueller, J. L. (2022). Mechanisms of associative word learning: Benefits from the visual modality and synchrony of labeled objects. Cortex, 152, 36–52. https://doi.org/10.1016/j.cortex.2022.03.020\nCox, C. R., \u0026amp; Haebig, E. (2022). Child-oriented word associations improve models of early word learning. Behavior Research Methods, 55(1), 16–37. https://doi.org/10.3758/s13428-022-01790-y\nCreemers, A., \u0026amp; Embick, D. (2021). Retrieving stem meanings in opaque words during auditory lexical processing. Language, Cognition and Neuroscience, 36(9), 1107–1122. https://doi.org/10.1080/23273798.2021.1909085\nCrible, L., Wetzel, M., \u0026amp; Zufferey, S. (2021). Lexical and Structural Cues to Discourse Processing in First and Second Language. Frontiers in Psychology, 12, 685491. https://doi.org/10.3389/fpsyg.2021.685491\nCring, M. R., Meyer, K. J., Searby, C. C., Hedberg-Buenz, A., Cave, M., Anderson, M. G., Wang, K., \u0026amp; Sheffield, V. C. (2022). Ectopic expression of BBS1 rescues male infertility, but not retinal degeneration, in a BBS1 mouse model. Gene Therapy, 29(5), 227–235. https://doi.org/10.1038/s41434-021-00241-1\nCrossfield, E., \u0026amp; Damian, M. F. (2021). The role of valence in word processing: Evidence from lexical decision and emotional Stroop tasks. Acta Psychologica, 218, 103359. https://doi.org/10.1016/j.actpsy.2021.103359\nCui, N., Malleson, N., Houlden, V., \u0026amp; Comber, A. (2021). Using VGI and Social Media Data to Understand Urban Green Space: A Narrative Literature Review. ISPRS International Journal of Geo-Information, 10(7), 425. https://doi.org/10.3390/ijgi10070425\nCui, X., Liu, W., \u0026amp; He, Z. (2021). Attribute reduction algorithm of enterprise credit evaluation and its applications for web-based communities. International Journal of Web Based Communities, 17(4), 293. https://doi.org/10.1504/IJWBC.2021.119473\nCutter, M. G., Filik, R., \u0026amp; Paterson, K. B. (2022). Do readers maintain word-level uncertainty during reading? A pre-registered replication study. Journal of Memory and Language, 125, 104336. https://doi.org/10.1016/j.jml.2022.104336\nCyr, M.-P., Dostie, R., Camden, C., Dumoulin, C., Bessette, P., Pina, A., Gotlieb, W. H., Lapointe-Milot, K., Mayrand, M.-H., \u0026amp; Morin, M. (2022). Improvements following multimodal pelvic floor physical therapy in gynecological cancer survivors suffering from pain during sexual intercourse: Results from a one-year follow-up mixed-method study. PLOS ONE, 17(1), e0262844. https://doi.org/10.1371/journal.pone.0262844\nD’Angiulli, A., \u0026amp; Reeves, A. (2021). Experimental phenomenology meets brain information processing: Vividness of voluntary imagery, consciousness of the present, and priming. Psychology of Consciousness: Theory, Research, and Practice, 8(4), 397–418. https://doi.org/10.1037/cns0000306\nDar, S., Liebenthal, E., Pan, H., Smith, T., Savitz, A., Landa, Y., Silbersweig, D., \u0026amp; Stern, E. (2021). Abnormal semantic processing of threat words associated with excitement and hostility symptoms in schizophrenia. Schizophrenia Research, 228, 394–402. https://doi.org/10.1016/j.schres.2020.12.022\nDaradkeh, M., Mansoor, W., Atalla, S., Himeur, Y., \u0026amp; Kerdjidj, O. (2023). Lifelong Machine Learning for Topic Modeling Based on Hellinger Distance. 2023 International Joint Conference on Neural Networks (IJCNN), 01–08. https://doi.org/10.1109/IJCNN54540.2023.10191745\nDavis, C. P. (2023). Emergence of Covid‐19 as a Novel Concept Shifts Existing Semantic Spaces. Cognitive Science, 47(1), e13237. https://doi.org/10.1111/cogs.13237\nDavis, C. P., Eigsti, I.-M., Healy, R., Joergensen, G. H., \u0026amp; Yee, E. (2022). Autism-spectrum traits in neurotypicals predict the embodiment of manipulation knowledge about object concepts: Evidence from eyetracking. PLOS ONE, 17(7), e0268069. https://doi.org/10.1371/journal.pone.0268069\nDavis, C. P., \u0026amp; Yee, E. (2021). Building semantic memory from embodied and distributional language experience. WIREs Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555\nDavis, J. D., Coulson, S., Arnold, A. J., \u0026amp; Winkielman, P. (2021). Dynamic Grounding of Concepts: Implications for Emotion and Social Cognition. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 23–42). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_2\nDavison, S. M. C., White, M. P., Pahl, S., Taylor, T., Borja, A., McMeel, O., Kellett, P., Roberts, B. R., \u0026amp; Fleming, L. E. (2023). Concern about the human health implications of marine biodiversity loss is higher among less educated and poorer citizens: Results from a 14-country study in Europe. Frontiers in Marine Science, 10, 949263. https://doi.org/10.3389/fmars.2023.949263\nDawes, C., Quinn, D., Bickerdike, A., O’Neill, C., Granger, K. T., Pereira, S. C., Mah, S. L., Haselgrove, M., Waddington, J. L., O’Tuathaigh, C., \u0026amp; Moran, P. M. (2022). Latent inhibition, aberrant salience, and schizotypy traits in cannabis users. Schizophrenia Research: Cognition, 28, 100235. https://doi.org/10.1016/j.scog.2021.100235\nDe Bruyne, L., Atanasova, P., \u0026amp; Augenstein, I. (2022). Joint emotion label space modeling for affect lexica. Computer Speech \u0026amp; Language, 71, 101257. https://doi.org/10.1016/j.csl.2021.101257\nDe Bruyne, L., De Clercq, O., \u0026amp; Hoste, V. (2021). Annotating affective dimensions in user-generated content: Comparing the reliability of best–worst scaling, pairwise comparison and rating scales for annotating valence, arousal and dominance. Language Resources and Evaluation, 55(4), 1017–1045. https://doi.org/10.1007/s10579-020-09524-2\nDe Deyne, S., Brysbaert, M., \u0026amp; Elgort, I. (2023). Chapter 7. Cross-language influences in L2 semantic and conceptual representation and processing. In I. Elgort, A. Siyanova-Chanturia, \u0026amp; M. Brysbaert (Eds.), Bilingual Processing and Acquisition (Vol. 16, pp. 152–186). John Benjamins Publishing Company. https://doi.org/10.1075/bpa.16.07ded\nDe Deyne, S., Navarro, D. J., Collell, G., \u0026amp; Perfors, A. (2021). Visual and Affective Multimodal Models of Word Meaning in Language and Mind. Cognitive Science, 45(1), e12922. https://doi.org/10.1111/cogs.12922\nDe Marco, M., Blackburn, D. J., \u0026amp; Venneri, A. (2021). Serial Recall Order and Semantic Features of Category Fluency Words to Study Semantic Memory in Normal Ageing. Frontiers in Aging Neuroscience, 13, 678588. https://doi.org/10.3389/fnagi.2021.678588\nDe Marco, M., \u0026amp; Venneri, A. (2022). Serial Recall Order of Category Fluency Words: Exploring Its Neural Underpinnings. Frontiers in Psychology, 12, 777838. https://doi.org/10.3389/fpsyg.2021.777838\nDe Oude, N. L., Hoebeek, F. E., Ten Brinke, M. M., De Zeeuw, C. I., \u0026amp; Boele, H.-J. (2021). Pavlovian eyeblink conditioning is severely impaired in tottering mice. Journal of Neurophysiology, 125(2), 398–407. https://doi.org/10.1152/jn.00578.2020\nDe Vries, R., Boesveldt, S., \u0026amp; De Vet, E. (2022). Human spatial memory is biased towards high-calorie foods: A cross-cultural online experiment. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 14. https://doi.org/10.1186/s12966-022-01252-w\nDe Zubicaray, G. I., Arciuli, J., Guenther, F. H., McMahon, K. L., \u0026amp; Kearney, E. (2023). Non-arbitrary mappings between size and sound of English words: Form typicality effects during lexical access and memory. Quarterly Journal of Experimental Psychology, 17470218231184940. https://doi.org/10.1177/17470218231184940\nDe Zubicaray, G. I., Arciuli, J., Kearney, E., Guenther, F., \u0026amp; McMahon, K. L. (2023). On the roles of form systematicity and sensorimotor effects in language processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(3), 431–444. https://doi.org/10.1037/xlm0001201\nDębowska-Kozłowska, K., \u0026amp; Hample, D. (2022). “Agreement Builds and Disagreement Destroys:” How Polish Undergraduates and Graduates Understand Interpersonal Arguing. Argumentation, 36(3), 365–392. https://doi.org/10.1007/s10503-022-09570-w\nDeksne, D., \u0026amp; Skadiņš, R. (2022). Predicting Next Dialogue Action in Emotionally Loaded Conversation. In K. Arai (Ed.), Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1 (Vol. 358, pp. 264–274). Springer International Publishing. https://doi.org/10.1007/978-3-030-89906-6_19\nDelgado-Ballester, E., López-López, I., \u0026amp; Bernal-Palazón, A. (2021). Why Do People Initiate an Online Firestorm? The Role of Sadness, Anger, and Dislike. International Journal of Electronic Commerce, 25(3), 313–337. https://doi.org/10.1080/10864415.2021.1943173\nDelvaux, V., Lavallée, A., Degouis, F., Saloppe, X., Nandrino, J.-L., \u0026amp; Pham, T. (2022). Telling self-defining memories: An acoustic study of natural emotional speech productions. Interspeech 2022, 1337–1341. https://doi.org/10.21437/Interspeech.2022-10554\nDemidenko, M. I., Weigard, A. S., Ganesan, K., Jang, H., Jahn, A., Huntley, E. D., \u0026amp; Keating, D. P. (2021). Interactions between methodological and interindividual variability: How Monetary Incentive Delay (MID) task contrast maps vary and impact associations with behavior. Brain and Behavior, 11(5), e02093. https://doi.org/10.1002/brb3.2093\nDeng, M., Guinote, A., Li, L., Cui, L., \u0026amp; Shi, W. (2021). When Abstract Concepts Rely on Multiple Metaphors: Metaphor Selection in the Case of Power. Social Cognition, 39(3), 408–435. https://doi.org/10.1521/soco.2021.39.3.408\nDeng, Y., Li, J., Niu, M., Wang, Y., Fu, W., Gong, Y., Ding, S., Li, W., He, W., \u0026amp; Cao, L. (2023). A Chinese verb semantic feature dataset (CVFD). Behavior Research Methods. https://doi.org/10.3758/s13428-022-02047-4\nDetjen, H., Faltaous, S., Keppel, J., Prochazka, M., Gruenefeld, U., Sadeghian, S., \u0026amp; Schneegass, S. (2022). Investigating the Influence of Gaze- and Context-Adaptive Head-up Displays on Take-Over Requests. Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 108–118. https://doi.org/10.1145/3543174.3546089\nDíaz, J.-L., Barraza, G., Hernández-Fuentes, E., \u0026amp; Jiménez, S. (2022). Emotion Words in Spanish: Lexical Selection, Affective Dimensions, Sex and Age Differences. Cognitive Semantics, 8(2), 181–209. https://doi.org/10.1163/23526416-08020002\nDíaz‐Ricaurte, J. C., \u0026amp; Serrano, F. C. (2021). Short‐term captivity does not affect immediate voluntary thermal maximum of a neotropical pitviper: Implications for behavioral thermoregulation. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335(2), 199–206. https://doi.org/10.1002/jez.2433\nDillon, D. G., Lazarov, A., Dolan, S., Bar-Haim, Y., Pizzagalli, D. A., \u0026amp; Schneier, F. R. (2022). Fast evidence accumulation in social anxiety disorder enhances decision making in a probabilistic reward task. Emotion, 22(1), 1–18. https://doi.org/10.1037/emo0001053\nDinh, T., Emery Thompson, M., \u0026amp; Gangestad, S. W. (2022). Ovarian hormones in relation to naturally cycling women’s conception risk: Empirical evidence and implications for behavioral endocrinology. Hormones and Behavior, 146, 105276. https://doi.org/10.1016/j.yhbeh.2022.105276\nDonahoo, S. A., Pfeifer, V., \u0026amp; Lai, V. T. (2022). Cursed Concepts: New insights on combinatorial processing from ERP correlates of swearing in context. Brain and Language, 226, 105079. https://doi.org/10.1016/j.bandl.2022.105079\nDong, Y., Briaire, J. J., Christiaan Stronks, H., \u0026amp; Frijns, J. H. M. (2022). Short- and long-latency components of the eCAP reveal different refractory properties. Hearing Research, 420, 108522. https://doi.org/10.1016/j.heares.2022.108522\nDonohue, M. R., Hoyniak, C. P., Tillman, R., Barch, D. M., \u0026amp; Luby, J. (2021). Callous-Unemotional Traits as an Intervention Target and Moderator of Parent–Child Interaction Therapy—Emotion Development Treatment for Preschool Depression and Conduct Problems. Journal of the American Academy of Child \u0026amp; Adolescent Psychiatry, 60(11), 1394–1403. https://doi.org/10.1016/j.jaac.2021.03.018\nDooley, N., Ruigrok, A., Holt, R., Allison, C., Tsompanidis, A., Waldman, J., Auyeung, B., Lombardo, M. V., \u0026amp; Baron-Cohen, S. (2022). Is there an association between prenatal testosterone and autistic traits in adolescents? Psychoneuroendocrinology, 136, 105623. https://doi.org/10.1016/j.psyneuen.2021.105623\nDoqaruni, V. R. (2021). Investigating bilinguals’ cognitive processing of affective words in minimal linguistic contexts. The Mental Lexicon, 16(2–3), 422–447. https://doi.org/10.1075/ml.20026.doq\nDora, J., Piccirillo, M., Foster, K. T., \u0026amp; King, K. M. (2023). Accelerating addiction research via Open Science and Team Science. In Psychology of Learning and Motivation (Vol. 79, pp. 109–146). Elsevier. https://doi.org/10.1016/bs.plm.2023.06.004\nDora, J., Smith, M. R., Seldin, K., Schultz, M. E., Kuczynski, A. M., Moss, D. J., Carpenter, R. W., \u0026amp; King, K. M. (2023). Exploring associations between affect and marijuana use in everyday life via specification curve analysis. Journal of Psychopathology and Clinical Science, 132(4), 461–474. https://doi.org/10.1037/abn0000825\nDotlačil, J. (2021). Parsing as a Cue‐Based Retrieval Model. Cognitive Science, 45(8), e13020. https://doi.org/10.1111/cogs.13020\nDove, G. (2021). The Challenges of Abstract Concepts. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 171–195). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_8\nDove, G., Barca, L., Tummolini, L., \u0026amp; Borghi, A. M. (2022). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research, 86(8), 2451–2467. https://doi.org/10.1007/s00426-020-01438-6\nDubova, M. (2022). Building human-like communicative intelligence: A grounded perspective. Cognitive Systems Research, 72, 63–79. https://doi.org/10.1016/j.cogsys.2021.12.002\nDudschig, C., Kaup, B., \u0026amp; Mackenzie, I. G. (2023). The grounding of logical operations: The role of color, shape, and emotional faces for “yes” or “no” decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(3), 477–492. https://doi.org/10.1037/xlm0001181\nDujardin, E., Jobard, G., Vahine, T., \u0026amp; Mathey, S. (2021). Norms of vocabulary, reading, and spelling tests in French university students. Behavior Research Methods, 54(4), 1611–1625. https://doi.org/10.3758/s13428-021-01684-5\nDurand-López, E. M. (2022). L2 within-language morphological competition during spoken word recognition. Language Acquisition, 29(2), 165–181. https://doi.org/10.1080/10489223.2021.1982948\nDuville, M. M., Alonso-Valerdi, L. M., \u0026amp; Ibarra-Zarate, D. I. (2021). Mexican Emotional Speech Database Based on Semantic, Frequency, Familiarity, Concreteness, and Cultural Shaping of Affective Prosody. Data, 6(12), 130. https://doi.org/10.3390/data6120130\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2022). Linguistic Bootstrapping Allows More Real-world Object Concepts to Be Held in Mind. Collabra: Psychology, 8(1), 40171. https://doi.org/10.1525/collabra.40171\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2023). More is not necessarily better: How different aspects of sensorimotor experience affect recognition memory for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1572–1587. https://doi.org/10.1037/xlm0001265\nDyson, L., Morgan, J., \u0026amp; Herbert, R. (2022). Novel matched stimuli for assessment of lexical semantics. Aphasiology, 36(7), 831–853. https://doi.org/10.1080/02687038.2021.1924354\nDziadkowiec, O. (2021). Use of Statistical Power Analysis in Prospective and Retrospective Research. Journal of Obstetric, Gynecologic \u0026amp; Neonatal Nursing, 50(2), 119–121. https://doi.org/10.1016/j.jogn.2021.01.004\nEjova, A., Badcock, N. A., McKerchar, S., Beath, A. P., Swift, C., Talley, N. J., Holtmann, G., Walker, M. M., \u0026amp; Jones, M. P. (2021). Electroencephalographic evidence of unconscious and conscious attentional bias in people with functional gastrointestinal disorders: A pilot study. International Journal of Psychophysiology, 170, 30–42. https://doi.org/10.1016/j.ijpsycho.2021.09.006\nEllis, R. J. (2022). Questionable Research Practices, Low Statistical Power, and Other Obstacles to Replicability: Why Preclinical Neuroscience Research Would Benefit from Registered Reports. Eneuro, 9(4), ENEURO.0017-22.2022. https://doi.org/10.1523/ENEURO.0017-22.2022\nElmers, M., Werner, R., Muhlack, B., Möbius, B., \u0026amp; Trouvain, J. (2021). Take a Breath: Respiratory Sounds Improve Recollection in Synthetic Speech. Interspeech 2021, 3196–3200. https://doi.org/10.21437/Interspeech.2021-1496\nEmmenegger, M., Kumar, S. S., Emmenegger, V., Malinauskas, T., Buettner, T., Rose, L., Schierack, P., Sprinzl, M. F., Sommer, C. J., Lackner, K. J., Aguzzi, A., Roggenbuck, D., \u0026amp; Frauenknecht, K. B. M. (2021). Anti-prothrombin autoantibodies enriched after infection with SARS-CoV-2 and influenced by strength of antibody response against SARS-CoV-2 proteins. PLOS Pathogens, 17(12), e1010118. https://doi.org/10.1371/journal.ppat.1010118\nEngelen, J. A. A. (2022). The In‐Out Effect in the Perception and Production of Real Words. Cognitive Science, 46(9), e13193. https://doi.org/10.1111/cogs.13193\nEngwall, O., Cumbal, R., Lopes, J., Ljung, M., \u0026amp; Månsson, L. (2022). Identification of Low-engaged Learners in Robot-led Second Language Conversations with Adults. ACM Transactions on Human-Robot Interaction, 11(2), 1–33. https://doi.org/10.1145/3503799\nEnsor, T. M., MacMillan, M. B., Neath, I., \u0026amp; Surprenant, A. M. (2021). Calculating semantic relatedness of lists of nouns using WordNet path length. Behavior Research Methods, 53(6), 2430–2438. https://doi.org/10.3758/s13428-021-01570-0\nEnver, E. O., Vatansever, P., Guran, O., Bilgin, L., Boran, P., Turan, S., Haklar, G., Bereket, A., \u0026amp; Guran, T. (2022). Adrenal steroids reference ranges in infancy determined by LC-MS/MS. Pediatric Research, 92(1), 265–274. https://doi.org/10.1038/s41390-021-01739-5\nEom, S., Kim, S., Jiang, Y., Chen, R. J., Roghanizad, A. R., Rosenthal, M. Z., Dunn, J., \u0026amp; Gorlatova, M. (2023). Investigation of Thermal Perception and Emotional Response in Augmented Reality using Digital Biomarkers: A Pilot Study. 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 170–173. https://doi.org/10.1109/VRW58643.2023.00042\nErel, H., Cohen, Y., Shafrir, K., Levy, S. D., Vidra, I. D., Shem Tov, T., \u0026amp; Zuckerman, O. (2021). Excluded by Robots: Can Robot-Robot-Human Interaction Lead to Ostracism? Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, 312–321. https://doi.org/10.1145/3434073.3444648\nErhardt, E., Horner, A., Shaff, N., Wertz, C., Nitschke, S., Vakhtin, A., Mayer, A., Adair, J., Knoefel, J., Rosenberg, G., Poston, K., Suarez Cedeno, G., Deligtisch, A., Pirio Richardson, S., \u0026amp; Ryman, S. (2023). Longitudinal hippocampal subfields, CSF biomarkers, and cognition in patients with Parkinson disease. Clinical Parkinsonism \u0026amp; Related Disorders, 9, 100199. https://doi.org/10.1016/j.prdoa.2023.100199\nEriksson, K., Vartanova, I., Ornstein, P., \u0026amp; Strimling, P. (2021). The common-is-moral association is stronger among less religious people. Humanities and Social Sciences Communications, 8(1), 109. https://doi.org/10.1057/s41599-021-00791-0\nEspey, L., Ghio, M., Bellebaum, C., \u0026amp; Bechtold, L. (2023). That means something to me: How linguistic and emotional experience affect the acquisition, representation, and processing of novel abstract concepts. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0001236\nEtard, A., Pigot, A. L., \u0026amp; Newbold, T. (2022). Intensive human land uses negatively affect vertebrate functional diversity. Ecology Letters, 25(2), 330–343. https://doi.org/10.1111/ele.13926\nEvans, N. H., \u0026amp; Field-Fote, E. C. (2022). A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. Journal of Neurologic Physical Therapy, 46(4), 281–292. https://doi.org/10.1097/NPT.0000000000000403\nEysenck, M. W., \u0026amp; Brysbaert, M. (2023). Fundamentals of Cognition (4th ed.). Routledge. https://doi.org/10.4324/9781003384694\nFabrizio Calzavarini. (2023). Comprensione e cervello. Sistemi intelligenti, 2, 251–276. https://doi.org/10.1422/107149\nFan, G., Zhao, J., Zhang, K., Wang, Y., \u0026amp; Kang, T. (2022). The consistency of self-reference and mother reference in social evaluation. Social Behavior and Personality: An International Journal, 50(10), 1–11. https://doi.org/10.2224/sbp.11650\nFatima, A., Li, Y., Hills, T. T., \u0026amp; Stella, M. (2021). DASentimental: Detecting Depression, Anxiety, and Stress in Texts via Emotional Recall, Cognitive Networks, and Machine Learning. Big Data and Cognitive Computing, 5(4), 77. https://doi.org/10.3390/bdcc5040077\nFauville, G., Queiroz, A. C. M., Luo, M., Hancock, J., \u0026amp; Bailenson, J. N. (2022). Impression formation from video conference screenshots: The role of gaze, camera distance, and angle. Technology, Mind, and Behavior, 3(1). https://doi.org/10.1037/tmb0000055\nFeldman, L. B., Srinivasan, V., Fernandes, R. B., \u0026amp; Shaikh, S. (2021). Insights into codeswitching from online communication: Effects of language preference and conditions arising from vocabulary richness. Bilingualism: Language and Cognition, 24(4), 791–797. https://doi.org/10.1017/S1366728921000122\nFélix, S. B., \u0026amp; Pandeirada, J. N. S. (2021). Norming studies of European Portuguese words: A literature review. Análise Psicológica, 39(1), 107–131. https://doi.org/10.14417/ap.1823\nFernández-Fontecha, A., \u0026amp; Kenett, Y. N. (2022). Examining the relations between semantic memory structure and creativity in second language. Thinking Skills and Creativity, 45, 101067. https://doi.org/10.1016/j.tsc.2022.101067\nFernandino, L., Tong, J.-Q., Conant, L. L., Humphries, C. J., \u0026amp; Binder, J. R. (2022). Decoding the information structure underlying the neural representation of concepts. Proceedings of the National Academy of Sciences, 119(6), e2108091119. https://doi.org/10.1073/pnas.2108091119\nFerré, P., Guasch, M., Stadthagen-Gonzalez, H., \u0026amp; Comesaña, M. (2022). Love me in L1, but hate me in L2: How native speakers and bilinguals rate the affectivity of words when feeling or thinking about them. Bilingualism: Language and Cognition, 25(5), 786–800. https://doi.org/10.1017/S1366728922000189\nFerré, P., Haro, J., Huete-Pérez, D., \u0026amp; Fraga, I. (2021). Emotionality effects in ambiguous word recognition: The crucial role of the affective congruence between distinct meanings of ambiguous words. Quarterly Journal of Experimental Psychology, 74(7), 1234–1243. https://doi.org/10.1177/1747021821990003\nFini, C., Era, V., Da Rold, F., Candidi, M., \u0026amp; Borghi, A. M. (2021). Abstract concepts in interaction: The need of others when guessing abstract concepts smooths dyadic motor interactions. Royal Society Open Science, 8(7), 201205. https://doi.org/10.1098/rsos.201205\nFini, C., Zannino, G. D., Orsoni, M., Carlesimo, G. A., Benassi, M., \u0026amp; Borghi, A. M. (2022). Articulatory suppression delays processing of abstract words: The role of inner speech. Quarterly Journal of Experimental Psychology, 75(7), 1343–1354. https://doi.org/10.1177/17470218211053623\nFini, N. A., Holland, A. E., Bernhardt, J., \u0026amp; Burge, A. T. (2022). How Many Hours of Device Wear Time Are Required to Accurately Measure Physical Activity Post Stroke? International Journal of Environmental Research and Public Health, 19(3), 1191. https://doi.org/10.3390/ijerph19031191\nFiocchi, F. R., Dijkhuizen, S., Koekkoek, S. K. E., De Zeeuw, C. I., \u0026amp; Boele, H. J. (2022). Stimulus Generalization in Mice during Pavlovian Eyeblink Conditioning. Eneuro, 9(2), ENEURO.0400-21.2022. https://doi.org/10.1523/ENEURO.0400-21.2022\nFlores, R. D., Sanders, C. A., Duan, S. X., Bishop‐Chrzanowski, B. M., Oyler, D. L., Shim, H., Clocksin, H. E., Miller, A. P., \u0026amp; Merkle, E. C. (2022). Before/after Bayes: A comparison of frequentist and Bayesian mixed‐effects models in applied psychological research. British Journal of Psychology, 113(4), 1164–1194. https://doi.org/10.1111/bjop.12585\nFlynn, A. J., Herbers, J. E., Kurko, S. A., \u0026amp; Kan, I. P. (2023). Using spreading activation to understand repetitive negative thinking. Cognition and Emotion, 37(3), 453–465. https://doi.org/10.1080/02699931.2023.2176288\nFontaine, J. R. J., Gillioz, C., Soriano, C., \u0026amp; Scherer, K. R. (2022). Linear and non-linear relationships among the dimensions representing the cognitive structure of emotion. Cognition and Emotion, 36(3), 411–432. https://doi.org/10.1080/02699931.2021.2013163\nFormanowicz, M., Pietraszkiewicz, A., Roessel, J., Suitner, C., Witkowska, M., \u0026amp; Maass, A. (2021). “Make it Happen!”: Verbs as Markers of Agency Increase Message Effectiveness. Social Psychology, 52(2), 75–89. https://doi.org/10.1027/1864-9335/a000435\nFormento, E., Botros, P., \u0026amp; Carmena, J. M. (2021). Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface. Journal of Neural Engineering, 18(6), 066019. https://doi.org/10.1088/1741-2552/ac35ac\nForneris, A., Nightingale, M., Ismaguilova, A., Sigaeva, T., Neave, L., Bromley, A., Moore, R. D., \u0026amp; Di Martino, E. S. (2021). Heterogeneity of Ex Vivo and In Vivo Properties along the Length of the Abdominal Aortic Aneurysm. Applied Sciences, 11(8), 3485. https://doi.org/10.3390/app11083485\nForoni, F. (2022). 17 Multimodality, facial expression, and emotional language. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 364–384). De Gruyter. https://doi.org/10.1515/9783110347524-017\nFörster, A., Model, V., Gos, T., Frodl, T., Schiltz, K., Dobrowolny, H., Meyer-Lotz, G., Guest, P. C., Mawrin, C., Bernstein, H.-G., Bogerts, B., Schlaaff, K., \u0026amp; Steiner, J. (2022). Reduced GABAergic neuropil and interneuron profiles in schizophrenia: Complementary analysis of disease course-related differences. Journal of Psychiatric Research, 145, 50–59. https://doi.org/10.1016/j.jpsychires.2021.11.028\nFrachi, Y., Takahashi, T., Wang, F., \u0026amp; Barthet, M. (2022). Design of Emotion-Driven Game Interaction Using Biosignals. In X. Fang (Ed.), HCI in Games (Vol. 13334, pp. 160–179). Springer International Publishing. https://doi.org/10.1007/978-3-031-05637-6_10\nFrancesco Iani. (2022). La rivoluzione è tenere tutto insieme. Risposta ai commenti. Giornale italiano di psicologia, 2, 473–479. https://doi.org/10.1421/105160\nFreitas, C., Villegas‐Ríos, D., Moland, E., \u0026amp; Olsen, E. M. (2021). Sea temperature effects on depth use and habitat selection in a marine fish community. Journal of Animal Ecology, 90(7), 1787–1800. https://doi.org/10.1111/1365-2656.13497\nFriese, J. D. S., Temming, A., \u0026amp; Dänhardt, A. (2021). Preference, avoidance or coincidence? How fish and crustaceans use intertidal salt-marsh creeks in the German Wadden Sea. Estuarine, Coastal and Shelf Science, 255, 107297. https://doi.org/10.1016/j.ecss.2021.107297\nFrischkorn, G. T., Wilhelm, O., \u0026amp; Oberauer, K. (2022). Process-oriented intelligence research: A review from the cognitive perspective. Intelligence, 94, 101681. https://doi.org/10.1016/j.intell.2022.101681\nFu, P., Hu, L., Ainsworth, E. A., Tai, X., Myint, S. W., Zhan, W., Blakely, B. J., \u0026amp; Bernacchi, C. J. (2021). Enhanced drought resistance of vegetation growth in cities due to urban heat, CO 2 domes and O 3 troughs. Environmental Research Letters, 16(12), 124052. https://doi.org/10.1088/1748-9326/ac3b17\nFu, Y., Guo, L., Wang, L., Liu, Z., Liu, J., \u0026amp; Dang, J. (2021). A Sentiment Similarity-Oriented Attention Model with Multi-task Learning for Text-Based Emotion Recognition. In J. Lokoč, T. Skopal, K. Schoeffmann, V. Mezaris, X. Li, S. Vrochidis, \u0026amp; I. Patras (Eds.), MultiMedia Modeling (Vol. 12572, pp. 278–289). Springer International Publishing. https://doi.org/10.1007/978-3-030-67832-6_23\nFudolig, M. I., Alshaabi, T., Arnold, M. V., Danforth, C. M., \u0026amp; Dodds, P. S. (2022). Sentiment and structure in word co-occurrence networks on Twitter. Applied Network Science, 7(1), 9. https://doi.org/10.1007/s41109-022-00446-2\nFujita, H., \u0026amp; Cunnings, I. (2021a). Lingering misinterpretation in native and nonnative sentence processing: Evidence from structural priming. Applied Psycholinguistics, 42(2), 475–504. https://doi.org/10.1017/S0142716420000351\nFujita, H., \u0026amp; Cunnings, I. (2021b). Reanalysis processes in non-native sentence comprehension. Bilingualism: Language and Cognition, 24(4), 628–641. https://doi.org/10.1017/S1366728921000195\nFujita, H., \u0026amp; Cunnings, I. (2022). Interference and filler-gap dependency formation in native and non-native language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(5), 702–716. https://doi.org/10.1037/xlm0001134\nGagnon, M.-È., Labbé, A.-P., \u0026amp; Blanchette, I. (2021). Exploring the mechanisms responsible for the modulating role of frowning in emotional reasoning: An ERP study. Brain and Cognition, 152, 105750. https://doi.org/10.1016/j.bandc.2021.105750\nGall, D., Roth, D., Stauffert, J.-P., Zarges, J., \u0026amp; Latoschik, M. E. (2021). Embodiment in Virtual Reality Intensifies Emotional Responses to Virtual Stimuli. Frontiers in Psychology, 12, 674179. https://doi.org/10.3389/fpsyg.2021.674179\nGallant, J., \u0026amp; Libben, G. (2021). Power and Positivity: Psycholinguistic Perspectives on Word Valence in Canadian Parliament. Frontiers in Communication, 6, 770497. https://doi.org/10.3389/fcomm.2021.770497\nGandhi, N., Zou, W., Meyer, C., Bhatia, S., \u0026amp; Walasek, L. (2022). Computational Methods for Predicting and Understanding Food Judgment. Psychological Science, 33(4), 579–594. https://doi.org/10.1177/09567976211043426\nGao, C., Shinkareva, S. V., \u0026amp; Peelen, M. V. (2022). Affective valence of words differentially affects visual and auditory word recognition. Journal of Experimental Psychology: General, 151(9), 2144–2159. https://doi.org/10.1037/xge0001176\nGao, Y., Lin, W., Zhang, M., Zheng, L., Liu, J., Zheng, M., En, Y., Chen, Y., \u0026amp; Mo, L. (2022). Cognitive mechanisms of the face context effect: An event related potential study of the effects of emotional contexts on neutral face perception. Biological Psychology, 175, 108430. https://doi.org/10.1016/j.biopsycho.2022.108430\nGarcía, V., Iglesias‐Lebrija, J. J., \u0026amp; Moreno‐Opo, R. (2021). Null effects of the Garcelon harnessing method and transmitter type on soaring raptors. Ibis, 163(3), 899–912. https://doi.org/10.1111/ibi.12942\nGarg, N., Garg, R., Anand, A., \u0026amp; Baths, V. (2022). Decoding the neural signatures of valence and arousal from portable EEG headset. Frontiers in Human Neuroscience, 16, 1051463. https://doi.org/10.3389/fnhum.2022.1051463\nGatti, D., Marelli, M., \u0026amp; Rinaldi, L. (2023). Out-of-vocabulary but not meaningless: Evidence for semantic-priming effects in pseudoword processing. Journal of Experimental Psychology: General, 152(3), 851–863. https://doi.org/10.1037/xge0001304\nGatti, D., Rinaldi, L., Marelli, M., Mazzoni, G., \u0026amp; Vecchi, T. (2022). Decomposing the semantic processes underpinning veridical and false memories. Journal of Experimental Psychology: General, 151(2), 363–389. https://doi.org/10.1037/xge0001079\nGayler, T., Sas, C., \u0026amp; Kalnikaite, V. (2023). “It took me back 25 years in one bound”: Self-generated flavor-based cues for self-defining memories in later life. Human–Computer Interaction, 38(5–6), 417–458. https://doi.org/10.1080/07370024.2022.2107518\nGeorge, A. W., Verbyla, A., \u0026amp; Bowden, J. (2021). Eagle for better genome-wide association mapping. G3 Genes|Genomes|Genetics, 11(9), jkab204. https://doi.org/10.1093/g3journal/jkab204\nGeorgiou, G. P. (2021). Words are not just words: How the use of media language in the COVID-19 era affects public health. Epidemiology and Health, 43, e2021072. https://doi.org/10.4178/epih.e2021072\nGerth, S., \u0026amp; Festman, J. (2021). Reading Development, Word Length and Frequency Effects: An Eye-Tracking Study with Slow and Fast Readers. Frontiers in Communication, 6, 743113. https://doi.org/10.3389/fcomm.2021.743113\nGevers-Montoro, C., Puente-Tobares, M., Monréal, A., Conesa-Buendía, F. M., Piché, M., \u0026amp; Ortega-De Mues, A. (2023). Urinary TNF-α as a potential biomarker for chronic primary low back pain. Frontiers in Integrative Neuroscience, 17, 1207666. https://doi.org/10.3389/fnint.2023.1207666\nGhijselings, I., Taylan, O., Delport, H. P., Slane, J., Van Den Wyngaert, H., Demurie, A., \u0026amp; Scheys, L. (2022). Using a patella reduced technique while balancing a TKA results in restored physiological strain in the collateral ligaments: An ex vivo kinematic analysis. Archives of Orthopaedic and Trauma Surgery, 142(7), 1633–1644. https://doi.org/10.1007/s00402-021-04010-y\nGhyselen, A.-S., Grondelaers, S., Misier-Patadien, S. D., \u0026amp; Balesar, U. (2022). Standard language dynamics in postcolonial Suriname. Lingua, 273, 103340. https://doi.org/10.1016/j.lingua.2022.103340\nGianluca E. Lebani \u0026amp; Alessandro Lenci. (2021). Investigating Dowty’s proto-roles with embeddings. Lingue e linguaggio, 2, 165–197. https://doi.org/10.1418/102812\nGillespie-Lynch, K., Bisson, J. B., Saade, S., Obeid, R., Kofner, B., Harrison, A. J., Daou, N., Tricarico, N., Delos Santos, J., Pinkava, W., \u0026amp; Jordan, A. (2022). If you want to develop an effective autism training, ask autistic students to help you. Autism, 26(5), 1082–1094. https://doi.org/10.1177/13623613211041006\nGilmary, R., Venkatesan, A., \u0026amp; Vaiyapuri, G. (2021). Discovering social bots on Twitter: A thematic review. International Journal of Internet Technology and Secured Transactions, 11(4), 369. https://doi.org/10.1504/IJITST.2021.116748\nGiorgi, I., Minutolo, A., Tirotto, F., Hagen, O., Esposito, M., Gianni, M., Palomino, M., \u0026amp; Masala, G. L. (2023). I am Robot, Your Health Adviser for Older Adults: Do You Trust My Advice? International Journal of Social Robotics. https://doi.org/10.1007/s12369-023-01019-8\nGirnyk, A., Krylova-Grek, Y., \u0026amp; Khan, A. (2021). A Psycholinguistic Cross-Cultural Study of the Concept “Conflict” in India and Ukraine. East European Journal of Psycholinguistics, 8(2). https://doi.org/10.29038/eejpl.2021.8.2.gir\nGnedykh, D., Tsvetova, D., Mkrtychian, N., Blagovechtchenski, E., Kostromina, S., \u0026amp; Shtyrov, Y. (2022). Broca’s area involvement in abstract and concrete word acquisition: tDCS evidence. Neurobiology of Learning and Memory, 192, 107622. https://doi.org/10.1016/j.nlm.2022.107622\nGodin, J.-G. J., Le Roy, A., Burns, A. L., Seebacher, F., \u0026amp; Ward, A. J. W. (2022). Pace-of-life syndrome: Linking personality, metabolism and colour ornamentation in male guppies. Animal Behaviour, 194, 13–33. https://doi.org/10.1016/j.anbehav.2022.09.012\nGoernert, P. N., Corenblum, B., \u0026amp; Watier, N. (2021). Mood states effect retrieval not encoding in item-method directed forgetting. Journal of Cognitive Psychology, 33(4), 424–438. https://doi.org/10.1080/20445911.2021.1903013\nGoette, W. F., Schaffert, J., Carlew, A., Rossetti, H., Lacritz, L. H., De Boeck, P., \u0026amp; Cullum, C. M. (2023). Impact of word properties on list learning: An explanatory item analysis. Neuropsychology, 37(3), 268–283. https://doi.org/10.1037/neu0000810\nGonzalez, C., Jiang, X., Gonzalez-Martinez, J., \u0026amp; Halgren, E. (2022). Human Spindle Variability. The Journal of Neuroscience, 42(22), 4517–4537. https://doi.org/10.1523/JNEUROSCI.1786-21.2022\nGordon, J. K., \u0026amp; Chen, H. (2023). How well does the discrepancy between semantic and letter verbal fluency performance distinguish Alzheimer’s dementia from typical aging? Aging, Neuropsychology, and Cognition, 30(5), 729–758. https://doi.org/10.1080/13825585.2022.2079602\nGračanin, A., Krahmer, E., Balsters, M., Küster, D., \u0026amp; Vingerhoets, A. J. J. M. (2021). How Weeping Influences the Perception of Facial Expressions: The Signal Value of Tears. Journal of Nonverbal Behavior, 45(1), 83–105. https://doi.org/10.1007/s10919-020-00347-x\nGradoń, K. T., Hołyst, J. A., Moy, W. R., Sienkiewicz, J., \u0026amp; Suchecki, K. (2021). Countering misinformation: A multidisciplinary approach. Big Data \u0026amp; Society, 8(1), 205395172110138. https://doi.org/10.1177/20539517211013848\nGreeley, B., Barnhoorn, J. S., Verwey, W. B., \u0026amp; Seidler, R. D. (2022). Anodal Transcranial Direct Current Stimulation Over Prefrontal Cortex Slows Sequence Learning in Older Adults. Frontiers in Human Neuroscience, 16, 814204. https://doi.org/10.3389/fnhum.2022.814204\nGrêt-Regamey, A., \u0026amp; Galleguillos-Torres, M. (2022). Global urban homogenization and the loss of emotions. Scientific Reports, 12(1), 22515. https://doi.org/10.1038/s41598-022-27141-7\nGrgic, D., \u0026amp; Podobnik, V. (2021). Application of Data Science for Understanding Emotional Dimensional Behavior and Their Connection to Uncertainty and Risk Behavior. IEEE Access, 9, 72624–72636. https://doi.org/10.1109/ACCESS.2021.3079877\nGrzybowski, S. J., Wyczesany, M., Cichecka, H., \u0026amp; Tokarska, A. (2021). The Words of Affectivity. Affect, Category, and Social Evaluation Norms for 400 Polish Adjectives. Frontiers in Psychology, 12, 683012. https://doi.org/10.3389/fpsyg.2021.683012\nGuan, L., Shi, W., Li, Q., Oktavianus, J., \u0026amp; Wu, M. (2023). Have color representations in books changed over the past 200 years? An empirical analysis based on the Google Books Ngram corpus. Color Research \u0026amp; Application, col.22904. https://doi.org/10.1002/col.22904\nGuareschi, S., Laini, A., England, J., Barrett, J., \u0026amp; Wood, P. J. (2021). Multiple co‐occurrent alien invaders constrain aquatic biodiversity in rivers. Ecological Applications, 31(6), e02385. https://doi.org/10.1002/eap.2385\nGuareschi, S., Laini, A., England, J., Johns, T., Winter, M., \u0026amp; Wood, P. J. (2021). Invasive species influence macroinvertebrate biomonitoring tools and functional diversity in British rivers. Journal of Applied Ecology, 58(1), 135–147. https://doi.org/10.1111/1365-2664.13795\nGuareschi, S., Wood, P. J., England, J., Barrett, J., \u0026amp; Laini, A. (2022). Back to the future: Exploring riverine macroinvertebrate communities’ invasibility. River Research and Applications, 38(8), 1374–1386. https://doi.org/10.1002/rra.3975\nGuasch, M., \u0026amp; Ferré, P. (2021). Emotion and concreteness effects when learning novel concepts in the native language. Psicológica Journal, 42(2), 177–191. https://doi.org/10.2478/psicolj-2021-0009\nGuerrini, G., Shefy, D., Shashar, N., Shafir, S., \u0026amp; Rinkevich, B. (2021). Morphometric and allometric rules of polyp’s landscape in regular and chimeric coral colonies of the branching species Stylophora pistillata. Developmental Dynamics, 250(5), 652–668. https://doi.org/10.1002/dvdy.290\nGuitard, D., \u0026amp; Saint-Aubin, J. (2022). Backward recall and foreknowledge of recall direction: A test of the Encoding–Retrieval Matching Hypothesis. Memory, 30(8), 1057–1072. https://doi.org/10.1080/09658211.2022.2079675\nGumus, M., DeSouza, D. D., Xu, M., Fidalgo, C., Simpson, W., \u0026amp; Robin, J. (2023). Evaluating the utility of daily speech assessments for monitoring depression symptoms. DIGITAL HEALTH, 9, 20552076231180523. https://doi.org/10.1177/20552076231180523\nGünther, F., Marelli, M., Tureski, S., \u0026amp; Petilli, M. A. (2023). ViSpa (Vision Spaces): A computer-vision-based representation system for individual images and concept prototypes, with large-scale evaluation. Psychological Review, 130(4), 896–934. https://doi.org/10.1037/rev0000392\nGünther, F., Petilli, M. A., Vergallito, A., \u0026amp; Marelli, M. (2022). Images of the unseen: Extrapolating visual representations for abstract and concrete words in a data-driven computational model. Psychological Research, 86(8), 2512–2532. https://doi.org/10.1007/s00426-020-01429-7\nGünther, F., Press, S. A., Dudschig, C., \u0026amp; Kaup, B. (2022). The limits of automatic sensorimotor processing during word processing: Investigations with repeated linguistic experience, memory consolidation during sleep, and rich linguistic learning contexts. Psychological Research, 86(6), 1792–1803. https://doi.org/10.1007/s00426-021-01620-4\nGupta, M., Hambarde, S., Verma, D., Deshpande, V., \u0026amp; Ranjan, R. (2023). Study and Empirical Analysis of Sentiment Analysis Approaches. In A. Neustein, P. N. Mahalle, P. Joshi, \u0026amp; G. R. Shinde (Eds.), AI, IoT, Big Data and Cloud Computing for Industry 4.0 (pp. 241–253). Springer International Publishing. https://doi.org/10.1007/978-3-031-29713-7_13\nGuzman, G. E. C., Takahashi, D. Y., \u0026amp; Fujita, A. (2022). A fast parameter estimator for large complex networks. Journal of Complex Networks, 10(3), cnac022. https://doi.org/10.1093/comnet/cnac022\nHafri, A., Gleitman, L. R., Landau, B., \u0026amp; Trueswell, J. C. (2023). Where word and world meet: Language and vision share an abstract representation of symmetry. Journal of Experimental Psychology: General, 152(2), 509–527. https://doi.org/10.1037/xge0001283\nHager, N. M., Judah, M. R., \u0026amp; Rawls, E. (2022). Win, lose, or draw: Examining salience, reward memory, and depression with the reward positivity. Psychophysiology, 59(1), e13953. https://doi.org/10.1111/psyp.13953\nHamner, J. W., \u0026amp; Tan, C. O. (2022). Linear Mixed Effect Models for Rehabilitation Research. American Journal of Physical Medicine \u0026amp; Rehabilitation, 101(8), 789–794. https://doi.org/10.1097/PHM.0000000000001888\nHan, C., Moulton, K., Block, T., Gendron, H., \u0026amp; Nederveen, S. (2021). Pronouns Are as Sensitive to Structural Constraints as Reflexives in Early Processing: Evidence From Visual World Paradigm Eye-Tracking. Frontiers in Psychology, 12, 611466. https://doi.org/10.3389/fpsyg.2021.611466\nHan, P., Li, J., Dan, Y., Liu, B., Chen, X., \u0026amp; Fang, Z. (2022). Decadal Changes in the Annual Growth of Two Commercial Ommastrephid Species in the Pacific Ocean. Fishes, 7(5), 280. https://doi.org/10.3390/fishes7050280\nHarmon, T. G., Nielsen, C., Loveridge, C., \u0026amp; Williams, C. (2022). Effects of Positive and Negative Emotions on Picture Naming for People With Mild-to-Moderate Aphasia: A Preliminary Investigation. Journal of Speech, Language, and Hearing Research, 65(3), 1025–1043. https://doi.org/10.1044/2021_JSLHR-21-00190\nHarp, N. R., Brown, C. C., \u0026amp; Neta, M. (2021). Spring Break or Heart Break? Extending Valence Bias to Emotional Words. Social Psychological and Personality Science, 12(7), 1392–1401. https://doi.org/10.1177/1948550620972296\nHarrison, X. A. (2021). A brief introduction to the analysis of time-series data from biologging studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1831), 20200227. https://doi.org/10.1098/rstb.2020.0227\nHaslett, D. A., \u0026amp; Cai, Z. G. (2023). Similar-sounding words flesh out fuzzy meanings. Journal of Experimental Psychology: General, 152(8), 2359–2368. https://doi.org/10.1037/xge0001409\nHauser, D. J., \u0026amp; Schwarz, N. (2022). Implicit Bias Reflects the Company That Words Keep. Frontiers in Psychology, 13, 871221. https://doi.org/10.3389/fpsyg.2022.871221\nHautala, J., Hawelka, S., \u0026amp; Aro, M. (2022). Dual-stage and dual-deficit? Word recognition processes during text reading across the reading fluency continuum. Reading and Writing, 35(3), 663–686. https://doi.org/10.1007/s11145-021-10201-1\nHayes, B., Saitis, C., \u0026amp; Fazekas, G. (2022). Disembodied Timbres: A Study on Semantically Prompted FM Synthesis. Journal of the Audio Engineering Society, 70(5), 373–391. https://doi.org/10.17743/jaes.2022.0006\nHe, N., \u0026amp; Ferguson, S. (2022). Music emotion recognition based on segment-level two-stage learning. International Journal of Multimedia Information Retrieval, 11(3), 383–394. https://doi.org/10.1007/s13735-022-00230-z\nHe, Y., Margoni, F., Wu, Y., \u0026amp; Liu, H. (2021). fMRI evidence reveals emotional biases in bilingual decision making. Brain Structure and Function, 226(5), 1405–1421. https://doi.org/10.1007/s00429-021-02246-3\nHealey, C. G., Dinakaran, G., Padia, K., Nie, S., Benson, J. R., Caira, D., Shaw, D., Catalfu, G., \u0026amp; Devarajan, R. (2021). Visual Analytics of Text Conversation Sentiment and Semantics. Computer Graphics Forum, 40(6), 484–499. https://doi.org/10.1111/cgf.14391\nHein, K., \u0026amp; Kauschke, C. (2022). Word form processing at school age: Evidence for similarities between bilingual and monolingual children. Bilingualism: Language and Cognition, 25(2), 283–295. https://doi.org/10.1017/S1366728921000936\nHeinsberg, L. W., \u0026amp; Weeks, D. E. (2022). Post hoc power is not informative. Genetic Epidemiology, 46(7), 390–394. https://doi.org/10.1002/gepi.22464\nHeise, M. J., Mon, S. K., \u0026amp; Bowman, L. C. (2022). Utility of linear mixed effects models for event-related potential research with infants and children. Developmental Cognitive Neuroscience, 54, 101070. https://doi.org/10.1016/j.dcn.2022.101070\nHembree, A., Beggs, A., Marshall, T., \u0026amp; Ceesay, E. N. (2021). Decoding Linguistic Ambiguity in Times of Emergency based on Twitter Disaster Datasets. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 1239–1244. https://doi.org/10.1109/CCWC51732.2021.9375916\nHenderson, M. E. T., Brayson, D., \u0026amp; Halsey, L. G. (2021). The cardio‐respiratory effects of passive heating and the human thermoneutral zone. Physiological Reports, 9(16). https://doi.org/10.14814/phy2.14973\nHertel, A. G., Royauté, R., Zedrosser, A., \u0026amp; Mueller, T. (2021). Biologging reveals individual variation in behavioural predictability in the wild. Journal of Animal Ecology, 90(3), 723–737. https://doi.org/10.1111/1365-2656.13406\nHinojosa, J. A., Guasch, M., Montoro, P. R., Albert, J., Fraga, I., \u0026amp; Ferré, P. (2023). The bright side of words: Norms for 9000 Spanish words in seven discrete positive emotions. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02229-8\nHinojosa, J. A., Haro, J., Magallares, S., Duñabeitia, J. A., \u0026amp; Ferré, P. (2021). Iconicity ratings for 10,995 Spanish words and their relationship with psycholinguistic variables. Behavior Research Methods, 53(3), 1262–1275. https://doi.org/10.3758/s13428-020-01496-z\nHipson, W. E., Kiritchenko, S., Mohammad, S. M., \u0026amp; Coplan, R. J. (2021). Examining the language of solitude versus loneliness in tweets. Journal of Social and Personal Relationships, 38(5), 1596–1610. https://doi.org/10.1177/0265407521998460\nHitomi, T., Gerrits, R., \u0026amp; Hartsuiker, R. J. (2021). Using functional near-infrared spectroscopy to study word production in the brain: A picture-word interference study. Journal of Neurolinguistics, 57, 100957. https://doi.org/10.1016/j.jneuroling.2020.100957\nHo, J., \u0026amp; Chiu, M. M. (2022). Media portrayals of the Hong Kong Occupy Central Movement’s social actors: Multilevel and critical discourse analysis. Journal of Language and Politics, 21(1), 81–116. https://doi.org/10.1075/jlp.20030.ho\nHoemann, K., Barrett, L. F., \u0026amp; Quigley, K. S. (2021). Emotional Granularity Increases With Intensive Ambulatory Assessment: Methodological and Individual Factors Influence How Much. Frontiers in Psychology, 12, 704125. https://doi.org/10.3389/fpsyg.2021.704125\nHoemann, K., Khan, Z., Kamona, N., Dy, J., Barrett, L. F., \u0026amp; Quigley, K. S. (2021). Investigating the relationship between emotional granularity and cardiorespiratory physiological activity in daily life. Psychophysiology, 58(6), e13818. https://doi.org/10.1111/psyp.13818\nHofmann, K., \u0026amp; Baumann, A. (2021). Trochaic bias overrides stress typicality in English lexical development. Journal of Child Language, 48(4), 645–669. https://doi.org/10.1017/S030500092000046X\nHoltgraves, T. (2021). Understanding Miscommunication: Speech Act Recognition in Digital Contexts. Cognitive Science, 45(10), e13023. https://doi.org/10.1111/cogs.13023\nHomann, L. A., Roberts, B. R. T., Ahmed, S., \u0026amp; Fernandes, M. A. (2022). Are emojis processed visuo-spatially or verbally? Evidence for dual codes. Visual Cognition, 30(4), 267–279. https://doi.org/10.1080/13506285.2022.2050871\nHöne, U., Krause, E. T., Bussemas, R., Traulsen, I., \u0026amp; Schrader, L. (2023). Usage of outdoor runs and defaecation behaviour of fattening pigs. Applied Animal Behaviour Science, 258, 105821. https://doi.org/10.1016/j.applanim.2022.105821\nHopfgartner, N., Ruprechter, T., \u0026amp; Helic, D. (2022). Retention and Relapse in Gambling Self-help Communities on Reddit. In F. Hopfgartner, K. Jaidka, P. Mayr, J. Jose, \u0026amp; J. Breitsohl (Eds.), Social Informatics (Vol. 13618, pp. 305–319). Springer International Publishing. https://doi.org/10.1007/978-3-031-19097-1_19\nHora, M., Struška, M., Matějovská, Z., Kubový, P., \u0026amp; Sládek, V. (2024). Muscle activity during crouched walking. American Journal of Biological Anthropology, 183(1), 79–91. https://doi.org/10.1002/ajpa.24834\nHörberg, T., Larsson, M., \u0026amp; Olofsson, J. K. (2022). The Semantic Organization of the English Odor Vocabulary. Cognitive Science, 46(11), e13205. https://doi.org/10.1111/cogs.13205\nHu, M., Rao, A., Kejriwal, M., \u0026amp; Lerman, K. (2021). Socioeconomic Correlates of Anti-Science Attitudes in the US. Future Internet, 13(6), 160. https://doi.org/10.3390/fi13060160\nHuang, S., Du, H., \u0026amp; Qu, C. (2021). Emotional responses to mortality salience: Behavioral and ERPs evidence. PLOS ONE, 16(3), e0248699. https://doi.org/10.1371/journal.pone.0248699\nHuang, Y.-W., Prehofer, C., Lindskog, W., Puts, R., Mosca, P., \u0026amp; Kauermann, G. (2023). Predictive Energy Management for Battery Electric Vehicles with Hybrid Models. In A. L. Martins, J. C. Ferreira, A. Kocian, \u0026amp; U. Tokkozhina (Eds.), Intelligent Transport Systems (Vol. 486, pp. 182–196). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-30855-0_13\nHudaib, A.-R. (2021). Letter to the editor regarding “Accelerated theta burst stimulation for the treatment of depression: A randomised controlled trial.” Brain Stimulation, 14(6), 1586. https://doi.org/10.1016/j.brs.2021.08.025\nHugentobler, K. G., \u0026amp; Lüdtke, J. (2021). Micropoetry Meets Neurocognitive Poetics: Influence of Associations on the Reception of Poetry. Frontiers in Psychology, 12, 737756. https://doi.org/10.3389/fpsyg.2021.737756\nHung, A.-Y., Chien, L.-C., \u0026amp; Lin, R.-T. (2022). Association between shift rotation and 30-year Framingham risk of cardiovascular disease among male workers in a medium-sized manufacturing factory. Industrial Health, 61(1), 14–23. https://doi.org/10.2486/indhealth.2021-0278\nHunter, C. L., Gray, Z. J., Trudell, E. V., Kennedy, L. D., \u0026amp; Shields, G. S. (2023). Writing about a stressful experience improves semantic clustering of memory in men, not women. Stress and Health, smi.3272. https://doi.org/10.1002/smi.3272\nIaniszewski, A., Fuente, A., \u0026amp; Gagné, J.-P. (2021). Auditory brainstem response asymmetries in older adults: An exploratory study using click and speech stimuli. PLOS ONE, 16(5), e0251287. https://doi.org/10.1371/journal.pone.0251287\nImbault, C., Titone, D., Warriner, A. B., \u0026amp; Kuperman, V. (2021). How are words felt in a second language: Norms for 2,628 English words for valence and arousal by L2 speakers. Bilingualism: Language and Cognition, 24(2), 281–292. https://doi.org/10.1017/S1366728920000474\nImbir, K. K., Duda-Goławska, J., Sobieszek, A., Wielgopolan, A., Pastwa, M., \u0026amp; Żygierewicz, J. (2022). Arousal, subjective significance and the origin of valence aligned words in the processing of an emotional categorisation task. PLOS ONE, 17(3), e0265537. https://doi.org/10.1371/journal.pone.0265537\nImbir, K. K., \u0026amp; Pastwa, M. (2021). Can valence and origin of emotional words influence the assessments of ambiguous stimuli in terms of warmth or competence? PeerJ, 9, e10488. https://doi.org/10.7717/peerj.10488\nInohara, K., \u0026amp; Utsumi, A. (2022). JWSAN: Japanese word similarity and association norm. Language Resources and Evaluation, 56(1), 109–137. https://doi.org/10.1007/s10579-021-09543-7\nIoannucci, S., Borragán, G., \u0026amp; Zénon, A. (2022). Passive visual stimulation induces fatigue under conditions of high arousal elicited by auditory tasks. Journal of Experimental Psychology: General, 151(12), 3097–3113. https://doi.org/10.1037/xge0001224\nIrwin, C., McCartney, D., Grant, G., Delang, N., Bartrim, K., Cox, G. R., \u0026amp; Desbrow, B. (2022). Effects of Different Sources of Low-Dose Caffeine on Mood/Arousal and Cognitive Performance. Perceptual and Motor Skills, 129(6), 1672–1690. https://doi.org/10.1177/00315125221124369\nIsaacs, J. Y., Thompson, K., Yakovenko, PhD, I., Dobson, K., Chen, S.-P., Hudson, A., Mahu, I. T., \u0026amp; Stewart, S. H. (2023). Social norms of college students engaging in non-medical prescription drug use to get high: What’s sex got to do with it? Journal of American College Health, 71(8), 2587–2594. https://doi.org/10.1080/07448481.2021.1979007\nIshiguro, S., \u0026amp; Saito, S. (2021). The detrimental effect of semantic similarity in short-term memory tasks: A meta-regression approach. Psychonomic Bulletin \u0026amp; Review, 28(2), 384–408. https://doi.org/10.3758/s13423-020-01815-7\nJacobs, A. M., \u0026amp; Kinder, A. (2022). Computational Models of Readers’ Apperceptive Mass. Frontiers in Artificial Intelligence, 5, 718690. https://doi.org/10.3389/frai.2022.718690\nJacobs, C. L. (2022). Quantifying Context With and Without Statistical Language Models. In M. Danesi (Ed.), Handbook of Cognitive Mathematics (pp. 1053–1081). Springer International Publishing. https://doi.org/10.1007/978-3-031-03945-4_17\nJaiswal, T., Pandey, M., \u0026amp; Tripathi, P. (2021). State-of-the-Art Natural Language Processing Techniques. In N. Mohan, R. Singla, P. Kaushal, \u0026amp; S. Kadry, Artificial Intelligence, Machine Learning, and Data Science Technologies (1st ed., pp. 219–247). CRC Press. https://doi.org/10.1201/9781003153405-12\nJamalishahni, T., Turrell, G., Villanueva, K., Foster, S., \u0026amp; Davern, M. (2022). Contribution of the built environment to inequity in loneliness by neighbourhood disadvantage in Australia. Cities \u0026amp; Health, 6(6), 1067–1080. https://doi.org/10.1080/23748834.2022.2145733\nJames, E., Gaskell, M. G., Murphy, G., Tulip, J., \u0026amp; Henderson, L. M. (2023). Word learning in the context of semantic prior knowledge: Evidence of interference from feature-based neighbours in children and adults. Language, Cognition and Neuroscience, 38(2), 157–174. https://doi.org/10.1080/23273798.2022.2102198\nJang, S., Chung, J., \u0026amp; Rao, V. R. (2021). The importance of functional and emotional content in online consumer reviews for product sales: Evidence from the mobile gaming market. Journal of Business Research, 130, 583–593. https://doi.org/10.1016/j.jbusres.2019.09.027\nJanse, E., \u0026amp; Andringa, S. J. (2021). The roles of cognitive abilities and hearing acuity in older adults’ recognition of words taken from fast and spectrally reduced speech. Applied Psycholinguistics, 42(3), 763–790. https://doi.org/10.1017/S0142716421000047\nJauch, M., Büttner, C. M., Albath, E. A., \u0026amp; Greifeneder, R. (2023). Unvaccinated and left out: The mismatch of vaccine supply and demand during COVID‐19 as a source of interpersonal and societal exclusion. Analyses of Social Issues and Public Policy, 23(3), 537–551. https://doi.org/10.1111/asap.12360\nJiang, H., Frank, M. C., Kulkarni, V., \u0026amp; Fourtassi, A. (2022). Exploring Patterns of Stability and Change in Caregivers’ Word Usage Across Early Childhood. Cognitive Science, 46(7), e13177. https://doi.org/10.1111/cogs.13177\nJimenez Chavez, C. L., Van Doren, E., Scheldrup, G., Rivera, E., Torres-Gonzalez, J., Herbert, J. N., Denning, C. J. E., Khorsandi, S., Garcia, A., Castro, M., \u0026amp; Szumlinski, K. K. (2023). A subchronic history of binge-drinking elicits mild, age- and sex-selective, affective, and cognitive anomalies in C57BL/6J mice. Frontiers in Behavioral Neuroscience, 17, 1192076. https://doi.org/10.3389/fnbeh.2023.1192076\nJiménez, S., Juárez‐Ramírez, R., Castillo, V. H., Ramírez‐Noriega, A., \u0026amp; Quezada, Á. (2021). The use of a weighted affective lexicon in a tutoring system to improve student motivation to learn. Expert Systems, 38(5), e12483. https://doi.org/10.1111/exsy.12483\nJohari, K., Riccardi, N., Malyutina, S., Modi, M., \u0026amp; Desai, R. H. (2022). HD-tDCS of primary and higher-order motor cortex affects action word processing. Frontiers in Human Neuroscience, 16, 959455. https://doi.org/10.3389/fnhum.2022.959455\nJohns, B. T. (2021a). Disentangling contextual diversity: Communicative need as a lexical organizer. Psychological Review, 128(3), 525–557. https://doi.org/10.1037/rev0000265\nJohns, B. T. (2021b). Distributional social semantics: Inferring word meanings from communication patterns. Cognitive Psychology, 131, 101441. https://doi.org/10.1016/j.cogpsych.2021.101441\nJohns, B. T., Jamieson, R. K., \u0026amp; Jones, M. N. (2023). Scalable cognitive modelling: Putting Simon’s (1969) ant back on the beach. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 77(3), 185–201. https://doi.org/10.1037/cep0000306\nJohnson, E., \u0026amp; Arnold, J. E. (2021). Individual Differences in Print Exposure Predict Use of Implicit Causality in Pronoun Comprehension and Referential Prediction. Frontiers in Psychology, 12, 672109. https://doi.org/10.3389/fpsyg.2021.672109\nJonauskaite, D., Sutton, A., Cristianini, N., \u0026amp; Mohr, C. (2021). English colour terms carry gender and valence biases: A corpus study using word embeddings. PLOS ONE, 16(6), e0251559. https://doi.org/10.1371/journal.pone.0251559\nJongman, S. R., Khoe, Y. H., \u0026amp; Hintz, F. (2021). Vocabulary Size Influences Spontaneous Speech in Native Language Users: Validating the Use of Automatic Speech Recognition in Individual Differences Research. Language and Speech, 64(1), 35–51. https://doi.org/10.1177/0023830920911079\nKaakinen, J. K., Werlen, E., Kammerer, Y., Acartürk, C., Aparicio, X., Baccino, T., Ballenghein, U., Bergamin, P., Castells, N., Costa, A., Falé, I., Mégalakaki, O., \u0026amp; Ruiz Fernández, S. (2022). IDEST: International Database of Emotional Short Texts. PLOS ONE, 17(10), e0274480. https://doi.org/10.1371/journal.pone.0274480\nKabbach, A., \u0026amp; Herbelot, A. (2021). Avoiding Conflict: When Speaker Coordination Does Not Require Conceptual Agreement. Frontiers in Artificial Intelligence, 3, 523920. https://doi.org/10.3389/frai.2020.523920\nKaestner, E., Thesen, T., Devinsky, O., Doyle, W., Carlson, C., \u0026amp; Halgren, E. (2021). An Intracranial Electrophysiology Study of Visual Language Encoding: The Contribution of the Precentral Gyrus to Silent Reading. Journal of Cognitive Neuroscience, 33(11), 2197–2214. https://doi.org/10.1162/jocn_a_01764\nKaiser, E. (2021). Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Frontiers in Psychology, 12, 701486. https://doi.org/10.3389/fpsyg.2021.701486\nKaiser, E., \u0026amp; Wang, C. (2021). Packaging Information as Fact Versus Opinion: Consequences of the (Information-)Structural Position of Subjective Adjectives. Discourse Processes, 58(7), 617–641. https://doi.org/10.1080/0163853X.2020.1838196\nKapteijns, B., \u0026amp; Hintz, F. (2021). Comparing predictors of sentence self-paced reading times: Syntactic complexity versus transitional probability metrics. PLOS ONE, 16(7), e0254546. https://doi.org/10.1371/journal.pone.0254546\nKaran, M., Rahal, D., Almeida, D. M., Bower, J. E., Irwin, M. R., McCreath, H., Seeman, T., \u0026amp; Fuligni, A. J. (2021). School commute time, chronotype, and altered HPA axis functioning during adolescence. Psychoneuroendocrinology, 133, 105371. https://doi.org/10.1016/j.psyneuen.2021.105371\nKareklas, K., Kunc, H. P., \u0026amp; Arnott, G. (2021). Extrinsic stressors modulate resource evaluations: Insights from territoriality under artificial noise. Frontiers in Zoology, 18(1), 12. https://doi.org/10.1186/s12983-021-00397-x\nKarimkhani, F., Rahmani, H., Zare, A., Sahebnassagh, R., \u0026amp; Aghakasiri, K. (2021). Tarvajeh: Word Association Norms for Persian Words. Journal of Psycholinguistic Research, 50(4), 863–882. https://doi.org/10.1007/s10936-020-09751-2\nKarras, S. N., Koufakis, T., Adamidou, L., Dimakopoulos, G., Karalazou, P., Thisiadou, K., Zebekakis, P., Makedou, K., \u0026amp; Kotsa, K. (2023). Different patterns of changes in free 25-hydroxyvitamin D concentrations during intermittent fasting among meat eaters and non-meat eaters and correlations with amino acid intake. International Journal of Food Sciences and Nutrition, 74(2), 257–267. https://doi.org/10.1080/09637486.2023.2171370\nKasri, M., Birjali, M., El Ansari, A., \u0026amp; Beni-Hssane, A. (2022). Enhanced Word Embeddings with Sentiment Contextualized Vectors for Sentiment Analysis. In Y. Maleh, M. Alazab, N. Gherabi, L. Tawalbeh, \u0026amp; A. A. Abd El-Latif (Eds.), Advances in Information, Communication and Cybersecurity (Vol. 357, pp. 77–86). Springer International Publishing. https://doi.org/10.1007/978-3-030-91738-8_8\nKasri, M., Birjali, M., Nabil, M., Beni-Hssane, A., El-Ansari, A., \u0026amp; El Fissaoui, M. (2022). Refining Word Embeddings with Sentiment Information for Sentiment Analysis. Journal of ICT Standardization. https://doi.org/10.13052/jicts2245-800X.1031\nKauselmann, K., Schrader, L., Glitz, B., Gallmann, E., Schrade, H., \u0026amp; Krause, E. T. (2021). Tasty straw pellets – Exploration of flavoured rooting material by pigs. Animal, 15(6), 100239. https://doi.org/10.1016/j.animal.2021.100239\nKauselmann, K., Schrader, L., Schrade, H., \u0026amp; Krause, E. T. (2021). The Effects of Refilling Additional Rooting Material on Exploration Duration and Tail Damages in Rearing and Fattening Pigs. Frontiers in Animal Science, 2, 749583. https://doi.org/10.3389/fanim.2021.749583\nKayabaşı, D., \u0026amp; Gökgöz, K. (2023). The Causative-Inchoative Alternation and Age-of-Acquisition Effects on Multi-predicate Constructions in Turkish Sign Language. Language Learning and Development, 19(2), 125–150. https://doi.org/10.1080/15475441.2022.2047690\nKeller, B. T., \u0026amp; Enders, C. K. (2023). An Investigation of Factored Regression Missing Data Methods for Multilevel Models with Cross-Level Interactions. Multivariate Behavioral Research, 58(5), 938–963. https://doi.org/10.1080/00273171.2022.2147049\nKenett, Y. N. (2023). Creatively Searching Through Semantic Memory Structure. In L. J. Ball \u0026amp; F. Vallée-Tourangeau, The Routledge International Handbook of Creative Cognition (1st ed., pp. 160–179). Routledge. https://doi.org/10.4324/9781003009351-13\nKenett, Y. N., Ungar, L., \u0026amp; Chatterjee, A. (2021). Beauty and Wellness in the Semantic Memory of the Beholder. Frontiers in Psychology, 12, 696507. https://doi.org/10.3389/fpsyg.2021.696507\nKentner, G., Franz, I., \u0026amp; Menninghaus, W. (2022). Poetics of reduplicative word formation: Evidence from a rating and recall experiment. Language and Cognition, 14(3), 333–361. https://doi.org/10.1017/langcog.2021.27\nKernan, C. E., Jones, J. S., Robillard, T., Schöneich, S., \u0026amp; Ter Hofstede, H. M. (2022). Efficacy constraints on female directional preference stabilize a male call component in a multimodal cricket duet. Animal Behaviour, 193, 33–49. https://doi.org/10.1016/j.anbehav.2022.08.011\nKhadilkar, K., KhudaBukhsh, A. R., \u0026amp; Mitchell, T. M. (2022). Gender bias, social bias, and representation in Bollywood and Hollywood. Patterns, 3(2), 100409. https://doi.org/10.1016/j.patter.2021.100409\nKhanna, M. M., \u0026amp; Cortese, M. J. (2021). How well imageability, concreteness, perceptual strength, and action strength predict recognition memory, lexical decision, and reading aloud performance. Memory, 29(5), 622–636. https://doi.org/10.1080/09658211.2021.1924789\nKharlamov, V., Brenner, D., \u0026amp; Tucker, B. V. (2022). Temporal and spectral characteristics of conversational versus read fricatives in American English. The Journal of the Acoustical Society of America, 152(4), 2073–2081. https://doi.org/10.1121/10.0014420\nKhatin-Zadeh, O. (2022). How does Representational Transformation Enhance Mathematical Thinking? Axiomathes, 32(S2), 283–292. https://doi.org/10.1007/s10516-021-09602-2\nKhatin-Zadeh, O., Eskandari, Z., Cervera-Torres, S., Ruiz Fernández, S., Farzi, R., \u0026amp; Marmolejo-Ramos, F. (2021). The strong versions of embodied cognition: Three challenges faced. Psychology \u0026amp; Neuroscience, 14(1), 16–33. https://doi.org/10.1037/pne0000252\nKhatin-Zadeh, O., Eskandari, Z., Yazdani-Fazlabadi, B., \u0026amp; Marmolejo-Ramos, F. (2022). Four Functions of Gesture in Promoting Thought Processes. Psychological Studies, 67(4), 411–418. https://doi.org/10.1007/s12646-022-00680-9\nKhatin-Zadeh, O., Farsani, D., \u0026amp; Breda, A. (2023). How can transforming representation of mathematical entities help us employ more cognitive resources? Frontiers in Psychology, 14, 1091678. https://doi.org/10.3389/fpsyg.2023.1091678\nKhatin-Zadeh, O., Farsani, D., Hu, J., \u0026amp; Marmolejo-Ramos, F. (2023). The role of perceptual and action effector strength of graphs and bases of mathematical metaphors in the metaphorical processing of mathematical concepts. Frontiers in Psychology, 14, 1178095. https://doi.org/10.3389/fpsyg.2023.1178095\nKhatin-Zadeh, O., Hu, J., Banaruee, H., \u0026amp; Marmolejo-Ramos, F. (2023). How emotions are metaphorically embodied: Measuring hand and head action strengths of typical emotional states. Cognition and Emotion, 37(3), 486–498. https://doi.org/10.1080/02699931.2023.2181314\nKhatin-Zadeh, O., Marmolejo-Ramos, F., \u0026amp; Trenholm, S. (2022). The Role of Motion-Based Metaphors in Enhancing Mathematical Thought: A Perspective from Embodiment Theories of Cognition. Journal of Cognitive Enhancement, 6(4), 455–462. https://doi.org/10.1007/s41465-022-00247-6\nKhiali, S., Sarbakhsh, P., Mashayekhi, S., Mohamadrezapour, E., Dousti, S., \u0026amp; Entezari-Maleki, T. (2021). The effects of Allopurinol on levels of cardiac troponin Following Non-ST Elevation Myocardial Infarction: A Pilot Randomized Clinical Trial. Pharmaceutical Sciences, 1. https://doi.org/10.34172/PS.2021.14\nKilb, M., \u0026amp; Labudek, S. (2022). Effects of behavioral performance, intrinsic reward value, and context stability on the formation of a higher-order nutrition habit: An intensive longitudinal diary study. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 105. https://doi.org/10.1186/s12966-022-01343-8\nKim, K., Banquer, A. M., Resnik, S. N., Johnson, J. D., \u0026amp; Fernandez, L. (2022). Self-reference and cognitive effort: Source memory for affectively neutral information is impaired following negative compared to positive self-referential processing. Journal of Cognitive Psychology, 34(7), 833–845. https://doi.org/10.1080/20445911.2022.2067553\nKing, D., \u0026amp; Gentner, D. (2022). Verb Metaphoric Extension Under Semantic Strain. Cognitive Science, 46(5), e13141. https://doi.org/10.1111/cogs.13141\nKissler, J., \u0026amp; Bromberek-Dyzman, K. (2021). Mood Induction Differently Affects Early Neural Correlates of Evaluative Word Processing in L1 and L2. Frontiers in Psychology, 11, 588902. https://doi.org/10.3389/fpsyg.2020.588902\nKizilirmak, J. M., Gallisch, N., Schott, B. H., \u0026amp; Folta-Schoofs, K. (2021). Insight is not always the same: Differences between true, false, and induced insights in the matchstick arithmetic task. Journal of Cognitive Psychology, 33(6–7), 700–717. https://doi.org/10.1080/20445911.2021.1912049\nKjell, O., Giorgi, S., \u0026amp; Schwartz, H. A. (2023). The text-package: An R-package for analyzing and visualizing human language using natural language processing and transformers. Psychological Methods. https://doi.org/10.1037/met0000542\nKlein, A., \u0026amp; Badia, T. (2022). Where Divergent Ideas Converge: Answers to AUT Found on Short List of Word Co-Occurrences Terms. Creativity Research Journal, 1–17. https://doi.org/10.1080/10400419.2022.2103314\nKleindorfer, S., Colombelli‐Négrel, D., Common, L. K., O’Connor, J. A., Peters, K. J., Katsis, A. C., Dudaniec, R. Y., Sulloway, F. J., \u0026amp; Adreani, N. M. (2022). Functional traits and foraging behaviour: Avian vampire fly larvae change the beak and fitness of their Darwin’s finch hosts. Functional Ecology, 36(7), 1806–1817. https://doi.org/10.1111/1365-2435.14061\nKnief, U., \u0026amp; Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53(6), 2576–2590. https://doi.org/10.3758/s13428-021-01587-5\nKnoph, R. E., Lawrence, J. F., \u0026amp; Francis, D. J. (2023). The Dimensionality of Lexical Features in General, Academic, and Disciplinary Vocabulary. Scientific Studies of Reading, 1–25. https://doi.org/10.1080/10888438.2023.2241939\nKompa, N. A. (2021). Language and embodiment—Or the cognitive benefits of abstract representations. Mind \u0026amp; Language, 36(1), 27–47. https://doi.org/10.1111/mila.12266\nKonrath, S., \u0026amp; Luminet, O. (2022). How induced self-focus versus other-focus affect emotional recognition and verbalization. Journal of Cultural Cognitive Science, 6(1), 27–50. https://doi.org/10.1007/s41809-021-00091-8\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKositsky, A., Barrett, R. S., Du Moulin, W., Diamond, L. E., \u0026amp; Saxby, D. J. (2022). Semitendinosus muscle morphology in relation to surface electrode placement in anterior cruciate ligament reconstructed and contralateral legs. Frontiers in Sports and Active Living, 4, 959966. https://doi.org/10.3389/fspor.2022.959966\nKovács, L., Bóta, A., Hajdu, L., \u0026amp; Krész, M. (2022). Brands, networks, communities: How brand names are wired in the mind. PLOS ONE, 17(8), e0273192. https://doi.org/10.1371/journal.pone.0273192\nKovács, L., Orosz, K., \u0026amp; Pollner, P. (2021). Networks in the mental lexicon – contributions from Hungarian. Glottotheory, 12(2), 107–127. https://doi.org/10.1515/glot-2021-2019\nKracizy, R. O., Brazão, C. C., De Marco Viott, A., Ribeiro, K., Koppenol, A., Vaz Dos Santos, A. M., \u0026amp; Ballester, E. L. C. (2021). Evaluation of aflatoxin and fumonisin in the diet of Pacific White Shrimp (Litopenaeus vannamei) on their performance and health. Aquaculture, 544, 737051. https://doi.org/10.1016/j.aquaculture.2021.737051\nKrakenberg, V., Wewer, M., Palme, R., Kaiser, S., Sachser, N., \u0026amp; Richter, S. H. (2021). Regular touchscreen training affects faecal corticosterone metabolites and anxiety-like behaviour in mice. Behavioural Brain Research, 401, 113080. https://doi.org/10.1016/j.bbr.2020.113080\nKrautz, A. E., \u0026amp; Keuleers, E. (2022). LinguaPix database: A megastudy of picture-naming norms. Behavior Research Methods, 54(2), 941–954. https://doi.org/10.3758/s13428-021-01651-0\nKu, L.-C., Allen, J. J. B., \u0026amp; Lai, V. T. (2022). Attention and regulation during emotional word comprehension in older adults: Evidence from event-related potentials and brain oscillations. Brain and Language, 227, 105086. https://doi.org/10.1016/j.bandl.2022.105086\nKühne, K., Nenaschew, K., \u0026amp; Miklashevsky, A. (2022). Space-valence mapping of social concepts: Do we arrange negative and positive ethnic stereotypes from left to right? Frontiers in Psychology, 13, 1070177. https://doi.org/10.3389/fpsyg.2022.1070177\nKuhnke, P., Kiefer, M., \u0026amp; Hartwigsen, G. (2021). Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cerebral Cortex, 31(7), 3475–3493. https://doi.org/10.1093/cercor/bhab026\nKulkarni, R. U., Wang, C. L., \u0026amp; Bertozzi, C. R. (2022). Analyzing nested experimental designs—A user-friendly resampling method to determine experimental significance. PLOS Computational Biology, 18(5), e1010061. https://doi.org/10.1371/journal.pcbi.1010061\nKumar, A. A. (2021). Semantic memory: A review of methods, models, and current challenges. Psychonomic Bulletin \u0026amp; Review, 28(1), 40–80. https://doi.org/10.3758/s13423-020-01792-x\nKumar, A. A., Steyvers, M., \u0026amp; Balota, D. A. (n.d.). A critical review of network-based and distributional approaches to semantic memory structure and processes. Topics in Cognitive Science. https://doi.org/10.1111/tops.12548\nKumar, A. A., Steyvers, M., \u0026amp; Balota, D. A. (2021). Semantic Memory Search and Retrieval in a Novel Cooperative Word Game: A Comparison of Associative and Distributional Semantic Models. Cognitive Science, 45(10), e13053. https://doi.org/10.1111/cogs.13053\nKush, D., \u0026amp; Dillon, B. (2021). Principle B constrains the processing of cataphora: Evidence for syntactic and discourse predictions. Journal of Memory and Language, 120, 104254. https://doi.org/10.1016/j.jml.2021.104254\nKvestad, I., Hysing, M., Kjellevold, M., Næss, S., Dahl, L., \u0026amp; Markhus, M. W. (2021). Maternal Cod Intake during Pregnancy and Infant Development in the First Year of Life: Secondary Analyses from a Randomized Controlled Trial. The Journal of Nutrition, 151(7), 1879–1885. https://doi.org/10.1093/jn/nxab083\nKyröläinen, A.-J., Keuleers, E., Mandera, P., Brysbaert, M., \u0026amp; Kuperman, V. (2021). Affect across adulthood: Evidence from English, Dutch, and Spanish. Journal of Experimental Psychology: General, 150(4), 792–812. https://doi.org/10.1037/xge0000950\nKyröläinen, A.-J., \u0026amp; Kuperman, V. (2023). Emotional State of Older Adults During the COVID-19 Pandemic: Insights from the Cognitive and Social Well-Being (CoSoWELL) Corpus. Experimental Aging Research, 1–24. https://doi.org/10.1080/0361073X.2023.2219188\nKyröläinen, A.-J., Luke, J., Libben, G., \u0026amp; Kuperman, V. (2021). Valence norms for 3,600 English words collected during the COVID-19 pandemic: Effects of age and the pandemic. Behavior Research Methods, 54(5), 2445–2456. https://doi.org/10.3758/s13428-021-01740-0\nLago, S., Acuña Fariña, C., \u0026amp; Meseguer, E. (2021). The Reading Signatures of Agreement Attraction. Open Mind, 5, 132–153. https://doi.org/10.1162/opmi_a_00047\nLahdelma, I., Armitage, J., \u0026amp; Eerola, T. (2022). Affective priming with musical chords is influenced by pitch numerosity. Musicae Scientiae, 26(1), 208–217. https://doi.org/10.1177/1029864920911127\nLahti, L. (2022). Detecting the patient’s need for help with machine learning based on expressions. BMC Medical Research Methodology, 22(1), 60. https://doi.org/10.1186/s12874-021-01502-8\nLai, J., Zou, Y., Zhang, S., Zhang, X., \u0026amp; Mao, L. (2022). glmm.hp: An R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology, 15(6), 1302–1307. https://doi.org/10.1093/jpe/rtac096\nLaicher, H., Int-Veen, I., Torka, F., Kroczek, A., Bihlmaier, I., Storchak, H., Velten-Schurian, K., Dresler, T., Täglich, R., Fallgatter, A. J., Ehlis, A.-C., \u0026amp; Rosenbaum, D. (2022). Trait rumination and social anxiety separately influence stress-induced rumination and hemodynamic responses. Scientific Reports, 12(1), 5512. https://doi.org/10.1038/s41598-022-08579-1\nLam, B. P. W., Griffin, Z. M., \u0026amp; Marquardt, T. P. (2021). Performance Differences Between Native and Non-Native Speakers on a New Happy–Sad Executive Function Measure. Archives of Clinical Neuropsychology, 36(6), 965–975. https://doi.org/10.1093/arclin/acaa124\nLam, B. P. W., \u0026amp; Marquardt, T. P. (2022a). Emotional and Non-Emotional Verbal Fluency in Native and Non-Native Speakers. Archives of Clinical Neuropsychology, 37(1), 199–209. https://doi.org/10.1093/arclin/acab031\nLam, B. P. W., \u0026amp; Marquardt, T. P. (2022b). Factors Predicting Mental Effort Associated With Verbal Fluency: Cue Types, Switching, and Fear of Negative Evaluation. Journal of Speech, Language, and Hearing Research, 65(9), 3491–3501. https://doi.org/10.1044/2022_JSLHR-21-00563\nLam, S. S. L., Liu, T. W., Ng, S. S. M., Lai, C. W. K., \u0026amp; Woo, J. (2022). Bilateral Movement-based Computer Games Improve Sensorimotor Functions in Subacute Stroke Survivors. Journal of Rehabilitation Medicine, 54, jrm00307. https://doi.org/10.2340/jrm.v54.913\nLana, N., \u0026amp; Kuperman, V. (2023). Learning Concrete and Abstract Novel Words in Emotional Contexts: Evidence from Incidental Vocabulary Learning. Language Learning and Development, 1–16. https://doi.org/10.1080/15475441.2023.2246438\nLandry, É. R., Guitard, D., \u0026amp; Saint-Aubin, J. (2022). Arousal affects short-term serial recall. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 76(2), 99–110. https://doi.org/10.1037/cep0000272\nLaplante, É., Geraghty, V., Hendel, E., Sonier, R.-P., Guitard, D., \u0026amp; Saint-Aubin, J. (2023). Aural and written language elicit the same processes: Further evidence from the missing-phoneme effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(11), 1844–1860. https://doi.org/10.1037/xlm0001272\nLarranaga, D., \u0026amp; Sereno, A. (2023). Bigger is really better: Resolution of conflicting behavioural evidence for semantic size bias in a lexical decision task. Quarterly Journal of Experimental Psychology, 17470218231186582. https://doi.org/10.1177/17470218231186582\nLarssen, B. C., \u0026amp; Hodges, N. J. (2023). Updating of Implicit Adaptation Processes through Erroneous Numeric Feedback. Journal of Motor Behavior, 55(5), 475–492. https://doi.org/10.1080/00222895.2023.2232739\nLaurinavichyute, A., Yadav, H., \u0026amp; Vasishth, S. (2022). Share the code, not just the data: A case study of the reproducibility of articles published in the Journal of Memory and Language under the open data policy. Journal of Memory and Language, 125, 104332. https://doi.org/10.1016/j.jml.2022.104332\nLavitskaya, Y., Sedelkina, Y., Korotaevskaya, E., Tkacheva, L., Flaksman, M., \u0026amp; Nasledov, A. (2022). Does De-Iconization Affect Visual Recognition of Russian and English Iconic Words? Languages, 7(2), 97. https://doi.org/10.3390/languages7020097\nLawrason, S. V. C., \u0026amp; Martin Ginis, K. A. (2023). Evaluating the Feasibility, Acceptability, and Engagement of an mHealth Physical Activity Intervention for Adults With Spinal Cord Injury Who Walk: A Randomized Controlled Trial. Journal of Sport \u0026amp; Exercise Psychology, 45(2), 61–76. https://doi.org/10.1123/jsep.2022-0087\nLawrence, J. F., Knoph, R., McIlraith, A., Kulesz, P. A., \u0026amp; Francis, D. J. (2022). Reading Comprehension and Academic Vocabulary: Exploring Relations of Item Features and Reading Proficiency. Reading Research Quarterly, 57(2), 669–690. https://doi.org/10.1002/rrq.434\nLe, N. T., Truong, T. L., Asdornwised, W., Chaitusaney, S., \u0026amp; Benjapolakul, W. (2023). Energy Production Analysis of Rooftop PV Systems Equipped with Module-Level Power Electronics under Partial Shading Conditions Based on Mixed-Effects Model. Energies, 16(2), 970. https://doi.org/10.3390/en16020970\nLeblanc-Sirois, Y., Gélinas, C., \u0026amp; Blanchette, I. (2021). Negative emotions influence EEG correlates of inference formation during analogical reasoning. International Journal of Psychophysiology, 162, 49–59. https://doi.org/10.1016/j.ijpsycho.2021.02.002\nLeding, J. K. (2022). Thinking of death and remembering living things: Mortality salience and the animacy effect. Memory, 30(10), 1258–1266. https://doi.org/10.1080/09658211.2022.2102195\nLee, J., \u0026amp; Shin, J.-A. (2023). The cross-linguistic comparison of perceptual strength norms for Korean, English and L2 English. Frontiers in Psychology, 14, 1188909. https://doi.org/10.3389/fpsyg.2023.1188909\nLee, K. S., Murphy, J., Catmur, C., Bird, G., \u0026amp; Hobson, H. (2022). Furthering the language hypothesis of alexithymia: An integrated review and meta-analysis. Neuroscience \u0026amp; Biobehavioral Reviews, 141, 104864. https://doi.org/10.1016/j.neubiorev.2022.104864\nLee, L.-H., Li, J.-H., \u0026amp; Yu, L.-C. (2022). Chinese EmoBank: Building Valence-Arousal Resources for Dimensional Sentiment Analysis. ACM Transactions on Asian and Low-Resource Language Information Processing, 21(4), 1–18. https://doi.org/10.1145/3489141\nLee Meeuw Kjoe, P. R., Vermeulen, I. E., Agelink Van Rentergem, J. A., Van Der Wall, E., \u0026amp; Schagen, S. (2022). Standardized item selection for alternate computerized versions of Rey Auditory Verbal Learning Test(-based) word lists. Journal of Clinical and Experimental Neuropsychology, 44(9), 681–701. https://doi.org/10.1080/13803395.2023.2166904\nLee, S. T., Van Heuven, W. J. B., Price, J. M., \u0026amp; Leong, C. X. R. (2023). LexMAL: A quick and reliable lexical test for Malay speakers. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02202-5\nLee, Y. R., \u0026amp; Pustejovsky, J. E. (2023). Comparing random effects models, ordinary least squares, or fixed effects with cluster robust standard errors for cross-classified data. Psychological Methods. https://doi.org/10.1037/met0000538\nLeiva, L. A., Hota, A., \u0026amp; Oulasvirta, A. (2023). Describing UI Screenshots in Natural Language. ACM Transactions on Intelligent Systems and Technology, 14(1), 1–28. https://doi.org/10.1145/3564702\nLekkas, D., Gyorda, J. A., Price, G. D., Wortzman, Z., \u0026amp; Jacobson, N. C. (2022). Using the COVID-19 Pandemic to Assess the Influence of News Affect on Online Mental Health-Related Search Behavior Across the United States: Integrated Sentiment Analysis and the Circumplex Model of Affect. Journal of Medical Internet Research, 24(1), e32731. https://doi.org/10.2196/32731\nLepoutre, M., Vilar-Lluch, S., Borg, E., \u0026amp; Hansen, N. (2023). What is Hate Speech? The Case for a Corpus Approach. Criminal Law and Philosophy. https://doi.org/10.1007/s11572-023-09675-7\nLerche, V., Bucher, A., \u0026amp; Voss, A. (2021). Processing emotional expressions under fear of rejection: Findings from diffusion model analyses. Emotion, 21(1), 184–210. https://doi.org/10.1037/emo0000691\nLettieri, G., Handjaras, G., Bucci, E., Pietrini, P., \u0026amp; Cecchetti, L. (2023). How Male and Female Literary Authors Write About Affect Across Cultures and Over Historical Periods. Affective Science. https://doi.org/10.1007/s42761-023-00219-9\nLevy, O., Kenett, Y. N., Oxenberg, O., Castro, N., De Deyne, S., Vitevitch, M. S., \u0026amp; Havlin, S. (2021). Unveiling the nature of interaction between semantics and phonology in lexical access based on multilayer networks. Scientific Reports, 11(1), 14479. https://doi.org/10.1038/s41598-021-93925-y\nLewis, G., Towlson, C., Roversi, P., Domogalla, C., Herrington, L., \u0026amp; Barrett, S. (2022). Quantifying volume and high-speed technical actions of professional soccer players using foot-mounted inertial measurement units. PLOS ONE, 17(2), e0263518. https://doi.org/10.1371/journal.pone.0263518\nLi, B., Ajjaji, O., Gigandet, R., \u0026amp; Nazir, T. (2023). The body images of social robots. 2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO), 1–8. https://doi.org/10.1109/ARSO56563.2023.10187489\nLi, D., \u0026amp; Hauber, M. E. (2021). Parasitic begging calls of nestmate-evictor common cuckoos stimulate more parental provisions by red-winged blackbirds than calls of nest-sharing brown-headed cowbirds. Behavioral Ecology and Sociobiology, 75(1), 11. https://doi.org/10.1007/s00265-020-02955-5\nLi, F., Chao, W., Li, Y., Fu, B., Ji, Y., Wu, H., \u0026amp; Shi, G. (2021). Decoding imagined speech from EEG signals using hybrid-scale spatial-temporal dilated convolution network. Journal of Neural Engineering, 18(4), 0460c4. https://doi.org/10.1088/1741-2552/ac13c0\nLi, H., Warrington, K. L., Pagán, A., Paterson, K. B., \u0026amp; Wang, X. (2021). Independent effects of collocation strength and contextual predictability on eye movements in reading. Language, Cognition and Neuroscience, 36(8), 1001–1009. https://doi.org/10.1080/23273798.2021.1922726\nLi, M. (2022). Application of sentence-level text analysis: The role of emotion in an experimental learning intervention. Journal of Experimental Social Psychology, 99, 104278. https://doi.org/10.1016/j.jesp.2021.104278\nLi, N., Liu, Y., Li, S., Elashoff, R. M., \u0026amp; Li, G. (2021). A flexible joint model for multiple longitudinal biomarkers and a time‐to‐event outcome: With applications to dynamic prediction using highly correlated biomarkers. Biometrical Journal, 63(8), 1575–1586. https://doi.org/10.1002/bimj.202000085\nLi, Q., Li, X., Du, Y., Fan, Y., \u0026amp; Chen, X. (2022). A New Sentiment-Enhanced Word Embedding Method for Sentiment Analysis. Applied Sciences, 12(20), 10236. https://doi.org/10.3390/app122010236\nLi, X., Luo, D., Wang, C., Xia, Y., \u0026amp; Jin, H. (2022). Motor features of abstract verbs determine their representations in the motor system. Frontiers in Psychology, 13, 957426. https://doi.org/10.3389/fpsyg.2022.957426\nLi, Y., \u0026amp; Siew, C. S. Q. (2022). Diachronic semantic change in language is constrained by how people use and learn language. Memory \u0026amp; Cognition, 50(6), 1284–1298. https://doi.org/10.3758/s13421-022-01331-0\nLi, Y., \u0026amp; T. Hills, T. (2021). Language patterns of outgroup prejudice. Cognition, 215, 104813. https://doi.org/10.1016/j.cognition.2021.104813\nLi, Y., Xu, Y., \u0026amp; Liu, P. (2022). Affective norms for 1,558 Chinese words rated by children. 2022 3rd International Conference on Education, Knowledge and Information Management (ICEKIM), 419–422. https://doi.org/10.1109/ICEKIM55072.2022.00100\nLi, Y., Zhao, Z., Klejch, O., Bell, P., \u0026amp; Lai, C. (2023). ASR and Emotional Speech: A Word-Level Investigation of the Mutual Impact of Speech and Emotion Recognition. INTERSPEECH 2023, 1449–1453. https://doi.org/10.21437/Interspeech.2023-2078\nLiang, Y., Jiang, X., \u0026amp; Zhang, B. (2023). Evaluating Risk-Adjusted Hospital Performance Using Large-Scale Data on Mortality Rates of Patients in Intensive Care Units: A Flexible Semi-Nonparametric Modeling Approach. IEEE Journal of Translational Engineering in Health and Medicine, 11, 232–246. https://doi.org/10.1109/JTEHM.2023.3257179\nLiang, Y., Meng, F., Zhang, Y., Chen, Y., Xu, J., \u0026amp; Zhou, J. (2022). Emotional conversation generation with heterogeneous graph neural network. Artificial Intelligence, 308, 103714. https://doi.org/10.1016/j.artint.2022.103714\nLiao, X., \u0026amp; Ni, C. (2022). The effects of emotionality and lexical category on L2 word processing in different tasks: Evidence from late Chinese–English bilinguals. Quarterly Journal of Experimental Psychology, 75(5), 907–923. https://doi.org/10.1177/17470218211041833\nLiebert, J., Cherney, J. H., Ketterings, Q. M., Mirsky, S. B., Pelzer, C. J., \u0026amp; Ryan, M. R. (2023). Winter cereal species, cultivar, and harvest timing affect trade-offs between forage quality and yield. Frontiers in Sustainable Food Systems, 7, 1067506. https://doi.org/10.3389/fsufs.2023.1067506\nLim, J. Y. L., Boardman, J., Dyche, J., Anderson, C., Dickinson, D. L., \u0026amp; Drummond, S. P. A. (2022). Sex moderates the effects of total sleep deprivation and sleep restriction on risk preference. Sleep, 45(9), zsac120. https://doi.org/10.1093/sleep/zsac120\nLin, Y. H. T., Hamid, N., Shepherd, D., Kantono, K., \u0026amp; Spence, C. (2022a). Musical and Non-Musical Sounds Influence the Flavour Perception of Chocolate Ice Cream and Emotional Responses. Foods, 11(12), 1784. https://doi.org/10.3390/foods11121784\nLin, Y. H. T., Hamid, N., Shepherd, D., Kantono, K., \u0026amp; Spence, C. (2022b). Sound pleasantness influences the perception of both emotional and non-emotional foods. Food Research International, 162, 111909. https://doi.org/10.1016/j.foodres.2022.111909\nLindstromberg, S. (2022). The compositionality of English phrasal verbs in terms of imageability. Lingua, 275, 103373. https://doi.org/10.1016/j.lingua.2022.103373\nLindstromberg, S., \u0026amp; Eyckmans, J. (2021). THE RETRIEVABILITY OF L2 ENGLISH MULTIWORD ITEMS IN A CONTEXT OF STRONGLY FORM-FOCUSED EXPOSURE: WHAT MATTERS? Studies in Second Language Acquisition, 43(5), 1040–1067. https://doi.org/10.1017/S0272263120000315\nLioi, A., Hazoor, A., Castro, M., \u0026amp; Bassani, M. (2022). Impact on driver behaviour of guardrails of different height in horizontal-vertical coordinated road scenarios with a limited available sight distance. Transportation Research Part F: Traffic Psychology and Behaviour, 84, 287–300. https://doi.org/10.1016/j.trf.2021.12.008\nLitovsky, C. P., Finley, A. M., Zuckerman, B., Sayers, M., Schoenhard, J. A., Kenett, Y. N., \u0026amp; Reilly, J. (2022). Semantic flow and its relation to controlled semantic retrieval deficits in the narrative production of people with aphasia. Neuropsychologia, 170, 108235. https://doi.org/10.1016/j.neuropsychologia.2022.108235\nLiu, G., \u0026amp; Hou, Y. (2021). Complex-Valued Vectors for Word Representation. 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD), 242–246. https://doi.org/10.1109/ICAIBD51990.2021.9458998\nLiu, J., Fan, L., Tian, L., Li, C., \u0026amp; Feng, W. (2023). The neural mechanisms of explicit and implicit processing of Chinese emotion-label and emotion-laden words: Evidence from emotional categorisation and emotional Stroop tasks. Language, Cognition and Neuroscience, 38(10), 1412–1429. https://doi.org/10.1080/23273798.2022.2093389\nLiu, M., Chen, L., \u0026amp; Zheng, Z. (2022). Similarity Calculation via Passage-Level Event Connection Graph. Applied Sciences, 12(19), 9887. https://doi.org/10.3390/app12199887\nLiu, M., Duan, Y., Ince, R. A. A., Chen, C., Garrod, O. G. B., Schyns, P. G., \u0026amp; Jack, R. E. (2022). Facial expressions elicit multiplexed perceptions of emotion categories and dimensions. Current Biology, 32(1), 200-209.e6. https://doi.org/10.1016/j.cub.2021.10.035\nLiu, P., Lu, Q., Zhang, Z., Tang, J., \u0026amp; Han, B. (2021). Age-Related Differences in Affective Norms for Chinese Words (AANC). Frontiers in Psychology, 12, 585666. https://doi.org/10.3389/fpsyg.2021.585666\nLo, S., \u0026amp; Andrews, S. (2022). The effects of mental abacus expertise on working memory, mental representations and calculation strategies used for two-digit Hindu-Arabic numbers. Journal of Numerical Cognition, 8(1), 89–122. https://doi.org/10.5964/jnc.8073\nLoch, J. M. H., \u0026amp; Cook, G. S. (2023). Restored oyster reefs and living shorelines can augment predator trophic dynamics. Restoration Ecology, e14028. https://doi.org/10.1111/rec.14028\nLogos. (2022). ProLog Verlag. https://doi.org/10.7345/prolog-2202084\nLöhr, G. (2023). Does the mind care about whether a word is abstract or concrete? Why concreteness is probably not a natural kind. Mind \u0026amp; Language, mila.12473. https://doi.org/10.1111/mila.12473\nLöhr, G., \u0026amp; Michel, C. (2022). Copredication in Context: A Predictive Processing Approach. Cognitive Science, 46(5), e13138. https://doi.org/10.1111/cogs.13138\nLorette, P. (2021). Investigating Emotion Perception via the Two-Dimensional Affect and Feeling Space: An Example of a Cross-Cultural Study Among Chinese and Non-Chinese Participants. Frontiers in Psychology, 12, 662610. https://doi.org/10.3389/fpsyg.2021.662610\nLuck, S. J., Stewart, A. X., Simmons, A. M., \u0026amp; Rhemtulla, M. (2021). Standardized measurement error: A universal metric of data quality for averaged event‐related potentials. Psychophysiology, 58(6), e13793. https://doi.org/10.1111/psyp.13793\nLudwig, B., Wölfel, P., Greenberg, I., Piepho, H., \u0026amp; Spörlein, P. (2022). Application of mixed‐effects modelling and rule‐based models to explain copper variation in soil profiles of southern Germany. European Journal of Soil Science, 73(3), e13258. https://doi.org/10.1111/ejss.13258\nLunghi, E., Bacci, F., \u0026amp; Zhao, Y. (2021). How Can We Record Reliable Information on Animal Colouration in the Wild? Diversity, 13(8), 356. https://doi.org/10.3390/d13080356\nLunghi, E., Cianferoni, F., Merilli, S., Zhao, Y., Manenti, R., Ficetola, G. F., \u0026amp; Corti, C. (2021). Ecological Observations on Hybrid Populations of European Plethodontid Salamanders, Genus Speleomantes. Diversity, 13(7), 285. https://doi.org/10.3390/d13070285\nŁuniewska, M., Wójcik, M., Kołak, J., Mieszkowska, K., Wodniecka, Z., \u0026amp; Haman, E. (2022). Word knowledge and lexical access in monolingual and bilingual migrant children: Impact of word properties. Language Acquisition, 29(2), 135–164. https://doi.org/10.1080/10489223.2021.1973475\nLuo, T., Steeneveld, W., Nielen, M., Zanini, L., \u0026amp; Zecconi, A. (2022). Linear Mixed-Effects Model to Quantify the Association between Somatic Cell Count and Milk Production in Italian Dairy Herds. Animals, 13(1), 80. https://doi.org/10.3390/ani13010080\nLuo, W., Li, H., Baek, E., Chen, S., Lam, K. H., \u0026amp; Semma, B. (2021). Reporting Practice in Multilevel Modeling: A Revisit After 10 Years. Review of Educational Research, 91(3), 311–355. https://doi.org/10.3102/0034654321991229\nLuo, W., \u0026amp; Qi, Z. (2022). The influence of concreteness on emotional nouns valence processing: An ERP study. Acta Psychologica Sinica, 54(2), 111–121. https://doi.org/10.3724/SP.J.1041.2022.00111\nLuo, Z., Lin, S., Liu, R., Baba, J., Yoshikawa, Y., \u0026amp; Ishiguro, H. (2023). Decoupling Speaker-Independent Emotions for Voice Conversion via Source-Filter Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31, 11–24. https://doi.org/10.1109/TASLP.2022.3190715\nLusk, S. J., McKinney, A., Hunt, P. J., Fahey, P. G., Patel, J., Chang, A., Sun, J. J., Martinez, V. K., Zhu, P. J., Egbert, J. R., Allen, G., Jiang, X., Arenkiel, B. R., Tolias, A. S., Costa-Mattioli, M., \u0026amp; Ray, R. S. (2022). A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping. BMC Biology, 20(1), 28. https://doi.org/10.1186/s12915-022-01227-0\nLuther, L., Raugh, I. M., Collins, D. E., Berglund, A., Knippenberg, A. R., Mittal, V. A., Walker, E. F., \u0026amp; Strauss, G. P. (2023). Environmental context predicts state fluctuations in negative symptoms in youth at clinical high risk for psychosis. Psychological Medicine, 1–10. https://doi.org/10.1017/S0033291723001393\nLux, V., Non, A. L., Pexman, P. M., Stadler, W., Weber, L. A. E., \u0026amp; Krüger, M. (2021). A Developmental Framework for Embodiment Research: The Next Step Toward Integrating Concepts and Methods. Frontiers in Systems Neuroscience, 15, 672740. https://doi.org/10.3389/fnsys.2021.672740\nMacchi, R., Santuz, A., Hays, A., Vercruyssen, F., Arampatzis, A., Bar-Hen, A., \u0026amp; Nicol, C. (2022). Sex influence on muscle synergies in a ballistic force-velocity test during the delayed recovery phase after a graded endurance run. Heliyon, 8(6), e09573. https://doi.org/10.1016/j.heliyon.2022.e09573\nMacCormack, J. K., Armstrong-Carter, E. L., Gaudier-Diaz, M. M., Meltzer-Brody, S., Sloan, E. K., Lindquist, K. A., \u0026amp; Muscatell, K. A. (2021). β-Adrenergic Contributions to Emotion and Physiology During an Acute Psychosocial Stressor. Psychosomatic Medicine, 83(9), 959–968. https://doi.org/10.1097/PSY.0000000000001009\nMacKay, R. N., Wood, T. C., \u0026amp; Moore, P. A. (2021). Running away or running to? Do prey make decisions solely based on the landscape of fear or do they also include stimuli from a landscape of safety? Journal of Experimental Biology, 224(19), jeb242687. https://doi.org/10.1242/jeb.242687\nMacMillan, M. B., Field, H. R., Neath, I., \u0026amp; Surprenant, A. M. (2022). Valence does not affect recognition. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 76(2), 111–121. https://doi.org/10.1037/cep0000275\nMacmillan, M. B., Neath, I., \u0026amp; Surprenant, A. M. (2021). Re-assessing age of acquisition effects in recognition, free recall, and serial recall. Memory \u0026amp; Cognition, 49(5), 939–954. https://doi.org/10.3758/s13421-021-01137-6\nMacRae, S., Duffels, B., Duchesne, A., Siakaluk, P. D., \u0026amp; Matheson, H. E. (2022). God in body and space: Investigating the sensorimotor grounding of abstract concepts. Frontiers in Psychology, 13, 972193. https://doi.org/10.3389/fpsyg.2022.972193\nMadan, C. R. (2021). Exploring word memorability: How well do different word properties explain item free-recall probability? Psychonomic Bulletin \u0026amp; Review, 28(2), 583–595. https://doi.org/10.3758/s13423-020-01820-w\nMadhyastha, P. (2022). Towards Integration of Embodiment Features for Prosodic Prominence Prediction from Text. INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 42–45. https://doi.org/10.1145/3536220.3558540\nMah, E. Y., Grannon, K. E. L., Campbell, A., Tamburri, N., Jamieson, R. K., \u0026amp; Lindsay, D. S. (2023). A direct replication and extension of Popp and Serra (2016, experiment 1): Better free recall and worse cued recall of animal names than object names, accounting for semantic similarity. Frontiers in Psychology, 14, 1146200. https://doi.org/10.3389/fpsyg.2023.1146200\nMajid, A. (2021). Human Olfaction at the Intersection of Language, Culture, and Biology. Trends in Cognitive Sciences, 25(2), 111–123. https://doi.org/10.1016/j.tics.2020.11.005\nMajor, C. H., Harris, M. S., \u0026amp; Zakrajsek, T. D. (2021). Teaching for Learning: 101 Intentionally Designed Educational Activities to Put Students on the Path to Success (2nd ed.). Routledge. https://doi.org/10.4324/9781003038290\nMak, M. H. C., Hsiao, Y., \u0026amp; Nation, K. (2021). Lexical connectivity effects in immediate serial recall of words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(12), 1971–1997. https://doi.org/10.1037/xlm0001089\nMalhi, S. K., Kost, C., \u0026amp; Buchanan, L. (2021). Does visualisation help or hinder concrete word processing? Quarterly Journal of Experimental Psychology, 74(2), 277–294. https://doi.org/10.1177/1747021820956462\nMamus, E., Speed, L. J., Özyürek, A., \u0026amp; Majid, A. (2023). The effect of input sensory modality on the multimodal encoding of motion events. Language, Cognition and Neuroscience, 38(5), 711–723. https://doi.org/10.1080/23273798.2022.2141282\nMangelschots, K., Ugen, S., \u0026amp; Weth, C. (2023). Profiles of poor and good spellers in German noun capitalization. L1-Educational Studies in Language and Literature, 23, 1–21. https://doi.org/10.21248/l1esll.2023.23.1.460\nManor, A., Megidish, B., Todress, E., Mikulincer, M., \u0026amp; Erel, H. (2022). A Non-Humanoid Robotic Object for Providing a Sense Of Security. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1520–1527. https://doi.org/10.1109/RO-MAN53752.2022.9900747\nMarjamäki, P. H., Dugdale, H. L., Delahay, R., McDonald, R. A., \u0026amp; Wilson, A. J. (2021). Genetic, social and maternal contributions to Mycobacterium bovis infection status in European badgers ( Meles meles ). Journal of Evolutionary Biology, 34(4), 695–709. https://doi.org/10.1111/jeb.13775\nMarkostamou, I., \u0026amp; Coventry, K. R. (2022). Naming spatial relations across the adult lifespan: At the crossroads of language and perception. Neuropsychology, 36(3), 216–230. https://doi.org/10.1037/neu0000789\nMarks, J. R., Sorlin, M., \u0026amp; Lailvaux, S. P. (2023). The maternal energetic environment affects both egg and offspring phenotypes in green anole lizards ( Anolis carolinensis ). Ecology and Evolution, 13(1), e9656. https://doi.org/10.1002/ece3.9656\nMarozzi, M., \u0026amp; Marmolejo-Ramos, F. (2022). Composite indicators in experimental psychology. An example with the semantic space of taste and shape stimuli stimuli. Communications in Statistics - Simulation and Computation, 51(1), 154–163. https://doi.org/10.1080/03610918.2019.1648823\nMarris, J., Barrett, S., Abt, G., \u0026amp; Towlson, C. (2022). Quantifying technical actions in professional soccer using foot-mounted inertial measurement units. Science and Medicine in Football, 6(2), 203–214. https://doi.org/10.1080/24733938.2021.1910333\nMarshall, K. B., Weiss, M. J., Critchfield, T. S., \u0026amp; Leaf, J. B. (2023). Effects of Jargon on Parent Implementation of Discrete Trial Teaching. Journal of Behavioral Education. https://doi.org/10.1007/s10864-023-09523-7\nMarson, F., Paoletti, P., Naor-Ziv, R., Carducci, F., \u0026amp; Ben-Soussan, T. D. (2023). Embodied empathy and abstract concepts’ concreteness: Evidence from contemplative practices. In Progress in Brain Research (Vol. 277, pp. 181–209). Elsevier. https://doi.org/10.1016/bs.pbr.2022.12.005\nMartín-del-Campo-Rodríguez, C., Sidorov, G., \u0026amp; Batyrshin, I. (2023). A Survey of Empathetic Generative Chatbots. In S. N. Shahbazova, A. M. Abbasov, V. Kreinovich, J. Kacprzyk, \u0026amp; I. Z. Batyrshin (Eds.), Recent Developments and the New Directions of Research, Foundations, and Applications (Vol. 423, pp. 215–224). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-23476-7_19\nMartínez-Huertas, J. Á., Jorge-Botana, G., Luzón, J. M., \u0026amp; Olmos, R. (2021). Redundancy, isomorphism, and propagative mechanisms between emotional and amodal representations of words: A computational study. Memory \u0026amp; Cognition, 49(2), 219–234. https://doi.org/10.3758/s13421-020-01086-6\nMartínez‐Huertas, J. Á., Jorge‐Botana, G., \u0026amp; Olmos, R. (2021). Emotional Valence Precedes Semantic Maturation of Words: A Longitudinal Computational Study of Early Verbal Emotional Anchoring. Cognitive Science, 45(7), e13026. https://doi.org/10.1111/cogs.13026\nMartínez-Sanchis, M., Vara, M. D., Herrero, R., Campos, D., García-Campayo, J., \u0026amp; Baños, R. M. (2022). Effectiveness of the Internet Attachment-Based Compassion Therapy (iABCT) to improve the quality of life and well-being in a population with chronic medical illness: A study protocol of a randomized controlled trial (SPIRIT compliant). PLOS ONE, 17(12), e0278462. https://doi.org/10.1371/journal.pone.0278462\nMascelloni, M., McMahon, K. L., Piai, V., Kleinman, D., \u0026amp; De Zubicaray, G. (2021). Mediated phonological–semantic priming in spoken word production: Evidence for cascaded processing from picture–word interference. Quarterly Journal of Experimental Psychology, 74(7), 1284–1294. https://doi.org/10.1177/17470218211010591\nMasid Blanco, O., Pérez Serrano, M., \u0026amp; Martín Leralta, S. (2021). ¿Perciben los hablantes de español como lengua extranjera la lengua emocional igual que los nativos?: Valencia y activación en expresiones literales y figuradas. Cultura, Lenguaje y Representación, 25, 201–227. https://doi.org/10.6035/CLR.2021.25.12\nMavrou, I. (2021). Emotional intelligence, working memory, and emotional vocabulary in L1 and L2: Interactions and dissociations. Lingua, 257, 103083. https://doi.org/10.1016/j.lingua.2021.103083\nMayer, M., \u0026amp; Heck, D. W. (2022). Sequential collaboration: The accuracy of dependent, incremental judgments. Decision. https://doi.org/10.1037/dec0000193\nMazzuca, C., Falcinelli, I., Michalland, A.-H., Tummolini, L., \u0026amp; Borghi, A. M. (2022). Bodily, emotional, and public sphere at the time of COVID-19. An investigation on concrete and abstract concepts. Psychological Research, 86(7), 2266–2277. https://doi.org/10.1007/s00426-021-01633-z\nMazzuca, C., Fini, C., Michalland, A. H., Falcinelli, I., Da Rold, F., Tummolini, L., \u0026amp; Borghi, A. M. (2021). From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding. Brain Sciences, 11(10), 1304. https://doi.org/10.3390/brainsci11101304\nMcCartney, D., Suraev, A. S., Doohan, P. T., Irwin, C., Kevin, R. C., Grunstein, R. R., Hoyos, C. M., \u0026amp; McGregor, I. S. (2022). Effects of cannabidiol on simulated driving and cognitive performance: A dose-ranging randomised controlled trial. Journal of Psychopharmacology, 36(12), 1338–1349. https://doi.org/10.1177/02698811221095356\nMcConnell, K., \u0026amp; Blumenthal-Dramé, A. (2021). Usage-Based Individual Differences in the Probabilistic Processing of Multi-Word Sequences. Frontiers in Communication, 6, 703351. https://doi.org/10.3389/fcomm.2021.703351\nMcCrea, S. M., Erion, C. J., \u0026amp; Thürmer, J. L. (2022). Why punish critical outgroup commenters? Social identity, general norms, and retribution. British Journal of Social Psychology, 61(3), 711–728. https://doi.org/10.1111/bjso.12508\nMcDougle, S. D., Tsay, J. S., Pitt, B., King, M., Saban, W., Taylor, J. A., \u0026amp; Ivry, R. B. (2022). Continuous manipulation of mental representations is compromised in cerebellar degeneration. Brain, 145(12), 4246–4263. https://doi.org/10.1093/brain/awac072\nMcHuron, E. A., Rosen, D. A. S., Carpenter, J., Leonard, P., Sirpenski, G., \u0026amp; Sterling, J. T. (2022). Variation in body mass and food intake of northern fur seals ( Callorhinus ursinus ). Marine Mammal Science, 38(3), 1160–1181. https://doi.org/10.1111/mms.12919\nMcManus, K. (2021). Crosslinguistic Influence and Second Language Learning (1st ed.). Routledge. https://doi.org/10.4324/9780429341663\nMeersmans, K., Storms, G., De Deyne, S., Bruffaerts, R., Dupont, P., \u0026amp; Vandenberghe, R. (2022). Orienting to different dimensions of word meaning alters the representation of word meaning in early processing regions. Cerebral Cortex, 32(15), 3302–3317. https://doi.org/10.1093/cercor/bhab416\nMehta, A., Niles, A. N., Vargas, J. H., Marafon, T., Couto, D. D., \u0026amp; Gross, J. J. (2021). Acceptability and Effectiveness of Artificial Intelligence Therapy for Anxiety and Depression (Youper): Longitudinal Observational Study. Journal of Medical Internet Research, 23(6), e26771. https://doi.org/10.2196/26771\nMeier, B. P., \u0026amp; Fetterman, A. K. (2022). Metaphors for god: God is high, bright, and human in implicit tasks. Psychology of Religion and Spirituality, 14(1), 43–50. https://doi.org/10.1037/rel0000324\nMelotti, L., Siestrup, S., Peng, M., Vitali, V., Dowling, D., Von Kortzfleisch, V. T., Bračić, M., Sachser, N., Kaiser, S., \u0026amp; Richter, S. H. (2021). Individuality, as well as genetic background, affects syntactical features of courtship songs in male mice. Animal Behaviour, 180, 179–196. https://doi.org/10.1016/j.anbehav.2021.08.003\nMendes, G. A., \u0026amp; Martins, B. (2023). Quantifying Valence and Arousal in Text with Multilingual Pre-trained Transformers. In J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz, \u0026amp; A. Caputo (Eds.), Advances in Information Retrieval (Vol. 13980, pp. 84–100). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-28244-7_6\nMeng, D., Wang, S., Wong, P. C. M., \u0026amp; Feng, G. (2022). Generalizable predictive modeling of semantic processing ability from functional brain connectivity. Human Brain Mapping, 43(14), 4274–4292. https://doi.org/10.1002/hbm.25953\nMerhbene, G., Nath, S., Puttick, A. R., \u0026amp; Kurpicz-Briki, M. (2022). BurnoutEnsemble: Augmented Intelligence to Detect Indications for Burnout in Clinical Psychology. Frontiers in Big Data, 5, 863100. https://doi.org/10.3389/fdata.2022.863100\nMerkx, D., Scholten, S., Frank, S. L., Ernestus, M., \u0026amp; Scharenborg, O. (2023). Modelling Human Word Learning and Recognition Using Visually Grounded Speech. Cognitive Computation, 15(1), 272–288. https://doi.org/10.1007/s12559-022-10059-7\nMertzen, D., Lago, S., \u0026amp; Vasishth, S. (2021). The benefits of preregistration for hypothesis-driven bilingualism research. Bilingualism: Language and Cognition, 24(5), 807–812. https://doi.org/10.1017/S1366728921000031\nMeyer, N., Xu, Y., Karjalainen, K., Adamczyk, S., Biasi, C., Van Delden, L., Martin, A., Mganga, K., Myller, K., Sietiö, O., Suominen, O., \u0026amp; Karhu, K. (2022). Living, dead, and absent trees—How do moth outbreaks shape small‐scale patterns of soil organic matter stocks and dynamics at the Subarctic mountain birch treeline? Global Change Biology, 28(2), 441–462. https://doi.org/10.1111/gcb.15951\nMeylan, S. C., Nair, S., \u0026amp; Griffiths, T. L. (2021). Evaluating models of robust word recognition with serial reproduction. Cognition, 210, 104553. https://doi.org/10.1016/j.cognition.2020.104553\nMiani, A., Hills, T., \u0026amp; Bangerter, A. (2021). LOCO: The 88-million-word language of conspiracy corpus. Behavior Research Methods, 54(4), 1794–1817. https://doi.org/10.3758/s13428-021-01698-z\nMiceli, A., Wauthia, E., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2021). Perceptual and Interoceptive Strength Norms for 270 French Words. Frontiers in Psychology, 12, 667271. https://doi.org/10.3389/fpsyg.2021.667271\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMichaelides, A., Mitchell, E. S., Behr, H., Ho, A. S., Hanada, G., Lee, J., \u0026amp; McPartland, S. (2022). Executive Function-Related Improvements on a Commercial CBT-Based Weight Management Intervention: Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(14), 8763. https://doi.org/10.3390/ijerph19148763\nMiklashevsky, A., \u0026amp; Jeglinski-Mende, M. A. (2023). Non-experimental psychological methods. In A. Felisatti \u0026amp; M. H. Fischer, Experimental Methods in Embodied Cognition (1st ed., pp. 151–165). Routledge. https://doi.org/10.4324/9781003290698-13\nMilitaru, I. E., Serapio‐García, G., Ebert, T., Kong, W., Gosling, S. D., Potter, J., Rentfrow, P. J., \u0026amp; Götz, F. M. (2023). The lay of the land: Associations between environmental features and personality. Journal of Personality, jopy.12822. https://doi.org/10.1111/jopy.12822\nMiller, A. C., Harris, L. M., Cavanaugh, J. E., Abou Alaiwa, M., Stoltz, D. A., Hornick, D. B., \u0026amp; Polgreen, P. M. (2022). The Rapid Reduction of Infection-Related Visits and Antibiotic Use Among People With Cystic Fibrosis After Starting Elexacaftor-Tezacaftor-Ivacaftor. Clinical Infectious Diseases, 75(7), 1115–1122. https://doi.org/10.1093/cid/ciac117\nMiller, J. (2023). How Many Participants? How Many Trials? Maximizing the Power of Reaction Time Studies. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02155-9\nMiller-Lewis, L. R., Lewis, T. W., Tieman, J., Rawlings, D., Parker, D., \u0026amp; Sanderson, C. R. (2021). Words describing feelings about death: A comparison of sentiment for self and others and changes over time. PLOS ONE, 16(1), e0242848. https://doi.org/10.1371/journal.pone.0242848\nMirlohi Falavarjani, S. A., Jovanovic, J., Fani, H., Ghorbani, A. A., Noorian, Z., \u0026amp; Bagheri, E. (2021). On the causal relation between real world activities and emotional expressions of social media users. Journal of the Association for Information Science and Technology, 72(6), 723–743. https://doi.org/10.1002/asi.24440\nMiyazaki, K., Uchiba, T., Tanaka, K., \u0026amp; Sasahara, K. (2021). Characterizing the Anti-Vaxxers’ Reply Behavior on Social Media. IEEE/WIC/ACM International Conference on Web Intelligence, 83–89. https://doi.org/10.1145/3498851.3498934\nMiyazaki, K., Uchiba, T., Tanaka, K., \u0026amp; Sasahara, K. (2022). Aggressive behaviour of anti-vaxxers and their toxic replies in English and Japanese. Humanities and Social Sciences Communications, 9(1), 229. https://doi.org/10.1057/s41599-022-01245-x\nMizumoto, N., Bourguignon, T., \u0026amp; Bailey, N. W. (2022). Ancestral sex-role plasticity facilitates the evolution of same-sex sexual behavior. Proceedings of the National Academy of Sciences, 119(46), e2212401119. https://doi.org/10.1073/pnas.2212401119\nMkrtychian, N., Gnedykh, D., Blagovechtchenski, E., Tsvetova, D., Kostromina, S., \u0026amp; Shtyrov, Y. (2021). Contextual Acquisition of Concrete and Abstract Words: Behavioural and Electrophysiological Evidence. Brain Sciences, 11(7), 898. https://doi.org/10.3390/brainsci11070898\nMochizuki, M. (2022). Little to no evidence of the QWERTY effect in Japanese word valence rating. Cognitive Processing, 23(3), 527–533. https://doi.org/10.1007/s10339-022-01092-3\nMohammadi, A. N. (2022). Swearing in a second language: The role of emotions and perceptions. Journal of Multilingual and Multicultural Development, 43(7), 629–646. https://doi.org/10.1080/01434632.2020.1755293\nMolina-García, J., Menescardi, C., Estevan, I., \u0026amp; Queralt, A. (2021). Associations between Park and Playground Availability and Proximity and Children’s Physical Activity and Body Mass Index: The BEACH Study. International Journal of Environmental Research and Public Health, 19(1), 250. https://doi.org/10.3390/ijerph19010250\nMonster, I., Tellings, A., Burk, W. J., Keuning, J., Segers, E., \u0026amp; Verhoeven, L. (2022). Word Properties Predicting Children’s Word Recognition. Scientific Studies of Reading, 26(5), 373–389. https://doi.org/10.1080/10888438.2021.2020795\nMontefinese, M., Ambrosini, E., \u0026amp; Angrilli, A. (2021). Online search trends and word-related emotional response during COVID-19 lockdown in Italy: A cross-sectional online study. PeerJ, 9, e11858. https://doi.org/10.7717/peerj.11858\nMontefinese, M., Pinti, P., Ambrosini, E., Tachtsidis, I., \u0026amp; Vinson, D. (2021). Inferior parietal lobule is sensitive to different semantic similarity relations for concrete and abstract words. Psychophysiology, 58(3), e13750. https://doi.org/10.1111/psyp.13750\nMontero-Melis, G., Van Paridon, J., Ostarek, M., \u0026amp; Bylund, E. (2022). No evidence for embodiment: The motor system is not needed to keep action verbs in working memory. Cortex, 150, 108–125. https://doi.org/10.1016/j.cortex.2022.02.006\nMonticelli, D., Defourny, H., Degros, E., \u0026amp; Degros, A. (2021). Body mass during the spring migration period of two long-lived seabirds varies with capture date, age, sex, and natal origin. Journal of Ornithology, 162(4), 1063–1074. https://doi.org/10.1007/s10336-021-01903-y\nMoon, J. W., Tratner, A. E., \u0026amp; McDonald, M. M. (2022). Men are less religious in more gender-equal countries. Proceedings of the Royal Society B: Biological Sciences, 289(1968), 20212474. https://doi.org/10.1098/rspb.2021.2474\nMoreno-Ortiz, A., Pérez-Hernández, C., \u0026amp; García-Gámez, M. (2022). The language of happiness in self-reported descriptions of happy moments: Words, concepts, and entities. Humanities and Social Sciences Communications, 9(1), 181. https://doi.org/10.1057/s41599-022-01202-8\nMori, K., Hadjur, H., \u0026amp; Haruno, M. (2022). Natural Language Content Mediates the Association Between Active Interactions on Social Network Services and Subjective Well-Being. Cyberpsychology, Behavior, and Social Networking, 25(10), 678–685. https://doi.org/10.1089/cyber.2021.0340\nMori, K., \u0026amp; Haruno, M. (2021). Differential ability of network and natural language information on social media to predict interpersonal and mental health traits. Journal of Personality, 89(2), 228–243. https://doi.org/10.1111/jopy.12578\nMorris, S., Dumontheil, I., \u0026amp; Farran, E. K. (2021). Responses to Navon tasks differ across development and between tasks with differing attentional demands. Vision Research, 185, 17–28. https://doi.org/10.1016/j.visres.2021.03.008\nMoscati, M., Parada-Cabaleiro, E., Deldjoo, Y., Zangerle, E., \u0026amp; Schedl, M. (2022). Music4All-Onion—A Large-Scale Multi-faceted Content-Centric Music Recommendation Dataset. Proceedings of the 31st ACM International Conference on Information \u0026amp; Knowledge Management, 4339–4343. https://doi.org/10.1145/3511808.3557656\nMotoki, K., Saito, T., \u0026amp; Velasco, C. (2022). Spontaneous crossmodal correspondences grounded in contexts. Food Quality and Preference, 100, 104619. https://doi.org/10.1016/j.foodqual.2022.104619\nMüller, N., Nagels, A., \u0026amp; Kauschke, C. (2022). Metaphorical expressions originating from human senses: Psycholinguistic and affective norms for German metaphors for internal state terms (MIST database). Behavior Research Methods, 54(1), 365–377. https://doi.org/10.3758/s13428-021-01639-w\nMuraki, E. J., \u0026amp; Pexman, P. M. (2021). Simulating semantics: Are individual differences in motor imagery related to sensorimotor effects in language processing? Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(12), 1939–1957. https://doi.org/10.1037/xlm0001039\nMuraki, E. J., Siddiqui, I. A., \u0026amp; Pexman, P. M. (2022). Quantifying children’s sensorimotor experience: Child body–object interaction ratings for 3359 English words. Behavior Research Methods, 54(6), 2864–2877. https://doi.org/10.3758/s13428-022-01798-4\nMuraki, E. J., Sidhu, D. M., \u0026amp; Pexman, P. M. (2022). Heterogenous abstract concepts: Is “ponder” different from “dissolve”? Psychological Research, 86(8), 2478–2494. https://doi.org/10.1007/s00426-020-01398-x\nMurphy, C. H., Flanagan, E. M., De Vito, G., Susta, D., Mitchelson, K. A., De Marco Castro, E., Senden, J. M., Goessens, J. P., Mikłosz, A., Chabowski, A., Segurado, R., Corish, C. A., McCarthy, S. N., Egan, B., Van Loon, L. J., \u0026amp; Roche, H. M. (2021). Does supplementation with leucine-enriched protein alone and in combination with fish-oil-derived n–3 PUFA affect muscle mass, strength, physical performance, and muscle protein synthesis in well-nourished older adults? A randomized, double-blind, placebo-controlled trial. The American Journal of Clinical Nutrition, 113(6), 1411–1427. https://doi.org/10.1093/ajcn/nqaa449\nMuszynski, M., Tian, L., Lai, C., Moore, J. D., Kostoulas, T., Lombardo, P., Pun, T., \u0026amp; Chanel, G. (2021). Recognizing Induced Emotions of Movie Audiences from Multimodal Information. IEEE Transactions on Affective Computing, 12(1), 36–52. https://doi.org/10.1109/TAFFC.2019.2902091\nNagler, B., Gleiss, A., Füreder, L., Buchtele, N., Hermann, A., Bojic, A., Schellongowski, P., Staudinger, T., \u0026amp; Robak, O. (2022). Comparison of Hemostatic Changes in Pump-driven Extracorporeal Carbon Dioxide Removal and Venovenous Extracorporeal Membrane Oxygenation. ASAIO Journal, 68(11), 1407–1413. https://doi.org/10.1097/MAT.0000000000001675\nNaidu, P. A., Hine, T. J., \u0026amp; Glendon, A. I. (2022). Methodological weakness of the death-word-fragment task: Alternative implicit death anxiety measures. Death Studies, 46(7), 1706–1715. https://doi.org/10.1080/07481187.2020.1846228\nNandi, A., Xhafa, F., Subirats, L., \u0026amp; Fort, S. (2022). Reward-Penalty Weighted Ensemble for Emotion State Classification from Multi-Modal Data Streams. International Journal of Neural Systems, 32(12), 2250049. https://doi.org/10.1142/S0129065722500496\nNational Institute of Mental Health, Klecany, Czech Republic, Skalníková, P., Juríčková, V., Plechatá, A., Fajnerová, I., \u0026amp; Nekovářová, T. (2022). Methodological approaches in the research of emotional memory. Ceskoslovenska Psychologie, 66(4), 349–364. https://doi.org/10.51561/cspsych.66.4.349\nNeath, I., Hockley, W. E., \u0026amp; Ensor, T. M. (2022). Stimulus-based mirror effects revisited. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(12), 1833–1849. https://doi.org/10.1037/xlm0000901\nNeath, I., \u0026amp; Quinlan, P. T. (2021). The item/order account of word frequency effects: Evidence from serial order tests. Memory \u0026amp; Cognition, 49(6), 1188–1203. https://doi.org/10.3758/s13421-021-01144-7\nNegussie, E., González-Recio, O., Battagin, M., Bayat, A.-R., Boland, T., De Haas, Y., Garcia-Rodriguez, A., Garnsworthy, P. C., Gengler, N., Kreuzer, M., Kuhla, B., Lassen, J., Peiren, N., Pszczola, M., Schwarm, A., Soyeurt, H., Vanlierde, A., Yan, T., \u0026amp; Biscarini, F. (2022). Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. Journal of Dairy Science, 105(6), 5124–5140. https://doi.org/10.3168/jds.2021-20158\nNenadić, F., Podlubny, R. G., Schmidtke, D., Kelley, M. C., \u0026amp; Tucker, B. V. (2022). Semantic richness effects in isolated spoken word recognition: Evidence from massive auditory lexical decision. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0001208\nNeville, V., Mounty, J., Benato, L., Hunter, K., Mendl, M., \u0026amp; Paul, E. S. (2022). Thinking outside the lab: Can studies of pet rats inform pet and laboratory rat welfare? Applied Animal Behaviour Science, 246, 105507. https://doi.org/10.1016/j.applanim.2021.105507\nNewel, K. T., Burma, J. S., Carere, J., Kennedy, C. M., \u0026amp; Smirl, J. D. (2022). Does oscillation size matter? Impact of added resistance on the cerebral pressure‐flow Relationship in females and males. Physiological Reports, 10(10), e15278. https://doi.org/10.14814/phy2.15278\nNewman, V. E., Yee, H. F., Walker, A. R., Toumbelekis, M., \u0026amp; Most, S. B. (2021). Out of fright, out of mind: Impaired memory for information negated during looming threat. Cognitive Research: Principles and Implications, 6(1), 36. https://doi.org/10.1186/s41235-021-00302-4\nNian, T., Hu, Y., \u0026amp; Chen, C. (2021). Examining the Impact of Television-Program-Induced Emotions on Online Word-of-Mouth Toward Television Advertising. Information Systems Research, 32(2), 605–632. https://doi.org/10.1287/isre.2020.0985\nNickels, L., Lampe, L. F., Mason, C., \u0026amp; Hameau, S. (2022). Investigating the influence of semantic factors on word retrieval: Reservations, results and recommendations. Cognitive Neuropsychology, 39(3–4), 113–154. https://doi.org/10.1080/02643294.2022.2109958\nNiehorster-Cook, L. M. (2022). The Spreading-Activation Framework Does not Explain the Effects of Degree and Clustering on Spoken Word Recognition. In Z. Yang \u0026amp; E. Von Briesen (Eds.), Proceedings of the 2021 Conference of The Computational Social Science Society of the Americas (pp. 112–123). Springer International Publishing. https://doi.org/10.1007/978-3-030-96188-6_9\nNielsen, A. K., \u0026amp; Dingemanse, M. (2021). Iconicity in Word Learning and Beyond: A Critical Review. Language and Speech, 64(1), 52–72. https://doi.org/10.1177/0023830920914339\nNightingale, M., Scott, M. B., Sigaeva, T., Guzzardi, D., Garcia, J., Malaisrie, S. C., McCarthy, P., Markl, M., Fedak, P. W. M., Di Martino, E. S., \u0026amp; Barker, A. J. (2023). Magnetic resonance imaging-based hemodynamic wall shear stress alters aortic wall tissue biomechanics in bicuspid aortic valve patients. The Journal of Thoracic and Cardiovascular Surgery, S0022522323000193. https://doi.org/10.1016/j.jtcvs.2022.12.021\nNikitina, L., \u0026amp; Furuoka, F. (2023). Words of scents: A linguistic analysis of online perfume reviews. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0135\nNita, S., Bitam, S., Heidet, M., \u0026amp; Mellouk, A. (2022). A new data augmentation convolutional neural network for human emotion recognition based on ECG signals. Biomedical Signal Processing and Control, 75, 103580. https://doi.org/10.1016/j.bspc.2022.103580\nNorman-Haignere, S. V., Long, L. K., Devinsky, O., Doyle, W., Irobunda, I., Merricks, E. M., Feldstein, N. A., McKhann, G. M., Schevon, C. A., Flinker, A., \u0026amp; Mesgarani, N. (2022). Multiscale temporal integration organizes hierarchical computation in human auditory cortex. Nature Human Behaviour, 6(3), 455–469. https://doi.org/10.1038/s41562-021-01261-y\nNussinson, R., Elias, Y., Yosef-Nitzan, E., Mentser, S., Zadka, M., Weinstein, Z., \u0026amp; Liberman, N. (2021). Vertical Position is Associated with Construal Level and Psychological Distance. Social Cognition, 39(5), 632–655. https://doi.org/10.1521/soco.2021.39.5.632\nOberpriller, J., De Souza Leite, M., \u0026amp; Pichler, M. (2022). Fixed or random? On the reliability of mixed‐effects models for a small number of levels in grouping variables. Ecology and Evolution, 12(7), e9062. https://doi.org/10.1002/ece3.9062\nO’Dea, R. E., Noble, D. W. A., \u0026amp; Nakagawa, S. (2022). Unifying individual differences in personality, predictability and plasticity: A practical guide. Methods in Ecology and Evolution, 13(2), 278–293. https://doi.org/10.1111/2041-210X.13755\nOdia, T., Malherbe, S. T., Meier, S., Maasdorp, E., Kleynhans, L., Du Plessis, N., Loxton, A. G., Zak, D. E., Thompson, E., Duffy, F. J., Kuivaniemi, H., Ronacher, K., Winter, J., Walzl, G., Tromp, G., \u0026amp; the Catalysis TB-Biomarker Consortium. (2021). The Peripheral Blood Transcriptome Is Correlated With PET Measures of Lung Inflammation During Successful Tuberculosis Treatment. Frontiers in Immunology, 11, 596173. https://doi.org/10.3389/fimmu.2020.596173\nO’Neill, S., Minehan, M., Knight-Agarwal, C. R., \u0026amp; Turner, M. (2022). Depression, Is It Treatable in Adults Utilising Dietary Interventions? A Systematic Review of Randomised Controlled Trials. Nutrients, 14(7), 1398. https://doi.org/10.3390/nu14071398\nOosthuizen, T., \u0026amp; Lutermann, H. (2023). Personality and behavioural syndromes in wild-caught Namaqua rock mice (Micaelamys namaquensis). Behaviour, 160(8–9), 785–806. https://doi.org/10.1163/1568539X-bja10234\nOrtega, J. M., \u0026amp; Bernabé-Moreno, J. (2021). Modelling the Degree of Emotional Concern: COVID-19 Response in Social Media. Applied Sciences, 11(9), 3872. https://doi.org/10.3390/app11093872\nOrtu, M., Uras, N., Conversano, C., Bartolucci, S., \u0026amp; Destefanis, G. (2022). On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Systems with Applications, 198, 116804. https://doi.org/10.1016/j.eswa.2022.116804\nOttenhoff, M. J., Dijkhuizen, S., Ypelaar, A. C. H., De Oude, N. L., Koekkoek, S. K. E., Wang, S. S.-H., De Zeeuw, C. I., Elgersma, Y., \u0026amp; Boele, H. J. (2022). Cerebellum-dependent associative learning is not impaired in a mouse model of neurofibromatosis type 1. Scientific Reports, 12(1), 19041. https://doi.org/10.1038/s41598-022-21429-4\nOuyang, Y., Xu, L., Karim, M. E., Gustafson, P., \u0026amp; Wong, H. (2021). CRTpowerdist: An R package to calculate attained power and construct the power distribution for cross-sectional stepped-wedge and parallel cluster randomized trials. Computer Methods and Programs in Biomedicine, 208, 106255. https://doi.org/10.1016/j.cmpb.2021.106255\nOzcelik, E., \u0026amp; Arslan-Ari, I. (2023). Enhancing Multimedia Learning by Emotional Arousal. The Journal of Experimental Education, 1–15. https://doi.org/10.1080/00220973.2023.2182263\nPaape, D., Avetisyan, S., Lago, S., \u0026amp; Vasishth, S. (2021). Modeling Misretrieval and Feature Substitution in Agreement Attraction: A Computational Evaluation. Cognitive Science, 45(8), e13019. https://doi.org/10.1111/cogs.13019\nPaape, D., \u0026amp; Vasishth, S. (2022). Estimating the True Cost of Garden Pathing: A Computational Model of Latent Cognitive Processes. Cognitive Science, 46(8), e13186. https://doi.org/10.1111/cogs.13186\nPadilla, L., Hosseinpour, H., Fygenson, R., Howell, J., Chunara, R., \u0026amp; Bertini, E. (2022). Impact of COVID-19 forecast visualizations on pandemic risk perceptions. Scientific Reports, 12(1), 2014. https://doi.org/10.1038/s41598-022-05353-1\nPaek, E. J. (2021). Emotional Valence Affects Word Retrieval During Verb Fluency Tasks in Alzheimer’s Dementia. Frontiers in Psychology, 12, 777116. https://doi.org/10.3389/fpsyg.2021.777116\nPaek, S., Hoffman, D. L., \u0026amp; Black, J. B. (2023). Shaping the sensory experience in digital environments: Modality, congruency, and learning. Interactive Learning Environments, 31(9), 5665–5681. https://doi.org/10.1080/10494820.2021.2016860\nPaoletti, M., Fini, C., Filippini, C., Massari, G. M., D’Abundo, E., Merla, A., Bellagamba, F., \u0026amp; Borghi, A. M. (2022). Abstract words processing induces parasympathetic activation: A thermal imaging study. Frontiers in Psychology, 13, 932118. https://doi.org/10.3389/fpsyg.2022.932118\nPapafragou, A., Trueswell, J. C., \u0026amp; Gleitman, L. R. (Eds.). (2022). The Oxford Handbook of the Mental Lexicon (1st ed.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198845003.001.0001\nPapagno, C. (2022). The neural correlates of abstract and concrete words. In Handbook of Clinical Neurology (Vol. 187, pp. 263–275). Elsevier. https://doi.org/10.1016/B978-0-12-823493-8.00018-3\nPark, H., Klishko, A. N., Oh, K., Zhang, C., Grenga, G., Herrin, K. R., Dalton, J. F., Kistenberg, R. S., Lemay, M. A., Pitkin, M., DeWeerth, S. P., \u0026amp; Prilutsky, B. I. (2023). Electrical Stimulation of Distal Tibial Nerve During Stance Phase of Walking May Reverse Effects of Unilateral Paw Pad Anesthesia in the Cat. Motor Control, 27(1), 71–95. https://doi.org/10.1123/mc.2022-0096\nPashchenko, D. E., Razova, E. V., Kotelnikova, A. V., Vychegzhanin, S. V., \u0026amp; Kotelnikov, E. V. (2022). Interpretation of Language Models Attention Matrices in Texts Sentiment Analysis. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), 1–4. https://doi.org/10.1109/ITNT55410.2022.9848691\nPatterson, A. (2021). Predicting second language listening functor comprehension probability with usage-based and embodiment approaches. International Journal of Bilingualism, 25(3), 772–788. https://doi.org/10.1177/13670069211000851\nPatterson, A. (2022). The shape of a word: Single word characteristics’ effect on novice L2 listening comprehension. Applied Linguistics Review, 0(0). https://doi.org/10.1515/applirev-2021-0157\nPavlov, Y. G., Adamian, N., Appelhoff, S., Arvaneh, M., Benwell, C. S. Y., Beste, C., Bland, A. R., Bradford, D. E., Bublatzky, F., Busch, N. A., Clayson, P. E., Cruse, D., Czeszumski, A., Dreber, A., Dumas, G., Ehinger, B., Ganis, G., He, X., Hinojosa, J. A., … Mushtaq, F. (2021). #EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex, 144, 213–229. https://doi.org/10.1016/j.cortex.2021.03.013\nPecher, D., Wolters, F., \u0026amp; Zeelenberg, R. (2021). The Role of Motor Action in Long-Term Memory for Objects. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 291–309). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_13\nPellegrino, R., Hörberg, T., Olofsson, J., \u0026amp; Luckett, C. R. (2021). Duality of Smell: Route-Dependent Effects on Olfactory Perception and Language. Chemical Senses, 46, bjab025. https://doi.org/10.1093/chemse/bjab025\nPeng, C., Xu, X., \u0026amp; Bao, Z. (2023). Sentiment annotations for 3827 simplified Chinese characters. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02068-7\nPérez-Sánchez, M. Á., Stadthagen-Gonzalez, H., Guasch, M., Hinojosa, J. A., Fraga, I., Marín, J., \u0026amp; Ferré, P. (2021). EmoPro – Emotional prototypicality for 1286 Spanish words: Relationships with affective and psycholinguistic variables. Behavior Research Methods, 53(5), 1857–1875. https://doi.org/10.3758/s13428-020-01519-9\nPeriñán-Pascual, C. (2022). Measuring associational thinking through word embeddings. Artificial Intelligence Review, 55(3), 2065–2102. https://doi.org/10.1007/s10462-021-10056-6\nPerry, C. (2022). Using electrophysiological correlates of early semantic priming to test models of reading aloud. Scientific Reports, 12(1), 5224. https://doi.org/10.1038/s41598-022-09279-6\nPessarrodona, A., Filbee‐Dexter, K., Alcoverro, T., Boada, J., Feehan, C. J., Fredriksen, S., Grace, S. P., Nakamura, Y., Narvaez, C. A., Norderhaug, K. M., \u0026amp; Wernberg, T. (2021). Homogenization and miniaturization of habitat structure in temperate marine forests. Global Change Biology, 27(20), 5262–5275. https://doi.org/10.1111/gcb.15759\nPetilli, M. A., Günther, F., \u0026amp; Marelli, M. (2022). The Flickr frequency norms: What 17 years of images tagged online tell us about lexical processing. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02031-y\nPetilli, M. A., Günther, F., Vergallito, A., Ciapparelli, M., \u0026amp; Marelli, M. (2021). Data-driven computational models reveal perceptual simulation in word processing. Journal of Memory and Language, 117, 104194. https://doi.org/10.1016/j.jml.2020.104194\nPeti-Stantić, A., Anđel, M., Gnjidić, V., Keresteš, G., Ljubešić, N., Masnikosa, I., Tonković, M., Tušek, J., Willer-Gold, J., \u0026amp; Stanojević, M.-M. (2021). The Croatian psycholinguistic database: Estimates for 6000 nouns, verbs, adjectives and adverbs. Behavior Research Methods, 53(4), 1799–1816. https://doi.org/10.3758/s13428-020-01533-x\nPetridis, S., Shin, H. V., \u0026amp; Chilton, L. B. (2021). SymbolFinder: Brainstorming Diverse Symbols Using Local Semantic Networks. The 34th Annual ACM Symposium on User Interface Software and Technology, 385–399. https://doi.org/10.1145/3472749.3474757\nPezzuti, L., Dawe, J., \u0026amp; Borghi, A. M. (2021). Does mastering of abstract words decline with age? Educational Gerontology, 47(12), 527–542. https://doi.org/10.1080/03601277.2021.2008709\nPham, G., Simpson, A., \u0026amp; Nguyen, K. (2023). Vietnamese children with and without DLD: Classifier use and grammaticality over time. Journal of Communication Disorders, 101, 106297. https://doi.org/10.1016/j.jcomdis.2022.106297\nPhan, D.-A., Matsumoto, Y., \u0026amp; Shindo, H. (2021). Autoencoder for Semisupervised Multiple Emotion Detection of Conversation Transcripts. IEEE Transactions on Affective Computing, 12(3), 682–691. https://doi.org/10.1109/TAFFC.2018.2885304\nPickholtz, R., Kiflawi, M., Crossin, G. T., Pickholtz, E. Y., Zamsky, R., Kahan, I., Gavriel, T., \u0026amp; Belmaker, J. (2022). Highly repetitive space-use dynamics in parrotfishes. Coral Reefs, 41(4), 1059–1073. https://doi.org/10.1007/s00338-022-02258-3\nPickren, S. E., Stacy, M., Del Tufo, S. N., Spencer, M., \u0026amp; Cutting, L. E. (2022). The Contribution of Text Characteristics to Reading Comprehension: Investigating the Influence of Text Emotionality. Reading Research Quarterly, 57(2), 649–667. https://doi.org/10.1002/rrq.431\nPillaud, N., Ballot, C., Robert, C., Mathey, S., \u0026amp; Ric, F. (2023). Is the approach avoidance compatibility effect moderated by word imageability? Quarterly Journal of Experimental Psychology, 17470218231194499. https://doi.org/10.1177/17470218231194499\nPintos, A. S., Hui, C. L.-M., De Deyne, S., Cheung, C., Ko, W. T., Nam, S. Y., Chan, S. K.-W., Chang, W.-C., Lee, E. H.-M., Lo, A. W.-F., Lo, T.-L., Elvevåg, B., \u0026amp; Chen, E. Y.-H. (2022). A Longitudinal Study of Semantic Networks in Schizophrenia and other Psychotic Disorders Using the Word Association Task. Schizophrenia Bulletin Open, 3(1), sgac054. https://doi.org/10.1093/schizbullopen/sgac054\nPirnau, M., Priescu, I., Joita, D., \u0026amp; Priescu, C. (2022). The correlation between Internet user searches and Blockchain technology. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1–6. https://doi.org/10.1109/ECAI54874.2022.9847447\nPlanchuelo, C., Buades-Sitjar, F., Hinojosa, J. A., \u0026amp; Duñabeitia, J. A. (2022). The Nature of Word Associations in Sentence Contexts. Experimental Psychology, 69(2), 104–110. https://doi.org/10.1027/1618-3169/a000547\nPlisiecki, H., \u0026amp; Sobieszek, A. (2023). Extrapolation of affective norms using transformer-based neural networks and its application to experimental stimuli selection. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02212-3\nPolverino, G., Sagastume-Espinoza, K., Simmons, L. W., \u0026amp; Kelley, J. L. (2022). Background matching explains repeatable individual variation in the defence strategies of a stick insect. Animal Behaviour, 194, 185–192. https://doi.org/10.1016/j.anbehav.2022.10.003\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355–381. https://doi.org/10.19090/pp.v15i3.2400\nPowell, T., Plate, R. C., Miron, C. D., Wagner, N. J., \u0026amp; Waller, R. (2023). Callous-unemotional Traits and Emotion Recognition Difficulties: Do Stimulus Characteristics Play a role? Child Psychiatry \u0026amp; Human Development. https://doi.org/10.1007/s10578-023-01510-3\nPreddie, J. P., \u0026amp; Biernat, M. (2021). More than the Sum of Its Parts: Intersections of Sexual Orientation and Race as They Influence Perceptions of Group Similarity and Stereotype Content. Sex Roles, 84(9–10), 554–573. https://doi.org/10.1007/s11199-020-01185-3\nPrentice, P. M., Mnatzaganian, C., Houslay, T. M., Thornton, A., \u0026amp; Wilson, A. J. (2022). Individual differences in spatial learning are correlated across tasks but not with stress response behaviour in guppies. Animal Behaviour, 188, 133–146. https://doi.org/10.1016/j.anbehav.2022.04.009\nProchazka, A., Charvatova, H., \u0026amp; Vysata, O. (2022). The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2467–2473. https://doi.org/10.1109/TNSRE.2022.3201487\nPuhacheuskaya, V., Hubert Lyall, I., \u0026amp; Järvikivi, J. (2022). COVIDisgust: Language processing through the lens of partisanship. PLOS ONE, 17(7), e0271206. https://doi.org/10.1371/journal.pone.0271206\nQuante, S. M., Siewert, V., Palme, R., Kaiser, S., Sachser, N., \u0026amp; Richter, S. H. (2023). The power of a touch: Regular touchscreen training but not its termination affects hormones and behavior in mice. Frontiers in Behavioral Neuroscience, 17, 1112780. https://doi.org/10.3389/fnbeh.2023.1112780\nRaghunath, B. L., Mulatti, C., Neoh, M. J.-Y., Bornstein, M. H., \u0026amp; Esposito, G. (2021). The Associations between Imageability of Positive and Negative Valence Words and Fear Reactivity. Psychiatry International, 2(1), 32–47. https://doi.org/10.3390/psychiatryint2010003\nRaghupathi, V., Ren, J., \u0026amp; Raghupathi, W. (2021). Understanding the nature and dimensions of litigation crowdfunding: A visual analytics approach. PLOS ONE, 16(4), e0250522. https://doi.org/10.1371/journal.pone.0250522\nRamos, S., Goldschmidt, R., \u0026amp; Garcia, A. (2022). Social Bots Detection: A Method based on a Sentiment Lexicon Learned from Messages: Proceedings of the 24th International Conference on Enterprise Information Systems, 273–280. https://doi.org/10.5220/0011115000003179\nRamotowska, S., Steinert‐Threlkeld, S., Van Maanen, L., \u0026amp; Szymanik, J. (2023). Uncovering the Structure of Semantic Representations Using a Computational Model of Decision‐Making. Cognitive Science, 47(1), e13234. https://doi.org/10.1111/cogs.13234\nRanjan, S., Rajkumar, R., \u0026amp; Agarwal, S. (2022). Locality and expectation effects in Hindi preverbal constituent ordering. Cognition, 223, 104959. https://doi.org/10.1016/j.cognition.2021.104959\nRaw, J., Rorke, A., Ellis, J., Murayama, K., \u0026amp; Sakaki, M. (2023). Memory of the U.K.’s 2016 EU referendum: The effects of valence on the long-term measures of a public event. Emotion, 23(1), 52–74. https://doi.org/10.1037/emo0000788\nRazova, E., Vychegzhanin, S., \u0026amp; Kotelnikov, E. (2022). Does BERT Look at Sentiment Lexicon? In E. Burnaev, D. I. Ignatov, S. Ivanov, M. Khachay, O. Koltsova, A. Kutuzov, S. O. Kuznetsov, N. Loukachevitch, A. Napoli, A. Panchenko, P. M. Pardalos, J. Saramäki, A. V. Savchenko, E. Tsymbalov, \u0026amp; E. Tutubalina (Eds.), Recent Trends in Analysis of Images, Social Networks and Texts (Vol. 1573, pp. 55–67). Springer International Publishing. https://doi.org/10.1007/978-3-031-15168-2_6\nReggin, L. D., Muraki, E. J., \u0026amp; Pexman, P. M. (2021). Development of Abstract Word Knowledge. Frontiers in Psychology, 12, 686478. https://doi.org/10.3389/fpsyg.2021.686478\nReifegerste, J., Meyer, A. S., Zwitserlood, P., \u0026amp; Ullman, M. T. (2021). Aging affects steaks more than knives: Evidence that the processing of words related to motor skills is relatively spared in aging. Brain and Language, 218, 104941. https://doi.org/10.1016/j.bandl.2021.104941\nReilly, J., Finley, A. M., Kelly, A., Zuckerman, B., \u0026amp; Flurie, M. (2021). Olfactory language and semantic processing in anosmia: A neuropsychological case control study. Neurocase, 27(1), 86–96. https://doi.org/10.1080/13554794.2020.1871491\nReilly, J., Finley, A. M., Litovsky, C. P., \u0026amp; Kenett, Y. N. (2023). Bigram semantic distance as an index of continuous semantic flow in natural language: Theory, tools, and applications. Journal of Experimental Psychology: General, 152(9), 2578–2590. https://doi.org/10.1037/xge0001389\nReinboth, T., \u0026amp; Farkaš, I. (2022). Ultimate Grounding of Abstract Concepts: A Graded Account. Journal of Cognition, 5(1), 21. https://doi.org/10.5334/joc.214\nRen, J., Raghupathi, V., \u0026amp; Raghupathi, W. (2021a). Exploring the Factors that Determine the Success of Litigation Crowdfunding: Implications for Social Justice. Technological Forecasting and Social Change, 169, 120813. https://doi.org/10.1016/j.techfore.2021.120813\nRen, J., Raghupathi, V., \u0026amp; Raghupathi, W. (2021b). Exploring the subjective nature of crowdfunding decisions. Journal of Business Venturing Insights, 15, e00233. https://doi.org/10.1016/j.jbvi.2021.e00233\nRGCL, University of Wolverhampton, Wolverhampton, UK, Saadany, H., Orăsan, C., Centre for Translation Studies, University of Surrey, Guildford, UK, Mohamed, E., RGCL, University of Wolverhampton, Wolverhampton, UK, Tantavy, A., \u0026amp; School of Computer Science and Informatics, De Montfort University, Leicester, UK. (2021). Sentiment-Aware Measure (SAM) for Evaluating Sentiment Transfer by Machine Translation Systems. Proceedings of the Conference Recent Advances in Natural Language Processing - Deep Learning for Natural Language Processing Methods and Applications, 1217–1226. https://doi.org/10.26615/978-954-452-072-4_137\nRiccardi, N., Rorden, C., Fridriksson, J., \u0026amp; Desai, R. H. (2022). Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? Neurobiology of Language, 3(2), 318–344. https://doi.org/10.1162/nol_a_00067\nRichetin, J., \u0026amp; Perugini, M. (2022). The organic diet effect on person perception. Appetite, 168, 105696. https://doi.org/10.1016/j.appet.2021.105696\nRichie, R., Aka, A., \u0026amp; Bhatia, S. (2023). Free association in a neural network. Psychological Review, 130(5), 1360–1382. https://doi.org/10.1037/rev0000396\nRichie, R., \u0026amp; Bhatia, S. (2021). Similarity Judgment Within and Across Categories: A Comprehensive Model Comparison. Cognitive Science, 45(8), e13030. https://doi.org/10.1111/cogs.13030\nRiis, J. L., Ahmadi, H., Hamilton, K. R., Bryce, C. I., Blair, C., \u0026amp; Granger, D. A. (2021). The case for the repeatability intra-class correlation as a metric of precision for salivary bioscience data: Justification, assessment, application, and implications. Psychoneuroendocrinology, 128, 105203. https://doi.org/10.1016/j.psyneuen.2021.105203\nRiley, S. P., Harris, J., O’Halloran, B. J., Showalter, C. R., \u0026amp; Learman, K. E. (2021). Symptom response to mobilization and outcomes in patients with subacromial pain syndrome: A cohort study. Physiotherapy Research International, 26(3), e1914. https://doi.org/10.1002/pri.1914\nRoberto Cubelli. (2022). Embodied cognition: Nessuna rivoluzione. Giornale italiano di psicologia, 2, 437–443. https://doi.org/10.1421/105154\nRocca, R., \u0026amp; Yarkoni, T. (2021). Putting Psychology to the Test: Rethinking Model Evaluation Through Benchmarking and Prediction. Advances in Methods and Practices in Psychological Science, 4(3), 251524592110268. https://doi.org/10.1177/25152459211026864\nRochanavibhata, S., \u0026amp; Marian, V. (2023). Culture and Gender Influence Self-Construal in Mother-Preschooler Reminiscing. Journal of Cognition and Development, 24(5), 653–677. https://doi.org/10.1080/15248372.2023.2239920\nRoche, F., Becker, S., \u0026amp; Thüring, M. (2022). What happens when drivers of automated vehicles take over control in critical lane change situations? Transportation Research Part F: Traffic Psychology and Behaviour, 84, 407–422. https://doi.org/10.1016/j.trf.2021.11.021\nRocklage, M. D., Rucker, D. D., \u0026amp; Nordgren, L. F. (2021). Mass-scale emotionality reveals human behaviour and marketplace success. Nature Human Behaviour, 5(10), 1323–1329. https://doi.org/10.1038/s41562-021-01098-5\nRoettger, T. B. (2021). Preregistration in experimental linguistics: Applications, challenges, and limitations. Linguistics, 59(5), 1227–1249. https://doi.org/10.1515/ling-2019-0048\nRonai, E., \u0026amp; Xiang, M. (2023). Memory Versus Expectation: Processing Relative Clauses in a Flexible Word Order Language. Cognitive Science, 47(1), e13227. https://doi.org/10.1111/cogs.13227\nRosá, A., \u0026amp; Chiruzzo, L. (2021). Emotion Classification in Spanish: Exploring the Hard Classes. Information, 12(11), 438. https://doi.org/10.3390/info12110438\nRoth, A. M., Kent, S. M., Hobson, E. A., Kritsky, G., \u0026amp; Nakagawa, S. (2022). Personality-mediated speed-accuracy tradeoffs in mating in a 17-year periodical cicada. Behavioral Ecology, 33(6), 1141–1152. https://doi.org/10.1093/beheco/arac082\nRougier, M., Schmitz, M., \u0026amp; Yzerbyt, V. (2021). When my actions shape your looks: Experience-based properties of approach/avoidance bias the visual representation of others. Journal of Personality and Social Psychology, 120(5), 1146–1174. https://doi.org/10.1037/pspa0000268\nRoxburgh, A., Grasso, F., \u0026amp; Payne, T. R. (2023). A Multi-relationship Language Acquisition Model for Predicting Child Vocabulary Growth. In L. Iliadis, I. Maglogiannis, S. Alonso, C. Jayne, \u0026amp; E. Pimenidis (Eds.), Engineering Applications of Neural Networks (Vol. 1826, pp. 155–167). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-34204-2_14\nRudar, J., Porter, T. M., Wright, M., Golding, G. B., \u0026amp; Hajibabaei, M. (2022). LANDMark: An ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data. BMC Bioinformatics, 23(1), 110. https://doi.org/10.1186/s12859-022-04631-z\nRuíz, J. O., \u0026amp; Macizo, P. (2021). Ambiguous Sentence Processing in Translation. Psicológica Journal, 42(2), 142–176. https://doi.org/10.2478/psicolj-2021-0008\nRuss, B. E., Petkov, C. I., Kwok, S. C., Zhu, Q., Belin, P., Vanduffel, W., \u0026amp; Hamed, S. B. (2021). Common functional localizers to enhance NHP \u0026amp; cross-species neuroscience imaging research. NeuroImage, 237, 118203. https://doi.org/10.1016/j.neuroimage.2021.118203\nSalazar, S. M., García, J. I. C., Kuspiel, M., Fokkema, R. W., Komdeur, J., \u0026amp; Korsten, P. (2021). Male aggressiveness and risk-taking during reproduction are repeatable but not correlated in a wild bird population. Behavioral Ecology and Sociobiology, 75(7), 108. https://doi.org/10.1007/s00265-021-03044-x\nSametoğlu, S., Pelt, D. H. M., Eichstaedt, J. C., Ungar, L. H., \u0026amp; Bartels, M. (2023). The value of social media language for the assessment of wellbeing: A systematic review and meta-analysis. The Journal of Positive Psychology, 1–19. https://doi.org/10.1080/17439760.2023.2218341\nSánchez, M. J., Fernández, M., \u0026amp; Pérez-García, E. (2022). Comparison of the context provision and imagination elicitation approaches to learning emotional vocabulary. Language Teaching Research, 136216882211314. https://doi.org/10.1177/13621688221131449\nSanton, M., Korner-Nievergelt, F., Michiels, N. K., \u0026amp; Anthes, N. (2023). A versatile workflow for linear modelling in R. Frontiers in Ecology and Evolution, 11, 1065273. https://doi.org/10.3389/fevo.2023.1065273\nSargeant, J. M., Ruple, A., Selmic, L. E., \u0026amp; O’Connor, A. M. (2023). The standards of reporting trials in pets (PetSORT): Explanation and elaboration. Frontiers in Veterinary Science, 10, 1137781. https://doi.org/10.3389/fvets.2023.1137781\nSarkar, S., Bhagwat, A., \u0026amp; Mukherjee, A. (2022). A core-periphery structure-based network embedding approach. Social Network Analysis and Mining, 12(1), 32. https://doi.org/10.1007/s13278-021-00749-9\nSarli, L., \u0026amp; Justel, N. (2021). Emotional words in Spanish: Adaptation and cross-cultural differences for the affective norms for English words (ANEW) on a sample of Argentinian adults. Behavior Research Methods, 54(4), 1595–1610. https://doi.org/10.3758/s13428-021-01682-7\nSarraude, T., Hsu, B.-Y., Ruuskanen, S., \u0026amp; Groothuis, T. (2021). Is maternal thyroid hormone deposition subject to a trade-off between self and egg because of iodine? An experimental study in rock pigeon. Journal of Experimental Biology, 224(20), jeb242203. https://doi.org/10.1242/jeb.242203\nSauppe, S., Andrews, C., \u0026amp; Norcliffe, E. (2023). Experimental research in cross-linguistic psycholinguistics. In S. Zufferey \u0026amp; P. Gygax, The Routledge Handbook of Experimental Linguistics (1st ed., pp. 156–172). Routledge. https://doi.org/10.4324/9781003392972-12\nSavela, N., Oksanen, A., Pellert, M., \u0026amp; Garcia, D. (2021). Emotional reactions to robot colleagues in a role-playing experiment. International Journal of Information Management, 60, 102361. https://doi.org/10.1016/j.ijinfomgt.2021.102361\nScaltritti, M., Giacomoni, F., Job, R., \u0026amp; Sulpizio, S. (2023). Redefining the decisional components of motor responses: Evidence from lexical and object decision tasks. Journal of Experimental Psychology: Human Perception and Performance, 49(6), 835–851. https://doi.org/10.1037/xhp0001113\nScaltritti, M., Job, R., \u0026amp; Sulpizio, S. (2022). Different types of semantic interference, same lapses of attention: Evidence from Stroop tasks. Memory \u0026amp; Cognition, 50(5), 898–910. https://doi.org/10.3758/s13421-021-01256-0\nScerrati, E., D’Ascenzo, S., Nicoletti, R., Villani, C., \u0026amp; Lugli, L. (2022). Assessing Interpersonal Proximity Evaluation in the COVID-19 Era: Evidence From the Affective Priming Task. Frontiers in Psychology, 13, 901730. https://doi.org/10.3389/fpsyg.2022.901730\nSchad, D. J., Betancourt, M., \u0026amp; Vasishth, S. (2021). Toward a principled Bayesian workflow in cognitive science. Psychological Methods, 26(1), 103–126. https://doi.org/10.1037/met0000275\nScheffer, M., Van De Leemput, I., Weinans, E., \u0026amp; Bollen, J. (2021). The rise and fall of rationality in language. Proceedings of the National Academy of Sciences, 118(51), e2107848118. https://doi.org/10.1073/pnas.2107848118\nSchlund, M. W., Carter, H., Cudd, G., Murphy, K., Ahmed, N., Dymond, S., \u0026amp; Tone, E. B. (2021). Human social defeat and approach–avoidance: Escalating social‐evaluative threat and threat of aggression increases social avoidance. Journal of the Experimental Analysis of Behavior, 115(1), 157–184. https://doi.org/10.1002/jeab.654\nSchmidtke, D., \u0026amp; Moro, A. L. (2021). Determinants of Word‐Reading Development in English Learner University Students: A Longitudinal Eye Movement Study. Reading Research Quarterly, 56(4), 819–854. https://doi.org/10.1002/rrq.362\nSchmidtke, D., Van Dyke, J. A., \u0026amp; Kuperman, V. (2021). CompLex: An eye-movement database of compound word reading in English. Behavior Research Methods, 53(1), 59–77. https://doi.org/10.3758/s13428-020-01397-1\nSchnatschmidt, M., Lollies, F., \u0026amp; Schlarb, A. A. (2022a). A single-arm pilot study: Can a parental sleep intervention for sleep-disturbed young children in individual settings improve children’s sleep, crying, eating, and parental distress in mothers and fathers? BMC Pediatrics, 22(1), 578. https://doi.org/10.1186/s12887-022-03631-5\nSchnatschmidt, M., Lollies, F., \u0026amp; Schlarb, A. A. (2022b). Can a parental sleep intervention in an individual setting improve the maternal and paternal sense of competence and parent–child interaction in parents of young sleep-disturbed children? Findings from a single-arm pilot intervention study. BMC Psychology, 10(1), 243. https://doi.org/10.1186/s40359-022-00945-y\nSchnepf, J., \u0026amp; Christmann, U. (2022). “It’s a war! It’s a battle! It’s a fight!”: Do militaristic metaphors increase people’s threat perceptions and support for COVID ‐19 policies? International Journal of Psychology, 57(1), 107–126. https://doi.org/10.1002/ijop.12797\nSchnur, T. T., \u0026amp; Lei, C.-M. (2022). Assessing naming errors using an automated machine learning approach. Neuropsychology, 36(8), 709–718. https://doi.org/10.1037/neu0000860\nSchoknecht, P., Roehm, D., Schlesewsky, M., \u0026amp; Bornkessel-Schlesewsky, I. (2022). The interaction of predictive processing and similarity-based retrieval interference: An ERP study. Language, Cognition and Neuroscience, 37(7), 883–901. https://doi.org/10.1080/23273798.2022.2026421\nSchool of Electrical and Computer Engineering, College of Engineering University of Tehran, Tehran, Iran, Sabri, N., Akhavan, R., School of Electrical and Computer Engineering, College of Engineering University of Tehran, Tehran, Iran, Bahrak, B., \u0026amp; School of Electrical and Computer Engineering, College of Engineering University of Tehran, Tehran, Iran. (2021). EmoPars: A Collection of 30K Emotion-Annotated Persian Social Media Texts. 167–173. https://doi.org/10.26615/issn.2603-2821.2021_023\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSchumacher, R. A., \u0026amp; Pierrehumbert, J. B. (2021). Familiarity, consistency, and systematizing in morphology. Cognition, 212, 104512. https://doi.org/10.1016/j.cognition.2020.104512\nSchutte, M. H., Kleemann, R., Nota, N. M., Wiepjes, C. M., Snabel, J. M., T’Sjoen, G., Thijs, A., \u0026amp; Den Heijer, M. (2022). The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLOS ONE, 17(3), e0261312. https://doi.org/10.1371/journal.pone.0261312\nSchwab, J., Xiang, M., \u0026amp; Liu, M. (2022). Antilocality effect without head-final dependencies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(3), 446–463. https://doi.org/10.1037/xlm0001079\nSchwartz, C. E., Stark, R. B., \u0026amp; Stucky, B. D. (2021). Response-shift effects in neuromyelitis optica spectrum disorder: A secondary analysis of clinical trial data. Quality of Life Research, 30(5), 1267–1282. https://doi.org/10.1007/s11136-020-02707-y\nSchwetlick, L., Backhaus, D., \u0026amp; Engbert, R. (2023). A dynamical scan-path model for task-dependence during scene viewing. Psychological Review, 130(3), 807–840. https://doi.org/10.1037/rev0000379\nSerra, M. J. (2021). Animate and Inanimate Words Demonstrate Equivalent Retrieval Dynamics Despite the Occurrence of the Animacy Advantage. Frontiers in Psychology, 12, 661451. https://doi.org/10.3389/fpsyg.2021.661451\nShaeri Karimi, S., Saintilan, N., Wen, L., \u0026amp; Cox, J. (2022). Spatio‐temporal effects of inundation and climate on vegetation greenness dynamics in dryland floodplains. Ecohydrology, 15(2), e2378. https://doi.org/10.1002/eco.2378\nShang, L., Little, D. R., Webb, M. E., Eidels, A., \u0026amp; Yang, C.-T. (2021). The workload capacity of semantic search in convergent thinking. Journal of Experimental Psychology: General, 150(11), 2230–2245. https://doi.org/10.1037/xge0001045\nSharma, C., \u0026amp; Saxena, P. (2021). Stress Analysis for Students in Online Classes. 2021 Grace Hopper Celebration India (GHCI), 1–5. https://doi.org/10.1109/GHCI50508.2021.9514059\nShaver, A. L., Noyes, K., Ochs-Balcom, H. M., Wilding, G., Ray, A. D., Ma, S. J., Farrugia, M., Singh, A. K., \u0026amp; Platek, M. E. (2021). A Retrospective Cohort Study of Myosteatosis and Quality of Life in Head and Neck Cancer Patients. Cancers, 13(17), 4283. https://doi.org/10.3390/cancers13174283\nSheng, Y., Yang, C., Curhan, S., Curhan, G., \u0026amp; Wang, M. (2022). Analytical methods for correlated data arising from multicenter hearing studies. Statistics in Medicine, 41(26), 5335–5348. https://doi.org/10.1002/sim.9572\nShepherd, D. A., Seyb, S. K., \u0026amp; George, G. (2023). Grounding Business Models: Cognition, Boundary Objects, and Business Model Change. Academy of Management Review, 48(1), 100–122. https://doi.org/10.5465/amr.2020.0173\nShi, R., Xie, J., Yang, M., \u0026amp; Wang, R. (2022). The influence of language and context on sensorimotor simulation of concrete concepts. Acta Psychologica Sinica, 54(6), 583–594. https://doi.org/10.3724/SP.J.1041.2022.00583\nShiron, V., Liu, H., \u0026amp; De Bruin, A. (2021). Being a Student or at Home: Does Topic Influence How Bilinguals Process Words in Each Language? Languages, 6(3), 150. https://doi.org/10.3390/languages6030150\nSidhu, D. M., \u0026amp; Pexman, P. M. (2021). Implications of the “Language as Situated” View for Written Iconicity. Journal of Cognition, 4(1), 40. https://doi.org/10.5334/joc.159\nSidhu, D. M., Vigliocco, G., \u0026amp; Pexman, P. M. (2022). Higher order factors of sound symbolism. Journal of Memory and Language, 125, 104323. https://doi.org/10.1016/j.jml.2022.104323\nSidhu, D. M., Westbury, C., Hollis, G., \u0026amp; Pexman, P. M. (2021). Sound symbolism shapes the English language: The maluma/takete effect in English nouns. Psychonomic Bulletin \u0026amp; Review, 28(4), 1390–1398. https://doi.org/10.3758/s13423-021-01883-3\nSiegel-Ramsay, J. E., Wu, B., Bond, M., Spelber, D., Chiang, K. S., Lanza Di Scalea, T., Collier, S. J., Smith, T., Nunez, L., Fuller, E., Strakowski, S. M., Lippard, E., \u0026amp; Almeida, J. R. C. (2022). Subjective cognitive impairment and its relationship to sleep impairment, anxiety severity, and depressive symptoms in individuals with bipolar disorder. Journal of Affective Disorders Reports, 10, 100442. https://doi.org/10.1016/j.jadr.2022.100442\nSiew, C. S. Q., Engelthaler, T., \u0026amp; Hills, T. T. (2022). Nymph piss and gravy orgies: Local and global contrast effects in relational humor. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 1047–1063. https://doi.org/10.1037/xlm0001120\nSilcox, J. W., \u0026amp; Payne, B. R. (2021). The costs (and benefits) of effortful listening on context processing: A simultaneous electrophysiology, pupillometry, and behavioral study. Cortex, 142, 296–316. https://doi.org/10.1016/j.cortex.2021.06.007\nSims, S., Anders, J., Inglis, M., \u0026amp; Lortie-Forgues, H. (2023). Quantifying “Promising Trials Bias” in Randomized Controlled Trials in Education. Journal of Research on Educational Effectiveness, 16(4), 663–680. https://doi.org/10.1080/19345747.2022.2090470\nSinclair, J., Jang, E. E., \u0026amp; Rudzicz, F. (2021). Using machine learning to predict children’s reading comprehension from linguistic features extracted from speech and writing. Journal of Educational Psychology, 113(6), 1088–1106. https://doi.org/10.1037/edu0000658\nSkotis, A., \u0026amp; Livas, C. (2022). A data-driven analysis of experience in urban historic districts. Annals of Tourism Research Empirical Insights, 3(2), 100052. https://doi.org/10.1016/j.annale.2022.100052\nSládeček, M., Brynychová, K., Elhassan, E., Šálek, M. E., Janatová, V., Vozabulová, E., Chajma, P., Firlová, V., Pešková, L., Almuhery, A., \u0026amp; Bulla, M. (2021). Diel timing of nest predation changes across breeding season in a subtropical shorebird. Ecology and Evolution, 11(19), 13101–13117. https://doi.org/10.1002/ece3.8025\nSlavova, V., \u0026amp; Andonov, F. (2022). Bad news or good news when recognizing emotional valence using phonemic content. 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), 1–6. https://doi.org/10.1109/INFOTEH53737.2022.9751339\nSlegers, A., Chafouleas, G., Montembeault, M., Bedetti, C., Welch, A. E., Rabinovici, G. D., Langlais, P., Gorno-Tempini, M. L., \u0026amp; Brambati, S. M. (2021). Connected speech markers of amyloid burden in primary progressive aphasia. Cortex, 145, 160–168. https://doi.org/10.1016/j.cortex.2021.09.010\nSoh, Y. Q., Lee, J., \u0026amp; Tan, Y.-Y. (2022). Ethnicity and Tone Production on Singlish Particles. Languages, 7(3), 243. https://doi.org/10.3390/languages7030243\nSolovyev, V., Islamov, M., \u0026amp; Bayrasheva, V. (2022). Dictionary with the Evaluation of Positivity/Negativity Degree of the Russian Words. In S. R. M. Prasanna, A. Karpov, K. Samudravijaya, \u0026amp; S. S. Agrawal (Eds.), Speech and Computer (Vol. 13721, pp. 651–664). Springer International Publishing. https://doi.org/10.1007/978-3-031-20980-2_55\nSolovyev, V., \u0026amp; Ivanov, V. (2022). Extrapolation of Human Estimates of the Concreteness/ Abstractness of Words by Neural Networks of Various Architectures. Applied Sciences, 12(9), 4750. https://doi.org/10.3390/app12094750\nSong, D., \u0026amp; Li, D. (2021). Psycholinguistic Norms for 3,783 Two-Character Words in Simplified Chinese. SAGE Open, 11(4), 215824402110544. https://doi.org/10.1177/21582440211054495\nSönning, L., \u0026amp; Werner, V. (2021). The replication crisis, scientific revolutions, and linguistics. Linguistics, 59(5), 1179–1206. https://doi.org/10.1515/ling-2019-0045\nSoriano, C. (2022). 23 Affective meaning in language. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 489–510). De Gruyter. https://doi.org/10.1515/9783110347524-023\nSosoo, E. E., MacCormack, J. K., \u0026amp; Neblett, E. W. (2022). Psychophysiological and affective reactivity to vicarious police violence. Psychophysiology, 59(10), e14065. https://doi.org/10.1111/psyp.14065\nSouders, T., Stefaniak, J., Baaki, J., \u0026amp; Dice, T. (2023). The effect of emotive case construction on knowledge acquisition and ethical sense-making. Journal of Computing in Higher Education. https://doi.org/10.1007/s12528-023-09383-0\nSpecker, E., Douda, M., \u0026amp; Leder, H. (2023). How Do We Understand Artworks? Exploring the Role of Artwork Inherent Features in Art Processing. Empirical Studies of the Arts, 02762374231201074. https://doi.org/10.1177/02762374231201074\nSpeed, L. J., Atkinson, H., Wnuk, E., \u0026amp; Majid, A. (2021). The Sound of Smell: Associating Odor Valence With Disgust Sounds. Cognitive Science, 45(5), e12980. https://doi.org/10.1111/cogs.12980\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306–1318. https://doi.org/10.3758/s13428-021-01656-9\nSpeed, L. J., \u0026amp; Brysbaert, M. (2023). Ratings of valence, arousal, happiness, anger, fear, sadness, disgust, and surprise for 24,000 Dutch words. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02239-6\nSpeed, L. J., Iravani, B., Lundström, J. N., \u0026amp; Majid, A. (2022). Losing the sense of smell does not disrupt processing of odor words. Brain and Language, 235, 105200. https://doi.org/10.1016/j.bandl.2022.105200\nSpeed, L. J., Papies, E. K., \u0026amp; Majid, A. (2023). Mental simulation across sensory modalities predicts attractiveness of food concepts. Journal of Experimental Psychology: Applied, 29(3), 557–571. https://doi.org/10.1037/xap0000461\nSrinivasan, V., Santhanam, S., \u0026amp; Shaikh, S. (2021). Using reinforcement learning with external rewards for open-domain natural language generation. Journal of Intelligent Information Systems, 56(1), 189–206. https://doi.org/10.1007/s10844-020-00626-5\nStead, J. E., Boucher, V. L., Moyle, P. B., \u0026amp; Rypel, A. L. (2022). Growth of Lahontan cutthroat trout from multiple sources re-introduced into Sagehen Creek, CA. PeerJ, 10, e13322. https://doi.org/10.7717/peerj.13322\nSteele, J., Fisher, J. P., Giessing, J., Androulakis-Korakakis, P., Wolf, M., Kroeske, B., \u0026amp; Reuters, R. (2023). Long-Term Time-Course of Strength Adaptation to Minimal Dose Resistance Training Through Retrospective Longitudinal Growth Modeling. Research Quarterly for Exercise and Sport, 94(4), 913–930. https://doi.org/10.1080/02701367.2022.2070592\nSteinhilber, B., Seibt, R., Gabriel, J., Brountsou, J., Muljono, M., Downar, T., Bär, M., Bonsch, R., Brandt, A., Martus, P., \u0026amp; Rieger, M. A. (2022). Effects of Face Masks on Physical Performance and Physiological Response during a Submaximal Bicycle Ergometer Test. International Journal of Environmental Research and Public Health, 19(3), 1063. https://doi.org/10.3390/ijerph19031063\nStella, M., Kapuza, A., Cramer, C., \u0026amp; Uzzo, S. (2021). Mapping computational thinking mindsets between educational levels with cognitive network science. Journal of Complex Networks, 9(6), cnab020. https://doi.org/10.1093/comnet/cnab020\nStella, M., Vitevitch, M. S., \u0026amp; Botta, F. (2022). Cognitive Networks Extract Insights on COVID-19 Vaccines from English and Italian Popular Tweets: Anticipation, Logistics, Conspiracy and Loss of Trust. Big Data and Cognitive Computing, 6(2), 52. https://doi.org/10.3390/bdcc6020052\nStepankova, S., Harding, N., Mayorga, D. M., \u0026amp; Trotman, K. T. (2022). Using more effective instructional verbs to elevate auditors’ professional scepticism. International Journal of Auditing, 26(2), 240–251. https://doi.org/10.1111/ijau.12275\nStevens, M., White, S., Robertson, A. M., \u0026amp; Cruwys, T. (2022a). Repeated exercise class attendance: The role of class members’ similarity and social identification. Psychology of Sport and Exercise, 61, 102212. https://doi.org/10.1016/j.psychsport.2022.102212\nStevens, M., White, S., Robertson, A. M., \u0026amp; Cruwys, T. (2022b). Understanding exercise class attendees’ in-class behaviors, experiences, and future class attendance: The role of class leaders’ identity entrepreneurship. Sport, Exercise, and Performance Psychology, 11(4), 494–508. https://doi.org/10.1037/spy0000305\nStirner, M., Gurevitch, G., Lubianiker, N., Hendler, T., Schmahl, C., \u0026amp; Paret, C. (2022). An Investigation of Awareness and Metacognition in Neurofeedback with the Amygdala Electrical Fingerprint. Consciousness and Cognition, 98, 103264. https://doi.org/10.1016/j.concog.2021.103264\nStoinski, L. M., Perkuhn, J., \u0026amp; Hebart, M. N. (2023). THINGSplus: New norms and metadata for the THINGS database of 1854 object concepts and 26,107 natural object images. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02110-8\nStojanovic, I., \u0026amp; Kaiser, E. (2022). Exploring Valence in Judgments of Taste. In J. Wyatt, J. Zakkou, \u0026amp; D. Zeman, Perspectives on Taste (1st ed., pp. 231–259). Routledge. https://doi.org/10.4324/9781003184225-15\nStolicyn, A., Steele, J. D., \u0026amp; Seriès, P. (2022). Prediction of depression symptoms in individual subjects with face and eye movement tracking. Psychological Medicine, 52(9), 1784–1792. https://doi.org/10.1017/S0033291720003608\nStone, J. E., Phillips, A. J. K., Chachos, E., Hand, A. J., Lu, S., Carskadon, M. A., Klerman, E. B., Lockley, S. W., Wiley, J. F., Bei, B., Rajaratnam, S. M. W., \u0026amp; for the CLASS Study Team. (2021). In‐person vs home schooling during the COVID‐19 pandemic: Differences in sleep, circadian timing, and mood in early adolescence. Journal of Pineal Research, 71(2), e12757. https://doi.org/10.1111/jpi.12757\nStone, K., Veríssimo, J., Schad, D. J., Oltrogge, E., Vasishth, S., \u0026amp; Lago, S. (2021). The interaction of grammatically distinct agreement dependencies in predictive processing. Language, Cognition and Neuroscience, 36(9), 1159–1179. https://doi.org/10.1080/23273798.2021.1921816\nStraßer, T., Leinberger, D. T., Hillerkuss, D., Zrenner, E., \u0026amp; Zobor, D. (2022). Comparison of CRT and LCD monitors for objective estimation of visual acuity using the sweep VEP. Documenta Ophthalmologica, 145(2), 133–145. https://doi.org/10.1007/s10633-022-09883-x\nStreet, T., Lewin, A., Woodall, K., Cruz‐Cano, R., Thoma, M., \u0026amp; Stander, V. A. (2022). Gender differences in marital and military predictors of service member career satisfaction. Family Relations, 71(4), 1515–1537. https://doi.org/10.1111/fare.12697\nStrik Lievers, F., Bolognesi, M., \u0026amp; Winter, B. (2021). The linguistic dimensions of concrete and abstract concepts: Lexical category, morphological structure, countability, and etymology. Cognitive Linguistics, 32(4), 641–670. https://doi.org/10.1515/cog-2021-0007\nSugimoto, N., Fukasawa, K., Asahara, A., Kasada, M., Matsuba, M., \u0026amp; Miyashita, T. (2022). Positive and negative effects of land abandonment on butterfly communities revealed by a hierarchical sampling design across climatic regions. Proceedings of the Royal Society B: Biological Sciences, 289(1971), 20212222. https://doi.org/10.1098/rspb.2021.2222\nSulpizio, S., Job, R., Leoni, P., \u0026amp; Scaltritti, M. (2022). Prepotent task-irrelevant semantic information is dampened by domain-specific control mechanisms during visual word recognition. Quarterly Journal of Experimental Psychology, 75(3), 390–405. https://doi.org/10.1177/17470218211030863\nSun, K., \u0026amp; Wang, R. (2022). The Evolutionary Pattern of Language in English Fiction Over the Last Two Centuries: Insights From Linguistic Concreteness and Imageability. SAGE Open, 12(1), 215824402110693. https://doi.org/10.1177/21582440211069386\nSun, K., \u0026amp; Wang, R. (2023). Semantic similarity and mutual information predicting sentence comprehension: The case of dangling topic construction in Chinese. Journal of Cognitive Psychology, 35(2), 142–165. https://doi.org/10.1080/20445911.2022.2154781\nSun, T., Hao, X., He, A., Wang, C., Xu, Y., Guo, C., \u0026amp; Zhou, W. (2021). Evidence for neural re-use hypothesis from the processing of Chinese emotional words. Acta Psychologica Sinica, 53(9), 933–943. https://doi.org/10.3724/SP.J.1041.2021.00933\nSun, Y., Wang, J., Dong, Y., Zheng, H., Yang, J., Zhao, Y., \u0026amp; Dong, W. (2021). The Relationship Between Reading Strategy and Reading Comprehension: A Meta-Analysis. Frontiers in Psychology, 12, 635289. https://doi.org/10.3389/fpsyg.2021.635289\nSundara, M., Zhou, Z. L., Breiss, C., Katsuda, H., \u0026amp; Steffman, J. (2022). Infants’ developing sensitivity to native language phonotactics: A meta-analysis. Cognition, 221, 104993. https://doi.org/10.1016/j.cognition.2021.104993\nSurber, T., Huff, M. J., \u0026amp; Hajnal, A. (2023). The Affordance Directive: Affordance Priming Facilitates Object Detection Similar to Semantic Priming. Psychological Reports, 003329412311743. https://doi.org/10.1177/00332941231174393\nSusanto, Y., \u0026amp; Chin Ng, B. (2022). 25 The use of emotion lexicon in emotion research. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 532–548). De Gruyter. https://doi.org/10.1515/9783110347524-025\nSwaminath, S., Simons, R. M., \u0026amp; Hatwan, M. L. (2023). Understanding Pedophilia: A Theoretical Framework on the Development of Sexual Penchants. Journal of Child Sexual Abuse, 32(6), 732–748. https://doi.org/10.1080/10538712.2023.2236602\nSzubielska, M., \u0026amp; Imbir, K. (2021). The aesthetic experience of critical art: The effects of the context of an art gallery and the way of providing curatorial information. PLOS ONE, 16(5), e0250924. https://doi.org/10.1371/journal.pone.0250924\nTa, V. P., Boyd, R. L., Seraj, S., Keller, A., Griffith, C., Loggarakis, A., \u0026amp; Medema, L. (2022). An inclusive, real-world investigation of persuasion in language and verbal behavior. Journal of Computational Social Science, 5(1), 883–903. https://doi.org/10.1007/s42001-021-00153-5\nTa, V. P., Lande, B., \u0026amp; Suss, J. (2021). Emotional Reactivity and Police Expertise in Use-of-Force Decision-Making. Journal of Police and Criminal Psychology, 36(3), 513–522. https://doi.org/10.1007/s11896-020-09428-5\nTaler, V., \u0026amp; Johns, B. (2022). Using big data to understand bilingual performance in semantic fluency: Findings from the Canadian Longitudinal Study on Aging. PLOS ONE, 17(11), e0277660. https://doi.org/10.1371/journal.pone.0277660\nTallapragada, M., Hardy, B. W., Lybrand, E., \u0026amp; Hallman, W. K. (2021). Impact of Abstract Versus Concrete Conceptualization of Genetic Modification (GM) Technology on Public Perceptions. Risk Analysis, 41(6), 976–991. https://doi.org/10.1111/risa.13591\nTamura, A., Murayama, K., Ishii, R., Sakaki, M., \u0026amp; Tanaka, A. (2022). The effect of low-intensity exercise on emotional and cognitive engagement in the classroom. Npj Science of Learning, 7(1), 9. https://doi.org/10.1038/s41539-022-00125-y\nTan, K. M., Daitch, A. L., Pinheiro-Chagas, P., Fox, K. C. R., Parvizi, J., \u0026amp; Lieberman, M. D. (2022). Electrocorticographic evidence of a common neurocognitive sequence for mentalizing about the self and others. Nature Communications, 13(1), 1919. https://doi.org/10.1038/s41467-022-29510-2\nTang, C., Ahmed, M. H., Yao, C., Mercelis, B., Yoshihara, K., Peumans, M., \u0026amp; Van Meerbeek, B. (2023). Experimental two-step universal adhesives bond durably in a challenging high C-factor cavity model. Dental Materials, 39(1), 70–85. https://doi.org/10.1016/j.dental.2022.11.021\nTang, D., Fu, Y., Wang, H., Liu, B., Zang, A., \u0026amp; Kärkkäinen, T. (2023). The embodiment of emotion-label words and emotion-laden words: Evidence from late Chinese–English bilinguals. Frontiers in Psychology, 14, 1143064. https://doi.org/10.3389/fpsyg.2023.1143064\nTanguay, A. F. N., Johnen, A.-K., Markostamou, I., Lambert, R., Rudrum, M., Davidson, P. S. R., \u0026amp; Renoult, L. (2022). The ERP correlates of self-knowledge in ageing. Memory \u0026amp; Cognition, 50(3), 564–585. https://doi.org/10.3758/s13421-021-01225-7\nTaveter, K., \u0026amp; Kirikal, A. (2022). Prototyping an Architecture of Affective Robotic Systems Based on the Theory of Constructed Emotion. In F. Cavallo, J.-J. Cabibihan, L. Fiorini, A. Sorrentino, H. He, X. Liu, Y. Matsumoto, \u0026amp; S. S. Ge (Eds.), Social Robotics (Vol. 13817, pp. 558–575). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-24667-8_49\nTaylor, E., Nation, K., \u0026amp; Hsiao, Y. (2022). Context Availability and Sentence Availability Ratings for 3,000 English Words and their Association with Lexical Processing. Journal of Cognition, 5(1), 20. https://doi.org/10.5334/joc.211\nTeixeira, A. S., Talaga, S., Swanson, T. J., \u0026amp; Stella, M. (2021). Revealing semantic and emotional structure of suicide notes with cognitive network science. Scientific Reports, 11(1), 19423. https://doi.org/10.1038/s41598-021-98147-w\nTepedino, M., Iancu Potrubacz, M., Imperiale, A., Chimenti, C., Capogreco, M., \u0026amp; D’Amario, M. (2021). Microtensile Bond Strength of Etch-and-Rinse Adhesives in Different Hydroabrasion Conditionings. International Journal of Dentistry, 2021, 1–8. https://doi.org/10.1155/2021/6649578\nTestard, C., Larson, S. M., Watowich, M. M., Kaplinsky, C. H., Bernau, A., Faulder, M., Marshall, H. H., Lehmann, J., Ruiz-Lambides, A., Higham, J. P., Montague, M. J., Snyder-Mackler, N., Platt, M. L., \u0026amp; Brent, L. J. N. (2021). Rhesus macaques build new social connections after a natural disaster. Current Biology, 31(11), 2299-2309.e7. https://doi.org/10.1016/j.cub.2021.03.029\nThemistocleous, C., Webster, K., \u0026amp; Tsapkini, K. (2021). Effects of tDCS on Sound Duration in Patients with Apraxia of Speech in Primary Progressive Aphasia. Brain Sciences, 11(3), 335. https://doi.org/10.3390/brainsci11030335\nTian, X. (2022). Construction of a Multimodal Corpus of College Students’ Spoken English Based on Semantic Concepts. Mobile Information Systems, 2022, 1–10. https://doi.org/10.1155/2022/5270408\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864–884. https://doi.org/10.3758/s13428-021-01650-1\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2023). Curating and extending data for language comparison in Concepticon and NoRaRe. Open Research Europe, 2, 141. https://doi.org/10.12688/openreseurope.15380.2\nTodisco, E., Rocca, R., \u0026amp; Wallentin, M. (2021). The semantics of spatial demonstratives in Spanish: A Demonstrative Choice Task study. Language and Cognition, 13(4), 503–533. https://doi.org/10.1017/langcog.2021.11\nToet, A., Van Der Burg, E., Van Den Broek, T. J., Kaneko, D., Brouwer, A.-M., \u0026amp; Van Erp, J. B. F. (2022). Linking Categorical and Dimensional Approaches to Assess Food-Related Emotions. Foods, 11(7), 972. https://doi.org/10.3390/foods11070972\nTong, C. H. M., Nilsson, M. B., Drott, A., \u0026amp; Peichl, M. (2022). Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden. Forests, 13(6), 842. https://doi.org/10.3390/f13060842\nTong, C. H. M., Nilsson, M. B., Sikström, U., Ring, E., Drott, A., Eklöf, K., Futter, M. N., Peacock, M., Segersten, J., \u0026amp; Peichl, M. (2022). Initial effects of post-harvest ditch cleaning on greenhouse gas fluxes in a hemiboreal peatland forest. Geoderma, 426, 116055. https://doi.org/10.1016/j.geoderma.2022.116055\nTopić, V., Šetić Beg, M., \u0026amp; Domijan, D. (2021). Interakcija između predznaka i pariteta pri obradi jednoznamenkastih brojeva. Psihologijske Teme, 30(2), 327–349. https://doi.org/10.31820/pt.30.2.10\nTran, S. H. N., \u0026amp; Fernandes, M. A. (2023). Age differences in effectiveness of encoding techniques on memory. Aging, Neuropsychology, and Cognition, 1–17. https://doi.org/10.1080/13825585.2023.2202377\nTremblay, M., Rundle, H. D., Videlier, M., \u0026amp; Careau, V. (2021). Territoriality in Drosophila: Indirect effects and covariance with body mass and metabolic rate. Behavioral Ecology, 32(4), 679–685. https://doi.org/10.1093/beheco/arab021\nTrombka, M., Demarzo, M., Campos, D., Antonio, S. B., Cicuto, K., Walcher, A. L., García-Campayo, J., Schuman-Olivier, Z., \u0026amp; Rocha, N. S. (2021). Mindfulness Training Improves Quality of Life and Reduces Depression and Anxiety Symptoms Among Police Officers: Results From the POLICE Study—A Multicenter Randomized Controlled Trial. Frontiers in Psychiatry, 12, 624876. https://doi.org/10.3389/fpsyt.2021.624876\nTroyer, M., \u0026amp; McRae, K. (2022). Thematic and other semantic relations central to abstract (and concrete) concepts. Psychological Research, 86(8), 2399–2416. https://doi.org/10.1007/s00426-021-01484-8\nTrumbower, R. D., Barth, S., Tuthill, C., Slocum, C., Shan, G., Zafonte, R., \u0026amp; Mitchell, G. S. (2022). Caffeine Enhances Intermittent Hypoxia-Induced Gains in Walking Function for People with Chronic Spinal Cord Injury. Journal of Neurotrauma, 39(23–24), 1756–1763. https://doi.org/10.1089/neu.2022.0120\nTruong-Allié, C., Herbeth, M., \u0026amp; Paljic, A. (2023). A study of the influence of AR on the perception, comprehension and projection levels of situation awareness. 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), 541–551. https://doi.org/10.1109/VR55154.2023.00069\nTsang, Y.-K., Huang, J., Wang, S., Wang, J., \u0026amp; Wong, A. W.-K. (2023). Comparing word recognition in simplified and traditional Chinese: A megastudy approach. Quarterly Journal of Experimental Psychology, 174702182311764. https://doi.org/10.1177/17470218231176472\nTse, C., \u0026amp; Altarriba, J. (2022). Independent effects of word concreteness and word valence on immediate serial recall. British Journal of Psychology, 113(3), 820–834. https://doi.org/10.1111/bjop.12566\nTse, C.-S., Huang, Y., Zeng, T., Zhou, Y., \u0026amp; Chan, Y.-L. (2021). The influence of congruency proportion, target eccentricity, and valence strength on the spatial-valence metaphoric congruency effect in a word valence judgment task. Psychological Research, 85(7), 2610–2635. https://doi.org/10.1007/s00426-020-01422-0\nTsukita, K., Sakamaki-Tsukita, H., \u0026amp; Takahashi, R. (2022). Long-term Effect of Regular Physical Activity and Exercise Habits in Patients With Early Parkinson Disease. Neurology, 98(8). https://doi.org/10.1212/WNL.0000000000013218\nTucker, M. A., Idrissi, A., \u0026amp; Almeida, D. (2021). Attraction Effects for Verbal Gender and Number Are Similar but Not Identical: Self-Paced Reading Evidence From Modern Standard Arabic. Frontiers in Psychology, 11, 586464. https://doi.org/10.3389/fpsyg.2020.586464\nUddin, G., Baysal, O., Guerrouj, L., \u0026amp; Khomh, F. (2021). Understanding How and Why Developers Seek and Analyze API-Related Opinions. IEEE Transactions on Software Engineering, 47(4), 694–735. https://doi.org/10.1109/TSE.2019.2903039\nUddin, G., Guéhénuc, Y.-G., Khomh, F., \u0026amp; Roy, C. K. (2022). An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets. ACM Transactions on Software Engineering and Methodology, 31(3), 1–38. https://doi.org/10.1145/3491211\nUddin, G., \u0026amp; Khomh, F. (2021). Automatic Mining of Opinions Expressed About APIs in Stack Overflow. IEEE Transactions on Software Engineering, 47(3), 522–559. https://doi.org/10.1109/TSE.2019.2900245\nUm, M., Revilla, R., \u0026amp; Cyders, M. A. (2023). A meta-analytic review of the effectiveness of mood inductions in eliciting emotion-based behavioral risk-taking and craving in the laboratory. Emotion, 23(1), 214–229. https://doi.org/10.1037/emo0001062\nUniversité Côte d’Azur, Inria, CNRS, I3S, France, Vorakitphan, V., Cabrio, E., Université Côte d’Azur, Inria, CNRS, I3S, France, Villata, S., \u0026amp; Université Côte d’Azur, Inria, CNRS, I3S, France. (2021). “Don’t discuss”: Investigating Semantic and Argumentative Features for Supervised Propagandist Message Detection and Classification. Proceedings of the Conference Recent Advances in Natural Language Processing - Deep Learning for Natural Language Processing Methods and Applications, 1498–1507. https://doi.org/10.26615/978-954-452-072-4_168\nUrquiza-Haas, E. G., \u0026amp; Kotrschal, K. (2022). Human-Animal Similarity and the Imageability of Mental State Concepts for Mentalizing Animals. Journal of Cognition and Culture, 22(3–4), 220–245. https://doi.org/10.1163/15685373-12340133\nUtsumi, A. (2022). A test of indirect grounding of abstract concepts using multimodal distributional semantics. Frontiers in Psychology, 13, 906181. https://doi.org/10.3389/fpsyg.2022.906181\nVainio, L., \u0026amp; Vainio, M. (2022). Interaction between grasping and articulation: How vowel and consonant pronunciation influences precision and power grip responses. PLOS ONE, 17(3), e0265651. https://doi.org/10.1371/journal.pone.0265651\nVan De Weijer, J., Bianchi, I., \u0026amp; Paradis, C. (2023). Sensory modality profiles of antonyms. Language and Cognition, 1–15. https://doi.org/10.1017/langcog.2023.20\nVan Deinsen, L., \u0026amp; Van De Velde, F. (2022). Geslachtelijke geschiedschrijving? Een distant reading van de evaluatie van mannelijke en vrouwelijke auteurs in Nederlandse literatuurgeschiedenissen. Nederlandse Letterkunde, 27(2), 121–160. https://doi.org/10.5117/NEDLET2022.2.001.DEIN\nVan Paridon, J., \u0026amp; Thompson, B. (2021). subs2vec: Word embeddings from subtitles in 55 languages. Behavior Research Methods, 53(2), 629–655. https://doi.org/10.3758/s13428-020-01406-3\nVan Schijndel, M., \u0026amp; Linzen, T. (2021). Single‐Stage Prediction Models Do Not Explain the Magnitude of Syntactic Disambiguation Difficulty. Cognitive Science, 45(6), e12988. https://doi.org/10.1111/cogs.12988\nVanArsdall, J. E., \u0026amp; Blunt, J. R. (2022). Analyzing the structure of animacy: Exploring relationships among six new animacy and 15 existing normative dimensions for 1,200 concrete nouns. Memory \u0026amp; Cognition, 50(5), 997–1012. https://doi.org/10.3758/s13421-021-01266-y\nVankrunkelsven, H., Yang, Y., Brysbaert, M., De Deyne, S., \u0026amp; Storms, G. (2022). Semantic gender: Norms for 24,000 Dutch words and its role in word meaning. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02032-x\nVari, J., \u0026amp; Tamburelli, M. (2023). Standardisation: Bolstering positive attitudes towards endangered language varieties? Evidence from implicit attitudes. Journal of Multilingual and Multicultural Development, 44(6), 447–466. https://doi.org/10.1080/01434632.2020.1829632\nVasishth, S. (2023). New directions in statistical analysis for experimental linguistics. In S. Zufferey \u0026amp; P. Gygax, The Routledge Handbook of Experimental Linguistics (1st ed., pp. 313–329). Routledge. https://doi.org/10.4324/9781003392972-23\nVasishth, S., \u0026amp; Gelman, A. (2021). How to embrace variation and accept uncertainty in linguistic and psycholinguistic data analysis. Linguistics, 59(5), 1311–1342. https://doi.org/10.1515/ling-2019-0051\nVaughn, P. L., Colwell, C., Livingston, E. H., McQueen, W., Pettit, C., Spears, S., Tuhela, L., \u0026amp; Gangloff, E. J. (2023). Climbing and Clinging of Urban Lizards are Differentially Affected by Morphology, Temperature, and Substrate. Integrative Organismal Biology, 5(1), obad006. https://doi.org/10.1093/iob/obad006\nVeiz, E., Kieslich, S.-K., Czesnik, D., Herrmann-Lingen, C., Meyer, T., \u0026amp; Staab, J. (2022). Increased Concentrations of Circulating Interleukins following Non-Invasive Vagus Nerve Stimulation: Results from a Randomized, Sham-Controlled, Crossover Study in Healthy Subjects. Neuroimmunomodulation, 29(4), 450–459. https://doi.org/10.1159/000524646\nVeiz, E., Kieslich, S.-K., Staab, J., Czesnik, D., Herrmann-Lingen, C., \u0026amp; Meyer, T. (2021). Men Show Reduced Cardiac Baroreceptor Sensitivity during Modestly Painful Electrical Stimulation of the Forearm: Exploratory Results from a Sham-Controlled Crossover Vagus Nerve Stimulation Study. International Journal of Environmental Research and Public Health, 18(21), 11193. https://doi.org/10.3390/ijerph182111193\nVeldre, A., Reichle, E. D., Yu, L., \u0026amp; Andrews, S. (2023). Lexical processing across the visual field. Journal of Experimental Psychology: Human Perception and Performance, 49(5), 649–671. https://doi.org/10.1037/xhp0001109\nVentura, P., Tse, H. W.-Y., Guerreiro, J. C., Delgado, J., Ferreira, M. F., Farinha-Fernandes, A., Faustino, B., Banha, A., \u0026amp; Wong, A. C.-N. (2022). The relationships between reading fluency and different measures of holistic word processing. Attention, Perception, \u0026amp; Psychophysics, 84(5), 1734–1756. https://doi.org/10.3758/s13414-022-02497-0\nVerheyen, S., White, A., \u0026amp; Storms, G. (2022). A Comparison of the Spatial Arrangement Method and the Total-Set Pairwise Rating Method for Obtaining Similarity Data in the Conceptual Domain. Multivariate Behavioral Research, 57(2–3), 356–384. https://doi.org/10.1080/00273171.2020.1857216\nVerma, A., Sikarwar, V., Yadav, H., Jaganathan, R., \u0026amp; Kumar, P. (2021). Shabd: A psycholinguistic database for Hindi. Behavior Research Methods, 54(2), 830–844. https://doi.org/10.3758/s13428-021-01625-2\nVillanes, A., \u0026amp; Healey, C. G. (2023). Domain-specific text dictionaries for text analytics. International Journal of Data Science and Analytics, 15(1), 105–118. https://doi.org/10.1007/s41060-022-00344-x\nVillani, C., D’Ascenzo, S., Borghi, A. M., Roversi, C., Benassi, M., \u0026amp; Lugli, L. (2022). Is justice grounded? How expertise shapes conceptual representation of institutional concepts. Psychological Research, 86(8), 2434–2450. https://doi.org/10.1007/s00426-021-01492-8\nVillani, C., Lugli, L., Liuzza, M. T., Nicoletti, R., \u0026amp; Borghi, A. M. (2021). Sensorimotor and interoceptive dimensions in concrete and abstract concepts. Journal of Memory and Language, 116, 104173. https://doi.org/10.1016/j.jml.2020.104173\nVitevitch, M. S., Ng, J. W., Hatley, E., \u0026amp; Castro, N. (2021). Phonological but not semantic influences on the speech-to-song illusion. Quarterly Journal of Experimental Psychology, 74(4), 585–597. https://doi.org/10.1177/1747021820969144\nVittersø, A. D., Buckingham, G., Ten Brink, A. F., Halicka, M., Proulx, M. J., \u0026amp; Bultitude, J. H. (2021). Characterising sensorimotor adaptation in Complex Regional Pain Syndrome. Cortex, 140, 157–178. https://doi.org/10.1016/j.cortex.2021.03.028\nVivas, J., Kogan, B., Yerro, M., Romanelli, S., \u0026amp; Vivas, L. (2021). Describing the structure of concepts through different feature levels. Journal of Cognitive Psychology, 33(1), 49–63. https://doi.org/10.1080/20445911.2020.1858840\nVivas, J. R., Yerro Avincetto, M. M., García Coni Bosch, A., Andrés, M. L., \u0026amp; Calcopietro, M. (2022). El significado de los conceptos que aluden a emociones básicas en niños y adultos. Interdisciplinaria. Revista de Psicología y Ciencias Afines, 39(3). https://doi.org/10.16888/interd.2022.39.3.11\nVon Krause, M., Radev, S. T., Voss, A., Quintus, M., Egloff, B., \u0026amp; Wrzus, C. (2021). Stability and Change in Diffusion Model Parameters over Two Years. Journal of Intelligence, 9(2), 26. https://doi.org/10.3390/jintelligence9020026\nVon Soest, T., Kozák, M., Rodríguez-Cano, R., Fluit, D. H., Cortés-García, L., Ulset, V. S., Haghish, E. F., \u0026amp; Bakken, A. (2022). Adolescents’ psychosocial well-being one year after the outbreak of the COVID-19 pandemic in Norway. Nature Human Behaviour, 6(2), 217–228. https://doi.org/10.1038/s41562-021-01255-w\nVorano, A., Vivas, L., \u0026amp; Menegotto, A. (2021). What comes to mind first? Feature type and order of production in a property generation task. Language and Cognition, 13(3), 337–366. https://doi.org/10.1017/langcog.2021.6\nWachowski, W., \u0026amp; Sullivan, K. (2021). Metonymies and Metaphors for Death Around the World (1st ed.). Routledge. https://doi.org/10.4324/9781003183761\nWaddington, C., Harding, E., Brotherhood, E. V., Davies Abbott, I., Barker, S., Camic, P. M., Ezeofor, V., Gardner, H., Grillo, A., Hardy, C., Hoare, Z., McKee-Jackson, R., Moore, K., O’Hara, T., Roberts, J., Rossi-Harries, S., Suarez-Gonzalez, A., Sullivan, M. P., Edwards, R. T., … Stott, J. (2022). The Development of Videoconference-Based Support for People Living With Rare Dementias and Their Carers: Protocol for a 3-Phase Support Group Evaluation. JMIR Research Protocols, 11(7), e35376. https://doi.org/10.2196/35376\nWagner, A. R., Kobel, M. J., \u0026amp; Merfeld, D. M. (2022). Impacts of Rotation Axis and Frequency on Vestibular Perceptual Thresholds. Multisensory Research, 35(3), 259–287. https://doi.org/10.1163/22134808-bja10069\nWalker, J. B., Grosholz, E. D., \u0026amp; Long, J. D. (2021). Predicting burrowing crab impacts on salt marsh plants. Ecosphere, 12(10), e03803. https://doi.org/10.1002/ecs2.3803\nWalker, J. B., Rinehart, S., Greenberg‐Pines, G., White, W. K., DeSantiago, R., Lipson, D. A., \u0026amp; Long, J. D. (2022). Aboveground competition influences density‐dependent effects of cordgrass on sediment biogeochemistry. Ecology and Evolution, 12(3), e8722. https://doi.org/10.1002/ece3.8722\nWall, D., Foltz, S., Kupfer, A., \u0026amp; Glenberg, A. M. (2022). Embodied Action Scaffolds Dialogic Reading. Educational Psychology Review, 34(1), 401–419. https://doi.org/10.1007/s10648-021-09617-6\nWalser, R., Cram, W. A., Bernroider, E. W. N., \u0026amp; Wiener, M. (2021). Control choices and enactments in IS development projects: Implications for legitimacy perceptions and compliance intentions. Information \u0026amp; Management, 58(7), 103522. https://doi.org/10.1016/j.im.2021.103522\nWan, M., Su, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Perceptional and actional enrichment for metaphor detection with sensorimotor norms. Natural Language Engineering, 1–29. https://doi.org/10.1017/S135132492300044X\nWang, G., Tan, L., Shang, Z., \u0026amp; Liu, H. (2023). Multimodal dual emotion with fusion of visual sentiment for rumor detection. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-16732-9\nWang, J., Zhang, Y., Yu, L.-C., \u0026amp; Zhang, X. (2022). Contextual sentiment embeddings via bi-directional GRU language model. Knowledge-Based Systems, 235, 107663. https://doi.org/10.1016/j.knosys.2021.107663\nWang, L., Li, Y., Zhang, J., \u0026amp; Tao, X. (2022). Quantifying community evolution in developer social networks. Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 157–169. https://doi.org/10.1145/3540250.3549106\nWang, X., Andrinopoulou, E.-R., Veen, K. M., Bogers, A. J. J. C., \u0026amp; Takkenberg, J. J. M. (2022). Statistical primer: An introduction to the application of linear mixed-effects models in cardiothoracic surgery outcomes research—a case study using homograft pulmonary valve replacement data. European Journal of Cardio-Thoracic Surgery, 62(4), ezac429. https://doi.org/10.1093/ejcts/ezac429\nWang, X., Li, G., Zhao, G., Li, Y., Wang, B., Lin, C.-P., Liu, X., \u0026amp; Bi, Y. (2021). Social and emotion dimensional organizations in the abstract semantic space: The neuropsychological evidence. Scientific Reports, 11(1), 23572. https://doi.org/10.1038/s41598-021-02824-9\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWang, Z. (2022). Application of Semantics Analysis in Text Classification of Computer Technology. In B. J. Jansen, H. Liang, \u0026amp; J. Ye (Eds.), International Conference on Cognitive based Information Processing and Applications (CIPA 2021) (Vol. 85, pp. 643–650). Springer Singapore. https://doi.org/10.1007/978-981-16-5854-9_82\nWard, R. T., Lotfi, S., Stout, D. M., Mattson, S., Lee, H.-J., \u0026amp; Larson, C. L. (2021). Neutral and threatening distracter word stimuli are unnecessarily stored in working memory but do not differ in their degree of working memory storage. Biological Psychology, 162, 108091. https://doi.org/10.1016/j.biopsycho.2021.108091\nWasfi, H., \u0026amp; Stone, R. (2023). Usability and Security of Knowledge-based Authentication Systems: A State-of-the-Art Review. International Journal of Advanced Computer Science and Applications, 14(5). https://doi.org/10.14569/IJACSA.2023.0140502\nWaterton, J., Hammond, M., \u0026amp; Lau, J. A. (2022). Evolutionary effects of nitrogen are not easily predicted from ecological responses. American Journal of Botany, 109(11), 1741–1756. https://doi.org/10.1002/ajb2.16095\nWehbe, L., Blank, I. A., Shain, C., Futrell, R., Levy, R., Von Der Malsburg, T., Smith, N., Gibson, E., \u0026amp; Fedorenko, E. (2021). Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cerebral Cortex, 31(9), 4006–4023. https://doi.org/10.1093/cercor/bhab065\nWeiner, O. M., O’Byrne, J., Cross, N. E., Giraud, J., Tarelli, L., Yue, V., Homer, L., Walker, K., Carbone, R., \u0026amp; Dang‐Vu, T. T. (2023). Slow oscillation‐spindle cross‐frequency coupling predicts overnight declarative memory consolidation in older adults. European Journal of Neuroscience, ejn.15980. https://doi.org/10.1111/ejn.15980\nWeinreuter, H., Strelau, N.-R., Qiu, K., Jiang, Y., Deml, B., \u0026amp; Heizmann, M. (2022). Intersection Complexity and Its Influence on Human Drivers. IEEE Access, 10, 74059–74070. https://doi.org/10.1109/ACCESS.2022.3189017\nWeis, P. P., Nikadon, J., Herbert, C., \u0026amp; Formanowicz, M. (2022). The verb–self link: An implicit association test study. Psychonomic Bulletin \u0026amp; Review, 29(5), 1946–1959. https://doi.org/10.3758/s13423-022-02105-0\nWhite, K. K., \u0026amp; Abrams, L. (2021). What makes a tumour worse: Taboo context affects how emotional distractors influence picture naming. Language, Cognition and Neuroscience, 36(9), 1123–1134. https://doi.org/10.1080/23273798.2021.1909741\nWhitfield, J. A., \u0026amp; Holdosh, S. R. (2021). Practice Mediates Bidirectional Dual-Task Interference When Performing a Novel Sequential Nonword Repetition Task. Journal of Speech, Language, and Hearing Research, 64(6), 1904–1917. https://doi.org/10.1044/2021_JSLHR-20-00605\nWierzba, M., Riegel, M., Kocoń, J., Miłkowski, P., Janz, A., Klessa, K., Juszczyk, K., Konat, B., Grimling, D., Piasecki, M., \u0026amp; Marchewka, A. (2021). Emotion norms for 6000 Polish word meanings with a direct mapping to the Polish wordnet. Behavior Research Methods, 54(5), 2146–2161. https://doi.org/10.3758/s13428-021-01697-0\nWilke, J., Mohr, L., Yuki, G., Bhundoo, A. K., Jiménez-Pavón, D., Laiño, F., Murphy, N., Novak, B., Nuccio, S., Ortega-Gómez, S., Pillay, J. D., Richter, F., Rum, L., Sanchez-Ramírez, C., Url, D., Vogt, L., \u0026amp; Hespanhol, L. (2022). Train at home, but not alone: A randomised controlled multicentre trial assessing the effects of live-streamed tele-exercise during COVID-19-related lockdowns. British Journal of Sports Medicine, 56(12), 667–675. https://doi.org/10.1136/bjsports-2021-104994\nWilliams, G. P., Panayotov, N., \u0026amp; Kempe, V. (2022). Exposure to dialect variation in an artificial language prior to literacy training impairs reading of words with competing variants but does not affect decoding skills. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(12), 1868–1904. https://doi.org/10.1037/xlm0001094\nWingfield, C., \u0026amp; Connell, L. (2022). Understanding the role of linguistic distributional knowledge in cognition. Language, Cognition and Neuroscience, 37(10), 1220–1270. https://doi.org/10.1080/23273798.2022.2069278\nWinkielman, P., Davis, J. D., \u0026amp; Coulson, S. (2023). Moving thoughts: Emotion concepts from the perspective of context dependent embodied simulation. Language, Cognition and Neuroscience, 38(10), 1531–1553. https://doi.org/10.1080/23273798.2023.2236731\nWinskel, H., Forrester, D., Hong, M., \u0026amp; O’Connor, K. (2021). Seeing red as anger or romance: An emotion categorisation task. Journal of Cognitive Psychology, 33(5), 581–594. https://doi.org/10.1080/20445911.2021.1936538\nWinter, B. (2022). Mapping the landscape of exploratory and confirmatory data analysis in linguistics. In D. Tay \u0026amp; M. X. Pan (Eds.), Data Analytics in Cognitive Linguistics (pp. 13–48). De Gruyter. https://doi.org/10.1515/9783110687279-002\nWinter, B., Lupyan, G., Perry, L. K., Dingemanse, M., \u0026amp; Perlman, M. (2023). Iconicity ratings for 14,000+ English words. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02112-6\nWinter, B., \u0026amp; Srinivasan, M. (2022). Why is Semantic Change Asymmetric? The Role of Concreteness and Word Frequency and Metaphor and Metonymy. Metaphor and Symbol, 37(1), 39–54. https://doi.org/10.1080/10926488.2021.1945419\nWinter, R. E., Stoeger, H., \u0026amp; Suggate, S. P. (2021). Fine Motor Skills and Lexical Processing in Children and Adults. Frontiers in Psychology, 12, 666200. https://doi.org/10.3389/fpsyg.2021.666200\nWinters, R. M., Walker, B. N., \u0026amp; Leslie, G. (2021). Can You Hear My Heartbeat?: Hearing an Expressive Biosignal Elicits Empathy. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–11. https://doi.org/10.1145/3411764.3445545\nWong, J. B., Lisovski, S., Alisauskas, R. T., English, W., Harrison, A.-L., Kellett, D. K., Maftei, M., Nagy-MacArthur, A., Ronconi, R. A., Smith, P. A., Mallory, M. L., \u0026amp; Auger-Méthé, M. (2022). Variation in migration behaviors used by Arctic Terns (Sterna paradisaea) breeding across a wide latitudinal gradient. Polar Biology, 45(5), 909–922. https://doi.org/10.1007/s00300-022-03043-2\nWong, T. Y., Fang, Z., Yu, Y. T., Cheung, C., Hui, C. L. M., Elvevåg, B., De Deyne, S., Sham, P. C., \u0026amp; Chen, E. Y. H. (2022). Discovering the structure and organization of a free Cantonese emotion-label word association graph to understand mental lexicons of emotions. Scientific Reports, 12(1), 19581. https://doi.org/10.1038/s41598-022-23995-z\nWong, T. Y. Q., Yap, M. J., Obana, T., Asplund, C. L., \u0026amp; Teh, E. J. (2022). Brief Report: Emotional Picture and Language Processing in Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 52(1), 435–446. https://doi.org/10.1007/s10803-021-04920-1\nWoodard, K., Zettersten, M., \u0026amp; Pollak, S. D. (2022). The representation of emotion knowledge across development. Child Development, 93(3). https://doi.org/10.1111/cdev.13716\nWoodin, G., Winter, B., \u0026amp; Padilla, L. (2022). Conceptual Metaphor and Graphical Convention Influence the Interpretation of Line Graphs. IEEE Transactions on Visualization and Computer Graphics, 28(2), 1209–1221. https://doi.org/10.1109/TVCG.2021.3088343\nWootton, R. E., Riglin, L., Blakey, R., Agnew-Blais, J., Caye, A., Cadman, T., Havdahl, A., Gonçalves, H., Menezes, A. M. B., Wehrmeister, F. C., Rimfeld, K., Davey Smith, G., Eley, T. C., Rohde, L. A., Arseneault, L., Moffitt, T. E., Stergiakouli, E., Thapar, A., \u0026amp; Tilling, K. (2022). Decline in attention-deficit hyperactivity disorder traits over the life course in the general population: Trajectories across five population birth cohorts spanning ages 3 to 45 years. International Journal of Epidemiology, 51(3), 919–930. https://doi.org/10.1093/ije/dyac049\nWright, L. M., De Marco, M., \u0026amp; Venneri, A. (2023). Current Understanding of Verbal Fluency in Alzheimer’s Disease: Evidence to Date. Psychology Research and Behavior Management, Volume 16, 1691–1705. https://doi.org/10.2147/PRBM.S284645\nWu, J.-L., \u0026amp; Chung, W.-Y. (2022). Sentiment-based masked language modeling for improving sentence-level valence–arousal prediction. Applied Intelligence, 52(14), 16353–16369. https://doi.org/10.1007/s10489-022-03384-9\nWu, J.-L., Huang, M.-T., Yang, C.-S., \u0026amp; Liu, K.-H. (2021). Sentiment analysis of stock markets using a novel dimensional valence–arousal approach. Soft Computing, 25(6), 4433–4450. https://doi.org/10.1007/s00500-020-05454-x\nWu, S. H., Henderson, L.-M., \u0026amp; Gennari, S. P. (2022). Animacy interactions with individual variability in sentence production and comprehension reveal similar lexically driven competitive processes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(11), 1660–1679. https://doi.org/10.1037/xlm0000857\nWu, W., Morales, M., Patel, T., Pickering, M. J., \u0026amp; Hoffman, P. (2022). Modulation of brain activity by psycholinguistic information during naturalistic speech comprehension and production. Cortex, 155, 287–306. https://doi.org/10.1016/j.cortex.2022.08.002\nWu, Y., Tao, B., Lan, K., Shen, Y., Huang, W., \u0026amp; Wang, F. (2022). Reliability and accuracy of dynamic navigation for zygomatic implant placement. Clinical Oral Implants Research, 33(4), 362–376. https://doi.org/10.1111/clr.13897\nWulff, D. U., De Deyne, S., Aeschbach, S., \u0026amp; Mata, R. (2022). Using Network Science to Understand the Aging Lexicon: Linking Individuals’ Experience, Semantic Networks, and Cognitive Performance. Topics in Cognitive Science, 14(1), 93–110. https://doi.org/10.1111/tops.12586\nWulff, D. U., Hills, T. T., \u0026amp; Mata, R. (2022). Structural differences in the semantic networks of younger and older adults. Scientific Reports, 12(1), 21459. https://doi.org/10.1038/s41598-022-11698-4\nWulff, D. U., \u0026amp; Mata, R. (2022). On the semantic representation of risk. Science Advances, 8(27), eabm1883. https://doi.org/10.1126/sciadv.abm1883\nWurm, L. H. (2022). 27 Studying emotion effects in language. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 570–586). De Gruyter. https://doi.org/10.1515/9783110347524-027\nXia, Q., \u0026amp; Peng, G. (2022). The roles of object and action, and concreteness and imageability, in the distinction between nouns and verbs: An ERP study on monosyllabic words in Chinese. Journal of Neurolinguistics, 61, 101026. https://doi.org/10.1016/j.jneuroling.2021.101026\nXie, H., Lin, W., Lin, S., Wang, J., \u0026amp; Yu, L.-C. (2021). A multi-dimensional relation model for dimensional sentiment analysis. Information Sciences, 579, 832–844. https://doi.org/10.1016/j.ins.2021.08.052\nXie, X., Liu, L., \u0026amp; Jaeger, T. F. (2021). Cross-talker generalization in the perception of nonnative speech: A large-scale replication. Journal of Experimental Psychology: General, 150(11), e22–e56. https://doi.org/10.1037/xge0001039\nXu, S., Xu, C., McIntyre, S., Olausson, H., \u0026amp; Gerling, G. J. (2022). Subtle Contact Nuances in the Delivery of Human-to-Human Touch Distinguish Emotional Sentiment. IEEE Transactions on Haptics, 15(1), 97–102. https://doi.org/10.1109/TOH.2021.3137833\nXu, X., Li, J., \u0026amp; Chen, H. (2022). Valence and arousal ratings for 11,310 simplified Chinese words. Behavior Research Methods, 54(1), 26–41. https://doi.org/10.3758/s13428-021-01607-4\nYadav, A., Beilin, L. J., Huang, R.-C., Vlaskovsky, P., Newnham, J. P., White, S. W., \u0026amp; Mori, T. A. (2022). Relationships between intrauterine fetal growth trajectories and markers of adiposity and inflammation in young adults. International Journal of Obesity, 46(10), 1925–1935. https://doi.org/10.1038/s41366-022-01203-2\nYan, J., Wang, W., \u0026amp; Yu, C. (2022). Affective word embedding in affective explanation generation for fine art paintings. Pattern Recognition Letters, 161, 24–29. https://doi.org/10.1016/j.patrec.2022.07.009\nYan, L., Martinez-Maldonado, R., Zhao, L., Li, X., \u0026amp; Gašević, D. (2023). Physiological Synchrony and Arousal as Indicators of Stress and Learning Performance in Embodied Collaborative Learning. In N. Wang, G. Rebolledo-Mendez, N. Matsuda, O. C. Santos, \u0026amp; V. Dimitrova (Eds.), Artificial Intelligence in Education (Vol. 13916, pp. 602–614). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-36272-9_49\nYao, B., Taylor, J. E., \u0026amp; Sereno, S. C. (2022). What can size tell us about abstract conceptual processing? Journal of Memory and Language, 127, 104369. https://doi.org/10.1016/j.jml.2022.104369\nYazar, V., Ruf, W. P., Knehr, A., Günther, K., Ammerpohl, O., Danzer, K. M., \u0026amp; Ludolph, A. C. (2023). DNA Methylation Analysis in Monozygotic Twins Discordant for ALS in Blood Cells. Epigenetics Insights, 16, 251686572311721. https://doi.org/10.1177/25168657231172159\nYeh, P.-W., Lee, C.-Y., Cheng, Y.-Y., \u0026amp; Chiang, C.-H. (2023). Neural correlates of understanding emotional words in late childhood. International Journal of Psychophysiology, 183, 19–31. https://doi.org/10.1016/j.ijpsycho.2022.11.007\nYen, M., Huang, Y., Yu, L., \u0026amp; Chen, Y. (2022). A Two-Dimensional Sentiment Analysis of Online Public Opinion and Future Financial Performance of Publicly Listed Companies. Computational Economics, 59(4), 1677–1698. https://doi.org/10.1007/s10614-021-10111-y\nYeung, R. C., \u0026amp; Fernandes, M. A. (2021). Divided attention at encoding or retrieval interferes with emotionally enhanced memory for words. Memory, 29(3), 284–297. https://doi.org/10.1080/09658211.2021.1887896\nYin, X., Havelka, J., \u0026amp; Allen, R. J. (2021). The effect of value on long-term associative memory. Quarterly Journal of Experimental Psychology, 74(12), 2033–2045. https://doi.org/10.1177/17470218211014439\nYoung, R. C., Westneat, D. F., Vangorder-Braid, J., Sirman, A. E., Siller, S. J., Kittilson, J., Ghimire, A., \u0026amp; Heidinger, B. J. (2022). Stressors interact across generations to influence offspring telomeres and survival. Proceedings of the Royal Society B: Biological Sciences, 289(1982), 20220868. https://doi.org/10.1098/rspb.2022.0868\nYu, C. S. P., McBeath, M. K., \u0026amp; Glenberg, A. M. (2021). Phonemes Convey Embodied Emotion. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 221–243). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_10\nYu, Z., Ponomarenko, V., \u0026amp; Liska, L. I. (2023). How to Allocate White Space in Ad Design? The Impact of Product Layouts on Perceived Entitativity and Advertising Performance. Journal of Advertising, 1–15. https://doi.org/10.1080/00913367.2023.2175280\nYuan, Y., \u0026amp; Guoyuan, T. (2022). An Empirical Study on Imagery and Emotional Response in Chinese Poetry Translation—The Visual Grammar Perspective. Frontiers in Psychology, 13, 872497. https://doi.org/10.3389/fpsyg.2022.872497\nZaharchuk, H. A., \u0026amp; Karuza, E. A. (2021). Multilayer networks: An untapped tool for understanding bilingual neurocognition. Brain and Language, 220, 104977. https://doi.org/10.1016/j.bandl.2021.104977\nZaitsev, D. V. \u0026amp; Institute of Philosophy, Russian Academy of Sciences. (2021). Towards Protolanguage: Bodily Reactions Represent Emotional Type. Epistemology \u0026amp; Philosophy of Science, 58(1), 94–111. https://doi.org/10.5840/eps202158112\nZemla, J. C. (2022). Knowledge Representations Derived From Semantic Fluency Data. Frontiers in Psychology, 13, 815860. https://doi.org/10.3389/fpsyg.2022.815860\nZeng, Q., Zhao, X., Hu, X., Duan, H., Zhao, Z., \u0026amp; Li, C. (2021). Learning emotional word embeddings for sentiment analysis. Journal of Intelligent \u0026amp; Fuzzy Systems, 40(5), 9515–9527. https://doi.org/10.3233/JIFS-201993\nZhang, M., Palade, V., Wang, Y., \u0026amp; Ji, Z. (2022). Word representation using refined contexts. Applied Intelligence, 52(11), 12347–12368. https://doi.org/10.1007/s10489-021-02898-y\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553–583. https://doi.org/10.1515/cog-2021-0098\nZhao, Y., \u0026amp; Wu, C. (2022). Childhood maltreatment experiences and emotion perception in young Chinese adults: Sex as a moderator. Stress and Health, 38(4), 666–678. https://doi.org/10.1002/smi.3122\nZheng, M. (2021). A method of generating Chinese pop music melody. 2021 40th Chinese Control Conference (CCC), 4683–4689. https://doi.org/10.23919/CCC52363.2021.9550140\nZhong, Y., \u0026amp; Ahrens, K. (2023). The Emotion Code in Sensory Modalities: An Investigation of the Relationship Between Sensorimotor Dimensions and Emotional Valence-Arousal. In Q. Su, G. Xu, \u0026amp; X. Yang (Eds.), Chinese Lexical Semantics (Vol. 13496, pp. 183–192). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-28956-9_15\nZhong, Y., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Novel metaphor and embodiment: Comprehending novel synesthetic metaphors. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0020\nZhong, Y., Huang, C.-R., \u0026amp; Ahrens, K. (2022). Embodied Grounding of Concreteness/Abstractness: A Sensory-Perceptual Account of Concrete and Abstract Concepts in Mandarin Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 72–83). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_5\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196–230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000–1022. https://doi.org/10.1080/23273798.2022.2035416\nZhou, N., Huang, C.-M., Cai, Q., Tzeng, O. J. L., \u0026amp; Huang, H.-W. (2022). The effects of aging and perceived loneliness on lexical ambiguity resolution. Frontiers in Psychology, 13, 978616. https://doi.org/10.3389/fpsyg.2022.978616\nZinn, A. K., Lavric, A., Levine, M., \u0026amp; Koschate, M. (2022). Social identity switching: How effective is it? Journal of Experimental Social Psychology, 101, 104309. https://doi.org/10.1016/j.jesp.2022.104309\nZou, W., \u0026amp; Bhatia, S. (2021). Judgment errors in naturalistic numerical estimation. Cognition, 211, 104647. https://doi.org/10.1016/j.cognition.2021.104647\nZühlsdorff, K., López-Cruz, L., Dutcher, E. G., Jones, J. A., Pama, C., Sawiak, S., Khan, S., Milton, A. L., Robbins, T. W., Bullmore, E. T., \u0026amp; Dalley, J. W. (2023). Sex-dependent effects of early life stress on reinforcement learning and limbic cortico-striatal functional connectivity. Neurobiology of Stress, 22, 100507. https://doi.org/10.1016/j.ynstr.2022.100507\nКолмогорова, А. В., \u0026amp; Натпит, А. А. (2023). Нейросемантические характеристики употребительных слов тувинского языка через призму комплексного психолингвистического эксперимента. The New Research of Tuva, 1, 170–185. https://doi.org/10.25178/nit.2023.1.10\n\r\r\r","date":1609804800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1609804800,"objectID":"25833132f5c029c6dddbd38d3d82ea6d","permalink":"https://pablobernabeu.github.io/publication/the-interplay-between-linguistic-and-embodied-systems-in-conceptual-processing/","publishdate":"2021-01-05T09:10:27Z","relpermalink":"/publication/the-interplay-between-linguistic-and-embodied-systems-in-conceptual-processing/","section":"publication","summary":"This preregistration outlines a study that will investigate the dynamic nature of conceptual processing by examining the interplay between linguistic distributional systems—comprising word co-occurrence and word association—and embodied systems—comprising sensorimotor and emotional information. A set of confirmatory research questions are addressed using data from the Calgary Semantic Decision project, along with additional measures for the stimuli corresponding to distributional language statistics, embodied information, and individual differences in vocabulary size.","tags":["conceptual processing","word recognition","semantic decision","linguistic distributional knowledge","embodied cognition","statistics","linear mixed-effects models","R","preregistration"],"title":"Preregistration: The interplay between linguistic and embodied systems in conceptual processing","type":"publication"},{"authors":null,"categories":["research and teaching applications","R"],"content":"\rThis open-source, R-based web application allows the conversion of video captions (subtitles) from the Web Video Text Tracks (WebVTT) Format into plain texts. For this purpose, users upload a WebVTT file with the extension .vtt or .txt (examples available here and here).\n\rDownload VTT file\nWhen the caption file is uploaded to the web application, metadata such as timestamps are automatically removed, and the text is formatted into a paragraph. The result is displayed on the website, and can be downloaded as .docx and .txt documents. Overall, this application serves to improve the accessibility of video captions.\nThe data is only available to the user, and is deleted when the website is closed.\n🌐 Web application\rThe application can be used below, or it can be opened separately here.\n\r\r\r\rProgramming details\rThe source code is available on Github, where the app can be extended via pull requests. Questions and suggestions can be submitted as issues or emailed to pcbernabeu@gmail.com. The licence is Creative Commons Attribution 4.0 International.\nThe core of the application is in the index.Rmd script, which uses ‘regular expressions’ to process the VTT file.\n\rIn turn, the script above draws on the one below to enable the download of .docx documents. Last, the latter script draws on this Word template.\n\r\r","date":1609459200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1609459200,"objectID":"65d1a22cf3d4b77ba36cd825cf7fe51a","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/vtt-transcription-app/","publishdate":"2021-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/vtt-transcription-app/","section":"applications-and-dashboards","summary":"This open-source, R-based web application allows the conversion of video captions (subtitles) from the Web Video Text Tracks (WebVTT) Format into plain texts. For this purpose, users upload a WebVTT file with the extension of 'vtt' or 'txt'. Automatically, metadata such as timestamps are removed, and the text is formatted.","tags":["subtitles","accessibility","transcription","webvtt","web video text tracks format","web application","data science","regular expressions","stringr","R","R Shiny","Flexdashboard","software"],"title":"WebVTT caption transcription app","type":"applications-and-dashboards"},{"authors":[],"categories":["statistics","linear mixed-effects models"],"content":"\rSlides \r\r\rAbstract\rLinear mixed-effects models (LMEMs) are used to account for variation within factors with multiple observations, such as participants, trials, items, channels, etc (for an earlier approach, see Clark, 1973). This variation is modelled in terms of random intercepts (e.g., overall variation per participant) as well as random slopes for the fixed effects (e.g., treatment effect per participant). These measures help reduce false positives and false negatives (Barr et al., 2013), and the resulting models tend to be robust to violations of assumptions (Schielzeth et al., 2020). The use of LMEMs has grown over the past decade, under various implementation forms (Meteyard \u0026amp; Davies, 2020). In this talk, I will look over the rationale for LMEMs, and demonstrate how to fit them in R (Brauer \u0026amp; Curtin, 2018; Luke, 2017). Challenges will also be covered. For instance, when using the widely-accepted ‘maximal’ approach, based on fitting all possible random effects for each fixed effect, models sometimes fail to find a solution, or ‘convergence’. Advice for the problem of nonconvergence will be demonstrated, based on the progressive lightening of the random effects structure (Singman \u0026amp; Kellen, 2017; for an alternative approach, especially with small samples, see Matuschek et al., 2017). At the end, on a different note, I will present a web application that facilitates data simulation for research and teaching (Bernabeu \u0026amp; Lynott, 2020).\n\rReferences\rBarr, D. J., Levy, R., Scheepers, C., \u0026amp; Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. http://dx.doi.org/10.1016/j.jml.2012.11.001\nBernabeu, P., \u0026amp; Lynott, D. (2020). Web application for the simulation of experimental data (Version 1.2). https://github.com/pablobernabeu/Experimental-data-simulation/\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://psych.wisc.edu/Brauer/BrauerLab/wp-content/uploads/2014/04/Brauer-Curtin-2018-on-LMEMs.pdf\nClark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12(4), 335-359. https://doi.org/10.1016/S0022-5371(73)80014-3\nLuke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y\nMatuschek, H., Kliegl, R., Vasishth, S., Baayen, H., \u0026amp; Bates, D. (2017). Balancing type 1 error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001\nMeteyard, L., \u0026amp; Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092\nSchielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H, Teplitsky, C., Reale, D., Dochtermann, N. A., Garamszegi, L. Z., \u0026amp; Araya-Ajoy, Y. G. (2020). Robustness of linear mixed-effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 00, 1– 12. https://doi.org/10.1111/2041-210X.13434\nSingmann, H., \u0026amp; Kellen, D. (2019). An Introduction to Mixed Models for Experimental Psychology. In D. H. Spieler \u0026amp; E. Schumacher (Eds.), New Methods in Cognitive Psychology (pp. 4–31). Hove, UK: Psychology Press. http://singmann.org/download/publications/singmann_kellen-introduction-mixed-models.pdf\n\n\r","date":1606348800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1606348800,"objectID":"b5a7cf88751d9bb001ccd85914568ce7","permalink":"https://pablobernabeu.github.io/presentation/2020-11-26-mixed-effects-models-in-r-and-a-new-tool-for-data-simulation/","publishdate":"2020-10-24T00:00:00Z","relpermalink":"/presentation/2020-11-26-mixed-effects-models-in-r-and-a-new-tool-for-data-simulation/","section":"presentation","summary":"In this talk, I will look over the rationale for LMEMs, and demonstrate how to fit them in R (Brauer \u0026 Curtin, 2018; Luke, 2017). Challenges will also be covered. For instance, when using the widely-accepted 'maximal' approach, based on fitting all possible random effects for each fixed effect, models sometimes fail to find a solution, or 'convergence'. Advice for the problem of nonconvergence will be demonstrated, based on the progressive lightening of the random effects structure (Singman \u0026 Kellen, 2017; for an alternative approach, especially with small samples, see Matuschek et al., 2017). At the end, on a different note, I will present a web application that facilitates data simulation for research and teaching (Bernabeu \u0026 Lynott, 2020).","tags":["statistics","linear mixed-effects models","regression","R","programming","web application","data simulation","Software Sustainability Institute Fellowship"],"title":"Mixed-effects models in R, and a new tool for data simulation","type":"presentation"},{"authors":[],"categories":["research and teaching applications"],"content":"\rResumen\rLas aplicaciones web nos ayudan a facilitar el uso de nuestro trabajo, ya que no requieren programación para utilizarlas (ver ejemplos). Crear estas aplicaciones en R, mediante paquetes como “shiny” o “flexdashboard”, ofrece múltiples ventajas. Entre ellas destaca la reproducibilidad, tal como veremos en torno a una aplicación para la simulación de datos. Por un lado, los usuarios pueden exportar un registro de su actividad. Por otro lado, el código utilizado para crear estas aplicaciones se puede compartir, investigar y editar con la facilidad que ofrece un lenguaje de código abierto como R. Esto facilita el uso gratuito, el desarrollo colaborativo y una documentación accesible sobre cualquiera de los paquetes utilizados. Por último, la reproducibilidad se puede maximizar si se facilita a los usuarios que lo deseen la exportación de un código de R ajustado a sus requerimientos (más allá del código de la aplicación en general), lo cual añadiría a la aplicación las ventajas de un paquete de R. Esta última opción (no disponible actualmente en la aplicación de simulación, ni en la mayoría de las aplicaciones) se puede habilitar adaptando el código de la aplicación a funciones básicas de R.\n\rVídeo y filminas\r\r\rSlideshare\r\r\n\r","date":1602115200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1602115200,"objectID":"a858b1b5f8379613a1eea26268d0e301","permalink":"https://pablobernabeu.github.io/presentation/2020-10-08-reproducibilidad-en-torno-a-una-aplicacion-web/","publishdate":"2020-10-08T00:00:00Z","relpermalink":"/presentation/2020-10-08-reproducibilidad-en-torno-a-una-aplicacion-web/","section":"presentation","summary":"Las aplicaciones web nos ayudan a facilitar el uso de nuestro trabajo, ya que no requieren programación para utilizarlas. Crear estas aplicaciones en R, mediante paquetes como \"shiny\" o \"flexdashboard\", ofrece múltiples ventajas. Entre ellas destaca la reproducibilidad, tal como veremos en torno a una aplicación para la simulación de datos (https://github.com/pablobernabeu/Experimental-data-simulation).","tags":["programming","programación","web application","aplicación web","data simulation","simulación de datos","statistics","estadística","R","Software Sustainability Institute Fellowship"],"title":"Reproducibilidad en torno a una aplicación web","type":"presentation"},{"authors":[],"categories":["research methods"],"content":"In a highly recommendable presentation available on Youtube, Michael Frank walks us through R Markdown. Below, I loosely summarise and partly elaborate on Frank's advice regarding collaboration among colleagues, some of whom may not be used to R Markdown (see relevant time point in Frank's presentation).\n The first way is using GitHub, which has a great version control system, and even allows the rendering of Markdown text, if the file is given the extension \u0026lsquo;.md\u0026rsquo; on GitHub. Furthermore, GitHub has made private repositories with any number of collaborators free.\n The second way is copying the text part of the unrendered R Markdown doc (i.e., excluding any long code chunks) to Word or Google Docs, or any other trackable editor. The collaborators would then edit the text, and refrain from editing any of the R or Markdown code (i.e., any inline code, hashes, etc.). Changes would be tracked and accepted (any unwanted edits of the code may be undone), and transferred to the original document.\n The third way is knitting the document to Word, which allows tracking changes, or otherwise knitting to PDF.\n ","date":1601683200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1601683200,"objectID":"a0ecd1e1e3cce418590be0fb00f25875","permalink":"https://pablobernabeu.github.io/2020/collaboration-while-using-r-markdown/","publishdate":"2020-10-03T00:00:00Z","relpermalink":"/2020/collaboration-while-using-r-markdown/","section":"post","summary":"In a highly recommendable presentation available on Youtube, Michael Frank walks us through R Markdown. Below, I loosely summarise and partly elaborate on Frank's advice regarding collaboration among colleagues, some of whom may not be used to R Markdown (see relevant time point in Frank's presentation).\n The first way is using GitHub, which has a great version control system, and even allows the rendering of Markdown text, if the file is given the extension \u0026lsquo;.","tags":["s","R","R Markdown"],"title":"Collaboration while using R Markdown","type":"post"},{"authors":[],"categories":["writing"],"content":"When writing formal pieces, some pitfalls in the punctuation are easy to avoid once you know them. Punctuation marks such as the comma, the semi-colon, the colon and the period are useful for organising phrases and clauses, facilitating the reading, and disambiguating. However, these marks are also liable to underuse, as in the case of run-on sentences; misuse, as in the comma splice; and overuse, as it often happens with the Oxford comma.\nRun-on sentences: insufficient punctuation Example (notice the absence of punctuation marks around \u0026lsquo;therefore\u0026rsquo;):\n * Specific agendas in media organisations lead to information being manipulated or hidden therefore individual research efforts are valuable.\n Possible alternative:\n Specific agendas in media organisations lead to information being manipulated or hidden. Therefore, individual research efforts are valuable.\n More information\nComma splice: misused punctuation A type of run-on sentence, the comma splice is characterised by the use of of too-weak punctuation forms; often, using a comma instead of a semi-colon or a period.\nExample (notice the comma before \u0026lsquo;therefore\u0026rsquo;):\n * Specific agendas in media organisations lead to information being manipulated or hidden, therefore individual research efforts are valuable.\n Possible alternative: see above.\n More information\nOxford comma: sometimes overused The Oxford, or serial, comma (namely, the comma preceding the word \u0026lsquo;and\u0026rsquo; before the last item in a series) has the purpose of facilitating the reading and disambiguating. Where that purpose is not necessary, neither is the comma.\nFind out more:\n Oxford University guidelines\n The Guardian guidelines\n Overuse of Oxford comma\n","date":1601683200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1601683200,"objectID":"95c4933f561744da5d3336c780d87794","permalink":"https://pablobernabeu.github.io/2020/formal-punctuation/","publishdate":"2020-10-03T00:00:00Z","relpermalink":"/2020/formal-punctuation/","section":"post","summary":"When writing formal pieces, some pitfalls in the punctuation are easy to avoid once you know them. Punctuation marks such as the comma, the semi-colon, the colon and the period are useful for organising phrases and clauses, facilitating the reading, and disambiguating. However, these marks are also liable to underuse, as in the case of run-on sentences; misuse, as in the comma splice; and overuse, as it often happens with the Oxford comma.","tags":["s","writing","punctuation"],"title":"Notes about punctuation in formal writing","type":"post"},{"authors":[],"categories":["research and teaching applications"],"content":"Unwanted, stranded meetings, overlapping with a general one in a channel, can occur when people click on the Meet (now)/📷 button, instead of clicking on the same Join button in the chat field. This may especially happen to those who reach the channel first, or who cannot see the Join button in the chat field because this field has been taken up by messages.\nTo prevent students from creating or joining stray meetings, the channel lead can direct students to a single meeting link in the chat field, which could be upward ion this field, and to avoid the Meet (now)/📷 button at the top right in channels.\nFurther background “Hi All, in Microsoft Teams, if multiple people click the \u0026lsquo;Meet (now)\u0026rsquo; button in a channel, what happens?” See Reddit post\nMore advanced tip to have meeting links ready in each channel Watch tutorial from minute 3:04 to 4:50\n","date":1601683200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1601683200,"objectID":"3d55f1b5bc711bbec6ca25d7ffb051a3","permalink":"https://pablobernabeu.github.io/2020/stray-meetings-in-microsoft-teams/","publishdate":"2020-10-03T00:00:00Z","relpermalink":"/2020/stray-meetings-in-microsoft-teams/","section":"post","summary":"Unwanted, stranded meetings, overlapping with a general one in a channel, can occur when people click on the Meet (now)/:camera: button, instead of clicking on the same Join button in the chat field. This may especially happen to those who reach the channel first, or who cannot see the Join button in the chat field because this field has been taken up by messages.","tags":["s","communications"],"title":"Stray meetings in Microsoft Teams","type":"post"},{"authors":[],"categories":["programming","R"],"content":"\r\r\r\r\r\r\r\rThis document is part of teaching materials created for the workshop ‘Open data and reproducibility v2.1: R Markdown, dashboards and Binder’, delivered at the CarpentryCon 2020 conference. The purpose of this specific document is to practise R Markdown, including basic features such as Markdown markup and code chunks, along with more special features such as cross-references for figures, tables, code chunks, etc. The code is on GitHub.\nSince this conference was originally going to take place in Madison, let’s look at some open data from the City of Madison.\nPark types\r[Placeholder text] Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Figure 1 shows the number of parks within each type.\n# Showing the code because echo = TRUE dat = read.csv(\u0026#39;https://opendata.arcgis.com/datasets/9e00ff81868e49b7ba65d4e628b9e14f_6.csv\u0026#39;)\rdat = dat %\u0026gt;%\rgroup_by(Type) %\u0026gt;%\rmutate(parks_number = n())\rggplotly(\rggplot(dat, aes(x=reorder(Type, parks_number), y=parks_number,\rtext = paste(\u0026#39;Number of parks =\u0026#39;, parks_number))) + theme(axis.title.y=element_blank()) + stat_identity(geom=\u0026#39;bar\u0026#39;) + labs(x=\u0026#39;Type\u0026#39;, y=\u0026#39;Number of parks\u0026#39;) + coord_flip(), tooltip = \u0026#39;text\u0026#39;\r)\r\r\r{\"x\":{\"data\":[{\"orientation\":\"h\",\"width\":[0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.9,0.9,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.9,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.9,0.9,0.899999999999999,0.899999999999999],\"base\":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],\"x\":[100,100,22,78,78,21,31,100,78,100,78,31,100,78,100,78,78,100,21,31,100,78,100,2,100,100,100,100,78,100,100,100,78,100,100,21,2,78,78,100,21,100,31,100,22,1,78,100,78,78,78,100,100,13,78,100,78,100,22,100,78,100,31,78,100,100,78,31,100,100,100,78,100,100,78,21,100,21,100,78,100,21,21,100,100,100,1,31,100,78,100,78,78,13,21,78,22,100,22,100,31,31,31,78,100,31,31,100,22,31,78,100,78,100,100,100,78,100,100,31,21,22,78,78,78,22,13,100,31,100,78,31,78,21,100,21,31,78,100,78,31,100,78,78,22,78,21,100,100,100,31,78,100,78,100,22,22,78,100,78,78,13,78,100,31,78,100,78,31,100,13,100,22,13,13,78,78,100,78,78,78,100,100,22,78,21,13,21,22,78,21,13,22,100,78,31,31,13,78,78,100,100,100,78,100,100,100,21,100,31,100,31,22,100,78,22,100,100,100,78,31,100,78,31,78,100,78,78,78,100,22,78,100,100,100,78,100,100,100,78,78,21,31,78,78,13,22,78,100,100,100,78,21,100,13,21,22,31,31,31,100,78,100,13,22,21,22,100,78],\"y\":[9,9,6,8,8,5,7,9,8,9,8,7,9,8,9,8,8,9,5,7,9,8,9,3,9,9,9,9,8,9,9,9,8,9,9,5,3,8,8,9,5,9,7,9,6,2,8,9,8,8,8,9,9,4,8,9,8,9,6,9,8,9,7,8,9,9,8,7,9,9,9,8,9,9,8,5,9,5,9,8,9,5,5,9,9,9,1,7,9,8,9,8,8,4,5,8,6,9,6,9,7,7,7,8,9,7,7,9,6,7,8,9,8,9,9,9,8,9,9,7,5,6,8,8,8,6,4,9,7,9,8,7,8,5,9,5,7,8,9,8,7,9,8,8,6,8,5,9,9,9,7,8,9,8,9,6,6,8,9,8,8,4,8,9,7,8,9,8,7,9,4,9,6,4,4,8,8,9,8,8,8,9,9,6,8,5,4,5,6,8,5,4,6,9,8,7,7,4,8,8,9,9,9,8,9,9,9,5,9,7,9,7,6,9,8,6,9,9,9,8,7,9,8,7,8,9,8,8,8,9,6,8,9,9,9,8,9,9,9,8,8,5,7,8,8,4,6,8,9,9,9,8,5,9,4,5,6,7,7,7,9,8,9,4,6,5,6,9,8],\"text\":[\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 2\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 2\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 1\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 13\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 1\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 13\",\"Number of parks = 21\",\"Number of parks = 78\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 21\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 22\",\"Number of parks = 13\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 13\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 13\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 13\",\"Number of parks = 13\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 13\",\"Number of parks = 21\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 13\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 13\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 13\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 13\",\"Number of parks = 21\",\"Number of parks = 22\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 13\",\"Number of parks = 22\",\"Number of parks = 21\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 78\"],\"type\":\"bar\",\"textposition\":\"none\",\"marker\":{\"autocolorscale\":false,\"color\":\"rgba(89,89,89,1)\",\"line\":{\"width\":1.88976377952756,\"color\":\"transparent\"}},\"showlegend\":false,\"xaxis\":\"x\",\"yaxis\":\"y\",\"hoverinfo\":\"text\",\"frame\":null}],\"layout\":{\"margin\":{\"t\":26.2283105022831,\"r\":7.30593607305936,\"b\":40.1826484018265,\"l\":92.7853881278539},\"plot_bgcolor\":\"rgba(235,235,235,1)\",\"paper_bgcolor\":\"rgba(255,255,255,1)\",\"font\":{\"color\":\"rgba(0,0,0,1)\",\"family\":\"\",\"size\":14.6118721461187},\"xaxis\":{\"domain\":[0,1],\"automargin\":true,\"type\":\"linear\",\"autorange\":false,\"range\":[-5,105],\"tickmode\":\"array\",\"ticktext\":[\"0\",\"25\",\"50\",\"75\",\"100\"],\"tickvals\":[0,25,50,75,100],\"categoryorder\":\"array\",\"categoryarray\":[\"0\",\"25\",\"50\",\"75\",\"100\"],\"nticks\":null,\"ticks\":\"outside\",\"tickcolor\":\"rgba(51,51,51,1)\",\"ticklen\":3.65296803652968,\"tickwidth\":0.66417600664176,\"showticklabels\":true,\"tickfont\":{\"color\":\"rgba(77,77,77,1)\",\"family\":\"\",\"size\":11.689497716895},\"tickangle\":-0,\"showline\":false,\"linecolor\":null,\"linewidth\":0,\"showgrid\":true,\"gridcolor\":\"rgba(255,255,255,1)\",\"gridwidth\":0.66417600664176,\"zeroline\":false,\"anchor\":\"y\",\"title\":{\"text\":\"Number of parks\",\"font\":{\"color\":\"rgba(0,0,0,1)\",\"family\":\"\",\"size\":14.6118721461187}},\"hoverformat\":\".2f\"},\"yaxis\":{\"domain\":[0,1],\"automargin\":true,\"type\":\"linear\",\"autorange\":false,\"range\":[0.4,9.6],\"tickmode\":\"array\",\"ticktext\":[\"OTHER\",\"SPECIAL\",\"SPORTS COMPLEX\",\"TRAFFICWAY\",\"CONSERVATION\",\"OPEN SPACE\",\"COMMUNITY\",\"NEIGHBORHOOD\",\"MINI\"],\"tickvals\":[1,2,3,4,5,6,7,8,9],\"categoryorder\":\"array\",\"categoryarray\":[\"OTHER\",\"SPECIAL\",\"SPORTS COMPLEX\",\"TRAFFICWAY\",\"CONSERVATION\",\"OPEN SPACE\",\"COMMUNITY\",\"NEIGHBORHOOD\",\"MINI\"],\"nticks\":null,\"ticks\":\"outside\",\"tickcolor\":\"rgba(51,51,51,1)\",\"ticklen\":3.65296803652968,\"tickwidth\":0.66417600664176,\"showticklabels\":true,\"tickfont\":{\"color\":\"rgba(77,77,77,1)\",\"family\":\"\",\"size\":11.689497716895},\"tickangle\":-0,\"showline\":false,\"linecolor\":null,\"linewidth\":0,\"showgrid\":true,\"gridcolor\":\"rgba(255,255,255,1)\",\"gridwidth\":0.66417600664176,\"zeroline\":false,\"anchor\":\"x\",\"title\":{\"text\":\"\",\"font\":{\"color\":null,\"family\":null,\"size\":0}},\"hoverformat\":\".2f\"},\"shapes\":[{\"type\":\"rect\",\"fillcolor\":null,\"line\":{\"color\":null,\"width\":0,\"linetype\":[]},\"yref\":\"paper\",\"xref\":\"paper\",\"x0\":0,\"x1\":1,\"y0\":0,\"y1\":1}],\"showlegend\":false,\"legend\":{\"bgcolor\":\"rgba(255,255,255,1)\",\"bordercolor\":\"transparent\",\"borderwidth\":1.88976377952756,\"font\":{\"color\":\"rgba(0,0,0,1)\",\"family\":\"\",\"size\":11.689497716895}},\"hovermode\":\"closest\",\"barmode\":\"relative\"},\"config\":{\"doubleClick\":\"reset\",\"modeBarButtonsToAdd\":[\"hoverclosest\",\"hovercompare\"],\"showSendToCloud\":false},\"source\":\"A\",\"attrs\":{\"e434646d209\":{\"x\":{},\"y\":{},\"text\":{},\"type\":\"bar\"}},\"cur_data\":\"e434646d209\",\"visdat\":{\"e434646d209\":[\"function (y) \",\"x\"]},\"highlight\":{\"on\":\"plotly_click\",\"persistent\":false,\"dynamic\":false,\"selectize\":false,\"opacityDim\":0.2,\"selected\":{\"opacity\":1},\"debounce\":0},\"shinyEvents\":[\"plotly_hover\",\"plotly_click\",\"plotly_selected\",\"plotly_relayout\",\"plotly_brushed\",\"plotly_brushing\",\"plotly_clickannotation\",\"plotly_doubleclick\",\"plotly_deselect\",\"plotly_afterplot\",\"plotly_sunburstclick\"],\"base_url\":\"https://plot.ly\"},\"evals\":[],\"jsHooks\":[]}\rFigure 1: Number of parks within each type.\r\r\rTwenty largest parks\r[Placeholder text] Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Table 1 shows the twenty largest parks types, along with their type and acreage. The code doesn’t show below because echo = FALSE.\n\rTable 1: The twenty largest parks in Madison.\r\rName\rType\rAcreage\r\r\r\rCherokee Marsh - North Unit\rCONSERVATION\r946.58\r\rCherokee Marsh - South Unit (School Road Unit)\rCONSERVATION\r261.27\r\rElver Park\rCOMMUNITY\r250.82\r\rNortheast Park\rCOMMUNITY\r237.76\r\rWarner Park\rCOMMUNITY\r213.49\r\rDoor Creek Park\rCOMMUNITY\r159.97\r\rCherokee Marsh - Mendota Unit\rCONSERVATION\r122.08\r\rOwen Conservation Park\rCONSERVATION\r96.79\r\rReindahl (Amund) Park\rCOMMUNITY\r90.74\r\rOlbrich Park\rCOMMUNITY\r90.01\r\rYahara Hills Park (West)\rCOMMUNITY\r82.20\r\rSycamore Park\rCOMMUNITY\r71.42\r\rTurville Point Conservation Park\rCONSERVATION\r64.28\r\rEdna Taylor Conservation Park\rCONSERVATION\r60.27\r\rQuann Park\rCOMMUNITY\r55.43\r\rDemetral Park\rCOMMUNITY\r49.18\r\rPrairie Ridge Conservation Park\rCONSERVATION\r48.76\r\rOlin Park\rCOMMUNITY\r47.12\r\rHiestand Park\rCOMMUNITY\r46.27\r\rVilas (Henry) Park\rCOMMUNITY\r45.67\r\r\r\rWe could decide to display the code for the table at this point (or any other), which can be done using the parameters ref.label = 'largest-parks', echo = TRUE, eval = FALSE in the chunk options (Xie, Dervieux, \u0026amp; Riederer, 2020).\ndat %\u0026gt;%\rsummarize(Name = Park_Name, Type, Acreage) %\u0026gt;%\rarrange(-Acreage, Name, Type) %\u0026gt;%\rselect(Name, Type, Acreage) %\u0026gt;%\rhead(20) %\u0026gt;%\rkable(caption = \u0026#39;The twenty largest parks in Madison.\u0026#39;)\r\n\r","date":1597363200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1597363200,"objectID":"bbe7cc7942958a68302a125ad80e07d1","permalink":"https://pablobernabeu.github.io/2020/r-markdown-amidst-madison-parks/","publishdate":"2020-08-14T00:00:00Z","relpermalink":"/2020/r-markdown-amidst-madison-parks/","section":"post","summary":"This document is part of teaching materials created for the workshop 'Open data and reproducibility v2.1: R Markdown, dashboards and Binder', delivered at the CarpentryCon 2020 conference. The purpose of this specific document is to practise R Markdown, including basic features such as Markdown markup and code chunks, along with more special features such as cross-references for figures, tables, code chunks, etc. Since this conference was originally going to take place in Madison, let's look at some open data from the City of Madison.","tags":["s","R","R Markdown","CarpentryCon","workshop","RStudio","bookdown","cross-references"],"title":"R Markdown amidst Madison parks","type":"post"},{"authors":[],"categories":["viewpoint"],"content":"\r\nFluke is a popular term for the statistical concepts of false positive or false negative results (more commonly used for false positives). A false positive occurs when a result that does not exist in reality is observed in an analysis due to a methodological error (be it experimental, statistical, or otherwise). Conversely, a false negative occurs when a genuine result is not observed in an analysis, due to the same kind of error. The concept of fluke is defined by its opposite: a truthful, accurate result.\nThe label ‘fluke’ is ubiquitous where statistics is applied, from medicine to psychology and from sociology to politics.\nWhen I won in 2018, many dismissed our victory as a “fluke.”\nOur win was treated as an aberration, or bc my opponent “didn’t try.”\nSo from the start, tonight’s race was important to me.\nTonight we are proving that the people’s movement in NY isn’t an accident. It‘s a mandate.\r— Alexandria Ocasio-Cortez (@AOC) June 24, 2020\r\r\r\nWhat’s in the label ‘fluke’—or what could there be?\rAOC’s tweet points at two main types of reactions to her results in the previous elections. The first type is dismissal, on the grounds of a fluke or a weak opposition. The other reaction is plain ‘aberration’. A few weeks earlier, Mark Leibovich had also delved into this issue in The New York Times (May 4, 2020, https://nyti.ms/2YsJ9fb):\n\rShe believed misconceptions had taken hold about her: that she was angry and strident. That she was naïve. “That I just don’t know how this town works,” she said. “That I’m stupid. Or I’m lucky. That was a big thing the Democrats were saying. That I was a fluke. Which is basically just 10 different ways of saying she’s not supposed to be here.”\n\rThe seemingly objective term ‘fluke’, with its statistical underpinning, seems to be susceptible to biased uses. We may then have to ask: Have other electoral results, comparable to AOC’s, been equally studied for signs of a fluke? Why is a certain result perceived as a fluke in the first place? From perceptual to cognitive and historical biases, people’s judgements are susceptible to visual mistakes (Zamboni, Ledgeway, McGraw, \u0026amp; Schluppeck, 2016), confirmation bias (Rajsic, Taylor, \u0026amp; Pratt, 2018) and biased records (Hug, 2003).\nIn summary, the label ‘fluke’ may in principle be skewed by:\n the eye of the beholder\n the mind of the perceiver\n the availability or lack of data\n\r\n\rTrust and distrust\rProblems associated with the reliance on trust and distrust have become patent even in fields that are relatively regulated against arbitrary decisions, such as higher education and academia (Barber, Hayes, Johnson, Márquez-Magaña, \u0026amp; 10,234 signatories, 2020; Milkman, Akinola, \u0026amp; Chugh, 2012, 2015).\n\n\rReferences\rBarber, P. H., Hayes, T. B., Johnson, T. L., Márquez-Magaña, L., \u0026amp; 10,234 signatories (2020). Systemic racism in higher education. Science, 369, 6510, 1440-1441. https://doi.org/10.1126/science.abd7140\nHug, S. (2003). Selection Bias in Comparative Research: The Case of Incomplete Data Sets. Political Analysis, 11(3), 255-274. https://doi.org/10.1093/pan/mpg014\nMilkman, K. L., Akinola, M., \u0026amp; Chugh, D. (2012). Temporal distance and discrimination: an audit study in academia. Psychological Science, 23(7), 710–717. https://doi.org/10.1177/0956797611434539\n_____ (2015). What happens before? A field experiment exploring how pay and representation differentially shape bias on the pathway into organizations. Journal of Applied Psychology, 100(6), 1678–1712. https://doi.org/10.1037/apl0000022\nRajsic, J., Taylor, J. E. T., \u0026amp; Pratt, J. (2018) Out of sight, out of mind: Matching bias underlies confirmatory visual search. Attention, Perception, \u0026amp; Psychophysics, 79, 498–507. https://doi.org/10.3758/s13414-016-1259-4\nZamboni, E., Ledgeway, T., McGraw, P. V., \u0026amp; Schluppeck, D. (2016). Do perceptual biases emerge early or late in visual processing? Decision-biases in motion perception. Proceedings of the Royal Society B: Biological Sciences, 283(1833), 20160263. https://doi.org/10.1098/rspb.2016.0263\n\n\r","date":1593043200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1593043200,"objectID":"57e3bb921a728168f4133cdd4dc07187","permalink":"https://pablobernabeu.github.io/2020/whats-in-a-fluke/","publishdate":"2020-06-25T00:00:00Z","relpermalink":"/2020/whats-in-a-fluke/","section":"post","summary":"The label 'fluke' may in principle be skewed by the eye of the beholder, the mind of the perceiver and the availability or lack of data.","tags":["fluke","false positive","false negative","perception","bias","discrimination","trust","distrust"],"title":"What's in a fluke? The problem of trust and distrust","type":"post"},{"authors":["Bernabeu, P., \u0026 Lynott, D."],"categories":["research and teaching applications","R"],"content":"\r Purposes\r\rThis open-source, R-based web application is suitable for educational and research purposes in experimental and quantitative sciences. It allows the creation of varied data sets with specified structures, such as between-group and within-participant variables, that can be categorical or continuous. These parameters can be set throughout the various tabs (sections) from the top menu. In the last tab, the data set can be downloaded. The benefits of this application include time-saving and flexibility in the control of parameters.\nGuidelines\rGeneral guidelines include the following:\n\rIn the names of variables, it’s recommended only to use alphanumeric characters and underscore signs. The latter can be used to separate characters or words (e.g., variable_name). Different names should be used for each variable.\n\rIn the levels of categorical variables, alphanumeric, special characters and spaces are allowed.\n\rIn numeric fields (e.g., ‘Mean’, ‘Standard deviation’, ‘Relative probability [0, 1]’), only numbers and decimal points are allowed.\n\rAs the data set increases, so does the processing time.\n\r\rMore specific guidelines are available in each section.\n\r🌐 The web application can be launched here.\rScreenshot of the Dependent tab (view larger)\r\r\rReference\rBernabeu, P., \u0026amp; Lynott, D. (2020). Web application for the simulation of experimental data (Version 1.4). https://github.com/pablobernabeu/Experiment-simulation-app/\n\rCode\rThis web application was developed in R (R Core Team, 2020). The code is available on Github, where contributions may be made. The initial code for this application was influenced by Section 5.7 (Simulating data for multi-factor designs) in Crump (2017). The R packages used include ‘dplyr’ (Wickham, François, Henry, \u0026amp; Müller, 2018), ‘DT’ (Xie, 2020), ‘flexdashboard’ (Iannone, Allaire, \u0026amp; Borges, 2020), ‘shiny’ (Chang, Cheng, Allaire, Xie, \u0026amp; McPherson, 2020) and ‘stringr’ (Wickham, 2019).\n\rOptions for development and local use of the app\rOption A) Using local R/RStudio or RStudio Cloud project or Binder RStudio environment\r[Step only necessary in R/RStudio] Install the packages in the versions used in the latest release of this application, by running:\ninstall.packages(\u0026#39;devtools\u0026#39;)\rlibrary(devtools)\rinstall_version(\u0026#39;dplyr\u0026#39;, \u0026#39;1.0.2\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;DT\u0026#39;, \u0026#39;0.15\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;flexdashboard\u0026#39;, \u0026#39;0.5.2\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;htmltools\u0026#39;, \u0026#39;0.5.0\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;knitr\u0026#39;, \u0026#39;1.30\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;ngram\u0026#39;, \u0026#39;3.0.4\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;purrr\u0026#39;, \u0026#39;0.3.4\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;shiny\u0026#39;, \u0026#39;1.5.0\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;stringr\u0026#39;, \u0026#39;1.4.0\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;tidyr\u0026#39;, \u0026#39;1.1.2\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rOpen the index.Rmd script.\n\rRun the application by clicking on ▶️ Run document at the top left, or by running rmarkdown::run('index.Rmd') in the console.\n\rClick on Open in Browser at the top left.\n\r\r\rOption B) Using Dockerfile (see instructions)\r\r\rAcknowledgements\rThank you to RStudio for the free hosting server used by this application, shinyapps.io.\n\rReferences\rChang, W., Cheng, J., Allaire, J., Xie, Y., \u0026amp; McPherson, J. (2020). shiny: Web Application Framework for R. R package version 1.4.0. Available at http://CRAN.R-project.org/package=shiny.\nCrump, M. J. C. (2017). Programming for Psychologists: Data Creation and Analysis (Version 1.1). https://crumplab.github.io/programmingforpsych/.\nIannone, R., Allaire, J. J., \u0026amp; Borges, B. (2020). Flexdashboard: R Markdown Format for Flexible Dashboards. http://rmarkdown.rstudio.com/flexdashboard.\nR Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.\nWickham, H. (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr.\nWickham, H., François, R., Henry, L., \u0026amp; Müller, K. (2018). dplyr: A Grammar of Data Manipulation. R package version 0.7.6. https://CRAN.R-project.org/package=dplyr.\nXie, Y. (2020). DT: A Wrapper of the JavaScript Library “DataTables”. R package version 0.14. Available at https://CRAN.R-project.org/package=DT.\n\rContact\rTo submit any questions or feedback, please post an issue, or email Pablo Bernabeu at pcbernabeu@gmail.com.\n\r","date":1590969600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1590969600,"objectID":"cb99802ba67d5ec447b8a57edf3c7694","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/experimental-data-simulation/","publishdate":"2020-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/experimental-data-simulation/","section":"applications-and-dashboards","summary":"This open-source, R-based web application is suitable for educational or research purposes in experimental sciences. It allows the **creation of varied data sets with specified structures, such as between-group or within-participant variables, that can be categorical or continuous.** These features can be selected along the different tabs. In the penultimate tab, a custom summary of the current data set can be constructed. In the last tab, the list of parameters and the data set can be downloaded.","tags":["web application","data simulation","randomisation","research methods","experiment","statistics","data science","R","Tidyverse","R Shiny","Flexdashboard","HTML","CSS","Software Sustainability Institute Fellowship"],"title":"Web application for the simulation of experimental data","type":"applications-and-dashboards"},{"authors":["Rand et al."],"categories":["research"],"content":"\r\n\r\n\r\n","date":1590710400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1590710400,"objectID":"356352fe6162095bd1b10790cbffac29","permalink":"https://pablobernabeu.github.io/2020/how-to-engage-research-group-leaders-in-sustainable-software-practices/","publishdate":"2020-05-29T00:00:00Z","relpermalink":"/2020/how-to-engage-research-group-leaders-in-sustainable-software-practices/","section":"post","summary":"There is an increasing number of training courses introducing early career researchers to sustainable software practices but relatively little aimed at Research Group Leaders and Principal Investigators. Expecting group leaders to personally acquire such skills through training such as a two-day Carpentries workshop is unrealistic, as these require a significant time investment and are less directly applicable in the role of research director. In addition, many group leaders would not consider their group as outputting software, or are less aware of the full range of benefits that sustainable practice brings and will thus be less likely to signpost such training to their team members. Even where they do identify benefits, they may have concerns about releasing group software or may feel overwhelmed by the potential scale of the task, especially with respect to legacy projects.","tags":["s","research","sustainable practices"],"title":"How to engage Research Group Leaders in sustainable software practices","type":"post"},{"authors":["Cooper et al."],"categories":["software"],"content":"\r\n\r\n\r\n","date":1590710400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1590710400,"objectID":"0a69641623857190165304e7c0a35302","permalink":"https://pablobernabeu.github.io/2020/incentives-for-good-research-software-practices/","publishdate":"2020-05-29T00:00:00Z","relpermalink":"/2020/incentives-for-good-research-software-practices/","section":"post","summary":"Software is increasingly becoming recognised as fundamental to research. In a 2014 survey of UK researchers undertaken by the Institute, 7 out of 10 researchers supported the view that it would be impossible to conduct research without software. As software continues to underpin more research activities, we must engage a variety of stakeholders to incentivise the uptake of best practice in software development to ensure the quality of research software keeps pace with the research it supports.","tags":["s","research software","best practices"],"title":"Incentives for good research software practices","type":"post"},{"authors":null,"categories":["data visualisation","R"],"content":"\u0026nbsp; Dashboard\r\r\rThis dashboard presents open data (iNaturalist and BioScan) from Prudic, K.L.; Oliver, J.C.; Brown, B.V.; Long, E.C. Comparisons of Citizen Science Data-Gathering Approaches to Evaluate Urban Butterfly Diversity. Insects 2018, 9, 186. In their study, Prudic and colleagues compared citizen science with traditional methods in the measurement of butterfly populations.\nI developed this dashboard after reproducing the analyses of the original study in a Reprohack session.\nMy coding tasks included transforming the data to a long format,\n# There are pseudovariables, that is, observations entered as variables. Since most R processes # need the tidy format, convert below (see https://r4ds.had.co.nz/tidy-data.html).\r# The specific numbers found through traps and crowdsourcing methods are preserved.\rBioScan = BioScan %\u0026gt;% pivot_longer(\rcols = Anthocharis_sara:Vanessa_cardui, names_to = \u0026quot;Species\u0026quot;,\rvalues_to = \u0026quot;Number\u0026quot;, values_drop_na = TRUE\r)\r# Compare\r#str(BioScan)\r#str(dat)\r# 928 rows now; the result of 29 pseudo-variables being transposed into\r# rows, interacting with 32 previous rows, i.e., 29 * 32 = 928.\r merging three data sets,\n# The iNaturalist data set presents a slightly different challenge from the pseudovariables found above.\r# The number of animals of each species must be computed from repeated entries, per site.\riNaturalist = merge(iNaturalist, iNaturalist %\u0026gt;% count(species, site, name = 'Number'))\r and, as ever, wrangling with the format of the dashboard pages to preserve the format of a table.\nSpecies details {style=\u0026quot;background-color: #FCFCFC;\u0026quot;}\r=======================================================================\rColumn {style=\u0026quot;data-width:100%; position:static; height:1000px;\u0026quot;}\r-----------------------------------------------------------------------\r Reference Bernabeu, P. (2020). Dashboard with data from Prudic, Oliver, Brown, \u0026amp; Long (2018), Comparisons of Citizen Science Data-Gathering Approaches to Evaluate Urban Butterfly Diversity, Insects, 9, 186. https://pablobernabeu.github.io/dashboards/Butterfly-species-richness-in-LA.\n\r","date":1577836800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1577836800,"objectID":"96946d5c2cb3747b0122b8bf0160e852","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/butterfly-species-richness-in-la/","publishdate":"2020-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/butterfly-species-richness-in-la/","section":"applications-and-dashboards","summary":"Dashboard with open data from a study by Prudic et al. (2018), that compares citizen science with traditional methods in butterfly sampling. Coding tasks included long-transforming, merging, and as ever, wrangling with a table.","tags":["data dashboard","R","citizen science","butterflies","nature","open data","BioScan","iNaturalist","HTML","CSS","tidy","merge","Software Sustainability Institute Fellowship"],"title":"Data dashboard: Butterfly species richness in Los Angeles","type":"applications-and-dashboards"},{"authors":[],"categories":["education","programming","R"],"content":"\rEnhanced data presentation using reproducible documents and dashboards\rCalendar\r\r\r\r\rDate\rTitle\rEvent and location\rRegistration\r\r\r\r26 Nov 2020\rMixed-effects models in R, and a new tool for data simulation\rNew Tricks Seminars, Dept. Psychology, Lancaster University [online]\r\r\r8 Oct 2020\rReproducibilidad en torno a una aplicación web\rReprohack en español, LatinR Conference 2020 [online]\rLink\r\r13 Aug 2020\rOpen data and reproducibility: R Markdown, data dashboards and Binder v2.1 (co-led with Florencia D’Andrea)\rCarpentryCon, CarpentryCon@Home, The Carpentries [online]\rLink\r\r26 July 2020\rOpen data and reproducibility: R Markdown, data dashboards and Binder (co-led with Eirini Zormpa)\rUK Cognitive Linguistics Conference, University of Birmingham [online]\rLink\r\r6 May 2020\rR Markdown\rLancaster University [online]\r\r\rEvent cancelled\rOpen data and reproducibility 2.0\rSatRday Newcastle upon Tyne, Newcastle University\rLink\r\r\r\r\n\rBackground\rThis project offers free activities to learn and practise reproducible data presentation. Pablo Bernabeu organises these events in the context of a Software Sustainability Institute Fellowship.\nOpen-source software\rProgramming languages such as R and Python offer free, powerful resources for data processing, visualisation and analysis. Experience in these programs is highly valued in data-intensive disciplines.\n\rOpen data\rOriginal data has become a public good in many research fields thanks to cultural and technological advances. On the internet, we can find innumerable data sets from sources such as scientific journals and repositories (e.g., OSF), local and national governments (e.g., London, UK [1, 2]), non-governmental organisations (e.g., data.world), etc. Researchers inside and outside academia nowadays share a lot of their data under attribution licences (e.g., Creative Commons, the UK Open Government Licence, etc.). This allows any external analysts to access these raw data, create (additional) visualisations and analyses, and share these. In society, making data more accessible can demonstrably benefit citizens (despite limitations).\n\r\r\rActivities\rActivities comprise free workshops and datathons.\nWorkshops\rR is a programming language greatly equipped for the creation of reproducible documents and dashboards. Four workshops are offered that cover a suite of interrelated tools—R, R Markdown, data dashboards and Binder environments—, all underlain by reproducible workflows and open-source software.\nEach workshop includes taught and practical sections. The practice provides a chance for participants to experience and address common issues with the code. The level of taught sections is largely tailored to participants; similarly, practice sections are individually adaptable by means of easier and tougher tasks. The duration is also flexible, and some of the workshops can be combined into the same session.\nThe RStudio interface is used in all workshops. Multi-levelled, real code examples are used. Throughout the workshops, and especially in the practice sections, individual questions will be encouraged.\nWorkshop 1: Introduction to R\rThis workshop can serve as an introduction to R or a revision. It demonstrates what can be done in R, and provides resources for individual training. Since the duration is limited, online courses are also recommended (see examples and fee waivers for full content).\n\rData structures\rPackages: general-purpose examples (e.g., tidyverse) and more specific ones (e.g., for statistics or geography)\rLoading and writing data, in native and foreign formats\rWide format (also dubbed ‘untidy’) versus tidy format (also dubbed ‘long’ or ‘narrow’). For most processes in R, data needs to be in a tidy format.\r\r\rImage from Postma and Goedhart (2019; https://doi.org/10.1371/journal.pbio.3000202.g001).\r\rCombining data sets\rData summaries\rPlots with ggplot2::ggplot()\rInteractive plots with plotly::ggplotly()\rStatistics\rLinear mixed-effects models (see also a review of practices)\rHow functions work\rDebugging. Code errors are known as bugs. They can tiresome, but also interesting sometimes! 😅 Some tips for the first many years of experience include: reading and investigating error messages, in both source and console windows; controlling letter case and typos; closing parentheses and inverted commas; ensuring to have the necessary packages installed and loaded; following the format required by each function. To debug, break up code into subcomponents and test each of those to find out the source of the error. Once we act on that, the best outcome is seeing the code work, but sometimes different errors overlap, in which case we may see one error disappearing before another one appears. Debugging soon leads to proficient information seeking. The search process often begins on an internet search engine and extends to user communities, package documentation, tutorials, blogs… (see video explanation). Advanced debugging tools are also available.\rVast availability of free resources on the internet, from Coursera and other MOOC sites, RStudio, University of Glasgow, Carpentries, etc.\rCommunity: StackOverflow, RStudio Community, Github issues (e.g., for R packages), etc. Using and contributing back.\rRStudio Cloud: a personal RStudio environment on the internet\r\r\rWorkshop 2: R Markdown documents\rSet your input and output in stone using R Markdown. The analysis reports may be enriched with website features (HTML/CSS) and published as HTML, PDF or Word documents. Moreover, with R packages such as bookdown, bookdownplus, blogdown and flexdashboard, documents can be formatted as websites, digital papers and books and data dashboards. Other useful packages include rmarkdown, knitr, DT, kableExtra and ggplot2. Further background: presentation by Michael Frank, slides by Ed Berry.\nAs well as facilitating the reproducibility of analyses and results to third parties, R Markdown is helpful during the creation of a report. In particular, it reduces the chances of errors and the number of repetitive tasks. For instance, any part of the data can be inputted in the text directly from the source, rather than manually copying it (e.g., `r mean(dat[dat$location=='Havana', 'measure'])` (expand). Thus, if and when the analysis needs to be changed or updated, the report can be automatically updated at the click of a button. In another area, the captions for figures and tables can be automatised using cross-reference labels (e.g., Table \\@ref(tab:mtcars)). This secures the match between the text and the captions of figures and tables, and it automatically updates the numbering whenever and wherever a new figure or table is introduced.\n\rImage from bookdownplus package (https://bookdownplus.netlify.com/portfolio/).\r\rWorkshop 3: Introduction to data dashboards\rData dashboards are web applications used to visualise data in detail through tables and plots. They assist in explaining and accounting for our data processing and analysis. They don’t require any coding from the end user. While most dashboards and web applications present existing data, a few of them serve the purpose of creating or simulating new data (see example).\n\rThese all-reproducible dashboards are published as websites, and thus, they can include hyperlinks and downloadable files. Some of the R packages used are knitr, DT, kableExtra, reactable, ggplot2, plotly, rmarkdown, flexdashboard and shiny. The aim of this workshop is to practise creating different forms of dashboards—Flexdashboard and Shiny—the latter of which offers greater features, and to practise also with the hosting platforms fitting each type—such as personal websites, RPubs, Binder, Shinyapps and custom servers.\nA great thing about dashboards is that they may be made very simple, but they can also be taken to the next level using some HTML, CSS or Javascript code (on top of the back-end code present in the R packages used), which is addressed in the next workshop.\n\rWorkshop 4: Binder environments and improving data dashboards\rBinder\rBinder is a tool to facilitate public access to software environments—for instance, by publishing an RStudio environment on the internet. Binder can also host Shiny apps. It is generously free for users. After looking at the nuts and bolts of a deployment, participants will be able to deploy their own Binder environments and check the result by the end of the workshop. For this purpose, it’s recommended to have data and R code ready, ideally in a GitHub repository.\n\rImproving data dashboards\rWe will practise how to improve the functionality of dashboards using some HTML, CSS and Javascript code, which is the basis of websites.\n\u0026lt;!-- Javascript function to enable a hovering tooltip --\u0026gt;\r\u0026lt;script\u0026gt;\r$(document).ready(function(){\r$(\u0026#39;[data-toggle=\u0026quot;tooltip1\u0026quot;]\u0026#39;).tooltip();\r});\r\u0026lt;/script\u0026gt;\r\r\rTrade-offs among dashboards\rNext, we will practise with three dashboard types—Flexdashboard, Shiny and Flexdashboard-Shiny—and with the suitable hosting platforms. Firstly, the strength of Flexdashboard (example) is its basis on R Markdown, yielding an unmatched user interface (front-end). Secondly, the strength of Shiny (example) is the input reactivity (back-end) it offers, allowing users to download sections of data they select, in various formats. Last, Flexdashboard-Shiny (example) combines the best of both worlds.\n★ Flexdashboard ★\r★ ★ Shiny ★ ★\r★ ★ ★ Flexdashboard-Shiny ★ ★ ★\rFlexdashboard types are rendered as an HTML document—simple websites—, and can therefore be easily published on personal sites or RPubs. This is convenient because no special hosting is required. In contrast, Shiny and Flexdashboard-Shiny types offer greater features, but require Shiny servers. Fortunately, the shinyapps.io server is available for free, up to some usage limit. This server can host any of the three dashboards mentioned here. Another good option is presented by Binder environments, which can host the Shiny-type dashboards with no (explicit) limit. Yet, the Flexdashboard-Shiny type cannot be hosted in this server (as of January 2020, at least). Consequently, greater functionality may come at a cost for dashboards that have any considerable traffic, whereas dashboards with low traffic may do well on shinyapps.io. Knowing these trade-offs can help navigate usage limits, save on web hosting fees, and increase the availability of our dashboards online, as we can offer fall-back versions on different platforms, as in the example below:\n\r… preferred-dashboard (in case of downtime, please visit this alternative)\n\rTransforming dashboards into the different versions can be as easy as enabling or disabling some features, especially input reactivity. For instance, if we want to downgrade a Flexdashboard-Shiny to a Flexdashboard, to publish it outside of a Shiny server (see example), we must delete runtime:shiny from the header, and disable reactive features, as below.\n\r```r\r# Number of words selected on sidebar\r# reactive(cat(paste0(\u0026#39;Words selected below: \u0026#39;, nrow(selected_props()))))\r```\r\rFree accounts and tips\rHosting sites have specific terms of use. For instance, shinyapps.io has a free starter license with limited use. Free apps can handle a large but limited amount of data, and up to five apps may be created. Beyond this, RStudio offers a wide range of subscriptions starting at $9/month.\nMemory and traffic limits of the free shinyapps.io account can sometimes present problems when heavy data data sets are used, or there are many visits to the app. The memory overload issue is often flagged as Shiny cannot use on-disk bookmarking, whereas excessive traffic may see the app not loading. Fortunately, usage limits need not always require a paid subscription or a custom server, thanks to the following workarounds:\n\rdevelop app locally as far as possible, and only deploy to shinyapps.io only at the last stage;\rprune data set, leaving only the necessary data;\rif necessary, unlink data by splitting it into different sets, reducing computational demands;\rif necessary, use various apps (five are allowed in each free shinyapps.io account);\rif necessary, link from the app to a PDF with visualisations requiring heavy, interlinked data. High-resolution plots can be rendered into a PDF document in a snap, using code such as below.\r\rpdf(\u0026#39;List of plots per page\u0026#39;, width = 13, height = 5)\rprint(plot1)\rprint(plot2)\r# ...\rprint(plot150)\rdev.off()\rConveniently, all text in a PDF—even in plots—is indexed, so it can be searched [ Ctrl+f / Cmd+f / 🔍 ] (see example). Furthermore, you may also merge the rendered PDF with any other documents.\n\r\rPrerequisites and suggestions for participation in each workshop\rNecessary: laptop or computer with R and RStudio installed, or access to RStudio Cloud; familiarity with the content of the preceding workshops through the web links herein.\nSuggested: having your own data and R code ready (on a Github repository if participating in Workshop 4); participation in some of the preceding workshops.\n\r\rDatathons: creating reproducible documents and dashboards\rIn these coding meetups, participants collaborate to create reproducible documents or dashboards using the data and software they prefer (see examples). Since the work can be split across different people and sections, some nice products may be achieved within a session. Any programming languages may be used.\n\rData used: academic or non-academic data of your own or from open-access sources such as OSF, scientific journals, governments, international institutions, NGOs, etc.\n\rInspired by the great Reprohacks, content suggestions are encouraged. That is, if you’d like to have a reproducible document or dashboard created for a certain, open-access data set, please let us know, and some participants may take it on. Suggestions may be posted as issues or emailed to p.bernabeu@lancaster.ac.uk.\r\r\rPurposes\n\rcollaborating to visualise data in novel ways using reproducible documents or interactive dashboards. For this purpose, participants sometimes draw on additional data to look at a bigger picture;\n\rreflecting on the process by reviewing the techniques applied and challenges encountered.\n\r\rOutput: A key aspect of datathons is the creation of output. Documents and dashboards are (co-)authored by the participants who work on them, who can then publish them on their websites, or on RPubs, Binder, Shinyapps or custom servers. Time constraints notwithstanding, a lot of this output may be very enticing for further development by the same participants, or even by other people if the code is shared online. Just like with data, an attribution licence can be attached to the code.\n\r\rPrerequisites and suggestions for participation in datathons\rNecessary: basic knowledge of reproducible documents or dashboards.\nSuggested: familiarity with the development of reproducible documents or dashboards; an idea about the data you’d like to work with and the kind of document or dashboard you want to create.\n\r\r\rContact\rPlease submit any queries or requests by posting an issue or emailing p.bernabeu@lancaster.ac.uk.\n\r","date":1577836800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1577836800,"objectID":"d4c6f6ca4eb0c2665fdbb559c58d2620","permalink":"https://pablobernabeu.github.io/2020/data-is-present-workshops-and-datathons/","publishdate":"2020-01-01T00:00:00Z","relpermalink":"/2020/data-is-present-workshops-and-datathons/","section":"post","summary":"This project offers free activities to learn and practise reproducible data presentation. Pablo Bernabeu organises these events in the context of a Software Sustainability Institute Fellowship. Programming languages such as R and Python offer free, powerful resources for data processing, visualisation and analysis. Experience in these programs is highly valued in data-intensive disciplines. Original data has become a public good in many research fields thanks to cultural and technological advances. On the internet, we can find innumerable data sets from sources such as scientific journals and repositories (e.g., OSF), local and national governments, non-governmental organisations (e.g., data.world), etc. Activities comprise free workshops and datathons.","tags":["s","programming","education","workshop","datathon","data presentation","data visualisation","dashboard","reproducibility","open science","open data","statistics","R","R Shiny","Flexdashboard","HTML","CSS","Software Sustainability Institute Fellowship"],"title":"Data is present: Workshops and datathons","type":"post"},{"authors":[],"categories":["event-related potentials"],"content":"Event-related potentials (ERPs) offer a unique insight in the study of human cognition. Let's look at their reason-to-be for the purposes of research, and how they are defined and processed. Most of this content is based on my master's thesis, which I could fortunately conduct at the Max Planck Institute for Psycholinguistics (see thesis or conference paper).\nElectroencephalography The brain produces electrical activity all the time, which can be measured via electrodes on the scalp—a method known as electroencephalography (EEG). These pulses are produced for every one of our states and actions, in a voltage at a micro (µ) scale, typically between 10 µV (0.000010) and 100 µV (0.000100; Aurlien et al., 2004). The overlapping pulses happen at extremely high frequencies; indeed, the signal can be measured once per millisecond. The high frequency of this signal is very interesting for the study of some cognitive processes in particular, for which the time course is (or may be) critical. One such example is conceptual processing, namely, the process of understanding the meaning of words.\nResearch has revealed the relation between certain EEG patterns and cognitive states and functions. Brain activity includes dozens of types, but broadly, it can be divided into neural oscillations and event-related potentials. Specific oscillations (also known as brain waves) are associated with states such as wakefulness, sleep, arousal, relaxation, etc. (Roohi-Azizi et al., 2017). Event-related potentials instead represent more finite events, such as the presentation of as a stimulus. In cognitive neuroscience, both oscillations and ERPs are studied, whereas in cognitive psychology, ERPs are much more common than oscillations. Let's dive into ERPs below.\nEvent-related potentials In the lab, ERPs are elicited using controlled designs. In each trial, a series of stimuli are presented. At a fixed point therein, an EEG measurement begins and spans for a certain period. In turn, in the analysis, this measurement period is divided into time windows, which often correspond to specific ERP components (e.g., N400 window).\nIn psycholinguistics, for instance, a typical scenario is the presentation of words, and ERPs are systematically time-locked to the same position in consecutive trials, often the onset of a word. By this means, the experimental manipulation is collected, and the non-experimental variation—\u0026lsquo;noise\u0026rsquo;—is largely cancelled out by the aggregation of multiple trials that share the experimental manipulation.\nThe chief reason to employ the ERP method is the measurement of cognitive processes online, that is, precisely as they unfold. This is fitting in the context of language comprehension, where some important processes last for less than a second.\nTime course of word processing Processing a word takes around 800 milliseconds (ms). Within that time, earlier processes (compared to later ones) have been ascribed greater relevance to the core process of understanding a word (Mahon \u0026amp; Caramazza, 2008). This assumes that broader processes start only after more immediate ones have started (but see Lebois, Wilson‐Mendenhall \u0026amp; Barsalou, 2014). The most immediate process is the recognition of a string of letters, which seems to start within 90 ms post word onset in early auditory cortex and the Visual Word Form Area (Willems et al., 2016). Then ensue further, fundamental stages known as lexical and semantic processes. Lexical processing is the identification of a string of letters as a known word, and it happens within around 160 ms post word onset. Next, at around 200 ms, we may see the beginning of semantic processing, which denotes a further step in the cognitive analysis of the word that is akin to meaning (Hauk, 2016). These processes may overlap, as indeed suggested by the sensitivity of the N400 ERP (see also next section) to both lexical and semantic tasks (Kutas \u0026amp; Federmeier, 2011). Both processes also likely extend further in the processing timeline (Hauk, 2016). In spite of this overlap, however, lexical and semantic processing have often been linked to different cognitive phenomena. For instance, tasks promoting semantic processing (e.g., semantic decision, whereby participants describe words as concrete or abstract) have been found to engage sensorimotor simulation of the word's meaning (known as embodiment) more strongly than lexical tasks do (Connell \u0026amp; Lynott, 2013; Pexman et al., 2019; Sato et al., 2008).\nOnce the lexical and semantic stages have emerged, post-lexical, post-semantic processes follow (Mahon \u0026amp; Caramazza, 2008). These are mental imagery and episodic memory processes—both with an approximate emergence around 270 ms after word onset. The gradual progression from the identification of a word up to accessing its broadest meaning is an important anchoring point in the current research on the alleged embodiment of meaning comprehension, even if we might hope to count on more definitive threshold points (Hauk, 2016).\nWord processing data are mainly based on written word processing, but spoken words are processed quite similarly, if slightly faster (Leonard et al., 2016; Pulvermüller et al., 2005; Shtyrov et al., 2004).\nThe bigger take-home messages would be: (1) the processing of meaning might only start at around 160 ms post word onset, and (2) processes outside of meaning comprehension might only start at around 270 ms. These working references must be taken with some caution because particular semantic effects have been found at different stages (e.g., the conceptual modality switch, as in Hald et al., 2011; Collins, Pecher et al., 2011). Indeed, in an influential critique of blooming findings on embodiment, Mahon and Caramazza (2008) argued that even early effects might possibly be explained in terms of non-embodied processing. They contended that working memory processes that were ancillary rather than semantic could be quickly engaged with the function of ‘colouring’ a concept, not building it up. To further complicate the matter, we do not have absolute certainty on the later section of the time course. Thus, as Hauk (2016) reviews, the different stages likely overlap at certain points, with different degrees of relevance. For instance, lexical processing may continue even once semantic processing has started, but would naturally become less relevant. Indeed, the relation among these processes is likely more of a continuum than a set of clear-cut modules. In a nutshell, the time course is important with some experimental effects in word processing, and, to that extent, we depend on our knowledge of the basic time course of word processing.\nThe conceptual modality switch paradigm and its time course In demonstrating the relevance of embodied cognition, a sizeable series of studies have shown that reading about different conceptual modalities (e.g., auditory ‘loud bell’ followed by visual ‘pink background’) incurs processing costs (Pecher et al., 2003). Importantly, this manipulation does not concern the presentation mode of the stimulus, maintained constant, but the intrinsic semantic modality of the stimulus concepts. The conceptual modality switch effect has often been replicated (Pecher et al., 2004; Solomon \u0026amp; Barsalou, 2004; Marques, 2006; Vermeulen et al., 2007; van Dantzig et al., 2008; Lynott \u0026amp; Connell, 2009; Ambrosi et al., 2011; Collins et al., 2011; Hald et al., 2011; Hald et al., 2013; Scerrati et al., 2015).\nBernabeu, Willems and Louwerse (2017) addressed a caveat with the time course of the conceptual modality switch paradigm. In previous experiments, trials presented a concept word followed by a property word. ERPs were time-locked to the latter property word. This design may have left uncontrolled a switch produced already at the concept. Indeed, the property word was already supposed to be in the particular modality of the trial. That pitfall could have had two consequences: loss of power and loss of certainty on the time course of the effect. Thus, Bernabeu et al. created a design in which ERPs were time-locked to the first word in target trials (see some early input from researchers online). The purpose of this relocation was not to completely annul the possibility of post-core sensory processes, but to increase the time accuracy by measuring the modality switch from the point at which it is elicited.\nImplementing this design had an ancillary effect on the measurement of response times. A psycholinguistic experiment like this one requires controlling fundamental variables such as word frequency and length, by matching the means of these variables across experimental conditions. This must be controlled in the target words at least. As it is often the case, this control was only possible in the target words—the first one in target trials—, but it was not possible in the second word, which is the crucial one for response times. Response times could still be measured, but comparisons across conditions were not fully warranted. In sum, this was an ERP design.\nERP components When the ERP signal is plotted, it displays multiple wave shapes, or waveforms, each with a peak flanked by falling tails. Each of these waves often corresponds to an ERP component, which is what cognitive scientists are often interested in.\nMultiple components are known, each having been found to consistently peak around specific points in time during a cognitive process. The peak is one of several features characterising each component. A sketch list is shown below (van Hell \u0026amp; Kroll, 2013).\n Polarity: The component either peaks in the positive or the negative pole of the signal. This polarity is relative to the baseline point that is created in the preprocessing stage (see below);\n Latency: the time course of the component, encompassing an onset, a peak and an overall duration. Time windows are normally set to match relevant components (e.g., the N400 window, etc.);\n Amplitude: the voltage reached at a given time (e.g., the peak) or for a certain period (e.g., a time window);\n Scalp distribution, or topography: the areas on the scalp (the scalp being a reasonable proxy for the brain) in which the component appears;\n Functional role: the cognitive functions that have been consistently associated with the component.\n Examples of components in language processing include the N400, consistently linked to semantic processing, that is, seeking the meaning of words or sentences. The N400 is characterised by a large, negative amplitude peaking at around 400 ms post word onset, primarily found in central and posterior sites. N400 effects, which are comparisons of the N400 component in different experimental conditions, have consistently appeared under violations of semantic expectations, i.e., related to meaning and events (Kutas \u0026amp; Federmeier, 2011; Swaab et al., 2012). Another well-known component in language is the P600, linked to syntactic processing, which allows the comprehension of sentences (Swaab et al., 2012). Other examples of components include lateralized readiness potentials, signalling motor preparation (Mordkoff \u0026amp; Gianaros, 2000), and the P3b component, which appears in the context of responses (van Vliet et al., 2014). Both of the latter components are relevant to researchers across domains, who often need to ward off contamination from these components in their experiments. In Bernabeu et al.\u0026lsquo;s experiment, for instance, part of the reason why ERPs were time-locked to the first word in target trials was to prevent contamination from these components.\nERP data sets are large, being the product of the number of electrodes (also called \u0026lsquo;channels\u0026rsquo;) times the number of time points, times the number of experimental conditions, and times the number of participants. In recent studies, the number of trials often adds to that product, whereas in previous experiments, the trials tended to be aggregated in each condition.\nEEG montage The EEG montage is an important factor. The options are broadly characterised by three parameters of the electrodes:\nBrainwaves exposed at an open day.\n Active / passive: Active electrodes amplify the EEG signal directly at the scalp, whereas passive electrodes require the raw signal to be sent through a lead (i.e., a wire) and up to an amplifier. In the latter case, the lead acts as an antenna, picking up ambient electrical noise. This noise can hinder the subtle measurement of interest. This problem is solved by active electrodes (Laszlo et al., 2014).\n Number: Traditionally, montages with 32, 64 or 128 electrodes have been used. The more electrodes, the \u0026lsquo;denser\u0026rsquo; the montage, and the higher the spatial resolution.\n Wet / dry: In some montages, the electrical conductance on the electrodes\u0026rsquo; contact point must be increased using some fluid solutions, such as a specific gel (often commercialised by the companies that also make EEG apparatuses). Conversely, other electrodes function in a dry way. Ensuring the proper conductance on wet electrodes has traditionally been very time-consuming for experimenters, often taking over half an hour of wiggling a blunt syringe distributing the saline solution around the tip. Traditionally, wet electrodes produced more reliable data than dry ones, but the times they are a'changing (di Flumeri, 2019).\n An EEG/ERP experiment is time-consuming. The preparation (especially conductance-prompting with wet montages) and post-experiment procedures (especially washing the EEG cap) often take four or five times as long as the experiment proper. These procedures are especially long for higher-density, wet montages.\nPreprocessing ERPs ERPs are not the first signal collected in experiments. They are obtained after considerable, systematic preprocessing of the EEG signal.\n\nFor Bernabeu et al. (2017), I used Brain Vision software, and followed the tutorials from the well-known ERP Boot Camp of Steve Luck and Emily Kappenman. I applied the following pipeline for each participant:\n labeling channels (64 electrodes);\n creating channel groups (anterior and posterior);\n re-referencing the signal offline to the right mastoid (RM), having referenced online to the left mastoid (Ref);\n \n separating my three experimental conditions;\n ocular correction for blinks and significant, vertical or horizontal movements of the eyes (seminal method by Gratton et al., 1983, which is the default in Brain Vision);\n baseline correction, which is a standardisation based on a certain period immediately before the onset of the target manipulation;\n further correction of artifacts such as motor action potentials (or lateralised readiness potentials) resulting from even the subtlest muscle activity.\n This pipeline is reflected in the scripts exported from Brain Vision.\n \u0026lt;Nodes\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch/OcularCorrection\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch/OcularCorrection/baselinecorr\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch/OcularCorrection/baselinecorr/baselinecorr_artif\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch/OcularCorrection/baselinecorr/baselinecorr_artif/minave_TotalMatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch/OcularCorrection\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch/OcularCorrection/baselinecorr\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch/OcularCorrection/baselinecorr/baselinecorr_artif\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch/OcularCorrection/baselinecorr/baselinecorr_artif/minave_EmbodiedMismatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch/OcularCorrection\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch/OcularCorrection/baselinecorr\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch/OcularCorrection/baselinecorr/baselinecorr_artif\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch/OcularCorrection/baselinecorr/baselinecorr_artif/minave_TotalMismatch\u0026lt;/string\u0026gt;\r\u0026lt;/Nodes\r Word reading ERPs can look somewhat like this after the preprocessing (plots made in R).\n\nTo visualise these waveforms throughout the different sections of the data, a dashboard is available.\nStatistical analysis With the myriad repeated measures involved in EEG, linear mixed-effects models are a good option, allowing the registration of electrodes and time points in the error term per participant (and trial, too, if these are not aggregated). The analysis I performed, in R, is available (plots visible by downloading the file from the aforementioned link).\n.embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}window.jQuery || document.write('\\x3C/script') var mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/sx3nw/?direct%26mode=render%26action=download%26mode=render\");\rConclusion Event-related potentials fulfil an important role in cognitive neuroscience and psychology, only surpassed by magnetic electroencephalography (MEG), which unites high temporal and spatial resolution. Learning how to use ERPs is demanding but even more rewarding. It certainly does not make for fast science, but allows the measurement of experimental effects online, that is, as they unfold.\nYou can learn about and overcome multiple challenges. One of the issues I faced once regarded some channels (electrodes) that appeared to be missing from the data. I posted a question on ResearchGate, and emailed Brain Products, the maker of Brain Vision Recorder, which I was using.\n Hi everyone,\nIf you could please give me a hand with this error, I would be very grateful. I have EEG from a psychological experiment, recorded with BrainVision Recorder, and being analyzed with BrainVision Analyzer 2. Most of the recordings are perfectly fine, but a few present a big error. Out of 64 original electrodes, only two appear. These are the right mastoid (RM) and the left eye sensor (LEOG). Both are bipolar electrodes. RM is to be re-referenced to the online reference electrode, while LEOG is to be re-referenced to the right eye electrode.\nI just can't fathom the error because all electrodes worked fine during the recording. Also, the data sets with the error are quite as heavy in terms of bytes as those without the error. Further, why should the RM and LEOG channels remain perfectly well as they do?\nThis issue might seem like a simple zoom I've bypassed, or similar\u0026hellip; But unfortunately the channels are just not there. I've confirmed it as I tried to copy the pipeline from the good data sets onto the faulty ones, where I got the error \u0026lsquo;No channels enabled.\u0026rsquo; In case you had access to the BVA analysis software, please find the raw files for one of the faulty data sets here.\n Thanks to invaluable help from a ResearchGate contributor and the Brain Products team, I could put the pieces back together.\n Update: Problem solved.\nAs Nikolay said, the error originated in Recorder (I had used the workspace from the previous experimenter), and the problem was solved by setting the label and position of each channel.\nI tried editing the .vhdr file in raw (it seemed nice and quick to directly assign the channel names as labels) but i didn't quite find the way. Therefore, with a tip from the Brain Products team, I went about it within the program.\nFirst, I used the transform function \u0026lsquo;Edit channels\u0026rsquo; to rename all labels and set each within their coordinates. I did that for just one subject (it doesn't take as long as it sounds). Afterwards, I created a \u0026lsquo;History template\u0026rsquo; out of that process, and copied it to all other nodes. At any rate, never getting out of the comfort workspace again\u0026hellip; :D\n References Ambrosi, S., Kalenine, S., Blaye, A., \u0026amp; Bonthoux, F. (2011). Modality switching cost during property verification by 7 years of age. International Journal of Behavioral Development, 35, 1, 78-83.\nAurlien, H., Gjerde, I., Aarseth, J., Eldøen, G., Karlsen, B., Skeidsvoll, H., \u0026amp; Gilhus, N. (2003). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115, 665–673.\nBernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: evidence from ERPs. In G. Gunzelmann, A. Howes, T. Tenbrink, \u0026amp; E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1629-1634). Austin, TX: Cognitive Science Society.\nCollins, J., Pecher, D., Zeelenberg, R., \u0026amp; Coulson, S. (2011). Modality switching in a property verification task: an ERP study of what happens when candles flicker after high heels click. Frontiers in Psychology, 2.\nConnell, L., \u0026amp; Lynott, D. (2013). Flexible and fast: Linguistic shortcut affects both shallow and deep conceptual processing. Psychonomic Bulletin \u0026amp; Review, 20, 542-550.\nDi Flumeri, G., Aricò, P., Borghini, G., Sciaraffa, N., Di Florio, A., \u0026amp; Babiloni, F. (2019). The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Sensors (Basel, Switzerland), 19(6), 1365.\nGratton, G., Coles, M. G., \u0026amp; Donchin, E. (1983). A new method for offline removal of ocular artefact. Electroencephalography and Clinical Neurophysiology, 55, 4, 468-484.\nHald, L. A., Hocking, I., Vernon, D., Marshall, J.-A., \u0026amp; Garnham, A. (2013). Exploring modality switching effects in negated sentences: further evidence for grounded representations. Frontiers in Psychology, 4, 93.\nHald, L. A., Marshall, J.-A., Janssen, D. P., \u0026amp; Garnham, A. (2011). Switching modalities in a sentence verification task: ERP evidence for embodied language processing. Frontiers in Psychology, 2.\nHauk, O. (2016). Only time will tell—Why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin \u0026amp; Review, 23, 4, 1072-1079.\nKutas, M., \u0026amp; Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647.\nLaszlo, S., Ruiz-Blondet, M., Khalifian, N., Chu, F., \u0026amp; Jin, Z. (2014). A direct comparison of active and passive amplification electrodes in the same amplifier system. Journal of Neuroscience Methods, 235, 298-307.\nLebois, L. A. M., Wilson-Mendenhall, C. D., \u0026amp; Barsalou, L. W. (2014). Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects. Cognitive Science, 39, 8, 1764-801.\nLeonard, M. K., Baud, M. O., Sjerps, M. J., \u0026amp; Chang, E. F. (2016). Perceptual restoration of masked speech in human cortex. Nature Communications, 7, 13619.\nLuck, S. J. \u0026amp; Kappenman, E.S. (Eds.), Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press\nMahon, B.Z., \u0026amp; Caramazza, A. (2008). A critical look at the Embodied Cognition Hypothesis and a new proposal for grounding conceptual content. Journal of Physiology - Paris, 102, 59-70.\nMarques, J. F. (2006). Specialization and semantic organization: Evidence for multiple semantics linked to sensory modalities. *Memory \u0026amp; Cognition, 34, 1, 60-67.\nMordkoff, J. T., \u0026amp; Gianaros, P. J. (2000). Detecting the onset of the lateralized readiness potential: A comparison of available methods and procedures. Psychophysiology, 37(3), 347–360.\nPecher, D., Zeelenberg, R., \u0026amp; Barsalou, L. W. (2003). Verifying different-modality properties for concepts produces switching costs. Psychological Science, 14, 2, 119-24.\n____ (2004). Sensorimotor simulations underlie conceptual representations: Modality-specific effects of prior activation. Psychonomic Bulletin \u0026amp; Review, 11, 1, 164-167.\nPexman, P. M., Muraki, E. J., Sidhu, D. M., Siakaluk, P. D., \u0026amp; Yap, M. J. (2019). Quantifying sensorimotor experience: Body-object interaction ratings for more than 9,000 English words. Behavior Research Methods, 51, 453-466.\nPulvermüller, F., Shtyrov, Y., \u0026amp; Hauk, O. (2009). Understanding in an instant: Neurophysiological evidence for mechanistic language circuits in the brain. Brain and Language, 110, 2, 81–94.\nRoohi-Azizi, M., Azimi, L., Heysieattalab, S., \u0026amp; Aamidfar, M. (2017). Changes of the brain's bioelectrical activity in cognition, consciousness, and some mental disorders. Medical journal of the Islamic Republic of Iran, 31, 53.\nSato, M., Mengarelli, M., Riggio, L., Gallese, V., \u0026amp; Buccino, G. (2008). Task related modulation of the motor system during language processing. Brain and Language, 105, 83–90.\nScerrati, E., Baroni, G., Borghi, A. M., Galatolo, R., Lugli, L., \u0026amp; Nicoletti, R. (2015). The modality-switch effect: visually and aurally presented prime sentences activate our senses. Frontiers in Psychology, 6, 1668.\nShtyrov, Y., Hauk, O., \u0026amp; Pulvermüller, F. (2004). Distributed neuronal networks for encoding category-specific semantic information: the mismatch negativity to action words. European Journal of Neuroscience, 1, 4, 1083–1092.\nSolomon, K. O., \u0026amp; Barsalou, L. W. (2004). Perceptual simulation in property verification. Memory \u0026amp; Cognition, 32, 244-259.\nSwaab, T.Y., Ledoux, K., Camblin, C.C., \u0026amp; Boudewyn, M.A. (2012) Language related ERP components. (Book Chapter). In Luck, S. J. \u0026amp; Kappenman, E.S. (Eds.), Oxford Handbook of Event-Related Potential Components (pp. 397-440). New York: Oxford University Press\nVan Dantzig, S., Pecher, D., Zeelenberg, R., \u0026amp; Barsalou, L. W. (2008). Perceptual processing affects conceptual processing. Cognitive Science, 32, 579–590.\nVan Hell, J. G., \u0026amp; Kroll, J. F. (2013). Using electrophysiological measures to track the mapping of words to concepts in the bilingual brain: a focus on translation. In J. Altarriba \u0026amp; L. Isurin (Eds.), Memory, Language, and Bilingualism: Theoretical and Applied Approaches (pp. 126-160). New York: Cambridge University Press.\nVan Vliet, M., Manyakov, N., Storms, G., Fias, W., Wiersema, J., \u0026amp; Van Hulle, M. (2014). Response-Related Potentials during semantic priming: the effect of a speeded button response task on ERPs. PLoS One, 9, 2, e87650.\nVermeulen, N., Niedenthal, P. M., \u0026amp; Luminet, O. (2007). Switching between sensory and affective systems incurs processing costs. Cognitive Science, 31, 1, 183-192.\nWillems, R. M., Frank, S. L., Nijhoff, A. D., Hagoort, P., \u0026amp; Van den Bosch, A. (2016). Prediction during natural language comprehension. Cerebral Cortex, 26, 6, 2506-2516.\n\r","date":1577836800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1577836800,"objectID":"6a2774b23fea8ee5fe9d0dac3de1cdfc","permalink":"https://pablobernabeu.github.io/2020/event-related-potentials-why-and-how-i-used-them/","publishdate":"2020-01-01T00:00:00Z","relpermalink":"/2020/event-related-potentials-why-and-how-i-used-them/","section":"post","summary":"Event-related potentials (ERPs) offer a unique insight in the study of human cognition. Let's look at their reason-to-be for the purposes of research, and how they are defined and processed. Most of this content is based on my master's thesis, which I could fortunately conduct at the Max Planck Institute for Psycholinguistics (see thesis or conference paper).\nElectroencephalography The brain produces electrical activity all the time, which can be measured via electrodes on the scalp—a method known as electroencephalography (EEG).","tags":["s","event-related potentials","electroencephalography","electrodes","preprocessing","methodology","cognitive neuroscience","Brain Vision","R","statistics","linear mixed-effects models","Max Planck Institute for Psycholinguistics"],"title":"Event-related potentials: Why and how I used them","type":"post"},{"authors":["Bernabeu, P., \u0026 Tillman, R."],"categories":["linguistic relativity"],"content":"Reference Bernabeu, P., \u0026amp; Tillman, R. (2019). More refined typology and design in linguistic relativity: The case of motion event encoding. Dutch Journal of Applied Linguistics, 8(2), 163-171. http://doi.org/10.1075/dujal.15019.ber\n ","date":1546300800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1546300800,"objectID":"d966dfb0977cb54bb103ccd6372d0b42","permalink":"https://pablobernabeu.github.io/publication/bernabeu-tillman-2019/","publishdate":"2019-01-01T00:00:00Z","relpermalink":"/publication/bernabeu-tillman-2019/","section":"publication","summary":"Linguistic relativity is the influence of language on other realms of cognition. For instance, the way movement is expressed in a person’s native language may influence how they perceive movement. Motion event encoding (MEE) is usually framed as a typological dichotomy. Path-in-verb languages tend to encode path information within the verb (e.g., ‘leave’), whereas manner-in-verb languages encode manner (e.g., ‘jump’). The results of MEE-based linguistic relativity experiments range from no effect to effects on verbal and nonverbal cognition. Seeking a more definitive conclusion, we propose linguistic and experimental enhancements. First, we examine state-of-the-art typology, suggesting how a recent MEE classification across twenty languages (Verkerk, 2014) may enable more powerful analyses. Second, we review procedural challenges such as the influence of verbal thought and second-guessing in experiments. To tackle these challenges, we propose distinguishing verbal and nonverbal subgroups, and having enough filler items. Finally we exemplify this in an experimental design.","tags":["linguistic relativity","psycholinguistics","linguistics","motion events"],"title":"More refined typology and design in linguistic relativity: The case of motion event encoding","type":"publication"},{"authors":["Bernabeu, P."],"categories":["linguistic materials","conceptual replication"],"content":"Reference Bernabeu, P. (2018). Dutch modality exclusivity norms for 336 properties and 411 concepts. PsyArXiv. https://doi.org/10.31234/osf.io/s2c5h\n\rRelated references Anderson, A. J., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., Aguilar, M., Wang, X., Doko, D., \u0026amp; Raizada, R. D. S. (2016). Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation. Cerebral Cortex, cercor;bhw240v1. https://doi.org/10.1093/cercor/bhw240\nAnderson, A. J., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., Raizada, R. D. S., Lin, F., \u0026amp; Lalor, E. C. (2019). An Integrated Neural Decoder of Linguistic and Experiential Meaning. The Journal of Neuroscience, 39(45), 8969\u0026ndash;8987. https://doi.org/10.1523/JNEUROSCI.2575-18.2019\nAnderson, A. J., \u0026amp; Lin, F. (2019). How pattern information analyses of semantic brain activity elicited in language comprehension could contribute to the early identification of Alzheimer's Disease. NeuroImage: Clinical, 22, 101788. https://doi.org/10.1016/j.nicl.2019.101788\nBagli, M. (2023). How to Point with Language: English Source-Based Language to Describe Taste Qualities. Lublin Studies in Modern Languages and Literature, 42(2), 31\u0026ndash;46. https://doi.org/10.17951/lsmll.2023.47.2.31-46\nBanks, B., Borghi, A. M., Fargier, R., Fini, C., Jonauskaite, D., Mazzuca, C., Montalti, M., Villani, C., \u0026amp; Woodin, G. (2023). Consensus Paper: Current Perspectives on Abstract Concepts and Future Research Directions. Journal of Cognition, 6(1), 62. https://doi.org/10.5334/joc.238\nBolognesi, M., Burgers, C., \u0026amp; Caselli, T. (2020). On abstraction: Decoupling conceptual concreteness and categorical specificity. Cognitive Processing, 21(3), 365\u0026ndash;381. https://doi.org/10.1007/s10339-020-00965-9\nBorghi, A. M., Mazzuca, C., Gervasi, A. M., Mannella, F., \u0026amp; Tummolini, L. (2023). Grounded cognition can be multimodal all the way down. Language, Cognition and Neuroscience, 1\u0026ndash;5. https://doi.org/10.1080/23273798.2023.2210238\nBottini, R., Morucci, P., D'Urso, A., Collignon, O., \u0026amp; Crepaldi, D. (2022). The concreteness advantage in lexical decision does not depend on perceptual simulations. Journal of Experimental Psychology: General, 151(3), 731\u0026ndash;738. https://doi.org/10.1037/xge0001090\nBruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms, G., \u0026amp; Vandenberghe, R. (2019). Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neuroscience \u0026amp; Biobehavioral Reviews, 103, 3\u0026ndash;13. https://doi.org/10.1016/j.neubiorev.2019.05.015\nCaballero, R., \u0026amp; Paradis, C. (2020). Soundscapes in English and Spanish: A corpus investigation of verb constructions. Language and Cognition, 12(4), 705\u0026ndash;728. https://doi.org/10.1017/langcog.2020.19\nCaballero, R., \u0026amp; Paradis, C. (2023). Sharing Perceptual Experiences through Language. Journal of Intelligence, 11(7), 129. https://doi.org/10.3390/jintelligence11070129\nCalzavarini, F. (2023). Rethinking modality-specificity in the cognitive neuroscience of concrete word meaning: A position paper. Language, Cognition and Neuroscience, 1\u0026ndash;23. https://doi.org/10.1080/23273798.2023.2173789\nCarney, J. (2020). Thinking avant la lettre: A Review of 4E Cognition. Evolutionary Studies in Imaginative Culture, 4(1), 77\u0026ndash;90. https://doi.org/10.26613/esic.4.1.172\nCharmhun Jo, Sun-A Kim, \u0026amp; Chu-Ren Huang. (2022). Linguistic synesthesia in Korean: A compound word-based study of cross-modal directionality. Linguistic Research, 39(2), 275\u0026ndash;296. https://doi.org/10.17250/KHISLI.39.2.202206.002\nChedid, G., Brambati, S. M., Bedetti, C., Rey, A. E., Wilson, M. A., \u0026amp; Vallet, G. T. (2019). Visual and auditory perceptual strength norms for 3,596 French nouns and their relationship with other psycholinguistic variables. Behavior Research Methods, 51(5), 2094\u0026ndash;2105. https://doi.org/10.3758/s13428-019-01254-w\nChedid, G., Wilson, M. A., Bedetti, C., Rey, A. E., Vallet, G. T., \u0026amp; Brambati, S. M. (2019). Norms of conceptual familiarity for 3,596 French nouns and their contribution in lexical decision. Behavior Research Methods, 51(5), 2238\u0026ndash;2247. https://doi.org/10.3758/s13428-018-1106-8\nChen, I.-H., Zhao, Q., Long, Y., Lu, Q., \u0026amp; Huang, C.-R. (2019). Mandarin Chinese modality exclusivity norms. PLOS ONE, 14(2), e0211336. https://doi.org/10.1371/journal.pone.0211336\nConnell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition and Neuroscience, 34(10), 1308\u0026ndash;1318. https://doi.org/10.1080/23273798.2018.1471512\nConnell, L., Lynott, D., \u0026amp; Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170143. https://doi.org/10.1098/rstb.2017.0143\nCorciulo, S., Bioglio, L., Basile, V., Patti, V., \u0026amp; Damiano, R. (2023). The DEEP Sensorium: A multidimensional approach to sensory domain labelling. Companion Proceedings of the ACM Web Conference 2023, 661\u0026ndash;668. https://doi.org/10.1145/3543873.3587631\nDavis, C. P., \u0026amp; Yee, E. (2021). Building semantic memory from embodied and distributional language experience. WIREs Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555\nDe Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., \u0026amp; Storms, G. (2019). The \u0026ldquo;Small World of Words\u0026rdquo; English word association norms for over 12,000 cue words. Behavior Research Methods, 51(3), 987\u0026ndash;1006. https://doi.org/10.3758/s13428-018-1115-7\nDellantonio, S., \u0026amp; Pastore, L. (2017). The \u0026lsquo;Proprioceptive\u0026rsquo; Component of Abstract Concepts. In S. Dellantonio \u0026amp; L. Pastore, Internal Perception (Vol. 40, pp. 297\u0026ndash;357). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55763-1_6\nDíez-Álamo, A. M., Díez, E., Alonso, M. Á., Vargas, C. A., \u0026amp; Fernandez, A. (2018). Normative ratings for perceptual and motor attributes of 750 object concepts in Spanish. Behavior Research Methods, 50(4), 1632\u0026ndash;1644. https://doi.org/10.3758/s13428-017-0970-y\nDíez-Álamo, A. M., Díez, E., Wojcik, D. Z., Alonso, M. A., \u0026amp; Fernandez, A. (2019). Sensory experience ratings for 5,500 Spanish words. Behavior Research Methods, 51(3), 1205\u0026ndash;1215. https://doi.org/10.3758/s13428-018-1057-0\nDove, G. (2021). The Challenges of Abstract Concepts. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 171\u0026ndash;195). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_8\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2023). More is not necessarily better: How different aspects of sensorimotor experience affect recognition memory for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1572\u0026ndash;1587. https://doi.org/10.1037/xlm0001265\nFischer, M. H., \u0026amp; Shaki, S. (2018). Number concepts: Abstract and embodied. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170125. https://doi.org/10.1098/rstb.2017.0125\nFishman, A. (2022). The picture looks like my music sounds: Directional preferences in synesthetic metaphors in the absence of lexical factors. Language and Cognition, 14(2), 208\u0026ndash;227. https://doi.org/10.1017/langcog.2022.2\nGangemi, A. (2020). Closing the Loop between knowledge patterns in cognition and the Semantic Web. Semantic Web, 11(1), 139\u0026ndash;151. https://doi.org/10.3233/SW-190383\nGhandhari, M., Fini, C., Da Rold, F., \u0026amp; Borghi, A. M. (2020). Different kinds of embodied language: A comparison between Italian and Persian languages. Brain and Cognition, 142, 105581. https://doi.org/10.1016/j.bandc.2020.105581\nGijssels, T., \u0026amp; Casasanto, D. (2020). Hand-use norms for Dutch and English manual action verbs: Implicit measures from a pantomime task. Behavior Research Methods, 52(4), 1744\u0026ndash;1767. https://doi.org/10.3758/s13428-020-01347-x\nHarpaintner, M., Sim, E.-J., Trumpp, N. M., Ulrich, M., \u0026amp; Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 1\u0026ndash;22. https://doi.org/10.1016/j.cortex.2019.10.014\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2018). The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words. Frontiers in Psychology, 9, 1748. https://doi.org/10.3389/fpsyg.2018.01748\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2022). Time course of brain activity during the processing of motor- and vision-related abstract concepts: Flexibility and task dependency. Psychological Research, 86(8), 2560\u0026ndash;2582. https://doi.org/10.1007/s00426-020-01374-5\nHartman, J., \u0026amp; Paradis, C. (2023). The language of sound: Events and meaning multitasking of words. Cognitive Linguistics, 34(3\u0026ndash;4), 445\u0026ndash;477. https://doi.org/10.1515/cog-2022-0006\nHörberg, T., Larsson, M., \u0026amp; Olofsson, J. K. (2022). The Semantic Organization of the English Odor Vocabulary. Cognitive Science, 46(11), e13205. https://doi.org/10.1111/cogs.13205\nHuang, C.-R., \u0026amp; Xiong, J. (2019). Linguistic synaesthesia in Chinese. In C.-R. Huang, Z. Jing-Schmidt, \u0026amp; B. Meisterernst (Eds.), The Routledge Handbook of Chinese Applied Linguistics (1st ed., pp. 294\u0026ndash;312). Routledge. https://doi.org/10.4324/9781315625157-20\nIatropoulos, G., Herman, P., Lansner, A., Karlgren, J., Larsson, M., \u0026amp; Olofsson, J. K. (2018). The language of smell: Connecting linguistic and psychophysical properties of odor descriptors. Cognition, 178, 37\u0026ndash;49. https://doi.org/10.1016/j.cognition.2018.05.007\nJacobs, A. M., \u0026amp; Kinder, A. (2017). \u0026ldquo;The Brain Is the Prisoner of Thought\u0026rdquo;: A Machine-Learning Assisted Quantitative Narrative Analysis of Literary Metaphors for Use in Neurocognitive Poetics. Metaphor and Symbol, 32(3), 139\u0026ndash;160. https://doi.org/10.1080/10926488.2017.1338015\nJo, C. (2022). Linguistic Synesthesia in Korean: Universality and Variation. SAGE Open, 12(3), 215824402211178. https://doi.org/10.1177/21582440221117804\nJohns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing word frequency and contextual diversity. Memory \u0026amp; Cognition, 50(5), 1013\u0026ndash;1032. https://doi.org/10.3758/s13421-021-01249-z\nJones, L. L., Wurm, L. H., Calcaterra, R. D., \u0026amp; Ofen, N. (2017). Integrative Priming of Compositional and Locative Relations. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00359\nJulich-Warpakowski, N., \u0026amp; Pérez Sobrino, P. (2023). Introduction: Current challenges in metaphor research. Metaphor and the Social World, 13(1), 1\u0026ndash;15. https://doi.org/10.1075/msw.00026.jul\nKaiser, E. (2021). Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Frontiers in Psychology, 12, 701486. https://doi.org/10.3389/fpsyg.2021.701486\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2017). Novel Text Analysis for Investigating Personality: Identifying the Dark Lady in Shakespeare's Sonnets. Journal of Quantitative Linguistics, 24(4), 255\u0026ndash;272. https://doi.org/10.1080/09296174.2017.1304049\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2018). Using Shakespeare's Sotto Voce to Determine True Identity From Text. Frontiers in Psychology, 9, 289. https://doi.org/10.3389/fpsyg.2018.00289\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2019). The Stylometric Impacts of Ageing and Life Events on Identity. Journal of Quantitative Linguistics, 26(1), 1\u0026ndash;21. https://doi.org/10.1080/09296174.2017.1405719\nKhatin-Zadeh, O., Hu, J., Banaruee, H., \u0026amp; Marmolejo-Ramos, F. (2023). How emotions are metaphorically embodied: Measuring hand and head action strengths of typical emotional states. Cognition and Emotion, 37(3), 486\u0026ndash;498. https://doi.org/10.1080/02699931.2023.2181314\nKiefer, M., Pielke, L., \u0026amp; Trumpp, N. M. (2022). Differential temporo-spatial pattern of electrical brain activity during the processing of abstract concepts related to mental states and verbal associations. NeuroImage, 252, 119036. https://doi.org/10.1016/j.neuroimage.2022.119036\nKim, M.-K., Müller, H. M., \u0026amp; Weiss, S. (2021). What you \u0026ldquo;mean\u0026rdquo; is not what I \u0026ldquo;mean\u0026rdquo;: Categorization of verbs by Germans and Koreans using the semantic differential. Lingua, 252, 103012. https://doi.org/10.1016/j.lingua.2020.103012\nKoblet, O., \u0026amp; Purves, R. S. (2020). From online texts to Landscape Character Assessment: Collecting and analysing first-person landscape perception computationally. Landscape and Urban Planning, 197, 103757. https://doi.org/10.1016/j.landurbplan.2020.103757\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKrishna, P. P., Arulmozi, S., \u0026amp; Mishra, R. K. (2022). \u0026ldquo;Do You See and Hear More? A Study on Telugu Perception Verbs.\u0026rdquo; Journal of Psycholinguistic Research, 51(3), 473\u0026ndash;484. https://doi.org/10.1007/s10936-021-09827-7\nKumcu, A. (2021). Linguistic Synesthesia in Turkish: A Corpus-based Study of Crossmodal Directionality. Metaphor and Symbol, 36(4), 241\u0026ndash;255. https://doi.org/10.1080/10926488.2021.1921557\nLau, S. H., Huang, Y., Ferreira, V. S., \u0026amp; Vul, E. (2019). Perceptual features predict word frequency asymmetry across modalities. Attention, Perception, \u0026amp; Psychophysics, 81(4), 1076\u0026ndash;1087. https://doi.org/10.3758/s13414-019-01682-y\nLee, J., \u0026amp; Shin, J.-A. (2023). The cross-linguistic comparison of perceptual strength norms for Korean, English and L2 English. Frontiers in Psychology, 14, 1188909. https://doi.org/10.3389/fpsyg.2023.1188909\nLi, M., Lu, Q., Long, Y., \u0026amp; Gui, L. (2017). Inferring Affective Meanings of Words from Word Embedding. IEEE Transactions on Affective Computing, 8(4), 443\u0026ndash;456. https://doi.org/10.1109/TAFFC.2017.2723012\nLittlemore, J., Sobrino, P. P., Houghton, D., Shi, J., \u0026amp; Winter, B. (2018). What makes a good metaphor? A cross-cultural study of computer-generated metaphor appreciation. Metaphor and Symbol, 33(2), 101\u0026ndash;122. https://doi.org/10.1080/10926488.2018.1434944\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2023). Learning instance-level N-ary semantic knowledge at scale for robots operating in everyday environments. Autonomous Robots, 47(5), 529\u0026ndash;547. https://doi.org/10.1007/s10514-023-10099-4\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2021, July 12). Learning Instance-Level N-Ary Semantic Knowledge At Scale For Robots Operating in Everyday Environments. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.035\nLong, Y., Xiang, R., Lu, Q., Huang, C.-R., \u0026amp; Li, M. (2021). Improving Attention Model Based on Cognition Grounded Data for Sentiment Analysis. IEEE Transactions on Affective Computing, 12(4), 900\u0026ndash;912. https://doi.org/10.1109/TAFFC.2019.2903056\nLynott, D., Connell, L., Brysbaert, M., Brand, J., \u0026amp; Carney, J. (2020). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52(3), 1271\u0026ndash;1291. https://doi.org/10.3758/s13428-019-01316-z\nMahmood, A., \u0026amp; Yeganegi, S. (2023). Lexical sophistication and crowdfunding outcomes. Venture Capital, 1\u0026ndash;32. https://doi.org/10.1080/13691066.2023.2265565\nMarson, F., Paoletti, P., Naor-Ziv, R., Carducci, F., \u0026amp; Ben-Soussan, T. D. (2023). Embodied empathy and abstract concepts\u0026rsquo; concreteness: Evidence from contemplative practices. In Progress in Brain Research (Vol. 277, pp. 181\u0026ndash;209). Elsevier. https://doi.org/10.1016/bs.pbr.2022.12.005\nMárton, Z. C., Türker, S., Rink, C., Brucker, M., Kriegel, S., Bodenmüller, T., \u0026amp; Riedel, S. (2018). Improving object orientation estimates by considering multiple viewpoints: Orientation histograms of symmetries and measurement models for view selection. Autonomous Robots, 42(2), 423\u0026ndash;442. https://doi.org/10.1007/s10514-017-9633-1\nMiceli, A., Wauthia, E., Kandana Arachchige, K., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2023). Perceptual strength influences lexical decision in Alzheimer's disease. Journal of Neurolinguistics, 68, 101144. https://doi.org/10.1016/j.jneuroling.2023.101144\nMiceli, A., Wauthia, E., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2021). Perceptual and Interoceptive Strength Norms for 270 French Words. Frontiers in Psychology, 12, 667271. https://doi.org/10.3389/fpsyg.2021.667271\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMiklashevsky, A. (2018). Perceptual Experience Norms for 506 Russian Nouns: Modality Rating, Spatial Localization, Manipulability, Imageability and Other Variables. Journal of Psycholinguistic Research, 47(3), 641\u0026ndash;661. https://doi.org/10.1007/s10936-017-9548-1\nMorucci, P., Bottini, R., \u0026amp; Crepaldi, D. (2019). Augmented Modality Exclusivity Norms for Concrete and Abstract Italian Property Words. Journal of Cognition, 2(1), 42. https://doi.org/10.5334/joc.88\nOkuno, H. Y., \u0026amp; Guedes, G. (2020). Automatic XML creation for Multisensorial Books. 2020 XV Conferencia Latinoamericana de Tecnologias de Aprendizaje (LACLO), 1\u0026ndash;6. https://doi.org/10.1109/LACLO50806.2020.9381139\nPathak, A., Velasco, C., Petit, O., \u0026amp; Calvert, G. A. (2019). Going to great lengths in the pursuit of luxury: How longer brand names can enhance the luxury perception of a brand. Psychology \u0026amp; Marketing, 36(10), 951\u0026ndash;963. https://doi.org/10.1002/mar.21247\nPérez-Sánchez, M. Á., Stadthagen-Gonzalez, H., Guasch, M., Hinojosa, J. A., Fraga, I., Marín, J., \u0026amp; Ferré, P. (2021). EmoPro \u0026ndash; Emotional prototypicality for 1286 Spanish words: Relationships with affective and psycholinguistic variables. Behavior Research Methods, 53(5), 1857\u0026ndash;1875. https://doi.org/10.3758/s13428-020-01519-9\nPerlman, M., Little, H., Thompson, B., \u0026amp; Thompson, R. L. (2018). Iconicity in Signed and Spoken Vocabulary: A Comparison Between American Sign Language, British Sign Language, English, and Spanish. Frontiers in Psychology, 9, 1433. https://doi.org/10.3389/fpsyg.2018.01433\nPexman, P. M., Muraki, E., Sidhu, D. M., Siakaluk, P. D., \u0026amp; Yap, M. J. (2019). Quantifying sensorimotor experience: Body\u0026ndash;object interaction ratings for more than 9,000 English words. Behavior Research Methods, 51(2), 453\u0026ndash;466. https://doi.org/10.3758/s13428-018-1171-z\nPlekhanov Russian University of Economics, Simonenko, M. A., Kazaryan, S. Y., \u0026amp; Plekhanov Russian University of Economics. (2023). Synaesthetic metaphor and its reproduction in Russian-to-English translation: A frame-based study. RESEARCH RESULT Theoretical and Applied Linguistics, 9(3). https://doi.org/10.18413/2313-8912-2023-9-3-0-2\nPollock, L. (2018). Statistical and methodological problems with concreteness and other semantic variables: A list memory experiment case study. Behavior Research Methods, 50(3), 1198\u0026ndash;1216. https://doi.org/10.3758/s13428-017-0938-y\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355\u0026ndash;381. https://doi.org/10.19090/pp.v15i3.2400\nPurves, R. S., Striedl, P., Kong, I., \u0026amp; Majid, A. (2023). Conceptualizing Landscapes Through Language: The Role of Native Language and Expertise in the Representation of Waterbody Related Terms. Topics in Cognitive Science, 15(3), 560\u0026ndash;583. https://doi.org/10.1111/tops.12652\nRaj, R., Hörberg, T., Lindroos, R., Larsson, M., Herman, P., Laukka, E. J., \u0026amp; Olofsson, J. K. (2023). Odor identification errors reveal cognitive aspects of age-associated smell loss. Cognition, 236, 105445. https://doi.org/10.1016/j.cognition.2023.105445\nRepetto, C., Rodella, C., Conca, F., Santi, G. C., \u0026amp; Catricalà, E. (2022). The Italian Sensorimotor Norms: Perception and action strength measures for 959 words. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02004-1\nRey, A. E., Riou, B., Vallet, G. T., \u0026amp; Versace, R. (2017). The automatic visual simulation of words: A memory reactivated mask slows down conceptual access. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 71(1), 14\u0026ndash;22. https://doi.org/10.1037/cep0000100\nReymore, L. (2022). Characterizing prototypical musical instrument timbres with timbre trait profiles. Musicae Scientiae, 26(3), 648\u0026ndash;674. https://doi.org/10.1177/10298649211001523\nSan Roque, L., Kendrick, K. H., Norcliffe, E., \u0026amp; Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29(3), 371\u0026ndash;406. https://doi.org/10.1515/cog-2017-0034\nScerrati, E., Lugli, L., Nicoletti, R., \u0026amp; Borghi, A. M. (2017). The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic Bulletin \u0026amp; Review, 24(3), 798\u0026ndash;803. https://doi.org/10.3758/s13423-016-1150-2\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSidhu, D. M., \u0026amp; Pexman, P. M. (2018). Lonely sensational icons: Semantic neighbourhood density, sensory experience and iconicity. Language, Cognition and Neuroscience, 33(1), 25\u0026ndash;31. https://doi.org/10.1080/23273798.2017.1358379\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306\u0026ndash;1318. https://doi.org/10.3758/s13428-021-01656-9\nSpeed, L. J., \u0026amp; Majid, A. (2017). Dutch modality exclusivity norms: Simulating perceptual modality in space. Behavior Research Methods, 49(6), 2204\u0026ndash;2218. https://doi.org/10.3758/s13428-017-0852-3\nSpeed, L. J., \u0026amp; Majid, A. (2018). An Exception to Mental Simulation: No Evidence for Embodied Odor Language. Cognitive Science, 42(4), 1146\u0026ndash;1178. https://doi.org/10.1111/cogs.12593\nSpeed, L. J., \u0026amp; Majid, A. (2020). Grounding language in the neglected senses of touch, taste, and smell. Cognitive Neuropsychology, 37(5\u0026ndash;6), 363\u0026ndash;392. https://doi.org/10.1080/02643294.2019.1623188\nSpeed, L. J., Papies, E. K., \u0026amp; Majid, A. (2023). Mental simulation across sensory modalities predicts attractiveness of food concepts. Journal of Experimental Psychology: Applied, 29(3), 557\u0026ndash;571. https://doi.org/10.1037/xap0000461\nStrik Lievers, F., \u0026amp; Winter, B. (2018). Sensory language across lexical categories. Lingua, 204, 45\u0026ndash;61. https://doi.org/10.1016/j.lingua.2017.11.002\nSu, C., Wang, X., Wang, Z., \u0026amp; Chen, Y. (2019). A model of synesthetic metaphor interpretation based on cross-modality similarity. Computer Speech \u0026amp; Language, 58, 1\u0026ndash;16. https://doi.org/10.1016/j.csl.2019.03.003\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2019). Sensorimotor Cross-Behavior Knowledge Transfer for Grounded Category Recognition. 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 1\u0026ndash;6. https://doi.org/10.1109/DEVLRN.2019.8850715\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2020). A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization. Frontiers in Robotics and AI, 7, 522141. https://doi.org/10.3389/frobt.2020.522141\nTatiya, G., \u0026amp; Sinapov, J. (2019). Deep Multi-Sensory Object Category Recognition Using Interactive Behavioral Exploration. 2019 International Conference on Robotics and Automation (ICRA), 7872\u0026ndash;7878. https://doi.org/10.1109/ICRA.2019.8794095\nTeodorescu, H.-N., \u0026amp; Bolea, S. C. (2019). Text Sectioning based on Stylometric Distances. 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), 1\u0026ndash;6. https://doi.org/10.1109/SPED.2019.8906616\nThomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., Hart, J., Stone, P., \u0026amp; Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327\u0026ndash;374. https://doi.org/10.1613/jair.1.11485\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864\u0026ndash;884. https://doi.org/10.3758/s13428-021-01650-1\nTomsk State University, Rezanova, Z. I., Nekrasova, E. D., Tomsk State University, Miklashevsky, А. А., \u0026amp; Tomsk State University. (2018). INVESTIGATION OF PSYCHO-LINGUISTIC AND COGNITIVE ASPECTS OF LANGUAGE CONTACTING IN THE PROJECT \u0026ldquo;LINGUISTIC AND ETHNOCULTURAL DIVERSITY OF SOUTHERN SIBERIA IN SYNCHRONY AND DIAHRONY: INTERACTION OF LANGUAGES AND CULTURES.\u0026rdquo; Rusin, 52, 107\u0026ndash;117. https://doi.org/10.17223/18572685/52/8\nTomsk State University, Vladimirova, V. E., Rezanova, Z. I., Tomsk State University, Korshunova, I. S., \u0026amp; Tomsk State University. (2022). Ethno-linguistic contact as reflected in language cognition: Does bilingualism affect subjective assessments of perceptual semantics?*. Rusin, 70, 214\u0026ndash;231. https://doi.org/10.17223/18572685/70/12\nTroche, J., Crutch, S. J., \u0026amp; Reilly, J. (2017). Defining a Conceptual Topography of Word Concreteness: Clustering Properties of Emotion, Sensation, and Magnitude among 750 English Words. Frontiers in Psychology, 8, 1787. https://doi.org/10.3389/fpsyg.2017.01787\nVan De Weijer, J., Bianchi, I., \u0026amp; Paradis, C. (2023). Sensory modality profiles of antonyms. Language and Cognition, 1\u0026ndash;15. https://doi.org/10.1017/langcog.2023.20\nVergallito, A., Petilli, M. A., \u0026amp; Marelli, M. (2020). Perceptual modality norms for 1,121 Italian words: A comparison with concreteness and imageability scores and an analysis of their impact in word processing tasks. Behavior Research Methods, 52(4), 1599\u0026ndash;1616. https://doi.org/10.3758/s13428-019-01337-8\nVerheyen, S., De Deyne, S., Linsen, S., \u0026amp; Storms, G. (2020). Lexicosemantic, affective, and distributional norms for 1,000 Dutch adjectives. Behavior Research Methods, 52(3), 1108\u0026ndash;1121. https://doi.org/10.3758/s13428-019-01303-4\nVigliocco, G., Zhang, Y., Del Maschio, N., Todd, R., \u0026amp; Tuomainen, J. (2020). Electrophysiological signatures of English onomatopoeia. Language and Cognition, 12(1), 15\u0026ndash;35. https://doi.org/10.1017/langcog.2019.38\nVillani, C., D'Ascenzo, S., Borghi, A. M., Roversi, C., Benassi, M., \u0026amp; Lugli, L. (2022). Is justice grounded? How expertise shapes conceptual representation of institutional concepts. Psychological Research, 86(8), 2434\u0026ndash;2450. https://doi.org/10.1007/s00426-021-01492-8\nVillani, C., Lugli, L., Liuzza, M. T., \u0026amp; Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403\u0026ndash;430. https://doi.org/10.1017/langcog.2019.23\nWan, M., Su, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Perceptional and actional enrichment for metaphor detection with sensorimotor norms. Natural Language Engineering, 1\u0026ndash;29. https://doi.org/10.1017/S135132492300044X\nWang, X., Su, C., \u0026amp; Chen, Y. (2019). A Method of Abstractness Ratings for Chinese Concepts. In A. Lotfi, H. Bouchachia, A. Gegov, C. Langensiepen, \u0026amp; M. McGinnity (Eds.), Advances in Computational Intelligence Systems (Vol. 840, pp. 217\u0026ndash;226). Springer International Publishing. https://doi.org/10.1007/978-3-319-97982-3_18\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWicke, P., \u0026amp; Bolognesi, M. (2020). Emoji-based semantic representations for abstract and concrete concepts. Cognitive Processing, 21(4), 615\u0026ndash;635. https://doi.org/10.1007/s10339-020-00971-x\nWinter, B. (2019). Statistics for Linguists: An Introduction Using R (1st ed.). Routledge. https://doi.org/10.4324/9781315165547\nWinter, B. (2022). Mapping the landscape of exploratory and confirmatory data analysis in linguistics. In D. Tay \u0026amp; M. X. Pan (Eds.), Data Analytics in Cognitive Linguistics (pp. 13\u0026ndash;48). De Gruyter. https://doi.org/10.1515/9783110687279-002\nWinter, B. (2023). Abstract concepts and emotion: Cross-linguistic evidence and arguments against affective embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210368. https://doi.org/10.1098/rstb.2021.0368\nWinter, B., Lupyan, G., Perry, L. K., Dingemanse, M., \u0026amp; Perlman, M. (2023). Iconicity ratings for 14,000+ English words. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02112-6\nWinter, B., \u0026amp; Perlman, M. (2021). Size sound symbolism in the English lexicon. Glossa: A Journal of General Linguistics, 6(1). https://doi.org/10.5334/gjgl.1646\nWinter, B., Perlman, M., \u0026amp; Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213\u0026ndash;220. https://doi.org/10.1016/j.cognition.2018.05.008\nWinter, B., Perlman, M., Perry, L. K., \u0026amp; Lupyan, G. (2017). Which words are most iconic?: Iconicity in English sensory words. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 18(3), 443\u0026ndash;464. https://doi.org/10.1075/is.18.3.07win\nWinter, B., Sóskuthy, M., Perlman, M., \u0026amp; Dingemanse, M. (2022). Trilled /r/ is associated with roughness, linking sound and touch across spoken languages. Scientific Reports, 12(1), 1035. https://doi.org/10.1038/s41598-021-04311-7\nWinter, B., \u0026amp; Strik-Lievers, F. (2023). Semantic distance predicts metaphoricity and creativity judgments in synesthetic metaphors. Metaphor and the Social World, 13(1), 59\u0026ndash;80. https://doi.org/10.1075/msw.00029.win\nWu, C., \u0026amp; Mu, X. (2023). Sensory experience ratings (SERs) for 1,130 Chinese words: Relationships with other semantic and lexical psycholinguistic variables. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0083\nXiong, J., \u0026amp; Huang, C.-R. (2018). Somewhere in COLDNESS Lies Nibbāna: Lexical Manifestations of COLDNESS. In J.-F. Hong, Q. Su, \u0026amp; J.-S. Wu (Eds.), Chinese Lexical Semantics (Vol. 11173, pp. 70\u0026ndash;81). Springer International Publishing. https://doi.org/10.1007/978-3-030-04015-4_6\nYin Zhong, \u0026amp; Chu-Ren Huang. (2020). Sweetness or Mouthfeel: A corpus-based study of the conceptualization of taste. Linguistic Research, 37(3), 359\u0026ndash;387. https://doi.org/10.17250/KHISLI.37.3.202012.001\nZeng, Y., Zhao, D., Zhao, F., Shen, G., Dong, Y., Lu, E., Zhang, Q., Sun, Y., Liang, Q., Zhao, Y., Zhao, Z., Fang, H., Wang, Y., Li, Y., Liu, X., Du, C., Kong, Q., Ruan, Z., \u0026amp; Bi, W. (2023). BrainCog: A spiking neural network based, brain-inspired cognitive intelligence engine for brain-inspired AI and brain simulation. Patterns, 4(8), 100789. https://doi.org/10.1016/j.patter.2023.100789\nZhang, X., Amiri, S., Sinapov, J., Thomason, J., Stone, P., \u0026amp; Zhang, S. (2023). Multimodal embodied attribute learning by robots for object-centric action policies. Autonomous Robots, 47(5), 505\u0026ndash;528. https://doi.org/10.1007/s10514-023-10098-5\nZhang, X., Sinapov, J., \u0026amp; Zhang, S. (2021, July 12). Planning Multimodal Exploratory Actions for Online Robot Attribute Learning. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.005\nZhao, Q. (2020a). From Linguistic Synaesthesia to Conceptual Metaphor Theory. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 115\u0026ndash;128). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_7\nZhao, Q. (2020b). Methodology: A Corpus-Driven Approach. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 19\u0026ndash;34). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_2\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553\u0026ndash;583. https://doi.org/10.1515/cog-2021-0098\nZhao, Q., Huang, C.-R., \u0026amp; Ahrens, K. (2019). Directionality of linguistic synesthesia in Mandarin: A corpus-based study. Lingua, 232, 102744. https://doi.org/10.1016/j.lingua.2019.102744\nZhao, Q., \u0026amp; Long, Y. (2022). A Diachronic Study on Linguistic Synesthesia in Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 84\u0026ndash;94). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_6\nZhao, Q., Long, Y., \u0026amp; Huang, C.-R. (2020). Linguistic Synaesthesia of Mandarin Sensory Adjectives: Corpus-Based and Experimental Approaches. In J.-F. Hong, Y. Zhang, \u0026amp; P. Liu (Eds.), Chinese Lexical Semantics (Vol. 11831, pp. 139\u0026ndash;146). Springer International Publishing. https://doi.org/10.1007/978-3-030-38189-9_14\nZhong, Y., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Entity, event, and sensory modalities: An onto-cognitive account of sensory nouns. Humanities and Social Sciences Communications, 10(1), 255. https://doi.org/10.1057/s41599-023-01677-z\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196\u0026ndash;230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000\u0026ndash;1022. https://doi.org/10.1080/23273798.2022.2035416\nZhu, S., Wang, X., \u0026amp; Liu, P. (2021). Who Killed Sanmao and Virginia Woolf? A Comparative Study of Writers with Suicidal Attempt Based on a Quantitative Linguistic Method. In M. Liu, C. Kit, \u0026amp; Q. Su (Eds.), Chinese Lexical Semantics (Vol. 12278, pp. 408\u0026ndash;420). Springer International Publishing. https://doi.org/10.1007/978-3-030-81197-6_34\n\r\r","date":1514764800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1514764800,"objectID":"abeb0a72f4f9cafd7395c532b3871bf9","permalink":"https://pablobernabeu.github.io/publication/dutch-modality-exclusivity-norms-for-336-properties-and-411-concepts/","publishdate":"2018-01-01T00:00:00Z","relpermalink":"/publication/dutch-modality-exclusivity-norms-for-336-properties-and-411-concepts/","section":"publication","summary":"Part of the toolkit of language researchers is formed of stimuli that have been rated on various dimensions. The current study presents modality exclusivity norms for 336 properties and 411 concepts in Dutch. Forty-two respondents rated the auditory, haptic, and visual strength of these words. Mean scores were then computed, yielding acceptable reliability values. Measures of modality exclusivity and perceptual strength were also computed. Furthermore, the data includes psycholinguistic variables from other corpora, covering length (e.g., number of phonemes), frequency (e.g., contextual diversity), and distinctiveness (e.g., number of orthographic neighbours), along with concreteness and age of acquisition. To test these norms, Lynott and Connell's (2009, 2013) analyses were replicated. First, unimodal, bimodal, and tri-modal words were found. Vision was the most prevalent modality. Vision and touch were relatively related, leaving a more independent auditory modality. Properties were more strongly perceptual than concepts. Last, sound symbolism was investigated using regression, which revealed that auditory strength predicted lexical properties of the words better than the other modalities did, or else with a different direction. All the data and analysis code, including a web application, are available from https://osf.io/brkjw.","tags":["modality exclusivity norms","conceptual modality switch","crosslinguistic","Dutch","dimensionality reduction","language comprehension","linguistics","linguistic norms","open data","principal component analysis","psycholinguistics","replication","statistics","stimuli"],"title":"Dutch modality exclusivity norms for 336 properties and 411 concepts","type":"publication"},{"authors":null,"categories":["statistics","R"],"content":"\rPrincipal Component Analysis (PCA) is a technique used to find the core components that underlie different variables. It comes in very useful whenever doubts arise about the true origin of three or more variables. There are two main methods for performing a PCA: naive or less naive. In the naive method, you first check some conditions in your data which will determine the essentials of the analysis. In the less-naive method, you set those yourself based on whatever prior information or purposes you had. The latter method is appropriate when you already have enough information about the intercorrelations, or when you are required to select a specific number of components. I will tackle the naive method, mainly by following the guidelines in Field, Miles, and Field (2012), with updated code where necessary. A manual by Charles M. Friel (Sam Houston State University) was also useful.\nThe ‘naive’ approach is characterized by a first stage that checks whether the PCA should actually be performed with your current variables, or if some should be removed. The variables that are accepted are taken to a second stage which identifies the number of principal components that seem to underlie your set of variables.\nSTAGE 1. Determine whether PCA is appropriate at all, considering the variables\r\rVariables should be inter-correlated enough but not too much. Field et al. (2012) provide some thresholds, suggesting that no variable should have many correlations below .30, or any correlation at all above .90. Thus, in the example here, variable Q06 should probably be excluded from the PCA.\n\rBartlett’s test, on the nature of the intercorrelations, should be significant. Significance suggests that the variables are not an ‘identity matrix’ in which correlations are a sampling error.\n\rKMO (Kaiser-Meyer-Olkin), a measure of sampling adequacy based on common variance (so similar purpose as Bartlett’s). As Field et al. review, ‘values between .5 and .7 are mediocre, values between .7 and .8 are good, values between .8 and .9 are great and values above .9 are superb’ (p. 761). There’s a general score as well as one per variable. The general one will often be good, whereas the individual scores may more likely fail. Any variable with a score below .5 should probably be removed, and the test should be run again.\n\rDeterminant: A formula about multicollinearity. The result should preferably fall below .00001.\rNote that some of these tests are run on the dataframe and others on a correlation matrix of the data, as distinguished below.\n# Necessary libraries\rlibrary(ltm)\rlibrary(lattice)\rlibrary(psych)\rlibrary(car)\rlibrary(pastecs)\rlibrary(scales)\rlibrary(ggplot2)\rlibrary(arules)\rlibrary(plyr)\rlibrary(Rmisc)\rlibrary(GPArotation)\rlibrary(gdata)\rlibrary(MASS)\rlibrary(qpcR)\rlibrary(dplyr)\rlibrary(gtools)\rlibrary(Hmisc)\r# Select variables of interest for the PCA\rdataset = mydata[, c(\u0026#39;select_var1\u0026#39;, \u0026#39;select_var1\u0026#39;, \u0026#39;select_var2\u0026#39;, \u0026#39;select_var3\u0026#39;, \u0026#39;select_var4\u0026#39;, \u0026#39;select_var5\u0026#39;, \u0026#39;select_var6\u0026#39;, \u0026#39;select_var7\u0026#39;)]\r# Create matrix: some tests will require it\rdata_matrix = cor(dataset, use = \u0026#39;complete.obs\u0026#39;)\r# See intercorrelations\rround(data_matrix, 2)\r# Bartlett\u0026#39;s\rcortest.bartlett(dataset)\r# KMO (Kaiser-Meyer-Olkin)\rKMO(data_matrix)\r# Determinant\rdet(data_matrix)\r\r\rSTAGE 2. Identify number of components (aka factors)\rIn this stage, principal components (formally called ‘factors’ at this stage) are identified among the set of variables.\n\rThe identification is done through a basic, ‘unrotated’ PCA. The number of components set a priori must equal the number of variables that are being tested.\n# Start off with unrotated PCA\rpc1 = psych::principal(dataset, nfactors = length(dataset), rotate=\u0026quot;none\u0026quot;)\rpc1\rBelow is an example result:\n ## Principal Components Analysis\r## Call: psych::principal(r = eng_prop, nfactors = 3, rotate = \u0026quot;none\u0026quot;)\r## Standardized loadings (pattern matrix) based upon correlation matrix\r## PC1 PC2 PC3 h2 u2 com\r## Aud_eng -0.89 0.13 0.44 1 -2.2e-16 1.5\r## Hap_eng 0.64 0.75 0.15 1 1.1e-16 2.0\r## Vis_eng 0.81 -0.46 0.36 1 -4.4e-16 2.0\r## ## PC1 PC2 PC3\r## SS loadings 1.87 0.79 0.34\r## Proportion Var 0.62 0.26 0.11\r## Cumulative Var 0.62 0.89 1.00\r## Proportion Explained 0.62 0.26 0.11\r## Cumulative Proportion 0.62 0.89 1.00\r## ## Mean item complexity = 1.9\r## Test of the hypothesis that 3 components are sufficient.\r## ## The root mean square of the residuals (RMSR) is 0 ## with the empirical chi square 0 with prob \u0026lt; NA ## ## Fit based upon off diagonal values = 1\r\rAmong the columns, there are first the correlations between variables and components, followed by a column (h2) with the ‘communalities’. If less factors than variables had been selected, communality values would be below 1. Then there is the uniqueness column (u2): uniqueness is equal to 1 minus the communality. Next is ‘com’, which reflects the complexity with which a variable relates to the principal components. Those components are precisely found below. The first row contains the sums of squared loadings, or eigenvalues, namely, the total variance explained by each linear component. This value corresponds to the number of units explained out of all possible factors (which were three in the above example). The rows below all cut from the same cloth. Proportion var = variance explained over a total of 1. This is the result of dividing the eigenvalue by the number of components. Multiply by 100 and you get the percentage of total variance explained, which becomes useful. In the example, 99% of the variance has been explained. Aside from the meddling maths, we should actually expect 100% there because the number of factors equaled the number of variables. Cumulative var: variance added consecutively up to the last component. Proportion explained: variance explained over what has actually been explained (only when variables = factors is this the same as Proportion var). Cumulative proportion: the actually explained variance added consecutively up to the last component (Field et al., 2012).\nAccording to Field et al. (2012), two criteria can be used to determine the number of components that should be carried forward to the next stage:\n\rSS (sum of squares) loadings, with two possible cut-off points. On the one hand, following Kaiser’s threshold, we should select components with SS loadings \u0026gt; 1. In the example result shown above, only PC1 meets this criterion. A more lenient alternative is Kaiser’s threshold, whereby SS loadings \u0026gt; .7 are accepted. In the example result above, PC2 meet this criterion too.\n\rScree plot: retain as many components as the number of points after the point of inflection. To create a scree plot, call:\nplot(pc1$values, type = \u0026#39;b\u0026#39;)\r\rImagine a straight line from the first point on the right. Once this line bends considerably, count the points after the bend and up to the last point on the left. The number of points is the number of components to select. The example here is probably the most complicated (two components were finally chosen), but often it’s easier see examples.\nBased on either or both criteria, select the definitive number of components.\n\rSTAGE 3. Run definitive PCA\rRun a very similar command as you did before, but now with a more advanced method. The first PCA, a heuristic one, worked essentially on the inter-correlations. The definitive PCA, in contrast, will implement a prior shuffling known as ‘rotation’, to ensure that the result is robust enough (just like cards are shuffled). Explained variance is captured better this way. The go-to rotation method is the orthogonal, or ‘varimax’ (though others may be considered too).\n# Now with varimax rotation, Kaiser-normalized by default:\rpc2 = psych::principal(dataset, nfactors=2, rotate = \u0026quot;varimax\u0026quot;, scores = TRUE)\rpc2\rpc2$loadings\r# Sanity check\rpc2$residual\rpc2$fit\rpc2$communality\rAccording to Field et al. (2012), we would want:\n\rLess than half of residuals with absolute values \u0026gt; 0.05\rModel fit \u0026gt; .9\rAll communalities \u0026gt; .7\r\rIf any of this fails, consider changing the number of factors. Next, the rotated components that have been ‘extracted’ from the core of the set of variables can be added to the dataset. This would enable the use of these components as new variables that might prove powerful and useful (as in this research).\ndataset = cbind(dataset, pc2$scores)\rsummary(dataset$RC1, dataset$RC2)\r\rSTAGE 4. Determine ascription of each variable to components\rCheck the main summary by just calling pc2, and see how each variable correlates with the rotated components. This is essential because it reveals how variables load on each component, or in other words, to which component a variable belongs. For instance, the table shown here belongs to a study about the meaning of words (Bernabeu, 2018). These results suggest that the visual and haptic modalities of words are quite related, whereas the auditory modality is relatively unique. When the analysis works out well, a cut-off point of r = .8 may be applied for considering a variable as part of a component.\n\rSTAGE 5. Enjoy the plot\rThe plot is perhaps the coolest part about PCA. It really makes an awesome illustration of the power of data analysis.\nggplot(eng_props,\raes(RC1, RC2, label = as.character(main_eng))) + stat_density2d (color = \u0026quot;gray87\u0026quot;) +\rgeom_text(size = ifelse(eng_props$word_eng %in% w_set, 12, 7),\rfontface = ifelse(eng_props$word_eng %in% w_set, \u0026#39;bold\u0026#39;, \u0026#39;plain\u0026#39;)) +\rgeom_point(data=eng_props[eng_props$word_eng %in% w_set,], pch=21, fill=NA, size=14, stroke=2, alpha=.6) +\rlabs(subtitle=\u0026#39;(Data from Lynott \u0026amp; Connell, 2009)\u0026#39;, x = \u0026quot;Varimax-rotated Principal Component 1\u0026quot;, y = \u0026quot;Varimax-rotated Principal Component 2\u0026quot;) +\ttheme_bw() + theme( plot.background = element_blank(), panel.grid.major = element_blank(),\rpanel.grid.minor = element_blank(), panel.border = element_blank(),\raxis.line = element_line(color = \u0026#39;black\u0026#39;),\raxis.title.x = element_text(colour = \u0026#39;black\u0026#39;, size = 23, margin=margin(15,15,15,15)),\raxis.title.y = element_text(colour = \u0026#39;black\u0026#39;, size = 23, margin=margin(15,15,15,15)),\raxis.text.x = element_text(size=16), axis.text.y = element_text(size=16),\rplot.title = element_text(hjust = 0.5, size = 32, face = \u0026quot;bold\u0026quot;, margin=margin(15,15,15,15)),\rplot.subtitle = element_text(hjust = 0.5, size = 20, margin=margin(2,15,15,15)) ) +\rgeom_label_repel(data = eng_props[eng_props$word_eng %in% w_set,], aes(label = word_eng), size = 8, alpha = 0.77, color = \u0026#39;black\u0026#39;, box.padding = 1.5 )\rBelow is an example combining PCA plots with code similar to the above. These plots illustrate something further with regard to the relationships among modalities. In property words, the different modalities spread out more clearly than they do in concept words. This makes sense because in language, properties define concepts (Bernabeu, 2018).\nAn example of these analyses is available in available in this RStudio environment, in the norms.R script.\n\rReferences\rBernabeu, P. (2018). Dutch modality exclusivity norms for 336 properties and 411 concepts. PsyArXiv. https://doi.org/10.31234/osf.io/s2c5h\nField, A. P., Miles, J., \u0026amp; Field, Z. (2012). Discovering Statistics Using R. London, UK: Sage.\n\r","date":1514764800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1514764800,"objectID":"52150ffe1f840d9f490798734a157268","permalink":"https://pablobernabeu.github.io/2018/naive-principal-component-analysis-in-r/","publishdate":"2018-01-01T00:00:00Z","relpermalink":"/2018/naive-principal-component-analysis-in-r/","section":"post","summary":"Principal Component Analysis (PCA) is a technique used to find the core components that underlie different variables. It comes in very useful whenever doubts arise about the true origin of three or more variables. There are two main methods for performing a PCA: naive or less naive. In the naive method, you first check some conditions in your data which will determine the essentials of the analysis. In the less-naive method, you set those yourself based on whatever prior information or purposes you had. The 'naive' approach is characterized by a first stage that checks whether the PCA should actually be performed with your current variables, or if some should be removed. The variables that are accepted are taken to a second stage which identifies the number of principal components that seem to underlie your set of variables.","tags":["s","principal component analysis","statistics","dimensionality reduction","R"],"title":"Naive principal component analysis in R","type":"post"},{"authors":[],"categories":["psycholinguistics"],"content":"\rThroughout the 1990s, two opposing theories were used to explain how people understand texts, later bridged by the Landscape Model of reading (van den Broek, Young, Tzeng, \u0026amp; Linderholm, 1999). A review is offered below, including a schematic representation of the Landscape Model.\nMemory-based view\rThe memory-based view presented reading as an autonomous, unconscious, effortless process. Readers were purported to achieve an understanding of a text as a whole by combining the concepts, and implications readily afforded, in the text with their own background knowledge (Myers \u0026amp; O’Brien, 1998; O’Brien \u0026amp; Myers, 1999). This memory-based view did not include a conscious (re)activation of meaning. Arguably, this absence raises the question of how readers could recover the meaning if ever distracted while reading.\n\rConstructionist view\rThe constructionist view contended that readers make strategic, time-consuming efforts to access prior text and background knowledge (Graesser, Singer, \u0026amp; Trabasso, 1994; Singer, Graesser, \u0026amp; Trabasso, 1994). A possible challenge for this view is in leisure reading. If reading is effortful, how could it be explained when people become absorbed in leisure reading for hours, and enjoy it? How could this activity become as automatic and fast as it often does?\n\rLandscape Model\rThe memory-based and the constructionist views were bridged in a proposal called the Landscape Model (van den Broek et al., 1999). With a step-based model, van den Broek et al. argued that strategic (re)activations are available to the reader, but need not always be used (see also Converse, 2018). Figure 1 illustrates the dynamic, often cyclical processes.\n\nFigure 1. Mindmap of van den Broek et al.’s Landscape Model of reading comprehension. Created by Pablo Bernabeu and retrieved from https://doi.org/10.6084/m9.figshare.1591215.\nThe Landscape Model was applied to the context of discourse analysis by Yeari and van den Broek (2011). The authors noted that discourse analysts may find it useful to adopt a top-down, inductive approach to their task. That is, suppressing the natural, incremental route of meaning making in reading, discourse analysts may want to read through the text to gain a general idea first, before tackling a detailed analysis (see also Bell, 2011).\n\rReferences\rBell, A. (2011). Re-constructing Babel: Discourse analysis, hermeneutics and the Interpretive Arc. Discourse Studies, 13(5), 519–568. https://doi.org/10.1177/1461445611412699.\nConverse, N. E. (2018). The Use of Explicit Comprehension Strategies During Oral Instruction of Informational Text Structures and the Effect on First-graders’ Listening Comprehension (Doctoral dissertation). Retrieved from https://digitalcommons.usu.edu/etd/7305.\nGraesser, A., Singer, M., \u0026amp; Trabasso, T. (1994). Constructing inferences during narrative comprehension. Psychological Review, 101(3), 371–395. https://doi.org/10.1037/0033-295X.101.3.371.\nMyers, J. L., \u0026amp; O’Brien, E. J. (1998). Accessing the discourse representation during reading. Discourse Processes, 26(2-3), 131–157. https://doi.org/10.1080/01638539809545042.\nO’Brien, E. J., \u0026amp; Myers, J. L. (1999). Text comprehension: A view from the bottom up. In S. R. Goldman, A. C. Graesser \u0026amp; P. van den Broek P (Eds.), Narrative Comprehension, Causality, and Coherence: Essays in Honor of Tom Trabasso (pp. 35-53). Mahwah, NJ: Lawrence Erlbaum Associates.\nSinger, M., Graesser, A. C., \u0026amp; Trabasso, T. (1994). Minimal or global inference during reading. Journal of Memory and Language, 33(4), 421–441. https://doi.org/10.1006/jmla.1994.1020.\nvan den Broek, P., Young, M., Tzeng, Y., \u0026amp; Linderholm, T. (1999). The landscape model of reading. In H. van Oostendorp \u0026amp; S. R. Goldman (Eds.), The construction of mental representations during reading (pp. 71-98). Mahwah, NJ: Erlbaum.\nYeari, M., \u0026amp; van den Broek, P. (2011). A cognitive account of discourse understanding and discourse interpretation: The Landscape Model of reading. Discourse Studies, 13(5), 635-643. https://doi.org/10.1177/1461445611412748.\n\r","date":1514764800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1514764800,"objectID":"356959593f8aaa96e9eb875a8c7783dc","permalink":"https://pablobernabeu.github.io/2018/review-of-the-landscape-model-of-reading-composition-dynamics-and-application/","publishdate":"2018-01-01T00:00:00Z","relpermalink":"/2018/review-of-the-landscape-model-of-reading-composition-dynamics-and-application/","section":"post","summary":"Throughout the 1990s, two opposing theories were used to explain how people understand texts, later bridged by the Landscape Model of reading (van den Broek, Young, Tzeng, \u0026amp; Linderholm, 1999). A review is offered below, including a schematic representation of the Landscape Model.\nMemory-based view\rThe memory-based view presented reading as an autonomous, unconscious, effortless process. Readers were purported to achieve an understanding of a text as a whole by combining the concepts, and implications readily afforded, in the text with their own background knowledge (Myers \u0026amp; O’Brien, 1998; O’Brien \u0026amp; Myers, 1999).","tags":["s","reading","psycholinguistics","cognition"],"title":"Review of the Landscape Model of reading: Composition, dynamics and application","type":"post"},{"authors":null,"categories":["linguistic materials","research methods","web-application","R"],"content":"\u0026nbsp; Complete web application Flexdashboard-Shiny \r\u0026nbsp; Reduced dashboard Flexdashboard \u0026nbsp; This web application presents linguistic data over several tabs. The code combines the great front-end of Flexdashboard—based on R Markdown and yielding an unmatched user interface—, with the great back-end of Shiny—allowing users to download sections of data they select, in various formats.\n A nice find was the \u0026lsquo;reactable\u0026rsquo; package, which implements Javascript under the hood to allow the use of colours, bar charts, etc.\nAuditory = colDef(header = with_tooltip('Auditory Rating',\r'Mean rating of each word on the auditory modality across participants.'),\rcell = function(value) {\rwidth \u0026lt;- paste0(value / max(table_data$Auditory) * 100, \u0026quot;%\u0026quot;)\rvalue = sprintf(\u0026quot;%.2f\u0026quot;, round(value,2)) # Round to two digits, keeping trailing zeros\rbar_chart(value, width = width, fill = '#ff3030')\r},\ralign = 'left'),\r One of the hardest nuts to crack was allowing the full functionality of tables—i.e, scaling to screen, frozen header, and vertical and horizontal scrolling—whilst having tweaked the vertical/horizontal orientation of the dashboard sections. Initial clashes were sorted by adjusting the section's CSS styles\nTable {#table style=\u0026quot;background-color:#FCFCFC;\u0026quot;}\r=======================================================================\rInputs {.sidebar style='position:fixed; padding-top: 65px; padding-bottom:30px;'}\r-----------------------------------------------------------------------\r and by also adjusting the reactable settings.\nrenderReactable({\rreactable(selected_words(),\rdefaultSorted = list(cat = 'desc', word = 'asc'),\rdefaultColDef = colDef(footerStyle = list(fontWeight = \u0026quot;bold\u0026quot;)),\rheight = 840, striped = TRUE, pagination = FALSE, highlight = TRUE,\r A nice feature, especially suited to Flexdashboard, was the use of different formats across tabs. Whereas the Info tab presents long text using HTML and CSS styling, along with rmarkdown code output, the other tabs rely more strongly on Javascript features, enabled by R packages such as ‘shiny’ and sweetalert (e.g., allowing modal dialogs—pop-ups), reactable and plotly (e.g., allowing information opened by hovering—tooltips).\n```{r}\r# reactive for the word bar\rhighlighted_properties = reactive(input$highlighted_properties)\rrenderPlotly({\rggplotly(\rggplot( selected_props(), aes(RC1, RC2, label = as.character(word), color = main, # Html tags below used for format. Decimals rounded to two.\rtext = paste0(' ', '\u0026lt;span style=\u0026quot;padding-top:3px; padding-bottom:3px; font-size:2.2em; color:#EEEEEE\u0026quot;\u0026gt;', capitalize(word), '\u0026lt;/span\u0026gt; ', '\u0026lt;br\u0026gt;',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Dominant modality: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', main, ' ',\r' ', '\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Modality exclusivity: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Exclusivity, 2)), '% ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Perceptual strength: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Perceptualstrength, 2)),\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Auditory rating: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Auditory, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Haptic rating: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Haptic, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Visual rating: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Visual, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Concreteness (Brysbaert et al., 2014): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(concrete_Brysbaertetal2014, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Number of letters: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', letters, ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Number of phonemes (DutchPOND): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', round(phonemes_DUTCHPOND, 2), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Contextual diversity (lg10CD SUBTLEX-NL): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;',\rsprintf(\u0026quot;%.2f\u0026quot;, round(freq_lg10CD_SUBTLEXNL, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Word frequency (lg10WF SUBTLEX-NL): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;',\rsprintf(\u0026quot;%.2f\u0026quot;, round(freq_lg10WF_SUBTLEXNL, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Lemma frequency (CELEX): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(freq_CELEX_lem, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Phonological neighbourhood size (DutchPOND): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', round(phon_neighbours_DUTCHPOND, 2), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Orthographic neighbourhood size (DutchPOND): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;',\rround(orth_neighbours_DUTCHPOND, 2), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Age of acquisition (Brysbaert et al., 2014): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;',\rsprintf(\u0026quot;%.2f\u0026quot;, round(AoA_Brysbaertetal2014, 2)), ' ', '\u0026lt;br\u0026gt; '\r) ) ) +\rgeom_text(size = ifelse(selected_props()$word %in% highlighted_properties(), 7,\rifelse(is.null(highlighted_properties()), 3, 2.8)),\rfontface = ifelse(selected_props()$word %in% highlighted_properties(), 'bold', 'plain')) +\rgeom_point(alpha = 0) + # This geom_point helps to colour the tooltip according to the dominant modality\rscale_colour_manual(values = colours, drop = FALSE) + theme_bw() + ggtitle('Property words') +\rlabs(x = 'Varimax-rotated Principal Component 1', y = 'Varimax-rotated Principal Component 2') +\rguides(color = guide_legend(title = 'Main\u0026lt;br\u0026gt;modality')) +\rtheme( plot.background = element_blank(), panel.grid.major = element_blank(),\rpanel.grid.minor = element_blank(), panel.border = element_blank(),\raxis.line = element_line(color = 'black'), plot.title = element_text(size = 14, hjust = .5),\raxis.title.x = element_text(colour = 'black', size = 12, margin = margin(15,15,0,15)),\raxis.title.y = element_text(colour = 'black', size = 12, margin = margin(0,15,15,5)),\raxis.text.x = element_text(size = 8), axis.text.y = element_text(size = 8),\rlegend.background = element_rect(size = 2), legend.position = 'none',\rlegend.title = element_blank(),\rlegend.text = element_text(colour = colours, size = 13) ),\rtooltip = 'text'\r)\r})\r# For download, save plot without the interactive 'plotly' part\rproperties_png = reactive({ ggplot(selected_props(), aes(RC1, RC2, color = main, label = as.character(word))) +\rgeom_text(show.legend = FALSE, size = ifelse(selected_props()$word %in% highlighted_properties(), 7,\rifelse(is.null(highlighted_properties()), 3, 2.8)),\rfontface = ifelse(selected_props()$word %in% highlighted_properties(), 'bold', 'plain')) +\rgeom_point(alpha = 0) + scale_colour_manual(values = colours, drop = FALSE) + theme_bw() +\rguides(color = guide_legend(title = 'Main\u0026lt;br\u0026gt;modality', override.aes = list(size = 7, alpha = 1))) +\rggtitle( paste0('Properties', ' (showing ', nrow(selected_props()), ' out of ', nrow(props), ')') ) + labs(x = 'Varimax-rotated Principal Component 1', y = 'Varimax-rotated Principal Component 2') +\rtheme( plot.background = element_blank(), panel.grid.major = element_blank(),\rpanel.grid.minor = element_blank(), panel.border = element_blank(),\raxis.line = element_line(color = 'black'), plot.title = element_text(size = 17, hjust = .5, margin = margin(3,3,7,3)),\raxis.title.x = element_text(colour = 'black', size = 12, margin = margin(10,10,2,10)),\raxis.title.y = element_text(colour = 'black', size = 12, margin = margin(10,10,10,5)),\raxis.text.x = element_text(size = 8), axis.text.y = element_text(size = 8),\rlegend.background = element_rect(size = 2), legend.position = 'right',\rlegend.title = element_blank(), legend.text = element_text(size = 15))\r})\r```\r The only instance in which I drew on javascript code outside R packages was to enable tooltips beyond the packages’ limits—for instance, in the side bar. This javascript feature is created at the top of the script, in the head area.\n\u0026lt;!-- Javascript function to enable a hovering tooltip --\u0026gt;\r\u0026lt;script\u0026gt;\r$(document).ready(function(){\r$('[data-toggle=\u0026quot;tooltip1\u0026quot;]').tooltip();\r});\r\u0026lt;/script\u0026gt;\r In the side bar, I added a reactive mean for each variable, complementing the range selector.\nreactive(cat(paste0('Mean = ', sprintf(\u0026quot;%.2f\u0026quot;, round(mean(selected_words()$Exclusivity),2)))))\r Static version published on RPubs A reduced, static version was also created to increase the availability of the content. Removing some reactivity features allows the dashboard to be published as a standard website (i.e., on a personal website, on RPubs, etc.), without the need for a back-end Shiny server. Note that this type of website is dubbed \u0026lsquo;static\u0026rsquo;, but it can retain multiple interactive features thanks to Javascript-based tools under the hood, allowed by R packages such as leaflet for maps, DT for tables, plotly for plots, etc.\nTo create the Flexdashboard-only version departing from the Flexdashboard-Shiny version, I deleted runtime: shiny from the YAML header, and disabled Shiny reactive inputs and objects, as below.\n```{r}\r# Number of words selected on sidebar\r# reactive(cat(paste0('Words selected below: ', nrow(selected_props()))))\r```\r Reference Bernabeu, P. (2018). Dutch modality exclusivity norms for 336 properties and 411 concepts [Web application]. Retrieved from https://pablobernabeu.shinyapps.io/Dutch-Modality-Exclusivity-Norms\n\r","date":1514764800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1514764800,"objectID":"b6ae96b988a52c16af14e00a29c1b7a6","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/bernabeu-2018-modalitynorms/","publishdate":"2018-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/bernabeu-2018-modalitynorms/","section":"applications-and-dashboards","summary":"This app presents linguistic data over several tabs. The code combines the great front-end of Flexdashboard—based on R Markdown and yielding an unmatched user interface—, with the great back-end of Shiny—allowing users to download sections of data they select, in various formats. The hardest nuts to crack included modifying the rows/columns orientation without affecting the functionality of tables. A cool, recent finding was the reactable package. A nice feature, allowed by Flexdashboard, was the use of quite different formats in different tabs.","tags":["web application","data dashboard","Flexdashboard","R","R Shiny","statistics","regression","principal component analysis","modality exclusivity norms","Dutch","linguistics","HTML","CSS"],"title":"Web application: Dutch modality exclusivity norms","type":"applications-and-dashboards"},{"authors":["Bernabeu, P., Willems, R. M., \u0026 Louwerse, M. M."],"categories":["conceptual processing","conceptual replication"],"content":"Reference Bernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs. In G. Gunzelmann, A. Howes, T. Tenbrink, \u0026amp; E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1629-1634). Austin, TX: Cognitive Science Society. https://doi.org/10.31234/osf.io/a5pcz\n\rBonus: a conference poster with further analyses .embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}window.jQuery || document.write('\\x3C/script') var mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/dj52n/?direct%26mode=render%26action=download%26mode=render\");\rRelated references Ali Qurbi, E. (2022). Ambiguous Word Processing among Second Language Learners. The Canadian Modern Language Review, 78(2), 151\u0026ndash;173. https://doi.org/10.3138/cmlr-2020-0115\nAmenta, S., Crepaldi, D., \u0026amp; Marelli, M. (2020). Consistency measures individuate dissociating semantic modulations in priming paradigms: A new look on semantics in the processing of (complex) words. Quarterly Journal of Experimental Psychology, 73(10), 1546\u0026ndash;1563. https://doi.org/10.1177/1747021820927663\nAmsel, B. D., Kutas, M., \u0026amp; Coulson, S. (2017). Projectors, associators, visual imagery, and the time course of visual processing in grapheme-color synesthesia. Cognitive Neuroscience, 8(4), 206\u0026ndash;223. https://doi.org/10.1080/17588928.2017.1353492\nArgiris, G., Rumiati, R. I., \u0026amp; Crepaldi, D. (2021). No fruits without color: Cross-modal priming and EEG reveal different roles for different features across semantic categories. PLOS ONE, 16(4), e0234219. https://doi.org/10.1371/journal.pone.0234219\nAvramova, Y. R., De Pelsmacker, P., \u0026amp; Dens, N. (2017). Brand placement in text: The short- and long-term effects of placement modality and need for cognition. International Journal of Advertising, 36(5), 682\u0026ndash;704. https://doi.org/10.1080/02650487.2017.1335041\nBagli, M. (2023). How to Point with Language: English Source-Based Language to Describe Taste Qualities. Lublin Studies in Modern Languages and Literature, 42(2), 31\u0026ndash;46. https://doi.org/10.17951/lsmll.2023.47.2.31-46\nBanks, B., Wingfield, C., \u0026amp; Connell, L. (2021). Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category Production. Cognitive Science, 45(10), e13055. https://doi.org/10.1111/cogs.13055\nBarros García, B. (2017). In Other Words: Reformulation Strategies in Dostoevskii's Literary Works. Russian Literature, 91, 1\u0026ndash;25. https://doi.org/10.1016/j.ruslit.2017.09.001\nBarsalou, L. W. (2017a). Cognitively Plausible Theories of Concept Composition. In J. A. Hampton \u0026amp; Y. Winter (Eds.), Compositionality and Concepts in Linguistics and Psychology (Vol. 3, pp. 9\u0026ndash;30). Springer International Publishing. https://doi.org/10.1007/978-3-319-45977-6_2\nBarsalou, L. W. (2017b). What does semantic tiling of the cortex tell us about semantics? Neuropsychologia, 105, 18\u0026ndash;38. https://doi.org/10.1016/j.neuropsychologia.2017.04.011\nBarsalou, L. W. (2020). Challenges and Opportunities for Grounding Cognition. Journal of Cognition, 3(1), 31. https://doi.org/10.5334/joc.116\nBartl, S., \u0026amp; Lahey, E. (2023). \u0026lsquo;As the title implies\u0026rsquo;: How readers talk about titles in Amazon book reviews. Language and Literature: International Journal of Stylistics, 32(2), 209\u0026ndash;230. https://doi.org/10.1177/09639470221147788\nBaumann, A., Hofmann, K., Marakasova, A., Neidhardt, J., \u0026amp; Wissik, T. (2023). Semantic micro-dynamics as a reflex of occurrence frequency: A semantic networks approach. Cognitive Linguistics, 34(3\u0026ndash;4), 533\u0026ndash;568. https://doi.org/10.1515/cog-2022-0008\nBechtold, L., Bellebaum, C., Egan, S., Tettamanti, M., \u0026amp; Ghio, M. (2019). The role of experience for abstract concepts: Expertise modulates the electrophysiological correlates of mathematical word processing. Brain and Language, 188, 1\u0026ndash;10. https://doi.org/10.1016/j.bandl.2018.10.002\nBechtold, L., Bellebaum, C., \u0026amp; Ghio, M. (2023). When a Sunny Day Gives You Butterflies: An Electrophysiological Investigation of Concreteness and Context Effects in Semantic Word Processing. Journal of Cognitive Neuroscience, 35(2), 241\u0026ndash;258. https://doi.org/10.1162/jocn_a_01942\nBechtold, L., Bellebaum, C., Hoffman, P., \u0026amp; Ghio, M. (2021). Corroborating behavioral evidence for the interplay of representational richness and semantic control in semantic word processing. Scientific Reports, 11(1), 6184. https://doi.org/10.1038/s41598-021-85711-7\nBidet-Ildei, C., Gimenes, M., Toussaint, L., Almecija, Y., \u0026amp; Badets, A. (2017). Sentence plausibility influences the link between action words and the perception of biological human movements. Psychological Research, 81(4), 806\u0026ndash;813. https://doi.org/10.1007/s00426-016-0776-z\nBidet-Ildei, C., Gimenes, M., Toussaint, L., Beauprez, S.-A., \u0026amp; Badets, A. (2017). Painful semantic context modulates the relationship between action words and biological movement perception. Journal of Cognitive Psychology, 29(7), 821\u0026ndash;831. https://doi.org/10.1080/20445911.2017.1322093\nBolognesi, M., \u0026amp; Strik Lievers, F. (2020). How language and image construct synaesthetic metaphors in print advertising. Visual Communication, 19(4), 431\u0026ndash;457. https://doi.org/10.1177/1470357218782001\nBorghesani, V., \u0026amp; Piazza, M. (2017). The neuro-cognitive representations of symbols: The case of concrete words. Neuropsychologia, 105, 4\u0026ndash;17. https://doi.org/10.1016/j.neuropsychologia.2017.06.026\nBorghi, A. M., \u0026amp; Barsalou, L. (2021). Perspective in the conceptualization of categories. Psychological Research, 85(2), 697\u0026ndash;719. https://doi.org/10.1007/s00426-019-01269-0\nBorghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., \u0026amp; Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263\u0026ndash;292. https://doi.org/10.1037/bul0000089\nBorghi, A. M., Mazzuca, C., Gervasi, A. M., Mannella, F., \u0026amp; Tummolini, L. (2023). Grounded cognition can be multimodal all the way down. Language, Cognition and Neuroscience, 1\u0026ndash;5. https://doi.org/10.1080/23273798.2023.2210238\nBottini, R., Ferraro, S., Nigri, A., Cuccarini, V., Bruzzone, M. G., \u0026amp; Collignon, O. (2020). Brain Regions Involved in Conceptual Retrieval in Sighted and Blind People. Journal of Cognitive Neuroscience, 32(6), 1009\u0026ndash;1025. https://doi.org/10.1162/jocn_a_01538\nBruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms, G., \u0026amp; Vandenberghe, R. (2019). Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neuroscience \u0026amp; Biobehavioral Reviews, 103, 3\u0026ndash;13. https://doi.org/10.1016/j.neubiorev.2019.05.015\nCaballero, R., \u0026amp; Paradis, C. (2020). Soundscapes in English and Spanish: A corpus investigation of verb constructions. Language and Cognition, 12(4), 705\u0026ndash;728. https://doi.org/10.1017/langcog.2020.19\nCaballero, R., \u0026amp; Paradis, C. (2023). Sharing Perceptual Experiences through Language. Journal of Intelligence, 11(7), 129. https://doi.org/10.3390/jintelligence11070129\nCantarero, K., Parzuchowski, M., \u0026amp; Dukala, K. (2017). White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not. Frontiers in Psychology, 8, 814. https://doi.org/10.3389/fpsyg.2017.00814\nCarney, J. (2020). Thinking avant la lettre: A Review of 4E Cognition. Evolutionary Studies in Imaginative Culture, 4(1), 77\u0026ndash;90. https://doi.org/10.26613/esic.4.1.172\nCaterina Villani \u0026amp; Luisa Lugli. (2020). L'effetto Simon e il suo decorso temporale con stimoli linguistici non spaziali. Giornale italiano di psicologia, 1, 305\u0026ndash;314. https://doi.org/10.1421/96612\nChan, S. (2022). Dynamics of nominal classification systems in language processing. Language, Cognition and Neuroscience, 37(6), 671\u0026ndash;685. https://doi.org/10.1080/23273798.2021.2011331\nCharmhun Jo, Sun-A Kim, \u0026amp; Chu-Ren Huang. (2022). Linguistic synesthesia in Korean: A compound word-based study of cross-modal directionality. Linguistic Research, 39(2), 275\u0026ndash;296. https://doi.org/10.17250/KHISLI.39.2.202206.002\nChedid, G., Brambati, S. M., Bedetti, C., Rey, A. E., Wilson, M. A., \u0026amp; Vallet, G. T. (2019). Visual and auditory perceptual strength norms for 3,596 French nouns and their relationship with other psycholinguistic variables. Behavior Research Methods, 51(5), 2094\u0026ndash;2105. https://doi.org/10.3758/s13428-019-01254-w\nChen, I.-H., Zhao, Q., Long, Y., Lu, Q., \u0026amp; Huang, C.-R. (2019). Mandarin Chinese modality exclusivity norms. PLOS ONE, 14(2), e0211336. https://doi.org/10.1371/journal.pone.0211336\nChoi, U., Sung, Y., \u0026amp; Ogawa, S. (2020). Measurement of ultra‐fast signal progression related to face processing by 7T fMRI. Human Brain Mapping, 41(7), 1754\u0026ndash;1764. https://doi.org/10.1002/hbm.24907\nChwilla, D. J. (2022). Context effects in language comprehension: The role of emotional state and attention on semantic and syntactic processing. Frontiers in Human Neuroscience, 16, 1014547. https://doi.org/10.3389/fnhum.2022.1014547\nCirillo, G., Strijkers, K., Runnqvist, E., \u0026amp; Baus, C. (2023). Effects of Shared Attention on joint language production across processing stages. Language, Cognition and Neuroscience, 1\u0026ndash;12. https://doi.org/10.1080/23273798.2023.2260021\nCochrane, B. A., \u0026amp; Milliken, B. (2019). Imagined event files: An interplay between imagined and perceived objects. Psychonomic Bulletin \u0026amp; Review, 26(2), 538\u0026ndash;544. https://doi.org/10.3758/s13423-019-01572-2\nConnell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition and Neuroscience, 34(10), 1308\u0026ndash;1318. https://doi.org/10.1080/23273798.2018.1471512\nConnell, L., Lynott, D., \u0026amp; Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170143. https://doi.org/10.1098/rstb.2017.0143\nCorciulo, S., Bioglio, L., Basile, V., Patti, V., \u0026amp; Damiano, R. (2023). The DEEP Sensorium: A multidimensional approach to sensory domain labelling. Companion Proceedings of the ACM Web Conference 2023, 661\u0026ndash;668. https://doi.org/10.1145/3543873.3587631\nCourson, M., Macoir, J., \u0026amp; Tremblay, P. (2018). A facilitating role for the primary motor cortex in action sentence processing. Behavioural Brain Research, 336, 244\u0026ndash;249. https://doi.org/10.1016/j.bbr.2017.09.019\nDavis, C. P., Joergensen, G. H., Boddy, P., Dowling, C., \u0026amp; Yee, E. (2020). Making It Harder to \u0026ldquo;See\u0026rdquo; Meaning: The More You See Something, the More Its Conceptual Representation Is Susceptible to Visual Interference. Psychological Science, 31(5), 505\u0026ndash;517. https://doi.org/10.1177/0956797620910748\nDavis, C. P., \u0026amp; Yee, E. (2021). Building semantic memory from embodied and distributional language experience. WIREs Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555\nDavis, J. D., Coulson, S., Arnold, A. J., \u0026amp; Winkielman, P. (2021). Dynamic Grounding of Concepts: Implications for Emotion and Social Cognition. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 23\u0026ndash;42). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_2\nDe Deyne, S., Brysbaert, M., \u0026amp; Elgort, I. (2023). Chapter 7. Cross-language influences in L2 semantic and conceptual representation and processing. In I. Elgort, A. Siyanova-Chanturia, \u0026amp; M. Brysbaert (Eds.), Bilingual Processing and Acquisition (Vol. 16, pp. 152\u0026ndash;186). John Benjamins Publishing Company. https://doi.org/10.1075/bpa.16.07ded\nDellantonio, S., \u0026amp; Pastore, L. (2017). The \u0026lsquo;Proprioceptive\u0026rsquo; Component of Abstract Concepts. In S. Dellantonio \u0026amp; L. Pastore, Internal Perception (Vol. 40, pp. 297\u0026ndash;357). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55763-1_6\nDíez-Álamo, A. M., Díez, E., Alonso, M. Á., Vargas, C. A., \u0026amp; Fernandez, A. (2018). Normative ratings for perceptual and motor attributes of 750 object concepts in Spanish. Behavior Research Methods, 50(4), 1632\u0026ndash;1644. https://doi.org/10.3758/s13428-017-0970-y\nDove, G. (2018). Language as a disruptive technology: Abstract concepts, embodiment and the flexible mind. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170135. https://doi.org/10.1098/rstb.2017.0135\nDove, G. (2021). The Challenges of Abstract Concepts. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 171\u0026ndash;195). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_8\nDove, G., Barca, L., Tummolini, L., \u0026amp; Borghi, A. M. (2022). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research, 86(8), 2451\u0026ndash;2467. https://doi.org/10.1007/s00426-020-01438-6\nDupont, W., Papaxanthis, C., Lebon, F., \u0026amp; Madden-Lombardi, C. (2022). Does the Motor Cortex Want the Full Story? The Influence of Sentence Context on Corticospinal Excitability in Action Language Processing. Neuroscience, 506, 58\u0026ndash;67. https://doi.org/10.1016/j.neuroscience.2022.10.022\nDutriaux, L., Dahiez, X., \u0026amp; Gyselinck, V. (2019). How to change your memory of an object with a posture and a verb. Quarterly Journal of Experimental Psychology, 72(5), 1112\u0026ndash;1118. https://doi.org/10.1177/1747021818785096\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2022). Linguistic Bootstrapping Allows More Real-world Object Concepts to Be Held in Mind. Collabra: Psychology, 8(1), 40171. https://doi.org/10.1525/collabra.40171\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2023). More is not necessarily better: How different aspects of sensorimotor experience affect recognition memory for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1572\u0026ndash;1587. https://doi.org/10.1037/xlm0001265\nEdmiston, P., \u0026amp; Lupyan, G. (2017). Visual interference disrupts visual knowledge. Journal of Memory and Language, 92, 281\u0026ndash;292. https://doi.org/10.1016/j.jml.2016.07.002\nElisa Scerrati, Cristina Iani, Luisa Lugli, \u0026amp; Sandro Rubichi. (2019). C'è un effetto di potenziamento dell'azione con oggetti bimanuali? Giornale italiano di psicologia, 4, 987\u0026ndash;996. https://doi.org/10.1421/95573\nElpidorou, A., \u0026amp; Dove, G. (2018). Consciousness and Physicalism: A Defense of a Research Program (1st ed.). Routledge. https://doi.org/10.4324/9781315682075\nEspino, O., \u0026amp; Byrne, R. M. J. (2018). Thinking About the Opposite of What Is Said: Counterfactual Conditionals and Symbolic or Alternate Simulations of Negation. Cognitive Science, 42(8), 2459\u0026ndash;2501. https://doi.org/10.1111/cogs.12677\nFabrizio Calzavarini. (2023). Comprensione e cervello. Sistemi intelligenti, 2, 251\u0026ndash;276. https://doi.org/10.1422/107149\nFischer, J., \u0026amp; Mahon, B. Z. (2021). What tool representation, intuitive physics, and action have in common: The brain's first-person physics engine. Cognitive Neuropsychology, 38(7\u0026ndash;8), 455\u0026ndash;467. https://doi.org/10.1080/02643294.2022.2106126\nGaletzka, C. (2017). The Story So Far: How Embodied Cognition Advances Our Understanding of Meaning-Making. Frontiers in Psychology, 8, 1315. https://doi.org/10.3389/fpsyg.2017.01315\nGálvez-García, G., Aldunate, N., Bascour-Sandoval, C., Martínez-Molina, A., Peña, J., \u0026amp; Barramuño, M. (2020). Muscle activation in semantic processing: An electromyography approach. Biological Psychology, 152, 107881. https://doi.org/10.1016/j.biopsycho.2020.107881\nGao, C., Baucom, L. B., Kim, J., Wang, J., Wedell, D. H., \u0026amp; Shinkareva, S. V. (2019). Distinguishing abstract from concrete concepts in supramodal brain regions. Neuropsychologia, 131, 102\u0026ndash;110. https://doi.org/10.1016/j.neuropsychologia.2019.05.032\nGatti, D., Marelli, M., Vecchi, T., \u0026amp; Rinaldi, L. (2022). Spatial Representations Without Spatial Computations. Psychological Science, 33(11), 1947\u0026ndash;1958. https://doi.org/10.1177/09567976221094863\nGijssels, T., \u0026amp; Casasanto, D. (2020). Hand-use norms for Dutch and English manual action verbs: Implicit measures from a pantomime task. Behavior Research Methods, 52(4), 1744\u0026ndash;1767. https://doi.org/10.3758/s13428-020-01347-x\nGrand, G., Blank, I. A., Pereira, F., \u0026amp; Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nature Human Behaviour, 6(7), 975\u0026ndash;987. https://doi.org/10.1038/s41562-022-01316-8\nGrant, L. D., \u0026amp; Weissman, D. H. (2023). The binary structure of event files generalizes to abstract features: A nonhierarchical explanation of task set boundaries for the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(7), 1033\u0026ndash;1050. https://doi.org/10.1037/xlm0001148\nGreco, A. (2021). Spatial and Motor Aspects in the \u0026ldquo;Action-Sentence Compatibility Effect.\u0026rdquo; Frontiers in Psychology, 12, 647899. https://doi.org/10.3389/fpsyg.2021.647899\nGuerra, E., \u0026amp; Knoeferle, P. (2018). Semantic Interference and Facilitation: Understanding the Integration of Spatial Distance and Conceptual Similarity During Sentence Reading. Frontiers in Psychology, 9, 718. https://doi.org/10.3389/fpsyg.2018.00718\nGünther, F., Petilli, M. A., Vergallito, A., \u0026amp; Marelli, M. (2022). Images of the unseen: Extrapolating visual representations for abstract and concrete words in a data-driven computational model. Psychological Research, 86(8), 2512\u0026ndash;2532. https://doi.org/10.1007/s00426-020-01429-7\nGünther, F., Rinaldi, L., \u0026amp; Marelli, M. (2019). Vector-Space Models of Semantic Representation From a Cognitive Perspective: A Discussion of Common Misconceptions. Perspectives on Psychological Science, 14(6), 1006\u0026ndash;1033. https://doi.org/10.1177/1745691619861372\nHafri, A., Trueswell, J. C., \u0026amp; Strickland, B. (2018). Encoding of event roles from visual scenes is rapid, spontaneous, and interacts with higher-level visual processing. Cognition, 175, 36\u0026ndash;52. https://doi.org/10.1016/j.cognition.2018.02.011\nHardy, B. W. (2021). Embodied Cognition in Communication Science. Communication Theory, 31(4), 633\u0026ndash;653. https://doi.org/10.1093/ct/qtaa003\nHarpaintner, M., Sim, E.-J., Trumpp, N. M., Ulrich, M., \u0026amp; Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 1\u0026ndash;22. https://doi.org/10.1016/j.cortex.2019.10.014\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2018). The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words. Frontiers in Psychology, 9, 1748. https://doi.org/10.3389/fpsyg.2018.01748\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2022). Time course of brain activity during the processing of motor- and vision-related abstract concepts: Flexibility and task dependency. Psychological Research, 86(8), 2560\u0026ndash;2582. https://doi.org/10.1007/s00426-020-01374-5\nHartman, J., \u0026amp; Paradis, C. (2023). The language of sound: Events and meaning multitasking of words. Cognitive Linguistics, 34(3\u0026ndash;4), 445\u0026ndash;477. https://doi.org/10.1515/cog-2022-0006\nHauk, O., Giraud, A.-L., \u0026amp; Clarke, A. (2017). Brain oscillations in language comprehension. Language, Cognition and Neuroscience, 32(5), 533\u0026ndash;535. https://doi.org/10.1080/23273798.2017.1297842\nHauk, O., Jackson, R. L., \u0026amp; Rahimi, S. (2023). Transforming the neuroscience of language: Estimating pattern-to-pattern transformations of brain activity. Language, Cognition and Neuroscience, 1\u0026ndash;16. https://doi.org/10.1080/23273798.2023.2226268\nHauk, O., Magnabosco, F., \u0026amp; Law, R. (2023). Can we separate semantic representations from computations? A commentary on Calzavarini (2023). Language, Cognition and Neuroscience, 1\u0026ndash;4. https://doi.org/10.1080/23273798.2023.2226269\nHeim, E. M. (2017a). Adoption in Galatians and Romans: Contemporary Metaphor Theories and the Pauline Huiothesia Metaphors. BRILL. https://doi.org/10.1163/9789004339873\nHeim, E. M. (2017b). Adoption in Galatians and Romans: Contemporary Metaphor Theories and the Pauline Huiothesia Metaphors. BRILL. https://doi.org/10.1163/9789004339873\nHoeben Mannaert, L. N., Dijkstra, K., \u0026amp; Zwaan, R. A. (2020). Object combination in mental simulations. Quarterly Journal of Experimental Psychology, 73(11), 1796\u0026ndash;1806. https://doi.org/10.1177/1747021820933214\nHoffman, P., McClelland, J. L., \u0026amp; Lambon Ralph, M. A. (2018). Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychological Review, 125(3), 293\u0026ndash;328. https://doi.org/10.1037/rev0000094\nHohol, M. (2019). Foundations of Geometric Cognition (1st ed.). Routledge. https://doi.org/10.4324/9780429056291\nHolman, A., \u0026amp; Gîrbă, A. (2019). The match in orientation between verbal context and object accelerates change detection. Psihologija, 52(1), 93\u0026ndash;105. https://doi.org/10.2298/PSI180412033H\nHörberg, T., Larsson, M., \u0026amp; Olofsson, J. K. (2022). The Semantic Organization of the English Odor Vocabulary. Cognitive Science, 46(11), e13205. https://doi.org/10.1111/cogs.13205\nHuang, C.-R., \u0026amp; Xiong, J. (2019). Linguistic synaesthesia in Chinese. In C.-R. Huang, Z. Jing-Schmidt, \u0026amp; B. Meisterernst (Eds.), The Routledge Handbook of Chinese Applied Linguistics (1st ed., pp. 294\u0026ndash;312). Routledge. https://doi.org/10.4324/9781315625157-20\nIatropoulos, G., Herman, P., Lansner, A., Karlgren, J., Larsson, M., \u0026amp; Olofsson, J. K. (2018). The language of smell: Connecting linguistic and psychophysical properties of odor descriptors. Cognition, 178, 37\u0026ndash;49. https://doi.org/10.1016/j.cognition.2018.05.007\nIriguchi, M., Fujimura, R., Koda, H., \u0026amp; Masataka, N. (2019). Traffic symbol recognition modulates bodily actions. PLOS ONE, 14(3), e0214281. https://doi.org/10.1371/journal.pone.0214281\nJo, C. (2022). Linguistic Synesthesia in Korean: Universality and Variation. SAGE Open, 12(3), 215824402211178. https://doi.org/10.1177/21582440221117804\nJohns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing word frequency and contextual diversity. Memory \u0026amp; Cognition, 50(5), 1013\u0026ndash;1032. https://doi.org/10.3758/s13421-021-01249-z\nJones, L. L., Wurm, L. H., Calcaterra, R. D., \u0026amp; Ofen, N. (2017). Integrative Priming of Compositional and Locative Relations. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00359\nJulich-Warpakowski, N., \u0026amp; Pérez Sobrino, P. (2023). Introduction: Current challenges in metaphor research. Metaphor and the Social World, 13(1), 1\u0026ndash;15. https://doi.org/10.1075/msw.00026.jul\nKabbach, A., \u0026amp; Herbelot, A. (2021). Avoiding Conflict: When Speaker Coordination Does Not Require Conceptual Agreement. Frontiers in Artificial Intelligence, 3, 523920. https://doi.org/10.3389/frai.2020.523920\nKaiser, E. (2021). Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Frontiers in Psychology, 12, 701486. https://doi.org/10.3389/fpsyg.2021.701486\nKaup, B., Ulrich, R., Bausenhart, K. M., Bryce, D., Butz, M. V., Dignath, D., Dudschig, C., Franz, V. H., Friedrich, C., Gawrilow, C., Heller, J., Huff, M., Hütter, M., Janczyk, M., Leuthold, H., Mallot, H., Nürk, H.-C., Ramscar, M., Said, N., \u0026hellip; Wong, H. Y. (2023). Modal and amodal cognition: An overarching principle in various domains of psychology. Psychological Research. https://doi.org/10.1007/s00426-023-01878-w\nKeogh, R., \u0026amp; Pearson, J. (2017). The perceptual and phenomenal capacity of mental imagery. Cognition, 162, 124\u0026ndash;132. https://doi.org/10.1016/j.cognition.2017.02.004\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2017). Novel Text Analysis for Investigating Personality: Identifying the Dark Lady in Shakespeare's Sonnets. Journal of Quantitative Linguistics, 24(4), 255\u0026ndash;272. https://doi.org/10.1080/09296174.2017.1304049\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2018). Using Shakespeare's Sotto Voce to Determine True Identity From Text. Frontiers in Psychology, 9, 289. https://doi.org/10.3389/fpsyg.2018.00289\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2019). The Stylometric Impacts of Ageing and Life Events on Identity. Journal of Quantitative Linguistics, 26(1), 1\u0026ndash;21. https://doi.org/10.1080/09296174.2017.1405719\nKeus, K., \u0026amp; Harde, R. (2022). \u0026ldquo;She Wished Someone Would Help Them\u0026rdquo;: PTSD and Empathy in the Six of Crows Duology. Children's Literature in Education, 53(1), 130\u0026ndash;146. https://doi.org/10.1007/s10583-021-09441-0\nKhatin-Zadeh, O., Hu, J., Banaruee, H., \u0026amp; Marmolejo-Ramos, F. (2023). How emotions are metaphorically embodied: Measuring hand and head action strengths of typical emotional states. Cognition and Emotion, 37(3), 486\u0026ndash;498. https://doi.org/10.1080/02699931.2023.2181314\nKim, M.-K., Müller, H. M., \u0026amp; Weiss, S. (2021). What you \u0026ldquo;mean\u0026rdquo; is not what I \u0026ldquo;mean\u0026rdquo;: Categorization of verbs by Germans and Koreans using the semantic differential. Lingua, 252, 103012. https://doi.org/10.1016/j.lingua.2020.103012\nKlomberg, B., Schilhab, T., \u0026amp; Burke, M. (2022). Picturing Fiction through Embodied Cognition: Drawn Representations and Viewpoint in Literary Texts (1st ed.). Routledge. https://doi.org/10.4324/9781003225300\nKnoeferle, P. (2019). Predicting (variability of) context effects in language comprehension. Journal of Cultural Cognitive Science, 3(2), 141\u0026ndash;158. https://doi.org/10.1007/s41809-019-00025-5\nKoblet, O., \u0026amp; Purves, R. S. (2020). From online texts to Landscape Character Assessment: Collecting and analysing first-person landscape perception computationally. Landscape and Urban Planning, 197, 103757. https://doi.org/10.1016/j.landurbplan.2020.103757\nKompa, N. A. (2021). Language and embodiment\u0026mdash;Or the cognitive benefits of abstract representations. Mind \u0026amp; Language, 36(1), 27\u0026ndash;47. https://doi.org/10.1111/mila.12266\nKompa, N. A., \u0026amp; Mueller, J. L. (2022). Inner speech as a cognitive tool\u0026mdash;Or what is the point of talking to oneself? Philosophical Psychology, 1\u0026ndash;24. https://doi.org/10.1080/09515089.2022.2112164\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKrishna, P. P., Arulmozi, S., \u0026amp; Mishra, R. K. (2022). \u0026ldquo;Do You See and Hear More? A Study on Telugu Perception Verbs.\u0026rdquo; Journal of Psycholinguistic Research, 51(3), 473\u0026ndash;484. https://doi.org/10.1007/s10936-021-09827-7\nKuhnke, P., Beaupain, M. C., Arola, J., Kiefer, M., \u0026amp; Hartwigsen, G. (2023). Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neuroscience \u0026amp; Biobehavioral Reviews, 144, 104994. https://doi.org/10.1016/j.neubiorev.2022.104994\nKuhnke, P., Kiefer, M., \u0026amp; Hartwigsen, G. (2021). Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cerebral Cortex, 31(7), 3475\u0026ndash;3493. https://doi.org/10.1093/cercor/bhab026\nKumcu, A. (2021). Linguistic Synesthesia in Turkish: A Corpus-based Study of Crossmodal Directionality. Metaphor and Symbol, 36(4), 241\u0026ndash;255. https://doi.org/10.1080/10926488.2021.1921557\nLai, V. T., Hubbard, R., Ku, L.-C., \u0026amp; Pfeifer, V. (2023). Electrophysiology of Non-Literal Language. In M. Grimaldi, E. Brattico, \u0026amp; Y. Shtyrov (Eds.), Language Electrified (Vol. 202, pp. 613\u0026ndash;646). Springer US. https://doi.org/10.1007/978-1-0716-3263-5_19\nLandrigan, J.-F., \u0026amp; Mirman, D. (2018). The cost of switching between taxonomic and thematic semantics. Memory \u0026amp; Cognition, 46(2), 191\u0026ndash;203. https://doi.org/10.3758/s13421-017-0757-5\nLarge, A.-C., Bach, C., \u0026amp; Calvet, G. (2018). CONTACT: A Human Centered Approach of Multimodal Flight Deck Design and Evaluation. In D. Harris (Ed.), Engineering Psychology and Cognitive Ergonomics (Vol. 10906, pp. 593\u0026ndash;604). Springer International Publishing. https://doi.org/10.1007/978-3-319-91122-9_48\nLee, J., \u0026amp; Shin, J.-A. (2023). The cross-linguistic comparison of perceptual strength norms for Korean, English and L2 English. Frontiers in Psychology, 14, 1188909. https://doi.org/10.3389/fpsyg.2023.1188909\nLi, M., Lu, Q., Long, Y., \u0026amp; Gui, L. (2017). Inferring Affective Meanings of Words from Word Embedding. IEEE Transactions on Affective Computing, 8(4), 443\u0026ndash;456. https://doi.org/10.1109/TAFFC.2017.2723012\nLin, K., \u0026amp; Chan, S. (2019). When senses meet functions: An amodal stage in conceptual processing. Journal of Cognitive Psychology, 31(1), 64\u0026ndash;75. https://doi.org/10.1080/20445911.2018.1560299\nLittlemore, J. (2019). Metaphors in the Mind: Sources of Variation in Embodied Metaphor (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108241441\nLiu, S., Zhou, M., \u0026amp; Li, Y. (2019). Internet use experience influence individuals\u0026rsquo; lexical decision performance by changing their body representation. Computers in Human Behavior, 91, 157\u0026ndash;166. https://doi.org/10.1016/j.chb.2018.09.021\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2023). Learning instance-level N-ary semantic knowledge at scale for robots operating in everyday environments. Autonomous Robots, 47(5), 529\u0026ndash;547. https://doi.org/10.1007/s10514-023-10099-4\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2021, July 12). Learning Instance-Level N-Ary Semantic Knowledge At Scale For Robots Operating in Everyday Environments. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.035\nLong, Y., Xiang, R., Lu, Q., Huang, C.-R., \u0026amp; Li, M. (2021). Improving Attention Model Based on Cognition Grounded Data for Sentiment Analysis. IEEE Transactions on Affective Computing, 12(4), 900\u0026ndash;912. https://doi.org/10.1109/TAFFC.2019.2903056\nLouwerse, M. M. (2018). Knowing the Meaning of a Word by the Linguistic and Perceptual Company It Keeps. Topics in Cognitive Science, 10(3), 573\u0026ndash;589. https://doi.org/10.1111/tops.12349\nLupyan, G., \u0026amp; Winter, B. (2018). Language is more abstract than you think, or, why aren't languages more iconic? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170137. https://doi.org/10.1098/rstb.2017.0137\nLynott, D., Connell, L., Brysbaert, M., Brand, J., \u0026amp; Carney, J. (2020). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52(3), 1271\u0026ndash;1291. https://doi.org/10.3758/s13428-019-01316-z\nLynott, D., Walsh, M., McEnery, T., Connell, L., Cross, L., \u0026amp; O'Brien, K. (2019). Are You What You Read? Predicting Implicit Attitudes to Immigration Based on Linguistic Distributional Cues From Newspaper Readership; A Pre-registered Study. Frontiers in Psychology, 10, 842. https://doi.org/10.3389/fpsyg.2019.00842\nMalhi, S. K., \u0026amp; Buchanan, L. (2018). A test of the symbol interdependency hypothesis with both concrete and abstract stimuli. PLOS ONE, 13(3), e0192719. https://doi.org/10.1371/journal.pone.0192719\nMangels, J. A., Rodriguez, S., Ochakovskaya, Y., \u0026amp; Guerra-Carrillo, B. (2017). Achievement Goal Task Framing and Fit With Personal Goals Modulate the Neurocognitive Response to Corrective Feedback. AERA Open, 3(3), 233285841772087. https://doi.org/10.1177/2332858417720875\nMarchetti, R., Vaugoyeau, M., Colé, P., \u0026amp; Assaiante, C. (2022). A sensorimotor representation impairment in dyslexic adults: A specific profile of comorbidity. Neuropsychologia, 165, 108134. https://doi.org/10.1016/j.neuropsychologia.2021.108134\nMarmeleira, J., \u0026amp; Duarte Santos, G. (2019). Do Not Neglect the Body and Action: The Emergence of Embodiment Approaches to Understanding Human Development. Perceptual and Motor Skills, 126(3), 410\u0026ndash;445. https://doi.org/10.1177/0031512519834389\nMarson, F., Paoletti, P., Naor-Ziv, R., Carducci, F., \u0026amp; Ben-Soussan, T. D. (2023). Embodied empathy and abstract concepts\u0026rsquo; concreteness: Evidence from contemplative practices. In Progress in Brain Research (Vol. 277, pp. 181\u0026ndash;209). Elsevier. https://doi.org/10.1016/bs.pbr.2022.12.005\nMárton, Z. C., Türker, S., Rink, C., Brucker, M., Kriegel, S., Bodenmüller, T., \u0026amp; Riedel, S. (2018). Improving object orientation estimates by considering multiple viewpoints: Orientation histograms of symmetries and measurement models for view selection. Autonomous Robots, 42(2), 423\u0026ndash;442. https://doi.org/10.1007/s10514-017-9633-1\nMcRae, K., Nedjadrasul, D., Pau, R., Lo, B. P., \u0026amp; King, L. (2018). Abstract Concepts and Pictures of Real‐World Situations Activate One Another. Topics in Cognitive Science, 10(3), 518\u0026ndash;532. https://doi.org/10.1111/tops.12328\nMeng, X., Sun, C., Du, B., Liu, L., Zhang, Y., Dong, Q., Georgiou, G. K., \u0026amp; Nan, Y. (2022). The development of brain rhythms at rest and its impact on vocabulary acquisition. Developmental Science, 25(2), e13157. https://doi.org/10.1111/desc.13157\nMiceli, A., Wauthia, E., Kandana Arachchige, K., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2023). Perceptual strength influences lexical decision in Alzheimer's disease. Journal of Neurolinguistics, 68, 101144. https://doi.org/10.1016/j.jneuroling.2023.101144\nMiceli, A., Wauthia, E., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2021). Perceptual and Interoceptive Strength Norms for 270 French Words. Frontiers in Psychology, 12, 667271. https://doi.org/10.3389/fpsyg.2021.667271\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMiklashevsky, A. (2018). Perceptual Experience Norms for 506 Russian Nouns: Modality Rating, Spatial Localization, Manipulability, Imageability and Other Variables. Journal of Psycholinguistic Research, 47(3), 641\u0026ndash;661. https://doi.org/10.1007/s10936-017-9548-1\nMiller, J., Brookie, K., Wales, S., Wallace, S., \u0026amp; Kaup, B. (2018). Embodied cognition: Is activation of the motor cortex essential for understanding action verbs? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(3), 335\u0026ndash;370. https://doi.org/10.1037/xlm0000451\nMinervino, R. A., Martín, A., Tavernini, L. M., \u0026amp; Trench, M. (2018). The Understanding of Visual Metaphors by the Congenitally Blind. Frontiers in Psychology, 9, 1242. https://doi.org/10.3389/fpsyg.2018.01242\nMoretti, S., \u0026amp; Greco, A. (2018). Truth is in the head. A nod and shake compatibility effect. Acta Psychologica, 185, 203\u0026ndash;218. https://doi.org/10.1016/j.actpsy.2018.02.010\nMoretti, S., \u0026amp; Greco, A. (2020). Nodding and shaking of the head as simulated approach and avoidance responses. Acta Psychologica, 203, 102988. https://doi.org/10.1016/j.actpsy.2019.102988\nMorucci, P., Bottini, R., \u0026amp; Crepaldi, D. (2019). Augmented Modality Exclusivity Norms for Concrete and Abstract Italian Property Words. Journal of Cognition, 2(1), 42. https://doi.org/10.5334/joc.88\nMueller, C. J., White, C. N., \u0026amp; Kuchinke, L. (2017). Electrophysiological correlates of the drift diffusion model in visual word recognition. Human Brain Mapping, 38(11), 5616\u0026ndash;5627. https://doi.org/10.1002/hbm.23753\nMuraki, E. J., Doyle, A., Protzner, A. B., \u0026amp; Pexman, P. M. (2023). Context matters: How do task demands modulate the recruitment of sensorimotor information during language processing? Frontiers in Human Neuroscience, 16, 976954. https://doi.org/10.3389/fnhum.2022.976954\nMuraki, E. J., Speed, L. J., \u0026amp; Pexman, P. M. (2023). Insights into embodied cognition and mental imagery from aphantasia. Nature Reviews Psychology, 2(10), 591\u0026ndash;605. https://doi.org/10.1038/s44159-023-00221-9\nOkuno, H. Y., \u0026amp; Guedes, G. (2020). Automatic XML creation for Multisensorial Books. 2020 XV Conferencia Latinoamericana de Tecnologias de Aprendizaje (LACLO), 1\u0026ndash;6. https://doi.org/10.1109/LACLO50806.2020.9381139\nOstarek, M., \u0026amp; Vigliocco, G. (2017). Reading sky and seeing a cloud: On the relevance of events for perceptual simulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 579\u0026ndash;590. https://doi.org/10.1037/xlm0000318\nPecher, D. (2018). Curb Your Embodiment. Topics in Cognitive Science, 10(3), 501\u0026ndash;517. https://doi.org/10.1111/tops.12311\nPérez-Gay Juárez, F., Labrecque, D., \u0026amp; Frak, V. (2019). Assessing language-induced motor activity through Event Related Potentials and the Grip Force Sensor, an exploratory study. Brain and Cognition, 135, 103572. https://doi.org/10.1016/j.bandc.2019.05.010\nPérez-Sánchez, M. Á., Stadthagen-Gonzalez, H., Guasch, M., Hinojosa, J. A., Fraga, I., Marín, J., \u0026amp; Ferré, P. (2021). EmoPro \u0026ndash; Emotional prototypicality for 1286 Spanish words: Relationships with affective and psycholinguistic variables. Behavior Research Methods, 53(5), 1857\u0026ndash;1875. https://doi.org/10.3758/s13428-020-01519-9\nPerfecto, H., Galak, J., Simmons, J. P., \u0026amp; Nelson, L. D. (2017). Rejecting a bad option feels like choosing a good one. Journal of Personality and Social Psychology, 113(5), 659\u0026ndash;670. https://doi.org/10.1037/pspa0000092\nPerlman, M., Little, H., Thompson, B., \u0026amp; Thompson, R. L. (2018). Iconicity in Signed and Spoken Vocabulary: A Comparison Between American Sign Language, British Sign Language, English, and Spanish. Frontiers in Psychology, 9, 1433. https://doi.org/10.3389/fpsyg.2018.01433\nPexman, P. M. (2019). The role of embodiment in conceptual development. Language, Cognition and Neuroscience, 34(10), 1274\u0026ndash;1283. https://doi.org/10.1080/23273798.2017.1303522\nPexman, P. M., Muraki, E., Sidhu, D. M., Siakaluk, P. D., \u0026amp; Yap, M. J. (2019). Quantifying sensorimotor experience: Body\u0026ndash;object interaction ratings for more than 9,000 English words. Behavior Research Methods, 51(2), 453\u0026ndash;466. https://doi.org/10.3758/s13428-018-1171-z\nPiai, V., \u0026amp; Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In Psychology of Learning and Motivation (Vol. 71, pp. 265\u0026ndash;302). Elsevier. https://doi.org/10.1016/bs.plm.2019.07.002\nPlekhanov Russian University of Economics, Simonenko, M. A., Kazaryan, S. Y., \u0026amp; Plekhanov Russian University of Economics. (2023). Synaesthetic metaphor and its reproduction in Russian-to-English translation: A frame-based study. RESEARCH RESULT Theoretical and Applied Linguistics, 9(3). https://doi.org/10.18413/2313-8912-2023-9-3-0-2\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355\u0026ndash;381. https://doi.org/10.19090/pp.v15i3.2400\nPulvermüller, F. (2018a). Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology, 160, 1\u0026ndash;44. https://doi.org/10.1016/j.pneurobio.2017.07.001\nPulvermüller, F. (2018b). Neurobiological Mechanisms for Semantic Feature Extraction and Conceptual Flexibility. Topics in Cognitive Science, 10(3), 590\u0026ndash;620. https://doi.org/10.1111/tops.12367\nPurves, R. S., Striedl, P., Kong, I., \u0026amp; Majid, A. (2023). Conceptualizing Landscapes Through Language: The Role of Native Language and Expertise in the Representation of Waterbody Related Terms. Topics in Cognitive Science, 15(3), 560\u0026ndash;583. https://doi.org/10.1111/tops.12652\nRadvansky, G. A. (2017). Human Memory (3rd ed.). Routledge. https://doi.org/10.4324/9781315542768\nRadvansky, G. A. (2021). Human Memory (4th ed.). Routledge. https://doi.org/10.4324/9780429287039\nRahimi, S., Farahibozorg, S.-R., Jackson, R., \u0026amp; Hauk, O. (2022). Task modulation of spatiotemporal dynamics in semantic brain networks: An EEG/MEG study. NeuroImage, 246, 118768. https://doi.org/10.1016/j.neuroimage.2021.118768\nRaia, R. (2023). An analysis of conceptual ambiguities in the debate on the format of concepts. Phenomenology and the Cognitive Sciences. https://doi.org/10.1007/s11097-023-09938-7\nRaj, R., Hörberg, T., Lindroos, R., Larsson, M., Herman, P., Laukka, E. J., \u0026amp; Olofsson, J. K. (2023). Odor identification errors reveal cognitive aspects of age-associated smell loss. Cognition, 236, 105445. https://doi.org/10.1016/j.cognition.2023.105445\nReggin, L. D., Gómez Franco, L. E., Horchak, O. V., Labrecque, D., Lana, N., Rio, L., \u0026amp; Vigliocco, G. (2023). Consensus Paper: Situated and Embodied Language Acquisition. Journal of Cognition, 6(1), 63. https://doi.org/10.5334/joc.308\nRepetto, C., Rodella, C., Conca, F., Santi, G. C., \u0026amp; Catricalà, E. (2022). The Italian Sensorimotor Norms: Perception and action strength measures for 959 words. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02004-1\nRey, A. E., Riou, B., Vallet, G. T., \u0026amp; Versace, R. (2017). The automatic visual simulation of words: A memory reactivated mask slows down conceptual access. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 71(1), 14\u0026ndash;22. https://doi.org/10.1037/cep0000100\nReymore, L. (2022). Characterizing prototypical musical instrument timbres with timbre trait profiles. Musicae Scientiae, 26(3), 648\u0026ndash;674. https://doi.org/10.1177/10298649211001523\nRobinson, M. D., Fetterman, A. K., Meier, B. P., Persich, M. R., \u0026amp; Waters, M. R. (2021). Embodied Perspectives on Personality. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 477\u0026ndash;498). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_21\nRobinson, M. D., \u0026amp; Thomas, L. E. (2021). Introduction to Embodied Psychology: Thinking, Feeling, and Acting. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 1\u0026ndash;19). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_1\nSan Roque, L., Kendrick, K. H., Norcliffe, E., \u0026amp; Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29(3), 371\u0026ndash;406. https://doi.org/10.1515/cog-2017-0034\nScerrati, E., D'Ascenzo, S., Nicoletti, R., Villani, C., \u0026amp; Lugli, L. (2022). Assessing Interpersonal Proximity Evaluation in the COVID-19 Era: Evidence From the Affective Priming Task. Frontiers in Psychology, 13, 901730. https://doi.org/10.3389/fpsyg.2022.901730\nScerrati, E., Iani, C., Lugli, L., Nicoletti, R., \u0026amp; Rubichi, S. (2020). Do my hands prime your hands? The hand-to-response correspondence effect. Acta Psychologica, 203, 103012. https://doi.org/10.1016/j.actpsy.2020.103012\nScerrati, E., Iani, C., \u0026amp; Rubichi, S. (2021). Does the Activation of Motor Information Affect Semantic Processing? In L. Bechberger, K.-U. Kühnberger, \u0026amp; M. Liu (Eds.), Concepts in Action (Vol. 9, pp. 153\u0026ndash;166). Springer International Publishing. https://doi.org/10.1007/978-3-030-69823-2_7\nScerrati, E., Lugli, L., Nicoletti, R., \u0026amp; Borghi, A. M. (2017). The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic Bulletin \u0026amp; Review, 24(3), 798\u0026ndash;803. https://doi.org/10.3758/s13423-016-1150-2\nScherer, D., \u0026amp; Wentura, D. (2018). Combining the Post-Cue Task and the Perceptual Identification Task to Assess Parallel Activation and Mutual Facilitation of Related Primes and Targets. Experimental Psychology, 65(2), 84\u0026ndash;97. https://doi.org/10.1027/1618-3169/a000396\nSchilhab, T. (2017). Derived Embodiment in Abstract Language. Springer International Publishing. https://doi.org/10.1007/978-3-319-56056-4\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSeghier, M. L. (2023). Multiple functions of the angular gyrus at high temporal resolution. Brain Structure and Function, 228(1), 7\u0026ndash;46. https://doi.org/10.1007/s00429-022-02512-y\nŠetić Beg, M. (2021). Uloga utjelovljenja u razumijevanju pojmova. Psihologijske Teme, 30(2), 371\u0026ndash;395. https://doi.org/10.31820/pt.30.2.12\nShen, G., Wang, R., Yang, M., \u0026amp; Xie, J. (2022). Chinese Children with Congenital and Acquired Blindness Represent Concrete Concepts in Vertical Space through Tactile Perception. International Journal of Environmental Research and Public Health, 19(17), 11055. https://doi.org/10.3390/ijerph191711055\nSidhu, D. M., \u0026amp; Pexman, P. M. (2018). Lonely sensational icons: Semantic neighbourhood density, sensory experience and iconicity. Language, Cognition and Neuroscience, 33(1), 25\u0026ndash;31. https://doi.org/10.1080/23273798.2017.1358379\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306\u0026ndash;1318. https://doi.org/10.3758/s13428-021-01656-9\nSpeed, L. J., \u0026amp; Majid, A. (2017). Dutch modality exclusivity norms: Simulating perceptual modality in space. Behavior Research Methods, 49(6), 2204\u0026ndash;2218. https://doi.org/10.3758/s13428-017-0852-3\nSpeed, L. J., \u0026amp; Majid, A. (2018). An Exception to Mental Simulation: No Evidence for Embodied Odor Language. Cognitive Science, 42(4), 1146\u0026ndash;1178. https://doi.org/10.1111/cogs.12593\nSpeed, L. J., \u0026amp; Majid, A. (2020). Grounding language in the neglected senses of touch, taste, and smell. Cognitive Neuropsychology, 37(5\u0026ndash;6), 363\u0026ndash;392. https://doi.org/10.1080/02643294.2019.1623188\nSpeed, L. J., Papies, E. K., \u0026amp; Majid, A. (2023). Mental simulation across sensory modalities predicts attractiveness of food concepts. Journal of Experimental Psychology: Applied, 29(3), 557\u0026ndash;571. https://doi.org/10.1037/xap0000461\nSri-Ganeshan, M. (2021). Modality Effect. In M. Raz \u0026amp; P. Pouryahya (Eds.), Decision Making in Emergency Medicine (pp. 215\u0026ndash;220). Springer Singapore. https://doi.org/10.1007/978-981-16-0143-9_34\nStrik Lievers, F., \u0026amp; Winter, B. (2018). Sensory language across lexical categories. Lingua, 204, 45\u0026ndash;61. https://doi.org/10.1016/j.lingua.2017.11.002\nSu, C., Wang, X., Wang, Z., \u0026amp; Chen, Y. (2019). A model of synesthetic metaphor interpretation based on cross-modality similarity. Computer Speech \u0026amp; Language, 58, 1\u0026ndash;16. https://doi.org/10.1016/j.csl.2019.03.003\nSzychowska, M., \u0026amp; Wiens, S. (2021). Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Physiology \u0026amp; Behavior, 228, 113240. https://doi.org/10.1016/j.physbeh.2020.113240\nTarai, S., Bit, A., Kumar, R., \u0026amp; Savekar, A. (2021). Processing of party symbols and names predicts the results of 2019 Indian parliamentary election: Analysing psycholinguistic behavioural incongruency effects. Psychology of Language and Communication, 25(1), 264\u0026ndash;295. https://doi.org/10.2478/plc-2021-0012\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2019). Sensorimotor Cross-Behavior Knowledge Transfer for Grounded Category Recognition. 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 1\u0026ndash;6. https://doi.org/10.1109/DEVLRN.2019.8850715\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2020). A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization. Frontiers in Robotics and AI, 7, 522141. https://doi.org/10.3389/frobt.2020.522141\nTatiya, G., \u0026amp; Sinapov, J. (2019). Deep Multi-Sensory Object Category Recognition Using Interactive Behavioral Exploration. 2019 International Conference on Robotics and Automation (ICRA), 7872\u0026ndash;7878. https://doi.org/10.1109/ICRA.2019.8794095\nTeodorescu, H.-N., \u0026amp; Bolea, S. C. (2019). Text Sectioning based on Stylometric Distances. 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), 1\u0026ndash;6. https://doi.org/10.1109/SPED.2019.8906616\nThomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., Hart, J., Stone, P., \u0026amp; Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327\u0026ndash;374. https://doi.org/10.1613/jair.1.11485\nTillman, R., \u0026amp; Louwerse, M. (2018). Estimating Emotions Through Language Statistics and Embodied Cognition. Journal of Psycholinguistic Research, 47(1), 159\u0026ndash;167. https://doi.org/10.1007/s10936-017-9522-y\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864\u0026ndash;884. https://doi.org/10.3758/s13428-021-01650-1\nTomsk State University, Vladimirova, V. E., Rezanova, Z. I., Tomsk State University, Korshunova, I. S., \u0026amp; Tomsk State University. (2022). Ethno-linguistic contact as reflected in language cognition: Does bilingualism affect subjective assessments of perceptual semantics?*. Rusin, 70, 214\u0026ndash;231. https://doi.org/10.17223/18572685/70/12\nUtsumi, A. (2020). Exploring What Is Encoded in Distributional Word Vectors: A Neurobiologically Motivated Analysis. Cognitive Science, 44(6), e12844. https://doi.org/10.1111/cogs.12844\nValenzuela, J. (2017). Meaning in English: An Introduction (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781316156278\nVan De Weijer, J., Bianchi, I., \u0026amp; Paradis, C. (2023). Sensory modality profiles of antonyms. Language and Cognition, 1\u0026ndash;15. https://doi.org/10.1017/langcog.2023.20\nVergallito, A., Petilli, M. A., \u0026amp; Marelli, M. (2020). Perceptual modality norms for 1,121 Italian words: A comparison with concreteness and imageability scores and an analysis of their impact in word processing tasks. Behavior Research Methods, 52(4), 1599\u0026ndash;1616. https://doi.org/10.3758/s13428-019-01337-8\nVerheyen, S., De Deyne, S., Linsen, S., \u0026amp; Storms, G. (2020). Lexicosemantic, affective, and distributional norms for 1,000 Dutch adjectives. Behavior Research Methods, 52(3), 1108\u0026ndash;1121. https://doi.org/10.3758/s13428-019-01303-4\nVigliocco, G., Zhang, Y., Del Maschio, N., Todd, R., \u0026amp; Tuomainen, J. (2020). Electrophysiological signatures of English onomatopoeia. Language and Cognition, 12(1), 15\u0026ndash;35. https://doi.org/10.1017/langcog.2019.38\nVolfart, A., Rice, G. E., Lambon Ralph, M. A., \u0026amp; Rossion, B. (2021). Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. NeuroImage, 238, 118228. https://doi.org/10.1016/j.neuroimage.2021.118228\nW, D., C, P., C, M.-L., \u0026amp; F, L. (2023). Imagining and reading actions: Towards similar motor representations. Heliyon, 9(2), e13426. https://doi.org/10.1016/j.heliyon.2023.e13426\nWajnerman Paz, A. (2018). A Defense of an Amodal Number System. Philosophies, 3(2), 13. https://doi.org/10.3390/philosophies3020013\nWajnerman Paz, A. (2019). Using neural response properties to draw the distinction between modal and amodal representations. Philosophical Psychology, 32(3), 301\u0026ndash;331. https://doi.org/10.1080/09515089.2018.1563677\nWajnerman-Paz, A., \u0026amp; Rojas-Líbano, D. (2022). On the role of contextual factors in cognitive neuroscience experiments: A mechanistic approach. Synthese, 200(5), 402. https://doi.org/10.1007/s11229-022-03870-0\nWan, M., Su, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Perceptional and actional enrichment for metaphor detection with sensorimotor norms. Natural Language Engineering, 1\u0026ndash;29. https://doi.org/10.1017/S135132492300044X\nWang, L., Chen, Q., Chen, Y., \u0026amp; Zhong, R. (2019). The Effect of Sweet Taste on Romantic Semantic Processing: An ERP Study. Frontiers in Psychology, 10, 1573. https://doi.org/10.3389/fpsyg.2019.01573\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWassenburg, S. I., De Koning, B. B., De Vries, M. H., Boonstra, A. M., \u0026amp; Van Der Schoot, M. (2017). Gender differences in mental simulation during sentence and word processing. Journal of Research in Reading, 40(3), 274\u0026ndash;296. https://doi.org/10.1111/1467-9817.12066\nWentura, D. (2019). Cognition and emotion: On paradigms and metaphors. Cognition and Emotion, 33(1), 85\u0026ndash;93. https://doi.org/10.1080/02699931.2019.1567464\nWingfield, C., \u0026amp; Connell, L. (2022a). Sensorimotor distance: A grounded measure of semantic similarity for 800 million concept pairs. Behavior Research Methods, 55(7), 3416\u0026ndash;3432. https://doi.org/10.3758/s13428-022-01965-7\nWingfield, C., \u0026amp; Connell, L. (2022b). Understanding the role of linguistic distributional knowledge in cognition. Language, Cognition and Neuroscience, 37(10), 1220\u0026ndash;1270. https://doi.org/10.1080/23273798.2022.2069278\nWinter, A., Dudschig, C., Miller, J., Ulrich, R., \u0026amp; Kaup, B. (2022). The action-sentence compatibility effect (ACE): Meta-analysis of a benchmark finding for embodiment. Acta Psychologica, 230, 103712. https://doi.org/10.1016/j.actpsy.2022.103712\nWinter, B. (2019). Statistics for Linguists: An Introduction Using R (1st ed.). Routledge. https://doi.org/10.4324/9781315165547\nWinter, B. (2022). Mapping the landscape of exploratory and confirmatory data analysis in linguistics. In D. Tay \u0026amp; M. X. Pan (Eds.), Data Analytics in Cognitive Linguistics (pp. 13\u0026ndash;48). De Gruyter. https://doi.org/10.1515/9783110687279-002\nWinter, B. (2023). Abstract concepts and emotion: Cross-linguistic evidence and arguments against affective embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210368. https://doi.org/10.1098/rstb.2021.0368\nWinter, B., Fischer, M. H., Scheepers, C., \u0026amp; Myachykov, A. (2023). More is Better: English Language Statistics are Biased Toward Addition. Cognitive Science, 47(4), e13254. https://doi.org/10.1111/cogs.13254\nWinter, B., Perlman, M., \u0026amp; Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213\u0026ndash;220. https://doi.org/10.1016/j.cognition.2018.05.008\nWinter, B., Perlman, M., Perry, L. K., \u0026amp; Lupyan, G. (2017). Which words are most iconic?: Iconicity in English sensory words. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 18(3), 443\u0026ndash;464. https://doi.org/10.1075/is.18.3.07win\nWinter, B., Sóskuthy, M., Perlman, M., \u0026amp; Dingemanse, M. (2022). Trilled /r/ is associated with roughness, linking sound and touch across spoken languages. Scientific Reports, 12(1), 1035. https://doi.org/10.1038/s41598-021-04311-7\nWinter, B., \u0026amp; Strik-Lievers, F. (2023). Semantic distance predicts metaphoricity and creativity judgments in synesthetic metaphors. Metaphor and the Social World, 13(1), 59\u0026ndash;80. https://doi.org/10.1075/msw.00029.win\nWu, C., \u0026amp; Mu, X. (2023). Sensory experience ratings (SERs) for 1,130 Chinese words: Relationships with other semantic and lexical psycholinguistic variables. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0083\nXiong, J., \u0026amp; Huang, C.-R. (2018). Somewhere in COLDNESS Lies Nibbāna: Lexical Manifestations of COLDNESS. In J.-F. Hong, Q. Su, \u0026amp; J.-S. Wu (Eds.), Chinese Lexical Semantics (Vol. 11173, pp. 70\u0026ndash;81). Springer International Publishing. https://doi.org/10.1007/978-3-030-04015-4_6\nXu, Y., Vignali, L., Sigismondi, F., Crepaldi, D., Bottini, R., \u0026amp; Collignon, O. (2023). Similar object shape representation encoded in the inferolateral occipitotemporal cortex of sighted and early blind people. PLOS Biology, 21(7), e3001930. https://doi.org/10.1371/journal.pbio.3001930\nYan, J., Li, W., Zhang, T., Zhang, J., Jin, Z., \u0026amp; Li, L. (2023). Structural and functional neural substrates underlying the concreteness effect. Brain Structure and Function, 228(6), 1493\u0026ndash;1510. https://doi.org/10.1007/s00429-023-02668-1\nYasuda, M., Stins, J. F., \u0026amp; Higuchi, T. (2017). Effect of Constrained Arm Posture on the Processing of Action Verbs. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00057\nYin Zhong, \u0026amp; Chu-Ren Huang. (2020). Sweetness or Mouthfeel: A corpus-based study of the conceptualization of taste. Linguistic Research, 37(3), 359\u0026ndash;387. https://doi.org/10.17250/KHISLI.37.3.202012.001\nZappa, A., Mestre, D., Pergandi, J.-M., Bolger, D., \u0026amp; Frenck-Mestre, C. (2022). Cross-linguistic gender congruency effects during lexical access in novice L2 learners: Evidence from ERPs. Language, Cognition and Neuroscience, 37(9), 1073\u0026ndash;1098. https://doi.org/10.1080/23273798.2022.2039726\nZeng, Y., Zhao, D., Zhao, F., Shen, G., Dong, Y., Lu, E., Zhang, Q., Sun, Y., Liang, Q., Zhao, Y., Zhao, Z., Fang, H., Wang, Y., Li, Y., Liu, X., Du, C., Kong, Q., Ruan, Z., \u0026amp; Bi, W. (2023). BrainCog: A spiking neural network based, brain-inspired cognitive intelligence engine for brain-inspired AI and brain simulation. Patterns, 4(8), 100789. https://doi.org/10.1016/j.patter.2023.100789\nZhang, M., Wu, X., \u0026amp; Wang, A. (2021). Crossmodal Nonspatial Repetition Inhibition Due to Modality Shift. Perception, 50(2), 116\u0026ndash;128. https://doi.org/10.1177/0301006620988209\nZhang, X., Amiri, S., Sinapov, J., Thomason, J., Stone, P., \u0026amp; Zhang, S. (2023). Multimodal embodied attribute learning by robots for object-centric action policies. Autonomous Robots, 47(5), 505\u0026ndash;528. https://doi.org/10.1007/s10514-023-10098-5\nZhang, X., Sinapov, J., \u0026amp; Zhang, S. (2021, July 12). Planning Multimodal Exploratory Actions for Online Robot Attribute Learning. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.005\nZhang, Y., Mirman, D., \u0026amp; Hoffman, P. (2023). Taxonomic and thematic relations rely on different types of semantic features: Evidence from an fMRI meta-analysis and a semantic priming study. Brain and Language, 242, 105287. https://doi.org/10.1016/j.bandl.2023.105287\nZhao, Q. (2020a). From Linguistic Synaesthesia to Conceptual Metaphor Theory. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 115\u0026ndash;128). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_7\nZhao, Q. (2020b). Methodology: A Corpus-Driven Approach. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 19\u0026ndash;34). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_2\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553\u0026ndash;583. https://doi.org/10.1515/cog-2021-0098\nZhao, Q., Huang, C.-R., \u0026amp; Ahrens, K. (2019). Directionality of linguistic synesthesia in Mandarin: A corpus-based study. Lingua, 232, 102744. https://doi.org/10.1016/j.lingua.2019.102744\nZhao, Q., \u0026amp; Long, Y. (2022). A Diachronic Study on Linguistic Synesthesia in Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 84\u0026ndash;94). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_6\nZhao, Q., Long, Y., \u0026amp; Huang, C.-R. (2020). Linguistic Synaesthesia of Mandarin Sensory Adjectives: Corpus-Based and Experimental Approaches. In J.-F. Hong, Y. Zhang, \u0026amp; P. Liu (Eds.), Chinese Lexical Semantics (Vol. 11831, pp. 139\u0026ndash;146). Springer International Publishing. https://doi.org/10.1007/978-3-030-38189-9_14\nZhao, T., Huang, Y., Chen, D., Jiao, L., Marmolejo-Ramos, F., Wang, R., \u0026amp; Xie, J. (2020). The modality switching costs of Chinese\u0026ndash;English bilinguals in the processing of L1 and L2. Quarterly Journal of Experimental Psychology, 73(3), 396\u0026ndash;412. https://doi.org/10.1177/1747021819878089\nZhong, J., Peniak, M., Tani, J., Ogata, T., \u0026amp; Cangelosi, A. (2019). Sensorimotor input as a language generalisation tool: A neurorobotics model for generation and generalisation of noun-verb combinations with sensorimotor inputs. Autonomous Robots, 43(5), 1271\u0026ndash;1290. https://doi.org/10.1007/s10514-018-9793-7\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196\u0026ndash;230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000\u0026ndash;1022. https://doi.org/10.1080/23273798.2022.2035416\nZhu, S., Wang, X., \u0026amp; Liu, P. (2021). Who Killed Sanmao and Virginia Woolf? A Comparative Study of Writers with Suicidal Attempt Based on a Quantitative Linguistic Method. In M. Liu, C. Kit, \u0026amp; Q. Su (Eds.), Chinese Lexical Semantics (Vol. 12278, pp. 408\u0026ndash;420). Springer International Publishing. https://doi.org/10.1007/978-3-030-81197-6_34\nГарах, Ж. В., Ребрейкина, А. Б., Стрелец, В. Б., Голикова, А. В., \u0026amp; Зайцева, Ю. С. (2019). НЕЙРОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ЧТЕНИЯ. Журнал высшей нервной деятельности им И П Павлова, 69(3), 294\u0026ndash;313. https://doi.org/10.1134/S0044467719030055\n\r\r","date":1498867200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1498867200,"objectID":"54f8c09b786d728c5c440476328c3b7b","permalink":"https://pablobernabeu.github.io/publication/bernabeu-etal-2017/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/publication/bernabeu-etal-2017/","section":"publication","summary":"We tested whether conceptual processing is modality-specific by tracking the time course of the Conceptual Modality Switch effect. Forty-six participants verified the relation between property words and concept words. The conceptual modality of consecutive trials was manipulated in order to produce an Auditory-to-visual switch condition, a Haptic-to-visual switch condition, and a Visual-to-visual, no-switch condition. Event-Related Potentials (ERPs) were time-locked to the onset of the first word (property) in the target trials so as to measure the effect online and to avoid a within-trial confound. A switch effect was found, characterized by more negative ERP amplitudes for modality switches than no-switches. It proved significant in four typical time windows from 160 to 750 milliseconds post word onset, with greater strength in the Slow group, in posterior brain regions, and in the N400 window. The earliest switch effect was located in the language brain region, whereas later it was more prominent in the visual region. In the N400 and Late Positive windows, the Quick group presented the effect especially in the language region, whereas the Slow had it rather in the visual region. These results suggest that contextual factors such as time resources modulate the engagement of linguistic and embodied systems in conceptual processing.","tags":["conceptual modality switch","conceptual processing","reading","event-related potentials","cognition","psycholinguistics","statistics","linear mixed-effects models","replication","CogSci"],"title":"Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs","type":"publication"},{"authors":["Bernabeu, P."],"categories":["conceptual processing","psycholinguistics","event-related potentials"],"content":"Reference Bernabeu, P. (2017). Modality switches occur early and extend late in conceptual processing: Evidence from ERPs. PsyArXiv. https://doi.org/10.31234/osf.io/5gjvk\n\rRelated references Ali Qurbi, E. (2022). Ambiguous Word Processing among Second Language Learners. The Canadian Modern Language Review, 78(2), 151\u0026ndash;173. https://doi.org/10.3138/cmlr-2020-0115\nAmenta, S., Crepaldi, D., \u0026amp; Marelli, M. (2020). Consistency measures individuate dissociating semantic modulations in priming paradigms: A new look on semantics in the processing of (complex) words. Quarterly Journal of Experimental Psychology, 73(10), 1546\u0026ndash;1563. https://doi.org/10.1177/1747021820927663\nAmsel, B. D., Kutas, M., \u0026amp; Coulson, S. (2017). Projectors, associators, visual imagery, and the time course of visual processing in grapheme-color synesthesia. Cognitive Neuroscience, 8(4), 206\u0026ndash;223. https://doi.org/10.1080/17588928.2017.1353492\nArgiris, G., Rumiati, R. I., \u0026amp; Crepaldi, D. (2021). No fruits without color: Cross-modal priming and EEG reveal different roles for different features across semantic categories. PLOS ONE, 16(4), e0234219. https://doi.org/10.1371/journal.pone.0234219\nAvramova, Y. R., De Pelsmacker, P., \u0026amp; Dens, N. (2017). Brand placement in text: The short- and long-term effects of placement modality and need for cognition. International Journal of Advertising, 36(5), 682\u0026ndash;704. https://doi.org/10.1080/02650487.2017.1335041\nBagli, M. (2023). How to Point with Language: English Source-Based Language to Describe Taste Qualities. Lublin Studies in Modern Languages and Literature, 42(2), 31\u0026ndash;46. https://doi.org/10.17951/lsmll.2023.47.2.31-46\nBanks, B., Wingfield, C., \u0026amp; Connell, L. (2021). Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category Production. Cognitive Science, 45(10), e13055. https://doi.org/10.1111/cogs.13055\nBarros García, B. (2017). In Other Words: Reformulation Strategies in Dostoevskii's Literary Works. Russian Literature, 91, 1\u0026ndash;25. https://doi.org/10.1016/j.ruslit.2017.09.001\nBarsalou, L. W. (2017a). Cognitively Plausible Theories of Concept Composition. In J. A. Hampton \u0026amp; Y. Winter (Eds.), Compositionality and Concepts in Linguistics and Psychology (Vol. 3, pp. 9\u0026ndash;30). Springer International Publishing. https://doi.org/10.1007/978-3-319-45977-6_2\nBarsalou, L. W. (2017b). What does semantic tiling of the cortex tell us about semantics? Neuropsychologia, 105, 18\u0026ndash;38. https://doi.org/10.1016/j.neuropsychologia.2017.04.011\nBarsalou, L. W. (2020). Challenges and Opportunities for Grounding Cognition. Journal of Cognition, 3(1), 31. https://doi.org/10.5334/joc.116\nBartl, S., \u0026amp; Lahey, E. (2023). \u0026lsquo;As the title implies\u0026rsquo;: How readers talk about titles in Amazon book reviews. Language and Literature: International Journal of Stylistics, 32(2), 209\u0026ndash;230. https://doi.org/10.1177/09639470221147788\nBaumann, A., Hofmann, K., Marakasova, A., Neidhardt, J., \u0026amp; Wissik, T. (2023). Semantic micro-dynamics as a reflex of occurrence frequency: A semantic networks approach. Cognitive Linguistics, 34(3\u0026ndash;4), 533\u0026ndash;568. https://doi.org/10.1515/cog-2022-0008\nBechtold, L., Bellebaum, C., Egan, S., Tettamanti, M., \u0026amp; Ghio, M. (2019). The role of experience for abstract concepts: Expertise modulates the electrophysiological correlates of mathematical word processing. Brain and Language, 188, 1\u0026ndash;10. https://doi.org/10.1016/j.bandl.2018.10.002\nBechtold, L., Bellebaum, C., \u0026amp; Ghio, M. (2023). When a Sunny Day Gives You Butterflies: An Electrophysiological Investigation of Concreteness and Context Effects in Semantic Word Processing. Journal of Cognitive Neuroscience, 35(2), 241\u0026ndash;258. https://doi.org/10.1162/jocn_a_01942\nBechtold, L., Bellebaum, C., Hoffman, P., \u0026amp; Ghio, M. (2021). Corroborating behavioral evidence for the interplay of representational richness and semantic control in semantic word processing. Scientific Reports, 11(1), 6184. https://doi.org/10.1038/s41598-021-85711-7\nBidet-Ildei, C., Gimenes, M., Toussaint, L., Almecija, Y., \u0026amp; Badets, A. (2017). Sentence plausibility influences the link between action words and the perception of biological human movements. Psychological Research, 81(4), 806\u0026ndash;813. https://doi.org/10.1007/s00426-016-0776-z\nBidet-Ildei, C., Gimenes, M., Toussaint, L., Beauprez, S.-A., \u0026amp; Badets, A. (2017). Painful semantic context modulates the relationship between action words and biological movement perception. Journal of Cognitive Psychology, 29(7), 821\u0026ndash;831. https://doi.org/10.1080/20445911.2017.1322093\nBolognesi, M., \u0026amp; Strik Lievers, F. (2020). How language and image construct synaesthetic metaphors in print advertising. Visual Communication, 19(4), 431\u0026ndash;457. https://doi.org/10.1177/1470357218782001\nBorghesani, V., \u0026amp; Piazza, M. (2017). The neuro-cognitive representations of symbols: The case of concrete words. Neuropsychologia, 105, 4\u0026ndash;17. https://doi.org/10.1016/j.neuropsychologia.2017.06.026\nBorghi, A. M., \u0026amp; Barsalou, L. (2021). Perspective in the conceptualization of categories. Psychological Research, 85(2), 697\u0026ndash;719. https://doi.org/10.1007/s00426-019-01269-0\nBorghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., \u0026amp; Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263\u0026ndash;292. https://doi.org/10.1037/bul0000089\nBorghi, A. M., Mazzuca, C., Gervasi, A. M., Mannella, F., \u0026amp; Tummolini, L. (2023). Grounded cognition can be multimodal all the way down. Language, Cognition and Neuroscience, 1\u0026ndash;5. https://doi.org/10.1080/23273798.2023.2210238\nBottini, R., Ferraro, S., Nigri, A., Cuccarini, V., Bruzzone, M. G., \u0026amp; Collignon, O. (2020). Brain Regions Involved in Conceptual Retrieval in Sighted and Blind People. Journal of Cognitive Neuroscience, 32(6), 1009\u0026ndash;1025. https://doi.org/10.1162/jocn_a_01538\nBruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms, G., \u0026amp; Vandenberghe, R. (2019). Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neuroscience \u0026amp; Biobehavioral Reviews, 103, 3\u0026ndash;13. https://doi.org/10.1016/j.neubiorev.2019.05.015\nCaballero, R., \u0026amp; Paradis, C. (2020). Soundscapes in English and Spanish: A corpus investigation of verb constructions. Language and Cognition, 12(4), 705\u0026ndash;728. https://doi.org/10.1017/langcog.2020.19\nCaballero, R., \u0026amp; Paradis, C. (2023). Sharing Perceptual Experiences through Language. Journal of Intelligence, 11(7), 129. https://doi.org/10.3390/jintelligence11070129\nCantarero, K., Parzuchowski, M., \u0026amp; Dukala, K. (2017). White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not. Frontiers in Psychology, 8, 814. https://doi.org/10.3389/fpsyg.2017.00814\nCarney, J. (2020). Thinking avant la lettre: A Review of 4E Cognition. Evolutionary Studies in Imaginative Culture, 4(1), 77\u0026ndash;90. https://doi.org/10.26613/esic.4.1.172\nCaterina Villani \u0026amp; Luisa Lugli. (2020). L'effetto Simon e il suo decorso temporale con stimoli linguistici non spaziali. Giornale italiano di psicologia, 1, 305\u0026ndash;314. https://doi.org/10.1421/96612\nChan, S. (2022). Dynamics of nominal classification systems in language processing. Language, Cognition and Neuroscience, 37(6), 671\u0026ndash;685. https://doi.org/10.1080/23273798.2021.2011331\nCharmhun Jo, Sun-A Kim, \u0026amp; Chu-Ren Huang. (2022). Linguistic synesthesia in Korean: A compound word-based study of cross-modal directionality. Linguistic Research, 39(2), 275\u0026ndash;296. https://doi.org/10.17250/KHISLI.39.2.202206.002\nChedid, G., Brambati, S. M., Bedetti, C., Rey, A. E., Wilson, M. A., \u0026amp; Vallet, G. T. (2019). Visual and auditory perceptual strength norms for 3,596 French nouns and their relationship with other psycholinguistic variables. Behavior Research Methods, 51(5), 2094\u0026ndash;2105. https://doi.org/10.3758/s13428-019-01254-w\nChen, I.-H., Zhao, Q., Long, Y., Lu, Q., \u0026amp; Huang, C.-R. (2019). Mandarin Chinese modality exclusivity norms. PLOS ONE, 14(2), e0211336. https://doi.org/10.1371/journal.pone.0211336\nChoi, U., Sung, Y., \u0026amp; Ogawa, S. (2020). Measurement of ultra‐fast signal progression related to face processing by 7T fMRI. Human Brain Mapping, 41(7), 1754\u0026ndash;1764. https://doi.org/10.1002/hbm.24907\nChwilla, D. J. (2022). Context effects in language comprehension: The role of emotional state and attention on semantic and syntactic processing. Frontiers in Human Neuroscience, 16, 1014547. https://doi.org/10.3389/fnhum.2022.1014547\nCirillo, G., Strijkers, K., Runnqvist, E., \u0026amp; Baus, C. (2023). Effects of Shared Attention on joint language production across processing stages. Language, Cognition and Neuroscience, 1\u0026ndash;12. https://doi.org/10.1080/23273798.2023.2260021\nCochrane, B. A., \u0026amp; Milliken, B. (2019). Imagined event files: An interplay between imagined and perceived objects. Psychonomic Bulletin \u0026amp; Review, 26(2), 538\u0026ndash;544. https://doi.org/10.3758/s13423-019-01572-2\nConnell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition and Neuroscience, 34(10), 1308\u0026ndash;1318. https://doi.org/10.1080/23273798.2018.1471512\nConnell, L., Lynott, D., \u0026amp; Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170143. https://doi.org/10.1098/rstb.2017.0143\nCorciulo, S., Bioglio, L., Basile, V., Patti, V., \u0026amp; Damiano, R. (2023). The DEEP Sensorium: A multidimensional approach to sensory domain labelling. Companion Proceedings of the ACM Web Conference 2023, 661\u0026ndash;668. https://doi.org/10.1145/3543873.3587631\nCourson, M., Macoir, J., \u0026amp; Tremblay, P. (2018). A facilitating role for the primary motor cortex in action sentence processing. Behavioural Brain Research, 336, 244\u0026ndash;249. https://doi.org/10.1016/j.bbr.2017.09.019\nDavis, C. P., Joergensen, G. H., Boddy, P., Dowling, C., \u0026amp; Yee, E. (2020). Making It Harder to \u0026ldquo;See\u0026rdquo; Meaning: The More You See Something, the More Its Conceptual Representation Is Susceptible to Visual Interference. Psychological Science, 31(5), 505\u0026ndash;517. https://doi.org/10.1177/0956797620910748\nDavis, C. P., \u0026amp; Yee, E. (2021). Building semantic memory from embodied and distributional language experience. WIREs Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555\nDavis, J. D., Coulson, S., Arnold, A. J., \u0026amp; Winkielman, P. (2021). Dynamic Grounding of Concepts: Implications for Emotion and Social Cognition. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 23\u0026ndash;42). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_2\nDe Deyne, S., Brysbaert, M., \u0026amp; Elgort, I. (2023). Chapter 7. Cross-language influences in L2 semantic and conceptual representation and processing. In I. Elgort, A. Siyanova-Chanturia, \u0026amp; M. Brysbaert (Eds.), Bilingual Processing and Acquisition (Vol. 16, pp. 152\u0026ndash;186). John Benjamins Publishing Company. https://doi.org/10.1075/bpa.16.07ded\nDellantonio, S., \u0026amp; Pastore, L. (2017). The \u0026lsquo;Proprioceptive\u0026rsquo; Component of Abstract Concepts. In S. Dellantonio \u0026amp; L. Pastore, Internal Perception (Vol. 40, pp. 297\u0026ndash;357). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55763-1_6\nDíez-Álamo, A. M., Díez, E., Alonso, M. Á., Vargas, C. A., \u0026amp; Fernandez, A. (2018). Normative ratings for perceptual and motor attributes of 750 object concepts in Spanish. Behavior Research Methods, 50(4), 1632\u0026ndash;1644. https://doi.org/10.3758/s13428-017-0970-y\nDove, G. (2018). Language as a disruptive technology: Abstract concepts, embodiment and the flexible mind. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170135. https://doi.org/10.1098/rstb.2017.0135\nDove, G. (2021). The Challenges of Abstract Concepts. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 171\u0026ndash;195). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_8\nDove, G., Barca, L., Tummolini, L., \u0026amp; Borghi, A. M. (2022). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research, 86(8), 2451\u0026ndash;2467. https://doi.org/10.1007/s00426-020-01438-6\nDupont, W., Papaxanthis, C., Lebon, F., \u0026amp; Madden-Lombardi, C. (2022). Does the Motor Cortex Want the Full Story? The Influence of Sentence Context on Corticospinal Excitability in Action Language Processing. Neuroscience, 506, 58\u0026ndash;67. https://doi.org/10.1016/j.neuroscience.2022.10.022\nDutriaux, L., Dahiez, X., \u0026amp; Gyselinck, V. (2019). How to change your memory of an object with a posture and a verb. Quarterly Journal of Experimental Psychology, 72(5), 1112\u0026ndash;1118. https://doi.org/10.1177/1747021818785096\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2022). Linguistic Bootstrapping Allows More Real-world Object Concepts to Be Held in Mind. Collabra: Psychology, 8(1), 40171. https://doi.org/10.1525/collabra.40171\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2023). More is not necessarily better: How different aspects of sensorimotor experience affect recognition memory for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1572\u0026ndash;1587. https://doi.org/10.1037/xlm0001265\nEdmiston, P., \u0026amp; Lupyan, G. (2017). Visual interference disrupts visual knowledge. Journal of Memory and Language, 92, 281\u0026ndash;292. https://doi.org/10.1016/j.jml.2016.07.002\nElisa Scerrati, Cristina Iani, Luisa Lugli, \u0026amp; Sandro Rubichi. (2019). C'è un effetto di potenziamento dell'azione con oggetti bimanuali? Giornale italiano di psicologia, 4, 987\u0026ndash;996. https://doi.org/10.1421/95573\nElpidorou, A., \u0026amp; Dove, G. (2018). Consciousness and Physicalism: A Defense of a Research Program (1st ed.). Routledge. https://doi.org/10.4324/9781315682075\nEspino, O., \u0026amp; Byrne, R. M. J. (2018). Thinking About the Opposite of What Is Said: Counterfactual Conditionals and Symbolic or Alternate Simulations of Negation. Cognitive Science, 42(8), 2459\u0026ndash;2501. https://doi.org/10.1111/cogs.12677\nFabrizio Calzavarini. (2023). Comprensione e cervello. Sistemi intelligenti, 2, 251\u0026ndash;276. https://doi.org/10.1422/107149\nFischer, J., \u0026amp; Mahon, B. Z. (2021). What tool representation, intuitive physics, and action have in common: The brain's first-person physics engine. Cognitive Neuropsychology, 38(7\u0026ndash;8), 455\u0026ndash;467. https://doi.org/10.1080/02643294.2022.2106126\nGaletzka, C. (2017). The Story So Far: How Embodied Cognition Advances Our Understanding of Meaning-Making. Frontiers in Psychology, 8, 1315. https://doi.org/10.3389/fpsyg.2017.01315\nGálvez-García, G., Aldunate, N., Bascour-Sandoval, C., Martínez-Molina, A., Peña, J., \u0026amp; Barramuño, M. (2020). Muscle activation in semantic processing: An electromyography approach. Biological Psychology, 152, 107881. https://doi.org/10.1016/j.biopsycho.2020.107881\nGao, C., Baucom, L. B., Kim, J., Wang, J., Wedell, D. H., \u0026amp; Shinkareva, S. V. (2019). Distinguishing abstract from concrete concepts in supramodal brain regions. Neuropsychologia, 131, 102\u0026ndash;110. https://doi.org/10.1016/j.neuropsychologia.2019.05.032\nGatti, D., Marelli, M., Vecchi, T., \u0026amp; Rinaldi, L. (2022). Spatial Representations Without Spatial Computations. Psychological Science, 33(11), 1947\u0026ndash;1958. https://doi.org/10.1177/09567976221094863\nGijssels, T., \u0026amp; Casasanto, D. (2020). Hand-use norms for Dutch and English manual action verbs: Implicit measures from a pantomime task. Behavior Research Methods, 52(4), 1744\u0026ndash;1767. https://doi.org/10.3758/s13428-020-01347-x\nGrand, G., Blank, I. A., Pereira, F., \u0026amp; Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nature Human Behaviour, 6(7), 975\u0026ndash;987. https://doi.org/10.1038/s41562-022-01316-8\nGrant, L. D., \u0026amp; Weissman, D. H. (2023). The binary structure of event files generalizes to abstract features: A nonhierarchical explanation of task set boundaries for the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(7), 1033\u0026ndash;1050. https://doi.org/10.1037/xlm0001148\nGreco, A. (2021). Spatial and Motor Aspects in the \u0026ldquo;Action-Sentence Compatibility Effect.\u0026rdquo; Frontiers in Psychology, 12, 647899. https://doi.org/10.3389/fpsyg.2021.647899\nGuerra, E., \u0026amp; Knoeferle, P. (2018). Semantic Interference and Facilitation: Understanding the Integration of Spatial Distance and Conceptual Similarity During Sentence Reading. Frontiers in Psychology, 9, 718. https://doi.org/10.3389/fpsyg.2018.00718\nGünther, F., Petilli, M. A., Vergallito, A., \u0026amp; Marelli, M. (2022). Images of the unseen: Extrapolating visual representations for abstract and concrete words in a data-driven computational model. Psychological Research, 86(8), 2512\u0026ndash;2532. https://doi.org/10.1007/s00426-020-01429-7\nGünther, F., Rinaldi, L., \u0026amp; Marelli, M. (2019). Vector-Space Models of Semantic Representation From a Cognitive Perspective: A Discussion of Common Misconceptions. Perspectives on Psychological Science, 14(6), 1006\u0026ndash;1033. https://doi.org/10.1177/1745691619861372\nHafri, A., Trueswell, J. C., \u0026amp; Strickland, B. (2018). Encoding of event roles from visual scenes is rapid, spontaneous, and interacts with higher-level visual processing. Cognition, 175, 36\u0026ndash;52. https://doi.org/10.1016/j.cognition.2018.02.011\nHardy, B. W. (2021). Embodied Cognition in Communication Science. Communication Theory, 31(4), 633\u0026ndash;653. https://doi.org/10.1093/ct/qtaa003\nHarpaintner, M., Sim, E.-J., Trumpp, N. M., Ulrich, M., \u0026amp; Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 1\u0026ndash;22. https://doi.org/10.1016/j.cortex.2019.10.014\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2018). The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words. Frontiers in Psychology, 9, 1748. https://doi.org/10.3389/fpsyg.2018.01748\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2022). Time course of brain activity during the processing of motor- and vision-related abstract concepts: Flexibility and task dependency. Psychological Research, 86(8), 2560\u0026ndash;2582. https://doi.org/10.1007/s00426-020-01374-5\nHartman, J., \u0026amp; Paradis, C. (2023). The language of sound: Events and meaning multitasking of words. Cognitive Linguistics, 34(3\u0026ndash;4), 445\u0026ndash;477. https://doi.org/10.1515/cog-2022-0006\nHauk, O., Giraud, A.-L., \u0026amp; Clarke, A. (2017). Brain oscillations in language comprehension. Language, Cognition and Neuroscience, 32(5), 533\u0026ndash;535. https://doi.org/10.1080/23273798.2017.1297842\nHauk, O., Jackson, R. L., \u0026amp; Rahimi, S. (2023). Transforming the neuroscience of language: Estimating pattern-to-pattern transformations of brain activity. Language, Cognition and Neuroscience, 1\u0026ndash;16. https://doi.org/10.1080/23273798.2023.2226268\nHauk, O., Magnabosco, F., \u0026amp; Law, R. (2023). Can we separate semantic representations from computations? A commentary on Calzavarini (2023). Language, Cognition and Neuroscience, 1\u0026ndash;4. https://doi.org/10.1080/23273798.2023.2226269\nHeim, E. M. (2017a). Adoption in Galatians and Romans: Contemporary Metaphor Theories and the Pauline Huiothesia Metaphors. BRILL. https://doi.org/10.1163/9789004339873\nHeim, E. M. (2017b). Adoption in Galatians and Romans: Contemporary Metaphor Theories and the Pauline Huiothesia Metaphors. BRILL. https://doi.org/10.1163/9789004339873\nHoeben Mannaert, L. N., Dijkstra, K., \u0026amp; Zwaan, R. A. (2020). Object combination in mental simulations. Quarterly Journal of Experimental Psychology, 73(11), 1796\u0026ndash;1806. https://doi.org/10.1177/1747021820933214\nHoffman, P., McClelland, J. L., \u0026amp; Lambon Ralph, M. A. (2018). Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychological Review, 125(3), 293\u0026ndash;328. https://doi.org/10.1037/rev0000094\nHohol, M. (2019). Foundations of Geometric Cognition (1st ed.). Routledge. https://doi.org/10.4324/9780429056291\nHolman, A., \u0026amp; Gîrbă, A. (2019). The match in orientation between verbal context and object accelerates change detection. Psihologija, 52(1), 93\u0026ndash;105. https://doi.org/10.2298/PSI180412033H\nHörberg, T., Larsson, M., \u0026amp; Olofsson, J. K. (2022). The Semantic Organization of the English Odor Vocabulary. Cognitive Science, 46(11), e13205. https://doi.org/10.1111/cogs.13205\nHuang, C.-R., \u0026amp; Xiong, J. (2019). Linguistic synaesthesia in Chinese. In C.-R. Huang, Z. Jing-Schmidt, \u0026amp; B. Meisterernst (Eds.), The Routledge Handbook of Chinese Applied Linguistics (1st ed., pp. 294\u0026ndash;312). Routledge. https://doi.org/10.4324/9781315625157-20\nIatropoulos, G., Herman, P., Lansner, A., Karlgren, J., Larsson, M., \u0026amp; Olofsson, J. K. (2018). The language of smell: Connecting linguistic and psychophysical properties of odor descriptors. Cognition, 178, 37\u0026ndash;49. https://doi.org/10.1016/j.cognition.2018.05.007\nIriguchi, M., Fujimura, R., Koda, H., \u0026amp; Masataka, N. (2019). Traffic symbol recognition modulates bodily actions. PLOS ONE, 14(3), e0214281. https://doi.org/10.1371/journal.pone.0214281\nJo, C. (2022). Linguistic Synesthesia in Korean: Universality and Variation. SAGE Open, 12(3), 215824402211178. https://doi.org/10.1177/21582440221117804\nJohns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing word frequency and contextual diversity. Memory \u0026amp; Cognition, 50(5), 1013\u0026ndash;1032. https://doi.org/10.3758/s13421-021-01249-z\nJones, L. L., Wurm, L. H., Calcaterra, R. D., \u0026amp; Ofen, N. (2017). Integrative Priming of Compositional and Locative Relations. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00359\nJulich-Warpakowski, N., \u0026amp; Pérez Sobrino, P. (2023). Introduction: Current challenges in metaphor research. Metaphor and the Social World, 13(1), 1\u0026ndash;15. https://doi.org/10.1075/msw.00026.jul\nKabbach, A., \u0026amp; Herbelot, A. (2021). Avoiding Conflict: When Speaker Coordination Does Not Require Conceptual Agreement. Frontiers in Artificial Intelligence, 3, 523920. https://doi.org/10.3389/frai.2020.523920\nKaiser, E. (2021). Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Frontiers in Psychology, 12, 701486. https://doi.org/10.3389/fpsyg.2021.701486\nKaup, B., Ulrich, R., Bausenhart, K. M., Bryce, D., Butz, M. V., Dignath, D., Dudschig, C., Franz, V. H., Friedrich, C., Gawrilow, C., Heller, J., Huff, M., Hütter, M., Janczyk, M., Leuthold, H., Mallot, H., Nürk, H.-C., Ramscar, M., Said, N., \u0026hellip; Wong, H. Y. (2023). Modal and amodal cognition: An overarching principle in various domains of psychology. Psychological Research. https://doi.org/10.1007/s00426-023-01878-w\nKeogh, R., \u0026amp; Pearson, J. (2017). The perceptual and phenomenal capacity of mental imagery. Cognition, 162, 124\u0026ndash;132. https://doi.org/10.1016/j.cognition.2017.02.004\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2017). Novel Text Analysis for Investigating Personality: Identifying the Dark Lady in Shakespeare's Sonnets. Journal of Quantitative Linguistics, 24(4), 255\u0026ndash;272. https://doi.org/10.1080/09296174.2017.1304049\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2018). Using Shakespeare's Sotto Voce to Determine True Identity From Text. Frontiers in Psychology, 9, 289. https://doi.org/10.3389/fpsyg.2018.00289\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2019). The Stylometric Impacts of Ageing and Life Events on Identity. Journal of Quantitative Linguistics, 26(1), 1\u0026ndash;21. https://doi.org/10.1080/09296174.2017.1405719\nKeus, K., \u0026amp; Harde, R. (2022). \u0026ldquo;She Wished Someone Would Help Them\u0026rdquo;: PTSD and Empathy in the Six of Crows Duology. Children's Literature in Education, 53(1), 130\u0026ndash;146. https://doi.org/10.1007/s10583-021-09441-0\nKhatin-Zadeh, O., Hu, J., Banaruee, H., \u0026amp; Marmolejo-Ramos, F. (2023). How emotions are metaphorically embodied: Measuring hand and head action strengths of typical emotional states. Cognition and Emotion, 37(3), 486\u0026ndash;498. https://doi.org/10.1080/02699931.2023.2181314\nKim, M.-K., Müller, H. M., \u0026amp; Weiss, S. (2021). What you \u0026ldquo;mean\u0026rdquo; is not what I \u0026ldquo;mean\u0026rdquo;: Categorization of verbs by Germans and Koreans using the semantic differential. Lingua, 252, 103012. https://doi.org/10.1016/j.lingua.2020.103012\nKlomberg, B., Schilhab, T., \u0026amp; Burke, M. (2022). Picturing Fiction through Embodied Cognition: Drawn Representations and Viewpoint in Literary Texts (1st ed.). Routledge. https://doi.org/10.4324/9781003225300\nKnoeferle, P. (2019). Predicting (variability of) context effects in language comprehension. Journal of Cultural Cognitive Science, 3(2), 141\u0026ndash;158. https://doi.org/10.1007/s41809-019-00025-5\nKoblet, O., \u0026amp; Purves, R. S. (2020). From online texts to Landscape Character Assessment: Collecting and analysing first-person landscape perception computationally. Landscape and Urban Planning, 197, 103757. https://doi.org/10.1016/j.landurbplan.2020.103757\nKompa, N. A. (2021). Language and embodiment\u0026mdash;Or the cognitive benefits of abstract representations. Mind \u0026amp; Language, 36(1), 27\u0026ndash;47. https://doi.org/10.1111/mila.12266\nKompa, N. A., \u0026amp; Mueller, J. L. (2022). Inner speech as a cognitive tool\u0026mdash;Or what is the point of talking to oneself? Philosophical Psychology, 1\u0026ndash;24. https://doi.org/10.1080/09515089.2022.2112164\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKrishna, P. P., Arulmozi, S., \u0026amp; Mishra, R. K. (2022). \u0026ldquo;Do You See and Hear More? A Study on Telugu Perception Verbs.\u0026rdquo; Journal of Psycholinguistic Research, 51(3), 473\u0026ndash;484. https://doi.org/10.1007/s10936-021-09827-7\nKuhnke, P., Beaupain, M. C., Arola, J., Kiefer, M., \u0026amp; Hartwigsen, G. (2023). Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neuroscience \u0026amp; Biobehavioral Reviews, 144, 104994. https://doi.org/10.1016/j.neubiorev.2022.104994\nKuhnke, P., Kiefer, M., \u0026amp; Hartwigsen, G. (2021). Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cerebral Cortex, 31(7), 3475\u0026ndash;3493. https://doi.org/10.1093/cercor/bhab026\nKumcu, A. (2021). Linguistic Synesthesia in Turkish: A Corpus-based Study of Crossmodal Directionality. Metaphor and Symbol, 36(4), 241\u0026ndash;255. https://doi.org/10.1080/10926488.2021.1921557\nLai, V. T., Hubbard, R., Ku, L.-C., \u0026amp; Pfeifer, V. (2023). Electrophysiology of Non-Literal Language. In M. Grimaldi, E. Brattico, \u0026amp; Y. Shtyrov (Eds.), Language Electrified (Vol. 202, pp. 613\u0026ndash;646). Springer US. https://doi.org/10.1007/978-1-0716-3263-5_19\nLandrigan, J.-F., \u0026amp; Mirman, D. (2018). The cost of switching between taxonomic and thematic semantics. Memory \u0026amp; Cognition, 46(2), 191\u0026ndash;203. https://doi.org/10.3758/s13421-017-0757-5\nLarge, A.-C., Bach, C., \u0026amp; Calvet, G. (2018). CONTACT: A Human Centered Approach of Multimodal Flight Deck Design and Evaluation. In D. Harris (Ed.), Engineering Psychology and Cognitive Ergonomics (Vol. 10906, pp. 593\u0026ndash;604). Springer International Publishing. https://doi.org/10.1007/978-3-319-91122-9_48\nLee, J., \u0026amp; Shin, J.-A. (2023). The cross-linguistic comparison of perceptual strength norms for Korean, English and L2 English. Frontiers in Psychology, 14, 1188909. https://doi.org/10.3389/fpsyg.2023.1188909\nLi, M., Lu, Q., Long, Y., \u0026amp; Gui, L. (2017). Inferring Affective Meanings of Words from Word Embedding. IEEE Transactions on Affective Computing, 8(4), 443\u0026ndash;456. https://doi.org/10.1109/TAFFC.2017.2723012\nLin, K., \u0026amp; Chan, S. (2019). When senses meet functions: An amodal stage in conceptual processing. Journal of Cognitive Psychology, 31(1), 64\u0026ndash;75. https://doi.org/10.1080/20445911.2018.1560299\nLittlemore, J. (2019). Metaphors in the Mind: Sources of Variation in Embodied Metaphor (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108241441\nLiu, S., Zhou, M., \u0026amp; Li, Y. (2019). Internet use experience influence individuals\u0026rsquo; lexical decision performance by changing their body representation. Computers in Human Behavior, 91, 157\u0026ndash;166. https://doi.org/10.1016/j.chb.2018.09.021\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2023). Learning instance-level N-ary semantic knowledge at scale for robots operating in everyday environments. Autonomous Robots, 47(5), 529\u0026ndash;547. https://doi.org/10.1007/s10514-023-10099-4\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2021, July 12). Learning Instance-Level N-Ary Semantic Knowledge At Scale For Robots Operating in Everyday Environments. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.035\nLong, Y., Xiang, R., Lu, Q., Huang, C.-R., \u0026amp; Li, M. (2021). Improving Attention Model Based on Cognition Grounded Data for Sentiment Analysis. IEEE Transactions on Affective Computing, 12(4), 900\u0026ndash;912. https://doi.org/10.1109/TAFFC.2019.2903056\nLouwerse, M. M. (2018). Knowing the Meaning of a Word by the Linguistic and Perceptual Company It Keeps. Topics in Cognitive Science, 10(3), 573\u0026ndash;589. https://doi.org/10.1111/tops.12349\nLupyan, G., \u0026amp; Winter, B. (2018). Language is more abstract than you think, or, why aren't languages more iconic? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170137. https://doi.org/10.1098/rstb.2017.0137\nLynott, D., Connell, L., Brysbaert, M., Brand, J., \u0026amp; Carney, J. (2020). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52(3), 1271\u0026ndash;1291. https://doi.org/10.3758/s13428-019-01316-z\nLynott, D., Walsh, M., McEnery, T., Connell, L., Cross, L., \u0026amp; O'Brien, K. (2019). Are You What You Read? Predicting Implicit Attitudes to Immigration Based on Linguistic Distributional Cues From Newspaper Readership; A Pre-registered Study. Frontiers in Psychology, 10, 842. https://doi.org/10.3389/fpsyg.2019.00842\nMalhi, S. K., \u0026amp; Buchanan, L. (2018). A test of the symbol interdependency hypothesis with both concrete and abstract stimuli. PLOS ONE, 13(3), e0192719. https://doi.org/10.1371/journal.pone.0192719\nMangels, J. A., Rodriguez, S., Ochakovskaya, Y., \u0026amp; Guerra-Carrillo, B. (2017). Achievement Goal Task Framing and Fit With Personal Goals Modulate the Neurocognitive Response to Corrective Feedback. AERA Open, 3(3), 233285841772087. https://doi.org/10.1177/2332858417720875\nMarchetti, R., Vaugoyeau, M., Colé, P., \u0026amp; Assaiante, C. (2022). A sensorimotor representation impairment in dyslexic adults: A specific profile of comorbidity. Neuropsychologia, 165, 108134. https://doi.org/10.1016/j.neuropsychologia.2021.108134\nMarmeleira, J., \u0026amp; Duarte Santos, G. (2019). Do Not Neglect the Body and Action: The Emergence of Embodiment Approaches to Understanding Human Development. Perceptual and Motor Skills, 126(3), 410\u0026ndash;445. https://doi.org/10.1177/0031512519834389\nMarson, F., Paoletti, P., Naor-Ziv, R., Carducci, F., \u0026amp; Ben-Soussan, T. D. (2023). Embodied empathy and abstract concepts\u0026rsquo; concreteness: Evidence from contemplative practices. In Progress in Brain Research (Vol. 277, pp. 181\u0026ndash;209). Elsevier. https://doi.org/10.1016/bs.pbr.2022.12.005\nMárton, Z. C., Türker, S., Rink, C., Brucker, M., Kriegel, S., Bodenmüller, T., \u0026amp; Riedel, S. (2018). Improving object orientation estimates by considering multiple viewpoints: Orientation histograms of symmetries and measurement models for view selection. Autonomous Robots, 42(2), 423\u0026ndash;442. https://doi.org/10.1007/s10514-017-9633-1\nMcRae, K., Nedjadrasul, D., Pau, R., Lo, B. P., \u0026amp; King, L. (2018). Abstract Concepts and Pictures of Real‐World Situations Activate One Another. Topics in Cognitive Science, 10(3), 518\u0026ndash;532. https://doi.org/10.1111/tops.12328\nMeng, X., Sun, C., Du, B., Liu, L., Zhang, Y., Dong, Q., Georgiou, G. K., \u0026amp; Nan, Y. (2022). The development of brain rhythms at rest and its impact on vocabulary acquisition. Developmental Science, 25(2), e13157. https://doi.org/10.1111/desc.13157\nMiceli, A., Wauthia, E., Kandana Arachchige, K., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2023). Perceptual strength influences lexical decision in Alzheimer's disease. Journal of Neurolinguistics, 68, 101144. https://doi.org/10.1016/j.jneuroling.2023.101144\nMiceli, A., Wauthia, E., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2021). Perceptual and Interoceptive Strength Norms for 270 French Words. Frontiers in Psychology, 12, 667271. https://doi.org/10.3389/fpsyg.2021.667271\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMiklashevsky, A. (2018). Perceptual Experience Norms for 506 Russian Nouns: Modality Rating, Spatial Localization, Manipulability, Imageability and Other Variables. Journal of Psycholinguistic Research, 47(3), 641\u0026ndash;661. https://doi.org/10.1007/s10936-017-9548-1\nMiller, J., Brookie, K., Wales, S., Wallace, S., \u0026amp; Kaup, B. (2018). Embodied cognition: Is activation of the motor cortex essential for understanding action verbs? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(3), 335\u0026ndash;370. https://doi.org/10.1037/xlm0000451\nMinervino, R. A., Martín, A., Tavernini, L. M., \u0026amp; Trench, M. (2018). The Understanding of Visual Metaphors by the Congenitally Blind. Frontiers in Psychology, 9, 1242. https://doi.org/10.3389/fpsyg.2018.01242\nMoretti, S., \u0026amp; Greco, A. (2018). Truth is in the head. A nod and shake compatibility effect. Acta Psychologica, 185, 203\u0026ndash;218. https://doi.org/10.1016/j.actpsy.2018.02.010\nMoretti, S., \u0026amp; Greco, A. (2020). Nodding and shaking of the head as simulated approach and avoidance responses. Acta Psychologica, 203, 102988. https://doi.org/10.1016/j.actpsy.2019.102988\nMorucci, P., Bottini, R., \u0026amp; Crepaldi, D. (2019). Augmented Modality Exclusivity Norms for Concrete and Abstract Italian Property Words. Journal of Cognition, 2(1), 42. https://doi.org/10.5334/joc.88\nMueller, C. J., White, C. N., \u0026amp; Kuchinke, L. (2017). Electrophysiological correlates of the drift diffusion model in visual word recognition. Human Brain Mapping, 38(11), 5616\u0026ndash;5627. https://doi.org/10.1002/hbm.23753\nMuraki, E. J., Doyle, A., Protzner, A. B., \u0026amp; Pexman, P. M. (2023). Context matters: How do task demands modulate the recruitment of sensorimotor information during language processing? Frontiers in Human Neuroscience, 16, 976954. https://doi.org/10.3389/fnhum.2022.976954\nMuraki, E. J., Speed, L. J., \u0026amp; Pexman, P. M. (2023). Insights into embodied cognition and mental imagery from aphantasia. Nature Reviews Psychology, 2(10), 591\u0026ndash;605. https://doi.org/10.1038/s44159-023-00221-9\nOkuno, H. Y., \u0026amp; Guedes, G. (2020). Automatic XML creation for Multisensorial Books. 2020 XV Conferencia Latinoamericana de Tecnologias de Aprendizaje (LACLO), 1\u0026ndash;6. https://doi.org/10.1109/LACLO50806.2020.9381139\nOstarek, M., \u0026amp; Vigliocco, G. (2017). Reading sky and seeing a cloud: On the relevance of events for perceptual simulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 579\u0026ndash;590. https://doi.org/10.1037/xlm0000318\nPecher, D. (2018). Curb Your Embodiment. Topics in Cognitive Science, 10(3), 501\u0026ndash;517. https://doi.org/10.1111/tops.12311\nPérez-Gay Juárez, F., Labrecque, D., \u0026amp; Frak, V. (2019). Assessing language-induced motor activity through Event Related Potentials and the Grip Force Sensor, an exploratory study. Brain and Cognition, 135, 103572. https://doi.org/10.1016/j.bandc.2019.05.010\nPérez-Sánchez, M. Á., Stadthagen-Gonzalez, H., Guasch, M., Hinojosa, J. A., Fraga, I., Marín, J., \u0026amp; Ferré, P. (2021). EmoPro \u0026ndash; Emotional prototypicality for 1286 Spanish words: Relationships with affective and psycholinguistic variables. Behavior Research Methods, 53(5), 1857\u0026ndash;1875. https://doi.org/10.3758/s13428-020-01519-9\nPerfecto, H., Galak, J., Simmons, J. P., \u0026amp; Nelson, L. D. (2017). Rejecting a bad option feels like choosing a good one. Journal of Personality and Social Psychology, 113(5), 659\u0026ndash;670. https://doi.org/10.1037/pspa0000092\nPerlman, M., Little, H., Thompson, B., \u0026amp; Thompson, R. L. (2018). Iconicity in Signed and Spoken Vocabulary: A Comparison Between American Sign Language, British Sign Language, English, and Spanish. Frontiers in Psychology, 9, 1433. https://doi.org/10.3389/fpsyg.2018.01433\nPexman, P. M. (2019). The role of embodiment in conceptual development. Language, Cognition and Neuroscience, 34(10), 1274\u0026ndash;1283. https://doi.org/10.1080/23273798.2017.1303522\nPexman, P. M., Muraki, E., Sidhu, D. M., Siakaluk, P. D., \u0026amp; Yap, M. J. (2019). Quantifying sensorimotor experience: Body\u0026ndash;object interaction ratings for more than 9,000 English words. Behavior Research Methods, 51(2), 453\u0026ndash;466. https://doi.org/10.3758/s13428-018-1171-z\nPiai, V., \u0026amp; Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In Psychology of Learning and Motivation (Vol. 71, pp. 265\u0026ndash;302). Elsevier. https://doi.org/10.1016/bs.plm.2019.07.002\nPlekhanov Russian University of Economics, Simonenko, M. A., Kazaryan, S. Y., \u0026amp; Plekhanov Russian University of Economics. (2023). Synaesthetic metaphor and its reproduction in Russian-to-English translation: A frame-based study. RESEARCH RESULT Theoretical and Applied Linguistics, 9(3). https://doi.org/10.18413/2313-8912-2023-9-3-0-2\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355\u0026ndash;381. https://doi.org/10.19090/pp.v15i3.2400\nPulvermüller, F. (2018a). Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology, 160, 1\u0026ndash;44. https://doi.org/10.1016/j.pneurobio.2017.07.001\nPulvermüller, F. (2018b). Neurobiological Mechanisms for Semantic Feature Extraction and Conceptual Flexibility. Topics in Cognitive Science, 10(3), 590\u0026ndash;620. https://doi.org/10.1111/tops.12367\nPurves, R. S., Striedl, P., Kong, I., \u0026amp; Majid, A. (2023). Conceptualizing Landscapes Through Language: The Role of Native Language and Expertise in the Representation of Waterbody Related Terms. Topics in Cognitive Science, 15(3), 560\u0026ndash;583. https://doi.org/10.1111/tops.12652\nRadvansky, G. A. (2017). Human Memory (3rd ed.). Routledge. https://doi.org/10.4324/9781315542768\nRadvansky, G. A. (2021). Human Memory (4th ed.). Routledge. https://doi.org/10.4324/9780429287039\nRahimi, S., Farahibozorg, S.-R., Jackson, R., \u0026amp; Hauk, O. (2022). Task modulation of spatiotemporal dynamics in semantic brain networks: An EEG/MEG study. NeuroImage, 246, 118768. https://doi.org/10.1016/j.neuroimage.2021.118768\nRaia, R. (2023). An analysis of conceptual ambiguities in the debate on the format of concepts. Phenomenology and the Cognitive Sciences. https://doi.org/10.1007/s11097-023-09938-7\nRaj, R., Hörberg, T., Lindroos, R., Larsson, M., Herman, P., Laukka, E. J., \u0026amp; Olofsson, J. K. (2023). Odor identification errors reveal cognitive aspects of age-associated smell loss. Cognition, 236, 105445. https://doi.org/10.1016/j.cognition.2023.105445\nReggin, L. D., Gómez Franco, L. E., Horchak, O. V., Labrecque, D., Lana, N., Rio, L., \u0026amp; Vigliocco, G. (2023). Consensus Paper: Situated and Embodied Language Acquisition. Journal of Cognition, 6(1), 63. https://doi.org/10.5334/joc.308\nRepetto, C., Rodella, C., Conca, F., Santi, G. C., \u0026amp; Catricalà, E. (2022). The Italian Sensorimotor Norms: Perception and action strength measures for 959 words. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02004-1\nRey, A. E., Riou, B., Vallet, G. T., \u0026amp; Versace, R. (2017). The automatic visual simulation of words: A memory reactivated mask slows down conceptual access. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 71(1), 14\u0026ndash;22. https://doi.org/10.1037/cep0000100\nReymore, L. (2022). Characterizing prototypical musical instrument timbres with timbre trait profiles. Musicae Scientiae, 26(3), 648\u0026ndash;674. https://doi.org/10.1177/10298649211001523\nRobinson, M. D., Fetterman, A. K., Meier, B. P., Persich, M. R., \u0026amp; Waters, M. R. (2021). Embodied Perspectives on Personality. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 477\u0026ndash;498). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_21\nRobinson, M. D., \u0026amp; Thomas, L. E. (2021). Introduction to Embodied Psychology: Thinking, Feeling, and Acting. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 1\u0026ndash;19). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_1\nSan Roque, L., Kendrick, K. H., Norcliffe, E., \u0026amp; Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29(3), 371\u0026ndash;406. https://doi.org/10.1515/cog-2017-0034\nScerrati, E., D'Ascenzo, S., Nicoletti, R., Villani, C., \u0026amp; Lugli, L. (2022). Assessing Interpersonal Proximity Evaluation in the COVID-19 Era: Evidence From the Affective Priming Task. Frontiers in Psychology, 13, 901730. https://doi.org/10.3389/fpsyg.2022.901730\nScerrati, E., Iani, C., Lugli, L., Nicoletti, R., \u0026amp; Rubichi, S. (2020). Do my hands prime your hands? The hand-to-response correspondence effect. Acta Psychologica, 203, 103012. https://doi.org/10.1016/j.actpsy.2020.103012\nScerrati, E., Iani, C., \u0026amp; Rubichi, S. (2021). Does the Activation of Motor Information Affect Semantic Processing? In L. Bechberger, K.-U. Kühnberger, \u0026amp; M. Liu (Eds.), Concepts in Action (Vol. 9, pp. 153\u0026ndash;166). Springer International Publishing. https://doi.org/10.1007/978-3-030-69823-2_7\nScerrati, E., Lugli, L., Nicoletti, R., \u0026amp; Borghi, A. M. (2017). The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic Bulletin \u0026amp; Review, 24(3), 798\u0026ndash;803. https://doi.org/10.3758/s13423-016-1150-2\nScherer, D., \u0026amp; Wentura, D. (2018). Combining the Post-Cue Task and the Perceptual Identification Task to Assess Parallel Activation and Mutual Facilitation of Related Primes and Targets. Experimental Psychology, 65(2), 84\u0026ndash;97. https://doi.org/10.1027/1618-3169/a000396\nSchilhab, T. (2017). Derived Embodiment in Abstract Language. Springer International Publishing. https://doi.org/10.1007/978-3-319-56056-4\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSeghier, M. L. (2023). Multiple functions of the angular gyrus at high temporal resolution. Brain Structure and Function, 228(1), 7\u0026ndash;46. https://doi.org/10.1007/s00429-022-02512-y\nŠetić Beg, M. (2021). Uloga utjelovljenja u razumijevanju pojmova. Psihologijske Teme, 30(2), 371\u0026ndash;395. https://doi.org/10.31820/pt.30.2.12\nShen, G., Wang, R., Yang, M., \u0026amp; Xie, J. (2022). Chinese Children with Congenital and Acquired Blindness Represent Concrete Concepts in Vertical Space through Tactile Perception. International Journal of Environmental Research and Public Health, 19(17), 11055. https://doi.org/10.3390/ijerph191711055\nSidhu, D. M., \u0026amp; Pexman, P. M. (2018). Lonely sensational icons: Semantic neighbourhood density, sensory experience and iconicity. Language, Cognition and Neuroscience, 33(1), 25\u0026ndash;31. https://doi.org/10.1080/23273798.2017.1358379\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306\u0026ndash;1318. https://doi.org/10.3758/s13428-021-01656-9\nSpeed, L. J., \u0026amp; Majid, A. (2017). Dutch modality exclusivity norms: Simulating perceptual modality in space. Behavior Research Methods, 49(6), 2204\u0026ndash;2218. https://doi.org/10.3758/s13428-017-0852-3\nSpeed, L. J., \u0026amp; Majid, A. (2018). An Exception to Mental Simulation: No Evidence for Embodied Odor Language. Cognitive Science, 42(4), 1146\u0026ndash;1178. https://doi.org/10.1111/cogs.12593\nSpeed, L. J., \u0026amp; Majid, A. (2020). Grounding language in the neglected senses of touch, taste, and smell. Cognitive Neuropsychology, 37(5\u0026ndash;6), 363\u0026ndash;392. https://doi.org/10.1080/02643294.2019.1623188\nSpeed, L. J., Papies, E. K., \u0026amp; Majid, A. (2023). Mental simulation across sensory modalities predicts attractiveness of food concepts. Journal of Experimental Psychology: Applied, 29(3), 557\u0026ndash;571. https://doi.org/10.1037/xap0000461\nSri-Ganeshan, M. (2021). Modality Effect. In M. Raz \u0026amp; P. Pouryahya (Eds.), Decision Making in Emergency Medicine (pp. 215\u0026ndash;220). Springer Singapore. https://doi.org/10.1007/978-981-16-0143-9_34\nStrik Lievers, F., \u0026amp; Winter, B. (2018). Sensory language across lexical categories. Lingua, 204, 45\u0026ndash;61. https://doi.org/10.1016/j.lingua.2017.11.002\nSu, C., Wang, X., Wang, Z., \u0026amp; Chen, Y. (2019). A model of synesthetic metaphor interpretation based on cross-modality similarity. Computer Speech \u0026amp; Language, 58, 1\u0026ndash;16. https://doi.org/10.1016/j.csl.2019.03.003\nSzychowska, M., \u0026amp; Wiens, S. (2021). Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Physiology \u0026amp; Behavior, 228, 113240. https://doi.org/10.1016/j.physbeh.2020.113240\nTarai, S., Bit, A., Kumar, R., \u0026amp; Savekar, A. (2021). Processing of party symbols and names predicts the results of 2019 Indian parliamentary election: Analysing psycholinguistic behavioural incongruency effects. Psychology of Language and Communication, 25(1), 264\u0026ndash;295. https://doi.org/10.2478/plc-2021-0012\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2019). Sensorimotor Cross-Behavior Knowledge Transfer for Grounded Category Recognition. 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 1\u0026ndash;6. https://doi.org/10.1109/DEVLRN.2019.8850715\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2020). A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization. Frontiers in Robotics and AI, 7, 522141. https://doi.org/10.3389/frobt.2020.522141\nTatiya, G., \u0026amp; Sinapov, J. (2019). Deep Multi-Sensory Object Category Recognition Using Interactive Behavioral Exploration. 2019 International Conference on Robotics and Automation (ICRA), 7872\u0026ndash;7878. https://doi.org/10.1109/ICRA.2019.8794095\nTeodorescu, H.-N., \u0026amp; Bolea, S. C. (2019). Text Sectioning based on Stylometric Distances. 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), 1\u0026ndash;6. https://doi.org/10.1109/SPED.2019.8906616\nThomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., Hart, J., Stone, P., \u0026amp; Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327\u0026ndash;374. https://doi.org/10.1613/jair.1.11485\nTillman, R., \u0026amp; Louwerse, M. (2018). Estimating Emotions Through Language Statistics and Embodied Cognition. Journal of Psycholinguistic Research, 47(1), 159\u0026ndash;167. https://doi.org/10.1007/s10936-017-9522-y\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864\u0026ndash;884. https://doi.org/10.3758/s13428-021-01650-1\nTomsk State University, Vladimirova, V. E., Rezanova, Z. I., Tomsk State University, Korshunova, I. S., \u0026amp; Tomsk State University. (2022). Ethno-linguistic contact as reflected in language cognition: Does bilingualism affect subjective assessments of perceptual semantics?*. Rusin, 70, 214\u0026ndash;231. https://doi.org/10.17223/18572685/70/12\nUtsumi, A. (2020). Exploring What Is Encoded in Distributional Word Vectors: A Neurobiologically Motivated Analysis. Cognitive Science, 44(6), e12844. https://doi.org/10.1111/cogs.12844\nValenzuela, J. (2017). Meaning in English: An Introduction (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781316156278\nVan De Weijer, J., Bianchi, I., \u0026amp; Paradis, C. (2023). Sensory modality profiles of antonyms. Language and Cognition, 1\u0026ndash;15. https://doi.org/10.1017/langcog.2023.20\nVergallito, A., Petilli, M. A., \u0026amp; Marelli, M. (2020). Perceptual modality norms for 1,121 Italian words: A comparison with concreteness and imageability scores and an analysis of their impact in word processing tasks. Behavior Research Methods, 52(4), 1599\u0026ndash;1616. https://doi.org/10.3758/s13428-019-01337-8\nVerheyen, S., De Deyne, S., Linsen, S., \u0026amp; Storms, G. (2020). Lexicosemantic, affective, and distributional norms for 1,000 Dutch adjectives. Behavior Research Methods, 52(3), 1108\u0026ndash;1121. https://doi.org/10.3758/s13428-019-01303-4\nVigliocco, G., Zhang, Y., Del Maschio, N., Todd, R., \u0026amp; Tuomainen, J. (2020). Electrophysiological signatures of English onomatopoeia. Language and Cognition, 12(1), 15\u0026ndash;35. https://doi.org/10.1017/langcog.2019.38\nVolfart, A., Rice, G. E., Lambon Ralph, M. A., \u0026amp; Rossion, B. (2021). Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. NeuroImage, 238, 118228. https://doi.org/10.1016/j.neuroimage.2021.118228\nW, D., C, P., C, M.-L., \u0026amp; F, L. (2023). Imagining and reading actions: Towards similar motor representations. Heliyon, 9(2), e13426. https://doi.org/10.1016/j.heliyon.2023.e13426\nWajnerman Paz, A. (2018). A Defense of an Amodal Number System. Philosophies, 3(2), 13. https://doi.org/10.3390/philosophies3020013\nWajnerman Paz, A. (2019). Using neural response properties to draw the distinction between modal and amodal representations. Philosophical Psychology, 32(3), 301\u0026ndash;331. https://doi.org/10.1080/09515089.2018.1563677\nWajnerman-Paz, A., \u0026amp; Rojas-Líbano, D. (2022). On the role of contextual factors in cognitive neuroscience experiments: A mechanistic approach. Synthese, 200(5), 402. https://doi.org/10.1007/s11229-022-03870-0\nWan, M., Su, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Perceptional and actional enrichment for metaphor detection with sensorimotor norms. Natural Language Engineering, 1\u0026ndash;29. https://doi.org/10.1017/S135132492300044X\nWang, L., Chen, Q., Chen, Y., \u0026amp; Zhong, R. (2019). The Effect of Sweet Taste on Romantic Semantic Processing: An ERP Study. Frontiers in Psychology, 10, 1573. https://doi.org/10.3389/fpsyg.2019.01573\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWassenburg, S. I., De Koning, B. B., De Vries, M. H., Boonstra, A. M., \u0026amp; Van Der Schoot, M. (2017). Gender differences in mental simulation during sentence and word processing. Journal of Research in Reading, 40(3), 274\u0026ndash;296. https://doi.org/10.1111/1467-9817.12066\nWentura, D. (2019). Cognition and emotion: On paradigms and metaphors. Cognition and Emotion, 33(1), 85\u0026ndash;93. https://doi.org/10.1080/02699931.2019.1567464\nWingfield, C., \u0026amp; Connell, L. (2022a). Sensorimotor distance: A grounded measure of semantic similarity for 800 million concept pairs. Behavior Research Methods, 55(7), 3416\u0026ndash;3432. https://doi.org/10.3758/s13428-022-01965-7\nWingfield, C., \u0026amp; Connell, L. (2022b). Understanding the role of linguistic distributional knowledge in cognition. Language, Cognition and Neuroscience, 37(10), 1220\u0026ndash;1270. https://doi.org/10.1080/23273798.2022.2069278\nWinter, A., Dudschig, C., Miller, J., Ulrich, R., \u0026amp; Kaup, B. (2022). The action-sentence compatibility effect (ACE): Meta-analysis of a benchmark finding for embodiment. Acta Psychologica, 230, 103712. https://doi.org/10.1016/j.actpsy.2022.103712\nWinter, B. (2019). Statistics for Linguists: An Introduction Using R (1st ed.). Routledge. https://doi.org/10.4324/9781315165547\nWinter, B. (2022). Mapping the landscape of exploratory and confirmatory data analysis in linguistics. In D. Tay \u0026amp; M. X. Pan (Eds.), Data Analytics in Cognitive Linguistics (pp. 13\u0026ndash;48). De Gruyter. https://doi.org/10.1515/9783110687279-002\nWinter, B. (2023). Abstract concepts and emotion: Cross-linguistic evidence and arguments against affective embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210368. https://doi.org/10.1098/rstb.2021.0368\nWinter, B., Fischer, M. H., Scheepers, C., \u0026amp; Myachykov, A. (2023). More is Better: English Language Statistics are Biased Toward Addition. Cognitive Science, 47(4), e13254. https://doi.org/10.1111/cogs.13254\nWinter, B., Perlman, M., \u0026amp; Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213\u0026ndash;220. https://doi.org/10.1016/j.cognition.2018.05.008\nWinter, B., Perlman, M., Perry, L. K., \u0026amp; Lupyan, G. (2017). Which words are most iconic?: Iconicity in English sensory words. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 18(3), 443\u0026ndash;464. https://doi.org/10.1075/is.18.3.07win\nWinter, B., Sóskuthy, M., Perlman, M., \u0026amp; Dingemanse, M. (2022). Trilled /r/ is associated with roughness, linking sound and touch across spoken languages. Scientific Reports, 12(1), 1035. https://doi.org/10.1038/s41598-021-04311-7\nWinter, B., \u0026amp; Strik-Lievers, F. (2023). Semantic distance predicts metaphoricity and creativity judgments in synesthetic metaphors. Metaphor and the Social World, 13(1), 59\u0026ndash;80. https://doi.org/10.1075/msw.00029.win\nWu, C., \u0026amp; Mu, X. (2023). Sensory experience ratings (SERs) for 1,130 Chinese words: Relationships with other semantic and lexical psycholinguistic variables. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0083\nXiong, J., \u0026amp; Huang, C.-R. (2018). Somewhere in COLDNESS Lies Nibbāna: Lexical Manifestations of COLDNESS. In J.-F. Hong, Q. Su, \u0026amp; J.-S. Wu (Eds.), Chinese Lexical Semantics (Vol. 11173, pp. 70\u0026ndash;81). Springer International Publishing. https://doi.org/10.1007/978-3-030-04015-4_6\nXu, Y., Vignali, L., Sigismondi, F., Crepaldi, D., Bottini, R., \u0026amp; Collignon, O. (2023). Similar object shape representation encoded in the inferolateral occipitotemporal cortex of sighted and early blind people. PLOS Biology, 21(7), e3001930. https://doi.org/10.1371/journal.pbio.3001930\nYan, J., Li, W., Zhang, T., Zhang, J., Jin, Z., \u0026amp; Li, L. (2023). Structural and functional neural substrates underlying the concreteness effect. Brain Structure and Function, 228(6), 1493\u0026ndash;1510. https://doi.org/10.1007/s00429-023-02668-1\nYasuda, M., Stins, J. F., \u0026amp; Higuchi, T. (2017). Effect of Constrained Arm Posture on the Processing of Action Verbs. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00057\nYin Zhong, \u0026amp; Chu-Ren Huang. (2020). Sweetness or Mouthfeel: A corpus-based study of the conceptualization of taste. Linguistic Research, 37(3), 359\u0026ndash;387. https://doi.org/10.17250/KHISLI.37.3.202012.001\nZappa, A., Mestre, D., Pergandi, J.-M., Bolger, D., \u0026amp; Frenck-Mestre, C. (2022). Cross-linguistic gender congruency effects during lexical access in novice L2 learners: Evidence from ERPs. Language, Cognition and Neuroscience, 37(9), 1073\u0026ndash;1098. https://doi.org/10.1080/23273798.2022.2039726\nZeng, Y., Zhao, D., Zhao, F., Shen, G., Dong, Y., Lu, E., Zhang, Q., Sun, Y., Liang, Q., Zhao, Y., Zhao, Z., Fang, H., Wang, Y., Li, Y., Liu, X., Du, C., Kong, Q., Ruan, Z., \u0026amp; Bi, W. (2023). BrainCog: A spiking neural network based, brain-inspired cognitive intelligence engine for brain-inspired AI and brain simulation. Patterns, 4(8), 100789. https://doi.org/10.1016/j.patter.2023.100789\nZhang, M., Wu, X., \u0026amp; Wang, A. (2021). Crossmodal Nonspatial Repetition Inhibition Due to Modality Shift. Perception, 50(2), 116\u0026ndash;128. https://doi.org/10.1177/0301006620988209\nZhang, X., Amiri, S., Sinapov, J., Thomason, J., Stone, P., \u0026amp; Zhang, S. (2023). Multimodal embodied attribute learning by robots for object-centric action policies. Autonomous Robots, 47(5), 505\u0026ndash;528. https://doi.org/10.1007/s10514-023-10098-5\nZhang, X., Sinapov, J., \u0026amp; Zhang, S. (2021, July 12). Planning Multimodal Exploratory Actions for Online Robot Attribute Learning. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.005\nZhang, Y., Mirman, D., \u0026amp; Hoffman, P. (2023). Taxonomic and thematic relations rely on different types of semantic features: Evidence from an fMRI meta-analysis and a semantic priming study. Brain and Language, 242, 105287. https://doi.org/10.1016/j.bandl.2023.105287\nZhao, Q. (2020a). From Linguistic Synaesthesia to Conceptual Metaphor Theory. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 115\u0026ndash;128). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_7\nZhao, Q. (2020b). Methodology: A Corpus-Driven Approach. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 19\u0026ndash;34). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_2\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553\u0026ndash;583. https://doi.org/10.1515/cog-2021-0098\nZhao, Q., Huang, C.-R., \u0026amp; Ahrens, K. (2019). Directionality of linguistic synesthesia in Mandarin: A corpus-based study. Lingua, 232, 102744. https://doi.org/10.1016/j.lingua.2019.102744\nZhao, Q., \u0026amp; Long, Y. (2022). A Diachronic Study on Linguistic Synesthesia in Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 84\u0026ndash;94). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_6\nZhao, Q., Long, Y., \u0026amp; Huang, C.-R. (2020). Linguistic Synaesthesia of Mandarin Sensory Adjectives: Corpus-Based and Experimental Approaches. In J.-F. Hong, Y. Zhang, \u0026amp; P. Liu (Eds.), Chinese Lexical Semantics (Vol. 11831, pp. 139\u0026ndash;146). Springer International Publishing. https://doi.org/10.1007/978-3-030-38189-9_14\nZhao, T., Huang, Y., Chen, D., Jiao, L., Marmolejo-Ramos, F., Wang, R., \u0026amp; Xie, J. (2020). The modality switching costs of Chinese\u0026ndash;English bilinguals in the processing of L1 and L2. Quarterly Journal of Experimental Psychology, 73(3), 396\u0026ndash;412. https://doi.org/10.1177/1747021819878089\nZhong, J., Peniak, M., Tani, J., Ogata, T., \u0026amp; Cangelosi, A. (2019). Sensorimotor input as a language generalisation tool: A neurorobotics model for generation and generalisation of noun-verb combinations with sensorimotor inputs. Autonomous Robots, 43(5), 1271\u0026ndash;1290. https://doi.org/10.1007/s10514-018-9793-7\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196\u0026ndash;230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000\u0026ndash;1022. https://doi.org/10.1080/23273798.2022.2035416\nZhu, S., Wang, X., \u0026amp; Liu, P. (2021). Who Killed Sanmao and Virginia Woolf? A Comparative Study of Writers with Suicidal Attempt Based on a Quantitative Linguistic Method. In M. Liu, C. Kit, \u0026amp; Q. Su (Eds.), Chinese Lexical Semantics (Vol. 12278, pp. 408\u0026ndash;420). Springer International Publishing. https://doi.org/10.1007/978-3-030-81197-6_34\nГарах, Ж. В., Ребрейкина, А. Б., Стрелец, В. Б., Голикова, А. В., \u0026amp; Зайцева, Ю. С. (2019). НЕЙРОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ЧТЕНИЯ. Журнал высшей нервной деятельности им И П Павлова, 69(3), 294\u0026ndash;313. https://doi.org/10.1134/S0044467719030055\n\r\r","date":1490832000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1490832000,"objectID":"fca4ce877a38106e5fd0c2e5c4383540","permalink":"https://pablobernabeu.github.io/publication/bernabeu-2017-mphil-thesis/","publishdate":"2017-03-31T00:00:00Z","relpermalink":"/publication/bernabeu-2017-mphil-thesis/","section":"publication","summary":"The engagement of sensory brain regions during word recognition is widely documented, yet its precise relevance is less clear. It would constitute perceptual simulation only if it has a functional role in conceptual processing. We investigated this in an Event-Related Potential (ERP) experiment implementing the conceptual modality switch paradigm. In each trial, participants verified the relation between a property word and a concept word. Orthogonally, we manipulated the conceptual modality of successive trials, and tested whether switching modalities incurred any processing costs at different stages of word recognition. Unlike previous studies, we time-locked ERPs to the first word of target trials, in order to measure the modality transitions from the beginning, and also to reduce confounds within the target trial. Further, we included different types of switch\u0026mdash;one from auditory to visual modality, and one from haptic to visual\u0026mdash;, which were compared to the non-switch\u0026mdash;visual to visual. Also, one group of participants was asked to respond quickly (*n* = 21), and another group to respond self-paced (*n* = 21), whilst a few others received no constraints (*n* = 5). We found ERP effects in four typical time windows from 160 to 750 ms post word onset. The overall effect is characterized by a negativity for modality-switching relative to not switching, and it increases over time. Further, the effect arises with both types of switch, and influences both participant groups within anterior and posterior brain regions. The emergence of this effect in the first time window particularly suggests that sensory regions may have a functional role in conceptual processing. The increased effect later on converges with previous studies in supporting the compatibility of distributional and embodied processing. On a less conclusive note, more research may be necessary to ascertain the nature of the effect at late stages.","tags":["Brain Vision","cognition","cognitive neuroscience","conceptual modality switch","conceptual processing","conceptual replication","electrodes","event-related potentials","electroencephalography","language comprehension","linear mixed-effects models","psycholinguistics","reading"],"title":"Modality switches occur early and extend late in conceptual processing: Evidence from ERPs","type":"publication"},{"authors":[],"categories":["statistics"],"content":"\r\rThe clock strikes a certain hour, below all the Greg’s teaspoons at play. Results o’clock. The usual, please.\nUsual table. summaryby (having to get the first peek in the cafeteria can only add zest). summaryBy(RT ~ list(Ptp, Group, Cond), behdata, FUN=summary). So, hardly any of the 95% Confidence Intervals contain 0. Does this really mean…?\n\r‘For example, the hypothesis of equality of population means will be rejected at the 0.05 level if and only if a 95% CI for the mean difference does not contain 0.’\n\r— Dallal (2002; http://www.jerrydallal.com/lhsp/pval.htm)\nOf course. The CI just has that and more. The window is showing a chilly 1999 morning. Let’s see the summary again. Wee standard deviations. By card, please.\nMmm, the air outside is worth gingering up…\n\rThe trials!\n\rThe assumption of independence spoils another morning.\nThis new data consisted of response times (RT) that had been collected over several trials. The single dependent variable, RT, was accompanied by other variables which could be analyzed as independent variables. These included Group, Trial Number, and a within-subjects Condition. What had to be done first off, in order to take the usual table? The trials!\nAssumption of independence of observations\rOne must account for any redundant measures below the level of participants (the experimental trials, in this case), so that the sample size (N) used for any summary statistics match the number of participants (or the largest group, n). Why? This is a central assumption in statistics: observations must be independent. We can observe the independence assumption differently, depending on whether we’re summarizing data or performing statistical tests.\n\rFor descriptive tables and plots (involving Standard Error/Deviation, Confidence Intervals, etc), the data ought to be aggregated to the level from which you want to generalize. That level is—in this case and very often—participants. Trials do not normally serve for statistical generalization (they’re good for experimental validity). This realization may come as a bummer if you have first seen the effect sizes in the un-aggregated data. The mirage (see red lines on the left table below) is caused by an inflated N (cf. red lines on the right-hand table). As an illustration, the tables below summarize data with an actual sample n = 23. However, the table on the right includes repeated measures that should have been aggregated, massively inflating n. The inflation of the sample size equals the product of all repeated measures that failed to be aggregated under participants.\r\rMeasures of variance such as the Standard Deviation divide by the sample size. Thus, the larger the sample (N), the smaller the Standard Deviation, Standard Error, Confidence Interval…—that is, the variation or noise.\nAggregating is a snap. For example, with the aggregate() function in R, you just have to include all of your variables except that or those of the repeated measures:\nbehdata_aggreg = aggregate(behdata$RT, list(behdata$Ptp, behdata$Group, behdata$Cond), data=behdata, FUN=mean)\r\rIn statistical tests, repeated measures below the participant level–e.g., trials–normally must be either factored in or aggregated. Barr and colleagues provide an easy, focused guide on this procedure. This is necessary because when the N in the analyses is augmented by unaccounted, redundant observations, the famous assumption of independence of observations is violated, and the results may be invalid, as Vasishth and Nicenboim (2016, p. 3) put it:\r\r\r‘if we were to do a t-test on the unaggregated data, we would violate the independence assumption and the result of the t-test would be invalid.’\n\rNow, usually the repetitions that concern us are the multiple trials or items in experiments, or other sub-participant measures. So what about participants–what are they never aggregated? McCarthy, Whittaker, Boyle, and Eyal (2017, p.10) note:\n\r‘It has also been proposed that researchers aggregate the responses of participants within the same group and use the groups/clusters as the unit of analysis (Stevens, 2007). However, because this would result in losing sample size at the participant level, this approach is not optimal given the already small numbers of groups typically studied in group work research.’\n\r\rDifferent procedure in linear mixed-effects models\rAggregation is no longer necessary, where linear mixed-effects models can be used. These models allow us to account for any clusters (Participants, Trials, Items…) by signing them into the error term (Brauer \u0026amp; Curtin, 2017).\n\r","date":1483228800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1483228800,"objectID":"72b40be553d5d3f800e313bb7c15010d","permalink":"https://pablobernabeu.github.io/2017/at-greg-8-am/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/2017/at-greg-8-am/","section":"post","summary":"The single dependent variable, RT, was accompanied by other variables which could be analyzed as independent variables. These included Group, Trial Number, and a within-subjects Condition. What had to be done first off, in order to take the usual table? The trials!","tags":["s","R","statistics","aggregate","trials","repeated measures","assumption","independence of observations","variability","standard error","central assumption"],"title":"At Greg, 8 am","type":"post"},{"authors":[],"categories":["psycholinguistics"],"content":"Research has extensively investigated whether conceptual processing is modality-specific—that is, whether meaning is processed to a large extent on the basis of perceptual and motor affordances (Barsalou, 2016). This possibility challenges long-established theories. It suggests a strong link between physical experience and language which is not borne out of the paradigmatic arbitrariness of words (see Lockwood, Dingemanse, \u0026amp; Hagoort, 2016). Modality-specificity also clashes with models of language that have no link to sensory and motor systems (Barsalou, 2016).\n\u0026nbsp; Conference paper \u0026nbsp; \u0026nbsp; Master's thesis \u0026nbsp; Early discussion on ResearchGate Data and code Data dashboard In the Conceptual Modality Switch (CMS) paradigm, participants perform a property verification task, deciding whether certain property words can reasonably describe concept words. Covertly, the conceptual modality of consecutive trials is manipulated in order to produce specific switches in conceptual modality. For instance, after the trial Soundless Answer, which is primarily auditory, the following trial may match in modality—Loud Welcome—or mismatch—Fine Selection (visual).\nModality switches incur processing costs, as reflected in brain signals linked to semantic violation, and in longer response times (RTs) (Scerrati, Lugli, Nicoletti, \u0026amp; Borghi, 2016). This effect suggests that perceptual features of concepts are accessed during conceptual processing. More recently, however, the CMS effect was reanalysed using a non-perceptual alternative. Louwerse and Connell (2011) found that language statistics (the co-occurrence of words in a language) were able to approximately predict visual/haptic, olfactory/gustatory, and auditory modalities, but not the subtler differences between visual and haptic and between olfactory and gustatory, which seemed to be reserved for perceptual simulations. Moreover, faster response times (RTs) were best explained by language statistics, whereas slower RTs were best explained by perceptual simulations.\nThe time course of word processing is important. Research suggests that word processing spans one second, during which different processes—semantic and post-semantic—gradually accumulate (Hauk, 2016). The later an effect, the more reasons to question it. Yet, having an early emergence does not either make an effect lexicosemantic, as the meaning encoded could have gone through working memory before activating the actual system of interest, e.g., sensorimotor (Mahon \u0026amp; Caramazza, 2008). Research also suggests that modal systems may contribute to conceptual processing early on—within 200 ms (Vukovic, Feurra, Shpektor, Myachykov, \u0026amp; Shtyrov, 2017). Thus, measuring effects online may prove valuable.\nExperiment Bernabeu, Willems and Louwerse (2017) investigated whether CMS reflects a functionally relevant process of simulation or instead arises only after basic conceptual processing has been attained. We also examined whether different processing systems, amodal and modal, may compatibly operate.\nWe measured CMS online by time-locking Event-Related brain Potentials (ERPs) to the onset of the first word in the target trials, in order to assess how strongly CMS may be influenced by post-semantic processes. Previous research would predict an increase in the CMS effect over time because earlier processing is relatively amodal (Louwerse \u0026amp; Hutchinson, 2012).\nWe tested the compatibility of amodal and modal processing by drawing on Louwerse and Connell’s (2011) findings. In this conceptual replication, we split participants into a Quick and a Slow group based on RT. Maintaining CMS as a within-subjects factor, we predicted that the larger modality switches (e.g., auditory to visual) would be picked up equally by both groups, whereas the subtler switches (e.g., haptic to visual) would be picked up only—or more clearly—by the Slow group.\nMethod The stimuli were normed (Bernabeu, Louwerse, \u0026amp; Willems, in prep.). Three CMS conditions were created—Auditory-to-visual, Haptic-to-visual, Visual-to-visual—, each with 36 target trials. The property verification task was pretested valid (N = 19).\nResults All participants but one responded correctly to over half of the trials, with an overall accuracy of 63%.\nERPs showed a CMS effect from time window 1 on, larger after 350 ms. It appeared with both switch conditions, and was characterized by a more negative amplitude for the switch conditions compared to the no-switch condition. It was generally stronger in the posterior brain regions, and in the Slow group. The results are illustrated in the figure below, which includes 95% Confidence Intervals and time windows.\nThe analysis was done with Linear Mixed Effects models. Final models presented good fits, with R2 ranging from .748 to .862. First, the CMS effect in time window 1 was confirmed significant. Such an early emergence is unprecedented in the CMS literature, and it may have been enabled by the time-locking of ERPs to the first word in target trials. In this time window, the only process not lexicosemantic is possibly working memory (Hauk, 2016), and therefore this early emergence adds support to the possibility that CMS was directly caused by perceptual simulation.\nWhereas in time window 1, the effect was circumscribed to an interaction with Brain Area, by Time Window 2, a main effect of CMS emerged. In Windows 3 and 4, the only experimental effect was CMS.\nBonferroni-corrected, planned ANOVA contrasts into CMS conditions revealed that the no-switch condition differed significantly from the switch conditions. By contrast, the switch conditions (Haptic-to-visual and Auditory-to-visual) hardly differed from each other, underscoring the CMS effect.\nAlthough the interaction of Group and CMS was only significant in Time Windows 1 and 2, Windows 2 to 4 presented a pattern fitting our predictions (Louwerse \u0026amp; Connell, 2011). While the Slow group picked up the switches across all modalities similarly, the Quick group picked up the Auditory-to-visual switch more clearly than the Haptic-to-visual switch.\nStatistical analysis .embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}window.jQuery || document.write('\\x3C/script') var mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/sx3nw/?direct%26mode=render%26action=download%26mode=render\");\rDiscussion Results broadly suggest that cognition may operate on qualitatively different systems for the same task. In conceptual processing, one of these systems appears to be modality-independent, potentially based on linguistic co-occurrences, whereas another system is modality-specific, linked to physical experience.\nA conference poster with further analyses is also available.\nReferences Barsalou, L. W. (2016). On staying grounded and avoiding quixotic dead ends. Psychonomic Bulletin \u0026amp; Review, 23.\nBernabeu, P., Louwerse, M. M., \u0026amp; Willems, R. M. (in prep.). Modality exclusivity norms for 747 properties and concepts in Dutch: a replication of English. Retrieved from https://osf.io/brkjw/\nBernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs. In G. Gunzelmann, A. Howes, T. Tenbrink, \u0026amp; E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1629-1634). Austin, TX: Cognitive Science Society. https://doi.org/10.31234/osf.io/a5pcz\nHauk, O. (2016). Only time will tell—Why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin \u0026amp; Review, 23, 4, 1072-1079.\nLockwood, G., Hagoort, P., \u0026amp; Dingemanse, M. (2016). How iconicity helps people learn new words: neural correlates and individual differences in sound-symbolic bootstrapping. Collabra, 2, 1, 7.\nLouwerse, M., \u0026amp; Connell, L. (2011). A taste of words: linguistic context and perceptual simulation predict the modality of words. Cognitive Science, 35, 2, 381-98.\nLouwerse, M., \u0026amp; Hutchinson, S. (2012). Neurological evidence linguistic processes precede perceptual simulation in conceptual processing. Frontiers in Psychology, 3, 385.\nMahon, B. Z., \u0026amp; Caramazza, A. (2008). A critical look at the Embodied Cognition Hypothesis and a new proposal for grounding conceptual content. Journal of Physiology - Paris, 102, 59-70.\nScerrati, E., Lugli, L., Nicoletti, R., \u0026amp; Borghi, A. M. (2016). The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic Bulletin \u0026amp; Review, doi:10.3758/s13423-016-1150-2.\nVukovic, V., Feurra, M., Shpektor, A., Myachykov, A., \u0026amp; Shtyrov, Y. (2017). Primary motor cortex functionally contributes to language comprehension: An online rTMS study. Neuropsychologia, 96, 222-229.\n\r","date":1483228800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1483228800,"objectID":"83a0a5285af23deee88232f66d1ade74","permalink":"https://pablobernabeu.github.io/2017/modality-switch-effects-emerge-early-and-increase-throughout-conceptual-processing-evidence-from-erps/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/2017/modality-switch-effects-emerge-early-and-increase-throughout-conceptual-processing-evidence-from-erps/","section":"post","summary":"Research has extensively investigated whether conceptual processing is modality-specific—that is, whether meaning is processed to a large extent on the basis of perceptual and motor affordances (Barsalou, 2016). This possibility challenges long-established theories. It suggests a strong link between physical experience and language which is not borne out of the paradigmatic arbitrariness of words (see Lockwood, Dingemanse, \u0026amp; Hagoort, 2016). Modality-specificity also clashes with models of language that have no link to sensory and motor systems (Barsalou, 2016).","tags":["s","psycholinguistics","conceptual processing","experiment","event-related potentials","language comprehension","open data","cognition","conceptual modality switch","modality exclusivity norms","reading","statistics","linear mixed-effects models","ResearchGate"],"title":"Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs","type":"post"},{"authors":[],"categories":["R","data dashboards","open data"],"content":"\r Dashboards for data visualisation, such as R Shiny and Tableau, allow the interactive exploration of data by means of drop-down lists and checkboxes, with no coding required from the final users. These web applications can be useful for both the data analyst and the public at large. \r\r\nVisualisation apps run on internet browsers. This allows for three options: private viewing (useful during analysis), selective sharing (used within work groups), or internet publication. Among the available platforms, R Shiny and Tableau stand out due to being relatively accessible to new users. Apps serve a broad variety of purposes (see this gallery and this one). In science and beyond, these apps allow us to go the extra mile in sharing data. Alongside files and code shared in repositories, we can present the data in a website, in the form of plots or tables. This facilitates the public exploration of each section of the data (groups, participants, trials…) to anyone interested, and allows researchers to account for their proceeding in the analysis.\nPublishers and journals highly encourage authors to make the most of their data by facilitating its easy exploration by the readership–even though they don’t normally offer the possibility of hosting any web applications yet.\nApps can also prove valuable to those analysing the data. For instance, my app helped me to identify the extent of noise in a section of the data. Instead of running through a heavy score of code, the drop-down lists of the app let me seamlessly surf through the different sections.\nAt a certain point, I found a data section that was consistently noisier than the rest, and eventually I had to discard it from further statistical analyses. Yet, instead of removing that from the app, I maintained it with a note attached. This particular trait in the data was rather salient.\nBeyond such a salient feature in the data, a visualisation app may also help to spot subtler patterns such as third variables or individual differences.\nThere are several platforms for creating apps (e.g., Tableau, D3.js, and R Shiny). I focus on R Shiny here for three reasons: it is affordable to use, fairly accessible to new users, and well suited for science as it is based on the R language (see for instance this article).\nHow to Shiny\rShiny apps draw on any standard R code that you may already have. This is most commonly plots or tables, but other stuff such as images or Markdown texts are valid too. This is a nice thing to keep in mind when having to create a new app. Part of the job may already be done! The app is distributed among five different areas.\n\rData file(s): These are any data files you’re using (e.g., with csv or rds extensions).\r\r1a. server.R script\rThe server script contains the central processes: plots, tables, etc. Code that existed independently of the app app may be brought into this script by slightly adapting it. At the top, call the shiny library and any others used (e.g., ‘ggplot2’), and also read in the data. The snippet below shows the beginning of an example server.R script.\n\r# server\rlibrary(shiny)\rlibrary(ggplot2)\rEEG.ParticipantAndElectrode = readRDS(\u0026#39;EEG.ParticipantAndElectrode.rds\u0026#39;)\rEEG.ParticipantAndBrainArea = readRDS(\u0026#39;EEG.ParticipantAndBrainArea.rds\u0026#39;)\rEEG.GroupAndElectrode = readRDS(\u0026#39;EEG.GroupAndElectrode.rds\u0026#39;)\rEEG.OLDGroupAndElectrode = readRDS(\u0026#39;EEG.OLDGroupAndElectrode.rds\u0026#39;)\rserver =\rshinyServer(\rfunction(input, output) {\r# plot_GroupAndElectrode:\routput$plot_GroupAndElectrode \u0026lt;- renderPlot({\rdfelectrode \u0026lt;- aggregate(microvolts ~ electrode*time*condition, EEG.GroupAndElectrode[EEG.GroupAndElectrode$RT.based_Groups==input$var.Group,], mean)\rdf2 \u0026lt;- subset(dfelectrode, electrode == input$var.Electrodes.1)\rdf2$condition= as.factor(df2$condition)\rdf2$condition \u0026lt;- gsub(\u0026#39;visual2visual\u0026#39;, \u0026#39; Visual / Visual\u0026#39;, df2$condition)\rdf2$condition \u0026lt;- gsub(\u0026#39;haptic2visual\u0026#39;, \u0026#39; Haptic / Visual\u0026#39;, df2$condition)\rdf2$condition \u0026lt;- gsub(\u0026#39;auditory2visual\u0026#39;, \u0026#39; Auditory / Visual\u0026#39;, df2$condition)\rdf2$time \u0026lt;- as.integer(as.character(df2$time))\rcolours \u0026lt;- c(\u0026#39;firebrick1\u0026#39;, \u0026#39;dodgerblue\u0026#39;, \u0026#39;forestgreen\u0026#39;)\r# green:visual2visual, blue:haptic2visual, red:auditory2visual\rspec_title = paste0(\u0026#39;ERP waveforms for \u0026#39;, input$var.Group, \u0026#39; Group, Electrode \u0026#39;, input$var.Electrodes.1, \u0026#39; (negative values upward; time windows displayed)\u0026#39;)\rplot_GroupAndElectrode = ggplot(df2, aes(x=time, y=-microvolts, color=condition)) +\rgeom_rect(xmin=160, xmax=216, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=270, xmax=370, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=350, xmax=550, ymin=8, ymax=-7.5, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=500, xmax=750, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_line(size=1, alpha = 1) + scale_linetype_manual(values=colours) +\rscale_y_continuous(limits=c(-8.38, 8.3), breaks=seq(-8,8,by=1), expand = c(0,0.1)) +\rscale_x_continuous(limits=c(-208,808),breaks=seq(-200,800,by=100), expand = c(0.005,0), labels= c(\u0026#39;-200\u0026#39;,\u0026#39;-100 ms\u0026#39;,\u0026#39;0\u0026#39;,\u0026#39;100 ms\u0026#39;,\u0026#39;200\u0026#39;,\u0026#39;300 ms\u0026#39;,\u0026#39;400\u0026#39;,\u0026#39;500 ms\u0026#39;,\u0026#39;600\u0026#39;,\u0026#39;700 ms\u0026#39;,\u0026#39;800\u0026#39;)) +\rggtitle(spec_title) + theme_bw() + geom_vline(xintercept=0) +\rannotate(geom=\u0026#39;segment\u0026#39;, y=seq(-8,8,1), yend=seq(-8,8,1), x=-4, xend=8, color=\u0026#39;black\u0026#39;) +\rannotate(geom=\u0026#39;segment\u0026#39;, y=-8.2, yend=-8.38, x=seq(-200,800,100), xend=seq(-200,800,100), color=\u0026#39;black\u0026#39;) +\rgeom_segment(x = -200, y = 0, xend = 800, yend = 0, size=0.5, color=\u0026#39;black\u0026#39;) +\rtheme(legend.position = c(0.100, 0.150), legend.background = element_rect(fill=\u0026#39;#EEEEEE\u0026#39;, size=0),\raxis.title=element_blank(), legend.key.width = unit(1.2,\u0026#39;cm\u0026#39;), legend.text=element_text(size=17),\rlegend.title = element_text(size=17, face=\u0026#39;bold\u0026#39;), plot.title= element_text(size=20, hjust = 0.5, vjust=2),\raxis.text.y = element_blank(), axis.text.x = element_text(size = 14, vjust= 2.12, face=\u0026#39;bold\u0026#39;, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;),\raxis.ticks=element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.margin = unit(c(0.1,0.1,0,0), \u0026#39;cm\u0026#39;)) +\rannotate(\u0026#39;segment\u0026#39;, x=160, xend=216, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=270, xend=370, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=350, xend=550, y=-7.5, yend=-7.5, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=500, xend=750, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rscale_fill_manual(name = \u0026#39;Context / Target trial\u0026#39;, values=colours) +\rscale_color_manual(name = \u0026#39;Context / Target trial\u0026#39;, values=colours) +\rguides(linetype=guide_legend(override.aes = list(size=1.2))) +\rguides(color=guide_legend(override.aes = list(size=2.5))) +\r# Print y axis labels within plot area:\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;\\u2013\u0026#39; * \u0026#39;3 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = 3, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;) +\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;+3 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = -3, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;) +\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;\\u2013\u0026#39; * \u0026#39;6 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = 6, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;)\rprint(plot_GroupAndElectrode)\routput$downloadPlot.1 \u0026lt;- downloadHandler(\rfilename \u0026lt;- function(file){\rpaste0(input$var.Group, \u0026#39; group, electrode \u0026#39;, input$var.Electrodes.1, \u0026#39;, \u0026#39;, Sys.Date(), \u0026#39;.png\u0026#39;)},\rcontent \u0026lt;- function(file){\rpng(file, units=\u0026#39;in\u0026#39;, width=13, height=5, res=900)\rprint(plot_GroupAndElectrode)\rdev.off()},\rcontentType = \u0026#39;image/png\u0026#39;)\r} )\r# ...\r\r— Whole script\n\r1b. ui.R script\rThe ui script defines the user interface. For instance, a factor column in the data that has multiple categories may be neatly displayed with a drop-down list on the side bar of the website. The interface may present a central plot before by a legend key below. The snippet below shows the beginning of an example ui.R script.\n\r# UI\rlibrary(shiny)\rlibrary(ggplot2)\rEEG.GroupAndElectrode = readRDS(\u0026#39;EEG.GroupAndElectrode.rds\u0026#39;)\rEEG.ParticipantAndBrainArea = readRDS(\u0026#39;EEG.ParticipantAndBrainArea.rds\u0026#39;)\rEEG.ParticipantAndElectrode = readRDS(\u0026#39;EEG.ParticipantAndElectrode.rds\u0026#39;)\rEEG.OLDGroupAndElectrode = readRDS(\u0026#39;EEG.OLDGroupAndElectrode.rds\u0026#39;)\rui =\rshinyUI(\rfluidPage(\rtags$head(tags$link(rel=\u0026#39;shortcut icon\u0026#39;, href=\u0026#39;https://image.ibb.co/fXUwzb/favic.png\u0026#39;)), # web favicon\rtags$meta(charset=\u0026#39;UTF-8\u0026#39;),\rtags$meta(name=\u0026#39;description\u0026#39;, content=\u0026#39;This R Shiny visualisation dashboard presents data from a psycholinguistic ERP experiment (Bernabeu et al., 2017).\u0026#39;),\rtags$meta(name=\u0026#39;keywords\u0026#39;, content=\u0026#39;R, Shiny, ggplot2, visualisation, data, psycholinguistics, conceptual processing, modality switch, embodied cognition\u0026#39;),\rtags$meta(name=\u0026#39;viewport\u0026#39;, content=\u0026#39;width=device-width, initial-scale=1.0\u0026#39;),\rtitlePanel(h3(strong(\u0026#39;Waveforms in detail from an ERP experiment on the Conceptual Modality Switch\u0026#39;), a(\u0026#39;(Bernabeu et al., 2017)\u0026#39;,\rhref=\u0026#39;https://figshare.com/articles/EEG_study_on_conceptual_modality-switching_Bernabeu_et_al_in_prep_/4210863\u0026#39;, target=\u0026#39;_blank\u0026#39;,\rstyle = \u0026#39;color:#3E454E; text-decoration:underline; font-weight:normal\u0026#39;), align = \u0026#39;center\u0026#39;, style = \u0026#39;color:black\u0026#39;),\rwindowTitle = \u0026#39;Visualization of ERP waveforms from experiment on Conceptual Modality Switch (Bernabeu et al., 2017)\u0026#39;),\rsidebarLayout(\rsidebarPanel(width = 2,\r# Condition 1 for reactivity between tabs and sidebars\rconditionalPanel(\rcondition = \u0026#39;input.tabvals == 1\u0026#39;,\rh5(a(strong(\u0026#39;See paper, statistics, all data.\u0026#39;), \u0026#39;Plots by group and brain area shown in paper.\u0026#39;,\rhref=\u0026#39;https://figshare.com/articles/EEG_study_on_conceptual_modality-switching_Bernabeu_et_al_in_prep_/4210863\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), align = \u0026#39;center\u0026#39;),\rbr(),\rselectInput(\u0026#39;var.Group\u0026#39;, label = \u0026#39;Group\u0026#39;, choices = list(\u0026#39;Quick\u0026#39;,\u0026#39;Slow\u0026#39;), selected = \u0026#39;Quick\u0026#39;),\rh6(\u0026#39;Quick G.: 23 participants\u0026#39;),\rh6(\u0026#39;Slow G.: 23 participants\u0026#39;),\rbr(),\rselectInput(\u0026#39;var.Electrodes.1\u0026#39;, label = h5(strong(\u0026#39;Electrode\u0026#39;), br(), \u0026#39;(see montage below)\u0026#39;),\rchoices = list(\u0026#39;1\u0026#39;,\u0026#39;2\u0026#39;,\u0026#39;3\u0026#39;,\u0026#39;4\u0026#39;,\u0026#39;5\u0026#39;,\u0026#39;6\u0026#39;,\u0026#39;7\u0026#39;,\u0026#39;8\u0026#39;,\u0026#39;9\u0026#39;,\u0026#39;10\u0026#39;,\r\u0026#39;11\u0026#39;,\u0026#39;12\u0026#39;,\u0026#39;13\u0026#39;,\u0026#39;14\u0026#39;,\u0026#39;15\u0026#39;,\u0026#39;16\u0026#39;,\u0026#39;17\u0026#39;,\u0026#39;18\u0026#39;,\u0026#39;19\u0026#39;,\u0026#39;20\u0026#39;,\u0026#39;21\u0026#39;,\r\u0026#39;22\u0026#39;,\u0026#39;23\u0026#39;,\u0026#39;24\u0026#39;,\u0026#39;25\u0026#39;,\u0026#39;26\u0026#39;,\u0026#39;27\u0026#39;,\u0026#39;28\u0026#39;,\u0026#39;29\u0026#39;,\u0026#39;30\u0026#39;,\u0026#39;31\u0026#39;,\u0026#39;33\u0026#39;,\r\u0026#39;34\u0026#39;,\u0026#39;35\u0026#39;,\u0026#39;36\u0026#39;,\u0026#39;37\u0026#39;,\u0026#39;38\u0026#39;,\u0026#39;39\u0026#39;,\u0026#39;40\u0026#39;,\u0026#39;41\u0026#39;,\u0026#39;42\u0026#39;,\u0026#39;43\u0026#39;,\u0026#39;44\u0026#39;,\r\u0026#39;45\u0026#39;,\u0026#39;46\u0026#39;,\u0026#39;47\u0026#39;,\u0026#39;48\u0026#39;,\u0026#39;49\u0026#39;,\u0026#39;50\u0026#39;,\u0026#39;51\u0026#39;,\u0026#39;52\u0026#39;,\u0026#39;53\u0026#39;,\u0026#39;54\u0026#39;,\u0026#39;55\u0026#39;,\r\u0026#39;56\u0026#39;,\u0026#39;57\u0026#39;,\u0026#39;58\u0026#39;,\u0026#39;59\u0026#39;,\u0026#39;60\u0026#39;), selected = \u0026#39;30\u0026#39; ),\rbr(), br(),\rh6(\u0026#39;Source code:\u0026#39;),\rh6(strong(\u0026#39;- \u0026#39;), a(\u0026#39;server.R\u0026#39;, href=\u0026#39;https://osf.io/uj8z4/\u0026#39;, target=\u0026#39;_blank\u0026#39;, style = \u0026#39;text-decoration: underline;\u0026#39;)),\rh6(strong(\u0026#39;- \u0026#39;), a(\u0026#39;ui.R\u0026#39;, href=\u0026#39;https://osf.io/8bwcx/\u0026#39;, target=\u0026#39;_blank\u0026#39;, style = \u0026#39;text-decoration: underline;\u0026#39;)),\rbr(),\rh6(a(\u0026#39;CC-By 4.0 License\u0026#39;, href=\u0026#39;https://osf.io/97unm/\u0026#39;, target=\u0026#39;_blank\u0026#39;), align = \u0026#39;center\u0026#39;, style = \u0026#39;text-decoration: underline;\u0026#39;),\rbr(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(),\rbr(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(),\rh5(a(strong(\u0026#39;See paper, statistics, all data.\u0026#39;),\rhref=\u0026#39;https://figshare.com/articles/EEG_study_on_conceptual_modality-switching_Bernabeu_et_al_in_prep_/4210863\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), align = \u0026#39;center\u0026#39;),\rbr(), br(), br(), br(), br(), br(), br(), br()\r),\r# ...\r\r— Whole script\n\r2. Deployment and logs\rThis script contains the commands for deploying the app on- or off-line, and for checking the session logs in case of any errors.\n\r3. Automatically created folder\rWhen the app is first deployed on the internet, a subfolder is automatically created with the name ‘rsconnect’. This folder contains a text file which can be used to modify the URL and the title of the webpage.\nSteps to create a Shiny app from scratch:\n1. Tutorials (link). Being open-source software, excellent directions are available through a Google search.\nThe core ideas are:\nAs mentioned above, create a ui.R script for the code containing the user interface, and create a server.R script for the code containing the main content (your plots / tables, etc).\nAt the top of both ui.R and server.R scripts, enter the command library(shiny) and also load any other libraries you’re using (e.g., ggplot2).\nTest your app by deploying it locally, before launching online. For this purpose, first save the ui and server parts independently, as in:\n\rui =\rshinyUI(\rfluidPage(\r# ...\r\rThen deploy locally by running:\nshinyApp(ui, server)\rManaging to run the app locally is a great first step before launching online (which may sometimes prove a bit trickier).\n2. User token (link). Sign up and read in your private key—just to be done once in a computer.\n3. Go for it. After locally testing and saving the two main scripts (ui.R and server.R), run deployApp() to launch the app online.\n4. Bugs and session logs. Most often they won’t be bugs actually, but fancies, as it were. For instance, some special characters have to get even more special (technically, UTF-8 encoding). For a character such as ‘μ’, Shiny prefers ‘Âμ’, or better, the Unicode expression(\"\\u03bc\").\nCling to your logs by calling the line below, which you may keep at hand in your ‘Shiny deployer.R’ script.\nshowLogs(appPath = getwd(), appFile = NULL, appName = NULL, account = NULL,\rentries = 50, streaming = FALSE)\rAt best, the log output will mention any typos and unaccepted characters, pointing to specific lines in your code.\nIt may take a couple of intense days to get a first Shiny app running. Although the usual rabbit holes do exist, years of Shiny have already yielded a sizeable body of free resources online (tutorials, blogs, vlogs). Moreover, there’s also the RStudio Community, and then StackOverflow etc., where you can post any needs/despair. Post your code, log, and explanation, and you’ll be rescued out in a couple of days. Long live those contributors.\nIt’s sometimes enough to upload a bare app, but you might then think it can look better.\n5 (optional). Advance. Use tabs to combine multiple apps on one webpage, use different widgets, include a download option, etc. Tutorials like this one on Youtube can take you there, especially those that provide the code, as in the description of that video. Use those scripts as templates. For example, I made use of tabs on the top of the dashboard in order to keep the side bar from having too many widgets. The appearance of these tabs can be adjusted. More importantly, the inputs in the sidebar can be modified depending on the active tab, by means of ‘reactivity’ conditions.\n\rmainPanel(\rtags$style(HTML(\u0026#39;\r.tabbable \u0026gt; .nav \u0026gt; li \u0026gt; a {background-color:white; color:#3E454E}\r.tabbable \u0026gt; .nav \u0026gt; li \u0026gt; a:hover {background-color:#002555; color:white}\r.tabbable \u0026gt; .nav \u0026gt; li[class=active] \u0026gt; a {background-color:#ECF4FF; color:black}\r.tabbable \u0026gt; .nav \u0026gt; li[class=active] \u0026gt; a:hover\t{background-color:#E7F1FF; color:black}\r\u0026#39;)),\rtabsetPanel(id=\u0026#39;tabvals\u0026#39;,\rtabPanel(value=1, h4(strong(\u0026#39;Group \u0026amp; Electrode\u0026#39;)), br(), plotOutput(\u0026#39;plot_GroupAndElectrode\u0026#39;),\rh5(a(strong(\u0026#39;See plots with 95% Confidence Intervals\u0026#39;), href=\u0026#39;https://osf.io/2tpxn/\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), style=\u0026#39;text-decoration: underline;\u0026#39;), downloadButton(\u0026#39;downloadPlot.1\u0026#39;, \u0026#39;Download HD plot\u0026#39;), br(), br(),\r# EEG montage\rimg(src=\u0026#39;https://preview.ibb.co/n7qiYR/EEG_montage.png\u0026#39;, height=500, width=1000)),\rtabPanel(value=2, h4(strong(\u0026#39;Participant \u0026amp; Area\u0026#39;)), br(), plotOutput(\u0026#39;plot_ParticipantAndLocation\u0026#39;),\rh5(a(strong(\u0026#39;See plots with 95% Confidence Intervals\u0026#39;), href=\u0026#39;https://osf.io/86ch9/\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), style=\u0026#39;text-decoration: underline;\u0026#39;), downloadButton(\u0026#39;downloadPlot.2\u0026#39;, \u0026#39;Download HD plot\u0026#39;), br(), br(),\r# EEG montage\rimg(src=\u0026#39;https://preview.ibb.co/n7qiYR/EEG_montage.png\u0026#39;, height=500, width=1000)),\rtabPanel(value=3, h4(strong(\u0026#39;Participant \u0026amp; Electrode\u0026#39;)), br(), plotOutput(\u0026#39;plot_ParticipantAndElectrode\u0026#39;),\rbr(), downloadButton(\u0026#39;downloadPlot.3\u0026#39;, \u0026#39;Download HD plot\u0026#39;), br(), br(),\r# EEG montage\rimg(src=\u0026#39;https://preview.ibb.co/n7qiYR/EEG_montage.png\u0026#39;, height=500, width=1000)),\rtabPanel(value=4, h4(strong(\u0026#39;OLD Group \u0026amp; Electrode\u0026#39;)), br(), plotOutput(\u0026#39;plot_OLDGroupAndElectrode\u0026#39;),\rh5(a(strong(\u0026#39;See plots with 95% Confidence Intervals\u0026#39;), href=\u0026#39;https://osf.io/dvs2z/\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), style=\u0026#39;text-decoration: underline;\u0026#39;), downloadButton(\u0026#39;downloadPlot.4\u0026#39;, \u0026#39;Download HD plot\u0026#39;), br(), br(),\r# EEG montage\rimg(src=\u0026#39;https://preview.ibb.co/n7qiYR/EEG_montage.png\u0026#39;, height=500, width=1000))\r),\r\r\nThe official Shiny gallery offers a great array of apps including their code (e.g., basic example). Another feature you may add is the option to download your plots, tables, data…\n\r# In ui.R script\rdownloadButton(\u0026#39;downloadPlot.1\u0026#39;, \u0026#39;Download HD plot\u0026#39;)\r#___________________________________________________\r# In server.R script\rspec_title = paste0(\u0026#39;ERP waveforms for \u0026#39;, input$var.Group, \u0026#39; Group, Electrode \u0026#39;, input$var.Electrodes.1, \u0026#39; (negative values upward; time windows displayed)\u0026#39;)\rplot_GroupAndElectrode = ggplot(df2, aes(x=time, y=-microvolts, color=condition)) +\rgeom_rect(xmin=160, xmax=216, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=270, xmax=370, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=350, xmax=550, ymin=8, ymax=-7.5, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=500, xmax=750, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_line(size=1, alpha = 1) + scale_linetype_manual(values=colours) +\rscale_y_continuous(limits=c(-8.38, 8.3), breaks=seq(-8,8,by=1), expand = c(0,0.1)) +\rscale_x_continuous(limits=c(-208,808),breaks=seq(-200,800,by=100), expand = c(0.005,0), labels= c(\u0026#39;-200\u0026#39;,\u0026#39;-100 ms\u0026#39;,\u0026#39;0\u0026#39;,\u0026#39;100 ms\u0026#39;,\u0026#39;200\u0026#39;,\u0026#39;300 ms\u0026#39;,\u0026#39;400\u0026#39;,\u0026#39;500 ms\u0026#39;,\u0026#39;600\u0026#39;,\u0026#39;700 ms\u0026#39;,\u0026#39;800\u0026#39;)) +\rggtitle(spec_title) + theme_bw() + geom_vline(xintercept=0) +\rannotate(geom=\u0026#39;segment\u0026#39;, y=seq(-8,8,1), yend=seq(-8,8,1), x=-4, xend=8, color=\u0026#39;black\u0026#39;) +\rannotate(geom=\u0026#39;segment\u0026#39;, y=-8.2, yend=-8.38, x=seq(-200,800,100), xend=seq(-200,800,100), color=\u0026#39;black\u0026#39;) +\rgeom_segment(x = -200, y = 0, xend = 800, yend = 0, size=0.5, color=\u0026#39;black\u0026#39;) +\rtheme(legend.position = c(0.100, 0.150), legend.background = element_rect(fill=\u0026#39;#EEEEEE\u0026#39;, size=0),\raxis.title=element_blank(), legend.key.width = unit(1.2,\u0026#39;cm\u0026#39;), legend.text=element_text(size=17),\rlegend.title = element_text(size=17, face=\u0026#39;bold\u0026#39;), plot.title= element_text(size=20, hjust = 0.5, vjust=2),\raxis.text.y = element_blank(), axis.text.x = element_text(size = 14, vjust= 2.12, face=\u0026#39;bold\u0026#39;, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;),\raxis.ticks=element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.margin = unit(c(0.1,0.1,0,0), \u0026#39;cm\u0026#39;)) +\rannotate(\u0026#39;segment\u0026#39;, x=160, xend=216, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=270, xend=370, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=350, xend=550, y=-7.5, yend=-7.5, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=500, xend=750, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rscale_fill_manual(name = \u0026#39;Context / Target trial\u0026#39;, values=colours) +\rscale_color_manual(name = \u0026#39;Context / Target trial\u0026#39;, values=colours) +\rguides(linetype=guide_legend(override.aes = list(size=1.2))) +\rguides(color=guide_legend(override.aes = list(size=2.5))) +\r# Print y axis labels within plot area:\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;\\u2013\u0026#39; * \u0026#39;3 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = 3, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;) +\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;+3 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = -3, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;) +\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;\\u2013\u0026#39; * \u0026#39;6 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = 6, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;)\rprint(plot_GroupAndElectrode)\routput$downloadPlot.1 \u0026lt;- downloadHandler(\rfilename \u0026lt;- function(file){\rpaste0(input$var.Group, \u0026#39; group, electrode \u0026#39;, input$var.Electrodes.1, \u0026#39;, \u0026#39;, Sys.Date(), \u0026#39;.png\u0026#39;)},\rcontent \u0026lt;- function(file){\rpng(file, units=\u0026#39;in\u0026#39;, width=13, height=5, res=900)\rprint(plot_GroupAndElectrode)\rdev.off()},\rcontentType = \u0026#39;image/png\u0026#39;)\r} )\r\r\nApps can include any text, such as explanations of any length and web links. For instance, we can link back to the data repository, where the code for the app can be found.\nAn example of a Shiny app is available, which may also be edited and run in this RStudio environment, inside the ‘Shiny-app’ folder.\nThe Shiny server (shinyapps.io) allows publishing dashboards built with various frameworks besides Shiny proper. Flexdashboard and Shinydashboard are two of these frameworks, which have visible advantages over basic Shiny, in terms of layout. An example with Flexdashboard is available.\n★ Flexdashboard ★\r★ ★ Shiny ★ ★\r★ ★ ★ Flexdashboard-Shiny ★ ★ ★\r\r\rLogistics\rMemory capacity can become an issue as you go on, which will be flagged in the error logs as: ‘Shiny cannot use on-disk bookmarking’. This doesn’t necessarily lead you to a paid subscription or to host the website on a custom server. Try pruning the data file, outsourcing data sections across the five available apps.\nApp providers have specific terms of use. To begin, Shiny has a free starter license with limited use, where free apps can handle a certain amount of data, and up to five apps may be created. Beyond that, RStudio offers a wide range of subscriptions starting at $9/month. For its part, Tableau in principle deals only with subscriptions from $35/month on. While they offer 1-year licenses to students and instructors for free, these don’t include web hosting, unlike Shiny’s free plan. Further comparisons of these platforms are available online. Last, I’ll just mention a third language, D3, which is powerful, and may also be used through R.\nIn the case of very heavy data or frequent public use, if you don’t want to host your Shiny app externally, you might consider rendering a PDF with your visualisations instead.\n\rpdf(\u0026quot;List of plots per page\u0026quot;, width=13, height=5)\rprint(plot1)\rprint(plot2)\r# ...\rprint(plot150)\rdev.off()\r\rHigh-resolution plots can be rendered into a PDF document in a snap. Conveniently, all text is indexed, so it can be searched (Ctrl+f / Cmd+f / 🔍) (see example). Furthermore, you may also merge the rendered PDF with any other documents.\n.embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}\rwindow.jQuery || document.write('\\x3C/script') \r\r\rvar mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/2tpxn/?direct%26mode=render%26action=download%26mode=render\");\r\n\rSummary in slides\r\r Presenting data interactively online using R Shiny \r\r\r","date":1483228800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1483228800,"objectID":"634b1bab4555e068cc9e05367ce3f565","permalink":"https://pablobernabeu.github.io/2017/the-case-for-data-dashboards-first-steps-in-r-shiny/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/2017/the-case-for-data-dashboards-first-steps-in-r-shiny/","section":"post","summary":"Dashboards for data visualisation, such as R Shiny and Tableau, allow the interactive exploration of data by means of drop-down lists and checkboxes, with no coding required from the final users. These web applications run on internet browsers, allowing for three viewing modes, catered to both analysts and the public at large: (1) private viewing (useful during analysis), (2) selective sharing (used within work groups), and (3) internet publication. Among the available platforms, R Shiny and Tableau stand out due to being relatively accessible to new users. Apps serve a broad variety of purposes. In science and beyond, these apps allow us to go the extra mile in sharing data. Alongside files and code shared in repositories, we can present the data in a website, in the form of plots or tables. This facilitates the public exploration of each section of the data (groups, participants, trials...) to anyone interested, and allows researchers to account for their proceeding in the analysis.","tags":["s","data presentation","dashboard","reproducibility","open science","open data","R","R Shiny","Flexdashboard"],"title":"The case for data dashboards: First steps in R Shiny","type":"post"},{"authors":null,"categories":["conceptual processing","R"],"content":"\u0026nbsp; Web application \u0026nbsp;\rContent\nThe data is from a psychology experiment on the comprehension of words, in which electroencephalographic (EEG) responses were measured. The data are presented in plots spanning 800 milliseconds (the duration of word processing). The aim of this Shiny app is to facilitate the exploration of the data by researchers and the public. Users can delve into the different sections of the data. In a hierarchical order, these sections are groups of participants, individual participants, brain areas, and electrodes.\nShiny apps in science\nBy creating this app, I tried to reach beyond the scope of current open science, which is often confined to files shared on data repositories. I believe that Shiny apps will become general practice in science within a few years (see blog post or slides for more information).\nTechnical details\nI used tabs on the upper area of the application page to avoid having cramming the side bar with widgets. I adjusted the appearance of these tabs, and by means of \u0026lsquo;reactivity\u0026rsquo; conditions, modified the inputs in the side bar depending on the active tab.\nmainPanel(\rtags$style(HTML('\r.tabbable \u0026gt; .nav \u0026gt; li \u0026gt; a {background-color:white; color:#3E454E}\r.tabbable \u0026gt; .nav \u0026gt; li \u0026gt; a:hover {background-color:#002555; color:white}\r.tabbable \u0026gt; .nav \u0026gt; li[class=active] \u0026gt; a {background-color:#ECF4FF; color:black}\r.tabbable \u0026gt; .nav \u0026gt; li[class=active] \u0026gt; a:hover\t{background-color:#E7F1FF; color:black}\r')),\rtabsetPanel(id='tabvals',\rtabPanel(value=1, h4(strong('Group \u0026amp; Electrode')), br(), plotOutput('plot_GroupAndElectrode'),\rh5(a(strong('See plots with 95% Confidence Intervals'), href='https://osf.io/2tpxn/',\rtarget='_blank'), style='text-decoration: underline;'), downloadButton('downloadPlot.1', 'Download HD plot'), br(), br(),\r# EEG montage\rimg(src='https://preview.ibb.co/n7qiYR/EEG_montage.png', height=500, width=1000)),\rtabPanel(value=2, h4(strong('Participant \u0026amp; Area')), br(), plotOutput('plot_ParticipantAndLocation'),\rh5(a(strong('See plots with 95% Confidence Intervals'), href='https://osf.io/86ch9/',\rtarget='_blank'), style='text-decoration: underline;'), downloadButton('downloadPlot.2', 'Download HD plot'), br(), br(),\r# EEG montage\rimg(src='https://preview.ibb.co/n7qiYR/EEG_montage.png', height=500, width=1000)),\rtabPanel(value=3, h4(strong('Participant \u0026amp; Electrode')), br(), plotOutput('plot_ParticipantAndElectrode'),\rbr(), downloadButton('downloadPlot.3', 'Download HD plot'), br(), br(),\r# EEG montage\rimg(src='https://preview.ibb.co/n7qiYR/EEG_montage.png', height=500, width=1000)),\rtabPanel(value=4, h4(strong('OLD Group \u0026amp; Electrode')), br(), plotOutput('plot_OLDGroupAndElectrode'),\rh5(a(strong('See plots with 95% Confidence Intervals'), href='https://osf.io/dvs2z/',\rtarget='_blank'), style='text-decoration: underline;'), downloadButton('downloadPlot.4', 'Download HD plot'), br(), br(),\r# EEG montage\rimg(src='https://preview.ibb.co/n7qiYR/EEG_montage.png', height=500, width=1000))\r),\r The data set was fairly large, considering the fact that it's hosted with the free plan. In order to lighten the processing, I split the data into various files, reducing the total size. Furthermore, I outsourced a particularly heavy set of plots (those with Confidence Intervals) to PDF files, to which I linked in the app.\nh5(a(strong('See plots with 95% Confidence Intervals'), href='https://osf.io/dvs2z/',\rtarget='_blank'), style='text-decoration: underline;'),\r I also used web links to the published paper and raw data, as well as to the server and ui scripts. These files, along with the data, are publicly available in this repository; they may be accessed within the \u0026ldquo;Files\u0026rdquo; section, by opening the folders \u0026ldquo;ERPs\u0026rdquo; -\u0026gt; \u0026ldquo;Analyses of ERPs averaged across trials\u0026rdquo; -\u0026gt; \u0026ldquo;Shiny app\u0026rdquo;.\nAnother feature I added was the download button.\n# From server.R script\rspec_title = paste0('ERP waveforms for ', input$var.Group, ' Group, Electrode ', input$var.Electrodes.1, ' (negative values upward; time windows displayed)')\rplot_GroupAndElectrode = ggplot(df2, aes(x=time, y=-microvolts, color=condition)) +\rgeom_rect(xmin=160, xmax=216, ymin=7.5, ymax=-8, color = 'grey75', fill='black', alpha=0, linetype='longdash') +\rgeom_rect(xmin=270, xmax=370, ymin=7.5, ymax=-8, color = 'grey75', fill='black', alpha=0, linetype='longdash') +\rgeom_rect(xmin=350, xmax=550, ymin=8, ymax=-7.5, color = 'grey75', fill='black', alpha=0, linetype='longdash') +\rgeom_rect(xmin=500, xmax=750, ymin=7.5, ymax=-8, color = 'grey75', fill='black', alpha=0, linetype='longdash') +\rgeom_line(size=1, alpha = 1) + scale_linetype_manual(values=colours) +\rscale_y_continuous(limits=c(-8.38, 8.3), breaks=seq(-8,8,by=1), expand = c(0,0.1)) +\rscale_x_continuous(limits=c(-208,808),breaks=seq(-200,800,by=100), expand = c(0.005,0), labels= c('-200','-100 ms','0','100 ms','200','300 ms','400','500 ms','600','700 ms','800')) +\rggtitle(spec_title) + theme_bw() + geom_vline(xintercept=0) +\rannotate(geom='segment', y=seq(-8,8,1), yend=seq(-8,8,1), x=-4, xend=8, color='black') +\rannotate(geom='segment', y=-8.2, yend=-8.38, x=seq(-200,800,100), xend=seq(-200,800,100), color='black') +\rgeom_segment(x = -200, y = 0, xend = 800, yend = 0, size=0.5, color='black') +\rtheme(legend.position = c(0.100, 0.150), legend.background = element_rect(fill='#EEEEEE', size=0),\raxis.title=element_blank(), legend.key.width = unit(1.2,'cm'), legend.text=element_text(size=17),\rlegend.title = element_text(size=17, face='bold'), plot.title= element_text(size=20, hjust = 0.5, vjust=2),\raxis.text.y = element_blank(), axis.text.x = element_text(size = 14, vjust= 2.12, face='bold', color = 'grey32', family='sans'),\raxis.ticks=element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.margin = unit(c(0.1,0.1,0,0), 'cm')) +\rannotate('segment', x=160, xend=216, y=-8, yend=-8, colour = 'grey75', size = 1.5) +\rannotate('segment', x=270, xend=370, y=-8, yend=-8, colour = 'grey75', size = 1.5) +\rannotate('segment', x=350, xend=550, y=-7.5, yend=-7.5, colour = 'grey75', size = 1.5) +\rannotate('segment', x=500, xend=750, y=-8, yend=-8, colour = 'grey75', size = 1.5) +\rscale_fill_manual(name = 'Context / Target trial', values=colours) +\rscale_color_manual(name = 'Context / Target trial', values=colours) +\rguides(linetype=guide_legend(override.aes = list(size=1.2))) +\rguides(color=guide_legend(override.aes = list(size=2.5))) +\r# Print y axis labels within plot area:\rannotate('text', label = expression(bold('\\u2013' * '3 ' * '\\u03bc' * 'V')), x = -29, y = 3, size = 4.5, color = 'grey32', family='sans') +\rannotate('text', label = expression(bold('+3 ' * '\\u03bc' * 'V')), x = -29, y = -3, size = 4.5, color = 'grey32', family='sans') +\rannotate('text', label = expression(bold('\\u2013' * '6 ' * '\\u03bc' * 'V')), x = -29, y = 6, size = 4.5, color = 'grey32', family='sans')\rprint(plot_GroupAndElectrode)\routput$downloadPlot.1 \u0026lt;- downloadHandler(\rfilename \u0026lt;- function(file){\rpaste0(input$var.Group, ' group, electrode ', input$var.Electrodes.1, ', ', Sys.Date(), '.png')},\rcontent \u0026lt;- function(file){\rpng(file, units='in', width=13, height=5, res=900)\rprint(plot_GroupAndElectrode)\rdev.off()},\rcontentType = 'image/png')\r} )\r # From ui.R script\rdownloadButton('downloadPlot.1', 'Download HD plot')\r Rising to the challenge\nMy experience with R Shiny has been so good I've been sharing it. Yet, on my first crawling days, I spent an eternity stuck with this elephant in my room: \u0026ldquo;μ\u0026rdquo;. This μ letter (micro-souvenir from hell, as I later knew it), was part of the labels of my plots. All I knew was that I could not deploy the app online, even while I could perfectly launch it locally in my laptop. So, I wondered what use was to deploy locally if I couldn't publish the app?! Eventually, I read about UTF-8 encoding in one forum. Bless them forums. All I had to do was use \u0026ldquo;Âμ\u0026rdquo; instead of the single \u0026ldquo;μ\u0026rdquo;. A better option I found later was: expression(\u0026quot;\\u03bc\u0026quot;).\nBeyond encoding issues, I had a tough time embedding images. You know, the \u0026lsquo;www\u0026rsquo; folder\u0026hellip; To be honest, I still haven't handled the \u0026lsquo;www\u0026rsquo; way\u0026ndash;but where there's a will, there's a way. I managed to include my images by uploading them to a website and then entering their URL in \u0026ldquo;img(src\u0026rdquo;, avoiding the use of folder paths.\nimg(src=\u0026quot;https://preview.ibb.co/n7qiYR/EEG_montage.png 1\u0026quot;, height=500, width=1000)\r Long after I had built the app, I added another image\u0026ndash;the favicon (the little icon on the browser tab).\ntags$head(tags$link(rel=\u0026quot;shortcut icon\u0026quot;, href=\u0026quot;https://image.ibb.co/fXUwzb/favic.png\u0026quot;)), # web favicon\r Reference Bernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs [Web application]. Retrieved from https://pablobernabeu.shinyapps.io/ERP-waveform-visualization_CMS-experiment\n\r","date":1483228800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1483228800,"objectID":"5d4a9692e0623e887564f71b0c57ff97","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/bernabeu-etal-2017-modalityswitch/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/bernabeu-etal-2017-modalityswitch/","section":"applications-and-dashboards","summary":"We tested whether conceptual processing is modality-specific by tracking the time course of the Conceptual Modality Switch effect. Forty-six participants verified the relation between property words and concept words. The conceptual modality of consecutive trials was manipulated in order to produce an Auditory-to-visual switch condition, a Haptic-to-visual switch condition, and a Visual-to-visual, no-switch condition. Event-Related Potentials (ERPs) were time-locked to the onset of the first word (property) in the target trials so as to measure the effect online and to avoid a within-trial confound. A switch effect was found, characterized by more negative ERP amplitudes for modality switches than no-switches. It proved significant in four typical time windows from 160 to 750 milliseconds post word onset, with greater strength in the Slow group, in posterior brain regions, and in the N400 window. The earliest switch effect was located in the language brain region, whereas later it was more prominent in the visual region. In the N400 and Late Positive windows, the Quick group presented the effect especially in the language region, whereas the Slow had it rather in the visual region. These results suggest that contextual factors such as time resources modulate the engagement of linguistic and embodied systems in conceptual processing.","tags":["web application","data dashboard","R","R Shiny","conceptual modality switch","conceptual processing","reading","event-related potentials","cognition","psycholinguistics","HTML","CSS"],"title":"Web application: Modality switch effects emerge early and increase throughout conceptual processing","type":"applications-and-dashboards"},{"authors":"","categories":["research-methods"],"content":"\r\n\r\n\r\n","date":1471305600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1471305600,"objectID":"3036e3b387edcc8ca3a26fff70912e1a","permalink":"https://pablobernabeu.github.io/2016/eeg-error-datasets-missing-channels/","publishdate":"2016-08-16T00:00:00Z","relpermalink":"/2016/eeg-error-datasets-missing-channels/","section":"post","summary":"Most of the recordings are perfectly fine, but a few present a big error. Out of 64 original electrodes, only two appear. These are the right mastoid (RM) and the left eye sensor (LEOG). Both are bipolar electrodes. RM is to be re-referenced to the online reference electrode, while LEOG is to be re-referenced to the right eye electrode.","tags":["event-related potentials","electroencephalography","BrainVision","s"],"title":"EEG error: datasets missing channels","type":"post"},{"authors":[],"categories":["linguistic materials"],"content":"\r\n\r\n\r\n","date":1451606400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1451606400,"objectID":"7d26799976b91aa583f2467d84638054","permalink":"https://pablobernabeu.github.io/2016/modality-exclusivity-norms-for-747-properties-and-concepts-in-dutch-a-replication-of-english/","publishdate":"2016-01-01T00:00:00Z","relpermalink":"/2016/modality-exclusivity-norms-for-747-properties-and-concepts-in-dutch-a-replication-of-english/","section":"post","summary":"This study is a cross-linguistic, conceptual replication of Lynott and Connell’s (2009, 2013) modality exclusivity norms. The properties and concepts tested therein were translated into Dutch, and independently rated and analyzed (Bernabeu, 2018).","tags":["research methods","stimuli","linguistic norms","modality exclusivity norms","conceptual modality switch","dimensionality reduction","conceptual replication","Dutch","s"],"title":"Modality exclusivity norms for 747 properties and concepts in Dutch: A replication of English","type":"post"},{"authors":["Risto Hinno and Pablo Bernabeu"],"categories":["data mining","big data"],"content":"\rThis is a slightly revised version of a course project I shared with Risto Hinno.\n\r1. Introduction\rRacism has long been ingrained in human societies. Ancient Greek Aristotle already claimed that non-Greeks were slaves by nature, as they easily submitted to despotic government (Reilly, Kaufman, \u0026amp; Bodino, 2002). This study focuses on racism in the United States, which extends from the foundation of the country, when black people were generally born into slavery, and were at any rate regarded as an inferior people. US racism stands out globally for two reasons. First, the country has played a hegemonic part in the World since soon after its foundation. Second, the US is regarded as the most advanced society technology-wise, as it sets the minutes for the technology sector worldwide. In spite of these advantages, the country has long suffered the plague of widespread racism. Indeed, the abolition of slavery in the mid-nineteenth century did not grant equal citizen rights to the black population. Over time, the black population started to confront this situation. Especially the mid-nineteenth century saw large uprisings and a patent division of different societal sectors, as reflected in literary works such as Ellison’s ‘Invisible Man’ (1952). Inequality and confrontation about racism has extended to date, and the costs thereof have been large in terms of lives and otherwise (Feagin, 2004).\nWith the era of global communication, what happens in the World’s most powerful country is quickly and largely spread overseas—so too with racism matters. The last major such event related to racism happened during the first weeks of July 2016. Within five days, two cases of dubious, lethal police intervention with black citizens were followed by the killing of five policemen by a black youth. The specific course of events was as follows. On July 5th, Alton Sterling was killed by police officers in Louisiana. Next day, Philando Castile was also killed by police. In this case, the presence of Castile’s girlfriend during the tragedy likely determined the following events, because she described the event to the media, underscoring how gratuitous the killing was. During the following hours, outrage escalated within the already-wary population of the US. Yet the crisis would not stop there. During one of the various demonstrations held across the country, a dozen policemen were shot by a sniper, leaving five of them dead. The attacker was a black youth linked to black militant groups which target the Establishment on the grounds of patent racial discrimination. We will refer to this concatenation of events as the Louisiana-Minnesota-Texas (LMT) crisis.1\nIn the welter of events in Louisiana, Minnesota and Texas, some journalists warned of the return of social divisions such as those from the mid-nineteenth century. Such divisions might lead some people to an incomplete perception of the situation, and thus hinder the achievement of any solutions. However, President Obama denied such divisions as he spoke at the funeral for the policemen killed. At the same time, he addressed each of the different groups in the problem, including Establishment institutions and black protesters, advising them all to exercise greater open-mindedness towards the other aspects and bands in the problem (see statement).\nIt must be noted that this small study is primarily a way for us to practise data analysis at a course. Neither the background nor the analyses make a realistic study of racism or the LMT crisis.\n\r2. Goals\rWe wanted to look at these developments from the scope of online data. For this purpose, we scraped online discussions on these developments from a variety of media sources, and within defined time frames in the crisis. We then probed for any noticeable fluctuations in the topics throughout the course of events, and also for any differences across the different media. In this analysis, we took an exploratory approach by means of topic modeling. We wanted to check, first, whether topic modeling would be sensitive and useful at all within such a compact time scale. Were it to allow us, we would analyze how the journalistic and the social media reflected any fluctuations based on the live developments in Louisiana, Minnesota and Texas. As such, the dependent variable (DV) in this study is the overall topic under discussion, which we measured via topic modeling. So, the language we analyze are messages related to the LMT crisis. Two factors are checked as potentially affecting the DV, namely Media and Time.\nThe Media factor regarded the three different sources of information from which we retrieved content, namely: (1) the New York Times (NYT), (2) public tweets related to the NYT, and (3) public comments on the NYT’s Facebook posts.\nThe Time factor was based on the following periods. The first period, from 2 to 4 July, was selected as a baseline during which no remarkable events racism-wise happened. The second period, including 5 and 6 July, contains the days when the two black citizens were killed by policemen. The third period, from 7 to 11 July, contains the aftermath of the crisis overall.\n\r3. Hypotheses\rWe had several hypotheses for our planned analyses. For the Media factor, we hypothesized a greater objectivity and formality overall for the NYT articles compared to the other two sources.\nWe did not have any hypotheses about the Time factor, i.e., the nature of any potential topic changes. In fact, we had considerable reservations as to whether any fluctuations would present, given the fact that the latent feeling of such a crisis might stay negative, critical and fearful from the start, regardless of particular events.\nWith respect to the interaction between the two factors, we hypothesized that the NYT articles would present the lowest degree of thematic variation, due to the fact that such journal pieces require time to investigate and write up—even if they are published online. Comparatively, popular comments on Twitter and Facebook would present more emotionality and subjectivity, and likely they would also present greater influence of immediate events. Furthermore, Twitter should be yet more immediate than Facebook.\nLast, with respect to the DV, we did not actually have any hypotheses about the nature of possible topic fluctuations.\n\r4. Methods\rOnline reactions to the LMT developments were scraped from various online sources. This content was constrained to language, bearing no extensions such as pictures or videos. In order to narrow the scope of the information, all scraped sources were related to The New York Times journal. The sources were, first, the NYT online edition (nytimes.com); second, public tweets related to NYT (@nytimes); and, third, public comments posted on the NYT page (@nytimes). Crucially, these sources are different in nature. Whereas the articles in the journal’s online edition broadly follow the standard article form of mainstream journals, Facebook comments on the page are aligned with the Facebook standards, that is, comparatively informal and outspoken. In accord, tweets referring to @nytimes follow the Twitter conventions, characterized by the 140-character restriction, and the relative immediacy of their information (Oh \u0026amp; Syn, 2015; Wang, He \u0026amp; Zhao, 2014; Josephson \u0026amp; Miller, 2015).\nThe method to scrape content related to the LMT crisis was through keywords. For the three media, the following keywords were entered, such that articles containing any of those words would be returned: ‘black’ OR ‘racism’ OR ‘police’ OR ‘dallas’ OR ‘alton’ OR ‘sterling’ OR ‘philando’ OR ‘castile.’ Further particulars are provided in turn.\nNew York Times. This scraping pipeline started from the official API site for NYT (https://developer.nytimes.com). Metadata was downloaded for 2,000 articles adjusting to the abovementioned keywords. This returned articles dating back to the start of the year. After preprocessing, 29 articles were returned for period 1; 53 for period 2; and 275 for period 3.\nTwitter. This scraping was performed through Geoff Jentry’s R package ‘twitteR’ (https://github.com/geoffjentry/twitteR). Here tweets were selected based on the same keywords, in addition to ‘@nytimes’. Due to the ten-day maximum range of Twitter’s API, no time range was entered. Retweets were removed. With the naked eye we realized that the tweets contained considerable information on Saudi events, we entered the word ‘saudi’ as a negative keyword. After preprocessing, 157 articles were returned for period 1; 489 for period 2; and 5025 for period 3.\nFacebook. The ‘RFacebook’ R package, by Pablo Barbera (https://github.com/pablobarbera/Rfacebook), was used for this scraping. The Facebook API currently allows for the download of all or any posts from one page, with no time restrictions (broader-search functions seem to have been deprecated). We downloaded any comments on the pages’ posts which adjusted to our keywords. After preprocessing, 195 articles were returned for period 1; 1107 for period 2; and 8724 for period 3.\nPreprocessing was performed equally for all sources—as standard in topic modeling, by removing non-relevant (‘stop-words’) and non-linguistic elements. Removed items included the names of the media, as well as numbers, punctuation, links, and technical signs such as @.\n\r5. Results\rOur hypothesis about the Media factor was only partially confirmed. First, sentiment analysis showed that NYT posts were very tempered, with an average sentiment score near 0. In contrast, Twitter presented a rather negative sentiment (Thelwall, Buckley, \u0026amp; Paltoglou, 2011; Saif, He, Fernandez, \u0026amp; Alani, 2016). Yet, to our surprise, Facebook came out with a neutrality close to that of NYT articles, even if there was greater variance among the scores of the Facebook posts. These overall tendencies are illustrated in the plot below. Caution must recommended, however, when considering this sentiment analysis, as this technique is arguably fuzzy generally, and especially so with data under such a tight time frame. This is the case because sentiment analysis, as other big data techniques, capitalizes on the size of data. What it lacks on the precision aspect, compared to null-significance hypothesis testing, for instance, it compensates with the size of the samples, in which the noise is suppressed by thousands of cases. In this case, however, the sampling within only nine days of unusual circumstances calls for circumspection.\nNext, topic modeling was conducted on each source separately. The parameters for topic discovery were entered based on several attempts with different numbers of topics (K) and internal-coherence thresholds (alpha). Finally, topics were selected alike for every source, K = 3, alpha = .2. Below, the first ten words for each topic in each source are shown (note that columns are aligned rightward).\nNew York Times articles\r## Foreign policy Shooting Elections\r## 1 said police new\r## 2 percent said one\r## 3 vote officers people\r## 4 year black can\r## 5 brexit dallas like\r## 6 will officer york\r## 7 since shooting trump\r## 8 european two july\r## 9 british shot even\r## 10 britain says just\r\rFacebook comments\r## Police People Black lives matter\r## 1 police people black\r## 2 gun will lives\r## 3 cops can matter\r## 4 people like white\r## 5 officers get people\r## 6 dont one racist\r## 7 just just blm\r## 8 man need police\r## 9 get dont blacks\r## 10 officer police obama\r\rTweets\r## Racism Dallas shooting Philando shooting\r## 1 black police police\r## 2 police dallas blacks\r## 3 white officers new\r## 4 lives killed shooting\r## 5 people protest philando\r## 6 racism shooting force\r## 7 amp shootings castile\r## 8 matter alton use\r## 9 stop sterling says\r## 10 cops baton violence\rTo start, it may stand out that different topics appear across sources, all the while some are indeed shared. This is perfectly normal for topic modeling on different sources, even when the same topic is being studied. Indeed, it is very relevant for us to remark on the inclusion of foreign affairs and election matters within the NYT articles, but not within people’s tweets and Facebook comments. This makes sense for several reasons. To start, the space a journalist counts on in a NYT article is considerable, compared to tweets, and also compared to ruling conventions of Facebook posts (users may write further, but the average simply will not). Second, the breadth of relation in NYT articles likely responds to the expectations from renown journalists to enrich the news with a broader contextualization. Furthermore, this extension of topics might correspond to the tacit but doubtless alignment of journals to concrete political agendas. While people commenting on Twitter or Facebook are plausibly characterized by just the same virtues and vices, their online reactions could be driven by more emotion and immediacy of focus than those of mass media journalists.\nFor greater visualization, we also provide some captions from the interactive LDAvis tool below. Please click on the figure titles to enjoy the full visualization.\n↑ LDAvis visualization of NYT articles (click to explore in detail)\r\r\n↑ LDAvis visualization of Facebook comments (click to explore in detail)\r\r\n↑ LDAvis visualization of tweets (click to explore in detail)\r\r\nIn order to specifically compare different content sources, we plotted the major language from two sources on the same plot, with an axis spanning from one source to the other, as shown below. The size of the words indicates the frequency of use, and the colour is essentially parallel with the axis, with specific different colours for different corpora, and darker hues for greater association.\n↑ Facebook comments and NYT articles\r\r↑ Facebook comments and tweets\r\r↑ Tweets and NYT articles\r\r\nWe went on to analyze the overlap in topics across journals, in order to quantitatively check whether some topics were indeed shared across sources, even if in different positions (for instance, topic 1 in some source and topic 3 in some other). We did this by means of cosine similarity scores. These scores represent the degree of similarity of two sources on a continuous scale from 0 to 1, where 1 would mean identical. The plots illustrate these comparisons in turn.\n↑ Similarity between Facebook comments and NYT articles\r↑ Similarity between Facebook comments and tweets\r↑ Similarity between tweets and NYT articles\rLast, the interaction of Time and Media was analyzed. As expected, we found differences in the way topics fluctuated over time in the different sources, albeit in unexpected ways. NYT and tweets articles presented great variation, suggesting day-bound sensitivity to the developments. This was to be expected from Twitter, as it is famous for its immediacy. However, the immediacy of NYT articles was rather surprising, as they might have lagged behind due to the necessary investigation and editing for such kind of journalistic pieces. Unlike traditional paper-based NYT articles, this immediacy is now enabled by the publication online. Another unexpected finding was the relative stillness of Facebook posts over time. Since they are published at the minute, and nowadays mostly from mobile, we had thought they would present greater immediacy than NYT articles. We could hypothesize on this, but this would be best analyzed in further research. The plot below illustrates this interaction.\n↑ Topic fluctuations over time for the three content sources\r\r\r\r6. Discussion\rIn this small-scale study, we analyzed the impact of a racism-related crisis in the American society online. This crisis started with the killing of two black citizens by policemen under dubious circumstances, which was followed by massive media attention and street demonstrations, and then continued to the fatal shooting of five policemen by a black militant (the crisis continued yet further after our analyses). The impact of this crisis was large, with a state funeral being organized for the killed policemen, and a presidential address warning of the direction of social tensions, and the need for greater empathy from all social sections involved.\nWe scraped the divided the social reaction to these events from three online sources, namely, the NYT online edition, public comments on the NYT Facebook page, and finally NYT-related tweets. The method was based on keywords highly relevant to this crisis, namely: ‘black’ OR ‘racism’ OR ‘police’ OR ‘dallas’ OR ‘alton’ OR ‘sterling’ OR ‘philando’ OR ‘castile’. We analyzed the Media factor and the Time factor separately, and more interestingly we looked at the interaction between these two factors.\nAs results, we found, first, that NYT articles were the most neutral, closely followed by Facebook posts. In contrast, tweets presented greater negativity overall. Next, we looked at topics within each time frame in each of the three sources. These topics differed across sources, even though there were also considerable overlaps. For instance, NYT articles and related tweets shared the content of their second topics, both of which revolved around ‘shooting.’ We went further to quantitatively measure any such overlaps or otherwise differences across sources. Cosine similarity—which ranges from 1, totally related, to 0, not related at all—confirmed our naked eye feeling. For instance, for the overlap between the aforementioned topics, there was a cosine similarity of .71. In contrast, a cosine of .03 came up for other comparisons, which also makes sense due to the intrinsic differences among these sources.\nLast, the interaction between Time and Source was qualitatively analyzed by means of a plot, and we found that Twitter and NYT articles were most sensitive to live developments in the crisis, whereas Facebook comments lagged behind in this immediacy. All of these findings were discussed within a framework of qualitative big data analysis.\nThe data mass probed in these analyses could be described as medium-sized data in the big data field. This field is relatively recent, and the successful, seminal examples we count on tend to feature larger sizes of data. In particular, for time frames, it is rather uncommon to find such a tight scale as we excerpted. This fact complicates the drawing of assured conclusions from our findings, because we lack well-known precedents along these lines.\n\rAdditional materials\rAll materials are made public on the RRisto GitHub page.\n\rReferences\rEllison, R. (1952). Invisible Man. New York: Random House.\nFeagin, J. R. (2004). Documenting the costs of slavery, segregation, and contemporary racism: Why reparations are in order for African Americans. Harvard BlackLetter Law Journal, 20, 49-81.\nJosephson, S., \u0026amp; Miller, J. S. (2015). Just state the facts on Twitter: Eye tracking shows that readers may ignore questions posted by news organizations on Twitter but not on Facebook. Visual Communication Quarterly, 22(2), 94-105.\nOh, S., \u0026amp; Syn, S. Y. (2015). Motivations for sharing information and social support in social media: A comparative analysis of Facebook, Twitter, Delicious, YouTube, and Flickr. Journal Of The Association For Information Science And Technology, 66(10), 2045-2060.\nReilly, K., Kaufman, S., \u0026amp; Bodino, A. (2003). Racism: A global reader. London: M. E. Sharpe\nSaif, H., He, Y., Fernandez, M., \u0026amp; Alani, H. (2016). Contextual semantics for sentiment analysis of Twitter. Information Processing And Management, 52(1), 5-19.\nThelwall, M., Buckley, K., \u0026amp; Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62(2), 406-418.\nWang, P., He, W., \u0026amp; Zhao, J. (2014). A Tale of Three Social Networks: User Activity Comparisons across Facebook, Twitter, and Foursquare. IEEE Internet Computing, 18(2), 10-15.\n\r\rA later update: On July 17, 2016—days after the current analysis—, the LMT crisis was extended with the killing of two policemen in the same Louisiana city where Alton Sterling had been killed.↩︎\n\r\r\r","date":1451606400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1451606400,"objectID":"1ed190c11c06905a7e0f3980ec6e9617","permalink":"https://pablobernabeu.github.io/2016/the-louisiana-minnesota-texas-crisis-across-media-and-time-a-big-data-exercise/","publishdate":"2016-01-01T00:00:00Z","relpermalink":"/2016/the-louisiana-minnesota-texas-crisis-across-media-and-time-a-big-data-exercise/","section":"post","summary":"Racism has long been ingrained in human societies. Ancient Greek Aristotle already claimed that non-Greeks were slaves by nature, as they easily submitted to despotic government (Reilly, Kaufman, \u0026 Bodino, 2002). This study focuses on racism in the United States, which extends from the foundation of the country, when black people were generally born into slavery, and were at any rate regarded as an inferior people. US racism stands out globally for two reasons. First, the country has played a hegemonic part in the World since soon after its foundation. Second, the US is regarded as the most advanced society technology-wise, as it sets the minutes for the technology sector worldwide. In spite of these advantages, the country has long suffered the plague of widespread racism. Indeed, the abolition of slavery in the mid-nineteenth century did not grant equal citizen rights to the black population. Over time, the black population started to confront this situation. Especially the mid-nineteenth century saw large uprisings and a patent division of different societal sectors, as reflected in literary works such as Ellison’s 'Invisible Man' (1952). Inequality and confrontation about racism has extended to date, and the costs thereof have been large in terms of lives and otherwise (Feagin, 2004).","tags":["big data","data mining","racism","web scraping","R","API","social media","news media"],"title":"The Louisiana-Minnesota-Texas crisis across media and time: A big data exercise","type":"post"},{"authors":"","categories":["psycholinguistics"],"content":"\r\n\r\n\r\n","date":1446249600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1446249600,"objectID":"8f4671e0904b851cbe979d4874f833c5","permalink":"https://pablobernabeu.github.io/2015/conceptual-modality-switch-effect-measured-at-first-word/","publishdate":"2015-10-31T00:00:00Z","relpermalink":"/2015/conceptual-modality-switch-effect-measured-at-first-word/","section":"post","summary":"Traditionally, the second word presented (whether noun or adjective) has been the point of measure, both for RTs and ERPs. Yet, could it be better to measure at the first word?","tags":["psycholinguistics","conceptual modality switch","conceptual processing","word recognition","semantic processing","event-related potentials","embodied cognition","s"],"title":"Conceptual modality switch effect measured at first word?","type":"post"},{"authors":["Bernabeu, P., \u0026 Vogt, P."],"categories":["evolution of language"],"content":"Reference Bernabeu, P., \u0026amp; Vogt, P. (2015). Language evolution: Current status and future directions. Tenth Language at the University of Essex (LangUE) Postgraduate Conference. https://researchgate.net/publication/280858062/\n\r","date":1420070400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1420070400,"objectID":"139129944442d259234f2f3367f68490","permalink":"https://pablobernabeu.github.io/publication/bernabeu_vogt2015/","publishdate":"2015-01-01T00:00:00Z","relpermalink":"/publication/bernabeu_vogt2015/","section":"publication","summary":"The topic of language evolution is characterised by the scarcity of records, but also by a large flow of research produced within multiple subtopics and perspectives. Over the past few decades, significant advancement has been made on the geographical and temporal origins of language, while current work is rather devoted to the underpinnings of language, in brain, genes, body, and culture of humans. Much of this literature is polarized over the crucial dichotomy of nativism versus emergentism. Our state of affairs report also confirms a high degree of speculation, albeit with a decrease for modelling. To tackle the speculation and the large research flow, we propose a more impersonal kind of review, focused on the topic’s questions rather than on particular accounts. Another observation is that novel perspectives are on the rise. One of these highlights the importance of perceptual cognition, often dubbed ‘embodiment,’ in the earlier evolution of language. In following this lead, we adapted a previous experiment which had investigated the correspondence between certain perceptual features of events, and different grammatical orders arising as participants acted out those events. That design made a perfect basis for us to put in an additional variable, namely the contrast between body-based communication (gestures), and more disembodied communication (symbol matching). Albeit tentative, the results of this pilot experiment reveal a greater effect of the embodiment variable on the grammatical preferences, which we see as inviting further exploration of embodied cognition in language evolution.","tags":["language evolution","linguistics"],"title":"Language evolution: Current status and future directions","type":"publication"},{"authors":null,"categories":null,"content":"","date":-62135596800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":-62135596800,"objectID":"e7104c9482fe7df2270c530525ed356d","permalink":"https://pablobernabeu.github.io/1/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/1/","section":"post","summary":"","tags":null,"title":"","type":"post"}] \ No newline at end of file +[{"authors":["admin"],"categories":null,"content":"After completing a research master's, I became a PhD student and graduate teaching assistant in Psychology at Lancaster University. In my thesis, I investigated how conceptual processing—that is, the comprehension of the meaning of words—is supported by linguistic and sensorimotor brain systems, and how research on this topic is influenced by methodological aspects such as the operationalisation of variables and the sample size of experiments.\nCurrently, I am a postdoctoral fellow at UiT The Arctic University of Norway. I work at the Department of Language and Culture, and specifically within the PoLaR Lab and C-LaBL. As the local manager of the LESS Project (Language Economy through Transfer Source Selectivity), I work on a six-session longitudinal study that investigates how bilingual people acquire an additional language, how this process is influenced by the characteristics of the languages, and how the process is instantiated in the brain. As part of this work so far, I contributed to the design of our study, developed most of the materials for our study and for a partner study in Spain, documented the creation of the materials and pretested them, wrote a preregistration, recruited participants, designed the protocol for the electroencephalography (EEG) sessions, trained students and research assistants in this protocol and in EEG more generally, set up and managed an EEG lab, conducted many of the sessions and oversaw those conducted by our research assistants, monitored the longitudinal progress per participant, presented the design of the study at conferences, preprocessed the EEG and behavioural data in collaboration with research assistants, and performed the statistical analysis.\nI am also interested in the relationships between language and other cognitive domains, as well as in the origins and evolution of language.\nI employ a range of tools, including behavioural and electroencephalographic experiments, corpus analysis, statistics and programming.\nThe materials from my research are available at https://osf.io/25u3x, and my CV is available here.\n","date":-62135596800,"expirydate":-62135596800,"kind":"section","lang":"en","lastmod":-62135596800,"objectID":"2525497d367e79493fd32b198b28f040","permalink":"https://pablobernabeu.github.io/authors/admin/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/authors/admin/","section":"authors","summary":"After completing a research master's, I became a PhD student and graduate teaching assistant in Psychology at Lancaster University. In my thesis, I investigated how conceptual processing—that is, the comprehension of the meaning of words—is supported by linguistic and sensorimotor brain systems, and how research on this topic is influenced by methodological aspects such as the operationalisation of variables and the sample size of experiments.\nCurrently, I am a postdoctoral fellow at UiT The Arctic University of Norway.","tags":null,"title":"Pablo Bernabeu","type":"authors"},{"authors":["González Alonso, J., Bernabeu, P., Silva, G., DeLuca, V., Poch, C., Ivanova, I., \u0026 Rothman, J."],"categories":["research methods","psycholinguistics"],"content":"\rReference\rGonzález Alonso, J., Bernabeu, P., Silva, G., DeLuca, V., Poch, C., Ivanova, I., \u0026amp; Rothman, J. (2024). Starting from the very beginning: Unraveling third language (L3) development with longitudinal data from artificial language learning and related epistemology. International Journal of Multilingualism, 1(22). https://doi.org/10.1080/14790718.2024.2415993\n\rAddendum\rMaterials\rDocumentation practices and open-source software (namely, R and OpenSesame) were used to prepare the materials for the current study. In previous similar studies, the materials have not generally been very Findable, Accessible, Interoperable or Reusable (Cross et al., 2021; González Alonso et al., 2020; Mitrofanova et al., 2023; Morgan-Short et al., 2012; Pereira Soares et al., 2022). In contrast, in our current study, the stimuli were prepared in R using a modular framework that consisted of interoperable components (se https://osf.io/974k8). The modularity of this method facilitates the expansion of the materials within the same languages and to other languages. Specifically, the minimal components of each language were contained in a base file in the ‘stimulus_preparation’ folder. Furthermore, for the creation of the final stimuli, several controls were exerted to prevent spurious effects. For instance, gender and number were counterbalanced across experimental conditions, words were rotated across grammatical properties and sessions, and frequency of occurrence was controlled. The final stimuli can be recreated using the script ‘compile_all_stimuli.R’, and the resulting stimuli are saved to the ‘session_materials’ folder. Furthermore, the final stimuli were presented using OpenSesame, which is a free-of-charge software supporting experiments in the social sciences. The implementation of the four lab-based sessions in OpenSesame involved the use of conditions for controlling the engagement of certain items. In conclusion, the materials of the current study are accessible, and the workflow is reproducible. As a result, the final materials are testable, modifiable and expandable, improving long-term efficiency.\n\rAcknowledgements\rBelow, we gratefully acknowledge the help and advice we received from many of our colleagues and students.\n\rMona Kirkness Fossum (translation of stimuli)\rGaute Berglund, Anders Gabrielsen, Tekabe Legesse Feleke, My Ngoc Giang Hoang (piloting of sessions)\n\rBjörn Lundquist (OpenSesame)\n\rTeodóra Vékony (alternating serial reaction time task)\n\rAntonio Fábregas, Natalia Mitrofanova, Yulia Rodina, Marit Westergaard (study design and translations)\n\rMerete Anderssen, Fatih Bayram (recruitment)\n\r\r\r\rLay summary\rDo people learn a third language differently from their second one? For those already fluent in two languages, acquiring a third one introduces specific complexities. We are investigating this process using artificial languages, which allow for precise control and observation of the learning experience.\nIn this study, we developed ‘mini-languages’ that replicate grammatical structures of real languages while minimising the need to learn a new vocabulary. The study, conducted in Norway and Spain, follows participants over time, aiming to understand how previous bilingual experience—especially based on structural similarities between languages—influences the learning of a new language.\nBy using electroencephalography to monitor brain activity, we will examine which prior language(s) serve as sources of transfer in the learning of the new language. This line of inquiry is guided by previous findings in third language acquisition suggesting that learners might rely on both previous languages, though one may be more—or uniquely—influential at the onset of learning.\nThe study also examines how core cognitive functions—specifically, working memory, inhibitory control and implicit learning—may affect learning outcomes. Similar to how focusing in a noisy environment requires specific mental skills, third language acquisition may depend on particular cognitive abilities. For instance, participants with strong working memory might have an advantage in recognising patterns or recalling grammatical rules.\nBy better understanding the processes of third language acquisition, this work could also contribute to broader inquiries in cognitive science regarding how we use existing knowledge to adapt to new tasks.\n\rRelated references\rAbbas, N., Degani, T., \u0026amp; Prior, A. (2021). Equal Opportunity Interference: Both L1 and L2 Influence L3 Morpho-Syntactic Processing. Frontiers in Psychology, 12, 673535. https://doi.org/10.3389/fpsyg.2021.673535\nAdelhöfer, N., \u0026amp; Beste, C. (2019). Validity expectancies shape the interplay of cueing and task demands during inhibitory control associated with right inferior frontal regions. Brain Structure and Function, 224(5), 1911–1924. https://doi.org/10.1007/s00429-019-01884-y\nAdelhöfer, N., Gohil, K., Passow, S., Teufert, B., Roessner, V., Li, S., \u0026amp; Beste, C. (2018). The system‐neurophysiological basis for how methylphenidate modulates perceptual–attentional conflicts during auditory processing. Human Brain Mapping, 39(12), 5050–5061. https://doi.org/10.1002/hbm.24344\nAdelhöfer, N., Schreiter, M. L., \u0026amp; Beste, C. (2020). Cardiac cycle gated cognitive-emotional control in superior frontal cortices. NeuroImage, 222, 117275. https://doi.org/10.1016/j.neuroimage.2020.117275\nÅgren, M., Michot, M.-E., Granget, C., Gerolimich, S., Hadermann, P., \u0026amp; Stabarin, I. (2020). “Les copains dit au revoir”: On Subject–Verb Agreement in L2 French and Cross-Linguistic Influence. Languages, 6*(1), 7. https://doi.org/10.3390/languages6010007\nAguasvivas, J. A., \u0026amp; Carreiras, M. (2022). Bilingualism, Foreign Language Learning, and Cognition: Insights for Education. In M. V. Alves, R. Ekuni, M. J. Hermida, \u0026amp; J. Valle-Lisboa (Eds.), Cognitive Sciences and Education in Non-WEIRD Populations (pp. 153–168). Springer International Publishing. https://doi.org/10.1007/978-3-031-06908-6_10\nAlarcón, I. (2021). Adjectival and verbal agreement in the oral production of early and late bilinguals: Fluency, complexity, and integrated knowledge. Revista Española de Lingüística Aplicada/Spanish Journal of Applied Linguistics, 34(2), 371–401. https://doi.org/10.1075/resla.19050.ala\nAlbirini, A., Saadah, E., \u0026amp; Alhawary, M. T. (2020). L1 and L2 transfer to L3 in L3 and L2 learners of Standard Arabic. Linguistic Approaches to Bilingualism, 10(6), 745–774. https://doi.org/10.1075/lab.18013.alb\nAlemán Bañón, J., Fiorentino, R., \u0026amp; Gabriele, A. (2018). Using event-related potentials to track morphosyntactic development in second language learners: The processing of number and gender agreement in Spanish. PLOS ONE, 13(7), e0200791. https://doi.org/10.1371/journal.pone.0200791\nAlemán Bañón, J., Fiorentino, R., \u0026amp; Gabriele, A. (2023). The Neurolinguistics of the Second Language Syntactic System. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 133–147). Routledge. https://doi.org/10.4324/9781003190912-13\nAlemán Bañón, J., \u0026amp; Martin, C. (2021). The role of crosslinguistic differences in second language anticipatory processing: An event-related potentials study. Neuropsychologia, 155, 107797. https://doi.org/10.1016/j.neuropsychologia.2021.107797\nAlemán Bañón, J., \u0026amp; Rothman, J. (2019). Being a Participant Matters: Event-Related Potentials Show That Markedness Modulates Person Agreement in Spanish. Frontiers in Psychology, 10, 746. https://doi.org/10.3389/fpsyg.2019.00746\nAl-Ezzi, A., Kamel, N., Faye, I., \u0026amp; Gunaseli, E. (2020). Review of EEG, ERP, and Brain Connectivity Estimators as Predictive Biomarkers of Social Anxiety Disorder. Frontiers in Psychology, 11, 730. https://doi.org/10.3389/fpsyg.2020.00730\nAlhawary, M. T. (Ed.). (2018). The Routledge Handbook of Arabic Second Language Acquisition (1st ed.). Routledge. https://doi.org/10.4324/9781315674261\nAllgäuer-Hackl, E., \u0026amp; Jessner, U. (2019). 15. Cross-linguistic Interaction and Multilingual Awareness. In S. Montanari \u0026amp; S. Quay (Eds.), Multidisciplinary Perspectives on Multilingualism (pp. 325–350). De Gruyter. https://doi.org/10.1515/9781501507984-015\nAlyan, E., Wascher, E., Arnau, S., Kaesemann, R., \u0026amp; Reiser, J. E. (2023). Operator State in a Workplace Simulation Modulates Eye-Blink Related EEG Activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 1167–1179. https://doi.org/10.1109/TNSRE.2023.3241962\nAmaro, J. C., \u0026amp; Iverson, M. (2018a). Third Language Acquisition. In K. L. Geeslin (Ed.), The Cambridge Handbook of Spanish Linguistics (1st ed., pp. 737–757). Cambridge University Press. https://doi.org/10.1017/9781316779194.034\nAmaro, J. C., \u0026amp; Iverson, M. (2018b). Third Language Acquisition. In K. L. Geeslin (Ed.), The Cambridge Handbook of Spanish Linguistics (1st ed., pp. 737–757). Cambridge University Press. https://doi.org/10.1017/9781316779194.034\nAmora, K. K., Tretow, A., Verwimp, C., Tijms, J., Leppänen, P. H. T., \u0026amp; Csépe, V. (2022). Typical and Atypical Development of Visual Expertise for Print as Indexed by the Visual Word N1 (N170w): A Systematic Review. Frontiers in Neuroscience, 16, 898800. https://doi.org/10.3389/fnins.2022.898800\nAmoruso, L., García, A. M., Pusil, S., Timofeeva, P., Quiñones, I., \u0026amp; Carreiras, M. (2024). Decoding bilingualism from resting‐state oscillatory network organization. Annals of the New York Academy of Sciences, 1534(1), 106–117. https://doi.org/10.1111/nyas.15113\nAndersen, S.-O. (2020). Toward Real-life Teaching: Theories and Students’ Perceptive Hypothesis Concerning Technology-enhanced Approaches in the L3 German Classroom. In P.-A. Mather (Ed.), Technology-enhanced Learning and Linguistic Diversity: Strategies and Approaches to Teaching Students in a 2nd or 3rd Language (pp. 75–90). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83982-128-820201006\nAnderson, N. E., Maurer, J. M., Steele, V. R., \u0026amp; Kiehl, K. A. (2018). Psychopathic traits associated with abnormal hemodynamic activity in salience and default mode networks during auditory oddball task. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 18(3), 564–580. https://doi.org/10.3758/s13415-018-0588-2\nAndersson, A., Sayehli, S., \u0026amp; Gullberg, M. (2019). Language background affects online word order processing in a second language but not offline. Bilingualism: Language and Cognition, 22(04), 802–825. https://doi.org/10.1017/S1366728918000573\nAndriani, L., D’Alessandro, R., Frasson, A., Van Osch, B., Sorgini, L., \u0026amp; Terenghi, S. (2022). Adding the microdimension to the study of language change in contact. Three case studies. Glossa: A Journal of General Linguistics, 7(1). https://doi.org/10.16995/glossa.5748\nAngelovska, T. (2022). 4 The Multilingual Language Classroom: Applying Linguistically Diverse Approaches for Handling Prior Languages in Teaching English as a Third Language. In A. Krulatz, G. Neokleous, \u0026amp; A. Dahl (Eds.), Theoretical and Applied Perspectives on Teaching Foreign Languages in Multilingual Settings (pp. 67–81). Multilingual Matters. https://doi.org/10.21832/9781788926423-009\nAngelovska, T., Roehm, D., \u0026amp; Weinmüller, S. (2023). Uncovering transfer effects of dominance and proficiency in L3 English acquisition using the visual moving window paradigm and grammaticality judgments. Applied Linguistics Review, 14(1), 115–143. https://doi.org/10.1515/applirev-2019-0075\nAntonicelli, G., \u0026amp; Rastelli, S. (2023). Event-related potentials in the study of L2 sentence processing: A scoping review of the decade 2010-2020. Language Acquisition, 30(2), 163–200. https://doi.org/10.1080/10489223.2022.2141633\nAraujo, F. A., Jacobi, E. B., Avila-Souza, J., Rodrigues, J. F., Moioli, R. C., Araujo, M. F. P., \u0026amp; Peres, A. S. C. (2019). Characterization of Auditory Evoked Potential for Different Tones in Marmoset Primary Auditory Cortex. In R. Costa-Felix, J. C. Machado, \u0026amp; A. V. Alvarenga (Eds.), XXVI Brazilian Congress on Biomedical Engineering (Vol. 70/2, pp. 95–101). Springer Singapore. https://doi.org/10.1007/978-981-13-2517-5_15\nArchibald, J. (2021). Turtles all the way down: Micro-cues and piecemeal transfer in L3 phonology and syntax. Second Language Research, 37(3), 415–421. https://doi.org/10.1177/0267658320941036\nArchibald, J. (2022). Segmental and Prosodic Evidence for Property-by-Property Transfer in L3 English in Northern Africa. Languages, 7(1), 28. https://doi.org/10.3390/languages7010028\nArchibald, J. (2023a). Phonological parsing via an integrated I-language: The emergence of property-by-property transfer effects in L3 phonology. Linguistic Approaches to Bilingualism, 13(6), 743–766. https://doi.org/10.1075/lab.21017.arc\nArchibald, J. (2023b). Using a contrastive hierarchy to formalize structural similarity as I-proximity in L3 phonology. Linguistic Approaches to Bilingualism, 13(5), 614–637. https://doi.org/10.1075/lab.22051.arc\nArchibald, J. (2024a). Chapter 11. “And yet it moves”: Finding a place for phonology in the GenSLA cosmos. In M. Velnić, A. Dahl, \u0026amp; K. F. Listhaug (Eds.), Language Acquisition and Language Disorders (Vol. 70, pp. 264–289). John Benjamins Publishing Company. https://doi.org/10.1075/lald.70.11arc\nArchibald, J. (2024b). Phonology in Multilingual Grammars: Representational Complexity and Linguistic Interfaces (1st ed.). Oxford University PressNew York. https://doi.org/10.1093/oso/9780190923334.001.0001\nArıbaş, D. Ş., \u0026amp; Cele, F. (2021). Acquisition of articles in L2 and L3 English: The influence of L2 proficiency on positive transfer from L2 to L3. Journal of Multilingual and Multicultural Development, 42(1), 19–36. https://doi.org/10.1080/01434632.2019.1667364\nArmstrong, A., Bulkes, N., \u0026amp; Tanner, D. (2018). QUANTIFICATIONAL CUES MODULATE THE PROCESSING OF ENGLISH SUBJECT-VERB AGREEMENT BY NATIVE CHINESE SPEAKERS: AN ERP STUDY. Studies in Second Language Acquisition, 40(4), 731–754. https://doi.org/10.1017/S0272263118000013\nBabaeeghazvini, P., Rueda-Delgado, L. M., Gooijers, J., Swinnen, S. P., \u0026amp; Daffertshofer, A. (2021). Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Frontiers in Human Neuroscience, 15, 721206. https://doi.org/10.3389/fnhum.2021.721206\nBabaie-Janvier, T., \u0026amp; Robinson, P. A. (2020). Neural Field Theory of Evoked Response Potentials With Attentional Gain Dynamics. Frontiers in Human Neuroscience, 14, 293. https://doi.org/10.3389/fnhum.2020.00293\nBagherzadeh, Y., Baldauf, D., Pantazis, D., \u0026amp; Desimone, R. (2020). Alpha Synchrony and the Neurofeedback Control of Spatial Attention. Neuron, 105(3), 577-587.e5. https://doi.org/10.1016/j.neuron.2019.11.001\nBailey, N. W., Hill, A. T., Biabani, M., Murphy, O. W., Rogasch, N. C., McQueen, B., Miljevic, A., \u0026amp; Fitzgerald, P. B. (2023). RELAX part 2: A fully automated EEG data cleaning algorithm that is applicable to Event-Related-Potentials. Clinical Neurophysiology, 149, 202–222. https://doi.org/10.1016/j.clinph.2023.01.018\nBañón, J. A., Miller, D., \u0026amp; Rothman, J. (2021). EXAMINING THE CONTRIBUTION OF MARKEDNESS TO THE L2 PROCESSING OF SPANISH PERSON AGREEMENT: AN EVENT‑RELATED POTENTIALS STUDY. Studies in Second Language Acquisition, 43(4), 699–728. https://doi.org/10.1017/S0272263120000479\nBaptista, M. (2020). Competition, selection, and the role of congruence in Creole genesis and development. Language, 96(1), 160–199. https://doi.org/10.1353/lan.2020.0005\nBar On, S., \u0026amp; Meir, N. (2022). Requests and apologies in two languages among bilingual speakers: A comparison of heritage English speakers and English- and Hebrew-dominant bilinguals. Frontiers in Psychology, 13, 1017715. https://doi.org/10.3389/fpsyg.2022.1017715\nBarbey, F. M., Farina, F. R., Buick, A. R., Danyeli, L., Dyer, J. F., Islam, Md. N., Krylova, M., Murphy, B., Nolan, H., Rueda-Delgado, L. M., Walter, M., \u0026amp; Whelan, R. (2022). Neuroscience from the comfort of your home: Repeated, self-administered wireless dry EEG measures brain function with high fidelity. Frontiers in Digital Health, 4, 944753. https://doi.org/10.3389/fdgth.2022.944753\nBardel, C., \u0026amp; Falk, Y. (2021). L1, L2 and L3: Same or different? Second Language Research, 37(3), 459–464. https://doi.org/10.1177/0267658320941033\nBardel, C., Gyllstad, H., \u0026amp; Tholin, J. (2023). Research on foreign language learning, teaching, and assessment in Sweden 2012–2021. Language Teaching, 56(2), 223–260. https://doi.org/10.1017/S0261444823000022\nBarkov, M., Santiago, F., \u0026amp; Peralta, T. (2022). Production of Vowel Reduction by Mexican Learners of English as L2 and Russian as L3. Canadian Journal of Linguistics/Revue Canadienne de Linguistique, 67(1–2), 88–117. https://doi.org/10.1017/cnj.2022.6\nBarwasser, A., Calhoon, M. B., Knaak, T., \u0026amp; Grünke, M. (2024). English L2 vocabulary acquisition through storytelling for adolescents with and without learning disabilities. Language Teaching Research, 13621688241263492. https://doi.org/10.1177/13621688241263492\nBauer, A.-K. R., Bleichner, M. G., Jaeger, M., Thorne, J. D., \u0026amp; Debener, S. (2018a). Dynamic phase alignment of ongoing auditory cortex oscillations. NeuroImage, 167, 396–407. https://doi.org/10.1016/j.neuroimage.2017.11.037\nBauer, A.-K. R., Bleichner, M. G., Jaeger, M., Thorne, J. D., \u0026amp; Debener, S. (2018b). Dynamic phase alignment of ongoing auditory cortex oscillations. NeuroImage, 167, 396–407. https://doi.org/10.1016/j.neuroimage.2017.11.037\nBayram, F., \u0026amp; Rothman, J. (2020). Formal Linguistics and Language Education: A View from Bilingualism Research. In A. Trotzke \u0026amp; T. Kupisch (Eds.), Formal Linguistics and Language Education (Vol. 43, pp. 11–19). Springer International Publishing. https://doi.org/10.1007/978-3-030-39257-4_2\nBeatty‐Martínez, A. L., Bruni, M. R., Bajo, M. T., \u0026amp; Dussias, P. E. (2021). Brain potentials reveal differential processing of masculine and feminine grammatical gender in native Spanish speakers. Psychophysiology, 58(3), e13737. https://doi.org/10.1111/psyp.13737\nBenmamoun, E., \u0026amp; Albirini, A. (2018a). IS LEARNING A STANDARD VARIETY SIMILAR TO LEARNING A NEW LANGUAGE?: Evidence from Heritage Speakers of Arabic. Studies in Second Language Acquisition, 40(1), 31–61. https://doi.org/10.1017/S0272263116000383\nBenmamoun, E., \u0026amp; Albirini, A. (2018b). IS LEARNING A STANDARD VARIETY SIMILAR TO LEARNING A NEW LANGUAGE?: Evidence from Heritage Speakers of Arabic. Studies in Second Language Acquisition, 40(1), 31–61. https://doi.org/10.1017/S0272263116000383\nBensmann, W., Roessner, V., Stock, A.-K., \u0026amp; Beste, C. (2018). Catecholaminergic Modulation of Conflict Control Depends on the Source of Conflicts. International Journal of Neuropsychopharmacology, 21(10), 901–909. https://doi.org/10.1093/ijnp/pyy063\nBensmann, W., Vahid, A., Beste, C., \u0026amp; Stock, A.-K. (2019). The Intensity of Early Attentional Processing, but Not Conflict Monitoring, Determines the Size of Subliminal Response Conflicts. Frontiers in Human Neuroscience, 13, 53. https://doi.org/10.3389/fnhum.2019.00053\nBensmann, W., Zink, N., Arning, L., Beste, C., \u0026amp; Stock, A.-K. (2020). Dopamine D1, but not D2, signaling protects mental representations from distracting bottom-up influences. NeuroImage, 204, 116243. https://doi.org/10.1016/j.neuroimage.2019.116243\nBerthele, R. (2021). The Extraordinary Ordinary: Re‐engineering Multilingualism as a Natural Category. Language Learning, 71(S1), 80–120. https://doi.org/10.1111/lang.12407\nBeste, C., Mückschel, M., Rosales, R., Domingo, A., Lee, L., Ng, A., Klein, C., \u0026amp; Münchau, A. (2018). The Basal Ganglia Striosomes Affect the Modulation of Conflicts by Subliminal Information—Evidence from X-Linked Dystonia Parkinsonism. Cerebral Cortex, 28(7), 2243–2252. https://doi.org/10.1093/cercor/bhx125\nBeste, C., Stock, A.-K., Zink, N., Ocklenburg, S., Akgün, K., \u0026amp; Ziemssen, T. (2019). How minimal variations in neuronal cytoskeletal integrity modulate cognitive control. NeuroImage, 185, 129–139. https://doi.org/10.1016/j.neuroimage.2018.10.053\nBi, X. Y., Ma, X., Abulaiti, A., Yang, J., \u0026amp; Tao, Y. (2022). The influence of pride emotion on executive function: Evidence from ERP. Brain and Behavior, 12(8), e2678. https://doi.org/10.1002/brb3.2678\nBialystok, E. (2024). Bilingualism modifies cognition through adaptation, not transfer. Trends in Cognitive Sciences, 28(11), 987–997. https://doi.org/10.1016/j.tics.2024.07.012\nBian, J., Zhang, H., \u0026amp; Sun, C. (2021). An ERP Study on Attraction Effects in Advanced L2 Learners. Frontiers in Psychology, 12, 616804. https://doi.org/10.3389/fpsyg.2021.616804\nBice, K., Yamasaki, B. L., \u0026amp; Prat, C. S. (2020). Bilingual Language Experience Shapes Resting-State Brain Rhythms. Neurobiology of Language, 1(3), 288–318. https://doi.org/10.1162/nol_a_00014\nBitner, R. A., \u0026amp; Le, N.-T. (2022). Can EEG-devices differentiate attention values between incorrect and correct solutions for problem-solving tasks? Journal of Information and Telecommunication, 6(2), 121–140. https://doi.org/10.1080/24751839.2021.1950319\nBitner, R., Le, N.-T., \u0026amp; Pinkwart, N. (2020). A Concurrent Validity Approach for EEG-Based Feature Classification Algorithms in Learning Analytics. In N. T. Nguyen, B. H. Hoang, C. P. Huynh, D. Hwang, B. Trawiński, \u0026amp; G. Vossen (Eds.), Computational Collective Intelligence (Vol. 12496, pp. 568–580). Springer International Publishing. https://doi.org/10.1007/978-3-030-63007-2_44\nBodmer, B., Mückschel, M., Roessner, V., \u0026amp; Beste, C. (2017). Neurophysiological variability masks differences in functional neuroanatomical networks and their effectiveness to modulate response inhibition between children and adults. Brain Structure and Function. https://doi.org/10.1007/s00429-017-1589-6\nBoetzel, C., Stecher, H. I., \u0026amp; Herrmann, C. S. (2024). Aligning Event-Related Potentials with Transcranial Alternating Current Stimulation for Modulation—A Review. Brain Topography, 37(6), 933–946. https://doi.org/10.1007/s10548-024-01055-1\nBoetzel, C., Stecher, H. I., Kasten, F. H., \u0026amp; Herrmann, C. S. (2024). Modulating the difficulty of a visual oddball-like task and P3m amplitude. Scientific Reports, 14(1), 1505. https://doi.org/10.1038/s41598-023-50857-z\nBohnacker, U. (2021). On transfer and third language acquisition: A commentary on Schwartz \u0026amp; Sprouse. Linguistic Approaches to Bilingualism, 11(1), 37–44. https://doi.org/10.1075/lab.20101.boh\nBojorges-Valdez, E., \u0026amp; Yanez-Suarez, O. (2018). Association between EEG spectral power dynamics and event related potential amplitude on a P300 speller. Biomedical Physics \u0026amp; Engineering Express, 4(2), 025028. https://doi.org/10.1088/2057-1976/aaa15e\nBolibaugh, C., \u0026amp; Foster, P. (2021). Implicit Statistical Learning in Naturalistic and Instructed Morphosyntactic Attainment: An Aptitude‐Treatment Interaction Design. Language Learning, 71(4), 959–1003. https://doi.org/10.1111/lang.12465\nBordag, D., \u0026amp; Opitz, A. (2022). Employing General Linguistic Knowledge in Incidental Acquisition of Grammatical Properties of New L1 and L2 Lexical Representations: Toward Reducing Fuzziness in the Initial Ontogenetic Stage. Frontiers in Psychology, 12, 768362. https://doi.org/10.3389/fpsyg.2021.768362\nBorra, D., Magosso, E., Castelo-Branco, M., \u0026amp; Simões, M. (2022). A Bayesian-optimized design for an interpretable convolutional neural network to decode and analyze the P300 response in autism. Journal of Neural Engineering, 19(4), 046010. https://doi.org/10.1088/1741-2552/ac7908\nBranets, A., \u0026amp; Backus, A. (2020). L2 knowledge facilitating L3 learning: The role of Russian linguistic factors in understanding of Ukrainian by Estonians. Philologia Estonica Tallinnensis, 5. https://doi.org/10.22601/PET.2020.05.02\nBringas Vega, M. L., Liu, S., Zhang, M., Pedroso Ibañez, I., Morales Chacon, L. M., Galan Garcia, L., Perez Bocourt, V., Jahanshahi, M., \u0026amp; Valdes-Sosa, P. A. (2020). Flanker Task-Elicited Event-Related Potential Sources Reflect Human Recombinant Erythropoietin Differential Effects on Parkinson’s Patients. Parkinson’s Disease, 2020, 1–10. https://doi.org/10.1155/2020/8625794\nBrown-Bousfield, M. M., \u0026amp; Chang, C. B. (2023). Regressive cross-linguistic influence in multilingual speech rhythm: The role of language similarity. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 49–71). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.03bro\nBruchmann, M., Schindler, S., \u0026amp; Straube, T. (2020). The spatial frequency spectrum of fearful faces modulates early and mid‐latency ERPs but not the N170. Psychophysiology, 57(9), e13597. https://doi.org/10.1111/psyp.13597\nBusterud, G., Dahl, A., Kush, D., \u0026amp; Listhaug, K. F. (2023). Verb placement in L3 French and L3 German: The role of language-internal factors in determining cross-linguistic influence from prior languages. Linguistic Approaches to Bilingualism, 13(5), 693–716. https://doi.org/10.1075/lab.22058.bus\nCabrelli, J., \u0026amp; Iverson, M. (2024). Why do learners overcome non-facilitative transfer faster from an L2 than an L1? The cumulative input threshold hypothesis. International Journal of Multilingualism, 21(3), 1594–1620. https://doi.org/10.1080/14790718.2023.2200252\nCabrelli, J., Iverson, M., Giancaspro, D., \u0026amp; Halloran González, B. (2020). The roles of L1 Spanish versus L2 Spanish in L3 Portuguese morphosyntactic development. In K. V. Molsing, C. Becker Lopes Perna, \u0026amp; A. M. Tramunt Ibaños (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 24, pp. 11–33). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.24.01cab\nCabrelli, J., \u0026amp; Pichan, C. (2021). Initial phonological transfer in L3 Brazilian Portuguese and Italian. Linguistic Approaches to Bilingualism, 11(2), 131–167. https://doi.org/10.1075/lab.18048.cab\nCabrelli, J., Pichan, C., Ward, J., Rothman, J., \u0026amp; Serratrice, L. (2023). Factors that moderate global similarity in initial L3 transfer: Intervocalic voiced stops in heritage Spanish/English bilinguals’ L3 Italian. Linguistic Approaches to Bilingualism, 13(5), 638–662. https://doi.org/10.1075/lab.22062.cab\nCabrelli, J., \u0026amp; Puig-Mayenco, E. (2021). Theoretical and methodological considerations for a robust evaluation of the Linguistic Proximity Model. Second Language Research, 37(3), 465–471. https://doi.org/10.1177/0267658320943661\nCabuk-Balli, S. (2023). Gauging sensitivity to grammaticality violations of adpositional phrases: Self-paced reading evidence from third language acquisition. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 205–235). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.09cab\nÇabuk-Ballı, S. (2023). Cross-linguistic influence in the acquisition of adpositions in L3. International Journal of Multilingualism, 20(3), 697–716. https://doi.org/10.1080/14790718.2021.1914061\nCaffarra, S., Dias, P., \u0026amp; Costello, B. (2020). The learnability of gender agreement in Spanish bilinguals. In M. Schlechtweg (Ed.), The Learnability of Complex Constructions (pp. 183–218). De Gruyter. https://doi.org/10.1515/9783110695113-008\nCai, C., Zhang, L., Quan, Z., Fang, X., Cai, S., \u0026amp; Zhang, J. (2024). Search flavor labels in beverages: An electrophysiological investigation of color-flavor congruency and association strength in visual search. Neuropsychologia, 203, 108985. https://doi.org/10.1016/j.neuropsychologia.2024.108985\nCai, W., Wang, L., Chen, T., Zhao, S., Feng, C., \u0026amp; Feng, W. (2020). Auditory attentional biases in young males with physical stature dissatisfaction. Psychophysiology, 57(10), e13635. https://doi.org/10.1111/psyp.13635\nCal, Z., \u0026amp; Sypiańska, J. (2020). The interaction of L2 and L3 levels of proficiency in third language acquisition. Poznan Studies in Contemporary Linguistics, 56(4), 577–603. https://doi.org/10.1515/psicl-2020-0019\nCal, Z., \u0026amp; Wrembel, M. (2024). Developmental acquisition of stops by multilingual speakers. International Journal of Multilingualism, 1–23. https://doi.org/10.1080/14790718.2024.2363777\nCalafato, R. (2024). Multilingual pedagogies in first versus foreign language contexts: A cross-country study of language teachers. International Review of Applied Linguistics in Language Teaching, 62(2), 249–273. https://doi.org/10.1515/iral-2022-0019\nCalvo, N., \u0026amp; Bialystok, E. (2021). Electrophysiological signatures of attentional control in bilingual processing: Evidence from proactive interference. Brain and Language, 222, 105027. https://doi.org/10.1016/j.bandl.2021.105027\nCalvo, N., Grundy, J. G., \u0026amp; Bialystok, E. (2023). Bilingualism modulates neural efficiency at rest through alpha reactivity. Neuropsychologia, 180, 108486. https://doi.org/10.1016/j.neuropsychologia.2023.108486\nCantelon, J. A., \u0026amp; Giles, G. E. (2021). A Review of Cognitive Changes During Acute Aerobic Exercise. Frontiers in Psychology, 12, 653158. https://doi.org/10.3389/fpsyg.2021.653158\nCarvalho, A. (2021). A close look at how context of acquisition of previous languages influences third language pedagogy: Does one model fit all? Zenodo. https://doi.org/10.5281/ZENODO.4449770\nCayado, D. K. T., \u0026amp; Chan, R. K. W. (2023). The Influence of Prior Linguistic Knowledge on Second Language Semantic Implicit Learning: Evidence from Cantonese–English Bilinguals. Language Learning, 73(3), 657–682. https://doi.org/10.1111/lang.12546\nCepeda-Freyre, H. A., Garcia-Aguilar, G., Eguibar, J. R., \u0026amp; Cortes, C. (2020). Brain Processing of Complex Geometric Forms in a Visual Memory Task Increases P2 Amplitude. Brain Sciences, 10(2), 114. https://doi.org/10.3390/brainsci10020114\nChami, R., Treasure, J., Cardi, V., Lozano-Madrid, M., Eichin, K. N., McLoughlin, G., \u0026amp; Blechert, J. (2020). Exploring Changes in Event-Related Potentials After a Feasibility Trial of Inhibitory Training for Bulimia Nervosa and Binge Eating Disorder. Frontiers in Psychology, 11, 1056. https://doi.org/10.3389/fpsyg.2020.01056\nChan, I. L., \u0026amp; Chang, C. B. (2019). Perception of nonnative tonal contrasts by Mandarin-English and English-Mandarin sequential bilinguals. The Journal of the Acoustical Society of America, 146(2), 956–972. https://doi.org/10.1121/1.5120522\nChan, R. K., \u0026amp; Leung, J. H. (2020). WHY ARE LEXICAL TONES DIFFICULT TO LEARN?: INSIGHTS FROM THE INCIDENTAL LEARNING OF TONE-SEGMENT CONNECTIONS. Studies in Second Language Acquisition, 42(1), 33–59. https://doi.org/10.1017/S0272263119000482\nChan, R. K. W., \u0026amp; Leung, J. H. C. (2018). Implicit knowledge of lexical stress rules: Evidence from the combined use of subjective and objective awareness measures. Applied Psycholinguistics, 39(1), 37–66. https://doi.org/10.1017/S0142716417000376\nChau, L. T., Leijten, M., Bernolet, S., \u0026amp; Vangehuchten, L. (2022). Envisioning multilingualism in source-based writing in L1, L2, and L3: The relation between source use and text quality. Frontiers in Psychology, 13, 914125. https://doi.org/10.3389/fpsyg.2022.914125\nChen, H. C., \u0026amp; Tian, J. X. (2024). The roles of Cantonese speakers’ L1 and L2 phonological features in L3 pronunciation acquisition. International Journal of Multilingualism, 21(1), 1–17. https://doi.org/10.1080/14790718.2021.1993231\nChen, J. (2020). How do L3 words find conceptual parasitic hosts in typologically distant L1 or L2? Evidence from a cross-linguistic priming effect. International Journal of Bilingual Education and Bilingualism, 23(10), 1238–1253. https://doi.org/10.1080/13670050.2018.1439879\nChen, J., Kwok, A. P. K., \u0026amp; Li, Y. (2023). Effective utilization of attentional resources in postural control in athletes of skill-oriented sports: An event-related potential study. Frontiers in Human Neuroscience, 17, 1219022. https://doi.org/10.3389/fnhum.2023.1219022\nChen, S., Xie, H., Yang, H., Fan, C., Hou, Z., \u0026amp; Zhang, C. (2023). A Classification Framework Based on Multi-modal Features for Detection of Cognitive Impairments. In Z. Yu, X. Hei, D. Li, X. Song, \u0026amp; Z. Lu (Eds.), Intelligent Robotics (Vol. 1770, pp. 349–361). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0301-6_27\nChen, Z., Qin, Y., Peng, M., Zhao, W., Shi, X., Lai, D., Yin, E., Yan, Y., Yao, D., \u0026amp; Liu, T. (2023). Event‐related potential patterns of selective attention modulated by perceptual load. Brain and Behavior, 13(3), e2907. https://doi.org/10.1002/brb3.2907\nCheng, Y., Rothman, J., \u0026amp; Cunnings, I. (2021). Parsing preferences and individual differences in nonnative sentence processing: Evidence from eye movements. Applied Psycholinguistics, 42(1), 129–151. https://doi.org/10.1017/S014271642000065X\nCherici, A. (2023). The role of L1 and L2 in the acquisition of null subjects by Chinese learners of L3 Italian. International Journal of Multilingualism, 20(3), 735–752. https://doi.org/10.1080/14790718.2021.1977308\nChild, M. W. (2022). Transfer in L3 cognate language acquisition: The role of language background on instructed L3 Portuguese acquisition. International Review of Applied Linguistics in Language Teaching, 60(2), 143–168. https://doi.org/10.1515/iral-2017-0113\nChmielewski, W. X., \u0026amp; Beste, C. (2019a). RETRACTED: Neurophysiological mechanisms underlying the modulation of cognitive control by simultaneous conflicts. Cortex, 115, 216–230. https://doi.org/10.1016/j.cortex.2019.02.006\nChmielewski, W. X., \u0026amp; Beste, C. (2019b). Stimulus Feature Conflicts Enhance Motor Inhibitory Control Processes in the Lateral Prefrontal Cortex. Journal of Cognitive Neuroscience, 31(9), 1430–1442. https://doi.org/10.1162/jocn_a_01424\nChmielewski, W. X., \u0026amp; Beste, C. (2019c). Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes. NeuroImage, 196, 227–236. https://doi.org/10.1016/j.neuroimage.2019.04.035\nChmielewski, W. X., Tiedt, A., Bluschke, A., Dippel, G., Roessner, V., \u0026amp; Beste, C. (2018). Effects of multisensory stimuli on inhibitory control in adolescent ADHD: It is the content of information that matters. NeuroImage: Clinical, 19, 527–537. https://doi.org/10.1016/j.nicl.2018.05.019\nCho, J., Iverson, M., Judy, T., Leal, T., \u0026amp; Shimanskaya, E. (2018). Introduction. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. ix–xv). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.cho\nChuang, Y., Bell, M. J., Banke, I., \u0026amp; Baayen, R. H. (2021). Bilingual and Multilingual Mental Lexicon: A Modeling Study With Linear Discriminative Learning. Language Learning, 71(S1), 219–292. https://doi.org/10.1111/lang.12435\nCitherlet, D., Boucher, O., Tremblay, J., Robert, M., Gallagher, A., Bouthillier, A., Lepore, F., \u0026amp; Nguyen, D. K. (2020). Spatiotemporal dynamics of auditory information processing in the insular cortex: An intracranial EEG study using an oddball paradigm. Brain Structure and Function, 225(5), 1537–1559. https://doi.org/10.1007/s00429-020-02072-z\nClayson, P. E., Mcdonald, J. B., Park, B., Holbrook, A., Baldwin, S. A., Riesel, A., \u0026amp; Larson, M. J. (2023). Registered replication report of the construct validity of the error‐related negativity ( ERN ): A multi‐site study of task‐specific ERN correlations with internalizing and externalizing symptoms. Psychophysiology, e14496. https://doi.org/10.1111/psyp.14496\nClements, M., \u0026amp; Domínguez, L. (2018). Chapter 7. Testing the predictions of the Scalpel Model in L3/Ln acquisition: The acquisition of null and overt subjects in L3 Chinese. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. 181–201). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.07cle\nČok, T. (2023). Cognitive Implications for Raising Cross-language Awareness in Foreign Language Acquisition. Springer International Publishing. https://doi.org/10.1007/978-3-031-27829-7\nCui, Y., Engelmann, J. M., Gilbert, D. G., Waters, A. J., Cinciripini, P. M., \u0026amp; Robinson, J. D. (2019). The impact of nicotine dose and instructed dose on smokers’ implicit attitudes to smoking cues: An ERP study. Psychology of Addictive Behaviors, 33(8), 710–720. https://doi.org/10.1037/adb0000523\nCulbertson, J., Franck, J., Braquet, G., Barrera Navarro, M., \u0026amp; Arnon, I. (2020). A learning bias for word order harmony: Evidence from speakers of non-harmonic languages. Cognition, 204, 104392. https://doi.org/10.1016/j.cognition.2020.104392\nCuza, A., Jiao, J., \u0026amp; López-Otero, J. C. (2018). Does Typological Proximity Really Matter? Evidence from Mandarin and Brazilian Portuguese-Speaking Learners of Spanish. Languages, 3(2), 13. https://doi.org/10.3390/languages3020013\nDahl, A., Listhaug, K. F., \u0026amp; Busterud, G. (2022). The role of L1 Norwegian and L2 English in the acquisition of verb placement in L3 German. In T. Leal, E. Shimanskaya, \u0026amp; C. A. Isabelli (Eds.), Language Acquisition and Language Disorders (Vol. 67, pp. 191–212). John Benjamins Publishing Company. https://doi.org/10.1075/lald.67.08dah\nD’Alessandro, R. (2021). Syntactic Change in Contact: Romance. Annual Review of Linguistics, 7(1), 309–328. https://doi.org/10.1146/annurev-linguistics-011619-030311\nD’Angelo, F. (2023). Teaching and Learning Third Languages. Multilingual Matters. https://doi.org/10.21832/DANGEL3078\nDe Bruin, A., Hoversten, L. J., \u0026amp; Martin, C. D. (2023). Interference between non-native languages during trilingual language production. Journal of Memory and Language, 128, 104386. https://doi.org/10.1016/j.jml.2022.104386\nDebnath, R., \u0026amp; Wetzel, N. (2022). Processing of task‐irrelevant sounds during typical everyday activities in children. Developmental Psychobiology, 64(7), e22331. https://doi.org/10.1002/dev.22331\nDeLuca, V., Miller, D., Pliatsikas, C., \u0026amp; Rothman, J. (2019). Brain Adaptations and Neurological Indices of Processing in Adult Second Language Acquisition: Challenges for the Critical Period Hypothesis. In J. W. Schwieter \u0026amp; M. Paradis (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 170–196). Wiley. https://doi.org/10.1002/9781119387725.ch8\nDeLuca, V., Rothman, J., Bialystok, E., \u0026amp; Pliatsikas, C. (2019). Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proceedings of the National Academy of Sciences, 116(15), 7565–7574. https://doi.org/10.1073/pnas.1811513116\nDeLuca, V., Rothman, J., Bialystok, E., \u0026amp; Pliatsikas, C. (2020). Duration and extent of bilingual experience modulate neurocognitive outcomes. NeuroImage, 204, 116222. https://doi.org/10.1016/j.neuroimage.2019.116222\nDemeter, E., Glassberg, B., Gamble, M. L., \u0026amp; Woldorff, M. G. (2022). Reward magnitude enhances early attentional processing of auditory stimuli. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(2), 268–280. https://doi.org/10.3758/s13415-021-00962-1\nDeng, Y., Choi, I., Shinn-Cunningham, B., \u0026amp; Baumgartner, R. (2019). Impoverished auditory cues limit engagement of brain networks controlling spatial selective attention. NeuroImage, 202, 116151. https://doi.org/10.1016/j.neuroimage.2019.116151\nDenhovska, N., Serratrice, L., \u0026amp; Payne, J. (2018). Frequency and working memory effects in incidental learning of a complex agreement pattern. Lingua, 207, 49–70. https://doi.org/10.1016/j.lingua.2018.02.009\nDepartment of English Language Education, Gyeongin National University of Education, Jo, K., Hong, S., \u0026amp; Kim, K. (2020). Cross-Linguistic Influence in the Use of Be in L3 English by L1-Chinese and L1-Russian Children in Korea. English Teaching, 75(0), 35–53. https://doi.org/10.15858/engtea.75.s1.202006.35\nDepestele, S., Ross, V., Verstraelen, S., Brijs, K., Brijs, T., Van Dun, K., \u0026amp; Meesen, R. (2020). The impact of cognitive functioning on driving performance of older persons in comparison to younger age groups: A systematic review. Transportation Research Part F: Traffic Psychology and Behaviour, 73, 433–452. https://doi.org/10.1016/j.trf.2020.07.009\nDepestele, S., Van Dun, K., Verstraelen, S., Ross, V., Van Hoornweder, S., Brijs, K., Brijs, T., Getzmann, S., \u0026amp; Meesen, R. (2023). Age-related changes in midfrontal theta activity during steering control: A driving simulator study. Neurobiology of Aging, 123, 145–153. https://doi.org/10.1016/j.neurobiolaging.2022.11.014\nDesmarais, M. (2023). Comparing two notions of transfer in third language phonological acquisition: A reanalysis of three studies. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 76–95). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.04des\nDi Pisa, G., Pereira Soares, S. M., \u0026amp; Rothman, J. (2021). Brain, mind and linguistic processing insights into the dynamic nature of bilingualism and its outcome effects. Journal of Neurolinguistics, 58, 100965. https://doi.org/10.1016/j.jneuroling.2020.100965\nDiaubalick, T., Eibensteiner, L., \u0026amp; Salaberry, M. R. (2023). Influence of L1/L2 linguistic knowledge on the acquisition of L3 Spanish past tense morphology among L1 German speakers. International Journal of Multilingualism, 20(2), 329–346. https://doi.org/10.1080/14790718.2020.1841204\nDługosz, K. (2021). Transfer effects in gender assignment and gender concord in L3 Swedish: A case study. Moderna Språk, 115(4), 1–26. https://doi.org/10.58221/mosp.v115i4.6745\nDługosz, K. (2023a). Grammatical gender assignment in L3 versus L4 Swedish: A pseudo-longitudinal study. International Review of Applied Linguistics in Language Teaching. https://doi.org/10.1515/iral-2022-0207\nDługosz, K. (2023b). Processing gender agreement in an additional language: The more languages the better? Second Language Research, 39(4), 997–1026. https://doi.org/10.1177/02676583221113333\nDługosz, K. (2024a). Cross-linguistic influence in the comprehension of reflexive possessive pronouns in L3 and L4 Swedish. International Journal of Bilingualism, 28(5), 828–844. https://doi.org/10.1177/13670069231194341\nDługosz, K. (2024b). The accelerating effect of multilingualism on learning a new language grammar: The case of grammatical gender agreement. XLinguae, 17(2), 216–230. https://doi.org/10.18355/XL.2024.17.02.15\nDmitrenko, V. (2019). Extending Oxford’s (1990) Taxonomy for Multilingual Learners. In E. Vetter \u0026amp; U. Jessner (Eds.), International Research on Multilingualism: Breaking with the Monolingual Perspective (Vol. 35, pp. 187–214). Springer International Publishing. https://doi.org/10.1007/978-3-030-21380-0_11\nDurand-López, E. M. (2024a). Working memory and L2 gender agreement processing in structural distance conditions. Journal of Cultural Cognitive Science, 8(2), 121–137. https://doi.org/10.1007/s41809-024-00143-9\nDurand-López, E. M. (2024b). Working memory training yields improvements in L2 morphosyntactic processing. Language, Cognition and Neuroscience, 39(6), 757–772. https://doi.org/10.1080/23273798.2024.2359560\nDyson, B. J., Steward, B. A., Meneghetti, T., \u0026amp; Forder, L. (2020). Behavioural and neural limits in competitive decision making: The roles of outcome, opponency and observation. Biological Psychology, 149, 107778. https://doi.org/10.1016/j.biopsycho.2019.107778\nDziubalska-Kolaczyk, K., \u0026amp; Wrembel, M. (2024). Chapter 16. A revised Natural Growth Theory of Acquisition: Evidence from L3 phonology. In E. Babatsouli (Ed.), Studies in Bilingualism (Vol. 67, pp. 426–449). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.67.16dzi\nEcke, P. (2022). Chapter 6. Grammatical gender and article use in beginning learners of German. In D. Ayoun (Ed.), Studies in Bilingualism (Vol. 63, pp. 127–156). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.63.06eck\nEcke, P., \u0026amp; Hall, C. J. (2021). The Parasitic Model: Lexical acquisition and its impact on morphosyntactic transfer. Linguistic Approaches to Bilingualism, 11(1), 45–49. https://doi.org/10.1075/lab.20088.eck\nEfeoglu, G., \u0026amp; Schroeder, C. (2021). Acquisition of Object Pronouns in EFL in Germany by Heritage Speakers of Turkish. Sustainable Multilingualism, 18(1), 71–84. https://doi.org/10.2478/sm-2021-0004\nEfeoglu, G., Yüksel, H. G., \u0026amp; Baran, S. (2020). Lexical cross-linguistic influence: A study of three multilingual learners of L3 English. International Journal of Multilingualism, 17(4), 535–551. https://doi.org/10.1080/14790718.2019.1620239\nEgurtzegi, A., Blasi, D. E., Bornkessel-Schlesewsky, I., Laka, I., Meyer, M., Bickel, B., \u0026amp; Sauppe, S. (2022). Cross-linguistic differences in case marking shape neural power dynamics and gaze behavior during sentence planning. Brain and Language, 230, 105127. https://doi.org/10.1016/j.bandl.2022.105127\nEhlers, C. L., Phillips, E., Kim, C., Wills, D. N., Karriker-Jaffe, K. J., \u0026amp; Gilder, D. A. (2019). CR-19-0950: Event-related responses to alcohol-related stimuli in Mexican-American young adults: Relation to age, gender, comorbidity and “dark side” symptoms. Drug and Alcohol Dependence, 202, 76–86. https://doi.org/10.1016/j.drugalcdep.2019.06.001\nEibensteiner, L. (2023). L3 acquisition of aspect: The influence of structural similarity, analytic L2 and general L3 proficiency. International Review of Applied Linguistics in Language Teaching, 61(4), 1827–1858. https://doi.org/10.1515/iral-2021-0220\nEibensteiner, L. (2024). Complex transfer processes in multilingual language (L3/Ln ) acquisition of Spanish past tenses: The role of non-native language (L2) transfer. International Journal of Multilingualism, 21(3), 1313–1331. https://doi.org/10.1080/14790718.2022.2164768\nElham Al-Makatrah. (2019). Markedness variability: The case of do-support. Lingue e linguaggio, 2, 267–290. https://doi.org/10.1418/95393\nElvin, J. (2024). Phonological acquisition of Portuguese as a second and a third language. In A. Zampaulo, The Routledge Handbook of Portuguese Phonology (1st ed., pp. 350–364). Routledge. https://doi.org/10.4324/9781003266648-21\nEl-Zghir, R. K., Gabay, N. C., \u0026amp; Robinson, P. A. (2021). Modal-Polar Representation of Evoked Response Potentials in Multiple Arousal States. Frontiers in Human Neuroscience, 15, 642479. https://doi.org/10.3389/fnhum.2021.642479\nEngemann, H., \u0026amp; Radetzky, S. (2024). Cognate Facilitation in Child Third Language Learners in a Multilingual Setting. Languages, 9(10), 310. https://doi.org/10.3390/languages9100310\nEnglert, C., Venagli, I., \u0026amp; Kupisch, T. (2024). When multilingualism is more than three: On the nature of gender transfer in L3+ acquisition. Second Language Research, 02676583241237763. https://doi.org/10.1177/02676583241237763\nEnriquez-Geppert, S. (2019). Neurofeedback aus der Perspektive der Neurowissenschaften: Aktuelle Entwicklungen und Trends. Psychotherapeut, 64(3), 186–193. https://doi.org/10.1007/s00278-019-0351-3\nErdocia, K., \u0026amp; Laka, I. (2018). Negative Transfer Effects on L2 Word Order Processing. Frontiers in Psychology, 9, 337. https://doi.org/10.3389/fpsyg.2018.00337\nEspi-Sanchis, G., \u0026amp; Cockcroft, K. (2022). Working memory and multilingualism: Balanced language proficiency predicts verbal working memory. International Journal of Bilingual Education and Bilingualism, 25(8), 2976–2990. https://doi.org/10.1080/13670050.2021.1997901\nEstaji, M. \u0026amp; Associate Professor of Applied Linguistics, Department of English Language and Literature, Faculty of Persian Literature and Foreign Languages, Allameh Tabataba’i University, Tehran, Iran. (2022). The Implementation of Self-Monitoring in Writing: Analyzing the Form and Content of EFL Learners’ Annotations. Language Related Research, 13(5), 197–222. https://doi.org/10.52547/LRR.13.5.8\nFaerman, M. V., Ehgoetz Martens, K. A., Meehan, S. K., \u0026amp; Staines, W. R. (2024). Neural correlates of trait anxiety in sensory processing and distractor filtering. Psychophysiology, e14706. https://doi.org/10.1111/psyp.14706\nFalk, Y., \u0026amp; Bardel, C. (2021). Transfer patterns in L3 learning discussed. Linguistic Approaches to Bilingualism, 11(1), 50–53. https://doi.org/10.1075/lab.20082.fal\nFalk, Y., \u0026amp; Bardel, C. (2024). The L2/L3 initial state, initial stages and judgement tasks: The role of intercomprehension when judging unknown languages. Second Language Research, 02676583231220785. https://doi.org/10.1177/02676583231220785\nFallah, N., \u0026amp; Jabbari, A. A. (2018). L3 acquisition of English attributive adjectives: Dominant language of communication matters for syntactic cross-linguistic influence. Linguistic Approaches to Bilingualism, 8(2), 193–216. https://doi.org/10.1075/lab.16003.fal\nFaustino Lacerda De Souza, R., Borges De Araujo Lima, L. A., Almeida Silveira Mendes, T. M., Soares Brandão, D., Andrés Laplagne, D., \u0026amp; Cordeiro De Sousa, M. B. (2022). Implicit motor imagery performance and cortical activity throughout the menstrual cycle. Scientific Reports, 12(1), 21385. https://doi.org/10.1038/s41598-022-25766-2\nFernández Fuertes, R., \u0026amp; Sánchez Calderón, S. (2021). The syntactic status of English dative alternation structures in bilingual and in monolingual acquisition data. Linguistic Approaches to Bilingualism, 11(6), 817–845. https://doi.org/10.1075/lab.18093.fer\nFernández-Berkes, É., \u0026amp; Flynn, S. (2020). Where DLC Meets Multilingual Syntactic Development. In J. Lo Bianco \u0026amp; L. Aronin (Eds.), Dominant Language Constellations (Vol. 47, pp. 57–74). Springer International Publishing. https://doi.org/10.1007/978-3-030-52336-7_4\nFestman, J. (2021). Learning and Processing Multiple Languages: The More the Easier? Language Learning, 71(S1), 121–162. https://doi.org/10.1111/lang.12437\nFingelkurts, A. A., Fingelkurts, A. A., \u0026amp; Neves, C. F. H. (2020). Neuro-assessment of leadership training. Coaching: An International Journal of Theory, Research and Practice, 13(2), 107–145. https://doi.org/10.1080/17521882.2019.1619796\nFischer-Jbali, L. R., Montoro, C. I., Montoya, P., Halder, W., \u0026amp; Duschek, S. (2021). Central nervous activity during implicit processing of emotional face expressions in fibromyalgia syndrome. Brain Research, 1758, 147333. https://doi.org/10.1016/j.brainres.2021.147333\nFlores-Salgado, E., \u0026amp; Gutiérrez-Koyoc, A. F. (2024). Working Memory and Cross-Linguistic Influence on Vocabulary Acquisition. Brain Sciences, 14(8), 796. https://doi.org/10.3390/brainsci14080796\nFolyi, T., \u0026amp; Wentura, D. (2019). Involuntary sensory enhancement of gain- and loss-associated tones: A general relevance principle. International Journal of Psychophysiology, 138, 11–26. https://doi.org/10.1016/j.ijpsycho.2019.01.007\nForcelini, J., \u0026amp; Sunderman, G. (2020). When More is Less: The Effect of a Third Language on a Second Language. Hispania, 103(4), 489–500. https://doi.org/10.1353/hpn.2020.0110\nForyś-Nogala, M., Broniś, O., Opacki, M., \u0026amp; Otwinowska, A. (2023). Cross-linguistic influences, language proficiency and metalinguistic knowledge in L3 Italian subject placement. International Journal of Multilingualism, 20(2), 308–328. https://doi.org/10.1080/14790718.2020.1811710\nFranck, J., \u0026amp; Papadopoulou, D. (2022). L2 French learning by Eritrean refugee speakers of Tigrinya. Bilingualism: Language and Cognition, 25(4), 631–644. https://doi.org/10.1017/S1366728921001048\nFrankowsky, M., Ke, D., Zwitserlood, P., Michel, R., \u0026amp; Bölte, J. (2022). The interplay between classifier choice and animacy in Mandarin-Chinese noun phrases: An ERP study. Language, Cognition and Neuroscience, 37(7), 866–882. https://doi.org/10.1080/23273798.2022.2026420\nFranz, M., Schmidt, B., Hecht, H., Naumann, E., \u0026amp; Miltner, W. H. R. (2020). Suggested deafness during hypnosis and simulation of hypnosis compared to a distraction and control condition: A study on subjective experience and cortical brain responses. PLOS ONE, 15(10), e0240832. https://doi.org/10.1371/journal.pone.0240832\nFreichel, R., Zink, N., Chang, F. Y., Vera, J. D., Truong, H., Michelini, G., Loo, S. K., \u0026amp; Lenartowicz, A. (2024). Alpha event-related decreases during encoding in adults with ADHD – An investigation of sustained attention and working memory processes. Behavioural Brain Research, 469, 115003. https://doi.org/10.1016/j.bbr.2024.115003\nFreunberger, D., Bylund, E., \u0026amp; Abrahamsson, N. (2022). Is It Time to Reconsider the ‘Gold Standard’ for Nativelikeness in ERP Studies on Grammatical Processing in a Second Language? A Critical Assessment Based on Qualitative Individual Differences. Applied Linguistics, 43(3), 433–452. https://doi.org/10.1093/applin/amab058\nFriedrich, J., Mückschel, M., \u0026amp; Beste, C. (2019). Physical intensity of stimuli modulates motor inhibition by affecting response selection processes in right inferior frontal regions. Behavioural Brain Research, 359, 597–608. https://doi.org/10.1016/j.bbr.2018.10.006\nFrolov, N., Pitsik, E., Maksimenko, V., \u0026amp; Hramov, A. (2023). Applying recurrence time entropy to identify changes in event-related potentials. The European Physical Journal Special Topics, 232(1), 161–168. https://doi.org/10.1140/epjs/s11734-022-00743-y\nFukuta, J., \u0026amp; Yamashita, J. (2023). The complex relationship between conscious/unconscious learning and conscious/unconscious knowledge: The mediating effects of salience in form–meaning connections. Second Language Research, 39(2), 425–446. https://doi.org/10.1177/02676583211044950\nFuster, C., \u0026amp; Neuser, H. (2020). Exploring intentionality in lexical transfer. International Journal of Multilingualism, 17(4), 516–534. https://doi.org/10.1080/14790718.2018.1559845\nGabriel, C., \u0026amp; Grünke, J. (2018). Chapter 12. Focus, prosody, and subject positions in L3 Spanish: Analyzing data from German learners with Italian and European Portuguese as heritage languages. In M. García García \u0026amp; M. Uth (Eds.), Studies in Language Companion Series (Vol. 201, pp. 357–386). John Benjamins Publishing Company. https://doi.org/10.1075/slcs.201.12gab\nGabriele, A. (2021). Microvariation and transfer in L2 and L3 acquisition. Second Language Research, 37(3), 453–458. https://doi.org/10.1177/0267658320941063\nGabriele, A., Alemán Bañón, J., Hoffman, L., Covey, L., Rossomondo, A., \u0026amp; Fiorentino, R. (2021). Examining variability in the processing of agreement in novice learners: Evidence from event-related potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(7), 1106–1140. https://doi.org/10.1037/xlm0000983\nGallardo, M., \u0026amp; Montrul, S. (2023). Property-by-property transfer in L3 Italian. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 236–271). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.10gal\nGallo, F., \u0026amp; Abutalebi, J. (2024). The unique role of bilingualism among cognitive reserve-enhancing factors. Bilingualism: Language and Cognition, 27(2), 287–294. https://doi.org/10.1017/S1366728923000317\nGantiva, C., Sotaquirá, M., Araujo, A., \u0026amp; Cuervo, P. (2020). Cortical processing of human and emoji faces: An ERP analysis. Behaviour \u0026amp; Information Technology, 39(8), 935–943. https://doi.org/10.1080/0144929X.2019.1632933\nGarcía, V. B., \u0026amp; Martínez Martínez, S. (2024). “I Have Confidence in Screens.” In C. Plaza-Lara, M. D. M. Ogea-Pozo, \u0026amp; C. Botella-Tejera, Empirical Studies in Didactic Audiovisual Translation (1st ed., pp. 129–151). Routledge. https://doi.org/10.4324/9781003462194-11\nGeiss, M., Gumbsheimer, S., Lloyd-Smith, A., Schmid, S., \u0026amp; Kupisch, T. (2022). VOICE ONSET TIME IN MULTILINGUAL SPEAKERS: ITALIAN HERITAGE SPEAKERS IN GERMANY WITH L3 ENGLISH. Studies in Second Language Acquisition, 44(2), 435–459. https://doi.org/10.1017/S0272263121000280\nGeng, S., Quiñones, I., Gil-Robles, S., Pomposo Gastelu, I. C., Bermudez, G., Timofeeva, P., Molinaro, N., Carreiras, M., \u0026amp; Amoruso, L. (2023). “Neural dynamics supporting longitudinal plasticity of action naming across languages: MEG evidence from bilingual brain tumor patients.” Neuropsychologia, 181, 108494. https://doi.org/10.1016/j.neuropsychologia.2023.108494\nGetzmann, S., Arnau, S., Karthaus, M., Reiser, J. E., \u0026amp; Wascher, E. (2018). Age-Related Differences in Pro-active Driving Behavior Revealed by EEG Measures. Frontiers in Human Neuroscience, 12, 321. https://doi.org/10.3389/fnhum.2018.00321\nGetzmann, S., Reiser, J. E., Karthaus, M., Rudinger, G., \u0026amp; Wascher, E. (2021). Measuring Correlates of Mental Workload During Simulated Driving Using cEEGrid Electrodes: A Test–Retest Reliability Analysis. Frontiers in Neuroergonomics, 2, 729197. https://doi.org/10.3389/fnrgo.2021.729197\nGholamipourbarogh, N., Eggert, E., Münchau, A., Frings, C., \u0026amp; Beste, C. (2024). EEG tensor decomposition delineates neurophysiological principles underlying conflict-modulated action restraint and action cancellation. NeuroImage, 295, 120667. https://doi.org/10.1016/j.neuroimage.2024.120667\nGil, L. A., \u0026amp; Müller, N. (2018). French Postverbal Subjects: A Comparison of Monolingual, Bilingual, Trilingual, and Multilingual French. Languages, 3(3), 29. https://doi.org/10.3390/languages3030029\nGing-Jehli, N. R., Ratcliff, R., \u0026amp; Arnold, L. E. (2021). Improving neurocognitive testing using computational psychiatry—A systematic review for ADHD. Psychological Bulletin, 147(2), 169–231. https://doi.org/10.1037/bul0000319\nGonzález Alonso, J., Alemán Bañón, J., DeLuca, V., Miller, D., Pereira Soares, S. M., Puig-Mayenco, E., Slaats, S., \u0026amp; Rothman, J. (2020). Event related potentials at initial exposure in third language acquisition: Implications from an artificial mini-grammar study. Journal of Neurolinguistics, 56, 100939. https://doi.org/10.1016/j.jneuroling.2020.100939\nGonzález Alonso, J., \u0026amp; Duñabeitia, J. A. (2023). Family Attitudes towards Multilingualism in Bilingual Education Programs and Their Relationship with Academic Performance. Behavioral Sciences, 14(1), 6. https://doi.org/10.3390/bs14010006\nGonzález Alonso, J., \u0026amp; Puig-Mayenco, E. (2021). You know more than you say: Methodological choices in L3 transfer research. Linguistic Approaches to Bilingualism, 11(1), 54–59. https://doi.org/10.1075/lab.20089.gon\nGonzález Alonso, J., Puig-Mayenco, E., Fábregas, A., Chaouch-Orozco, A., \u0026amp; Rothman, J. (2021). On the status of transfer in adult third language acquisition of early bilinguals. PLOS ONE, 16(3), e0247976. https://doi.org/10.1371/journal.pone.0247976\nGonzález Alonso, J., \u0026amp; Rothman, J. (2021). Avoiding the cum hoc ergo propter hoc fallacy: Comments and questions regarding Full Transfer Potential. Second Language Research, 37(3), 423–428. https://doi.org/10.1177/0267658320934135\nGonzalez Fernandez, J. (2020). Methodology for the Natural Acquisition of Second Languages. Peter Lang D. https://doi.org/10.3726/b16650\nGrey, S. (2020). What can artificial languages reveal about morphosyntactic processing in bilinguals? Bilingualism: Language and Cognition, 23(1), 81–86. https://doi.org/10.1017/S1366728919000567\nGrey, S. (2024). The Declarative / Procedural Model and Input Processing. In W. Wong \u0026amp; J. Barcroft, The Routledge Handbook of Second Language Acquisition and Input Processing (1st ed., pp. 134–149). Routledge. https://doi.org/10.4324/9781003041412-13\nGrey, S., \u0026amp; Jackson, C. (2020). The Effects of Learners’ Perceptions and Affective Factors on L2 Learning Outcomes. The Canadian Modern Language Review, 76(1), 2–30. https://doi.org/10.3138/cmlr.2018-0209\nGrey, S., Sanz, C., Morgan-Short, K., \u0026amp; Ullman, M. T. (2018). Bilingual and monolingual adults learning an additional language: ERPs reveal differences in syntactic processing. Bilingualism: Language and Cognition, 21(5), 970–994. https://doi.org/10.1017/S1366728917000426\nGrey, S., \u0026amp; Tagarelli, K. M. (2018). Psycholinguistic Methods. In A. Phakiti, P. De Costa, L. Plonsky, \u0026amp; S. Starfield (Eds.), The Palgrave Handbook of Applied Linguistics Research Methodology (pp. 287–312). Palgrave Macmillan UK. https://doi.org/10.1057/978-1-137-59900-1_14\nGrossberg, S. (2021). A Neural Model of Intrinsic and Extrinsic Hippocampal Theta Rhythms: Anatomy, Neurophysiology, and Function. Frontiers in Systems Neuroscience, 15, 665052. https://doi.org/10.3389/fnsys.2021.665052\nGrundy, J. G., \u0026amp; Chung-Fat-Yim, A. (2023). Chapter 12. Domain-general electrophysiological changes associated with bilingualism. In G. Luk, J. A. E. Anderson, \u0026amp; J. G. Grundy (Eds.), Studies in Bilingualism (Vol. 64, pp. 245–271). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.64.12gru\nGu, J. (2024). Digital Tools in Language Learning: Optimizing Memory and Attention for College Students. International Journal of Human–Computer Interaction, 1–11. https://doi.org/10.1080/10447318.2024.2400384\nGu, Q., \u0026amp; Adil, M. (2022). The L3 acquisition of English tense-aspect system by Uygur speakers with L2 Mandarin Chinese. Forum for Linguistic Studies, 4(1), 116. https://doi.org/10.18063/fls.v4i1.1459\nGu, R. (2019). ERP Experimental Design. In L. Hu \u0026amp; Z. Zhang (Eds.), EEG Signal Processing and Feature Extraction (pp. 43–69). Springer Singapore. https://doi.org/10.1007/978-981-13-9113-2_4\nGüntekin, B., Aktürk, T., Arakaki, X., Bonanni, L., Del Percio, C., Edelmayer, R., Farina, F., Ferri, R., Hanoğlu, L., Kumar, S., Lizio, R., Lopez, S., Murphy, B., Noce, G., Randall, F., Sack, A. T., Stocchi, F., Yener, G., Yıldırım, E., \u0026amp; Babiloni, C. (2022). Are there consistent abnormalities in event‐related EEG oscillations in patients with Alzheimer’s disease compared to other diseases belonging to dementia? Psychophysiology, 59(5), e13934. https://doi.org/10.1111/psyp.13934\nGuo, W., \u0026amp; Jia, Z. (2019). Early attentive processing on forged and genuine exemplars by imitators: An ERP study. Forensic Science International, 297, 335–341. https://doi.org/10.1016/j.forsciint.2019.02.023\nGuo, Y., \u0026amp; Yuan, B. (2020). Facilitative transfer only?: L3 acquisition of Mandarin sentence-final particle clusters by English-Cantonese bilinguals. Journal of Second Language Studies, 3(2), 261–289. https://doi.org/10.1075/jsls.00013.guo\nGuo, Y., \u0026amp; Yuan, B. (2023). Asymmetric transfer and development of temporal-aspectual sentence-final particles in English-Cantonese bilinguals’ L3 Mandarin grammars. Linguistic Approaches to Bilingualism, 13(4), 576–606. https://doi.org/10.1075/lab.20116.guo\nGuo, Y., \u0026amp; Yuan, B. (2024a). Disentangling cues of different domains in transfer and development in L3 acquisition: An investigation of L2/L3 Mandarin yes-no questions. Bilingualism: Language and Cognition, 1–13. https://doi.org/10.1017/S1366728923000913\nGuo, Y., \u0026amp; Yuan, B. (2024b). How does a structurally similar background language influence L3 grammars? A study on the syntax of L2/L3 Mandarin [SI 21/3]. International Journal of Multilingualism, 1–17. https://doi.org/10.1080/14790718.2024.2367590\nGuzmán Pitarch, J. R. (2021). The effect of L4 on translation students’ L1/L2 writing scripts. Language Value, 14(1), 1–32. https://doi.org/10.6035/languagev.5804\nHamrick, P., \u0026amp; Sachs, R. (2018). ESTABLISHING EVIDENCE OF LEARNING IN EXPERIMENTS EMPLOYING ARTIFICIAL LINGUISTIC SYSTEMS. Studies in Second Language Acquisition, 40(1), 153–169. https://doi.org/10.1017/S0272263116000474\nHan, Q., Tian, J. X., \u0026amp; Chen, H. C. (2023). L3 prosody: Cross-linguistic influence of prosodic features in Mandarin and English by Cantonese multilinguals. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 96–120). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.05han\nHaznedar, B. (2023). Teaching and Assessment in Young Learners’ Classrooms: In D. Köksal, N. Kavaklı Ulutaş, \u0026amp; S. Arslan (Eds.), Advances in Educational Technologies and Instructional Design (pp. 136–155). IGI Global. https://doi.org/10.4018/978-1-6684-5660-6.ch008\nHelms-Park, R., Petrescu, M. C., Pirvulescu, M., \u0026amp; Dronjic, V. (2022). Canadian-born trilingual children’s narrative skills in their heritage language and Canada’s official languages. International Journal of Multilingualism, 1–25. https://doi.org/10.1080/14790718.2022.2059078\nHenriksen, N. (2021). 14 Second and third language acquisition of Romance phonology. In C. Gabriel, R. Gess, \u0026amp; T. Meisenburg (Eds.), Manual of Romance Phonetics and Phonology (pp. 435–461). De Gruyter. https://doi.org/10.1515/9783110550283-015\nHermas, A. (2020). Genericity in third language English: Acquisition pattern and transfer in ultimate attainment. International Journal of Bilingualism, 24(2), 266–288. https://doi.org/10.1177/1367006919826865\nHermas, A. (2023). Genericity in L2 French and L3 English: A pragmatic deficit with a semantic consequence. International Journal of Multilingualism, 20(2), 425–451. https://doi.org/10.1080/14790718.2020.1820510\nHetkamp, M., Bender, J., Rheindorf, N., Kowalski, A., Lindner, M., Knispel, S., Beckmann, M., Tagay, S., \u0026amp; Teufel, M. (2019). A Systematic Review of the Effect of Neurofeedback in Cancer Patients. Integrative Cancer Therapies, 18, 1534735419832361. https://doi.org/10.1177/1534735419832361\nHolmes, B. C., \u0026amp; Putnam, M. T. (2020). Mental representations in receptive multilingual grammars. Linguistic Approaches to Bilingualism, 10(3), 309–314. https://doi.org/10.1075/lab.00029.int\nHong, X., Sun, J., Wang, J., Li, C., \u0026amp; Tong, S. (2020). Attention-related modulation of frontal midline theta oscillations in cingulate cortex during a spatial cueing Go/NoGo task. International Journal of Psychophysiology, 148, 1–12. https://doi.org/10.1016/j.ijpsycho.2019.11.011\nHopp, H. (2019). Cross-linguistic influence in the child third language acquisition of grammar: Sentence comprehension and production among Turkish-German and German learners of English. International Journal of Bilingualism, 23(2), 567–583. https://doi.org/10.1177/1367006917752523\nHopp, H., Jakisch, J., Sturm, S., Becker, C., \u0026amp; Thoma, D. (2020). Integrating multilingualism into the early foreign language classroom: Empirical and teaching perspectives. International Multilingual Research Journal, 14(2), 146–162. https://doi.org/10.1080/19313152.2019.1669519\nHopp, H., \u0026amp; Lemmerth, N. (2018a). LEXICAL AND SYNTACTIC CONGRUENCY IN L2 PREDICTIVE GENDER PROCESSING. Studies in Second Language Acquisition, 40(1), 171–199. https://doi.org/10.1017/S0272263116000437\nHopp, H., \u0026amp; Lemmerth, N. (2018b). LEXICAL AND SYNTACTIC CONGRUENCY IN L2 PREDICTIVE GENDER PROCESSING. Studies in Second Language Acquisition, 40(1), 171–199. https://doi.org/10.1017/S0272263116000437\nHopp, H., Thoma, D., Kieseier, T., Jakisch, J., \u0026amp; Sturm, S. (2022). Early plurilingual foreign language teaching in mixed classrooms: Linguistic and metalinguistic predictors of foreign language development among majority-language and minority-language students in EFL classes. System, 108, 102828. https://doi.org/10.1016/j.system.2022.102828\nHu, L., Xue, C., \u0026amp; Shao, J. (2020). ERP Research on Semantic Matching of Audio-visual Information in Interfaces in Quiet-Noise Situations. 2020 Information Communication Technologies Conference (ICTC), 323–327. https://doi.org/10.1109/ICTC49638.2020.9123266\nHu, R., Zhang, L., Meng, P., Meng, X., \u0026amp; Weng, M. (2022). The Neural Responses of Visual Complexity in the Oddball Paradigm: An ERP Study. Brain Sciences, 12(4), 447. https://doi.org/10.3390/brainsci12040447\nHuang, T., Loerts, H., \u0026amp; Steinkrauss, R. (2022). The impact of second- and third-language learning on language aptitude and working memory. International Journal of Bilingual Education and Bilingualism, 25(2), 522–538. https://doi.org/10.1080/13670050.2019.1703894\nHuang, T., Steinkrauss, R., \u0026amp; Verspoor, M. (2021). Variability as predictor in L2 writing proficiency. Journal of Second Language Writing, 52, 100787. https://doi.org/10.1016/j.jslw.2020.100787\nHuang, T., Steinkrauss, R., \u0026amp; Verspoor, M. (2022). Learning an L2 and L3 at the same time: Help or hinder? International Journal of Multilingualism, 19(4), 566–582. https://doi.org/10.1080/14790718.2020.1779726\nHuang, Y., Li, D., Ma, J., Ji, X., \u0026amp; Zhou, C. (2024). Bilinguals outperform trilinguals in implicit language aptitude: The mediating role of selective attention. Journal of Multilingual and Multicultural Development, 1–17. https://doi.org/10.1080/01434632.2024.2392884\nHuang, Y., Wang, M., \u0026amp; Rao, H. (2024). Working memory as a partial mediator of the relationship between multilingualism and foreign language aptitude. International Journal of Multilingualism, 21(1), 18–35. https://doi.org/10.1080/14790718.2021.1993860\nHudson, M. R., \u0026amp; Jones, N. C. (2022). Deciphering the code: Identifying true gamma neural oscillations. Experimental Neurology, 357, 114205. https://doi.org/10.1016/j.expneurol.2022.114205\nHughes, C. J. L., Costley, J., \u0026amp; Lange, C. (2021). The Relationship between Attention and Extraneous Load. Theory and Practice of Second Language Acquisition, 7(2), 61–82. https://doi.org/10.31261/TAPSLA.9986\nHuo, S., Li, J., Guo, J., Yan, H., Deng, X., Liu, Y., \u0026amp; Zhao, J. (2023). Young Adults with Negative Body Image at Fatness Subscale Are More Restrained Than Normal Adults during a Chocolate Discounting Task. International Journal of Environmental Research and Public Health, 20(12), 6122. https://doi.org/10.3390/ijerph20126122\nImaz Agirre, A., \u0026amp; García Mayo, M. D. P. (2018). Chapter 8. Proficiency and transfer effects in the acquisition of gender agreement by L2 and L3 English learners. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. 203–227). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.08ima\nIrsara, M. (2020). Applying typological insights in a minority-language context: Motion event lexicalisations in Ladin, Italian, German and English texts compiled by Ladins. Glottodidactica. An International Journal of Applied Linguistics, 47(1), 23–40. https://doi.org/10.14746/gl.2020.47.1.02\nIsasi-Isasmendi, A., Sauppe, S., Andrews, C., Laka, I., Meyer, M., \u0026amp; Bickel, B. (2024). Incremental sentence processing is guided by a preference for agents: EEG evidence from Basque. Language, Cognition and Neuroscience, 39(1), 76–97. https://doi.org/10.1080/23273798.2023.2250023\nIshikawa, K. (2019). Incidental and explicit learning of L2 derivational morphology and the nature of acquired knowledge. Applied Psycholinguistics, 40(6), 1377–1404. https://doi.org/10.1017/S0142716419000304\nJabbari, A. A., Achard-Bayle, G., \u0026amp; Ablali, D. (2018). Acquisition of L3 French wh-question structure by Persian-English bilinguals. Cogent Education, 5(1), 1524551. https://doi.org/10.1080/2331186X.2018.1524551\nJackson, D. O. (2019). The Potential Relationship Between Openness and Explicit Versus Implicit L2 Knowledge. Journal of Psycholinguistic Research, 48(2), 289–306. https://doi.org/10.1007/s10936-018-9603-6\nJacobs, M., Dykens, E. M., \u0026amp; Key, A. P. (2018). Attentional rather than sensory differences characterize auditory processing in Williams syndrome. Brain and Cognition, 121, 24–37. https://doi.org/10.1016/j.bandc.2018.01.005\nJacopo Saturno. (2023). Transfer (or lack thereof) and the accusative case in L2 Polish. Language Science Press. https://doi.org/10.5281/ZENODO.10280612\nJaekel, N., Schurig, M., \u0026amp; Lorenz, E. (2024). Moving beyond binary language status in research: Investigating early foreign language learning and linguistic distance. Research Methods in Applied Linguistics, 3(3), 100151. https://doi.org/10.1016/j.rmal.2024.100151\nJamali, M., Jabbari, A. A., \u0026amp; Razmi, M. H. (2023). Acquisition of attributive adjectives and noun adjuncts by L3 learners of French and German: Further evidence for the typological primacy model (TPM). International Review of Applied Linguistics in Language Teaching, 61(3), 851–876. https://doi.org/10.1515/iral-2020-0013\nJamous, R., Ghorbani, F., Mükschel, M., Münchau, A., Frings, C., \u0026amp; Beste, C. (2024). Neurophysiological principles underlying predictive coding during dynamic perception-action integration. NeuroImage, 301, 120891. https://doi.org/10.1016/j.neuroimage.2024.120891\nJavitt, D. C., Siegel, S. J., Spencer, K. M., Mathalon, D. H., Hong, L. E., Martinez, A., Ehlers, C. L., Abbas, A. I., Teichert, T., Lakatos, P., \u0026amp; Womelsdorf, T. (2020). A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology, 45(9), 1411–1422. https://doi.org/10.1038/s41386-020-0697-9\nJensen, I. N., Mitrofanova, N., Anderssen, M., Rodina, Y., Slabakova, R., \u0026amp; Westergaard, M. (2023). Crosslinguistic influence in L3 acquisition across linguistic modules. International Journal of Multilingualism, 20(3), 717–734. https://doi.org/10.1080/14790718.2021.1985127\nJensen, I. N., \u0026amp; Westergaard, M. (2023). Syntax Matters: Exploring the Effect of Linguistic Similarity in Third Language Acquisition. Language Learning, 73(2), 374–402. https://doi.org/10.1111/lang.12525\nJerath, R., Beveridge, C., \u0026amp; Jensen, M. (2019). On the Hierarchical Organization of Oscillatory Assemblies: Layered Superimposition and a Global Bioelectric Framework. Frontiers in Human Neuroscience, 13, 426. https://doi.org/10.3389/fnhum.2019.00426\nJiang, C., Liu, F., Gong, Y., Cao, Y., \u0026amp; Chen, J. (2023). How do Chinese-English Bilinguals and Tibetan-Chinese-English Trilinguals Differ in Explicit and Implicit Aptitude? Journal of Psycholinguistic Research, 52(3), 869–885. https://doi.org/10.1007/s10936-022-09914-3\nJiang, R., Xie, F., \u0026amp; Li, A. (2024). Effect of conscious conflict on the subliminal perception of table tennis players: From the electrophysiological evidence of ERP. Cognitive Neurodynamics, 18(1), 85–94. https://doi.org/10.1007/s11571-022-09883-2\nJiao, J., Cuza, A., \u0026amp; López Otero, J. C. (2020). Chapter 11. The acquisition of personal a among Chinese-speaking L2 learners of Spanish: A case for syntactic complexity. In D. Pascual Y Cabo \u0026amp; I. Elola (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 27, pp. 233–252). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.27.11jia\nJitpaiboon, J., Rungswang, A., \u0026amp; Miyamoto, Y. (2024). Investigating Motivations of Learning Languages Other Than English: A Case of Learners of Japanese in Thailand. rEFLections, 31(1), 63–89. https://doi.org/10.61508/refl.v31i1.271377\nJo, K., Kim, K., \u0026amp; Kim, H. (2021). Children’s interpretation of negation and quantifier scope in L3 English. Bilingualism: Language and Cognition, 24(3), 427–438. https://doi.org/10.1017/S1366728920000395\nJohannessen, J. B., Lundquist, B., Rodina, Y., Tengesdal, E., Kaldhol, N. H., Türker, E., \u0026amp; Fyndanis, V. (2024). Cross-linguistic effects in grammatical gender assignment and predictive processing in L1 Greek, L1 Russian, and L1 Turkish speakers of Norwegian as a second language. Second Language Research, 02676583241227709. https://doi.org/10.1177/02676583241227709\nJouravlev, O., Mineroff, Z., Blank, I. A., \u0026amp; Fedorenko, E. (2021). The Small and Efficient Language Network of Polyglots and Hyper-polyglots. Cerebral Cortex, 31(1), 62–76. https://doi.org/10.1093/cercor/bhaa205\nKachinske, I., \u0026amp; DeKeyser, R. (2024). The role of awareness in implicit and explicit knowledge. International Review of Applied Linguistics in Language Teaching. https://doi.org/10.1515/iral-2022-0212\nKaipa, R. M., \u0026amp; Wendelbo, S. (2023). Comparative analysis of morphosyntactic rule learning among monolingual, bilingual, and trilingual speakers: A study on Spanish preterite forms. International Journal of Multilingualism, 1–18. https://doi.org/10.1080/14790718.2023.2256788\nKałamała, P., Walther, J., Zhang, H., Diaz, M., Senderecka, M., \u0026amp; Wodniecka, Z. (2022). The use of a second language enhances the neural efficiency of inhibitory control: An ERP study. Bilingualism: Language and Cognition, 25(1), 163–180. https://doi.org/10.1017/S1366728921000389\nKang, X., Matthews, S., Yip, V., \u0026amp; Wong, P. C. M. (2021). Language and nonlanguage factors in foreign language learning: Evidence for the learning condition hypothesis. Npj Science of Learning, 6(1), 28. https://doi.org/10.1038/s41539-021-00104-9\nKanik, M. (2018). Maturational constraint or system preservation. International Journal of Applied Linguistics, 28(3), 451–464. https://doi.org/10.1111/ijal.12219\nKanli, E. (2024). Salgo de casa? Salgo a casa? Salgo la casa? Analysis of the crosslinguistic influence on preposition use in motion verb constructions by multilingual German learners of Spanish. Ampersand, 13, 100186. https://doi.org/10.1016/j.amper.2024.100186\nKaoo, L., \u0026amp; Upor, R. A. (2021). LEMMATIC INFLUENCE ON VOCABULARY ACQUISITION AMONG L3 ENGLISH LANGUAGE LEARNERS IN TANZANIA. Indonesian Journal of Applied Linguistics, 11(1). https://doi.org/10.17509/ijal.v11i1.34671\nKaramacoska, D., Barry, R. J., De Blasio, F. M., \u0026amp; Steiner, G. Z. (2019). EEG-ERP dynamics in a visual Continuous Performance Test. International Journal of Psychophysiology, 146, 249–260. https://doi.org/10.1016/j.ijpsycho.2019.08.013\nKaramacoska, D., Barry, R. J., \u0026amp; Steiner, G. Z. (2019). Using principal components analysis to examine resting state EEG in relation to task performance. Psychophysiology, 56(5), e13327. https://doi.org/10.1111/psyp.13327\nKaramacoska, D., Barry, R. J., Steiner, G. Z., Coleman, E. P., \u0026amp; Wilson, E. J. (2018). Intrinsic EEG and task-related changes in EEG affect Go/NoGo task performance. International Journal of Psychophysiology, 125, 17–28. https://doi.org/10.1016/j.ijpsycho.2018.01.015\nKearney, B. E., \u0026amp; Lanius, R. A. (2022). The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Frontiers in Neuroscience, 16, 1015749. https://doi.org/10.3389/fnins.2022.1015749\nKeating, G. D. (2022). The Effect of Age of Onset of Bilingualism on Gender Agreement Processing in Spanish as a Heritage Language. Language Learning, 72(4), 1170–1208. https://doi.org/10.1111/lang.12510\nKenanidis, P., Dąbrowska, E., Llompart, M., \u0026amp; Pili-Moss, D. (2023). Can adults learn L2 grammar after prolonged exposure under incidental conditions? PLOS ONE, 18(7), e0288989. https://doi.org/10.1371/journal.pone.0288989\nKenanidis, P., Llompart, M., Santos, S. F., \u0026amp; Dąbrowska, E. (2024). Redundancy can hinder adult L2 grammar learning: Evidence from case markers of varying salience levels. Frontiers in Psychology, 15, 1368080. https://doi.org/10.3389/fpsyg.2024.1368080\nKholiq, A., Yulianto, B., \u0026amp; Suhartono, S. (2024). ROLE OF L1 AND L2 IN THE ACQUISITION OF BAHASA INDONESIA AS A THIRD LANGUAGE. Issues in Language Studies, 13(1), 413–431. https://doi.org/10.33736/ils.5567.2024\nKim, H., Kim, K., \u0026amp; Jo, K. (2024). The role of crosslinguistic morphological congruency and L2 proficiency in the L3 acquisition of English plural marking. International Journal of Multilingualism, 21(2), 1074–1091. https://doi.org/10.1080/14790718.2022.2127735\nKim, J. S., Lee, Y. J., \u0026amp; Shim, S.-H. (2021). What Event-Related Potential Tells Us about Brain Function: Child-Adolescent Psychiatric Perspectives. Journal of the Korean Academy of Child and Adolescent Psychiatry, 32(3), 93–98. https://doi.org/10.5765/jkacap.210012\nKim, K., Hsieh, L.-T., Parvizi, J., \u0026amp; Ranganath, C. (2020). Neural repetition suppression effects in the human hippocampus. Neurobiology of Learning and Memory, 173, 107269. https://doi.org/10.1016/j.nlm.2020.107269\nKim, K. M., \u0026amp; Fenn, K. M. (2020). SLEEP-DEPENDENT CONSOLIDATION OF SECOND LANGUAGE GRAMMAR KNOWLEDGE: THE ROLE OF AWARENESS. Studies in Second Language Acquisition, 42(5), 1107–1120. https://doi.org/10.1017/S0272263120000200\nKlassen, G., Ferreira, A., \u0026amp; Schwieter, J. W. (2023). The role of immersion learning in the acquisition and processing of L2 gender agreement. Applied Linguistics Review, 14(2), 391–413. https://doi.org/10.1515/applirev-2020-0038\nKleimaker, A., Kleimaker, M., Bäumer, T., Beste, C., \u0026amp; Münchau, A. (2020). Gilles de la Tourette Syndrome—A Disorder of Action-Perception Integration. Frontiers in Neurology, 11, 597898. https://doi.org/10.3389/fneur.2020.597898\nKliesch, M., Becker, R., \u0026amp; Hervais-Adelman, A. (2022). Global and localized network characteristics of the resting brain predict and adapt to foreign language learning in older adults. Scientific Reports, 12(1), 3633. https://doi.org/10.1038/s41598-022-07629-y\nKolb, N., Mitrofanova, N., \u0026amp; Westergaard, M. (2022). Crosslinguistic influence in child L3 English: An empirical study on Russian-German heritage bilinguals. International Journal of Bilingualism, 26(4), 476–501. https://doi.org/10.1177/13670069211054891\nKolb, N., Mitrofanova, N., \u0026amp; Westergaard, M. (2023). Structural similarity in third language acquisition. Linguistic Approaches to Bilingualism, 13(5), 607–613. https://doi.org/10.1075/lab.23037.kol\nKong, S. (2023). The acquisition of L3 French present simple and present progressive by adult L1 Chinese speakers of L2 English. International Review of Applied Linguistics in Language Teaching, 61(2), 655–689. https://doi.org/10.1515/iral-2022-0178\nKonkuk University, Korea, Ahn, H.-D., Cho, Y., Hwang, J.-B., Lim, J. H., \u0026amp; Mao, C. (2022). The Modulating Role of Mean Dependency Distance in the Backward Transfer of L3 on the Interpretation of L2 Reflexives. The Journal of AsiaTEFL, 19(3), 896–910. https://doi.org/10.18823/asiatefl.2022.19.3.9.896\nKonkuk University, Korea, Ahn, H.-D., \u0026amp; Jang, H. (2019). The Role of L3 in the Interpretation of Articles with Definite Plurals in L2 English. The Journal of AsiaTEFL, 16(1), 12–36. https://doi.org/10.18823/asiatefl.2019.16.1.2.12\nKonkuk University, Korea, Ahn, H.-D., \u0026amp; Mao, C. (2019). Reverse transfer of L3 on the Interpretation of L2 Reflexives. The Journal of AsiaTEFL, 16(4), 1323–1331. https://doi.org/10.18823/asiatefl.2019.16.4.16.1323\nKopečková, R., Gut, U., Wrembel, M., \u0026amp; Balas, A. (2023). Phonological cross-linguistic influence at the initial stages of L3 acquisition. Second Language Research, 39(4), 1107–1131. https://doi.org/10.1177/02676583221123994\nKorenar, M., Treffers-Daller, J., \u0026amp; Pliatsikas, C. (2023). Brain structure adapts dynamically to highly demanding bilingual experiences: Insights from interpreters and translators. Ampersand, 11, 100148. https://doi.org/10.1016/j.amper.2023.100148\nKosonogov, V., Kovsh, E., \u0026amp; Vorobyeva, E. (2022). Event-Related Potentials during Verbal Recognition of Naturalistic Neutral-to-Emotional Dynamic Facial Expressions. Applied Sciences, 12(15), 7782. https://doi.org/10.3390/app12157782\nKossowska, M., Szumowska, E., \u0026amp; Szwed, P. (2020). The Psychology of Tolerance in Times of Uncertainty (1st ed.). Routledge. https://doi.org/10.4324/9780367821487\nKoulidobrova, E., \u0026amp; Pichler, D. C. (2021). Cripping the “Delay”: Multilingualism-Related Consequences of Re-Labeling Language Deprivation Systems. Frontiers in Communication, 6, 751457. https://doi.org/10.3389/fcomm.2021.751457\nKruse, M. (2024). Problem-solving activity during the foreign language writing process: A proposal for categorisation and visualisation of source use and a new take on fluency in multilingual writing. Journal of Writing Research, 16(1), 129–161. https://doi.org/10.17239/jowr-2024.16.01.05\nKubota, M., Alonso, J. G., Anderssen, M., Jensen, I. N., Luque, A., Soares, S. M. P., Prystauka, Y., Vangsnes, Ø. A., Sandstedt, J. J., \u0026amp; Rothman, J. (2024). Bilectal Exposure Modulates Neural Signatures to Conflicting Grammatical Properties: Norway as a Natural Laboratory. Language Learning, 74(2), 436–467. https://doi.org/10.1111/lang.12608\nKubota, M., Heycock, C., Sorace, A., \u0026amp; Rothman, J. (2020). Cross-Linguistic Influence on L2 Before and After Extreme Reduction in Input: The Case of Japanese Returnee Children. Frontiers in Psychology, 11, 560874. https://doi.org/10.3389/fpsyg.2020.560874\nKumar, G. V., Kumar, N., Roy, D., \u0026amp; Banerjee, A. (2018). Segregation and Integration of Cortical Information Processing Underlying Cross-Modal Perception. Multisensory Research, 31(5), 481–500. https://doi.org/10.1163/22134808-00002574\nKupisch, T., Soares, S. M. P., Puig‐Mayenco, E., \u0026amp; Rothman, J. (2021). Multilingualism and Chomsky’s Generative Grammar. In N. Allott, T. Lohndal, \u0026amp; G. Rey (Eds.), A Companion to Chomsky (1st ed., pp. 232–242). Wiley. https://doi.org/10.1002/9781119598732.ch15\nKush, D., \u0026amp; Dahl, A. (2022). L2 transfer of L1 island-insensitivity: The case of Norwegian. Second Language Research, 38(2), 315–346. https://doi.org/10.1177/0267658320956704\nKustubayeva, A., Kamzanova, A., Kudaibergenova, S., Pivkina, V., \u0026amp; Matthews, G. (2020). Major Depression and Brain Asymmetry in a Decision-Making Task with Negative and Positive Feedback. Symmetry, 12(12), 2118. https://doi.org/10.3390/sym12122118\nKuzmina, E., Goral, M., Norvik, M., \u0026amp; Weekes, B. S. (2019). What Influences Language Impairment in Bilingual Aphasia? A Meta-Analytic Review. Frontiers in Psychology, 10, 445. https://doi.org/10.3389/fpsyg.2019.00445\nLabotka, D., Sabo, E., Bonais, R., Gelman, S. A., \u0026amp; Baptista, M. (2023). Testing the effects of congruence in adult multilingual acquisition with implications for creole genesis. Cognition, 235, 105387. https://doi.org/10.1016/j.cognition.2023.105387\nLago, S., Mosca, M., \u0026amp; Stutter Garcia, A. (2021). The Role of Crosslinguistic Influence in Multilingual Processing: Lexicon Versus Syntax. Language Learning, 71(S1), 163–192. https://doi.org/10.1111/lang.12412\nLago, S., Stone, K., Oltrogge, E., \u0026amp; Veríssimo, J. (2023). Possessive Processing in Bilingual Comprehension. Language Learning, 73(3), 904–941. https://doi.org/10.1111/lang.12556\nLago, S., Stutter Garcia, A., \u0026amp; Felser, C. (2019). The role of native and non-native grammars in the comprehension of possessive pronouns. Second Language Research, 35(3), 319–349. https://doi.org/10.1177/0267658318770491\nLaiveniece, D., \u0026amp; Lauze, L. (2022). Students’ Linguistic Attitude Towards Language Mistakes/Errors in Learning and Using a Foreign Language. Sustainable Multilingualism, 21(1), 227–248. https://doi.org/10.2478/sm-2022-0019\nLee, A. H., \u0026amp; Lloyd, J. S. (2024). The effects of incidental learning and input frequency on the perception of non-native speech. Second Language Research, 02676583241249348. https://doi.org/10.1177/02676583241249348\nLee, K. M., Kang, S., Hong, S. H., \u0026amp; Moon, I. J. (2024). Effects of Metrical Context on the P1 Component. Journal of Audiology and Otology, 28(3), 195–202. https://doi.org/10.7874/jao.2023.00262\nLeivada, E., Westergaard, M., Duñabeitia, J. A., \u0026amp; Rothman, J. (2021). On the phantom-like appearance of bilingualism effects on neurocognition: (How) should we proceed? Bilingualism: Language and Cognition, 24(1), 197–210. https://doi.org/10.1017/S1366728920000358\nLeow, R. P. (2019). ISLA: How implicit or how explicit should it be? Theoretical, empirical, and pedagogical/curricular issues. Language Teaching Research, 23(4), 476–493. https://doi.org/10.1177/1362168818776674\nLi, Y. (2021). An investigation on the role of L2 proficiency in adult learners’ L2 morphological performance. International Journal of Applied Linguistics, 31(3), 421–437. https://doi.org/10.1111/ijal.12339\nLibben, G., \u0026amp; Schwieter, J. W. (2019). Lexical Organization and Reorganization in the Multilingual Mind. In J. W. Schwieter \u0026amp; M. Paradis (Eds.), The Handbook of the Neuroscience of Multilingualism (1st ed., pp. 297–312). Wiley. https://doi.org/10.1002/9781119387725.ch14\nLiebherr, M., Weiland-Breckle, H., Grewe, T., \u0026amp; Schumacher, P. B. (2018). Cognitive performance under motor demands – On the influence of task difficulty and postural control. Brain Research, 1684, 1–8. https://doi.org/10.1016/j.brainres.2018.01.025\nLikhanov, M., Bogdanova, O., Alenina, E., Kolienko, T., \u0026amp; Kovas, Y. (2023). No evidence of a positive effect of learning Chinese language as an L2 on spatial ability. Scientific Reports, 13(1), 1262. https://doi.org/10.1038/s41598-022-26738-2\nLin, B., Chen, Y., Li, B., Avitt, A., Guo, Y., Pan, L., \u0026amp; Huang, X. (2022). Spatial selectivity of the visual duration aftereffect in the sub-second range: An event-related potentials study. Behavioural Brain Research, 431, 113950. https://doi.org/10.1016/j.bbr.2022.113950\nLin, L., Leung, A. W. S., Wu, J., \u0026amp; Zhang, L. (2020). Individual differences under acute stress: Higher cortisol responders performs better on N-back task in young men. International Journal of Psychophysiology, 150, 20–28. https://doi.org/10.1016/j.ijpsycho.2020.01.006\nLin, W., Li, Z., Zhang, X., Gao, Y., \u0026amp; Lin, J. (2023). Electrophysiological evidence for the effectiveness of images versus text in warnings. Scientific Reports, 13(1), 1278. https://doi.org/10.1038/s41598-023-28230-x\nLin, W., Lin, J., Yang, Y., Liao, J., Chen, W., \u0026amp; Mo, L. (2022). The difference in the warning effect of different warning signs. International Journal of Occupational Safety and Ergonomics, 28(2), 890–900. https://doi.org/10.1080/10803548.2020.1840733\nLinck, J. A., Clark, M., Bonilla, C. L., Golonka, E., Doughty, C. J., Mecham, T., \u0026amp; Burns, W. (2020). Autonomous Portuguese L3 learning through an adaptive platform. In K. V. Molsing, C. Becker Lopes Perna, \u0026amp; A. M. Tramunt Ibaños (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 24, pp. 231–258). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.24.09lin\nLindström, E., \u0026amp; Lubińska, D. (2022). Target-like and non-target-like conjunctive relations in L2 Swedish beginner writing. Linguistics and Education, 71, 101073. https://doi.org/10.1016/j.linged.2022.101073\nLipińska, A. (2023). Crosslinguistic influence from the learners’ perspective. Colloquia Germanica Stetinensia, 32, 307–323. https://doi.org/10.18276/cgs.2023.32-15\nLiu, C., Lin, Y., Ye, C., Yang, J., \u0026amp; He, W. (2023). Alpha ERS-ERD Pattern during Divergent and Convergent Thinking Depends on Individual Differences on Metacontrol. Journal of Intelligence, 11(4), 74. https://doi.org/10.3390/jintelligence11040074\nLiu, J., \u0026amp; Lin, J. (2021). A Cross-Linguistic Study of L3 Phonological Acquisition of Stop Contrasts. Sage Open, 11(1), 2158244020985510. https://doi.org/10.1177/2158244020985510\nLiu, X., Xu, X., \u0026amp; Wang, H. (2018). The effect of emotion on morphosyntactic learning in foreign language learners. PLOS ONE, 13(11), e0207592. https://doi.org/10.1371/journal.pone.0207592\nLiu, Y., \u0026amp; Dras, M. (2024). Using corpora from Natural Language Processing for investigating crosslinguistic influence. Ampersand, 12, 100174. https://doi.org/10.1016/j.amper.2024.100174\nLiu, Z. (2022). Mapping the research trends of third language acquisition: A bibliometric analysis based on Scopus. Frontiers in Psychology, 13, 1021517. https://doi.org/10.3389/fpsyg.2022.1021517\nLlama, R., \u0026amp; Cardoso, W. (2018). Revisiting (Non-)Native Influence in VOT Production: Insights from Advanced L3 Spanish. Languages, 3(3), 30. https://doi.org/10.3390/languages3030030\nLlinàs-Grau, M., \u0026amp; Bel, A. (2019). On the Acceptance of the Null That by Bilingual Catalan/Spanish L2 Learners of English. Languages, 4(2), 30. https://doi.org/10.3390/languages4020030\nLlop Naya, A., Puig-Mayenco, E., \u0026amp; Paradís, A. (2024). The acquisition of Polarity Items in L3/Ln Catalan by speakers of English, Italian, Portuguese and Spanish: Implications for L3/Ln development theorising and language teaching. International Journal of Multilingualism, 1–23. https://doi.org/10.1080/14790718.2024.2367583\nLloyd-Smith, A., Gyllstad, H., Kupisch, T., \u0026amp; Quaglia, S. (2021). Heritage language proficiency does not predict syntactic CLI into L3 English. International Journal of Bilingual Education and Bilingualism, 24(3), 435–451. https://doi.org/10.1080/13670050.2018.1472208\nLohndal, T. (2021). Syntax of Heritage Languages. In S. Montrul \u0026amp; M. Polinsky (Eds.), The Cambridge Handbook of Heritage Languages and Linguistics (1st ed., pp. 644–667). Cambridge University Press. https://doi.org/10.1017/9781108766340.029\nLohndal, T., Rothman, J., Kupisch, T., \u0026amp; Westergaard, M. (2019). Heritage language acquisition: What it reveals and why it is important for formal linguistic theories. Language and Linguistics Compass, 13(12), e12357. https://doi.org/10.1111/lnc3.12357\nLong, A. (2022). Uncommonly Studied Language Pairs. In K. Geeslin, The Routledge Handbook of Second Language Acquisition and Sociolinguistics (1st ed., pp. 420–432). Routledge. https://doi.org/10.4324/9781003017325-38\nLorenz, E. (2022). Crosslinguistic Influence in L3 Acquisition: Bilingual Heritage Speakers in Germany (1st ed.). Routledge. https://doi.org/10.4324/9781003134336\nLorenz, E., Bonnie, R. J., Feindt, K., Rahbari, S., \u0026amp; Siemund, P. (2019). Cross-linguistic influence in unbalanced bilingual heritage speakers on subsequent language acquisition: Evidence from pronominal object placement in ditransitive clauses. International Journal of Bilingualism, 23(6), 1410–1430. https://doi.org/10.1177/1367006918791296\nLorenz, E., Toprak-Yildiz, T. E., \u0026amp; Siemund, P. (2024). L3 English in the German secondary school context: Longitudinal development of bilingual heritage speakers’ multilingual repertoire. International Journal of Multilingualism, 1–22. https://doi.org/10.1080/14790718.2024.2345215\nLuan, X., Kuno, M., Sugawara, A., Kawasaki, Y., \u0026amp; Sugimori, E. (2024). The effect of previously acquired languages on third language acquisition. Heliyon, 10(4), e26202. https://doi.org/10.1016/j.heliyon.2024.e26202\nLuk, G. (2023). Justice and equity for whom? Reframing research on the “bilingual (dis)advantage.” Applied Psycholinguistics, 44(3), 301–315. https://doi.org/10.1017/S0142716422000339\nLuk, G., \u0026amp; Rothman, J. (2022). Experience-based individual differences modulate language, mind and brain outcomes in multilinguals. Brain and Language, 228, 105107. https://doi.org/10.1016/j.bandl.2022.105107\nLuo, C., Biencinto López, C., \u0026amp; Ruiz, J. M. (2022). Motivación de los estudiantes chinos en el aprendizaje del español. Hispania, 105(1), 67–89. https://doi.org/10.1353/hpn.2022.0006\nLuo, J., Li, V. G., \u0026amp; Mok, P. P. K. (2020). The Perception of Cantonese Vowel Length Contrast by Mandarin Speakers. Language and Speech, 63(3), 635–659. https://doi.org/10.1177/0023830919879471\nLuque, A., \u0026amp; Covey, L. (2023). Factors Accounting for Individual Differences in Second Language Neurocognition. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 274–286). Routledge. https://doi.org/10.4324/9781003190912-25\nLutz, N. D., Admard, M., Genzoni, E., Born, J., \u0026amp; Rauss, K. (2021). Occipital sleep spindles predict sequence learning in a visuo-motor task. SLEEP, 44(8), zsab056. https://doi.org/10.1093/sleep/zsab056\nMadashetty, S., Palaniswamy, H. P., \u0026amp; Rajashekhar, B. (2024). Investigating the impact of hearing loss on attentional networks among older individuals: An event-related potential study. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-024-10140-x\nMadeira, A. (2018). Inflected infinitives in L2 Portuguese. In A. L. Santos \u0026amp; A. Gonçalves (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 17, pp. 321–360). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.17.11mad\nMadlener, K. (2018). Chapter 10. Do findings from artificial language learning generalize to second language classrooms? In A. E. Tyler, L. Ortega, M. Uno, \u0026amp; H. I. Park (Eds.), Language Learning \u0026amp; Language Teaching (Vol. 49, pp. 211–234). John Benjamins Publishing Company. https://doi.org/10.1075/lllt.49.10mad\nMagliacano, A., Fiorenza, S., Estraneo, A., \u0026amp; Trojano, L. (2020). Eye blink rate increases as a function of cognitive load during an auditory oddball paradigm. Neuroscience Letters, 736, 135293. https://doi.org/10.1016/j.neulet.2020.135293\nMagnuson, J. R., Doesburg, S. M., \u0026amp; McNeil, C. J. (2021). Development and recovery time of mental fatigue and its impact on motor function. Biological Psychology, 161, 108076. https://doi.org/10.1016/j.biopsycho.2021.108076\nMaie, R., \u0026amp; DeKeyser, R. M. (2020). CONFLICTING EVIDENCE OF EXPLICIT AND IMPLICIT KNOWLEDGE FROM OBJECTIVE AND SUBJECTIVE MEASURES. Studies in Second Language Acquisition, 42(2), 359–382. https://doi.org/10.1017/S0272263119000615\nMamede, A., Boffo, M., Noordzij, G., Denktaş, S., \u0026amp; Wieser, M. J. (2024). The effect of cognitive reappraisal on food craving and consumption: Does working memory capacity influence reappraisal ability? An event-related potential study. Appetite, 193, 107112. https://doi.org/10.1016/j.appet.2023.107112\nMarafioti, P. E. (2024). Regímenes latentes de error en el aprendizaje de la concordancia plural en ELE. Forma y Función, 37(1). https://doi.org/10.15446/fyf.v37n1.104617\nMarciszewska, A. A. (2021). L3 morphosyntactic processing among Polish–English bilinguals: Considering learners’ level of bilingualism and language dominance. Open Linguistics, 7(1), 353–371. https://doi.org/10.1515/opli-2021-0015\nMariani, N., Abdullah Al-Rawe, M. F., Al-Salami, A. A. A., \u0026amp; Kumar, T. (2024). The Impact of Bilingualism on Learning a Third Language: A Case Study of Iraqi Learners of Indonesian. International Journal of Society, Culture and Language, 12(2). https://doi.org/10.22034/ijscl.2023.2008408.3119\nMasaracchia, L., Fredes, F., Woolrich, M. W., \u0026amp; Vidaurre, D. (2023). Dissecting unsupervised learning through hidden Markov modeling in electrophysiological data. Journal of Neurophysiology, 130(2), 364–379. https://doi.org/10.1152/jn.00054.2023\nMather, P.-A. (2020). Higher Education and the Multilingual Classroom: How Applied Linguistics Research Can Help Design Effective Teaching Strategies. In P.-A. Mather (Ed.), Technology-enhanced Learning and Linguistic Diversity: Strategies and Approaches to Teaching Students in a 2nd or 3rd Language (pp. 1–9). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83982-128-820201001\nMcMillan, R., \u0026amp; Muthukumaraswamy, S. D. (2020). The neurophysiology of ketamine: An integrative review. Reviews in the Neurosciences, 31(5), 457–503. https://doi.org/10.1515/revneuro-2019-0090\nMcPartland, J. C., Lerner, M. D., Bhat, A., Clarkson, T., Jack, A., Koohsari, S., Matuskey, D., McQuaid, G. A., Su, W.-C., \u0026amp; Trevisan, D. A. (2021). Looking Back at the Next 40 Years of ASD Neuroscience Research. Journal of Autism and Developmental Disorders, 51(12), 4333–4353. https://doi.org/10.1007/s10803-021-05095-5\nMcWilliams, E. C., Barbey, F. M., Dyer, J. F., Islam, M. N., McGuinness, B., Murphy, B., Nolan, H., Passmore, P., Rueda-Delgado, L. M., \u0026amp; Buick, A. R. (2021). Feasibility of Repeated Assessment of Cognitive Function in Older Adults Using a Wireless, Mobile, Dry-EEG Headset and Tablet-Based Games. Frontiers in Psychiatry, 12, 574482. https://doi.org/10.3389/fpsyt.2021.574482\nMercante, B., Enrico, P., \u0026amp; Deriu, F. (2023). Cognitive Functions following Trigeminal Neuromodulation. Biomedicines, 11(9), 2392. https://doi.org/10.3390/biomedicines11092392\nMercante, B., Enrico, P., Ginatempo, F., Loi, N., \u0026amp; Deriu, F. (2023). Short-term transcutaneous trigeminal nerve stimulation does not affect visual oddball task and paired-click paradigm ERP responses in healthy volunteers. Experimental Brain Research, 241(2), 327–339. https://doi.org/10.1007/s00221-022-06525-1\nMickan, A., \u0026amp; Lemhöfer, K. (2020). Tracking Syntactic Conflict between Languages over the Course of L2 Acquisition: A Cross-sectional Event-related Potential Study. Journal of Cognitive Neuroscience, 32(5), 822–846. https://doi.org/10.1162/jocn_a_01528\nMickan, A., McQueen, J. M., \u0026amp; Lemhöfer, K. (2020). Between-language competition as a driving force in foreign language attrition. Cognition, 198, 104218. https://doi.org/10.1016/j.cognition.2020.104218\nMihi Park, \u0026amp; Peck Jeeyoung. (2022). Beneficial effect of multilingualism in resolving L3 structural complexity: Attention shift from familiar cue to critical cue. Linguistic Research, 39(null), 1–27. https://doi.org/10.17250/KHISLI.39..202209.001\nMiller, D., DeLuca, V., Swanson, K., \u0026amp; Rothman, J. (2023). Neurolinguistic Methods and Generative Approaches to Second Language Acquisition. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 177–190). Routledge. https://doi.org/10.4324/9781003190912-17\nMitrofanova, N., Leivada, E., \u0026amp; Westergaard, M. (2023). Crosslinguistic influence in L3 acquisition: Evidence from artificial language learning. Linguistic Approaches to Bilingualism, 13(5), 717–742. https://doi.org/10.1075/lab.22063.mit\nMonachino, A. D., Lopez, K. L., Pierce, L. J., \u0026amp; Gabard-Durnam, L. J. (2022). The HAPPE plus Event-Related (HAPPE+ER) software: A standardized preprocessing pipeline for event-related potential analyses. Developmental Cognitive Neuroscience, 57, 101140. https://doi.org/10.1016/j.dcn.2022.101140\nMontrul, S. (2019). The acquisition of differential object marking in Spanish by Romanian speakers. Revista Española de Lingüística Aplicada/Spanish Journal of Applied Linguistics, 32(1), 185–219. https://doi.org/10.1075/resla.17040.mon\nMontrul, S. (2023). Chapter 1 Heritage language development: Dominant language transfer and the sociopolitical context. In F. B. Romano (Ed.), Studies in Italian as a Heritage Language (pp. 5–32). De Gruyter. https://doi.org/10.1515/9783110759587-002\nMontrul, S. A. (2018). Chapter 6. The Bottleneck Hypothesis extends to heritage language acquisition. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. 149–177). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.06mon\nMontrul, S., Mason, S. A., \u0026amp; Armstrong, A. (2024). The Role of Language Experience in the Acquisition of Spanish Gender Agreement: A Study with Nonce Nouns. Languages, 9(2), 45. https://doi.org/10.3390/languages9020045\nMorales-Front, A., \u0026amp; Sanz, C. (2021). Piecemeal crosslinguistic influence and multilingualism. Second Language Research, 37(3), 473–479. https://doi.org/10.1177/0267658320943663\nMorand-Beaulieu, S., \u0026amp; Lavoie, M. E. (2019). Cognitive and motor event-related potentials in Tourette syndrome and tic disorders: A systematic review. Clinical Neurophysiology, 130(6), 1041–1057. https://doi.org/10.1016/j.clinph.2018.10.022\nMorand-Beaulieu, S., Perrault, M.-A., \u0026amp; Lavoie, M. E. (2022). Test-Retest Reliability of Event-Related Potentials Across Three Tasks. Journal of Psychophysiology, 36(2), 100–117. https://doi.org/10.1027/0269-8803/a000286\nMorris, M. B., Jack Rhodes, L., Borghetti, L., \u0026amp; Haubert, A. (2023). Vigilance end-spurt patterns in event-related potentials. Brain Research, 1812, 148396. https://doi.org/10.1016/j.brainres.2023.148396\nMosca, M. (2019). Trilinguals’ language switching: A strategic and flexible account. Quarterly Journal of Experimental Psychology, 72(4), 693–716. https://doi.org/10.1177/1747021818763537\nMottarella, M., \u0026amp; Prat, C. S. (2023). Using Quantitative Electroencephalography (qEEG) to Investigate Second Language Learning. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 31–45). Routledge. https://doi.org/10.4324/9781003190912-5\nMückschel, M., Ziemssen, T., \u0026amp; Beste, C. (2020). Properties of lower level processing modulate the actions of the norepinephrine system during response inhibition. Biological Psychology, 152, 107862. https://doi.org/10.1016/j.biopsycho.2020.107862\nMurphy, B., Aleni, A., Belaoucha, B., Dyer, J., \u0026amp; Nolan, H. (2018). Quantifying cognitive aging and performance with at-home gamified mobile EEG. 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 1–4. https://doi.org/10.1109/PRNI.2018.8423954\nMurphy, E., Hoshi, K., \u0026amp; Benítez-Burraco, A. (2022). Subcortical syntax: Reconsidering the neural dynamics of language. Journal of Neurolinguistics, 62, 101062. https://doi.org/10.1016/j.jneuroling.2022.101062\nMustile, M., Giocondo, F., Caligiore, D., Borghi, A. M., \u0026amp; Kourtis, D. (2021). Motor Inhibition to Dangerous Objects: Electrophysiological Evidence for Task-dependent Aversive Affordances. Journal of Cognitive Neuroscience, 33(5), 826–839. https://doi.org/10.1162/jocn_a_01690\nMykhalchuk, N., Levchuk, P., Ivashkevych, E., \u0026amp; Nabochuk, A. (2023). Dynamic Models of Multilingualism on the Territory of Western Ukraine. PSYCHOLINGUISTICS, 33(2), 114–144. https://doi.org/10.31470/2309-1797-2023-33-2-114-144\nNahum, M., \u0026amp; Bavelier, D. (2020). Video games as rich environments to foster brain plasticity. In Handbook of Clinical Neurology (Vol. 168, pp. 117–136). Elsevier. https://doi.org/10.1016/B978-0-444-63934-9.00010-X\nNajjar, N. (2021). Studies on factors influencing syntactic transfer in L3 acquisition. Studia Linguistica Universitatis Iagellonicae Cracoviensis, 138(2), 79–109. https://doi.org/10.4467/20834624SL.21.009.13472\nNathaniel, U., Eidelsztein, S., Geskin, K. G., Yamasaki, B. L., Nir, B., Dronjic, V., Booth, J. R., \u0026amp; Bitan, T. (2023). Decomposition in early stages of learning novel morphologically derived words: The impact of linear vs. non-linear structure. Cognition, 240, 105604. https://doi.org/10.1016/j.cognition.2023.105604\nNejati, R., \u0026amp; Jabbari, M. (2023). EVALUATING THE VALIDITY OF MEARA AND ROGERS’ VOCABULARY APTITUDE TEST: A RASCH MEASUREMENT MODEL ANALYSIS. Issues in Language Studies, 12(2), 37–55. https://doi.org/10.33736/ils.5290.2023\nNelson, C., Krzysik, I., Lewandowska, H., \u0026amp; Wrembel, M. (2021). Multilingual learners’ perceptions of cross-linguistic distances: A proposal for a visual psychotypological measure. Language Awareness, 30(2), 176–194. https://doi.org/10.1080/09658416.2021.1897132\nNettinga, J., Naseem, S., Yakobi, O., Willoughby, T., \u0026amp; Danckert, J. (2024). Exploring EEG resting state as a function of boredom proneness in pre-adolescents and adolescents. Experimental Brain Research, 242(1), 123–135. https://doi.org/10.1007/s00221-023-06733-3\nOcklenburg, S., Friedrich, P., Fraenz, C., Schlüter, C., Beste, C., Güntürkün, O., \u0026amp; Genç, E. (2018). Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. Science Advances, 4(7), eaar6830. https://doi.org/10.1126/sciadv.aar6830\nO’Grady, W. (2022). Chapter 8. A calculus for L1 transfer. In A. G. Benati \u0026amp; J. W. Schwieter (Eds.), Bilingual Processing and Acquisition (Vol. 14, pp. 143–176). John Benjamins Publishing Company. https://doi.org/10.1075/bpa.14.08ogr\nOrcasitas-Vicandi, M. (2020). Crosslinguistic influence and morphological awareness in English (third language) writing. International Journal of Bilingualism, 24(4), 616–633. https://doi.org/10.1177/1367006919852164\nOrcasitas-Vicandi, M. (2022a). Lexical crosslinguistic influence in Basque-Spanish bilinguals’ English (L3) writing. International Journal of Bilingual Education and Bilingualism, 25(2), 491–501. https://doi.org/10.1080/13670050.2019.1701979\nOrcasitas-Vicandi, M. (2022b). Towards a multilingual approach in assessing writing: Holistic, analytic and cross-linguistic perspectives. International Journal of Bilingual Education and Bilingualism, 25(6), 2186–2207. https://doi.org/10.1080/13670050.2021.1894089\nOrtin, R., \u0026amp; Fernandez-Florez, C. (2019). Transfer of variable grammars in third language acquisition. International Journal of Multilingualism, 16(4), 442–458. https://doi.org/10.1080/14790718.2018.1550088\nOtwinowska, A. (2024). Cross-linguistic influence and language co-activation in acquiring L3 words: What empirical evidence do we have so far? Second Language Research, 40(3), 765–783. https://doi.org/10.1177/02676583231176371\nOu, J., \u0026amp; Law, S.-P. (2018). Induced gamma oscillations index individual differences in speech sound perception and production. Neuropsychologia, 121, 28–36. https://doi.org/10.1016/j.neuropsychologia.2018.10.028\nPan, J., Zhang, Y., \u0026amp; Zhang, W. (2023). Revisiting attending to form during meaning comprehension in learning Spanish as an additional foreign language. Foreign Language Annals, 56(1), 214–231. https://doi.org/10.1111/flan.12664\nPanther, F., Mattingley, W., Hay, J., Todd, S., King, J., \u0026amp; Keegan, P. J. (2024). Morphological segmentations of Non-Māori Speaking New Zealanders match proficient speakers. Bilingualism: Language and Cognition, 27(1), 1–15. https://doi.org/10.1017/S1366728923000329\nPaquet, P.-L. (2018). Influence of L1 Properties and Proficiency on the Acquisition of Gender Agreement. Journal of Language and Education, 4(1), 92–104. https://doi.org/10.17323/2411-7390-2018-4-1-92-104\nPark, M. (2022). Chapter 4. Cross-linguistic influence in the acquisition of L3 variation: A comparison of speech and writing. In R. Bayley, D. R. Preston, \u0026amp; X. Li (Eds.), Studies in Language Variation (Vol. 28, pp. 71–96). John Benjamins Publishing Company. https://doi.org/10.1075/silv.28.04par\nPark, M., \u0026amp; García Mayo, M. D. P. (2023). Comprehension of English articles by Korean learners of L2 English and L3 Spanish. International Review of Applied Linguistics in Language Teaching. https://doi.org/10.1515/iral-2022-0152\nPark, M., \u0026amp; Starr, R. L. (2020). The acquisition of L3 variation among early bilinguals: The roles of L2 experience, home language and linguistic factors. Linguistic Approaches to Bilingualism, 10(5), 657–689. https://doi.org/10.1075/lab.17066.par\nParrish, K. (2022). The Categorization of L3 Vowels Near First Exposure by Spanish-English Bilinguals. Languages, 7(3), 226. https://doi.org/10.3390/languages7030226\nParrish, K. (2024a). Statistical Insignificance is not wholesale transfer in L3 Acquisition: An approximate replication of Rothman (2011). Studies in Second Language Acquisition, 1–18. https://doi.org/10.1017/S0272263124000342\nParrish, K. (2024b). The production of L3 stop-initial words by Spanish/English bilinguals. International Journal of Multilingualism, 21(1), 131–148. https://doi.org/10.1080/14790718.2022.2060234\nPathak, L. S., Vulchanova, M., Pathak, P., \u0026amp; Mishra, R. K. (2024). Trilingual parallel processing: Do the dominant languages grab all the attention? Bilingualism: Language and Cognition, 1–18. https://doi.org/10.1017/S1366728924000257\nPatience, M. (2018). Acquisition of the Tap-Trill Contrast by L1 Mandarin–L2 English–L3 Spanish Speakers. Languages, 3(4), 42. https://doi.org/10.3390/languages3040042\nPatience, M., \u0026amp; Qian, W. (2022). The Role of Task Complexity and Dominant Articulatory Routines in the Acquisition of L3 Spanish. Languages, 7(2), 90. https://doi.org/10.3390/languages7020090\nPavlovskaya, N., Riches, N., \u0026amp; Young-Scholten, M. (2024). Chapter 8. First exposure to Russian word forms by adult English speakers: Disentangling language‑specific and language‑universal factors. In L. Hracs (Ed.), Language Acquisition and Language Disorders (Vol. 69, pp. 191–224). John Benjamins Publishing Company. https://doi.org/10.1075/lald.69.08pav\nPayne, B. R., Ng, S., Shantz, K., \u0026amp; Federmeier, K. D. (2020). Event-related brain potentials in multilingual language processing: The N’s and P’s. In Psychology of Learning and Motivation (Vol. 72, pp. 75–118). Elsevier. https://doi.org/10.1016/bs.plm.2020.03.003\nPehlivanoglu, D., Myers, E., \u0026amp; Ebner, N. C. (2020). -Phasic Model of xytocin (): A systematic conceptual review of oxytocin-related ERP research. Biological Psychology, 154, 107917. https://doi.org/10.1016/j.biopsycho.2020.107917\nPélissier{, M. (2020). Comparing ERPs between native speakers and second language learners: Dealing with individual variability. Zenodo. https://doi.org/10.5281/ZENODO.4032282\nPeña-Acuña, B., \u0026amp; Crismán-Pérez, R. (2022). Research on Papua, a digital tool with artificial intelligence in favor of learning and linguistic attitudes towards the learning of the English language in students of Spanish language as L1. Frontiers in Psychology, 13, 1019278. https://doi.org/10.3389/fpsyg.2022.1019278\nPereira Soares, S. M., Kubota, M., Rossi, E., \u0026amp; Rothman, J. (2021). Determinants of bilingualism predict dynamic changes in resting state EEG oscillations. Brain and Language, 223, 105030. https://doi.org/10.1016/j.bandl.2021.105030\nPereira Soares, S. M., Kupisch, T., \u0026amp; Rothman, J. (2022). Testing Potential Transfer Effects in Heritage and Adult L2 Bilinguals Acquiring a Mini Grammar as an Additional Language: An ERP Approach. Brain Sciences, 12(5), 669. https://doi.org/10.3390/brainsci12050669\nPereira Soares, S. M., Prystauka, Y., DeLuca, V., Poch, C., \u0026amp; Rothman, J. (2024). Brain correlates of attentional load processing reflect degree of bilingual engagement: Evidence from EEG. NeuroImage, 298, 120786. https://doi.org/10.1016/j.neuroimage.2024.120786\nPereira Soares, S. M., Prystauka, Y., DeLuca, V., \u0026amp; Rothman, J. (2022). Type of bilingualism conditions individual differences in the oscillatory dynamics of inhibitory control. Frontiers in Human Neuroscience, 16, 910910. https://doi.org/10.3389/fnhum.2022.910910\nPereira Soares, S. M., \u0026amp; Rothman, J. (2021). Cognitive states in third language acquisition and beyond: Theoretical and methodological paths forward. Linguistic Approaches to Bilingualism, 11(1), 89–95. https://doi.org/10.1075/lab.20080.per\nPereyron, L., \u0026amp; Alves, U. K. (2020). Multi-directionality in language transfer: Development of the vowel system of Brazilian Portuguese as a second (L2) or third language (L3). In K. V. Molsing, C. Becker Lopes Perna, \u0026amp; A. M. Tramunt Ibaños (Eds.), Issues in Hispanic and Lusophone Linguistics (Vol. 24, pp. 83–106). John Benjamins Publishing Company. https://doi.org/10.1075/ihll.24.04per\nPérez-Valverde, C., Ruiz-Cecilia, R., Medina-Sánchez, L., \u0026amp; Guijarro-Ojeda, J. R. (2021). Coping with Challenges in Teaching Foreign Languages to Children with Mild Intellectual Disabilities: Stakeholders’ Perspectives. Mathematics, 9(8), 906. https://doi.org/10.3390/math9080906\nPerpiñán, S., \u0026amp; Montrul, S. (2023). Does your regional variety help you acquire an additional language?: Spanish differential object marking in Northern and Southern Italians. Linguistic Approaches to Bilingualism, 13(5), 663–692. https://doi.org/10.1075/lab.22057.per\nPhD candidate, Department of Foreign Languages, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran, maryam.ghezlou@gmail.com, Ghezlou, M., Koosha, M., Assoc. Prof., Department of Foreign Languages, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran, mansourkoosha@yahoo.com, Lotfi, A. R., \u0026amp; Asst. Prof., Department of Foreign Languages, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran, lotfi.ahmadreza@gmail.com. (2019). Cross-linguistic Influence in the L3 Acquisition of English Adjective Properties by Azeri-Persian Bilinguals. International Journal of Instruction, 12(1), 1299–1318. https://doi.org/10.29333/iji.2019.12183a\nPichler, D. C., \u0026amp; Koulidobrova, E. (2023). The Role of Modality in L2 Learning: The Importance of Learners Acquiring a Second Sign Language (M2L2 and M1L2 Learners). Language Learning, 73(S1), 197–233. https://doi.org/10.1111/lang.12607\nPicoral, A., \u0026amp; Carvalho, A. M. (2020). The Acquisition of Preposition + Article Contractions in L3 Portuguese among Different L1-Speaking Learners: A Variationist Approach. Languages, 5(4), 45. https://doi.org/10.3390/languages5040045\nPirvulescu, M., Hill, V., Nacif, N., Helms-Park, R., \u0026amp; Petrescu, M. (2022). The acquisition of adverbs in child L3 French in Canada. Glossa: A Journal of General Linguistics, 7(1). https://doi.org/10.16995/glossa.5721\nPitsik, E. N. (2022). Recurrence quantification analysis detects P300 in single-trial EEG. In B. N. Khlebtsov \u0026amp; D. E. Postnov (Eds.), Computational Biophysics and Nanobiophotonics (p. 40). SPIE. https://doi.org/10.1117/12.2626711\nPitsik, N. E. (2022). Recurrence Quantification Analysis of P300 Event-Related Potential on Single-Trial EEG. Bulletin of the Russian Academy of Sciences: Physics, 86(2), 211–215. https://doi.org/10.3103/S1062873822020241\nPoeste, M., Müller, N., \u0026amp; Arnaus Gil, L. (2019). Code-mixing and language dominance: Bilingual, trilingual and multilingual children compared. International Journal of Multilingualism, 16(4), 459–491. https://doi.org/10.1080/14790718.2019.1569017\nPopp, F., Dallmer-Zerbe, I., Philipsen, A., \u0026amp; Herrmann, C. S. (2019). Challenges of P300 Modulation Using Transcranial Alternating Current Stimulation (tACS). Frontiers in Psychology, 10, 476. https://doi.org/10.3389/fpsyg.2019.00476\nPrela, L., Llompart, M., \u0026amp; Dąbrowska, E. (2022). Aptitude and experience as predictors of grammatical proficiency in adult Greek-English bilinguals. Frontiers in Psychology, 13, 1062821. https://doi.org/10.3389/fpsyg.2022.1062821\nPřevrátilová, S. (2023). One Mind, Many Languages: Czech as an Additional Language in Plurilingual Repertoires. Sustainable Multilingualism, 23(1), 91–120. https://doi.org/10.2478/sm-2023-0014\nPrystauka, Y., DeLuca, V., Luque, A., Voits, T., \u0026amp; Rothman, J. (2023). Cognitive Neuroscience Perspectives on Language Acquisition and Processing. Brain Sciences, 13(12), 1613. https://doi.org/10.3390/brainsci13121613\nPuig-Mayenco, E., González Alonso, J., \u0026amp; Rothman, J. (2020). A systematic review of transfer studies in third language acquisition. Second Language Research, 36(1), 31–64. https://doi.org/10.1177/0267658318809147\nPuig-Mayenco, E., \u0026amp; Marsden, H. (2018). Polarity-item anything in L3 English: Where does transfer come from when the L1 is Catalan and the L2 is Spanish? Second Language Research, 34(4), 487–515. https://doi.org/10.1177/0267658317747926\nPuig-Mayenco, E., Miller, D., \u0026amp; Rothman, J. (2018). Chapter 9. Language dominance and transfer selection in L3 acquisition: Evidence from sentential negation and negative quantifiers in L3 English. In J. Cho, M. Iverson, T. Judy, T. Leal, \u0026amp; E. Shimanskaya (Eds.), Studies in Bilingualism (Vol. 55, pp. 229–260). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.55.09pui\nPuig-Mayenco, E., \u0026amp; Rothman, J. (2020). Low proficiency does not mean ab initio: A methodological footnote for linguistic transfer studies. Language Acquisition, 27(2), 217–226. https://doi.org/10.1080/10489223.2019.1677668\nPuig-Mayenco, E., Rothman, J., \u0026amp; Tubau, S. (2022). Language dominance in the previously acquired languages modulates rate of third language (L3) development over time: A longitudinal study. International Journal of Bilingual Education and Bilingualism, 25(5), 1641–1664. https://doi.org/10.1080/13670050.2020.1792408\nQin, T., Fias, W., Van De Weghe, N., \u0026amp; Huang, H. (2024). Differentiating Everyday Map Tasks: Unique Attention-Related Eye Movements and Electrophysiological Signatures of Map Use. Annals of the American Association of Geographers, 114(7), 1604–1624. https://doi.org/10.1080/24694452.2024.2353845\nQuiñones, I., Amoruso, L., Pomposo Gastelu, I. C., Gil-Robles, S., \u0026amp; Carreiras, M. (2021). What Can Glioma Patients Teach Us about Language (Re)Organization in the Bilingual Brain: Evidence from fMRI and MEG. Cancers, 13(11), 2593. https://doi.org/10.3390/cancers13112593\nQuiñones, I., Gisbert-Muñoz, S., Amoruso, L., Manso-Ortega, L., Mori, U., Bermudez, G., Robles, S. G., Pomposo, I., \u0026amp; Carreiras, M. (2024). Unveiling the neuroplastic capacity of the bilingual brain: Insights from healthy and pathological individuals. Brain Structure and Function. https://doi.org/10.1007/s00429-024-02846-9\nRafeekh, R., Krishna, P. P., Kapiley, K., \u0026amp; Mishra, R. K. (2021). The effects of short-term L2 training on components of executive control in Indian bilinguals. Cognitive Processing, 22(2), 339–351. https://doi.org/10.1007/s10339-021-01014-9\nRaine, L. B., Kao, S.-C., Pindus, D., Westfall, D. R., Shigeta, T. T., Logan, N., Cadenas-Sanchez, C., Li, J., Drollette, E. S., Pontifex, M. B., Khan, N. A., Kramer, A. F., \u0026amp; Hillman, C. H. (2018). A Large-Scale Reanalysis of Childhood Fitness and Inhibitory Control. Journal of Cognitive Enhancement, 2(2), 170–192. https://doi.org/10.1007/s41465-018-0070-7\nRamos Feijoo, J., \u0026amp; García Mayo, M. D. P. (2023). The acquisition of relative clauses by Spanish-Basque learners of L3 English: Does dominance play a role? International Review of Applied Linguistics in Language Teaching, 61(3), 1051–1081. https://doi.org/10.1515/iral-2021-0054\nRashid Izullah, F., Koivisto, M., Nieminen, V., Luimula, M., \u0026amp; Hämäläinen, H. (2022). Aging and sleep deprivation affect different neurocognitive stages of spatial information processing during a virtual driving task – An ERP study. Transportation Research Part F: Traffic Psychology and Behaviour, 89, 399–406. https://doi.org/10.1016/j.trf.2022.07.001\nReisian, E., Jabbari, A., Fazilatfar, A., \u0026amp; Rezai, M. J. (2023). Acquisition of L3 English Attributive Adjectives by Arabic-Persian and Persian-Arabic Bilinguals. Applied Research on English Language, 12(4). https://doi.org/10.22108/are.2024.138102.2115\nRoberts, L., González Alonso, J., Pliatsikas, C., \u0026amp; Rothman, J. (2018). Evidence from neurolinguistic methodologies: Can it actually inform linguistic/language acquisition theories and translate to evidence-based applications? Second Language Research, 34(1), 125–143. https://doi.org/10.1177/0267658316644010\nRockholt, M. M., Kenefati, G., Doan, L. V., Chen, Z. S., \u0026amp; Wang, J. (2023). In search of a composite biomarker for chronic pain by way of EEG and machine learning: Where do we currently stand? Frontiers in Neuroscience, 17, 1186418. https://doi.org/10.3389/fnins.2023.1186418\nRosales, C., \u0026amp; Torres, J. (2024). The role of metalinguistic knowledge in third-language development among heritage and late bilinguals. International Journal of Bilingualism, 13670069241229161. https://doi.org/10.1177/13670069241229161\nRose, M. C., Brooks, P. J., Lodhi, A. K., \u0026amp; Cortez, A. (2024). Benefits of Testing and Production for Learning Turkish As a New Language. Language Learning, 74(2), 365–401. https://doi.org/10.1111/lang.12602\nRosen, R. S. (2018). Longitudinal L3 Acquisition of American Sign Language Motion Verbs: A Case Study of Changes and Persistencies in Prior Language Influence. Sign Language Studies, 18(2), 266–299. https://doi.org/10.1353/sls.2018.0003\nRoss, V., Vossen, A. Y., Smulders, F. T. Y., Ruiter, R. A. C., Brijs, T., Brijs, K., Wets, G., \u0026amp; Jongen, E. M. M. (2018). Measuring working memory load effects on electrophysiological markers of attention orienting during a simulated drive. Ergonomics, 61(3), 429–443. https://doi.org/10.1080/00140139.2017.1353708\nRossi, E., Pereira Soares, S. M., Prystauka, Y., Nakamura, M., \u0026amp; Rothman, J. (2023). Riding the (brain) waves! Using neural oscillations to inform bilingualism research. Bilingualism: Language and Cognition, 26(1), 202–215. https://doi.org/10.1017/S1366728922000451\nRossi, E., Voits, T., \u0026amp; DeLuca, V. (2023). Using Structural Neuroimaging to Investigate Second Language. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 59–71). Routledge. https://doi.org/10.4324/9781003190912-7\nRothman, J. (2024). Harnessing the bilingual descent down the mountain of life: Charting novel paths for Cognitive and Brain Reserves research. Bilingualism: Language and Cognition, 1–9. https://doi.org/10.1017/S1366728924000026\nRothman, J., Alonso, J. G., \u0026amp; Miller, D. (2018). The Acquisition of Second Language Spanish Morphosyntax. In K. L. Geeslin (Ed.), The Cambridge Handbook of Spanish Linguistics (1st ed., pp. 689–715). Cambridge University Press. https://doi.org/10.1017/9781316779194.032\nRothman, J., González Alonso, J., \u0026amp; Puig-Mayenco, E. (2019). Third Language Acquisition and Linguistic Transfer (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781316014660\nRothman, J., \u0026amp; Slabakova, R. (2018). THE GENERATIVE APPROACH TO SLA AND ITS PLACE IN MODERN SECOND LANGUAGE STUDIES. Studies in Second Language Acquisition, 40(2), 417–442. https://doi.org/10.1017/S0272263117000134\nRoyle, P., \u0026amp; Steinhauer, K. (2023). Neural Correlates of Morphology Computation and Representation. In M. Grimaldi, E. Brattico, \u0026amp; Y. Shtyrov (Eds.), Language Electrified (Vol. 202, pp. 447–503). Springer US. https://doi.org/10.1007/978-1-0716-3263-5_14\nSadeghi, K. (2022). Talking About Second Language Acquisition. Springer International Publishing. https://doi.org/10.1007/978-3-030-99758-8\nSaez-Fajardo, S. (2023). The language learning strategies of multilinguals: The influence of age of acquisition in early bilingualism. International Journal of Multilingualism, 1–18. https://doi.org/10.1080/14790718.2023.2241484\nSafavi, S. M., Lopour, B., \u0026amp; Chou, P. H. (2018). Reducing the Computational Complexity of EEG Source Localization With Cortical Patch Decomposition and Optimal Electrode Selection. IEEE Transactions on Biomedical Engineering, 65(10), 2298–2310. https://doi.org/10.1109/TBME.2018.2793882\nSalaberry, R. (2020). The conceptualisation of knowledge about aspect: From monolingual to multilingual representations. Zenodo. https://doi.org/10.5281/ZENODO.4138737\nSamara, A. (2022). Artificial Language Learning Methods as a Tool for Sociolinguistic Research. In K. Geeslin, The Routledge Handbook of Second Language Acquisition and Sociolinguistics (1st ed., pp. 249–260). Routledge. https://doi.org/10.4324/9781003017325-23\nSánchez, L. (2020). Multilingualism from a language acquisition perspective. Zenodo. https://doi.org/10.5281/ZENODO.4138735\nSánchez-Moguel, S. M., Baravalle, R., González-Salinas, S., Rosso, O. A., Fernández, T., \u0026amp; Montani, F. (2022). Abnormal EEG signal energy in the elderly: A wavelet analysis of event-related potentials during a stroop task. Journal of Neuroscience Methods, 376, 109608. https://doi.org/10.1016/j.jneumeth.2022.109608\nSarah Von Grebmer Zu Wolfsthurn. (2022). Does your native language matter? Neural correlates of typological similarity in non-native production. Lingue e linguaggio, 1, 143–169. https://doi.org/10.1418/104453\nSaturno, J. (2022). Production of inflectional morphology in intercomprehension-based language teaching: The case of Slavic languages. International Journal of Multilingualism, 19(3), 383–401. https://doi.org/10.1080/14790718.2020.1730379\nSavalle, E., Pillette, L., Won, K., Argelaguet, F., Lécuyer, A., \u0026amp; J-M Macé, M. (2024). Towards electrophysiological measurement of presence in virtual reality through auditory oddball stimuli. Journal of Neural Engineering, 21(4), 046015. https://doi.org/10.1088/1741-2552/ad5cc2\nSavelieva, T., \u0026amp; Rodina, Y. (2022). Cross-linguistic influence in the acquisition of articles in L3 English by Danish-Russian bilingual children. Journal of Second Language Studies, 5(2), 235–265. https://doi.org/10.1075/jsls.21025.rod\nScalise, E., Stahnke, J., \u0026amp; Müller, N. (2021). Parameter setting and acceleration: Subject omissions in a trilingual child with special reference to French. Language, Interaction and Acquisition, 12(1), 157–184. https://doi.org/10.1075/lia.20011.sca\nSchepens, J., Van Hout, R., \u0026amp; Jaeger, T. F. (2020). Big data suggest strong constraints of linguistic similarity on adult language learning. Cognition, 194, 104056. https://doi.org/10.1016/j.cognition.2019.104056\nSchiller, N. O. (2019). Evidence for syntactic feature transfer between two languages. Linguistic Approaches to Bilingualism, 9(6), 883–887. https://doi.org/10.1075/lab.19058.sch\nSchindler, S., Bruchmann, M., Gathmann, B., Moeck, R., \u0026amp; Straube, T. (2021). Effects of low-level visual information and perceptual load on P1 and N170 responses to emotional expressions. Cortex, 136, 14–27. https://doi.org/10.1016/j.cortex.2020.12.011\nSchindler, S., Bruchmann, M., \u0026amp; Straube, T. (2022). Feature-based attention interacts with emotional picture content during mid-latency and late ERP processing stages. Biological Psychology, 170, 108310. https://doi.org/10.1016/j.biopsycho.2022.108310\nSchindler, S., Busch, N., Bruchmann, M., Wolf, M., \u0026amp; Straube, T. (2022). Early ERP functions are indexed by lateralized effects to peripherally presented emotional faces and scrambles. Psychophysiology, 59(2), e13959. https://doi.org/10.1111/psyp.13959\nSchindler, S., Richter, T. S., Bruchmann, M., Busch, N. A., \u0026amp; Straube, T. (2022). Effects of task load, spatial attention, and trait anxiety on neuronal responses to fearful and neutral faces. Psychophysiology, 59(11), e14114. https://doi.org/10.1111/psyp.14114\nSchirmer, A., Wijaya, M., Wu, E., \u0026amp; Penney, T. B. (2019). Vocal threat enhances visual perception as a function of attention and sex. Social Cognitive and Affective Neuroscience, 14(7), 727–735. https://doi.org/10.1093/scan/nsz044\nSchneider, J. M., Behboudi, M. H., \u0026amp; Maguire, M. J. (2024). The Necessity of Taking Culture and Context into Account When Studying the Relationship between Socioeconomic Status and Brain Development. Brain Sciences, 14(4), 392. https://doi.org/10.3390/brainsci14040392\nSchreiter, M. L., \u0026amp; Beste, C. (2020). Inflexible adjustment of expectations affects cognitive-emotional conflict control in adolescents with autism spectrum disorder. Cortex, 130, 231–245. https://doi.org/10.1016/j.cortex.2020.06.002\nSchreiter, M. L., Chmielewski, W. X., \u0026amp; Beste, C. (2018). How socioemotional setting modulates late-stage conflict resolution processes in the lateral prefrontal cortex. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 18(3), 521–535. https://doi.org/10.3758/s13415-018-0585-5\nSchreiter, M. L., Chmielewski, W. X., Mückschel, M., Ziemssen, T., \u0026amp; Beste, C. (2019). How the depth of processing modulates emotional interference – evidence from EEG and pupil diameter data. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 19(5), 1231–1246. https://doi.org/10.3758/s13415-019-00732-0\nSchreiter, M. L., Chmielewski, W. X., Ward, J., \u0026amp; Beste, C. (2019). How non-veridical perception drives actions in healthy humans: Evidence from synaesthesia. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1787), 20180574. https://doi.org/10.1098/rstb.2018.0574\nSchwartz, B. D., \u0026amp; Sprouse, R. A. (2021a). In defense of ‘copying and restructuring.’ Second Language Research, 37(3), 489–493. https://doi.org/10.1177/0267658320975831\nSchwartz, B. D., \u0026amp; Sprouse, R. A. (2021b). Making models, making predictions. Linguistic Approaches to Bilingualism, 11(1), 116–129. https://doi.org/10.1075/lab.00032.sch\nSchwartz, B. D., \u0026amp; Sprouse, R. A. (2021c). The Full Transfer/Full Access model and L3 cognitive states. Linguistic Approaches to Bilingualism, 11(1), 1–29. https://doi.org/10.1075/lab.20055.sch\nSeidel, A., Ghio, M., Studer, B., \u0026amp; Bellebaum, C. (2021). Illusion of control affects ERP amplitude reductions for auditory outcomes of self‐generated actions. Psychophysiology, 58(5), e13792. https://doi.org/10.1111/psyp.13792\nShaktawat, D. (2024). The Effect of Indian Contact and Glaswegian Contact on the Phonetic Backward Transfer of Glaswegian English (L2) on Hindi and Indian English (L1). Languages, 9(4), 118. https://doi.org/10.3390/languages9040118\nShanghai International Studies University, Ding, Y., Wang, T., \u0026amp; Macau University of Science and Technology. (2023). Análisis de la correlación del rendimiento de aprendizaje entre segunda lengua (L2) y tercera lengua (L3): El caso de estudiantes chinos. México y La Cuenca Del Pacífico, 12(35), 111–130. https://doi.org/10.32870/mycp.v12i35.828\nShantz, K., \u0026amp; Tanner, D. (2020). Electrophysiology finds no inherent delay for grammatical gender retrieval in non-native production. Bilingualism: Language and Cognition, 23(1), 98–118. https://doi.org/10.1017/S1366728918001232\nSheehan, M., Paciorek, A., \u0026amp; Williams, J. (2018). Case/agreement matching: Evidence for a cognitive bias. Glossa: A Journal of General Linguistics, 3(1). https://doi.org/10.5334/gjgl.413\nSherif, M. A., Cortes‐Briones, J. A., Ranganathan, M., \u0026amp; Skosnik, P. D. (2018). Cannabinoid–glutamate interactions and neural oscillations: Implications for psychosis. European Journal of Neuroscience, 48(8), 2890–2902. https://doi.org/10.1111/ejn.13800\nShimeng Xu, E., \u0026amp; Chun Man Wong, P. (2023). First Language/Second Language Crosslinguistic Influence on Third Language Acquisition via Neurocognitive Memory Systems. In K. Morgan-Short \u0026amp; J. G. Van Hell, The Routledge Handbook of Second Language Acquisition and Neurolinguistics (1st ed., pp. 314–325). Routledge. https://doi.org/10.4324/9781003190912-29\nSiemund, P., \u0026amp; Lorenz, E. (2024). Chapter 5. Multilingual advantages: On the relationship between type of bilingualism and language knowledge. In K. K. Grohmann (Ed.), Studies in Bilingualism (Vol. 66, pp. 123–151). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.66.05sie\nSiemund, P., Lorenz, E., \u0026amp; Toprak-Yildiz, T. E. (2024). The impact of heritage language proficiency on English as an additional language: Disentangling language and cognition. International Journal of Multilingualism, 21(4), 2131–2149. https://doi.org/10.1080/14790718.2023.2228340\nSittiprapaporn, P., \u0026amp; Suyajai, P. (2022). Topographical distribution of the human brain to Plukenetia volubilis-based omega-3,6,9 enriched egg consumption. IAES International Journal of Artificial Intelligence (IJ-AI), 11(4), 1426. https://doi.org/10.11591/ijai.v11.i4.pp1426-1438\nSlabakova, R. (2021). Does Full Transfer Endure in L3A? Linguistic Approaches to Bilingualism, 11(1), 96–102. https://doi.org/10.1075/lab.20087.sla\nSlabakova, R. (2023). A shared linguistic system of multilingual representations. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 29–48). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.02sla\nSokhadze, E. M., Shaban, M., El-Baz, A. S., Tasman, A., Sears, L., \u0026amp; Casanova, M. F. (2023). Event-related potentials and gamma oscillations in EEG as functional diagnostic biomarkers and outcomes in autism spectrum disorder treatment research. In Neural Engineering Techniques for Autism Spectrum Disorder, Volume 2 (pp. 297–319). Elsevier. https://doi.org/10.1016/B978-0-12-824421-0.00022-9\nSokolova, M., \u0026amp; Slabakova, R. (2019). L3 Sentence Processing: Language-Specific or Phenomenon-Sensitive? Languages, 4(3), 54. https://doi.org/10.3390/languages4030054\nSokolova, M., \u0026amp; Slabakova, R. (2022). A different type of RC attachment resolution: Comparing bilingual and trilingual processing. In T. Leal, E. Shimanskaya, \u0026amp; C. A. Isabelli (Eds.), Language Acquisition and Language Disorders (Vol. 67, pp. 287–314). John Benjamins Publishing Company. https://doi.org/10.1075/lald.67.12sok\nSokolova, M. Y., \u0026amp; Levandovski, M. (2023). Relative Clause Processing and Attachment Resolution across Languages: Tatar–Russian–English Trilinguals. Languages, 9(1), 18. https://doi.org/10.3390/languages9010018\nSpinner, P., Foote, R., \u0026amp; Upor, R. A. (2018). Gender and number processing in second language Swahili. Linguistic Approaches to Bilingualism, 8(4), 446–476. https://doi.org/10.1075/lab.16042.spi\nSpinner, P., \u0026amp; Gass, S. M. (2019). Using Judgments in Second Language Acquisition Research (1st ed.). Routledge. https://doi.org/10.4324/9781315463377\nSprouse, R. A. (2024). Non-canonical word orders. In T. Ionin, S. Montrul, \u0026amp; R. Slabakova, The Routledge Handbook of Second Language Acquisition, Morphosyntax, and Semantics (1st ed., pp. 382–396). Routledge. https://doi.org/10.4324/9781003412373-33\nStadt, R., Hulk, A., \u0026amp; Sleeman, P. (2018). The role of L2 exposure in L3A: A comparative study between third and fourth year secondary school students in the Netherlands. In J. Berns, H. Jacobs, \u0026amp; D. Nouveau (Eds.), Romance Languages and Linguistic Theory (Vol. 13, pp. 279–296). John Benjamins Publishing Company. https://doi.org/10.1075/rllt.13.17sta\nStadt, R., Hulk, A., \u0026amp; Sleeman, P. (2020a). L1 Dutch vs L2 English and the initial stages of L3 French acquisition. Zenodo. https://doi.org/10.5281/ZENODO.4138749\nStadt, R., Hulk, A., \u0026amp; Sleeman, P. (2020b). L2 Influence in L3 Acquisition: The Role of the L3. In A. Trotzke \u0026amp; T. Kupisch (Eds.), Formal Linguistics and Language Education (Vol. 43, pp. 203–221). Springer International Publishing. https://doi.org/10.1007/978-3-030-39257-4_11\nStetie, N. A. (2021). Modelos de procesamiento sintáctico y sus implicaciones para el estudio del lenguaje / Syntactic processing models and their implications for the study of language. REVISTA DE ESTUDOS DA LINGUAGEM, 29(3), 2117. https://doi.org/10.17851/2237-2083.29.3.2117-1262\nStoehr, A., Jevtović, M., De Bruin, A., \u0026amp; Martin, C. D. (2024). Phonetic and Lexical Crosslinguistic Influence in Early Spanish–Basque–English Trilinguals. Language Learning, 74(2), 332–364. https://doi.org/10.1111/lang.12598\nStoll, E. A. (2024). The Mechanics Underpinning Non-Deterministic Computation in Cortical Neural Networks. AppliedMath, 4(3), 806–827. https://doi.org/10.3390/appliedmath4030043\nStringer, D. (2021). Commitment in L3 relationships: Sacred vows or polyamory? Second Language Research, 37(3), 495–500. https://doi.org/10.1177/0267658320988045\nSuwazono, S., Arao, H., Ueda, Y., \u0026amp; Maedou, S. (2021). Event-related potentials using the auditory novel paradigm in patients with myotonic dystrophy. Journal of Neurology, 268(8), 2900–2907. https://doi.org/10.1007/s00415-021-10465-1\nSuzuki, Y. (2021). Individual differences in memory predict changes in breakdown and repair fluency but not speed fluency: A short-term fluency training intervention study. Applied Psycholinguistics, 42(4), 969–995. https://doi.org/10.1017/S0142716421000187\nSyed, N. A., \u0026amp; Bibi, S. (2024). VOT for plosives in the indigenous languages of Balochistan: Implications for adult learners of English. Journal of Second Language Studies, 7(1), 157–192. https://doi.org/10.1075/jsls.23002.sye\nTajari, S. N., Gholami, S., Rostami, R., Trabelsi, K., \u0026amp; Taheri, M. (2023). The effect of perceptual-motor exercise on temporal dynamics of cognitive inhibition control in children with developmental coordination disorder. Mental Health and Physical Activity, 24, 100495. https://doi.org/10.1016/j.mhpa.2022.100495\nTakacs, A., Zink, N., Wolff, N., Münchau, A., Mückschel, M., \u0026amp; Beste, C. (2020). Connecting EEG signal decomposition and response selection processes using the theory of event coding framework. Human Brain Mapping, 41(10), 2862–2877. https://doi.org/10.1002/hbm.24983\nTammenga-Helmantel, M., \u0026amp; Maijala, M. (2018a). Sequences in German grammar teaching: An analysis of Dutch, Finnish, and global textbooks. International Review of Applied Linguistics in Language Teaching, 56(1), 45–78. https://doi.org/10.1515/iral-2015-0070\nTammenga-Helmantel, M., \u0026amp; Maijala, M. (2018b). Sequences in German grammar teaching: An analysis of Dutch, Finnish, and global textbooks. International Review of Applied Linguistics in Language Teaching, 56(1), 45–78. https://doi.org/10.1515/iral-2015-0070\nTao, L., Wang, G., Zhu, M., \u0026amp; Cai, Q. (2021). Bilingualism and domain-general cognitive functions from a neural perspective: A systematic review. Neuroscience \u0026amp; Biobehavioral Reviews, 125, 264–295. https://doi.org/10.1016/j.neubiorev.2021.02.029\nTararova, O., Black, M., Wang, Q., \u0026amp; Blong, K. (2023). Gender Agreement in L3 Spanish Production among Speakers of Typologically Different Languages. Languages, 8(1), 18. https://doi.org/10.3390/languages8010018\nTavakol, M., Tavakoli, M., \u0026amp; Ketabi, S. (2022). The impact of linguistic background on the nature of classroom dyadic interactions: Evidence from L2 and L3 learners of English as a foreign language. International Multilingual Research Journal, 16(1), 1–26. https://doi.org/10.1080/19313152.2021.1929761\nTesta, M. (2020). Exploring the Relation Between Psychotypologies and Article Acquisition. PSYCHOLINGUISTICS, 27(2), 252–289. https://doi.org/10.31470/2309-1797-2020-27-2-252-289\nTimofeeva, P., Quiñones, I., Geng, S., De Bruin, A., Carreiras, M., \u0026amp; Amoruso, L. (2023). Behavioral and oscillatory signatures of switch costs in highly proficient bilinguals. Scientific Reports, 13(1), 7725. https://doi.org/10.1038/s41598-023-34895-1\nTomić, A., \u0026amp; Kaan, E. (2022). Oscillatory brain responses to processing code-switches in the presence of others. Brain and Language, 231, 105139. https://doi.org/10.1016/j.bandl.2022.105139\nTravers, W. (2022). 10 Inside the L3 Classroom: Learner Reflections on University-level Foreign Language Classes for Bilinguals in the United States. In A. Krulatz, G. Neokleous, \u0026amp; A. Dahl (Eds.), Theoretical and Applied Perspectives on Teaching Foreign Languages in Multilingual Settings (pp. 170–185). Multilingual Matters. https://doi.org/10.21832/9781788926423-015\nTribushinina, E., Boz, B., Aalbers, V., \u0026amp; Blom, E. (2024). Revisiting bilingual foreign language learning advantages: The role of extramural exposure. International Journal of Bilingualism, 13670069231224542. https://doi.org/10.1177/13670069231224542\nTribushinina, E., \u0026amp; Mackaaij, M. (2023). Bilingual advantages in foreign language learning: Evidence from primary-school pupils with developmental language disorder. Frontiers in Education, 8, 1264120. https://doi.org/10.3389/feduc.2023.1264120\nTrumbo, M. C., Jones, A. P., Robert, B. M., Trumbo, D., \u0026amp; Matzen, L. E. (2022). A Method of Developing Video Stimuli that Are Amenable to Neuroimaging Analysis: An EEG Pilot Study. In D. D. Schmorrow \u0026amp; C. M. Fidopiastis (Eds.), Augmented Cognition (Vol. 13310, pp. 183–201). Springer International Publishing. https://doi.org/10.1007/978-3-031-05457-0_16\nUdry, I., \u0026amp; Berthele, R. (2024). Young learners’ academic self-concepts for L2/L3 French and English. International Journal of Multilingualism, 1–18. https://doi.org/10.1080/14790718.2023.2301094\nUmejima, K., Flynn, S., \u0026amp; Sakai, K. L. (2021). Enhanced activations in syntax-related regions for multilinguals while acquiring a new language. Scientific Reports, 11(1), 7296. https://doi.org/10.1038/s41598-021-86710-4\nUth, M., \u0026amp; García García, M. (2018). Chapter 1. Introduction: Core issues of focus realization in Romance. In M. García García \u0026amp; M. Uth (Eds.), Studies in Language Companion Series (Vol. 201, pp. 1–30). John Benjamins Publishing Company. https://doi.org/10.1075/slcs.201.01uth\nVahid, A., Bluschke, A., Roessner, V., Stober, S., \u0026amp; Beste, C. (2019). Deep Learning Based on Event-Related EEG Differentiates Children with ADHD from Healthy Controls. Journal of Clinical Medicine, 8(7), 1055. https://doi.org/10.3390/jcm8071055\nVahid, A., Mückschel, M., Stober, S., Stock, A.-K., \u0026amp; Beste, C. (2020). Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control. Communications Biology, 3(1), 112. https://doi.org/10.1038/s42003-020-0846-z\nVallerossa, F. (2024). ‘I think mangiò might be passé simple’: Exploring multilingual learners’ reflections on past tense verb morphology. International Journal of Multilingualism, 21(1), 112–130. https://doi.org/10.1080/14790718.2022.2036159\nVallerossa, F., \u0026amp; Bardel, C. (2023). Always trust your gut?: A case study on the differential impact of French as L1/L2 on Italian L3 tense-aspect judgments. Language, Interaction and Acquisition, 14(1), 41–74. https://doi.org/10.1075/lia.22020.val\nVallerossa, F., Gudmundson, A., Bergström, A., \u0026amp; Bardel, C. (2023). Learning aspect in Italian as additional language. The role of second languages. International Review of Applied Linguistics in Language Teaching, 61(3), 1139–1171. https://doi.org/10.1515/iral-2021-0033\nVan Baal, Y. (2023). Definiteness marking in American Norwegian: A unique pattern among the Scandinavian languages. The Journal of Comparative Germanic Linguistics, 27(1), 1. https://doi.org/10.1007/s10828-023-09149-z\nVan De Ruit, M., \u0026amp; Ghosh, A. (2022). Can you hear me now? Momentary increase in smartphone usage enhances neural processing of task-irrelevant sound tones. Neuroimage: Reports, 2(4), 100131. https://doi.org/10.1016/j.ynirp.2022.100131\nVan De Ven, M., Voeten, M., Steenbeek-Planting, E. G., \u0026amp; Verhoeven, L. (2018a). Transfer of decoding skills in early foreign language reading. Learning and Individual Differences, 62, 1–11. https://doi.org/10.1016/j.lindif.2018.01.005\nVan De Ven, M., Voeten, M., Steenbeek-Planting, E. G., \u0026amp; Verhoeven, L. (2018b). Transfer of decoding skills in early foreign language reading. Learning and Individual Differences, 62, 1–11. https://doi.org/10.1016/j.lindif.2018.01.005\nVan Dijk, C., Dijkstra, T., \u0026amp; Unsworth, S. (2022). Cross-linguistic influence during online sentence processing in bilingual children. Bilingualism: Language and Cognition, 25(4), 691–704. https://doi.org/10.1017/S1366728922000050\nVan Tessel, E., \u0026amp; Bril, M. (2021). French as a foreign language in the Netherlands: An L2 or an L3? A study on crosslinguistic influences from Dutch and English. Linguistics in the Netherlands, 38, 114–127. https://doi.org/10.1075/avt.00056.tes\nVanhove, J. (2019). Metalinguistic knowledge about the native language and language transfer in gender assignment. Studies in Second Language Learning and Teaching, 9(2), 397–419. https://doi.org/10.14746/ssllt.2019.9.2.7\nVargas, J. C., \u0026amp; García Mayo, M. D. P. (2022). Lexical Crosslinguistic Influence in L3 Spanish by Tagalog–English Bilinguals. Languages, 7(3), 213. https://doi.org/10.3390/languages7030213\nVastano, R., \u0026amp; Widerstrom-Noga, E. (2023). Event-related potentials during mental rotation of body-related stimuli in spinal cord injury population. Neuropsychologia, 179, 108447. https://doi.org/10.1016/j.neuropsychologia.2022.108447\nVeezhinathan, M., Geethanjali, B., Sakthivel, S., \u0026amp; AnanthaNarayanan, R. (2023). Evaluating cognitive load during lexical decision tasks for monolinguals and bilinguals using EEG. In M. Murugappan (Ed.), Affective Computing in Healthcare (pp. 2-1-2–32). IOP Publishing. https://doi.org/10.1088/978-0-7503-5182-9ch2\nVera, J. D., Freichel, R., Michelini, G., Loo, S. K., \u0026amp; Lenartowicz, A. (2024). A Network Approach to Understanding the Role of Executive Functioning and Alpha Oscillations in Inattention and Hyperactivity-Impulsivity Symptoms of ADHD. Journal of Attention Disorders, 28(10), 1357–1367. https://doi.org/10.1177/10870547241253999\nVoits, T., DeLuca, V., \u0026amp; Abutalebi, J. (2022). The Nuance of Bilingualism as a Reserve Contributor: Conveying Research to the Broader Neuroscience Community. Frontiers in Psychology, 13, 909266. https://doi.org/10.3389/fpsyg.2022.909266\nVoits, T., DeLuca, V., Hao, J., Elin, K., Abutalebi, J., Duñabeitia, J. A., Berglund, G., Gabrielsen, A., Rook, J., Thomsen, H., Waagen, P., \u0026amp; Rothman, J. (2024). Degree of multilingual engagement modulates resting state oscillatory activity across the lifespan. Neurobiology of Aging, 140, 70–80. https://doi.org/10.1016/j.neurobiolaging.2024.04.009\nVon Grebmer Zu Wolfsthurn, S., Pablos, L., \u0026amp; Schiller, N. O. (2021). Noun-phrase production as a window to language selection: An ERP study. Neuropsychologia, 162, 108055. https://doi.org/10.1016/j.neuropsychologia.2021.108055\nWach, A. (2018). Trilingual Learners’ Awareness of the Role of L1 in Learning Target Language Grammar. In M. Pawlak \u0026amp; A. Mystkowska-Wiertelak (Eds.), Challenges of Second and Foreign Language Education in a Globalized World (pp. 209–226). Springer International Publishing. https://doi.org/10.1007/978-3-319-66975-5_13\nWakabayashi, S. (2023). Generative grammar. In L. Wei, Z. Hua, \u0026amp; J. Simpson, The Routledge Handbook of Applied Linguistics (2nd ed., pp. 336–349). Routledge. https://doi.org/10.4324/9781003082644-28\nWalter, D. R., Fischer, G., \u0026amp; Cai, J. (2024). The effect of cue length and position on noticing and learning of determiner agreement pairings: Evidence from a cue-balanced artificial vocabulary learning task. PLOS ONE, 19(7), e0302355. https://doi.org/10.1371/journal.pone.0302355\nWand, A. (2023). Segregation in Language Education: The Case of South Tyrol, Italy. Springer International Publishing. https://doi.org/10.1007/978-3-031-32747-6\nWang, C., Shen, H., Zhu, J., Manman, N., Liao, L., Jiang, K., \u0026amp; Dong, X. (2023). Recognition memory for pictures in children with ADHD: An event-related potential study. International Journal of Neuroscience, 133(5), 555–566. https://doi.org/10.1080/00207454.2021.1936518\nWang, L., Zhang, J., Liu, T., Chen, D., Yang, D., Go, R., Wu, J., \u0026amp; Yan, T. (2022). Prediction of Cognitive Task Activations via Resting-State Functional Connectivity Networks: An EEG Study. IEEE Transactions on Cognitive and Developmental Systems, 14(1), 181–188. https://doi.org/10.1109/TCDS.2020.3031604\nWang, M., Tokimoto, S., Song, G., Ueno, T., Koizumi, M., \u0026amp; Kiyama, S. (2022). Different Neural Responses for Unfinished Sentence as a Conventional Indirect Refusal Between Native and Non-native Speakers: An Event-Related Potential Study. Frontiers in Psychology, 13, 806023. https://doi.org/10.3389/fpsyg.2022.806023\nWang, T., \u0026amp; Yang, J. (2024). The semantic access mechanism of L3 Spanish words: Evidence from a cross-linguistic priming effect by Chinese native speakers. Review of Cognitive Linguistics. https://doi.org/10.1075/rcl.00175.wan\nWang, Y., Tang, Z., Zhang, X., \u0026amp; Yang, L. (2022). Auditory and cross-modal attentional bias toward positive natural sounds: Behavioral and ERP evidence. Frontiers in Human Neuroscience, 16, 949655. https://doi.org/10.3389/fnhum.2022.949655\nWang, Z., \u0026amp; Xu, C. (2024). Language transfers in third language acquisition of Chinese by intermediate level German and English native speakers: Evidence from a behavioral experiment online. Frontiers in Psychology, 15, 1358603. https://doi.org/10.3389/fpsyg.2024.1358603\nWard, D. F. B., \u0026amp; Lo, Y. Y. (2023). Incidental development of implicit and explicit grammar knowledge from reading: The case of lower-intermediate learners of English. System, 116, 103094. https://doi.org/10.1016/j.system.2023.103094\nWascher, E., Arnau, S., Gutberlet, I., Karthaus, M., \u0026amp; Getzmann, S. (2018). Evaluating Pro- and Re-Active Driving Behavior by Means of the EEG. Frontiers in Human Neuroscience, 12, 205. https://doi.org/10.3389/fnhum.2018.00205\nWei, Y., Okazaki, Y. O., So, R. H. Y., Chu, W. C. W., \u0026amp; Kitajo, K. (2019). Motion sickness-susceptible participants exposed to coherent rotating dot patterns show excessive N2 amplitudes and impaired theta-band phase synchronization. NeuroImage, 202, 116028. https://doi.org/10.1016/j.neuroimage.2019.116028\nWestergaard, M. (2021a). L3 acquisition and crosslinguistic influence as co-activation: Response to commentaries on the keynote ‘Microvariation in multilingual situations: The importance of property-by-property acquisition.’ Second Language Research, 37(3), 501–518. https://doi.org/10.1177/02676583211007897\nWestergaard, M. (2021b). Microvariation in multilingual situations: The importance of property-by-property acquisition. Second Language Research, 37(3), 379–407. https://doi.org/10.1177/0267658319884116\nWestergaard, M. (2021c). The plausibility of wholesale vs. Property-by-property transfer in L3 acquisition. Linguistic Approaches to Bilingualism, 11(1), 103–108. https://doi.org/10.1075/lab.20091.wes\nWhite, L. (2021). Choosing between theories: Can L3 acquisition really decide? Second Language Research, 37(3), 429–433. https://doi.org/10.1177/0267658320941047\nWhite, L. (2024). Verb movement. In T. Ionin, S. Montrul, \u0026amp; R. Slabakova, The Routledge Handbook of Second Language Acquisition, Morphosyntax, and Semantics (1st ed., pp. 341–354). Routledge. https://doi.org/10.4324/9781003412373-30\nWicht, C. A., De Pretto, M., Mouthon, M., \u0026amp; Spierer, L. (2022). Neural correlates of expectations-induced effects of caffeine intake on executive functions. Cortex, 150, 61–84. https://doi.org/10.1016/j.cortex.2022.02.004\nWilang, J. D. (2024). Exploring the Mindsets of Thai Undergraduate Students: A Comprehensive Study of General and Language-Related Beliefs. Sage Open, 14(2), 21582440241262952. https://doi.org/10.1177/21582440241262952\nWolff, N., \u0026amp; Beste, C. (2020). Short-term Smartphone App–Based Focused Attention Meditation Diminishes Cognitive Flexibility. Journal of Cognitive Neuroscience, 32(8), 1484–1496. https://doi.org/10.1162/jocn_a_01564\nWolff, N., Chmielewski, W. X., Beste, C., \u0026amp; Roessner, V. (2018). Working memory load affects repetitive behaviour but not cognitive flexibility in adolescent autism spectrum disorder. The World Journal of Biological Psychiatry, 19(7), 509–520. https://doi.org/10.1080/15622975.2017.1296973\nWolff, N., Gussek, P., Stock, A., \u0026amp; Beste, C. (2018). Effects of high‐dose ethanol intoxication and hangover on cognitive flexibility. Addiction Biology, 23(1), 503–514. https://doi.org/10.1111/adb.12470\nWolff, N., Mückschel, M., Ziemssen, T., \u0026amp; Beste, C. (2018). The role of phasic norepinephrine modulations during task switching: Evidence for specific effects in parietal areas. Brain Structure and Function, 223(2), 925–940. https://doi.org/10.1007/s00429-017-1531-y\nWoll, N. (2018). Investigating dimensions of metalinguistic awareness: What think-aloud protocols revealed about the cognitive processes involved in positive transfer from L2 to L3. Language Awareness, 27(1–2), 167–185. https://doi.org/10.1080/09658416.2018.1432057\nWoll, N. (2019). Investigating Positive Lexical Transfer from English (L2) to German (L3) by Quebec Francophones. In E. Vetter \u0026amp; U. Jessner (Eds.), International Research on Multilingualism: Breaking with the Monolingual Perspective (Vol. 35, pp. 103–123). Springer International Publishing. https://doi.org/10.1007/978-3-030-21380-0_7\nWoll, N., Paquet, P.-L., \u0026amp; Wouters, I. (2024). Language as a vehicle or as a resource? Exploring the nature of metalinguistic reflection in plurilingual consciousness-raising tasks. Journal of Multilingual and Multicultural Development, 45(9), 3906–3925. https://doi.org/10.1080/01434632.2022.2134398\nWrembel, M. (2021a). Multilingual acquisition property by property: A view from a wider perspective. Second Language Research, 37(3), 441–447. https://doi.org/10.1177/0267658320935167\nWrembel, M. (2021b). Transfer vs. dynamic cross-linguistic interactions: Exploring alternative avenues in L3 research. Linguistic Approaches to Bilingualism, 11(1), 109–115. https://doi.org/10.1075/lab.20092.wre\nWu, L., Chen, Y., Liu, X., Fang, P., Feng, T., Sun, K., Ren, L., Liang, W., Lu, H., Lin, X., Li, Y., Wang, L., Li, C., Zhang, T., Ni, C., \u0026amp; Wu, S. (2022). The influence of job burnout on the attention ability of army soldiers and officers: Evidence from ERP. Frontiers in Neuroscience, 16, 992537. https://doi.org/10.3389/fnins.2022.992537\nWu, S., Liu, D., \u0026amp; Li, Z. (2023). Testing the Bottleneck Hypothesis: Chinese EFL learners’ knowledge of morphology and syntax across proficiency levels. Second Language Research, 39(4), 1191–1217. https://doi.org/10.1177/02676583221128520\nXiang, J., \u0026amp; Yuan, B. (2020). Definiteness constraint on subjects in L2 and L3 Mandarin grammars: Empirical evidence concerning the source of transfer in L3 acquisition. Journal of Second Language Studies, 3(2), 233–260. https://doi.org/10.1075/jsls.00012.xia\nXiaobao, W. (2024). Trilingual Education of Uyghur Children: Phonological Awareness, Language Acquisition and Literacy Development (1st ed.). Routledge. https://doi.org/10.4324/9781003473596\nXu, E. S., Matthews, S., Yip, V., \u0026amp; Wong, P. C. M. (2024). Memory systems modulate crosslinguistic influence on third language morphosyntactic acquisition. PLOS ONE, 19(7), e0304572. https://doi.org/10.1371/journal.pone.0304572\nXu, X., Nie, X., Zhang, J., \u0026amp; Xu, T. (2023). Multi-Level Attention Recognition of EEG Based on Feature Selection. International Journal of Environmental Research and Public Health, 20(4), 3487. https://doi.org/10.3390/ijerph20043487\nXu, Y., Yuan, Y., Xie, X., Tan, H., \u0026amp; Guan, L. (2022). Romantic feedbacks influence self-relevant processing: The moderating effects of sex difference and facial attractiveness. Current Psychology, 41(7), 4145–4157. https://doi.org/10.1007/s12144-021-02114-7\nYang, Y. (2023). The Correlation Between English and French Proficiency of Chinese Trilingual Learners. Chinese Journal of Applied Linguistics, 46(3), 404–423. https://doi.org/10.1515/CJAL-2023-0305\nYee, J., Yap, N. T., Korenar, M., Saddy, J. D., \u0026amp; Pliatsikas, C. (2024). Subcortical restructuring as a function of multilingualism: Insights from monolinguals, bilinguals, trilinguals and quadrilinguals. Bilingualism: Language and Cognition, 27(4), 715–728. https://doi.org/10.1017/S136672892300086X\nYener, G., Hünerli-Gündüz, D., Yıldırım, E., Aktürk, T., Başar-Eroğlu, C., Bonanni, L., Del Percio, C., Farina, F., Ferri, R., Güntekin, B., Hajós, M., Ibáñez, A., Jiang, Y., Lizio, R., Lopez, S., Noce, G., Parra, M. A., Randall, F., Stocchi, F., \u0026amp; Babiloni, C. (2022). Treatment effects on event-related EEG potentials and oscillations in Alzheimer’s disease. International Journal of Psychophysiology, 177, 179–201. https://doi.org/10.1016/j.ijpsycho.2022.05.008\nYou, E. (2024). The cross-linguistic influence of L1 Korean and L2 English in L3 Spanish syntactic processing. Onomázein Revista de Lingüística Filología y Traducción, 63, 37–54. https://doi.org/10.7764/onomazein.63.03\nYu, L., Wang, X., Lyu, Y., Ding, L., Jia, J., Tong, S., \u0026amp; Guo, X. (2020). Electrophysiological Evidences for the Rotational Uncertainty Effect in the Hand Mental Rotation: An ERP and ERS/ERD Study. Neuroscience, 432, 205–215. https://doi.org/10.1016/j.neuroscience.2020.02.040\nZaharchuk, H. A., \u0026amp; Karuza, E. A. (2021). Multilayer networks: An untapped tool for understanding bilingual neurocognition. Brain and Language, 220, 104977. https://doi.org/10.1016/j.bandl.2021.104977\nZahler, S. L. (2022). Measuring Individual Differences. In K. Geeslin, The Routledge Handbook of Second Language Acquisition and Sociolinguistics (1st ed., pp. 237–248). Routledge. https://doi.org/10.4324/9781003017325-22\nZanesco, J., Tipura, E., Posada, A., Clément, F., \u0026amp; Pegna, A. J. (2019). Seeing is believing: Early perceptual brain processes are modified by social feedback. Social Neuroscience, 14(5), 519–529. https://doi.org/10.1080/17470919.2018.1511470\nZawiszewski, A., \u0026amp; Laka, I. (2020). Bilinguals processing noun morphology: Evidence for the Language Distance Hypothesis from event-related potentials. Journal of Neurolinguistics, 55, 100908. https://doi.org/10.1016/j.jneuroling.2020.100908\nZen, E. L. (2018). A Preliminary Evidence of Transfer in the Acquisition of Sentential Negation of English in Multilingual Indonesian Children in School Contexts. 3L The Southeast Asian Journal of English Language Studies, 24(3), 155–167. https://doi.org/10.17576/3L-2018-2403-12\nZen, E. L. (2020). Role of Regional Language Background and Speech Styles on the Production of Voice Onset Time (VOT) in English among Indonesian Multilinguals. Indonesian Journal of Applied Linguistics, 10(2), 359–368. https://doi.org/10.17509/ijal.v10i2.28604\nZenia, N. Z., Dizaji, L. G., \u0026amp; Hu, Y. (2023). Effect of Machine Reliability on the Cognitive Processes of the Task Performance. 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3241–3246. https://doi.org/10.1109/SMC53992.2023.10394070\nZeynali Hamied, R., \u0026amp; Modirkhamene, S. (2024). EFL learners’ short-term and long-term memory: Does learning additional languages matter? International Journal of Multilingualism, 1–15. https://doi.org/10.1080/14790718.2023.2294955\nZhang, G., Li, X., \u0026amp; Cong, F. (2020). Objective Extraction of Evoked Event-Related Oscillation from Time-Frequency Representation of Event-Related Potentials. Neural Plasticity, 2020, 1–20. https://doi.org/10.1155/2020/8841354\nZhang, L. (2022). ¿Pollo o Bollo? Acquisition of Voicing Contrast by Chinese Learners of L3 Spanish. Hispania, 105(4), 595–613. https://doi.org/10.1353/hpn.2022.0118\nZhang, L., Morales-Front, A., \u0026amp; Sanz, C. (2023). Dynamics in cross-linguistic influence: Evidence from VOT development of Mandarin-English bilingual learners of L3 Spanish. In M. M. Brown-Bousfield, S. Flynn, \u0026amp; É. Fernández-Berkes (Eds.), Studies in Bilingualism (Vol. 65, pp. 121–149). John Benjamins Publishing Company. https://doi.org/10.1075/sibil.65.06zha\nZhang, X., Guo, F., Li, S., Li, M., \u0026amp; Chen, H. (2018). Consumers’ different neural activity and attitude to the leading brand and imitator. Journal of Neuroscience, Psychology, and Economics, 11(3), 166–181. https://doi.org/10.1037/npe0000077\nZhang, Z., Ma, F., \u0026amp; Guo, T. (2023). Proactive and reactive language control in bilingual language production revealed by decoding sustained potentials and electroencephalography oscillations. Human Brain Mapping, 44(15), 5065–5078. https://doi.org/10.1002/hbm.26433\nZhao, C., Kormos, J., Rebuschat, P., \u0026amp; Suzuki, S. (2021). The role of modality and awareness in language learning. Applied Psycholinguistics, 42(3), 703–737. https://doi.org/10.1017/S0142716421000023\nZhao, Q., Li, H., Hu, B., Li, Y., Gillebert, C. R., Mantini, D., \u0026amp; Liu, Q. (2018a). Neural Correlates of Drug-Related Attentional Bias in Heroin Dependence. Frontiers in Human Neuroscience, 11, 646. https://doi.org/10.3389/fnhum.2017.00646\nZhao, Q., Li, H., Hu, B., Li, Y., Gillebert, C. R., Mantini, D., \u0026amp; Liu, Q. (2018b). Neural Correlates of Drug-Related Attentional Bias in Heroin Dependence. Frontiers in Human Neuroscience, 11, 646. https://doi.org/10.3389/fnhum.2017.00646\nZhou, S., Luo, J., Yu, T., Li, D., Yin, Y., \u0026amp; Tang, X. (2020). Towards a neural model of creative evaluation in advertising: An electrophysiological study. Scientific Reports, 10(1), 21958. https://doi.org/10.1038/s41598-020-79044-0\nZhou, X. (Emily), Huang, X., \u0026amp; He, J. (2020). Translanguaging in L3 Spanish Classrooms: Practices and Attitudes. Círculo de Lingüística Aplicada a La Comunicación, 84, 65–75. https://doi.org/10.5209/clac.71996\nZhu, L., Ma, Q., Bai, X., \u0026amp; Hu, L. (2020). Mechanisms behind hazard perception of warning signs: An EEG study. Transportation Research Part F: Traffic Psychology and Behaviour, 69, 362–374. https://doi.org/10.1016/j.trf.2020.02.001\nZhu, Y., \u0026amp; Mok, P. (2024). Cross-linguistic influences on the production of third language consonant clusters by L1 Cantonese–L2 English–L3 German trilinguals. International Journal of Multilingualism, 21(3), 1700–1717. https://doi.org/10.1080/14790718.2023.2208866\nZibin, A., Allawama, A., Akayleh, M., \u0026amp; Naimat, K. (2024). Investigating Arabic-speaking EFL learners’ understanding of French gender markers: A typological primacy model approach to a third language. Cogent Arts \u0026amp; Humanities, 11(1), 2328898. https://doi.org/10.1080/23311983.2024.2328898\nZink, N., Bensmann, W., Arning, L., Beste, C., \u0026amp; Stock, A.-K. (2019). Apolipoprotein ε4 is associated with better cognitive control allocation in healthy young adults. NeuroImage, 185, 274–285. https://doi.org/10.1016/j.neuroimage.2018.10.046\nZink, N., Stock, A.-K., Vahid, A., \u0026amp; Beste, C. (2018). On the Neurophysiological Mechanisms Underlying the Adaptability to Varying Cognitive Control Demands. Frontiers in Human Neuroscience, 12, 411. https://doi.org/10.3389/fnhum.2018.00411\nZink, N., Zhang, R., Chmielewski, W. X., Beste, C., \u0026amp; Stock, A.-K. (2019). Detrimental effects of a high-dose alcohol intoxication on sequential cognitive flexibility are attenuated by practice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 89, 97–108. https://doi.org/10.1016/j.pnpbp.2018.08.034\nŻychliński, S., Skałba, A., Wrembel, M., \u0026amp; Kaźmierski, K. (2023). How syntactic gradience in L1 affects L3 acquisition: A longitudinal study. Linguistic Approaches to Bilingualism. https://doi.org/10.1075/lab.23011.zyc\nZyzik, E., \u0026amp; Marqués-Pascual, L. (2018). Practice with Formulaic Sequences: Can It Promote the Incidental Learning of Grammar? In C. Jones (Ed.), Practice in Second Language Learning (1st ed., pp. 55–78). Cambridge University Press. https://doi.org/10.1017/9781316443118.005\n水英姚. (2021). 香港大专生普通话学习中”了”的偏误分析: 对体习得普遍趋势和多语教学的启示. Chinese as a Second Language Research, 10(1), 131–154. https://doi.org/10.1515/caslar-2021-0006\n\r\r\r","date":1731024000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1731024000,"objectID":"9fcb894ca0d8c63bc74c7c6f4407cc6d","permalink":"https://pablobernabeu.github.io/publication/third-language-longitudinal-data-artificial-language-learning-eeg/","publishdate":"2024-11-08T00:00:00Z","relpermalink":"/publication/third-language-longitudinal-data-artificial-language-learning-eeg/","section":"publication","summary":"The burgeoning field of third language (L3) acquisition has increasingly focused on intermediate stages of language development, aiming to establish the groundwork for comprehensive models of L3 learning that encompass the entire developmental sequence. This article underscores the importance of a robust epistemological foundation, advocating for incremental knowledge building through longitudinal research. In the study presented here, we use artificial languages to investigate L3 acquisition from initial exposure with complete input control, factoring in individual differences in executive functions and history of bilingual exposure/engagement to assess the role of these variables in shaping learning trajectories and modulating cross-linguistic influence (CLI). This approach not only advances our understanding of L3 development under controlled conditions but also links L3 acquisition research to broader cognitive science inquiries.","tags":["Third language acquisition","L3 learning","Artificial languages","Crosslinguistic influence","Crosslinguistic transfer","Language transfer","Bilingualism","Multilingualism","Cognitive functions","EEG","Language processing","Executive functions","Longitudinal study","Morphosyntax","Typological similarity","Individual differences","Language dominance"],"title":"Starting from the very beginning: Unraveling third language (L3) development with longitudinal data from artificial language learning and related epistemology","type":"publication"},{"authors":null,"categories":["research methods"],"content":"\rReducing the impedance in electroencephalography (EEG) is crucial for capturing high-quality brain activity signals. This process involves ensuring that electrodes make optimal contact with the skin without harming the participant. Below are a few tips to achieve this using a blunt needle, electrolyte gel and gentle wiggling.\nFirst, Do No Harm\rThe primary goal is to reduce the impedance without damaging the skin or causing discomfort. Only use disposable, blunt needles, and never let the needle pierce the skin. While wiggling the needle under each electrode, do not any apply any force down on the skin. To achieve this, hold the syringe with the minimum grip force needed to control it.\n\rManage the Angle and Depth of the Needle\rThe needle should be positioned at an angle of around 20–50 degrees relative to the participant’s skin. To attain such an angle, you may rotate the electrodes, move yourself or move the participant.\nControl the depth of the needle to prevent scratching the skin. Usually, only half of the needle has to be inside, as the key work area is right under the electrode.\n\r\r\r\r\n\rApply Gel Strategically\rUse just enough electrolyte gel to reduce the impedance, but avoid creating bridges between adjacent electrodes. A small amount of gel should be visible on the opening of each electrode, and any large lumps should be carefully removed. This ensures that each electrode maintains a distinct connection with the skin.\n\rControl the Swing of the Electrode\rPlace your finger on the electrode throughout the wiggling to feel and control its movement. This helps prevent excess gel from forming a bump under the electrode, which could lead to inaccurate readings.\n\rWiggle with Precision\rPosition yourself comfortably to work on each electrode, allowing for precise movements and minimising participant discomfort. Wiggle the needle in small circular motions to move hair aside and ensure good skin contact. Be careful not to scratch the skin in the process.\nBy following these tips, you’ll achieve lower impedance without causing harm, ensuring high-quality EEG data and a better experience for the participant. In short, you’ll have moved the needle.\n\r","date":1729123200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1729123200,"objectID":"946343bb42394fec5613e73557bb0e1d","permalink":"https://pablobernabeu.github.io/2024/lowering-impedance-in-electroencephalography-using-a-blunt-needle-electrolyte-gel-and-wiggling/","publishdate":"2024-10-17T00:00:00Z","relpermalink":"/2024/lowering-impedance-in-electroencephalography-using-a-blunt-needle-electrolyte-gel-and-wiggling/","section":"post","summary":"Reducing the impedance in electroencephalography (EEG) is crucial for capturing high-quality brain activity signals. This process involves ensuring that electrodes make optimal contact with the skin without harming the participant. Below are a few tips to achieve this using a blunt needle, electrolyte gel and gentle wiggling.","tags":["electroencephalography","impedance","s"],"title":"Reducing the impedance in electroencephalography using a blunt needle, electrolyte gel and wiggling","type":"post"},{"authors":[],"categories":["linguistics"],"content":"\rGiven all of the data that E\u0026amp;L [Evans \u0026amp; Levinson, 2009] cite, how could anyone maintain the notion of a universal grammar with linguistic content? Traditionally, there have been three basic strategies. First, just as we may force English grammar into the Procrustean bed of Latin grammar – that is how I was taught the structure of English in grade school – the grammars of the world’s so-called exotic languages may be forced into an abstract scheme based mainly on European languages.\n— Tomasello (2009)\n\rResearchers often make participants jump through hoops. Due to our personal blind spots, it seems easier to realise the full extent of these acrobatics when we consider the work of other researchers. In linguistic research, the acrobatics are often spurred by unnatural grammatical constructions. For instance, in Spanish, be-based passive constructions—such as La guerra fue empezada por … ‘The war was started by …’—are much less frequent than in English. In Spanish, be-passives are mostly reserved for the formal, written discourse. Outside of that register, the left-dislocation of the patient is more commonly achieved through the following constructions. One construction hinges on the reflexive pronoun se—e.g., El apartamento se vendió ‘The apartment was sold’ (Takagaki, 2005). The other construction implements a pronominal object clitic (usually in preverbal position), as illustrated below.1 The latter construction, though not strictly passive, is thematically equivalent to many passives in English (Hidalgo Downing \u0026amp; Downing, 2012).\n\nComparing the frequency of the English-like, be-based passive to the construction that implements a pronominal object clitic in preverbal position.\nThe ratio of 8 to 5,300 results suggests that be-passives are much less common than the construction implementing a preverbal clitic. In the light of this ratio, it is surprising to find linguistic research that seems to overlook the asymmetry between English and Spanish regarding passives. For instance, in a study on crosslinguistic syntactic priming in bilingual children, Vasilyeva et al. (2010) used stimuli such as El gato fue lavado por el perro ‘The cat was washed by the dog’. Through a quick-and-dirty corpus analysis using a search engine, we can examine the limitations of these stimuli. Whereas the English form ‘The cat was washed’ is common enough, the literal translations El gato fue lavado and La gata fue lavada are essentially negligible.\n\n\n\nComparing the frequency of passive constructions in English and in Spanish.\nVasilyeva et al. (2010) observed that, when primed with English-like, be-based passives in Spanish, the children increased their use of passive constructions in English. In contrast, exposure to English passives in the prime sentences did not lead to a greater use of the English-like passives in Spanish. The authors described this contrast as an asymmetry, which has been profusely echoed in the subsequent literature on crosslinguistic syntactic priming (Serratrice, 2022). The caveat about this finding is that the stimuli themselves contained an asymmetry, as the be-passive is infelicitous in Spanish, certainly when compared to be-passives in English (Hartsuiker \u0026amp; Bernolet, 2017; Vasilyeva et al., 2010), and especially among children, who use passives even less frequently.\nSyntactic isomorphism is less common than it may seem. That is, syntactic structures cannot always be mapped on a one-to-one basis across languages. Even when the same structures exist in two languages, their frequencies may be fundamentally different, as in the case of be-based passives in English and Spanish. Thus, where possible, stimuli should capture the functional equivalents between languages, not just the surface-level structural forms, to avoid skewed results. By this means, it will become easier to interpret the results of crosslinguistic priming. At the same time, seeking crosslinguistic overlaps may be like looking for a needle in a haystack.\nReferences\rEvans, N., \u0026amp; Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32(5), 429-448. https://doi.org/10.1017/S0140525X0999094X\nHartsuiker, R. J., \u0026amp; Bernolet, S. (2017). The development of shared syntax in second language learning. Bilingualism: Language and Cognition, 20(2), 219-234. https://doi.org/10.1017/S1366728915000164\nHidalgo Downing, R., \u0026amp; Downing, A. (2012). Topic and topicality in text: A contrastive study of English and Spanish narrative texts. Linguistics and the Human Sciences, 6, 193–217. https://doi.org/10.1558/lhs.v6i1-3.193\nSerratrice, L. (2022). What can syntactic priming tell us about crosslinguistic influence? In Messenger, K. (Ed.), Syntactic priming in language acquisition: Representations, mechanisms and applications (pp. 129–156). Amsterdam: John Benjamins. https://doi.org/10.1075/tilar.31\nTakagaki, T. (2005). On the productivity of the Spanish passive constructions. In Takagaki et al. (Eds.), Corpus-based approaches to sentence structures (pp. 289–309). Amsterdam: John Benjamins. https://doi.org/10.1075/ubli.2\nTomasello, M. (2009). Universal grammar is dead. Behavioral and Brain Sciences, 32(5), 470–471. https://doi.org/10.1017/S0140525X09990744\nVasilyeva, M., Waterfall, H., Gámez, P. B., Gómez, L. E., Bowers, E., \u0026amp; Shimpi, P. (2010). Cross-linguistic syntactic priming in bilingual children. Journal of Child Language, 37(5), 1047–1064. https://doi.org/10.1017/S0305000909990213\n\r\rFor a couple of more ideas about pronominal object clitics, see this other post.↩︎\n\r\r\r","date":1726876800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1726876800,"objectID":"a550b05cb78b46260b3f4410714e9f9c","permalink":"https://pablobernabeu.github.io/2024/passive-constructions-and-asymmetries-between-languages/","publishdate":"2024-09-21T00:00:00Z","relpermalink":"/2024/passive-constructions-and-asymmetries-between-languages/","section":"post","summary":"Researchers often make participants jump through hoops. Due to our personal blind spots, it seems easier to realise the full extent of these acrobatics when we consider the work of other researchers. In linguistic research, the acrobatics are often spurred by unnatural grammatical constructions.","tags":["linguistics","syntax","s"],"title":"Passive constructions and asymmetries between languages","type":"post"},{"authors":["Pablo Bernabeu, Gabriella Silva, Ngoc Giang My Hoang, Vincent DeLuca, Claudia Poch, Iva Ivanova, Jason Rothman, Jorge González Alonso"],"categories":["psycholinguistics"],"content":"\r Poster\r\r\r .embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}\rwindow.jQuery || document.write('\\x3C/script') \r\r\rvar mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/3ba9y/?direct%26mode=render%26action=download%26mode=render\");\r","date":1725494400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1725494400,"objectID":"ae9468a4fcc1b4665b99e37852f1d900","permalink":"https://pablobernabeu.github.io/presentation/investigating-language-learning-and-morphosyntactic-transfer-longitudinally-using-artificial-languages/","publishdate":"2024-09-05T00:00:00Z","relpermalink":"/presentation/investigating-language-learning-and-morphosyntactic-transfer-longitudinally-using-artificial-languages/","section":"presentation","summary":"Unlike children acquiring their first language (L1), L2/Ln learners can draw on existing grammatical knowledge to ease the task, at least for those properties where the grammars align. This means that, in addition to statistical learning, there might be a substantial role for individual differences in cognitive processes necessary to identify, recruit and deploy this prior knowledge—e.g., procedural memory, working memory (WM), inhibitory control. In this study, we measured these individual differences through an SRT task, a digit-span, and a Stroop task, at the onset of a longitudinal artificial language (AL) learning paradigm. Grammatical and lexical similarity between the ALs and previous languages (Norwegian-English or SpanishEnglish) were systematically manipulated. Behavioral measures of sensitivity to grammatical violations in the AL were collected after each training session (three total). Results suggest that the ability to capitalize on prior knowledge is significantly modulated by individual differences in procedural memory, WM and inhibitory control.","tags":["multilingualism","psycholinguistics","crosslinguistic transfer","language learning","executive functions","individual differences","artificial languages","Norwegian","English","Spanish","event-related potentials","electroencephalography"],"title":"Investigating language learning and morphosyntactic transfer longitudinally using artificial languages","type":"presentation"},{"authors":["Pablo Bernabeu, Gabriella Silva, Ngoc Giang My Hoang, Vincent DeLuca, Claudia Poch, Iva Ivanova, Jason Rothman, Jorge González Alonso"],"categories":["research methods"],"content":"\r Poster\r\r\r .embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}\rwindow.jQuery || document.write('\\x3C/script') \r\r\rvar mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/h83yq/?direct%26mode=render%26action=download%26mode=render\");\rSnippet 1\rThe use of code scripts facilitates the reproducibility, testability and expandability of materials.\n└── stimulus_preparation\r├── Norway site, base stimuli.csv\r├── Spain site, base stimuli.csv\r├── base_images.R\r├── R_functions\r│ ├── Session2_Pretraining_vocabulary.R\r│ ├── Session2_Training_gender_agreement.R\r│ ├── Session2_Test_gender_agreement.R\r│ ├── Session2_Experiment_gender_agreement.R\r...\r├── compile_all_stimuli.R\r\r\rTable 1\rThe minimal components of each language are contained in a base file.\n\r\rverb_ID\rverb_type\rverb\rverb_contrast_ID\r\r\r\r1\rcopula_be\ris\r\r\r2\rcopula_be\rare\r\r\r3\rcopula_look\rlooks\r\r\r4\rcopula_look\rlook\r\r\r5\rtransitive\rremembered\rA\r\r6\rtransitive\rforgot\rA\r\r7\rtransitive\rchose\rB\r\r8\rtransitive\rrefused\rB\r\r\r\r\r\rSnippet 2\rTests were set throughout the workflow to control the frequency of some categories (R code).\ncolumns_to_check = c(\u0026#39;noun1_gender\u0026#39;, \u0026#39;number\u0026#39;, \u0026#39;person\u0026#39;, \u0026#39;verb\u0026#39;, \u0026#39;noun1\u0026#39;, \u0026#39;wrapup_noun\u0026#39;)\rfor(i in seq_along(columns_to_check)) {\rcolumn = columns_to_check[i]\rnumber_of_unique_frequencies = combinations %\u0026gt;% filter(complete.cases(get(column)), get(column) != \u0026#39;\u0026#39;) %\u0026gt;% group_by(get(column)) %\u0026gt;% tally() %\u0026gt;% select(n) %\u0026gt;% n_distinct()\rif(number_of_unique_frequencies != 1) {\rwarning(paste0(\u0026#39;Some elements in the column `\u0026#39;, column, \u0026#39;` appear more often than others.\u0026#39;))\r}\r}\r\r\rSnippet 3\rSeamless adjustment of parameters in each OpenSesame session (Python code).\nparticipant_parameters = pd.read_csv(exp.get_file(\u0026#39;../parameters per participant/\u0026#39; + var.study_site + \u0026#39; site, parameters per participant.csv\u0026#39;))\rvar.resting_state_order = participant_parameters.loc[\rparticipant_parameters[\u0026#39;participant\u0026#39;] ==\rvar.subject_nr][\u0026#39;Session2_resting_state_order\u0026#39;].iloc[0]\rvar.language = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;language\u0026#39;].iloc[0]\r\r\r\rSnippet 4\rSending serial-port triggers in OpenSesame to record ERPs (Python code).\n# Open the first serial port available\rserialport = serial.Serial(serial.tools.list_ports.comports()[0].device)\r# Send triggers to the port\rdef send_trigger(trigger):\rserialport.write(trigger.to_bytes(length = 1, byteorder = \u0026#39;big\u0026#39;))\r# 10 ms separation from next trigger (see BrainVision Recorder manual)\rtime.sleep(0.01) # reset port\rserialport.write(int(0).to_bytes(length = 1, byteorder = \u0026#39;big\u0026#39;)) return;\r\r\r\rReferences\rBarsalou, L. W. (2019). Establishing generalizable mechanisms. Psychological Inquiry, 30(4), 220–230. https://doi.org/10.1080/1047840X.2019.1693857\nCross, Z. R., Zou-Williams, L., Wilkinson, E. M., Schlesewsky, M., \u0026amp; Bornkessel-Schlesewsky, I. (2021). Mini Pinyin: A modified miniature language for studying language learning and incremental sentence processing. Behavior Research Methods, 53(3), 1218–1239. https://doi.org/10.3758/s13428-020-01473-6\nGonzález Alonso, J., Alemán Bañón, J., DeLuca, V., Miller, D., Pereira Soares, S. M., Puig-Mayenco, E., Slaats, S., \u0026amp; Rothman, J. (2020). Event related potentials at initial exposure in third language acquisition: Implications from an artificial mini-grammar study. Journal of Neurolinguistics, 56, 100939. https://doi.org/10.1016/j.jneuroling.2020.100939\nMitrofanova, N., Leivada, E., \u0026amp; Westergaard, M. (2023). Crosslinguistic influence in L3 acquisition: Evidence from artificial language learning. Linguistic Approaches to Bilingualism, 13(5), 717-742. https://doi.org/10.1075/lab.22063.mit\nMorgan-Short, K., Finger, I., Grey, S., \u0026amp; Ullman, M. T. (2012). Second language processing shows increased native-like neural responses after months of no exposure. PLOS ONE, 7(3), e32974. https://doi.org/10.1371/journal.pone.0032974\nPereira Soares, S. M., Kupisch, T., \u0026amp; Rothman, J. (2022). Testing potential transfer effects in heritage and adult L2 bilinguals acquiring a mini grammar as an additional language: An ERP approach. Brain Sciences, 12(5), Article 5. https://doi.org/10.3390/brainsci12050669\nWilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), Article 1. https://doi.org/10.1038/sdata.2016.18\n\r","date":1725494400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1725494400,"objectID":"10ae92f9ef396b09caebc30fe39315f7","permalink":"https://pablobernabeu.github.io/presentation/making-research-materials-findable-accessible-interoperable-reusable-fair/","publishdate":"2024-02-15T08:26:33+01:00","relpermalink":"/presentation/making-research-materials-findable-accessible-interoperable-reusable-fair/","section":"presentation","summary":"To err is human, but when it comes to creating research materials, mistakes can be reduced by sharing more of our work and by using some helpful tools. For instance, we can make our research materials FAIRer—that is, more Findable, Accessible, Interoperable and Reusable (Wilkinson et al., 2016). These practices facilitate the reproducibility, revision, modification and expansion of research materials, by the creators themselves and by other researchers, at any point in time, which is convenient due to the vital importance of methods in experimental research (Barsalou, 2019). In the current presentation, we describe how documentation practices and open-source software (namely, R and OpenSesame) were used to prepare materials for a study in multilingualism using artificial languages, and comprising several sessions and several grammatical properties. So far, the creation of artificial languages in similar studies has not generally displayed an extensive use of FAIR practices (Cross et al., 2021; González Alonso et al., 2020; Mitrofanova et al., 2023; Morgan-Short et al., 2012; Pereira Soares et al., 2022). In our current study, the stimuli were prepared in R using a modular framework that consisted of interoperable components (Snippet 1). The modularity of this method facilitates the expansion of the materials within the same languages and to other languages. Specifically, the minimal components of each language were contained in a base file in the ‘stimulus_preparation’ folder. Furthermore, for the creation of the final stimuli, several controls were exerted to prevent spurious effects. For instance, gender and number were counterbalanced across experimental conditions, words were rotated across grammatical properties and sessions, and frequency of occurrence was controlled (Snippet 2). The final stimuli can be recreated using the script 'compile_all_stimuli.R', and the resulting stimuli are saved to the 'session_materials' folder. Furthermore, the final stimuli were presented using OpenSesame, which is a free-of-charge software supporting experiments in the social sciences. We describe the implementation of several complex sessions in OpenSesame, which involved the use of conditions for controlling the engagement of certain items. Last, we describe a custom script in OpenSesame that enables the measurement of event-related potentials by time-locking electroencephalographic measures to the onset of specific stimuli. In conclusion, the materials of the current study are accessible, and the workflow is reproducible. As a result, the final materials are testable, modifiable and expandable, improving long-term efficiency.","tags":["materials","stimuli","open science","open data","reproducibility","research methods","psychology","linguistics","psycholinguistics"],"title":"Making research materials Findable, Accessible, Interoperable and Reusable","type":"presentation"},{"authors":[],"categories":["research methods"],"content":"\rSay, you need to set up a makeshift EEG lab in an office? Easy-peasy—only, try to move the hardware as little as possible, especially laptops with dongles sticking out. The rest is a trail of snapshots devoid of captions, a sink, a shower room and other paraphernalia, as this is only an ancillary, temporary, extraordinary little lab, and all those staples are within reach in our mainstream lab (see Ledwidge et al., 2018; Luck, 2014).\n\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\r The needles below are blunt—that is, they do not pierce the skin. They’re just used to put some gel into the cap to enable the detection of electrical activity in the brain. You can explore the non-invasive, painless procedure of EEG here.\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\rClick here or press Esc to close\r\r\r\r❮\r❯\n\rReferences\rLedwidge, P., Foust, J., \u0026amp; Ramsey, A. (2018). Recommendations for developing an EEG laboratory at a primarily undergraduate institution. Journal of Undergraduate Neuroscience Education, 17(1), A10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312138\nLuck, S. J. (2014). Online Chapter 16: Setting up and running an ERP lab. In S. J. Luck (Ed.), An introduction to\rthe event-related potential technique. Cambridge, MA: MIT Press. Retrieved from http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0\u0026amp;fn=Ch_16_0.pdf\u0026amp;id=8575\n\r","date":1723420800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1723420800,"objectID":"5583e67e0e0bd8b488457936e4a67497","permalink":"https://pablobernabeu.github.io/2024/makeshift-eeg-lab/","publishdate":"2024-08-12T00:00:00Z","relpermalink":"/2024/makeshift-eeg-lab/","section":"post","summary":"Say, you need to set up a makeshift EEG lab in an office? Easy-peasy---only, try to move the hardware as little as possible, especially laptops with dongles sticking out. The rest is a trail of snapshots devoid of captions, a sink, a shower room and other paraphernalia, as this is only an ancillary, temporary, extraordinary little lab, and all those staples are within reach in our mainstream lab (see Ledwidge et al., 2018; Luck, 2014).","tags":["electroencephalography","s"],"title":"A makeshift EEG lab","type":"post"},{"authors":[],"categories":["research methods","R"],"content":"\rElectroencephalography (EEG) has become a cornerstone for understanding the intricate workings of the human brain in the field of neuroscience. However, EEG software and hardware come with their own set of constraints, particularly in the management of markers, also known as triggers. This article aims to shed light on these limitations and future prospects of marker management in EEG studies, while also introducing R functions that can help deal with vmrk files from BrainVision.\nMarkers, serving as timestamps that indicate specific events during data collection, play a crucial role in EEG studies. These events could range from the onset of a stimulus to the participant’s response. However, one of the major constraints in current EEG systems is the limitation of markers to numbers between 1 and 255. This limitation is due to the fact that markers are typically stored as 8-bit unsigned integers in computer memory, which can only represent numbers in the range of 0 to 255. However, the number 0 is usually reserved for system use, leaving only the numbers 1 to 255 available for markers.\nThis numerical constraint can pose significant challenges in the interpretation of markers, especially in complex experimental designs where a multitude of events need to be marked and differentiated. It necessitates careful documentation of each marker’s purpose prior to running the study. This means that researchers must meticulously map each number to a specific event or condition in their experiment, which can be a daunting task, especially for complex studies with numerous conditions and events.\nLooking towards the future, one might wonder if it will become possible to send markers with semantic information, instead of being constrained to numbers between 1 and 255. This would allow researchers to encode more detailed information in each marker, such as the type of stimulus presented or the specific condition being tested. Such a development could revolutionize the way we conduct and analyze EEG studies, offering greater flexibility in experimental design and more nuanced insights into brain activity.\nBelow, we’ll demonstrate some functions from this GitHub repository that help inspect and fix vmrk files. We’ll work with the vmrk file shown below.\n# Read the file into a vector of lines\rreadLines(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example.vmrk\u0026#39;)\r## [1] \u0026quot;Brain Vision Data Exchange Marker File, Version 1.0\u0026quot; ## [2] \u0026quot;\u0026quot; ## [3] \u0026quot;[Common Infos]\u0026quot; ## [4] \u0026quot;DataFile=3.eeg\u0026quot; ## [5] \u0026quot;Codepage=utf-8\u0026quot; ## [6] \u0026quot;\u0026quot; ## [7] \u0026quot;[Marker Infos]\u0026quot; ## [8] \u0026quot;; Each entry: Mk\u0026lt;Marker number\u0026gt;=\u0026lt;Type\u0026gt;,\u0026lt;Description\u0026gt;,\u0026lt;Position in data points\u0026gt;,\u0026quot; ## [9] \u0026quot;; \u0026lt;Size in data points\u0026gt;, \u0026lt;Channel number (0 = marker is related to all channels)\u0026gt;,\u0026quot;\r## [10] \u0026quot;; \u0026lt;Date (YYYYMMDDhhmmssuuuuuu)\u0026gt;\u0026quot; ## [11] \u0026quot;; Fields are delimited by commas, some fields might be omited (empty).\u0026quot; ## [12] \u0026quot;; Commas in type or description text are coded as \\\u0026quot;\\\\1\\\u0026quot;.\u0026quot; ## [13] \u0026quot;Mk1=New Segment,,1,1,0,20240318111955090000\u0026quot; ## [14] \u0026quot;Mk2=Stimulus,S254,20419,1,0\u0026quot; ## [15] \u0026quot;Mk3=Stimulus,S 5,22332,1,0\u0026quot; ## [16] \u0026quot;Mk4=Stimulus,S 42,23095,1,0\u0026quot; ## [17] \u0026quot;Mk5=Stimulus,S143,23100,1,0\u0026quot; ## [18] \u0026quot;Mk6=Stimulus,S 2,23106,1,0\u0026quot; ## [19] \u0026quot;Mk7=Stimulus,S102,23111,1,0\u0026quot; ## [20] \u0026quot;Mk8=Stimulus,S 6,25882,1,0\u0026quot; ## [21] \u0026quot;Mk9=Stimulus,S 5,28106,1,0\u0026quot; ## [22] \u0026quot;Mk10=Stimulus,S 50,29053,1,0\u0026quot; ## [23] \u0026quot;Mk11=Stimulus,S241,29058,1,0\u0026quot; ## [24] \u0026quot;Mk12=Stimulus,S 1,29063,1,0\u0026quot; ## [25] \u0026quot;Mk13=Stimulus,S101,29069,1,0\u0026quot; ## [26] \u0026quot;Mk14=Stimulus,S 6,31830,1,0\u0026quot; ## [27] \u0026quot;Mk15=Stimulus,S 5,34056,1,0\u0026quot; ## [28] \u0026quot;Mk16=Stimulus,S 49,35055,1,0\u0026quot; ## [29] \u0026quot;Mk17=Stimulus,S226,35060,1,0\u0026quot; ## [30] \u0026quot;Mk18=Stimulus,S 2,35066,1,0\u0026quot; ## [31] \u0026quot;Mk19=Stimulus,S103,35071,1,0\u0026quot; ## [32] \u0026quot;Mk20=Stimulus,S 6,37242,1,0\u0026quot; ## [33] \u0026quot;Mk21=Stimulus,S 5,39436,1,0\u0026quot; ## [34] \u0026quot;Mk22=Stimulus,S 43,40417,1,0\u0026quot; ## [35] \u0026quot;Mk23=Stimulus,S155,40423,1,0\u0026quot; ## [36] \u0026quot;Mk24=Stimulus,S 2,40429,1,0\u0026quot; ## [37] \u0026quot;Mk25=Stimulus,S103,40434,1,0\u0026quot; ## [38] \u0026quot;Mk26=Stimulus,S 6,42481,1,0\u0026quot; ## [39] \u0026quot;Mk27=Stimulus,S 5,44662,1,0\u0026quot; ## [40] \u0026quot;Mk28=Stimulus,S 40,45678,1,0\u0026quot; ## [41] \u0026quot;Mk29=Stimulus,S118,45683,1,0\u0026quot; ## [42] \u0026quot;Mk30=Stimulus,S 1,45688,1,0\u0026quot; ## [43] \u0026quot;Mk31=Stimulus,S103,45693,1,0\u0026quot; ## [44] \u0026quot;Mk32=Stimulus,S 6,47621,1,0\u0026quot; ## [45] \u0026quot;Mk33=Stimulus,S 5,49809,1,0\u0026quot; ## [46] \u0026quot;Mk34=Stimulus,S 50,50808,1,0\u0026quot; ## [47] \u0026quot;Mk35=Stimulus,S237,50813,1,0\u0026quot; ## [48] \u0026quot;Mk36=Stimulus,S 3,50818,1,0\u0026quot; ## [49] \u0026quot;Mk37=Stimulus,S101,50823,1,0\u0026quot; ## [50] \u0026quot;Mk38=Stimulus,S 6,53823,1,0\u0026quot; ## [51] \u0026quot;Mk39=Stimulus,S 5,56042,1,0\u0026quot; ## [52] \u0026quot;Mk40=Stimulus,S 40,57129,1,0\u0026quot; ## [53] \u0026quot;Mk41=Stimulus,S114,57134,1,0\u0026quot; ## [54] \u0026quot;Mk42=Stimulus,S 3,57140,1,0\u0026quot; ## [55] \u0026quot;Mk43=Stimulus,S103,57145,1,0\u0026quot; ## [56] \u0026quot;Mk44=Stimulus,S 6,59661,1,0\u0026quot;\rNumbering trials\rThe antediluvian limitation of markers often prevents us from storing the order of trials using markers. Thus, when we need to inspect or fix vmrk files, we must mentally divide the lines into trials. For instance, in our example vmrk file, all trials begin with the marker S 5. The function below allows us to temporarily number trials by appending the number to the first marker of each trial. The parameters of the function allow us to select the start_line to skip the metadata at the top of the vmrk file, as well as to select the number of lines_per_trial and the first_number to use in the first trial.\n\r# Create temporary vmrk file with numbered trials\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/number_trials.R\u0026#39;)\rnumber_trials(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example.vmrk\u0026#39;, start_line = 15, lines_per_trial = 6, first_number = 1)\r## [1] \u0026quot;Brain Vision Data Exchange Marker File, Version 1.0\u0026quot; ## [2] \u0026quot;\u0026quot; ## [3] \u0026quot;[Common Infos]\u0026quot; ## [4] \u0026quot;DataFile=3.eeg\u0026quot; ## [5] \u0026quot;Codepage=utf-8\u0026quot; ## [6] \u0026quot;\u0026quot; ## [7] \u0026quot;[Marker Infos]\u0026quot; ## [8] \u0026quot;; Each entry: Mk\u0026lt;Marker number\u0026gt;=\u0026lt;Type\u0026gt;,\u0026lt;Description\u0026gt;,\u0026lt;Position in data points\u0026gt;,\u0026quot; ## [9] \u0026quot;; \u0026lt;Size in data points\u0026gt;, \u0026lt;Channel number (0 = marker is related to all channels)\u0026gt;,\u0026quot;\r## [10] \u0026quot;; \u0026lt;Date (YYYYMMDDhhmmssuuuuuu)\u0026gt;\u0026quot; ## [11] \u0026quot;; Fields are delimited by commas, some fields might be omited (empty).\u0026quot; ## [12] \u0026quot;; Commas in type or description text are coded as \\\u0026quot;\\\\1\\\u0026quot;.\u0026quot; ## [13] \u0026quot;Mk1=New Segment,,1,1,0,20240318111955090000\u0026quot; ## [14] \u0026quot;Mk2=Stimulus,S254,20419,1,0\u0026quot; ## [15] \u0026quot;Mk3=Stimulus,S 5,22332,1,0 1\u0026quot; ## [16] \u0026quot;Mk4=Stimulus,S 42,23095,1,0\u0026quot; ## [17] \u0026quot;Mk5=Stimulus,S143,23100,1,0\u0026quot; ## [18] \u0026quot;Mk6=Stimulus,S 2,23106,1,0\u0026quot; ## [19] \u0026quot;Mk7=Stimulus,S102,23111,1,0\u0026quot; ## [20] \u0026quot;Mk8=Stimulus,S 6,25882,1,0\u0026quot; ## [21] \u0026quot;Mk9=Stimulus,S 5,28106,1,0 2\u0026quot; ## [22] \u0026quot;Mk10=Stimulus,S 50,29053,1,0\u0026quot; ## [23] \u0026quot;Mk11=Stimulus,S241,29058,1,0\u0026quot; ## [24] \u0026quot;Mk12=Stimulus,S 1,29063,1,0\u0026quot; ## [25] \u0026quot;Mk13=Stimulus,S101,29069,1,0\u0026quot; ## [26] \u0026quot;Mk14=Stimulus,S 6,31830,1,0\u0026quot; ## [27] \u0026quot;Mk15=Stimulus,S 5,34056,1,0 3\u0026quot; ## [28] \u0026quot;Mk16=Stimulus,S 49,35055,1,0\u0026quot; ## [29] \u0026quot;Mk17=Stimulus,S226,35060,1,0\u0026quot; ## [30] \u0026quot;Mk18=Stimulus,S 2,35066,1,0\u0026quot; ## [31] \u0026quot;Mk19=Stimulus,S103,35071,1,0\u0026quot; ## [32] \u0026quot;Mk20=Stimulus,S 6,37242,1,0\u0026quot; ## [33] \u0026quot;Mk21=Stimulus,S 5,39436,1,0 4\u0026quot; ## [34] \u0026quot;Mk22=Stimulus,S 43,40417,1,0\u0026quot; ## [35] \u0026quot;Mk23=Stimulus,S155,40423,1,0\u0026quot; ## [36] \u0026quot;Mk24=Stimulus,S 2,40429,1,0\u0026quot; ## [37] \u0026quot;Mk25=Stimulus,S103,40434,1,0\u0026quot; ## [38] \u0026quot;Mk26=Stimulus,S 6,42481,1,0\u0026quot; ## [39] \u0026quot;Mk27=Stimulus,S 5,44662,1,0 5\u0026quot; ## [40] \u0026quot;Mk28=Stimulus,S 40,45678,1,0\u0026quot; ## [41] \u0026quot;Mk29=Stimulus,S118,45683,1,0\u0026quot; ## [42] \u0026quot;Mk30=Stimulus,S 1,45688,1,0\u0026quot; ## [43] \u0026quot;Mk31=Stimulus,S103,45693,1,0\u0026quot; ## [44] \u0026quot;Mk32=Stimulus,S 6,47621,1,0\u0026quot; ## [45] \u0026quot;Mk33=Stimulus,S 5,49809,1,0 6\u0026quot; ## [46] \u0026quot;Mk34=Stimulus,S 50,50808,1,0\u0026quot; ## [47] \u0026quot;Mk35=Stimulus,S237,50813,1,0\u0026quot; ## [48] \u0026quot;Mk36=Stimulus,S 3,50818,1,0\u0026quot; ## [49] \u0026quot;Mk37=Stimulus,S101,50823,1,0\u0026quot; ## [50] \u0026quot;Mk38=Stimulus,S 6,53823,1,0\u0026quot; ## [51] \u0026quot;Mk39=Stimulus,S 5,56042,1,0 7\u0026quot; ## [52] \u0026quot;Mk40=Stimulus,S 40,57129,1,0\u0026quot; ## [53] \u0026quot;Mk41=Stimulus,S114,57134,1,0\u0026quot; ## [54] \u0026quot;Mk42=Stimulus,S 3,57140,1,0\u0026quot; ## [55] \u0026quot;Mk43=Stimulus,S103,57145,1,0\u0026quot; ## [56] \u0026quot;Mk44=Stimulus,S 6,59661,1,0\u0026quot;\r\rRemoving trial numbers\r\rNow, we will unnumber the trials. This can be especially useful after fixing any errors in the markers. For this demo, we’ll use an example file with numbered trials that looks just like the output from number_trials() shown above.\n# Remove trial numbers from temporary vmrk file\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/remove_trial_numbers.R\u0026#39;)\rremove_trial_numbers(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example_numbered_trials.vmrk\u0026#39;)\r## [1] \u0026quot;Brain Vision Data Exchange Marker File, Version 1.0\u0026quot; ## [2] \u0026quot;\u0026quot; ## [3] \u0026quot;[Common Infos]\u0026quot; ## [4] \u0026quot;DataFile=3.eeg\u0026quot; ## [5] \u0026quot;Codepage=utf-8\u0026quot; ## [6] \u0026quot;\u0026quot; ## [7] \u0026quot;[Marker Infos]\u0026quot; ## [8] \u0026quot;; Each entry: Mk\u0026lt;Marker number\u0026gt;=\u0026lt;Type\u0026gt;,\u0026lt;Description\u0026gt;,\u0026lt;Position in data points\u0026gt;,\u0026quot; ## [9] \u0026quot;; \u0026lt;Size in data points\u0026gt;, \u0026lt;Channel number (0 = marker is related to all channels)\u0026gt;,\u0026quot;\r## [10] \u0026quot;; \u0026lt;Date (YYYYMMDDhhmmssuuuuuu)\u0026gt;\u0026quot; ## [11] \u0026quot;; Fields are delimited by commas, some fields might be omited (empty).\u0026quot; ## [12] \u0026quot;; Commas in type or description text are coded as \\\u0026quot;\\\\1\\\u0026quot;.\u0026quot; ## [13] \u0026quot;Mk1=New Segment,,1,1,0,20240318111955090000\u0026quot; ## [14] \u0026quot;Mk2=Stimulus,S254,20419,1,0\u0026quot; ## [15] \u0026quot;Mk3=Stimulus,S 5,22332,1,0\u0026quot; ## [16] \u0026quot;Mk4=Stimulus,S 42,23095,1,0\u0026quot; ## [17] \u0026quot;Mk5=Stimulus,S143,23100,1,0\u0026quot; ## [18] \u0026quot;Mk6=Stimulus,S 2,23106,1,0\u0026quot; ## [19] \u0026quot;Mk7=Stimulus,S102,23111,1,0\u0026quot; ## [20] \u0026quot;Mk8=Stimulus,S 6,25882,1,0\u0026quot; ## [21] \u0026quot;Mk9=Stimulus,S 5,28106,1,0\u0026quot; ## [22] \u0026quot;Mk10=Stimulus,S 50,29053,1,0\u0026quot; ## [23] \u0026quot;Mk11=Stimulus,S241,29058,1,0\u0026quot; ## [24] \u0026quot;Mk12=Stimulus,S 1,29063,1,0\u0026quot; ## [25] \u0026quot;Mk13=Stimulus,S101,29069,1,0\u0026quot; ## [26] \u0026quot;Mk14=Stimulus,S 6,31830,1,0\u0026quot; ## [27] \u0026quot;Mk15=Stimulus,S 5,34056,1,0\u0026quot; ## [28] \u0026quot;Mk16=Stimulus,S 49,35055,1,0\u0026quot; ## [29] \u0026quot;Mk17=Stimulus,S226,35060,1,0\u0026quot; ## [30] \u0026quot;Mk18=Stimulus,S 2,35066,1,0\u0026quot; ## [31] \u0026quot;Mk19=Stimulus,S103,35071,1,0\u0026quot; ## [32] \u0026quot;Mk20=Stimulus,S 6,37242,1,0\u0026quot; ## [33] \u0026quot;Mk21=Stimulus,S 5,39436,1,0\u0026quot; ## [34] \u0026quot;Mk22=Stimulus,S 43,40417,1,0\u0026quot; ## [35] \u0026quot;Mk23=Stimulus,S155,40423,1,0\u0026quot; ## [36] \u0026quot;Mk24=Stimulus,S 2,40429,1,0\u0026quot; ## [37] \u0026quot;Mk25=Stimulus,S103,40434,1,0\u0026quot; ## [38] \u0026quot;Mk26=Stimulus,S 6,42481,1,0\u0026quot; ## [39] \u0026quot;Mk27=Stimulus,S 5,44662,1,0\u0026quot; ## [40] \u0026quot;Mk28=Stimulus,S 40,45678,1,0\u0026quot; ## [41] \u0026quot;Mk29=Stimulus,S118,45683,1,0\u0026quot; ## [42] \u0026quot;Mk30=Stimulus,S 1,45688,1,0\u0026quot; ## [43] \u0026quot;Mk31=Stimulus,S103,45693,1,0\u0026quot; ## [44] \u0026quot;Mk32=Stimulus,S 6,47621,1,0\u0026quot; ## [45] \u0026quot;Mk33=Stimulus,S 5,49809,1,0\u0026quot; ## [46] \u0026quot;Mk34=Stimulus,S 50,50808,1,0\u0026quot; ## [47] \u0026quot;Mk35=Stimulus,S237,50813,1,0\u0026quot; ## [48] \u0026quot;Mk36=Stimulus,S 3,50818,1,0\u0026quot; ## [49] \u0026quot;Mk37=Stimulus,S101,50823,1,0\u0026quot; ## [50] \u0026quot;Mk38=Stimulus,S 6,53823,1,0\u0026quot; ## [51] \u0026quot;Mk39=Stimulus,S 5,56042,1,0\u0026quot; ## [52] \u0026quot;Mk40=Stimulus,S 40,57129,1,0\u0026quot; ## [53] \u0026quot;Mk41=Stimulus,S114,57134,1,0\u0026quot; ## [54] \u0026quot;Mk42=Stimulus,S 3,57140,1,0\u0026quot; ## [55] \u0026quot;Mk43=Stimulus,S103,57145,1,0\u0026quot; ## [56] \u0026quot;Mk44=Stimulus,S 6,59661,1,0\u0026quot;\r\rCounting markers\r\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/count_markers.R\u0026#39;)\rcount_markers(file = \u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example.vmrk\u0026#39;, marker = \u0026#39;S 2\u0026#39;)\r## Count of \u0026quot;S 2\u0026quot;: 3 instances\rcount_markers(file = \u0026#39;https://raw.githubusercontent.com/pablobernabeu/EEG-tools-and-tips/main/example.vmrk\u0026#39;, marker = \u0026#39;S 3\u0026#39;)\r## Count of \u0026quot;S 3\u0026quot;: 2 instances\r\r","date":1719705600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1719705600,"objectID":"3c62fd582c4a680062686386e31d1b38","permalink":"https://pablobernabeu.github.io/2024/r-functions-for-checking-and-fixing-vmrk-files-from-brainvision/","publishdate":"2024-06-30T00:00:00Z","relpermalink":"/2024/r-functions-for-checking-and-fixing-vmrk-files-from-brainvision/","section":"post","summary":"Electroencephalography (EEG) has become a cornerstone for understanding the intricate workings of the human brain in the field of neuroscience. However, EEG software and hardware come with their own set of constraints, particularly in the management of markers, also known as triggers. This article aims to shed light on these limitations and future prospects of marker management in EEG studies, while also introducing R functions that can help deal with vmrk files from BrainVision.","tags":["research methods","electroencephalography","EEG","BrainVision","event-related potentials","s"],"title":"R functions for checking and fixing vmrk files from BrainVision","type":"post"},{"authors":[],"categories":["research methods","electroencephalography"],"content":"\rElectroencephalographic (EEG) signals are often contaminated by muscle artifacts such as blinks, jaw clenching and (of course) yawns, which generate electrical activity that can obscure the brain signals of interest. These artifacts typically manifest as large, abrupt changes in the EEG signal, complicating data interpretation and analysis. To reduce the likelihood of muscle artifacts, participants can be instructed during the preparatory phase of the session to minimize blinking and to keep their facial muscles relaxed. Furthermore, the design of the session can include verification stages that allow experimenters to verify the quality of the live EEG signal before letting the session continue.\nParticipant briefing\r\r\r\rVerification stages\rVerification stages allow the experimenters to verify the quality of the live EEG signal before letting the session continue. The following example includes an abbreviated reminder, i.s.r , prompting the experimenter to verify the impedance and the signal before starting to record the signal. The orange stripes flag up the need for the experimenter to intervene.\n\nThe impedance check is performed by verifying the impedance on each electrode, which has a dedicated function in most EEG software. Sometimes, especially if some time has elapsed since the initial impedance work, one or two electrodes have to be revised, which can be done quickly.\nThe signal check complements the previous check. Once all electrodes present a low-enough impedance and a calm-enough signal—usually taking a couple of minutes—, the experimenter begins recording the signal.\nNext, the experimenter presses the keys that are—unbeknownst to participants—needed to proceed with the session. The screenshot below shows an example setup in OpenSesame, whereby the letter C must be pressed twice to advance.\n\nThe advice is reinforced before returning the control of the screen to the participant (i.e., this screen is the last one that requires the experimenter’s intervention).\n\nLater, during the breaks, the advice is reiterated, and a buffer period is introduced to best preserve the trials immediately following the breaks.\n\n\rOutcome\rThe combination of verbal and written instructions, along with verification stages, can greatly contribute to the quality of raw EEG data, which in turn helps preserve more data in the preprocessing.\n\r","date":1717200000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1717200000,"objectID":"fc56d85f264d0e0293620070e9a466dd","permalink":"https://pablobernabeu.github.io/2024/preventing-muscle-artifacts-in-electroencephalography-sessions/","publishdate":"2024-06-01T00:00:00Z","relpermalink":"/2024/preventing-muscle-artifacts-in-electroencephalography-sessions/","section":"post","summary":"Electroencephalographic (EEG) signals are often contaminated by muscle artifacts such as blinks, jaw clenching and (of course) yawns, which generate electrical activity that can obscure the brain signals of interest. These artifacts typically manifest as large, abrupt changes in the EEG signal, complicating data interpretation and analysis. To mitigate these issues, participants can be instructed during the preparatory phase of the session to minimize blinking and to keep their facial muscles relaxed. Additionally, researchers can emphasize the importance of staying still and provide practice sessions to help participants become aware of their movements, thereby reducing the likelihood of muscle artifacts affecting the EEG recordings.","tags":["electroencephalography","BrainVision","muscle artifacts","event-related potentials","ERPs","s"],"title":"Preventing muscle artifacts in electroencephalography sessions","type":"post"},{"authors":[],"categories":["job"],"content":"\rWe are seeking to appoint a part-time research assistant to help us recruit participants and conduct an experiment. In the current project, led by Jorge González Alonso and funded by the Research Council of Norway, we investigate language learning and the neurophysiological basis of multilingualism. To this end, we are conducting an electroencephalography (EEG) experiment.\nYour work as a research assistant will be mentored and supervised primarily by Pablo Bernabeu, and secondarily by the head of our project and the directors of our lab. The role involves 20 hours a week of on-site work in the Department of Language and Culture at UiT The Arctic University of Norway. The appointment should begin in early April 2024, or soon thereafter, and will span until mid-August (an extension thereafter might be possible).\nBy the end of your appointment, you will be able to conduct EEG sessions on your own, and will have a better understanding of EEG, experimental research and the psychology of language. This experience will be most useful for subsequent work in academic research; for instance, in a PhD. Yet, the post also involves more general skills, such as planning, documentation and data management.\nPerson specification\rPlease consider the essential (required) criteria and the desirable criteria listed below.\nEssential criteria\r\rnot being currently enrolled in an on-site degree programme at UiT or any other university;\n\ravailability for the on-site work at UiT throughout the appointment;\n\rattention to detail;\n\rcomputer literacy;\n\rwritten and spoken fluency in English\n\r\r\rDesirable criteria\r\rprevious experience in running EEG sessions, or related qualifications;\n\rprevious experience in any experimental research, or related qualifications;\n\rschedule flexibility to accommodate the lab sessions;\n\rinterest in experimental linguistics, psychology or neuroscience\n\r\r\r\rHow to apply\rPlease submit your CV and a personal statement of up to 400 words to Pablo Bernabeu (p.bernabeu@uit.no) and Jorge González Alonso (jorge.gonzalez.alonso@uit.no), with the subject ‘RA post’. Any questions are also welcome. In the personal statement, please describe how your background fits with the above criteria. We will review applications on a rolling basis.\n\r","date":1711497600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1711497600,"objectID":"97cb2083ecc83c0e99e66d175daded1e","permalink":"https://pablobernabeu.github.io/2024/job-part-time-research-assistant-in-experimental-research/","publishdate":"2024-03-27T00:00:00Z","relpermalink":"/2024/job-part-time-research-assistant-in-experimental-research/","section":"post","summary":"We are seeking to appoint a part-time research assistant to help us recruit participants and conduct an experiment. In the current project, led by Jorge González Alonso and funded by the Research Council of Norway, we investigate language learning and the neurophysiological basis of multilingualism. To this end, we are conducting an electroencephalography (EEG) experiment.\nYour work as a research assistant will be mentored and supervised primarily by Pablo Bernabeu, and secondarily by the head of our project and the directors of our lab.","tags":["job","research assistant","UIT The Arctic University of Norway","Tromsø","electroencephalography","s"],"title":"Job: Part-time research assistant in experimental research","type":"post"},{"authors":[],"categories":["R","bibliometrics"],"content":"\rSometimes it’s useful to do a bibliometric analysis. To this end, the rscopus_plus functions (Bernabeu, 2024) extend the R package rscopus (Muschelli, 2022) to administer the search quota and to enable specific searches and comparisons.\n\rscopus_search_plus runs rscopus::scopus_search as many times as necessary based on the number of results and the search quota.\n\rscopus_search_DOIs gets DOIs from scopus_search_plus, which can then be imported into a reference manager, such as Zotero, to create a list of references.\n\rscopus_search_additional_DOIs searches for additional DOIs.\n\rscopus_comparison compares counts of publications on various topics throughout a certain period. The comparison terms are shown in the legend and in the lines, and they all include the reference query.\n\rplot_scopus_comparison draws a line plot with the output from scopus_comparison.\n\r\rNote. Before using any of the first four functions, the user must set their Scopus API key confidentially (see rscopus guidelines).\n\rExample of use\rAs an example (also available on GitHub), we’ll visualise the prevalence of three executive functions in the literatures on second and third language throughout the past two decades.\nFirst, we’ll use scopus_comparison() (fragment shown below).\n\rNext, we’ll use plot_scopus_comparison() (fragment shown below).\n\rlibrary(rscopus)\r# set_api_key(\u0026#39;your_key_here\u0026#39;) # (see https://cran.r-project.org/web/packages/rscopus/vignettes/api_key.html)\r# I\u0026#39;ll read in mine from a file. If you do this, make sure not to share your file.\rapi_key = readLines(\u0026#39;scopus_key.txt\u0026#39;)\rset_api_key(api_key)\rlibrary(dplyr)\rlibrary(patchwork)\r# Load in Scopus search functions from https://github.com/pablobernabeu/rscopus_plus\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/rscopus_plus/main/scopus_comparison.R\u0026#39;)\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/rscopus_plus/main/plot_scopus_comparison.R\u0026#39;)\r# General parameters\rsearch_period = 1990:2023\rquota = 20\r# Prevalence of three executive functions in second language studies from 2000 to 2023. # In addition to \u0026quot;second language\u0026quot;, the reference query includes the terms # \u0026quot;learning\u0026quot; and \u0026quot;cognition\u0026quot; to make the scope of the search more relevant to # the topic of interest. reference_query = \u0026#39;\u0026quot;second language\u0026quot;\u0026#39;\rcomparison_terms = c( \u0026#39;\u0026quot;working memory\u0026quot;\u0026#39;, \u0026#39;inhibit*\u0026#39;, \u0026#39;\u0026quot;implicit learning\u0026quot;\u0026#39; )\rN_comparison_terms = length(comparison_terms)\rL2_EF = scopus_comparison(reference_query, comparison_terms, search_period, quota, verbose = FALSE, reference_query_field_tag = \u0026#39;TITLE-ABS-KEY\u0026#39;)\rsaveRDS(L2_EF, \u0026#39;L2_EF.rds\u0026#39;)\rL2_EF = readRDS(\u0026#39;L2_EF.rds\u0026#39;) # it\u0026#39;s possible to load results directly\rplot_L2_EF = plot_scopus_comparison(L2_EF, pub_count_in_legend = FALSE, pub_count_in_lines = TRUE) +\rscale_color_manual(\rvalues = c( \u0026quot;[ref.] + \u0026#39;\\\u0026quot;working memory\\\u0026quot;\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[1],\r\u0026quot;[ref.] + \u0026#39;inhibit*\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[2], \u0026quot;[ref.] + \u0026#39;\\\u0026quot;implicit learning\\\u0026quot;\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[3] )\r) + guides(colour = guide_legend(override.aes = list(alpha = 1))) +\r# Prepare layout for the multi-plot combination\rtheme(axis.text.x = element_blank(), axis.title.x = element_blank(), legend.position = \u0026#39;none\u0026#39;, plot.margin = margin(0, 0, 15, 0))\r# Prevalence of three executive functions in third language studies from 2000 to 2023. # In addition to \u0026quot;third language\u0026quot;, the reference query includes the terms \u0026quot;learning\u0026quot; # and \u0026quot;cognition\u0026quot; to make the scope of the search more relevant to the topic of # interest. reference_query = \u0026#39;\u0026quot;third language\u0026quot;\u0026#39;\r# Other parameters identical to those used in the query above.\rL3_EF = scopus_comparison(reference_query, comparison_terms, search_period, quota, verbose = FALSE, reference_query_field_tag = \u0026#39;TITLE-ABS-KEY\u0026#39;)\rsaveRDS(L3_EF, \u0026#39;L3_EF.rds\u0026#39;)\rL3_EF = readRDS(\u0026#39;L3_EF.rds\u0026#39;) # it\u0026#39;s possible to load results directly\rplot_L3_EF = plot_scopus_comparison(L3_EF, pub_count_in_legend = FALSE, pub_count_in_lines = TRUE) +\rscale_color_manual(\rvalues = c( \u0026quot;[ref.] + \u0026#39;\\\u0026quot;working memory\\\u0026quot;\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[1],\r\u0026quot;[ref.] + \u0026#39;inhibit*\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[2], \u0026quot;[ref.] + \u0026#39;\\\u0026quot;implicit learning\\\u0026quot;\u0026#39;\u0026quot; = scales::hue_pal()(N_comparison_terms)[3] )\r) + guides(colour = guide_legend(override.aes = list(alpha = 1))) +\r# Prepare layout for the multi-plot combination\rtheme(axis.text.x = element_text(margin = margin(7, 0, 0, 0, \u0026#39;pt\u0026#39;)),\raxis.title.x = element_text(margin = margin(8, 0, 0, 0, \u0026#39;pt\u0026#39;)),\rlegend.position = \u0026#39;inside\u0026#39;, legend.position.inside = c(.82, .8))\r# Combine plots\rplot_L2_EF + plot_L3_EF + plot_layout(ncol = 1, axes = \u0026#39;collect\u0026#39;) \u0026amp;\rtheme(axis.text = element_text(size = 10),\raxis.title = element_text(vjust = 0.5, size = 13), plot.title = element_markdown(hjust = 0.5, size = 12),\rlegend.text = element_text(size = 11,),\rlegend.background = element_rect(color = \u0026#39;grey80\u0026#39;, fill = \u0026#39;grey99\u0026#39;), legend.margin = margin(0, 5, 2, 0)) \rThe total number of publications over the current period is shown between brackets after each query.\n\rReferences\rBernabeu, P. (2024). rscopus_plus. OSF. https://doi.org/10.17605/OSF.IO/BUZQ6\nMuschelli, J. (2022). Package ’rscopus’. CRAN. https://cran.r-project.org/web/packages/rscopus/rscopus.pdf\n\r","date":1708473600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1708473600,"objectID":"eba99634f37d6cae8955f23d377823a2","permalink":"https://pablobernabeu.github.io/2024/rscopus-plus-an-extension-of-the-rscopus-package/","publishdate":"2024-02-21T00:00:00Z","relpermalink":"/2024/rscopus-plus-an-extension-of-the-rscopus-package/","section":"post","summary":"Sometimes it’s useful to do a bibliometric analysis. To this end, the rscopus_plus functions (Bernabeu, 2024) extend the R package rscopus (Muschelli, 2022) to administer the search quota and to enable specific searches and comparisons.\n\rscopus_search_plus runs rscopus::scopus_search as many times as necessary based on the number of results and the search quota.\n\rscopus_search_DOIs gets DOIs from scopus_search_plus, which can then be imported into a reference manager, such as Zotero, to create a list of references.","tags":["bibliometrics","R","research methods","research software","second language","third language","executive functions","working memory","inhibition","implicit learning","s"],"title":"rscopus_plus: An extension of the rscopus package","type":"post"},{"authors":null,"categories":["research methods"],"content":"\r\n\r\n\r\n","date":1706486400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1706486400,"objectID":"6aac03374ffe7acabb17244f28f0d2ce","permalink":"https://pablobernabeu.github.io/2024/how-to-end-trial-after-timeout-in-jspsych/","publishdate":"2024-01-29T00:00:00Z","relpermalink":"/2024/how-to-end-trial-after-timeout-in-jspsych/","section":"post","summary":"I would like to ask for advice regarding a custom plugin for a serial reaction time task, that was created by @vekteo, and is available in Gorilla, where the code can be edited and tested. By default, trials are self-paced, but I would need them to time out after 2,000 ms. I am struggling to achieve this, and would be very grateful if someone could please advise me a bit.","tags":["javascript","jsPsych","s"],"title":"How to end trial after timeout in jsPsych","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rLongitudinal studies consist of several sessions, and often involve session session conductors. To facilitate the planning, registration and tracking of sessions, a session logbook becomes even more necessary than usual. To this end, an Excel workbook with conditional formatting can help automatise some formats and visualise the progress.\nBelow is an example that is available on OneDrive. To fully access this workbook, it may be downloaded via File \u0026gt; Save as \u0026gt; Download a copy. Alternatively, the workbook can be exported to one’s own account on OneDrive.\nThe conditional formats include:\n\rfill in blanks in columns A, C or D to remove the background\n\rfill in blanks in F and G, or I and J, or L and M, etc, to highlight the entire session in green\n\rfill in any notes columns to highlight them in red\n\r\r\rThese conditional formats can be consulted (and edited) from the Home tab by opening Conditional Formatting \u0026gt; Manage Rules. At the top, the option This Worksheet should be selected to view all formulas.\n","date":1701475200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1701475200,"objectID":"8dca6620f93de52426718f340e0a7901","permalink":"https://pablobernabeu.github.io/2023/a-session-logbook-for-a-longitudinal-study-using-conditional-formatting-in-excel/","publishdate":"2023-12-02T00:00:00Z","relpermalink":"/2023/a-session-logbook-for-a-longitudinal-study-using-conditional-formatting-in-excel/","section":"post","summary":"Longitudinal studies consist of several sessions, and often involve session session conductors. To facilitate the planning, registration and tracking of sessions, a session logbook becomes even more necessary than usual. To this end, an Excel workbook with conditional formatting can help automatise some formats and visualise the progress.\nBelow is an example that is available on OneDrive. To fully access this workbook, it may be downloaded via File \u0026gt; Save as \u0026gt; Download a copy.","tags":["research methods","session logbook","longitudinal study","Excel formulas","conditional formatting","s"],"title":"A session logbook for a longitudinal study using conditional formatting in Excel","type":"post"},{"authors":[],"categories":["research-methods"],"content":"\rThe disorder\rStudies in the cognitive sciences often feature multiple experimental conditions and other independent variables. Once the study progresses, the analytical liberties associated with all the conditions and variables are compounded by the myriad possible steps in data processing and analysis. All these combinations lead to a garden of forking paths, and the researcher degrees of freedom soar to unexpected highs.\nThe system of professional incentives in academia largely ignores the issue of researcher degrees of freedom. When CVs are assessed, quantity weighs more than quality of research. When studies are assessed, statistical significance weighs more than methodological rigour. Thus, the low replication rates in various fields, including linguistics (Kobrock \u0026amp; Roettger, 2023), are hardly surprising (cf. Barsalou, 2019).\n\rThe treatment\rThe number of researcher degrees of freedom, and their unforeseen influence, can be reduced a priori by publishing a preregistration before data collection has begun (or before the analysis in the case of meta-analyses and secondary-data analyes). The preregistration takes a bit of time, which poses a challenge because funding systems often require doing things as soon and as fast as possible, driven by a questionable notion of scientific productivity.\nHow to gather the strength\rThe best argument to motivate a preregistration may be that does not incur any extra time. It only requires frontloading an important portion of the work. This effort will be rewarded when the study is published, as preregistered analyses are received with greater trust by peer-reviewers and other readers.\nIf any contributors of a project can gather just enough time and interest to initiate a preregistration in time, the researchers can attempt to pocket this important asset for their study. They will reap the reward in time, and so will their field of research at large.\n\rWhat to do\rInitially, rather than detailed analytical steps, it is the broader theoretical aspects that should be laid out. An abstract and an introduction should be written, describing why the study has been designed in such a way, what analyses will be performed, and what hypotheses are afforded by the literature. Next, some methodological details regarding the materials and the analyses should be added.\nThe degree of detail in the preregistration can be determined by the researchers alone. Yet, ceteris paribus, the greater the detail in a preregistration, the greater the trustworthiness of the analyses and the results. Multiple preregistration guidelines exist by now, including some field-specific ones.\n\rSolace\rPreregistration is not perfect, but is a lesser evil that reduces the misuse of statistical analysis in science (Mertzen et al., 2021; Roettger, 2023).\n\rEven the strongest blizzards start with a single snowflake. (Sara Raasch)\n\rRules are made to be broken—at least as and when necessary. That is, deviations from the preregistration are possible, and indeed very frequent (Bakker et al., 2020; van den Akker et al., 2023).\n\r\rReferences\rBakker, M., Veldkamp, C. L. S., Assen, M. A. L. M. van, Crompvoets, E. A. V., Ong, H. H., Nosek, B. A., Soderberg, C. K., Mellor, D., \u0026amp; Wicherts, J. M. (2020). Ensuring the quality and specificity of preregistrations. PLOS Biology, 18(12), e3000937. https://doi.org/10.1371/journal.pbio.3000937\nBarsalou, L. W. (2019). Establishing generalizable mechanisms. Psychological Inquiry, 30(4), 220–230. https://doi.org/10.1080/1047840X.2019.1693857\nKobrock, K., \u0026amp; Roettger, T. B. (2023). Assessing the replication landscape in experimental linguistics. Glossa Psycholinguistics, 2(1). https://doi.org/10.5070/G6011135\nMertzen, D., Lago, S., \u0026amp; Vasishth, S. (2021). The benefits of preregistration for hypothesis-driven bilingualism research. Bilingualism: Language and Cognition, 24(5), 807–812. https://doi.org/10.1017/S1366728921000031\nRoettger, T. B. (2021). Preregistration in experimental linguistics: Applications, challenges, and limitations. Linguistics, 59(5), 1227–1249. https://doi.org/10.1515/ling-2019-0048\nvan den Akker, O. R., van Assen, M. A. L. M., Enting, M., de Jonge, M., Ong, H. H., Rüffer, F., Schoenmakers, M., Stoevenbelt, A. H., Wicherts, J. M., \u0026amp; Bakker, M. (2023). Selective hypothesis reporting in psychology: Comparing preregistrations and corresponding publications. Advances in Methods and Practices in Psychological Science, 6(3), 25152459231187988. https://doi.org/10.1177/25152459231187988\n\r","date":1700784000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1700784000,"objectID":"cfbdd0889c2bc7d177fd4ef7c36c6d83","permalink":"https://pablobernabeu.github.io/2023/motivating-a-preregistration-especially-in-experimental-linguistics/","publishdate":"2023-11-24T00:00:00Z","relpermalink":"/2023/motivating-a-preregistration-especially-in-experimental-linguistics/","section":"post","summary":"The best argument to motivate a preregistration may be that it doesn’t take any extra time. It just requires frontloading an important portion of the work. As a reward, the paper will receive greater trust from the reviewers and the readers at large. Preregistration is not perfect, but is a lesser evil that reduces the misuse of statistical analysis in science.","tags":["prereg","preregistration","research methods","s"],"title":"Motivating a preregistration (especially in experimental linguistics)","type":"post"},{"authors":[],"categories":["science"],"content":"\rVed å delta i vårt eksperiment og gjøre noen enkle oppgaver på en datamaskin, kan du bidra til forskning og tjene 250 kr i timen (gavekort). EEG er helt smertefritt.\rEksperimentet foregår i Tromsø, ved UiT Norges Arktiske Universitet.\rVi ser etter deltakere med følgende egenskaper:\n☑ Alder 18–45 år;\n☑ Snakker norsk som førstespråk og engelsk flytende. Utenom disse språkene, kan deltakerne også snakke svensk og dansk, men ikke andre språk (utover noen få ord);\n☑ Ingen språkrelaterte lidelser eller vansker, som f.eks. dysleksi;\n☑ Ingen oppmerksomhetssvikt\n\rI de fleste tilfeller vil deltakelse innebære å gjennomføre fem økter over en måned, med bonusutbetaling på slutten.\nDersom du oppfyller disse kriteriene og ønsker å delta, vennligst registrer deg nedenfor for å motta mer informasjon, eller kontakt Pablo på epost-adressen p.bernabeu@uit.no.\n\rMeld deg på\r\r\r\nTusen takk for din interesse i denne studien.\n\n\rTakk til Mona Kirknes Fossum og Marit Westergaard for hjelpen med oversettelsen av denne annonsen.\n\r","date":1699920000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1699920000,"objectID":"c8e6159c17153fddc97f7595f92fb6e6","permalink":"https://pablobernabeu.github.io/2023/do-you-speak-a-scandinavian-language-s-and-english-but-no-other-languages-delta-i-et-eeg-eksperiment/","publishdate":"2023-11-14T00:00:00Z","relpermalink":"/2023/do-you-speak-a-scandinavian-language-s-and-english-but-no-other-languages-delta-i-et-eeg-eksperiment/","section":"post","summary":"Ved å delta i vårt eksperiment og gjøre noen enkle oppgaver på en datamaskin, kan du bidra til forskning og tjene 250 kr i timen (gavekort). EEG er helt smertefritt.\rEksperimentet foregår i Tromsø, ved UiT Norges Arktiske Universitet.\rVi ser etter deltakere med følgende egenskaper:\n☑ Alder 18–45 år;\n☑ Snakker norsk som førstespråk og engelsk flytende. Utenom disse språkene, kan deltakerne også snakke svensk og dansk, men ikke andre språk (utover noen få ord);","tags":["vitenskap","electroencephalography","eksperiment","tromsø","tromso","uit","norges arktiske universitet","arctic university of norway","universitetet i tromsø","s"],"title":"Do you speak a Scandinavian language(s) and English, but no other languages? Delta i et EEG-eksperiment","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rIs it worth learning how to use a reference management system such as Zotero? Maybe.\nThe hours you invest in learning how to use Zotero (approx. 10 hours) are likely to pay off, as they will save you a lot of time that you would otherwise spend formatting, revising and correcting references. In addition, this skill would become part of your skill set.\n\rA great guide\n\rFree, online webinars in which you could participate and ask questions\n\rZotero and Word\n\rZotero extension for the Chrome browser, to quickly add papers to your libraries\n\r\r","date":1699574400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1699574400,"objectID":"ba8c91c9eedf1d550f9eba0f6c942d96","permalink":"https://pablobernabeu.github.io/2023/learning-how-to-use-zotero/","publishdate":"2023-11-10T00:00:00Z","relpermalink":"/2023/learning-how-to-use-zotero/","section":"post","summary":"Is it worth learning how to use a reference management system such as Zotero? Maybe.\nThe hours you invest in learning how to use Zotero (approx. 10 hours) are likely to pay off, as they will save you a lot of time that you would otherwise spend formatting, revising and correcting references. In addition, this skill would become part of your skill set.\n\rA great guide\n\rFree, online webinars in which you could participate and ask questions","tags":["research methods","science","writing","academic writing","phdchat","s"],"title":"Learning how to use Zotero","type":"post"},{"authors":[],"categories":["linear mixed-effects models","R"],"content":"\rI am dealing with nested data, and I remember from an article by Clark (1973) that nested should be analysed using special models. I’ve looked into mixed-effects models, and I’ve reached a structure with random intercepts by subjects and by items. Is this fine?\n\rIn early days, researchers would aggregate the data across these repeated measures to prevent the violation of the assumption of independence of observations, which is one of the most important assumptions in statistics. With the advent of mixed-effects models, researchers began accounting for these repeated measures using random intercepts and slopes. However, problems of convergence led many researchers to remove random slopes. This became widespread until, over the past few years, we have realised that random slopes are necessary to prevent an inflation of the Type I error due to the violation of the assumption of independence (Brauer \u0026amp; Curtin, 2018; Singmann \u0026amp; Kellen, 2019). Please see Table 17 in Brauer and Curtin (2018). Due to the present reasons, the models in the current article are anti-conservative. To redress this problem, please consider the inclusion of random slopes by participant for all between-items variables [e.g., (stimulus_condition | participant)], and random slopes by item for all between-participants variables [e.g., (extraversion | item)]. Interaction terms should also have the corresponding slopes, except when the variables in the interaction vary within different units, that is, one between participants and one between items (Brauer \u0026amp; Curtin, 2018). Each of the random intercepts and random slopes included in the model should be noted in the main text, for instance using footnotes in the results table (see example).\n\r\rI calculated the p values by comparing minimally-different models using the anova function. Is this fine?\n\rLuke (2017) warns that the p values calculated by model comparison—which are based on likelihood ratio tests—can be anti-conservative. Therefore, the Kenward-Roger and the Satterthwaite methods are recommended instead (both available in other packages, such as lmerTest and afex).\n\r\rThe lme4 package only runs on one thread (CPU) but the computer has 8. Do you have any advice on making the model run using more of the threads? It’s taking a very long time. I’ve seen these two possible solutions online from 2018 (here and here) but would like some advice if they have any or have attempted either of these solutions.\n\rFrom the information I have seen in the past as well as right now, parallelising (g)lmer intentionally would be very involved. There is certainly interest in it, as your resources show (also see here). However, the current information suggests to me that it is not possible.\nInterestingly, some isolated cases of unintentional parallelisation have been documented, and the developers of the lme4 package were surprised about them because they have not created this feature (see here and here).\nI think the best approach may be running your model(s) in a high-performance computing (HPC) cluster. Although this would not reduce the amount of time required for each model, it would have two advantages. First, your own computers wouldn’t be busy for days, and second, you could even run several models at the same time without exhausting your own computers. I still have access to the HPC at my previous university, and it would be fine for me to send your model(s) there if that would help you. Feel free to let me know. Otherwise I can see that your university has this facility too.\n\r\rWe took your advice and ran the model on a supercomputer - it took roughly 2.5 days, which is what it took for the model to run on my iMac and a gaming laptop Vivienne has.\nThe model, however, didn’t converge. We have read that you can use allFit() to try the fit with all available optimizers. Do you have any experience using this? If you did, I wondered where this would sit in the code for the model? How and where do I add this in to check all available optimizers, please?\nI have attached my code in a txt file and the data in excel for you to see, in case it is of any use.\n\rThe multi-optimizer check is indeed a way (albeit tentative) to probe into the convergence. Convergence has long been a fuzzy subject, as there are different standpoints depending on the degree of conservativeness that is sought after by the analysts.\nOn Page 124 in my thesis (https://osf.io/97u5c), you can find this multi-optimizer check (also see this blog post). All the code is available on OSF. More generally, I discuss the issue of convergence throughout the thesis.\n\r\rI have run the model with optimizer=\"nloptwrap\" and algorithm=\"NLOPT_LN_BOBYQA\" and received the following warning message (once the model ran) -\nIn optwrap(optimizer, devfun, start, rho$lower, control = control, :\rconvergence code 5 from nloptwrap: NLOPT_MAXEVAL_REACHED: optimization stopped becasue maxeval (above) was reached.\rDoes this mean that the model didn’t converge? I’m only asking because I wasn’t given a statement saying it didn’t converge, as it did with Nelder_Mead. It was stated (at the end of summary table)\nOptimizer (Nelder_Mead) convergence code: 4 (failure to converge in 10000 evaluations)\rfailure to converge in 10000 evaluations\r\rPlease try increasing the max number of iterations.\n\r\rWe increased the max number of iterations to 1e6 and then 1e7, and the model didn’t converge. But it has converged with maxeval=1e8.\nI wanted to ask please, do you know of any issues with the max iterations being this high and effecting the interpretability of the model? Or is it completely fine?\n\rThere are no side-effects to increasing the number of iterations (see Remedy 6 in Brauer \u0026amp; Curtin, 2018).\n\r\r","date":1699056000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1699056000,"objectID":"d3816a9374eb22857ab5f62f872e0896","permalink":"https://pablobernabeu.github.io/2023/faqs-on-mixed-effects-models/","publishdate":"2023-11-04T00:00:00Z","relpermalink":"/2023/faqs-on-mixed-effects-models/","section":"post","summary":"I am dealing with nested data, and I remember from an article by Clark (1973) that nested should be analysed using special models. I’ve looked into mixed-effects models, and I’ve reached a structure with random intercepts by subjects and by items. Is this fine?\n\rIn early days, researchers would aggregate the data across these repeated measures to prevent the violation of the assumption of independence of observations, which is one of the most important assumptions in statistics.","tags":["linear-mixed effects models","R","research methods","s"],"title":"FAQs on mixed-effects models","type":"post"},{"authors":[],"categories":["research methods","R"],"content":"\rIn the fast-paced world of scientific research, establishing minimum standards for the creation of research materials is essential. Whether it’s stimuli, custom software for data collection, or scripts for statistical analysis, the quality and transparency of these materials significantly impact the reproducibility and credibility of research. This blog post explores the importance of adhering to FAIR (Findable, Accessible, Interoperable, Reusable) principles, and offers practical examples for researchers, with a focus on the cognitive sciences.\n\rNotwithstanding the need for speed in most scientific projects, what should be the minimum acceptable standards in the creation of research materials such as stimuli, custom software for data collection (e.g., experiment in jsPsych, OpenSesame or psychoPy), or scripts for statistical analysis?\nThe answer to this question is contingent upon the field of research, the purpose and the duration of the project, and many other contextual factors. So, to narrow down the scope and come at a general answer, let’s suppose we asked a researcher in the cognitive sciences (e.g., a linguist, a psychologist or a neuroscientist) who values open science. Perhaps, such a researchers would be satisfied with a method for the creation of materials that allows the creators of the materials, as well as their collaborators and any other stakeholders (e.g., any fellow scientists working in the same field), to explore, understand, reproduce, modify, and reuse the materials following their completion and thereafter. Let’s review some of the implements that can help fulfil these standards.\nFAIRness\rThe FAIR Guiding Principles for scientific data management and stewardship exhaustively describe a protocol for making materials Findable, Accessible, Interoperable and Reusable. These terms cover the five allowances listed above, along with other important aspects.\nLet’s look at some instantiations of the FAIR principles.\nSharing the materials\rA condition sine qua non is to share the materials publicly online, as far as possible. Repositories on servers such as OSF or GitHub are often sufficient to this end. Unfortunately, most studies in the cognitive sciences still do not share the complete materials.\nOne of the reasons why sharing is so important is to prevent wrong assumptions by the audience that will consider the research. That is, when the materials of a study are not publicly shared online, the readers of the papers are left with two options: to assume that there were no errors or to assume that were some errors of an uncertain degree. The method followed in the creation of the materials should free the readers of this tribulation, by allowing them to consult the materials and their preparation in full, or as completely as possible.\n\rReproducibility\rIt is convenient to allow others, and our future selves, to reproduce the materials throughout their preparation and at any time thereafter. For this purpose, R can be used to register in scripts as many as possible of the steps followed throughout the preparation of the materials. Far from being only a software for data analysis, R allows the preparation of texts, images, audios, etc. Humans err, by definition. That can be counted on. Conveniently, registering the steps followed during weeks or months of preparation allows us to offload part of the documentation efforts. It’s a way of video-recording, as it were, all the additions, subtractions, replacements, transformations and calculations performed with the raw materials, for the creation of the final materials.\n\rGenerous documentation\rUnder the curse of knowledge, the creators of research materials may believe that their materials are self-explanatory. Often they are more obscure than they think. To allow any other stakeholders, including their future selves, to exercise the five allowances listed above—i.e., explore, understand, reproduce, modify, and reuse the materials—, the preparation process and the end materials should be documented with enough detail. This can be done using README.txt files throughout the project. Using the .txt format/extension is recommended because other formats, such as Microsoft Word, may not be (fully) available in some computers. To exemplify the format and the content of readme files, below is an excerpt from a longitudinal study on which I’ve been working.\n-- Post-training test --\rIn Sessions 2, 3, 4 and 6, if the test is failed in the first attempt, the training and the test are repeated (following González Alonso et al., 2020). In such cases, the result is shown at the end of the second attempt. The session advances if the accuracy achieved in the second attempt exceeds 80%, whereas the session stops if the accuracy is lower. In the latter situation, an 'End of session' message is presented, flanked by two orange circles, and followed by an acknowledgement for the participant. Once the participant has read this screen, the experimenter quits the session by pressing 'ESC' and then 'Q'.\r== Stimuli ==\rThe stimulus lists are described in the R functions that were used to create the stimuli, as well as\rin the 'list' column in the stimulus files.\r== Participant-specific parameters for lab-based sessions ==\rEach participant was assigned certain parameters in advance, including the mini-language, the order of the resting-state parts, and the stimulus lists. The code that was used to create this assignment is available in the 'stimulus_preparation' folder. Due to the pre-assignment of the parameters, there is a fixed set of participant IDs that can be used in OpenSesame. These identification numbers range between 1 and 144. If an ID outside of this range is used, the OpenSesame session does not run.\r== General procedure for lab-based sessions ==\rAt the beginning of lab-based Sessions 2, 3, 4 and 6, the experimenter will first signal the lab is busy using a light or a sign. Next, they will ascertain what participant and what session applies. This is done using the session logbook that is shared among all session conductors. This session logbook is instantly updated online using a cloud service, such as OneDrive. Next, the experimenter starts OpenSesame by opening the program directly (not by opening the session-specific file), and then opens the appropriate session within OpenSesame. This procedure helps prevent the opening of a standalone Python window, the closing of which would result in the closing of OpenSesame. Next, the experimenter opens BrainVision Recorder.\rWhen the participant arrives in the lab, they are informed that they can use the toilet outside. The participant is also offered some water. Next, the size of their head is measured, and an appropriate cap is tried on the participant’s head. Next, the cap is placed on a dummy head, and the electrodes are attached to the cap. At that point, to prevent signal interference, the participant is kindly asked to either put their mobile devices (phone, tablet, smartwatch) in flight mode, or to leave them outside of the booth. Next, to protect the participant's clothes from any drops of gel, a towel is placed on their upper back, covering shoulders and upper torso. Both ends of the towel are clipped together at the front using two or three clothes pegs. Next, the cap is fitted on the participant's head. To prevent the cap from being pulled back during the session, the splitter box is attached to the towel on the participant's back, right below their head. Next, measures are taken to adjust the position of the cap evenly, first from the nasion to the inion, and then from the tip of an ear to the other ear. Next, the experimenter returns to OpenSesame and runs the session in full screen by clicking on the full green triangle at the top left. Then, a file explorer window opens, in which the experimenter must assign a subject number consistent with the session logbook, and must select the destination folder for the logfile. The destination folder is called 'logfiles'. Any prompts to overwrite a logfile must normally be refused, or considered carefully, due to the risk of losing data from previous sessions.\rIn the first screen, the experimenter can disable some of the tasks. This option can be used if a session has ended abruptly, in which case the session can be resumed from a near checkpoint. In such a case, the experimenter must first note this incident in their logbook, and rename the log file that was produced on the first run, by appending '_first_run' to the name. This prevents overwriting the file on the second run. Next, they must open a new session, enter the same participant ID, and select the appropriate part from which to begin. This part must be the part immediately following the last part that was completed in full. For instance, if a session ended\rabruptly during the experiment, the beginning selected on the second run would be the experiment. Once the session has finished completely, the first log file and the second log file must be safely merged into a single file, keeping only the fully completed tasks.\rIn the first instructional screen, participants are asked to refrain from asking any questions unless it is necessary, so that all participants can receive the same instructions.\rAt the beginning of the resting-state part in Session 2, and at the beginning of the Experiment part, instructions are presented on the screen that ask participants to stay as still as possible during the following task. The screen contains an orange-coloured square with the letters 'i.s.r', that remind the experimenter to check the impedance and the signal, and finally to begin recording the EEG signal. If the impedance of any electrodes is poor, the experimenter may enter the booth to lower the impedance of the electrodes affected. Otherwise, after validating the signal and the impedance, the experimenter can begin the recording in BrainVision, and press the letter 'C' twice in the stimulus computer. At that point, a green circle will appear, along with instructions for the participant. Similarly, at the end of the eyes-closed resting-state measurement (which is five minutes long), the experimenter must intervene when they see the screen with the orange stripes, by knocking on the door to let the participant open their eyes. Furthermore, at the end of the resting-state part and at the end of the Experiment part, a screen\rwith a crossed-out R appears to remind the experimenter to stop recording the EEG. Notice that the above-mentioned stages, characterised by screens with orange stripes, require the experimenter's intervention. The experimenter must allow the participant to read any text on these screens. Next, the experimenter must press the letter 'C' twice to let the session continue. This protocol provides the experimenter with control when necessary. The experimenter should be aware of the use of the letter 'C' at these points, as the requirement is not signalled on the screen to prevent participants from pressing the letter themselves. During the experiment, it is important to monitor the EEG signal. If it ever becomes very noisy, the experimenter must wait until the next break and the participant to stop, so that the signal can be verified. If the noise in the signal is due to the participant's movement, they should be asked again to please stay as still possible. If the noise is due to an increase in the impedance of some electrodes, the impedance of those electrodes should be revised.\rThe experiment in Session 2 contains breaks every 40 trials, whereas the experiments in subsequent sessions contain breaks every 50 trials. During these breaks, the number of the current trial appears in grey on the bottom right corner of the screen.\rIf a session ends abruptly during the experiment, but there is not enough time to restart the session from the experiment, then the data should be uploaded to the repository. == Definition of items in OpenSesame (only for programming purposes, not for in-session use) ==\r-- Each major part of the session is contained in a sequence item that is named in capital letters (e.g., 'PRETRAINING', 'TRAINING', 'TEST', 'EXPERIMENT').\r-- 'continue_space': allows proceeding to the following screen after pressing the space bar, which should be done by the participant. In most cases, two presses are required, as detailed on the screen.\r-- 'continue_c': allows proceeding to the following screen after pressing the letter 'C', which should be done by the experimenter. In most cases, two presses are required, as detailed on the screen.\r== Variables in the OpenSesame log files ==\rIn the log files produced by OpenSesame, each part of the session (e.g., Test, Experiment) is identified in the variable 'session_part'. The names of the response variables are 'response',\r'response_time' and 'correct'. Item-specific response variables follow the formats of 'response_[item_name]', 'response_time_[item_name]' and 'correct_[item_name]' (see https://osdoc.cogsci.nl/3.3/manual/variables/#response-variables).\rThe output is verbose and requires preprocessing of the data. For instance, the last response in each loop may appear twice in the output, due to the processing of the response. These duplicates can--and must--be cleaned up by discarding the rows that have the same trial number\ras the preceding row.\r== EEG triggers ==\rTriggers are sent to the EEG recorder throughout the experiment. The system for sending triggers is set up in OpenSesame script within the inline script 'EEG_trigger_setup'.\rThe key to the triggers is provided below.\r0: reset trigger port in BrainVision Recorder. This trigger is integrated in the trigger-sending function.\r-- Resting-state EEG part --\r10: beginning of eyes-open resting-state EEG\r11: end of eyes-open resting-state EEG\r12: beginning of eyes-closed resting-state EEG\r13: end of eyes-closed resting-state EEG\r-- Experiment part --\r5: fixation mark\r-- ID of each target sentence (only applicable to target trials) --\r110--253: triggers ranging between 110 and 253, time-locked to the onset of the word of interest in each trial.\r\rComments in code scripts\rIt is helpful for our future selves, for our collaborators, and for any other stakeholders associated with a project—which includes any fellow researchers worldwide—to include comments in code scripts. These comments should introduce the purpose of the script at the top, and the purpose of various components of the code. Some excerpts are shown below as examples.\n\r\r\r\rOpen-source software\rWhere possible, open-source software should be used. Open-source software is free, and hence more accessible. Open-source software can be classified in various dimensions, such as the size of the user base. The more users, the greater the support, because the core developers have more resources, and the users will often help each other in public forums such as Stack Exchange. For instance, a programming language such as R boasts millions of users worldwide who count on support in public forums and in R-specific forums such as the Posit Community.\nOther software are not as large. For instance, open-source software for psychological research (e.g., OpenSesame, psychoPy) are far smaller than R in terms of community. Yet, these software too can count on substantial support. For the more basic uses, most of the way has already been paved, and the existing documentation suffices. For more advanced uses, the smaller size of the community can become more obvious, as one needs to spend more time looking for solutions.\nRegardless of the size of the community, all else being equal, open-source software is the right choice to ensure access to one’s work for all (potential) stakeholders in the future. The other option, proprietary software, entails dependence on the services of a private company.\n\rTidiness and parsimony in computer code\rCode scripts should be as tidy and parsimonious as possible. For instance, to prevent overly long scripts that would impair the comprehension of the materials, it is useful to break down large projects into nested scripts, and source (i.e., run) the smaller scripts in the larger scripts.\n# Compose all stimuli for Sessions 2, 3, 4 and 6\r# Create participant-specific parameters\rsource(\u0026#39;stimulus_preparation/participant_parameters.R\u0026#39;)\r# Frame base images\rsource(\u0026#39;stimulus_preparation/base_images.R\u0026#39;)\r# Session 2\rsource(\u0026#39;stimulus_preparation/Session 2/Session2_compile_all_stimuli.R\u0026#39;)\r# Session 3\rsource(\u0026#39;stimulus_preparation/Session 3/Session3_compile_all_stimuli.R\u0026#39;)\r# Session 4\rsource(\u0026#39;stimulus_preparation/Session 4/Session4_compile_all_stimuli.R\u0026#39;)\r# Session 6\rsource(\u0026#39;stimulus_preparation/Session 6/Session6_compile_all_stimuli.R\u0026#39;)\r\rTidiness and parsimony in project directories\rA directory tree is useful to display all the folders in a project. The tree can be produced in the RStudio ‘Terminal’ console using the following one-line command.\nfind . -type d | sed -e \u0026quot;s/[^-][^\\/]*\\// |/g\u0026quot; -e \u0026quot;s/|\\([^ ]\\)/| - \\1/\u0026quot;\rThe output will look like the following (excerpt from https://osf.io/gt5uf/wiki).\n.\r| - bayesian_priors\r| | - plots\r| - semanticpriming\r| | - analysis_with_visualsimilarity\r| | | - model_diagnostics\r| | | | - results\r| | | | - plots\r| | | - results\r| | | - plots\r| | | - correlations\r| | | | - plots\r| | - frequentist_bayesian_plots\r| | | - plots\r| | - frequentist_analysis\r| | | - model_diagnostics\r| | | | - results\r| | | | - plots\r| | | - lexical_covariates_selection\r| | | | - results\r| | | | - plots\r| | | - results\r| | | - plots\r\rConclusion\rAdhering to best practices—including the FAIR principles—in the creation of research materials enhances transparency, accessibility and reproducibility in scientific research. These standards facilitate researchers’ work beyond the short term, and increase the reliability of scientific work, thus contributing to the best use of resources.\n\r\r","date":1698883200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1698883200,"objectID":"63ac305c778f5e5add08f5f6137d3b0e","permalink":"https://pablobernabeu.github.io/2023/fair-standards-for-the-creation-of-research-materials-with-examples/","publishdate":"2023-11-02T00:00:00Z","relpermalink":"/2023/fair-standards-for-the-creation-of-research-materials-with-examples/","section":"post","summary":"In the fast-paced world of scientific research, establishing minimum standards for the creation of research materials is essential. Whether it's stimuli, custom software for data collection, or scripts for statistical analysis, the quality and transparency of these materials significantly impact the reproducibility and credibility of research. This blog post explores the importance of adhering to FAIR (Findable, Accessible, Interoperable, Reusable) principles, and offers practical examples for researchers, with a focus on the cognitive sciences.","tags":["research materials","experimental stimuli","research methods","programming","R","s"],"title":"FAIR standards for the creation of research materials, with examples","type":"post"},{"authors":"","categories":["research-methods"],"content":"\r\n\r\n\r\n","date":1698796800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1698796800,"objectID":"2bc4a1121d8e2cc67316b0a02deb9ca2","permalink":"https://pablobernabeu.github.io/2023/two-second-delay-after-logger/","publishdate":"2023-11-01T00:00:00Z","relpermalink":"/2023/two-second-delay-after-logger/","section":"post","summary":"The result shows a varying delay of around 2 seconds on average. It would be very helpful for us if we could cut down this delay, as it adds up. To try to achieve this, I reduced the number of variables logged, from the default 363 to 34 important variables. Unfortunately, this change did not result in a reduction of the delay.","tags":["OpenSesame","stimulus presentation","experiment","s"],"title":"Two-second delay after logger in OpenSesame","type":"post"},{"authors":[],"categories":["R"],"content":"\rThe present script can be used to pre-process data from a frequency list of the Norwegian as Web Corpus (NoWaC; Guevara, 2010).\rBefore using the script, the frequency list should be downloaded from this URL. The list is described as ‘frequency list sorted primary alphabetic and secondary by frequency within each character’, and this is the direct URL. The download requires signing in to an institutional network. Last, the downloaded file should be unzipped.\nThe script is shown below.\n\r\rReferences\rGuevara, E. R. (2010). NoWaC: A large web-based corpus for Norwegian. In Proceedings of the NAACL HLT 2010 Sixth Web as Corpus Workshop (pp. 1-7). https://aclanthology.org/W10-1501\nRodina, Y., \u0026amp; Westergaard, M. (2015). Grammatical gender in Norwegian: Language acquisition and language change. Journal of Germanic Linguistics, 27(2), 145–187. https://doi.org/10.1017/S1470542714000245\nRodina, Y., \u0026amp; Westergaard, M. (2021). Grammatical gender and declension class in language change: A study of the loss of feminine gender in Norwegian. Journal of Germanic Linguistics, 33(3), 235–263. https://doi.org/10.1017/S1470542719000217\n\r","date":1695859200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1695859200,"objectID":"5dc2e55e585f7576bfede0fa86bf54a6","permalink":"https://pablobernabeu.github.io/2023/preprocessing-the-norwegian-web-as-corpus-nowac-in-r/","publishdate":"2023-09-28T00:00:00Z","relpermalink":"/2023/preprocessing-the-norwegian-web-as-corpus-nowac-in-r/","section":"post","summary":"The present script can be used to pre-process data from a frequency list of the Norwegian as Web Corpus (NoWaC; Guevara, 2010).\rBefore using the script, the frequency list should be downloaded from this URL. The list is described as ‘frequency list sorted primary alphabetic and secondary by frequency within each character’, and this is the direct URL. The download requires signing in to an institutional network. Last, the downloaded file should be unzipped.","tags":["R","corpora","corpus","Norwegian","NoWaC","linguistics","language","research methods","s"],"title":"Preprocessing the Norwegian Web as Corpus (NoWaC) in R","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rThe OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame? There are many reasons: it is free, open source, based on Python, stable enough thanks to more than a decade of usage and development, well maintained, and has a community forum.\nI recently faced a challenge when developing an EEG experiment that uses event-related potentials. I couldn’t find a way to send triggers through a serial port. Online, I could find several resources, such as a script by Kate Stone that draws on a parallel port, an outdated plugin that also draws on a parallel port, and resources based on Python scripts in PsychoPy and in base Python. By standing on these giants’ shoulders, and on even more shoulders from StackOverflow, I put together the following inline script for OpenSesame. The code must be placed in the Prepare phase. The Run phase can be empty.\nThis script is used to set up the system for sending triggers to the EEG recording software (e.g., BrainVision Recorder). The code automatically looks for an available serial port at the beginning of the session. If there are any available ports, a connection is established to the first port in the list. If there are no available ports, no connection is established, and a warning is shown on the screen, informing the user that no triggers will be sent to the EEG recorder. In the latter case, the triggers are only printed in the OpenSesame console.\n\r","date":1694217600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1694217600,"objectID":"85166813c4162e9b2a8ade9ba3f30765","permalink":"https://pablobernabeu.github.io/2023/an-inline-script-for-opensesame-to-send-eeg-triggers-via-serial-port/","publishdate":"2023-09-09T00:00:00Z","relpermalink":"/2023/an-inline-script-for-opensesame-to-send-eeg-triggers-via-serial-port/","section":"post","summary":"The OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame?","tags":["electroencephalography","BrainVision","event-related potentials","OpenSesame","opensource","s"],"title":"An inline script for OpenSesame to send EEG triggers via serial port","type":"post"},{"authors":[],"categories":[""],"content":"\rThe OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame? There are many reasons: it is free, open source, based on Python, stable enough thanks to more than a decade of usage and development, well maintained, and has a community forum.\nI recently faced a challenge when developing an EEG experiment that uses event-related potentials. I couldn’t find a way to send triggers through a serial port. Online, I could find several resources, such as a script by Kate Stone that draws on a parallel port, an outdated plugin that also draws on a parallel port, and resources based on Python scripts in PsychoPy and in base Python. By standing on these giants’ shoulders, and on even more shoulders from StackOverflow, I put together the following inline script for OpenSesame. The code must be placed in the Prepare phase. The Run phase can be empty.\nThis script is used to set up the system for sending triggers to the EEG recording software (e.g., BrainVision Recorder). The code automatically looks for an available serial port at the beginning of the session. If there are any available ports, a connection is established to the first port in the list. If there are no available ports, no connection is established, and a warning is shown on the screen, informing the user that no triggers will be sent to the EEG recorder. In the latter case, the triggers are only printed in the OpenSesame console.\n\r","date":1694217600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1694217600,"objectID":"7811b658bd44e0620f32630e56e8973a","permalink":"https://pablobernabeu.github.io/2023/an-inline-script-for-opensesame-to-send-eeg-triggers-via-the-serial-port/","publishdate":"2023-09-09T00:00:00Z","relpermalink":"/2023/an-inline-script-for-opensesame-to-send-eeg-triggers-via-the-serial-port/","section":"post","summary":"The OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame?","tags":[""],"title":"An inline script for OpenSesame to send EEG triggers via serial port","type":"post"},{"authors":null,"categories":["research methods"],"content":"\r\n\r\n\r\n","date":1692230400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1692230400,"objectID":"cda8a0144dfd2df916b35fb7cecb0a9e","permalink":"https://pablobernabeu.github.io/2023/encode-triggers-in-python-and-send-them-to-brainvision-through-serial-port-useful-for-opensesame-and-psychopy/","publishdate":"2023-08-17T00:00:00Z","relpermalink":"/2023/encode-triggers-in-python-and-send-them-to-brainvision-through-serial-port-useful-for-opensesame-and-psychopy/","section":"post","summary":"I'm sending the triggers in a binary format because Python requires this. For instance, to send the trigger 1, I run the code serialport.write(b'1'). I have succeeded in sending triggers in this way. However, I encounter two problems. First, the triggers are converted in a way I cannot entirely decipher. For instance, when I run the code serialport.write(b'1'), the trigger displayed in BrainVision Recorder is S 49, not S 1 as I would hope (please see Appendix below). Second, I cannot send two triggers with the same code one after the other. For instance, if I run serialport.write(b'1'), a trigger appears in BrainVision Recorder, but if I run the same afterwards (no matter how many times), no trigger appears. I tried to solve these problems by opening the parallel port in addition to the serial port, but the problems persist.","tags":["electroencephalography","BrainVision","triggers","serial port","python","OpenSesame","PsychoPy","encoding","binary","s"],"title":"How to correctly encode triggers in Python and send them to BrainVision through serial port (useful for OpenSesame and PsychoPy)","type":"post"},{"authors":[],"categories":["R"],"content":"\rThe R package ‘simr’ has greatly facilitated power analysis for mixed-effects models using Monte Carlo simulation (which involves running hundreds or thousands of tests under slight variations of the data). The powerCurve function is used to estimate the statistical power for various sample sizes in one go. Since the tests are run serially, they can take a VERY long time; approximately, the time it takes to run the model supplied once (say, a few hours) times the number of simulations (nsim, which should be higher than 200), and times the number of different sample sizes examined. While there isn’t a built-in parallel method, the power curves for different sample sizes can be run separately, and the results can be progressively combined as each component finishes running (see tutorial). The power curves produced by simr are so good they deserve ‘ggplot2’ rendering. So, here’s a function for it.\n\rA usage example\rlibrary(lme4)\rlibrary(simr)\rlibrary(ggplot2)\r# Toy model with data from \u0026#39;simr\u0026#39; package\rfit = lmer(y ~ x + (x | g), data = simdata)\r# Extend sample size of `g`\rfit_extended_g = extend(fit, along = \u0026#39;g\u0026#39;, n = 12)\rfit_powercurve = powerCurve(fit_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = c(4, 6, 8, 10, 12), nsim = 50, seed = 123, progress = FALSE)\r# Read in custom function to ggplot results from simr::powerCurve\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/powercurvePlot/main/powercurvePlot.R\u0026#39;)\rpowercurvePlot(fit_powercurve, number_x_axis_levels = 6) +\r# Change some defaults\rxlab(\u0026quot;Number of levels in \u0026#39;g\u0026#39;\u0026quot;) +\rtheme(plot.title = element_blank(),\raxis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text = element_text(size = 17))\r\r","date":1687824000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687824000,"objectID":"a0367657357f5990652c570253139340","permalink":"https://pablobernabeu.github.io/2023/ggplotting-power-curves-from-simr-package/","publishdate":"2023-06-27T00:00:00Z","relpermalink":"/2023/ggplotting-power-curves-from-simr-package/","section":"post","summary":"The R package ‘simr’ has greatly facilitated power analysis for mixed-effects models using Monte Carlo simulation (which involves running hundreds or thousands of tests under slight variations of the data). The powerCurve function is used to estimate the statistical power for various sample sizes in one go. Since the tests are run serially, they can take a VERY long time; approximately, the time it takes to run the model supplied once (say, a few hours) times the number of simulations (nsim, which should be higher than 200), and times the number of different sample sizes examined.","tags":["power analysis","statistical power","simr","research methods","visualisation","s"],"title":"ggplotting power curves from the 'simr' package","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\rWhereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot. For instance, using the plot_model function, I plotted the interaction between two continuous variables.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\r#\u0026gt; Learn more about sjPlot with \u0026#39;browseVignettes(\u0026quot;sjPlot\u0026quot;)\u0026#39;.\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\r# Create data partially based on code by Ben Bolker # from https://stackoverflow.com/a/38296264/7050882\rset.seed(101)\rspin = runif(800, 1, 24)\rtrait = rep(1:40, each = 20)\rID = rep(1:80, each = 10)\rtestdata \u0026lt;- data.frame(spin, trait, ID)\rtestdata$fatigue \u0026lt;- testdata$spin * testdata$trait / rnorm(800, mean = 6, sd = 2)\r# Model\rfit = lmer(fatigue ~ spin * trait + (1|ID),\rdata = testdata, REML = TRUE)\r#\u0026gt; boundary (singular) fit: see help(\u0026#39;isSingular\u0026#39;)\rplot_model(fit, type = \u0026#39;pred\u0026#39;, terms = c(\u0026#39;spin\u0026#39;, \u0026#39;trait\u0026#39;))\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\rCreated on 2023-06-24 with reprex v2.0.2\nHowever, I needed an extra feature, as sjPlot by default breaks down the colour (fill) variable into few levels that do not include the minimum or the maximum values in my variable. What I would like to do is to stratify the colour variable into equally-sized levels that include the minimum and the maximum values.\nFurthermore, in the legend, I would also like to display the number of levels of a grouping variable (ID) that are contained in each level of the colour variable.\nBelow is a solution using custom functions called deciles_interaction_plot and sextiles_interaction_plot.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\r# Create data partially based on code by Ben Bolker # from https://stackoverflow.com/a/38296264/7050882\rset.seed(101)\rspin = runif(800, 1, 24)\rtrait = rep(1:40, each = 20)\rID = rep(1:80, each = 10)\rtestdata \u0026lt;- data.frame(spin, trait, ID)\rtestdata$fatigue \u0026lt;- testdata$spin * testdata$trait / rnorm(800, mean = 6, sd = 2)\r# Model\rfit = lmer(fatigue ~ spin * trait + (1|ID),\rdata = testdata, REML = TRUE)\r#\u0026gt; boundary (singular) fit: see help(\u0026#39;isSingular\u0026#39;)\r# plot_model(fit, type = \u0026#39;pred\u0026#39;, terms = c(\u0026#39;spin\u0026#39;, \u0026#39;trait\u0026#39;))\r# Binning the colour variable into ten levels (deciles)\r# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/deciles_interaction_plot.R\u0026#39;)\rdeciles_interaction_plot(\rmodel = fit, x = \u0026#39;spin\u0026#39;,\rfill = \u0026#39;trait\u0026#39;,\rfill_nesting_factor = \u0026#39;ID\u0026#39;\r)\r#\u0026gt; Loading required package: dplyr\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\r#\u0026gt; Loading required package: RColorBrewer\r#\u0026gt; Loading required package: ggtext\r#\u0026gt; Loading required package: Cairo\r#\u0026gt; Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Set1 is 9\r#\u0026gt; Returning the palette you asked for with that many colors\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\r#\u0026gt; Scale for \u0026#39;y\u0026#39; is already present. Adding another scale for \u0026#39;y\u0026#39;, which will\r#\u0026gt; replace the existing scale.\r#\u0026gt; Scale for \u0026#39;colour\u0026#39; is already present. Adding another scale for \u0026#39;colour\u0026#39;,\r#\u0026gt; which will replace the existing scale.\r\r# If you wanted or needed to make six levels (sextiles) instead # of ten, you could use the function sextiles_interaction_plot.\r# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/sextiles_interaction_plot.R\u0026#39;)\rsextiles_interaction_plot(\rmodel = fit, x = \u0026#39;spin\u0026#39;,\rfill = \u0026#39;trait\u0026#39;,\rfill_nesting_factor = \u0026#39;ID\u0026#39;\r)\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\r#\u0026gt; Scale for \u0026#39;y\u0026#39; is already present. Adding another scale for \u0026#39;y\u0026#39;, which will\r#\u0026gt; replace the existing scale.\r#\u0026gt; Scale for \u0026#39;colour\u0026#39; is already present. Adding another scale for \u0026#39;colour\u0026#39;,\r#\u0026gt; which will replace the existing scale.\rCreated on 2023-06-24 with reprex v2.0.2\n","date":1687618486,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687618486,"objectID":"97b5d6ac8c1b6a2c07f2a0d6969c66c0","permalink":"https://pablobernabeu.github.io/2023/how-to-break-down-colour-variable-in-sjplot-plot-model-into-equally-sized-bins/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2023/how-to-break-down-colour-variable-in-sjplot-plot-model-into-equally-sized-bins/","section":"post","summary":"Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot. For instance, using the plot_model function, I plotted the interaction between two continuous variables.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\r#\u0026gt; Learn more about sjPlot with \u0026#39;browseVignettes(\u0026quot;sjPlot\u0026quot;)\u0026#39;.\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\r# Create data partially based on code by Ben Bolker # from https://stackoverflow.","tags":["visualisation","linear-mixed effects models","interactions","binning","sjPlot","s"],"title":"How to break down colour variable in sjPlot::plot_model into equally-sized bins","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\rWhereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot. For instance, using the plot_model function, I plotted the interaction between a continuous variable and a categorical variable. The categorical variable was passed to the fill argument of plot_model.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\r#\u0026gt; Install package \u0026quot;strengejacke\u0026quot; from GitHub (`devtools::install_github(\u0026quot;strengejacke/strengejacke\u0026quot;)`) to load all sj-packages at once!\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\rcake$recipe_recoded = ifelse(cake$recipe == \u0026#39;A\u0026#39;, -0.5,\rifelse(cake$recipe == \u0026#39;B\u0026#39;, 0,\rifelse(cake$recipe == \u0026#39;C\u0026#39;, 0.5,\rNA)))\rfit = lmer(angle ~ recipe_recoded * temp + (1|recipe_recoded:replicate), cake, REML= FALSE)\rplot_model(fit, type = \u0026#39;pred\u0026#39;, terms = c(\u0026#39;temp\u0026#39;, \u0026#39;recipe_recoded\u0026#39;))\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\rCreated on 2023-06-24 with reprex v2.0.2\nHowever, I needed an extra feature, as the categorical variable was not quite informative because it was a sum-coded transformation. Thus, I wanted the legend of the plot to show the values of the original variable (i.e., A, B and C), instead of those of the sum-coded variable that had been used in the model (i.e., -0.5, 0 and 0.5).\nBelow is a solution using a custom function called alias_interaction_plot.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\rlibrary(ggplot2)\rtheme_set(theme_sjplot())\rcake$recipe_recoded = ifelse(cake$recipe == \u0026#39;A\u0026#39;, -0.5,\rifelse(cake$recipe == \u0026#39;B\u0026#39;, 0,\rifelse(cake$recipe == \u0026#39;C\u0026#39;, 0.5,\rNA)))\rfit = lmer(angle ~ recipe_recoded * temp + (1|recipe_recoded:replicate), cake, REML= FALSE)\r# plot_model(fit, type = \u0026#39;pred\u0026#39;, terms = c(\u0026#39;temp\u0026#39;, \u0026#39;recipe_recoded\u0026#39;))\r# Displaying the original variable instead\r# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/alias_interaction_plot.R\u0026#39;)\ralias_interaction_plot(\rmodel = fit, dataset = cake,\rx = \u0026#39;temp\u0026#39;,\rfill = \u0026#39;recipe_recoded\u0026#39;,\rfill_alias = \u0026#39;recipe\u0026#39;,\rfill_title = \u0026#39;recipe\u0026#39;\r)\r#\u0026gt; Loading required package: rlang\r#\u0026gt; Loading required package: dplyr\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\r#\u0026gt; Loading required package: RColorBrewer\r#\u0026gt; Loading required package: ggtext\r#\u0026gt; Loading required package: Cairo\r#\u0026gt; Warning: Ignoring unknown parameters: linewidth\r#\u0026gt; Scale for \u0026#39;y\u0026#39; is already present. Adding another scale for \u0026#39;y\u0026#39;, which will\r#\u0026gt; replace the existing scale.\r#\u0026gt; Scale for \u0026#39;colour\u0026#39; is already present. Adding another scale for \u0026#39;colour\u0026#39;,\r#\u0026gt; which will replace the existing scale.\rCreated on 2023-06-24 with reprex v2.0.2\n","date":1687618271,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687618271,"objectID":"d8d04c79b1d74b13a38f855a1905f537","permalink":"https://pablobernabeu.github.io/2023/how-to-map-more-informative-values-onto-fill-argument-of-sjplot-plot-model/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2023/how-to-map-more-informative-values-onto-fill-argument-of-sjplot-plot-model/","section":"post","summary":"Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot. For instance, using the plot_model function, I plotted the interaction between a continuous variable and a categorical variable. The categorical variable was passed to the fill argument of plot_model.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(sjPlot)\r#\u0026gt; Install package \u0026quot;strengejacke\u0026quot; from GitHub (`devtools::install_github(\u0026quot;strengejacke/strengejacke\u0026quot;)`) to load all sj-packages at once!","tags":["linear-mixed effects models","interactions","sjPlot","alias","recode","visualisation","s"],"title":"How to map more informative values onto fill argument of sjPlot::plot_model","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\rTo assess whether convergence warnings render the results invalid, or on the contrary, the results can be deemed valid in spite of the warnings, Bates et al. (2023) suggest refitting models affected by convergence warnings with a variety of optimizers. The authors argue that, if the different optimizers produce practically-equivalent results, the results are valid. The allFit function from the ‘lme4’ package allows the refitting of models using a number of optimizers. To use the seven optimizers listed above, two extra packages must be installed: ‘dfoptim’ and ‘optimx’ (see lme4 manual). The output from allFit contains several statistics on the fixed and the random effects fitted by each optimizer.\nlibrary(lme4)\r#\u0026gt; Loading required package: Matrix\rlibrary(dfoptim)\rlibrary(optimx)\r# Create data using code by Ben Bolker from # https://stackoverflow.com/a/38296264/7050882\rset.seed(101)\rspin = runif(600, 1, 24)\rreg = runif(600, 1, 15)\rID = rep(c(\u0026quot;1\u0026quot;,\u0026quot;2\u0026quot;,\u0026quot;3\u0026quot;,\u0026quot;4\u0026quot;,\u0026quot;5\u0026quot;, \u0026quot;6\u0026quot;, \u0026quot;7\u0026quot;, \u0026quot;8\u0026quot;, \u0026quot;9\u0026quot;, \u0026quot;10\u0026quot;))\rday = rep(1:30, each = 10)\rtestdata \u0026lt;- data.frame(spin, reg, ID, day)\rtestdata$fatigue \u0026lt;- testdata$spin * testdata$reg/10 * rnorm(30, mean=3, sd=2)\r# Model\rfit = lmer(fatigue ~ spin * reg + (1|ID),\rdata = testdata, REML = TRUE)\r# Refit model using all available algorithms\rmulti_fit = allFit(fit)\r#\u0026gt; bobyqa : [OK]\r#\u0026gt; Nelder_Mead : [OK]\r#\u0026gt; nlminbwrap : [OK]\r#\u0026gt; nmkbw : [OK]\r#\u0026gt; optimx.L-BFGS-B : [OK]\r#\u0026gt; nloptwrap.NLOPT_LN_NELDERMEAD : [OK]\r#\u0026gt; nloptwrap.NLOPT_LN_BOBYQA : [OK]\r# Show results summary(multi_fit)$fixef\r#\u0026gt; (Intercept) spin reg spin:reg\r#\u0026gt; bobyqa -2.975678 0.5926561 0.1437204 0.1834016\r#\u0026gt; Nelder_Mead -2.975675 0.5926559 0.1437202 0.1834016\r#\u0026gt; nlminbwrap -2.975677 0.5926560 0.1437203 0.1834016\r#\u0026gt; nmkbw -2.975678 0.5926561 0.1437204 0.1834016\r#\u0026gt; optimx.L-BFGS-B -2.975680 0.5926562 0.1437205 0.1834016\r#\u0026gt; nloptwrap.NLOPT_LN_NELDERMEAD -2.975666 0.5926552 0.1437196 0.1834017\r#\u0026gt; nloptwrap.NLOPT_LN_BOBYQA -2.975678 0.5926561 0.1437204 0.1834016\r# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/plot.fixef.allFit/main/plot.fixef.allFit.R\u0026#39;)\rplot.fixef.allFit(multi_fit, select_predictors = c(\u0026#39;spin\u0026#39;, \u0026#39;reg\u0026#39;, \u0026#39;spin:reg\u0026#39;), # Increase padding at top and bottom of Y axis\rmultiply_y_axis_limits = 1.3,\ry_title = \u0026#39;Fixed effect (*b*)\u0026#39;)\r#\u0026gt; Loading required package: dplyr\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\r#\u0026gt; Loading required package: reshape2\r#\u0026gt; Loading required package: stringr\r#\u0026gt; Loading required package: scales\r#\u0026gt; Loading required package: ggplot2\r#\u0026gt; Loading required package: ggtext\r#\u0026gt; Loading required package: patchwork\r\r# Alternative using plot-specific Y axes and other modified settings\rplot.fixef.allFit(multi_fit, select_predictors = c(\u0026#39;spin\u0026#39;, \u0026#39;spin:reg\u0026#39;), # Use plot-specific Y axis limits\rshared_y_axis_limits = FALSE,\rdecimal_places = 7, # Move up Y axis title\ry_title_hjust = 4.5,\ry_title = \u0026#39;Fixed effect (*b*)\u0026#39;)\rCreated on 2023-06-26 with reprex v2.0.2\n","date":1687617754,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687617754,"objectID":"8009eef6a8e7599daebf9d33f27dd603","permalink":"https://pablobernabeu.github.io/2023/how-to-visually-assess-the-convergence-of-a-mixed-effects-model-by-plotting-various-optimizers/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2023/how-to-visually-assess-the-convergence-of-a-mixed-effects-model-by-plotting-various-optimizers/","section":"post","summary":"To assess whether convergence warnings render the results invalid, or on the contrary, the results can be deemed valid in spite of the warnings, Bates et al. (2023) suggest refitting models affected by convergence warnings with a variety of optimizers. The authors argue that, if the different optimizers produce practically-equivalent results, the results are valid. The allFit function from the ‘lme4’ package allows the refitting of models using a number of optimizers.","tags":["convergence","research methods","statistics","linear-mixed effects models","visualisation","s"],"title":"How to visually assess the convergence of a mixed-effects model by plotting various optimizers","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rI’m developing a slightly tricky design in OpenSesame (a Python-based experiment builder). My stimuli comprise two kinds of sentences that contain different elements, and different numbers of elements. These sentences must be presented word by word. Furthermore, I need to attach triggers to some words in the first kind of sentences but not in the second kind. Last, these kinds of sentences must be intermixed within a block (or a sequence) of trials, because the first kind are targets and the second kind are fillers.\nI need to present stimuli randomly from either of two loops within a sequence. Currently, when I try this arrangement using the interface, the resulting script ends up with run loop1 followed by run loop2, but I can’t find a way to ensure that the overarching sequence pulls randomly from either loop over successive trials. In other words, my goal is to intermix the stimuli from both loops.\nI have searched for clues in the OpenSesame tutorials, in the OpenSesame forum, and elsewhere online, but to no avail.\nSolution\rFinally, I solved this by first distributing all the words in each sentence across different columns in the stimulus file, yielding ‘word1’, ‘word2’, etc. Next, in OpenSesame, I created a sketchpad for each word. Last, to prevent showing any words that were blank, I entered conditions such as [word7] != NA in the Run if field of the sequence.\n\r","date":1687564800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687564800,"objectID":"85409a874f0a6cd2066a0f84805fd0bd","permalink":"https://pablobernabeu.github.io/2023/intermixing-stimuli-from-two-loops-randomly-in-opensesame/","publishdate":"2023-06-24T00:00:00Z","relpermalink":"/2023/intermixing-stimuli-from-two-loops-randomly-in-opensesame/","section":"post","summary":"I’m developing a slightly tricky design in OpenSesame (a Python-based experiment builder). My stimuli comprise two kinds of sentences that contain different elements, and different numbers of elements. These sentences must be presented word by word. Furthermore, I need to attach triggers to some words in the first kind of sentences but not in the second kind. Last, these kinds of sentences must be intermixed within a block (or a sequence) of trials, because the first kind are targets and the second kind are fillers.","tags":["OpenSesame","s"],"title":"Intermixing stimuli from two loops randomly in OpenSesame","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rI am using jsPsych to create an experiment and I am struggling to sample from two variables simultaneously. Specifically, in each trial, I would like to present a primeWord and a targetWord by randomly sampling each of them from its own variable.\nI have looked into several resources—such as sampling without replacement, custom sampling and position indices—but to no avail. I’m a beginner at this, so it’s possible that one of these resources was relevant (especially the last one, I think).\nIn addition to the parallel sampling, I wonder how I could save the same trial index in the data of both primeWord and targetWord.\nSolution\rFinally I solved this using position indices in a for-of loop (see below: For loop that creates trial information iteratively over trials (3 steps)).\n\u0026lt;!DOCTYPE html\u0026gt;\r\u0026lt;html\u0026gt;\r\u0026lt;head\u0026gt;\r\u0026lt;!-- jsPsych plugins --\u0026gt;\r\u0026lt;script src=\u0026quot;../jspsych.js\u0026quot;\u0026gt;\u0026lt;/script\u0026gt;\r\u0026lt;script src=\u0026quot;../plugins/jspsych-html-keyboard-response.js\u0026quot;\u0026gt;\u0026lt;/script\u0026gt;\r\u0026lt;script src=\u0026quot;../plugins/jspsych-html-button-response.js\u0026quot;\u0026gt;\u0026lt;/script\u0026gt;\r\u0026lt;!-- CSS --\u0026gt;\r\u0026lt;link rel=\u0026quot;stylesheet\u0026quot; href=\u0026quot;../css/jspsych.css\u0026quot;\u0026gt;\r\u0026lt;style\u0026gt;\rbody.jspsych-display-element {\rcolor: #ececec;\rbackground-color: #2b2b2b;\r}\r#jspsych-html-keyboard-response-stimulus {\rfont-size: 32px;\r}\r.fas,\r.far {\rcolor: #b6b6b6;\r}\r\u0026lt;/style\u0026gt;\r\u0026lt;/head\u0026gt;\r\u0026lt;!-- Beginning of the script that contains the core of the experiment --\u0026gt;\r\u0026lt;script\u0026gt;\r/* Create empty timeline object, which will be sequentially filled in using timeline.push() */\rvar timeline = [];\rvar instructions = {\rtype: \u0026#39;html-button-response\u0026#39;,\rstimulus: [\u0026quot;\u0026lt;p\u0026gt;Each screen will show a word in lower case, such as \u0026#39;target\u0026#39;. Press \u0026lt;b\u0026gt;F\u0026lt;/b\u0026gt; if the word is primarily abstract\u0026lt;/p\u0026gt;\u0026quot; +\r\u0026#39;\u0026lt;p\u0026gt;or \u0026lt;b\u0026gt;J\u0026lt;/b\u0026gt; if it is primarily concrete. Each word is presented for up to five seconds.\u0026lt;/p\u0026gt;\u0026#39;\r],\rchoices: [\u0026#39;Ready to start\u0026#39;]\r}\r/* Add instructions to the timeline */\rtimeline.push(instructions)\r/* Stimuli */\r/* Begin with a general list of words, and randomly split the list into a set of prime words and a set of target words. */\rvar allWords = [{\rword: \u0026#39;word 1\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 2\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 3\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 4\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 5\u0026#39;,\rcorrect_response: \u0026#39;abstract\u0026#39;\r},\r{\rword: \u0026#39;word 6\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r},\r{\rword: \u0026#39;word 7\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r},\r{\rword: \u0026#39;word 8\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r},\r{\rword: \u0026#39;word 9\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r},\r{\rword: \u0026#39;word 10\u0026#39;,\rcorrect_response: \u0026#39;concrete\u0026#39;\r}\r]\r/* Shuffle all words */\rvar shuffled_allWords = allWords.sort(function() {\rreturn 0.5 - Math.random()\r});\r/* Split up the list into two sets */\rvar midpoint = Math.floor(shuffled_allWords.length / 2);\r/* Set number of trials per participant (must be smaller than half of all words) */\rvar number_of_trials = 4;\r/* Create the set of prime words */\rvar primeWords = shuffled_allWords.slice(0, number_of_trials);\r/* Make prime words uppercase, as in Hutchison et al.\r(2013; https://doi.org/10.3758/s13428-012-0304-z) */\rvar primeWords = primeWords.map(item =\u0026gt; ({\r...item,\rword: item.word.toUpperCase()\r}))\r/* Create the set of target words */\rvar targetWords = shuffled_allWords.slice(midpoint, midpoint + number_of_trials);\r/* Next, create set of interstimulus intervals from a range between 60 and 1200 ms. First, the range is split into as many integers as the number of trials, equally for all participants. Afterwards, the list is shuffled within participants. */\rfunction makeArr(startValue, stopValue, cardinality) {\rvar arr = [];\rvar step = (stopValue - startValue) / (cardinality - 1);\rfor (var i = 0; i \u0026lt; cardinality; i++) {\rarr.push(startValue + (step * i));\r}\rreturn arr;\r}\rordered_interstimulus_intervals = makeArr(60, 1200, number_of_trials);\rinterstimulus_interval =\rordered_interstimulus_intervals.sort(function() {\rreturn 0.5 - Math.random()\r});\r/* For loop that creates trial information iteratively over trials (3 steps) */\r/* 1. Enable function to create iterable range, to be used in the for loop below */\rconst Range = (start, end) =\u0026gt; ({\r*[Symbol.iterator]() {\rwhile (start \u0026lt; end)\ryield start++;\r}\r})\r/* 2. Initialise stimuli array */\rstimuli = [];\r/* 3. Run loop */\rfor (const i of Range(0, number_of_trials)) {\rstimuli.push({\rprimeWord: primeWords[i].word,\rtargetWord: targetWords[i].word,\rinterstimulus_interval: interstimulus_interval[i],\rcorrect_response: targetWords[i].correct_response,\rtrial: i + 1 /* 1 is added because, otherwise, trials would else trials would start from 0 */\r})\r}\r/* Trial content: fixation, primeWord, interstimulus interval, targetWord, feedback.\rThis constitutes a unique trial in the semantic priming paradigm. Yet, beware that jsPsych provides a \u0026#39;trial_index\u0026#39; value in the output of the task. That index is assigned to each part of every trial. Thus, in the present experiment, there are five trial_index values per trial--namely, one for each part listed above. */\r/* Fixation cross */\rvar fixation = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: \u0026#39;+\u0026#39;,\rresponse_ends_trial: false,\rtrial_duration: function() {\r/* Set fixations with a varying duration to boost participants\u0026#39; attention */\rreturn jsPsych.randomization.sampleWithoutReplacement([400, 450, 500, 550, 600], 1)[0];\r},\rpost_trial_gap: 0,\rdata: {\rtrial: jsPsych.timelineVariable(\u0026#39;trial\u0026#39;)\r},\rcss_classes: [\u0026#39;stimulus\u0026#39;],\r/* Computation run at the end of each trial */\ron_finish: function(data) {\r/* Log key presses, if any, by writing 1 into fixation_keypresses (else, write 0) */\rif (data.key_press == null) {\rvar fixation_keypresses = 0;\r} else {\rvar fixation_keypresses = 1;\r};\rdata.fixation_keypresses = fixation_keypresses\r}\r};\rvar primeWord = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: jsPsych.timelineVariable(\u0026#39;primeWord\u0026#39;),\rresponse_ends_trial: false,\rtrial_duration: 150,\rpost_trial_gap: 0,\rdata: {\rposition: \u0026#39;prime\u0026#39;,\rtrial: jsPsych.timelineVariable(\u0026#39;trial\u0026#39;)\r},\rcss_classes: [\u0026#39;stimulus\u0026#39;],\r/* Computation run at the end of each trial */\ron_finish: function(data) {\r/* Log key presses, if any, by writing 1 into primeWord_keypresses (else, write 0) */\rif (data.key_press == null) {\rvar primeWord_keypresses = 0;\r} else {\rvar primeWord_keypresses = 1;\r};\rdata.primeWord_keypresses = primeWord_keypresses\r}\r};\rvar interstimulus_interval = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: \u0026#39; \u0026#39;,\rresponse_ends_trial: false,\rtrial_duration: jsPsych.timelineVariable(\u0026#39;interstimulus_interval\u0026#39;),\rpost_trial_gap: 0,\rdata: {\rinterstimulus_interval: jsPsych.timelineVariable(\u0026#39;interstimulus_interval\u0026#39;),\rtrial: jsPsych.timelineVariable(\u0026#39;trial\u0026#39;)\r},\rcss_classes: [\u0026#39;stimulus\u0026#39;],\r/* Computation run at the end of each trial */\ron_finish: function(data) {\r/* Log key presses, if any, by writing 1 into interstimulus_interval_keypresses (else, write 0) */\rif (data.key_press == null) {\rvar interstimulus_interval_keypresses = 0;\r} else {\rvar interstimulus_interval_keypresses = 1;\r};\rdata.interstimulus_interval_keypresses = interstimulus_interval_keypresses\r}\r};\rvar targetWord = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: jsPsych.timelineVariable(\u0026#39;targetWord\u0026#39;),\rchoices: [\u0026#39;f\u0026#39;, \u0026#39;j\u0026#39;],\rtrial_duration: 3000,\rpost_trial_gap: 0,\rcss_classes: [\u0026#39;stimulus\u0026#39;],\rdata: {\rposition: \u0026#39;target\u0026#39;,\rtrial: jsPsych.timelineVariable(\u0026#39;trial\u0026#39;),\rcorrect_response: jsPsych.timelineVariable(\u0026#39;correct_response\u0026#39;)\r},\r/* Computation run at the end of each trial */\ron_finish: function(data) {\rif (data.key_press !== null) {\r/* Label correct responses */\rif (data.correct_response == \u0026#39;abstract\u0026#39; \u0026amp;\u0026amp; data.key_press == jsPsych.pluginAPI.convertKeyCharacterToKeyCode(\u0026#39;f\u0026#39;) ||\rdata.correct_response == \u0026#39;concrete\u0026#39; \u0026amp;\u0026amp; data.key_press == jsPsych.pluginAPI.convertKeyCharacterToKeyCode(\u0026#39;j\u0026#39;)) {\rvar accuracy = \u0026#39;correct\u0026#39;;\r/* Label incorrect responses */\r} else if (data.correct_response == \u0026#39;abstract\u0026#39; \u0026amp;\u0026amp; data.key_press == jsPsych.pluginAPI.convertKeyCharacterToKeyCode(\u0026#39;j\u0026#39;) ||\rdata.correct_response == \u0026#39;concrete\u0026#39; \u0026amp;\u0026amp; data.key_press == jsPsych.pluginAPI.convertKeyCharacterToKeyCode(\u0026#39;f\u0026#39;)) {\rvar accuracy = \u0026#39;incorrect\u0026#39;;\r}\r/* Label unanswered trials */\r} else {\rvar accuracy = \u0026#39;unanswered\u0026#39;;\r};\rdata.accuracy = accuracy;\r/* Count up premature responses per trial. The command \u0026#39;last(4)\u0026#39; is used below\rto consider only the current part of the \u0026#39;trial\u0026#39; (i.e., targetWord) and the three previous parts (i.e., interstimulus_interval, primeWord and fixation). Notice that the response entered in this part (targetWord) is not added into the sum, as it is appropriate to respond to the target word. */\rdata.premature_responses =\rjsPsych.data.get().last(4).filter(\u0026#39;fixation_keypresses\u0026#39; == 1).select(\u0026#39;fixation_keypresses\u0026#39;).sum() +\rjsPsych.data.get().last(4).filter(\u0026#39;primeWord_keypresses\u0026#39; == 1).select(\u0026#39;primeWord_keypresses\u0026#39;).sum() +\rjsPsych.data.get().last(4).filter(\u0026#39;interstimulus_interval_keypresses\u0026#39; == 1).select(\u0026#39;interstimulus_interval_keypresses\u0026#39;).sum();\r}\r};\rfeedback = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rstimulus: function() {\rvar last_trial_accuracy = jsPsych.data.getLastTrialData().values()[0].accuracy;\rif (last_trial_accuracy == \u0026#39;incorrect\u0026#39;) {\rreturn \u0026#39;\u0026lt;p style=\u0026quot;color:red; font-face:bold;\u0026quot;\u0026gt;X\u0026lt;/p\u0026gt;\u0026#39;;\r} else if (last_trial_accuracy == \u0026#39;unanswered\u0026#39;) {\rreturn \u0026#39;\u0026lt;p style=\u0026quot;color:red; font-face:bold;\u0026quot;\u0026gt;0\u0026lt;/p\u0026gt;\u0026#39;\r} else {\rreturn \u0026#39;\u0026#39;\r}\r},\rchoices: jsPsych.NO_KEYS,\rtrial_duration: function() {\rvar last_trial_accuracy = jsPsych.data.getLastTrialData().values()[0].accuracy;\rif (last_trial_accuracy == \u0026#39;correct\u0026#39;) {\rreturn 0\r} else {\rreturn 800\r}\r}\r};\rvar main_procedure = {\rtimeline: [fixation, primeWord, interstimulus_interval, targetWord, feedback],\rtimeline_variables: stimuli\r};\rtimeline.push(main_procedure);\rvar debrief = {\rtype: \u0026#39;html-keyboard-response\u0026#39;,\rchoices: [\u0026#39;c\u0026#39;],\rstimulus: function() {\rvar total_correct = jsPsych.data.get().filter({\raccuracy: \u0026#39;correct\u0026#39;\r}).count();\rvar total_incorrect = jsPsych.data.get().filter({\raccuracy: \u0026#39;incorrect\u0026#39;\r}).count();\rvar total_unanswered = jsPsych.data.get().filter({\raccuracy: \u0026#39;unanswered\u0026#39;\r}).count();\rvar accuracy_rate = Math.round(total_correct / (total_correct + total_incorrect + total_unanswered) * 100) + \u0026quot;%\u0026quot;;\rvar message = \u0026quot;\u0026lt;div style=\u0026#39;font-size:20px;\u0026#39;\u0026gt;\u0026lt;p\u0026gt;All done!\u0026lt;/p\u0026gt;\u0026quot; +\r\u0026quot;\u0026lt;p\u0026gt;Your accuracy rate was \u0026quot; + accuracy_rate + \u0026quot; (\u0026quot; + total_correct + \u0026quot; correct trials, \u0026quot; + total_incorrect +\r\u0026quot; incorrect and \u0026quot; + total_unanswered + \u0026quot; unanswered).\u0026lt;/p\u0026gt;\u0026quot; +\r\u0026quot;\u0026lt;p\u0026gt;Press C to see the entire set of data generated by this experiment.\u0026lt;/p\u0026gt;\u0026lt;/div\u0026gt;\u0026quot;;\rreturn message;\r}\r}\r/* Add debrief to the timeline */\rtimeline.push(debrief);\r/* Initialize experiment by incorporating the timeline\rand setting the data to be displayed at the end. */\rjsPsych.init({\rtimeline: timeline,\ron_finish: function() {\rjsPsych.data.displayData();\r},\rdefault_iti: function() {\r/* Use varying intertrial intervals to reduce habituation effects */\rreturn jsPsych.randomization.sampleWithoutReplacement([1300, 1400, 1500, 1600, 1700], 1)[0];\r}\r});\r\u0026lt;/script\u0026gt;\r\u0026lt;/html\u0026gt;\r\r\r","date":1687564800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687564800,"objectID":"ba29325485e1ca60ef6e55348a52fc8c","permalink":"https://pablobernabeu.github.io/2023/simultaneously-sampling-from-two-variables-in-jspsych/","publishdate":"2023-06-24T00:00:00Z","relpermalink":"/2023/simultaneously-sampling-from-two-variables-in-jspsych/","section":"post","summary":"I am using jsPsych to create an experiment and I am struggling to sample from two variables simultaneously. Specifically, in each trial, I would like to present a primeWord and a targetWord by randomly sampling each of them from its own variable.\nI have looked into several resources—such as sampling without replacement, custom sampling and position indices—but to no avail. I’m a beginner at this, so it’s possible that one of these resources was relevant (especially the last one, I think).","tags":["jsPsych","javascript","s"],"title":"Simultaneously sampling from two variables in jsPsych","type":"post"},{"authors":[],"categories":["R"],"content":"\rHere’s an example of fuzzy-matching strings in R that I shared on StackOverflow. In stringdist_join, the max_dist argument is used to constrain the degree of fuzziness.\nlibrary(fuzzyjoin)\rlibrary(dplyr)\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\rlibrary(knitr)\rsmall_tab = data.frame(Food.Name = c(\u0026#39;Corn\u0026#39;, \u0026#39;Squash\u0026#39;, \u0026#39;Peppers\u0026#39;), Food.Code = c(NA, NA, NA))\rlarge_tab = data.frame(Food.Name = c(\u0026#39;Sweet Corn\u0026#39;, \u0026#39;Red Corn\u0026#39;, \u0026#39;Baby Corns\u0026#39;, \u0026#39;Squash\u0026#39;, \u0026#39;Long Squash\u0026#39;, \u0026#39;Red Pepper\u0026#39;, \u0026#39;Green Pepper\u0026#39;, \u0026#39;Red Peppers\u0026#39;), Food.Code = c(532, 532, 944, 111, 123, 654, 655, 654))\rjoined_tab = stringdist_join(small_tab, large_tab, by = \u0026#39;Food.Name\u0026#39;,\rignore_case = TRUE, method = \u0026#39;cosine\u0026#39;, max_dist = 0.5, distance_col = \u0026#39;dist\u0026#39;) %\u0026gt;%\r# Tidy columns select(Food.Name = Food.Name.x, -Food.Name.y, Food.Code = Food.Code.y, -dist) %\u0026gt;%\r# Only keep most frequent food code per food name\rgroup_by(Food.Name) %\u0026gt;% count(Food.Name, Food.Code) %\u0026gt;% slice(which.max(n)) %\u0026gt;% select(-n) %\u0026gt;%\r# Order food names as in the small table\rarrange(factor(Food.Name, levels = small_tab$Food.Name))\r# Show table with columns renamed\rjoined_tab %\u0026gt;%\rrename(\u0026#39;Food Name\u0026#39; = Food.Name, \u0026#39;Food Code\u0026#39; = Food.Code) %\u0026gt;%\rkable()\r\r\rFood Name\rFood Code\r\r\r\rCorn\r532\r\rSquash\r111\r\rPeppers\r654\r\r\r\rCreated on 2023-05-31 with reprex v2.0.2\n","date":1687564800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687564800,"objectID":"f1f06d3de129624cdf947d3fb65b2602","permalink":"https://pablobernabeu.github.io/2023/table-joins-with-conditional-fuzzy-string-matching-in-r/","publishdate":"2023-06-24T00:00:00Z","relpermalink":"/2023/table-joins-with-conditional-fuzzy-string-matching-in-r/","section":"post","summary":"Here’s an example of fuzzy-matching strings in R that I shared on StackOverflow. In stringdist_join, the max_dist argument is used to constrain the degree of fuzziness.\nlibrary(fuzzyjoin)\rlibrary(dplyr)\r#\u0026gt; #\u0026gt; Attaching package: \u0026#39;dplyr\u0026#39;\r#\u0026gt; The following objects are masked from \u0026#39;package:stats\u0026#39;:\r#\u0026gt; #\u0026gt; filter, lag\r#\u0026gt; The following objects are masked from \u0026#39;package:base\u0026#39;:\r#\u0026gt; #\u0026gt; intersect, setdiff, setequal, union\rlibrary(knitr)\rsmall_tab = data.frame(Food.Name = c(\u0026#39;Corn\u0026#39;, \u0026#39;Squash\u0026#39;, \u0026#39;Peppers\u0026#39;), Food.Code = c(NA, NA, NA))\rlarge_tab = data.","tags":["string matching","s"],"title":"Table joins with conditional \"fuzzy\" string matching in R","type":"post"},{"authors":[],"categories":["R","linear mixed-effects models"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\rLinear mixed-effects models (LMM) offer a consistent way of performing regression and analysis of variance tests which allows accounting for non-independence in the data. Over the past decades, LMMs have subsumed most of the General Linear Model, with a steady increase in popularity (Meteyard \u0026amp; Davies, 2020). Since their conception, LMMs have presented the challenge of model convergence. In essence, the issue of convergence boils down to the widespread tension between parsimony and completeness in data analysis. That is, on the one hand, a good model must allow an accurate, parsimonious analysis of each predictor, and thus, it must not be overfitted with too many parameters. Yet, on the other hand, the model must be complete enough to account for a sufficient amount of variation in the data. In LMMs, any predictors that entail non-independent observations (also known as repeated measures) will normally bring both fixed and random effects into the model. Where a few of these predictors coexist, models often struggle to find enough information in the data to account for every predictor—and especially, for every random effect. This difficulty translates into convergence warnings (Brauer \u0026amp; Curtin, 2018; Singmann \u0026amp; Kellen, 2019). In this article, I review the issue of convergence before presenting a new plotting function in R that facilitates the diagnosis of convergence by visualising the fixed effects fitted by different optimization algorithms (also dubbed optimizers).\nCompleteness versus parsimony\rBoth fixed and random effects comprise intercepts and slopes. The pressure exerted by each of those types of effects on the model is determined by the number of data points involved by each. First, slopes are more demanding than intercepts, as they involve a (far) larger number of data points. Second, random effects are more demanding than fixed effects, as random effects entail the number of estimates required for fixed effects times the number of levels in the grouping factor. As a result, on the most lenient end of the scale lies the fixed intercept, and on the heaviest end lie the random slopes. Convergence warnings in LMMs are often due to the random slopes alone.\nSounds easy, then! Not inviting the random slopes to the party should solve the problem. Indeed, since random slopes involve the highest number of estimates by far, removing them does often remove convergence warnings. This, however, leads to a different problem. Surrendering the information provided by random slopes can result in the violation of the assumption of independence of observations. For years, the removal of random slopes due to convergence warnings was standard practice. Currently, in contrast, proposals increasingly consider other options, such as removing random effects if they do not significantly improve the fit of the model (Matuschek et al., 2017), and keeping the random slopes in the model in spite of the convergence warnings to safeguard the assumption of independence (see Table 17 in Brauer \u0026amp; Curtin, 2018; Singmann \u0026amp; Kellen, 2019).\n\rThe multiple-optimizers sanity check from lme4::allFit()\rFramed within the drive to maintain random slopes wherever possible, the developers of the ‘lme4’ package propose a sanity check that uses a part of the ‘lme4’ engine called ‘optimizer’. Every model has a default optimizer, unless a specific one is chosen through control = lmerControl(optimizer = '...') (in lmer models) or control = glmerControl(optimizer = '...') (in glmer models). The seven widely-available optimizers are:\n\rbobyqa\rNelder_Mead\rnlminbwrap\rnmkbw\roptimx.L-BFGS-B\rnloptwrap.NLOPT_LN_NELDERMEAD\rnloptwrap.NLOPT_LN_BOBYQA\r\rTo assess whether convergence warnings render the results invalid, or on the contrary, the results can be deemed valid in spite of the warnings, Bates et al. (2022) suggest refitting models affected by convergence warnings with a variety of optimizers. The authors argue that if the different optimizers produce practically-equivalent results, the results are valid. The allFit function from the ‘lme4’ package allows the refitting of models using a number of optimizers. To use the seven optimizers listed above, two extra packages must be installed: ‘dfoptim’ and ‘optimx’ (see lme4 manual). The output from allFit() contains several statistics on the fixed and the random effects fitted by each optimizer (see example).\n\rPlotting the fixed effects from allFit()\rSeveral R users have ventured into plotting the allFit() output but there is not a function in ‘lme4’ yet at the time of writing. I (Bernabeu, 2022) developed a function that takes the output from allFit(), tidies it, selects the fixed effects and plots them using ‘ggplot2’. The function is shown below, and can be copied through the Copy Code button at the top right corner. It can be renamed by changing plot.fixef.allFit to another valid name.\n# Plot the results from the fixed effects produced by different optimizers. This function # takes the output from lme4::allFit(), tidies it, selects fixed effects and plots them.\rplot.fixef.allFit = function(allFit_output, # Set the same Y axis limits in every plot\rshared_y_axis_limits = TRUE,\r# Multiply Y axis limits by a factor (only # available if shared_y_axis_limits = TRUE)\rmultiply_y_axis_limits = 1, # Number of decimal places\rdecimal_places = NULL,\r# Select predictors\rselect_predictors = NULL, # Number of rows\rnrow = NULL, # Y axis title\ry_title = \u0026#39;Fixed effect\u0026#39;,\r# Alignment of the Y axis title\ry_title_hjust = NULL,\r# Add number to the names of optimizers\rnumber_optimizers = TRUE,\r# Replace colon in interactions with x\rinteraction_symbol_x = TRUE) {\rrequire(lme4)\rrequire(dfoptim)\rrequire(optimx)\rrequire(dplyr)\rrequire(reshape2)\rrequire(stringr)\rrequire(scales)\rrequire(ggplot2)\rrequire(ggtext)\rrequire(patchwork)\rlibrary(Cairo)\r# Tidy allFit output\r# Extract fixed effects from the allFit() output\rallFit_fixef = summary(allFit_output)$fixef %\u0026gt;% # Select fixed effects in the allFit results\rreshape2::melt() %\u0026gt;% # Structure the output as a data frame\rrename(\u0026#39;Optimizer\u0026#39; = \u0026#39;Var1\u0026#39;, \u0026#39;fixed_effect\u0026#39; = \u0026#39;Var2\u0026#39;) # set informative names\r# If number_optimizers = TRUE, assign number to each optimizer and place it before its name\rif(number_optimizers == TRUE) {\rallFit_fixef$Optimizer = paste0(as.numeric(allFit_fixef$Optimizer), \u0026#39;. \u0026#39;, allFit_fixef$Optimizer)\r}\r# If select_predictors was supplied, select them along with the intercept (the latter required)\rif(!is.null(select_predictors)) {\rallFit_fixef = allFit_fixef %\u0026gt;% dplyr::filter(fixed_effect %in% c(\u0026#39;(Intercept)\u0026#39;, select_predictors))\r}\r# Order variables\rallFit_fixef = allFit_fixef[, c(\u0026#39;Optimizer\u0026#39;, \u0026#39;fixed_effect\u0026#39;, \u0026#39;value\u0026#39;)]\r# PLOT. The overall plot is formed of a first row containing the intercept and the legend # (intercept_plot), and a second row containing the predictors (predictors_plot), # which may in turn occupy several rows.\r# If multiply_y_axis_limits was supplied but shared_y_axis_limits = FALSE,\r# warn that shared_y_axis_limits is required.\rif(!multiply_y_axis_limits == 1 \u0026amp; shared_y_axis_limits == FALSE) {\rmessage(\u0026#39;The argument `multiply_y_axis_limits` has not been used because \\n it requires `shared_y_axis_limits` set to TRUE.\u0026#39;)\r}\r# If extreme values were entered in y_title_hjust, show warning\rif(!is.null(y_title_hjust)) {\rif(y_title_hjust \u0026lt; 0.5 | y_title_hjust \u0026gt; 6) {\rmessage(\u0026#39;NOTE: For y_title_hjust, a working range of values is between 0.6 and 6.\u0026#39;)\r}\r}\r# If decimal_places was supplied, convert number to the format used in \u0026#39;scales\u0026#39; package\rif(!is.null(decimal_places)) {\rdecimal_places = ifelse(decimal_places == 1, 0.1, ifelse(decimal_places == 2, 0.01, ifelse(decimal_places == 3, 0.001, ifelse(decimal_places == 4, 0.0001, ifelse(decimal_places == 5, 0.00001, ifelse(decimal_places == 6, 0.000001, ifelse(decimal_places == 7, 0.0000001, ifelse(decimal_places == 8, 0.00000001, ifelse(decimal_places == 9, 0.000000001, ifelse(decimal_places == 10, 0.0000000001,\rifelse(decimal_places == 11, 0.00000000001,\rifelse(decimal_places == 12, 0.000000000001,\rifelse(decimal_places == 13, 0.0000000000001,\rifelse(decimal_places == 14, 0.00000000000001,\rifelse(decimal_places \u0026gt;= 15, 0.000000000000001, 0.001\r)))))))))))))))\r}\r# First row: intercept_plot\r# Select intercept data only\rintercept = allFit_fixef %\u0026gt;% dplyr::filter(fixed_effect == \u0026#39;(Intercept)\u0026#39;)\rintercept_plot = intercept %\u0026gt;%\rggplot(., aes(fixed_effect, value, colour = Optimizer)) +\rgeom_point(position = position_dodge(1)) +\rfacet_wrap(~fixed_effect, scale = \u0026#39;free\u0026#39;) +\rguides(colour = guide_legend(title.position = \u0026#39;left\u0026#39;)) +\rtheme_bw() + theme(axis.title = element_blank(), axis.ticks.x = element_blank(),\raxis.text.x = element_blank(), strip.text = element_text(size = 10, margin = margin(t = 4, b = 6)),\rstrip.background = element_rect(fill = \u0026#39;grey96\u0026#39;),\rlegend.margin = margin(0.3, 0, 0.8, 1, \u0026#39;cm\u0026#39;), legend.title = element_text(size = unit(15, \u0026#39;pt\u0026#39;), angle = 90, hjust = 0.5))\r# Second row: predictors_plot\r# Select all predictors except intercept\rpredictors = allFit_fixef %\u0026gt;% dplyr::filter(!fixed_effect == \u0026#39;(Intercept)\u0026#39;)\r# If interaction_symbol_x = TRUE (default), replace colon with times symbol x between spaces\rif(interaction_symbol_x == TRUE) {\r# Replace colon in interactions with \\u00D7, i.e., x; then set factor class\rpredictors$fixed_effect = predictors$fixed_effect %\u0026gt;% str_replace_all(\u0026#39;:\u0026#39;, \u0026#39; \\u00D7 \u0026#39;) %\u0026gt;% factor()\r}\r# Order predictors as in the original output from lme4::allFit()\rpredictors$fixed_effect = factor(predictors$fixed_effect, levels = unique(predictors$fixed_effect))\r# Set number of rows for the predictors excluding the intercept.\r# First, if nrow argument supplied, use it\rif(!is.null(nrow)) {\rpredictors_plot_nrow = nrow - 1 # Subtract 1 as intercept row not considered\r# Else, if nrow argument not supplied, calculate sensible number of rows: i.e., divide number of\r# predictors (exc. intercept) by 2 and round up the result. For instance, 7 predictors --\u0026gt; 3 rows\r} else predictors_plot_nrow = (length(unique(predictors$fixed_effect)) / 2) %\u0026gt;% ceiling()\rpredictors_plot = ggplot(predictors, aes(fixed_effect, value, colour = Optimizer)) +\rgeom_point(position = position_dodge(1)) +\rfacet_wrap(~fixed_effect, scale = \u0026#39;free\u0026#39;,\r# Note that predictors_plot_nrow was defined a few lines above\rnrow = predictors_plot_nrow, # Wrap names of predictors with more than 54 characters into new lines\rlabeller = labeller(fixed_effect = label_wrap_gen(width = 55))) +\rlabs(y = y_title) +\rtheme_bw() + theme(axis.title.x = element_blank(), axis.text.x = element_blank(),\raxis.ticks.x = element_blank(),\raxis.title.y = ggtext::element_markdown(size = 14, margin = margin(0, 15, 0, 0)),\rstrip.text = element_text(size = 10, margin = margin(t = 4, b = 6)),\rstrip.background = element_rect(fill = \u0026#39;grey96\u0026#39;), legend.position = \u0026#39;none\u0026#39;)\r# Below, the function scale_y_continuous is applied conditionally to avoid overriding settings. First, # if shared_y_axis_limits = TRUE and decimal_places was supplied, set the same Y axis limits in # every plot and set decimal_places. By default, also expand limits by a seventh of its original # limit, and allow further multiplication of limits through multiply_y_axis_limits.\rif(shared_y_axis_limits == TRUE \u0026amp; !is.null(decimal_places)) {\rintercept_plot = intercept_plot +\rscale_y_continuous(limits = c(min(allFit_fixef$value) - allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits,\rmax(allFit_fixef$value) + allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits), # Set number of decimal places\rlabels = scales::label_number(accuracy = decimal_places))\rpredictors_plot = predictors_plot + scale_y_continuous(limits = c(min(allFit_fixef$value) - allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits,\rmax(allFit_fixef$value) + allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits), # Set number of decimal places\rlabels = scales::label_number(accuracy = decimal_places))\r# Else, if shared_y_axis_limits = TRUE but decimal_places were not supplied, do as above but without\r# setting decimal_places.\r} else if(shared_y_axis_limits == TRUE \u0026amp; is.null(decimal_places)) {\rintercept_plot = intercept_plot +\rscale_y_continuous(limits = c(min(allFit_fixef$value) - allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits,\rmax(allFit_fixef$value) + allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits),\r# Set number of decimal places\rlabels = scales::label_number(accuracy = decimal_places))\rpredictors_plot = predictors_plot + scale_y_continuous(limits = c(min(allFit_fixef$value) - allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits,\rmax(allFit_fixef$value) + allFit_fixef$value %\u0026gt;% abs %\u0026gt;% max / 7 * multiply_y_axis_limits),\r# Set number of decimal places\rlabels = scales::label_number(accuracy = decimal_places))\r# Else, if shared_y_axis_limits = FALSE and decimal_places was supplied, set decimal_places. } else if(shared_y_axis_limits == FALSE \u0026amp; !is.null(decimal_places)) {\r# Set number of decimal places in both plots\rintercept_plot = intercept_plot +\rscale_y_continuous(labels = scales::label_number(accuracy = decimal_places))\rpredictors_plot = predictors_plot +\rscale_y_continuous(labels = scales::label_number(accuracy = decimal_places))\r}\r# Plot matrix: based on number of predictors_plot_nrow, adjust height of Y axis title\r# (unless supplied), and assign space to intercept_plot and predictors_plot\rif(predictors_plot_nrow == 1) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 3.6))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 11, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow == 2) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 1.4))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 16, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow == 3) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 0.92))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 21, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow == 4) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 0.8))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 26, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow == 5) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 0.73))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 31, l = 0) # predictors row(s)\r)\r} else if(predictors_plot_nrow \u0026gt; 5) {\r# If y_title_hjust supplied, use it\rif(!is.null(y_title_hjust)) {\rpredictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = y_title_hjust))\r# Otherwise, set a sensible height\r} else predictors_plot = predictors_plot + theme(axis.title.y = ggtext::element_markdown(hjust = 0.65))\rlayout = c(\rpatchwork::area(t = 1.5, r = 8.9, b = 6.8, l = 0), # intercept row\rpatchwork::area(t = 7.3, r = 9, b = 36, l = 0) # predictors row(s)\r)\r# Also, advise user to consider distributing predictors into several plots\rmessage(\u0026#39; Many rows! Consider distributing predictors into several plots \\n using argument `select_predictors`\u0026#39;)\r} # Add margin\rpredictors_plot = predictors_plot + theme(plot.margin = margin(15, 15, 15, 15))\r# Return matrix of plots\rwrap_plots(intercept_plot, predictors_plot, design = layout,\r# The 2 below corresponds to intercept_plot and predictors_plot\rnrow = 2)\r}\r\rOptional arguments\rBelow are the optional arguments allowed by the function, with their default values.\n# Set the same Y axis limits in every plot\rshared_y_axis_limits = TRUE,\r# Multiply Y axis limits by a factor (only # available if shared_y_axis_limits = TRUE)\rmultiply_y_axis_limits = 1, # Number of decimal places\rdecimal_places = NULL,\r# Select predictors\rselect_predictors = NULL, # Number of rows\rnrow = NULL, # Y axis title\ry_title = \u0026#39;Fixed effect\u0026#39;,\r# Alignment of the Y axis title\ry_title_hjust = NULL,\r# Add number to the names of optimizers\rnumber_optimizers = TRUE,\r# Replace colon in interactions with x\rinteraction_symbol_x = TRUE\r\rThe argument shared_y_axis_limits deserves a comment. It allows using the same Y axis limits (i.e., range) in all plots or, alternatively, using plot-specific limits. The parameter is TRUE by default to prevent overinterpretations of small differences across optimizers (see the first figure below). In contrast, when shared_y_axis_limits = FALSE, plot-specific limits are used, which results in a narrower range of values in the Y axis (see the second figure below). Since data points will span the entire Y axis in that case, any difference across optimizers—regardless of its relative importance—might be perceived as large, unless the specific range of values in each plot is noticed.\n\r\rUse case\rLet’s test the function with a minimal model.\n# Create data using code by Ben Bolker from # https://stackoverflow.com/a/38296264/7050882\rset.seed(101)\rspin = runif(600, 1, 24)\rreg = runif(600, 1, 15)\rID = rep(c(\u0026quot;1\u0026quot;,\u0026quot;2\u0026quot;,\u0026quot;3\u0026quot;,\u0026quot;4\u0026quot;,\u0026quot;5\u0026quot;, \u0026quot;6\u0026quot;, \u0026quot;7\u0026quot;, \u0026quot;8\u0026quot;, \u0026quot;9\u0026quot;, \u0026quot;10\u0026quot;))\rday = rep(1:30, each = 10)\rtestdata \u0026lt;- data.frame(spin, reg, ID, day)\rtestdata$fatigue \u0026lt;- testdata$spin * testdata$reg/10 * rnorm(30, mean=3, sd=2)\r# Model\rlibrary(lme4)\rfit = lmer(fatigue ~ spin * reg + (1|ID),\rdata = testdata, REML = TRUE)\r# Refit model using all available algorithms\rmulti_fit = allFit(fit)\r## bobyqa : [OK]\r## Nelder_Mead : [OK]\r## nlminbwrap : [OK]\r## nmkbw : [OK]\r## optimx.L-BFGS-B : [OK]\r## nloptwrap.NLOPT_LN_NELDERMEAD : [OK]\r## nloptwrap.NLOPT_LN_BOBYQA : [OK]\rsummary(multi_fit)$fixef\r## (Intercept) spin reg spin:reg\r## bobyqa -2.975678 0.5926561 0.1437204 0.1834016\r## Nelder_Mead -2.975675 0.5926559 0.1437202 0.1834016\r## nlminbwrap -2.975677 0.5926560 0.1437203 0.1834016\r## nmkbw -2.975678 0.5926561 0.1437204 0.1834016\r## optimx.L-BFGS-B -2.975680 0.5926562 0.1437205 0.1834016\r## nloptwrap.NLOPT_LN_NELDERMEAD -2.975666 0.5926552 0.1437196 0.1834017\r## nloptwrap.NLOPT_LN_BOBYQA -2.975678 0.5926561 0.1437204 0.1834016\rThe effects to be visualised are selected below using the argument select_predictors. Notice that the intercept is plotted by default on the first row, along with the legend that lists all the optimizers used.\n# Read in function from GitHub\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/plot.fixef.allFit/main/plot.fixef.allFit.R\u0026#39;)\rplot.fixef.allFit(multi_fit, select_predictors = c(\u0026#39;spin\u0026#39;, \u0026#39;reg\u0026#39;, \u0026#39;spin:reg\u0026#39;), # Increase padding at top and bottom of Y axis\rmultiply_y_axis_limits = 1.3,\ry_title = \u0026#39;Fixed effect (*b*)\u0026#39;,\r# Align y title\ry_title_hjust = .9)\rThe plot produced by plot.fixef.allFit() by default replaces the colons in interaction effects (e.g., spin:reg) with ’ × ’ to facilitate the visibility (this can be overriden by setting interaction_symbol_x = FALSE). Yet, it is important to note that any interactions passed to select_predictors must have the colon, as that is the symbol present in the lme4::allFit() output.\nThe output of plot.fixef.allFit() is a ggplot2 object that can be stored for further use, as in the example below, in which new parameters are used.\nlibrary(ggplot2)\rplot_fit_convergence = plot.fixef.allFit(multi_fit, select_predictors = c(\u0026#39;spin\u0026#39;, \u0026#39;spin:reg\u0026#39;), # Use plot-specific Y axis limits\rshared_y_axis_limits = FALSE,\rdecimal_places = 7, # Move up Y axis title\ry_title_hjust = -20,\ry_title = \u0026#39;Fixed effect (*b*)\u0026#39;)\r# Print\rplot_fit_convergence\r# Plot can be saved to disk as pdf, png, etc. through `ggplot2::ggsave()`\r# ggsave(\u0026#39;plot_fit_convergence.pdf\u0026#39;, plot_fit_convergence, # device = cairo_pdf, width = 9, height = 9, dpi = 900)\r\rReferences\rBates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., Green, P., Fox, J., Bauer, A., \u0026amp; Krivitsky, P. N. (2022). Package ‘lme4’. CRAN. https://cran.r-project.org/web/packages/lme4/lme4.pdf\nBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159\nMatuschek, H., Kliegl, R., Vasishth, S., Baayen, H., \u0026amp; Bates, D. (2017). Balancing type 1 error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001\nMeteyard, L., \u0026amp; Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092\nSingmann, H., \u0026amp; Kellen, D. (2019). An introduction to mixed models for experimental psychology. In D. H. Spieler \u0026amp; E. Schumacher (Eds.), New methods in cognitive psychology (pp. 4–31). Psychology Press.\n\r","date":1687392000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1687392000,"objectID":"ef5142572a939044659c17baecffa1ac","permalink":"https://pablobernabeu.github.io/2023/a-new-function-to-plot-convergence-diagnostics-from-lme4-allfit/","publishdate":"2023-06-22T00:00:00Z","relpermalink":"/2023/a-new-function-to-plot-convergence-diagnostics-from-lme4-allfit/","section":"post","summary":"When a model has struggled to find enough information in the data to account for every predictor---especially for every random effect---, convergence warnings appear (Brauer \u0026 Curtin, 2018; Singmann \u0026 Kellen, 2019). In this article, I review the issue of convergence before presenting a new plotting function in R that facilitates the visualisation of the fixed effects fitted by different optimization algorithms (also dubbed optimizers).","tags":["s","R","linear mixed-effects models","visualisation","statistics"],"title":"A new function to plot convergence diagnostics from lme4::allFit()","type":"post"},{"authors":["Chen, S.-C., Buchanan, E. M., Kekecs, Z., Miller, J. K., Szabelska, A., Aczel, B., Bernabeu, P., Forscher, P. S., Szuts, A., Vally, D. Z., Al-Hoorie, A. H., Helmy, M., Silva, C. S. A. da, Silva, L. O. da, Moraes, Y. L. de, Hsu, R. M. C. S., Mafra, A. L., Valentova, J. V., Varella, M. A. C., … Chartier, C. R."],"categories":["conceptual processing","replication"],"content":" General project Data from our lab Video demonstration of the procedure followed in our lab \rRelated: the value of a replication study during PhD.\nReference Chen, S.-C., Buchanan, E. M., Kekecs, Z., Miller, J. K., Szabelska, A., Aczel, B., Bernabeu, P., Forscher, P. S., Szuts, A., Vally, D. Z., Al-Hoorie, A. H., Helmy, M., Silva, C. S. A. da, Silva, L. O. da, Moraes, Y. L. de, Hsu, R. M. C. S., Mafra, A. L., Valentova, J. V., Varella, M. A. C., … Chartier, C. R. (2023). Investigating object orientation effects across 18 languages. OSF Preprints. https://doi.org/10.31219/osf.io/2qf6w\n\r","date":1686182400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1686182400,"objectID":"9e4b60290f7493777dd1254f0a6e8953","permalink":"https://pablobernabeu.github.io/publication/chen-etal-inprep/","publishdate":"2023-06-08T00:00:00Z","relpermalink":"/publication/chen-etal-inprep/","section":"publication","summary":"Mental simulation theories of language comprehension propose that people automatically create mental representations of objects mentioned in sentences. Mental representation is often measured with the sentence-picture verification task, wherein participants first read a sentence that implies the object property (i.e., shape and orientation). Participants then respond to an image of an object by indicating whether it was an object from the sentence or not. Previous studies have shown matching advantages for shape, but findings concerning object orientation have not been robust across languages. This registered report investigated the match advantage of object orientation across 18 languages in nearly 4,000 participants. The preregistered analysis revealed no compelling evidence for a match advantage across languages. Additionally, the match advantage was not predicted by mental rotation scores. Overall, the results did not support current mental simulation theories.","tags":["object orientation effect","conceptual processing","reading","event-related potentials","cognition","mental rotation","individual differences","crosslinguistic","replication","psycholinguistics","Psychological Science Accelerator"],"title":"Investigating object orientation effects across 18 languages","type":"publication"},{"authors":null,"categories":["psycholinguistics"],"content":"\n Slideshare \rLabotka, D., Sabo, E., Bonais, R., Gelman, S. A., \u0026amp; Baptista, M. (2023). Testing the effects of congruence in adult multilingual acquisition with implications for creole genesis. Cognition, 235, 105387. https://doi.org/10.1016/j.cognition.2023.105387\n ","date":1684713600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684713600,"objectID":"0309a9853357e593b9a96c16e25d5895","permalink":"https://pablobernabeu.github.io/presentation/discussion-of-labotka-et-al-2023/","publishdate":"2023-05-22T00:00:00Z","relpermalink":"/presentation/discussion-of-labotka-et-al-2023/","section":"presentation","summary":"\n Slideshare \rLabotka, D., Sabo, E., Bonais, R., Gelman, S. A., \u0026amp; Baptista, M. (2023). Testing the effects of congruence in adult multilingual acquisition with implications for creole genesis. Cognition, 235, 105387. https://doi.org/10.1016/j.cognition.2023.105387\n ","tags":["creole","interlanguage transfer","language learning","linguistics","psycholinguistics"],"title":"Discussion of Labotka et al. (2023)","type":"presentation"},{"authors":[],"categories":["research methods"],"content":"\rOpenSesame offers options to counterbalance properties of the stimulus across participants. However, in cases of more involved assignments of session parameters across participants, it becomes necessary to write a bit of Python code in an inline script, which should be placed at the top of the timeline. In such a script, the participant-specific parameters are loaded in from a csv file. Below is a minimal example of the csv file.\n\r\r\r\rparticipant\rlanguage\rtraining_list\rtest_list\rexperiment_list\r\r\r\r1\rMini-English\r1\r1\r1\r\r2\rMini-Norwegian\r1\r1\r1\r\r3\rMini-English\r2\r2\r1\r\r4\rMini-Norwegian\r2\r2\r1\r\r5\rMini-English\r1\r3\r2\r\r6\rMini-Norwegian\r1\r3\r2\r\r7\rMini-English\r2\r4\r2\r\r8\rMini-Norwegian\r2\r4\r2\r\r\r\rBelow is the corresponding inline script. The code .iloc[0] at the end of the lines is used to select a cell.\n# Assign participant-specific parameters. For each participant-specific factor in the # stimulus files, take the level corresponding to the index position specified in the # participant parameters file.\rimport csv # handle csv file\rimport pandas as pd # handle data frames\rparticipant_parameters = pd.read_csv(exp.get_file(\u0026#39;stimuli/parameters per participant.csv\u0026#39;))\rvar.participant = var.subject_nr\rvar.language = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;language\u0026#39;].iloc[0]\rvar.training_list = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;training_list\u0026#39;].iloc[0]\rvar.test_list = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;test_list\u0026#39;].iloc[0]\rvar.experiment_list = participant_parameters.loc[participant_parameters[\u0026#39;participant\u0026#39;] == var.subject_nr][\u0026#39;experiment_list\u0026#39;].iloc[0]\rFinally, the variables created in the script can be used in Run if conditions (e.g., [language] == 'Mini-English'), as replacements inside file names (e.g., [language] training, List [training_list].csv), and as input in sketchpads (e.g., Current list: [training_list]).\n","date":1684281600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684281600,"objectID":"0a75f39305dfd092000bbe97b550af25","permalink":"https://pablobernabeu.github.io/2023/assigning-participant-specific-parameters-automatically-in-opensesame/","publishdate":"2023-05-17T00:00:00Z","relpermalink":"/2023/assigning-participant-specific-parameters-automatically-in-opensesame/","section":"post","summary":"OpenSesame offers options to counterbalance properties of the stimulus across participants. However, in cases of more involved assignments of session parameters across participants, it becomes necessary to write a bit of Python code in an inline script, which should be placed at the top of the timeline. In such a script, the participant-specific parameters are loaded in from a csv file. Below is a minimal example of the csv file.","tags":["research methods","OpenSesame","python","s"],"title":"Assigning participant-specific parameters automatically in OpenSesame","type":"post"},{"authors":[],"categories":["linguistics"],"content":"\rUnlike English, some Romance languages not only allow—but sometimes require—pronominal object clitics in preverbal position (Hanson \u0026amp; Carlson, 2014; Labotka et al., 2023). That is, instead of saying La maestra ha detto il nome (Italian) ‘The teacher has said the name’, Italian allows Il nome lo ha detto la maestra (literally, ‘The name it has said the teacher’), which could translate as ‘The name has been said by the teacher’, ‘The teacher has said the name’, or even ‘It is the teacher that has said the name’. The form Il nome lo ha detto la maestra is a marked phrasing that increases the attention to the agent of the action. Furthermore, when the clitic is in preverbal position, the degree of focus on the agent is also dependent on the context. For instance, the focus is light in Lo ha detto la maestra, whereas it is stronger in Lo ha detto la maestra, non l’assistente “It’s the teacher that’s said it, not the assistant”.\nThe agent-focus can sometimes be relinquished in translations (‘The teacher has said it’). In other cases, it must be preserved by applying an intonational or written emphasis on the agent (‘The teacher has said it’), or by implementing the idiomatic form ‘The teacher said’, or a marked syntax—for instance, with an it-cleft, as in “It’s the teacher that’s said it”, or by adding ‘oneself’, as in ‘The teacher said it herself’.\nNow, how does Google Translate (GT) deal with these translations in May 2023? To translate Lo ha detto la maestra, GT opts for ‘The teacher said’, which is a good, idiomatic option. When it comes to translating to Spanish, GT returns ‘El profesor dijo’, which is the direct equivalent of the English translation.1 This option is valid in some varieties of Spanish in America. Nonetheless, it must be noted that a more direct translation from the Italian form would have been very good in Spanish (Lo ha dicho la maestra).\nGT has greater trouble when the content of the sentence is slightly less frequent. For instance, Lo cerca la maestra ‘Him is seeking the teacher’ is stripped of its markedness in GT’s rendering in English—i.e., ‘The teacher is looking for him’. Preserving the agent-focus—e.g., “It’s the teacher that’s looking for him”—would require some syntactic liberties, and hence entail some risks. So, playing it safe is understandable. Our next step is checking the translation to some Romance languages that allow the same movement to preverbal position present in the original Italian sentence Lo cerca la maestra. Aside from GT, the sentence could be well translated into Romanian as Îl caută dăscăliţa, or into Spanish as Lo busca la profesora. In contrast, for both translations, GT returns the equivalents of the English translation—i.e., Profesorul îl caută and El profesor lo busca, again discarding the focus on the agent—unnecessarily in these cases, due to the overlap in the grammars.2\n\nSubmitting a better translation is always an option.\nIn fairness, machine translation is an absolute feat overall, provided enough caution is practised. With the expansion of language models, machine translation is only going to improve. So, how much of a piece of cake will it be for GT to crack some of these syntactic details in time, and to preserve syntactic forms across languages when the systems match?\nReferences\rHanson, A. E. S., \u0026amp; Carlson, M. T. (2014). The roles of first language and proficiency in L2 processing of Spanish clitics: Global effects. Language Learning, 64(2), 310-342. https://doi.org/10.1111/lang.12050\nLabotka, D., Sabo, E., Bonais, R., Gelman, S. A., \u0026amp; Baptista, M. (2023). Testing the effects of congruence in adult multilingual acquisition with implications for creole genesis. Cognition, 235, 105387. https://doi.org/10.1016/j.cognition.2023.105387\n\r\rWe can again ignore the errors of lexical gender in the translations.↩︎\n\rWe can again ignore the errors of lexical gender in the translations.↩︎\n\r\r\r","date":1684281600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684281600,"objectID":"04ef742b99131ee067508761d7d2d365","permalink":"https://pablobernabeu.github.io/2023/pronominal-object-clitics-in-preverbal-position-are-a-hard-nut-to-crack-for-google-translate/","publishdate":"2023-05-17T00:00:00Z","relpermalink":"/2023/pronominal-object-clitics-in-preverbal-position-are-a-hard-nut-to-crack-for-google-translate/","section":"post","summary":"Unlike English, some Romance languages not only allow—but sometimes require—pronominal object clitics in preverbal position (Hanson \u0026amp; Carlson, 2014; Labotka et al., 2023). That is, instead of saying La maestra ha detto il nome (Italian) ‘The teacher has said the name’, Italian allows Il nome lo ha detto la maestra (literally, ‘The name it has said the teacher’), which could translate as ‘The name has been said by the teacher’, ‘The teacher has said the name’, or even ‘It is the teacher that has said the name’.","tags":["linguistics","syntax","translation","s"],"title":"Pronominal object clitics in preverbal position are a hard nut to crack for Google Translate","type":"post"},{"authors":[],"categories":["research methods"],"content":"\rIn the preparation of projects, files are often downloaded from OSF. It is good to document the URL addresses that were used for the downloads. These URLs can be provided in a code script (see example) or in a README file. Better yet, it’s possible to specify the version of each file in the URL. This specification helps reduce the possibility of inaccuracies later, should any files be modified afterwards.\nThe versions of files can be consulted on the right-hand side of the file page on OSF, as shown below.\nNext, the appropriate version can be specified in the download link by appending ?version=X at the end. For instance, the seventh version is specified in the link https://osf.io/hx6tz/download?version=7.\n","date":1684195200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684195200,"objectID":"dc077344d34aa8f1b16260087144109d","permalink":"https://pablobernabeu.github.io/2023/specifying-version-number-in-osf-download-links/","publishdate":"2023-05-16T00:00:00Z","relpermalink":"/2023/specifying-version-number-in-osf-download-links/","section":"post","summary":"In the preparation of projects, files are often downloaded from OSF. It is good to document the URL addresses that were used for the downloads. These URLs can be provided in a code script (see example) or in a README file. Better yet, it’s possible to specify the version of each file in the URL. This specification helps reduce the possibility of inaccuracies later, should any files be modified afterwards.","tags":["research methods","s"],"title":"Specifying version number in OSF download links","type":"post"},{"authors":[],"categories":["research methods","statistics"],"content":"\rThe need for covariates—or nuisance variables—in statistical analyses is twofold. The first reason is purely statistical and the second reason is academic.\nFirst, the use of covariates is often necessary when the variable(s) of interest in a study may be connected to, and affected by, some satellite variables (Bottini et al., 2022; Elze et al., 2017; Sassenhagen \u0026amp; Alday, 2016). This complex scenario is the most common one due to the multivariate, dynamic, interactive nature of the real world.\nSecond, the use of covariates is often necessary to prevent the development of bogus, redundant theories. Academics are strongly rewarded for developing theories. As we know, wherever there are strong rewards, there are serious risks. An academic could—consciously or not—produce a theory that is too closely related to an existing theory. So closely related are these theories that the second version might not warrant a name of its own. In such a scenario, covariates are useful and indeed necessary to vet the unique nature of the second version. That is, the first and the second version must be tested in the same model, and the variables corresponding to the first version can be construed as covariates. This allows both the developers of the theories and the readers to compare the effects corresponding to each version of the theory, and to assess the degree of separation between them.\nThe perverted use of covariates (Stefan \u0026amp; Schönbrodt, 2023)—however frequent and harmful—stands completely orthogonal to the correct usage of covariates, in the same way that a stethoscope can be used for good or for bad purposes. It would be poorly informed and misleading to conflate the correct and the incorrect uses, or to reject the use of covariates altogether due to the incorrect uses.\nIn conclusion, the effects of interest in correlational/observational studies can be subject to mediation and moderation by satellite variables. These variables cannot be manipulated in correlational/observational studies, but they can—and often should—be included as covariates in the statistical models, to ward off spurious results and to vet similar theories.\nReferences\rBottini, R., Morucci, P., D’Urso, A., Collignon, O., \u0026amp; Crepaldi, D. (2022). The concreteness advantage in lexical decision does not depend on perceptual simulations. Journal of Experimental Psychology: General, 151(3), 731–738. https://doi.org/10.1037/xge0001090\nElze, M. C., Gregson, J., Baber, U., Williamson, E., Sartori, S., Mehran, R., Nichols, M., Stone, G. W., \u0026amp; Pocock, S. J. (2017). Comparison of propensity score methods and covariate adjustment: Evaluation in 4 cardiovascular studies. Journal of the American College of Cardiology, 69(3), 345-357. https://doi.org/10.1016/j.jacc.2016.10.060\nSassenhagen, J., \u0026amp; Alday, P. M. (2016). A common misapplication of statistical inference: Nuisance control with null-hypothesis significance tests. Brain and Language, 162, 42-45. https://doi.org/10.1016/j.bandl.2016.08.001\nStefan, A. M., \u0026amp; Schönbrodt, F. D. (2023). Big little lies: A compendium and simulation of p-hacking strategies. Royal Society Open Science, 10(2), 220346. https://doi.org/10.1098/rsos.220346\n\r","date":1684108800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684108800,"objectID":"3006b3b13da03672741cd712494ede7f","permalink":"https://pablobernabeu.github.io/2023/covariates-are-necessary-to-validate-the-variables-of-interest-and-to-prevent-bogus-theories/","publishdate":"2023-05-15T00:00:00Z","relpermalink":"/2023/covariates-are-necessary-to-validate-the-variables-of-interest-and-to-prevent-bogus-theories/","section":"post","summary":"The need for covariates—or nuisance variables—in statistical analyses is twofold. The first reason is purely statistical and the second reason is academic.\nFirst, the use of covariates is often necessary when the variable(s) of interest in a study may be connected to, and affected by, some satellite variables (Bottini et al., 2022; Elze et al., 2017; Sassenhagen \u0026amp; Alday, 2016). This complex scenario is the most common one due to the multivariate, dynamic, interactive nature of the real world.","tags":["research methods","statistics","conflation","s"],"title":"Covariates are necessary to validate the variables of interest and to prevent bogus theories","type":"post"},{"authors":null,"categories":["statistics"],"content":"\r\n\r\n\r\n","date":1681171200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1681171200,"objectID":"3c2f849c53709f267bdefd8e6e784b9c","permalink":"https://pablobernabeu.github.io/2023/cannot-open-plots-created-with-brms-mcmc-plot-due-to-lack-of-discrete-range-function/","publishdate":"2023-04-11T00:00:00Z","relpermalink":"/2023/cannot-open-plots-created-with-brms-mcmc-plot-due-to-lack-of-discrete-range-function/","section":"post","summary":"I would like to ask for advice regarding some plots that were created using brms::mcmc_plot(), and cannot be opened in R now. The plots were created last year using brms 2.17.0, and were saved in RDS objects. The problem I have is that I cannot open the plots in R now because I get an error related to a missing function. I would be very grateful if someone could please advise me if they can think of a possible reason or solution.","tags":["statistics","Bayesian statistics","linear-mixed effects models","brms","plotting","data visualisation","R","s"],"title":"Cannot open plots created with brms::mcmc_plot due to lack of `discrete_range` function","type":"post"},{"authors":null,"categories":["psycholinguistics"],"content":"\n Slideshare\r\rJost, E., Brill-Schuetz, K., Morgan-Short, K., \u0026amp; Christiansen, M. H. (2019). Input complexity affects long-term retention of statistically learned regularities in an artificial language learning task. Frontiers in Human Neuroscience, 13, 358. https://www.frontiersin.org/articles/10.3389/fnhum.2019.00358\n ","date":1675036800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1675036800,"objectID":"051d6888f5eb3f3d3e10fd8b8c40e103","permalink":"https://pablobernabeu.github.io/presentation/discussion-of-jost-et-al-2019/","publishdate":"2023-01-30T00:00:00Z","relpermalink":"/presentation/discussion-of-jost-et-al-2019/","section":"presentation","summary":"\n Slideshare\r\rJost, E., Brill-Schuetz, K., Morgan-Short, K., \u0026amp; Christiansen, M. H. (2019). Input complexity affects long-term retention of statistically learned regularities in an artificial language learning task. Frontiers in Human Neuroscience, 13, 358. https://www.frontiersin.org/articles/10.3389/fnhum.2019.00358\n ","tags":["language","learning","linguistics","psycholinguistics","statistical learning"],"title":"Discussion of Jost et al. (2019)","type":"presentation"},{"authors":[],"categories":["R","statistics"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\r\rHere I share the format applied to tables presenting the results of Bayesian models in Bernabeu (2022; the table for frequentist models is covered in this other post). The sample table presents a Bayesian mixed-effects model that was fitted using the R package brms (Bürkner et al., 2022). The mixed effects were driven by the maximal principle (Brauer \u0026amp; Curtin, 2018). The format of the table resembles one of the examples published by the American Psychological Association. However, there are also deviations from those examples. For instance, in the present table, the effects are grouped under informative labels to facilitate the readers’ comprehension, using the kableExtra package (Zhu, 2022). Furthermore, the random slopes are specified using superscript letters and a footnote. The table can be reproduced using the materials at https://osf.io/gt5uf.\nLoading packages and the results of the models\rlibrary(dplyr)\rlibrary(knitr)\rlibrary(tibble)\rlibrary(stringr)\rlibrary(lmerTest)\rlibrary(kableExtra)\r# Load Bayesian results summary\rsemanticpriming_summary_weaklyinformativepriors_exgaussian = readRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_summary_weaklyinformativepriors_exgaussian.rds?raw=true\u0026#39;)))\r\rAdjusting the names of the effects\rFirst, to facilitate the understanding of the results, the original names of the effects will be adjusted in the brms summary.\n# Rename effects in plain language and specify the random slopes\r# (if any) for each effect, in the footnote. For this purpose, # superscripts are added to the names of the appropriate effects.\r# # In the interactions below, word-level variables are presented # first for the sake of consistency (the order does not affect # the results in any way). Also in the interactions, double # colons are used to inform the \u0026#39;bayesian_model_table\u0026#39; # function that the two terms in the interaction must be split # into two lines.\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_attentional_control\u0026#39;] = \u0026#39;Attentional control\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_attentional_control\u0026#39;] = \u0026#39;Attentional control\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_vocabulary_size\u0026#39;] = \u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_recoded_participant_gender\u0026#39;] = \u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_target_word_frequency\u0026#39;] = \u0026#39;Word frequency\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_target_number_syllables\u0026#39;] = \u0026#39;Number of syllables\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_word_concreteness_diff\u0026#39;] = \u0026#39;Word-concreteness difference\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_word_concreteness_diff:z_vocabulary_size\u0026#39;] = \u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_word_concreteness_diff:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Word-concreteness difference : SOA\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_word_concreteness_diff:z_recoded_participant_gender\u0026#39;] = \u0026#39;Word-concreteness difference : Gender\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_attentional_control:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Attentional control\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_attentional_control:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Attentional control\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_vocabulary_size:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Vocabulary size\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_vocabulary_size:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_recoded_participant_gender:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : Gender\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_recoded_participant_gender:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : Gender\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed)[\rrownames(semanticpriming_summary_weaklyinformativepriors_exgaussian$fixed) == \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\r\rbayesian_model_table()\rIn Bernabeu (2022), the following custom function was used.\n\rThe above function was used to render a PDF output. In the current scenario, however, we have an HTML output. In the above function, the code used for the \\(\\widehat{R}\\) tailored to the HTML output (\u0026amp;Rcirc;) does not render properly.\n\rInstead, the LaTeX code $\\\\widehat{R}$ must be used. Therefore, we’ll correct this error and load the function below.\n# Function used in the manuscript to present summaries from \u0026#39;brms\u0026#39; models # in APA-formatted tables. The only obligatory argument to be supplied is # a summary of a \u0026#39;brms\u0026#39; model.\rbayesian_model_table = function(model_summary, show_intercept = TRUE, select_effects = NULL, order_effects = NULL, format = NULL, # If interaction_symbol_x = TRUE, replace double colons with # times symbols followed by line breaks and indentation. # Then, replace single colons with times symbols.\rinteraction_symbol_x = FALSE,\rcaption = \u0026#39;Summary of the lmerTest model.\u0026#39;) {\rrequire(dplyr)\rrequire(knitr)\rrequire(tibble)\rrequire(stringr)\rrequire(lmerTest)\rrequire(kableExtra)\r# Create data frame\rmodel_summary = data.frame(Effect = rownames(model_summary$fixed), Estimate = model_summary$fixed$Estimate, SE = model_summary$fixed$Est.Error, CrI_2.5 = model_summary$fixed$`l-95% CI`, CrI_97.5 = model_summary$fixed$`u-95% CI`, Rhat = model_summary$fixed$Rhat,\rrow.names = NULL)\r# Process credible intervals and present both inside square brackets\rmodel_summary$CrI_2.5 = model_summary$CrI_2.5 %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .) %\u0026gt;% # Remove minus sign from pure zeros\rsub(\u0026#39;-0.00\u0026#39;, \u0026#39;0.00\u0026#39;, .)\rmodel_summary$CrI_97.5 = model_summary$CrI_97.5 %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .) %\u0026gt;% # Remove minus sign from pure zeros\rsub(\u0026#39;-0.00\u0026#39;, \u0026#39;0.00\u0026#39;, .)\rmodel_summary$CrI_95 = paste0(\u0026#39;[\u0026#39;, model_summary$CrI_2.5, \u0026#39;, \u0026#39;, model_summary$CrI_97.5, \u0026#39;]\u0026#39;)\r# If show_intercept = FALSE, remove it\rif(isFALSE(show_intercept)) {\rmodel_summary = model_summary %\u0026gt;% filter(!grepl(\u0026#39;Intercept\u0026#39;, Effect))\r# Put \u0026#39;Intercept\u0026#39; in parentheses\r} else if(!is.null(model_summary[model_summary$Effect == \u0026#39;Intercept\u0026#39;, \u0026#39;Effect\u0026#39;])) {\rmodel_summary[model_summary$Effect == \u0026#39;Intercept\u0026#39;, \u0026#39;Effect\u0026#39;] = \u0026#39;(Intercept)\u0026#39;\r}\r# If select_effects was supplied, apply it and order effects accordingly\rif(!is.null(select_effects)) {\rmodel_summary = model_summary %\u0026gt;% filter(Effect %in% select_effects) %\u0026gt;%\rarrange(factor(Effect, levels = select_effects))\r}\r# If order_effects was supplied, apply order\rif(!is.null(order_effects)) {\rmodel_summary = model_summary %\u0026gt;%\rarrange(factor(Effect, levels = order_effects))\r}\r# Round other values\rmodel_summary$Estimate = model_summary$Estimate %\u0026gt;% as.numeric %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .) %\u0026gt;% # Remove minus sign from pure zeros\rsub(\u0026#39;-0.00\u0026#39;, \u0026#39;0.00\u0026#39;, .)\rmodel_summary$SE = model_summary$SE %\u0026gt;% as.numeric %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .)\rmodel_summary$Rhat = model_summary$Rhat %\u0026gt;% as.numeric %\u0026gt;% # Round off and keep trailing zeros\rsprintf(\u0026#39;%.2f\u0026#39;, .)\r# Order columns\rmodel_summary = model_summary %\u0026gt;% select(Effect, Estimate, SE, CrI_95, Rhat)\r# Right-align all columns after first one\ralign = c(\u0026#39;l\u0026#39;, \u0026#39;r\u0026#39;, \u0026#39;r\u0026#39;, \u0026#39;r\u0026#39;, \u0026#39;r\u0026#39;)\r# Establish latex or HTML format: if no format supplied, # try to obtain it from knitr, or apply HTML\rif(missing(format) || is.null(format)) {\rif(knitr::is_latex_output()) {\rformat = \u0026#39;latex\u0026#39;\r} else format = \u0026#39;html\u0026#39;\r}\r# HTML format\rif(format == \u0026#39;html\u0026#39;) {\r# If interaction_symbol_x = TRUE, replace double colons with times # symbols followed by line breaks and indentation. Then, replace # single colons with times symbols.\rif(interaction_symbol_x) {\rmodel_summary$Effect = model_summary$Effect %\u0026gt;% gsub(\u0026#39;::\u0026#39;, \u0026#39; \u0026amp;times; \u0026lt;br\u0026gt; \u0026amp;nbsp;\u0026amp;nbsp;\u0026#39;, .) %\u0026gt;%\rgsub(\u0026#39;:\u0026#39;, \u0026#39; \u0026amp;times; \u0026#39;, .)\r}\r# Output table\rmodel_summary %\u0026gt;% # Remove header of first column and rename other headers\rrename(\u0026#39; \u0026#39; = \u0026#39;Effect\u0026#39;, \u0026#39;\u0026amp;beta;\u0026#39; = \u0026#39;Estimate\u0026#39;, \u0026#39;\u0026lt;i\u0026gt;SE\u0026lt;/i\u0026gt;\u0026#39; = \u0026#39;SE\u0026#39;, \u0026#39;95% CrI\u0026#39; = \u0026#39;CrI_95\u0026#39;, \u0026#39;$\\\\widehat{R}$\u0026#39; = \u0026#39;Rhat\u0026#39;) %\u0026gt;%\r# Present table\rkbl(digits = 2, booktabs = TRUE, escape = FALSE, align = align,\r# Caption of the table (default unless specified)\rcaption = caption, # Disable occasional line gap (https://stackoverflow.com/a/49018919/7050882)\rlinesep = \u0026#39;\u0026#39;) %\u0026gt;%\r# Apply nice kableExtra format\rkable_styling() %\u0026gt;%\r# Center-align header row\rrow_spec(0, align = \u0026#39;c\u0026#39;)\r# LaTeX format\r} else {\r# If interaction_symbol_x = TRUE, replace double colons with times # symbols followed by line breaks and indentation. Then, replace # single colons with times symbols.\rif(interaction_symbol_x) {\rmodel_summary$Effect = model_summary$Effect %\u0026gt;% gsub(\u0026#39;::\u0026#39;, \u0026#39; $\\\\\\\\times$ \\n \\\\\\\\hspace{0.3cm}\u0026#39;, .) %\u0026gt;%\rgsub(\u0026#39;:\u0026#39;, \u0026#39; $\\\\\\\\times$ \u0026#39;, .)\r}\rmodel_summary$Effect = model_summary$Effect %\u0026gt;%\r# Escape underscores to avoid error in table\rstr_replace_all(\u0026#39;_\u0026#39;, \u0026#39;\\\\\\\\_\u0026#39;) %\u0026gt;%\r# Allow line breaks in the names of the effects\r# (used in the interactions)\rkableExtra::linebreak(align = \u0026#39;l\u0026#39;)\r# Output table\rmodel_summary %\u0026gt;% # Remove header of first column and rename other headers\rrename(\u0026#39; \u0026#39; = \u0026#39;Effect\u0026#39;, \u0026#39;$\\\\upbeta$\u0026#39; = \u0026#39;Estimate\u0026#39;, \u0026#39;$SE$\u0026#39; = \u0026#39;SE\u0026#39;, \u0026#39;95\\\\% CrI\u0026#39; = \u0026#39;CrI_95\u0026#39;, \u0026#39;$\\\\widehat R$\u0026#39; = \u0026#39;Rhat\u0026#39;) %\u0026gt;%\r# Present table\rkbl(digits = 2, booktabs = TRUE, escape = FALSE, align = align,\r# Caption of the table (default unless specified)\rcaption = caption, # Disable occasional line gap (https://stackoverflow.com/a/49018919/7050882)\rlinesep = \u0026#39;\u0026#39;) %\u0026gt;%\r# Apply nice kableExtra format\rkable_styling() %\u0026gt;%\r# Center-align header row\rrow_spec(0, align = \u0026#39;c\u0026#39;)\r}\r}\r\rThe function in use\r# Create table (using custom function from the \u0026#39;R_functions\u0026#39; folder)\rbayesian_model_table(\rsemanticpriming_summary_weaklyinformativepriors_exgaussian,\rorder_effects = c(\u0026#39;(Intercept)\u0026#39;,\r\u0026#39;Attentional control\u0026#39;,\r\u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Word frequency\u0026#39;,\r\u0026#39;Number of syllables\u0026#39;,\r\u0026#39;Word-concreteness difference\u0026#39;,\r\u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;,\r\u0026#39;Word-concreteness difference : SOA\u0026#39;,\r\u0026#39;Word-concreteness difference : Gender\u0026#39;,\r\u0026#39;Language-based similarity :: Attentional control\u0026#39;,\r\u0026#39;Visual-strength difference :: Attentional control\u0026#39;,\r\u0026#39;Language-based similarity :: Vocabulary size\u0026#39;,\r\u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;,\r\u0026#39;Language-based similarity : Gender\u0026#39;,\r\u0026#39;Visual-strength difference : Gender\u0026#39;,\r\u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;),\r# Replace colons in the names of interactions with times symbols\rinteraction_symbol_x = TRUE, # No title\rcaption = NULL) %\u0026gt;%\r# Group predictors under headings\rpack_rows(\u0026#39;Individual differences\u0026#39;, 2, 4) %\u0026gt;% pack_rows(\u0026#39;Target-word lexical covariates\u0026#39;, 5, 6) %\u0026gt;% pack_rows(\u0026#39;Prime--target relationship\u0026#39;, 7, 9) %\u0026gt;% pack_rows(\u0026#39;Task condition\u0026#39;, 10, 10) %\u0026gt;% pack_rows(\u0026#39;Interactions\u0026#39;, 11, 21) %\u0026gt;% # Apply white background to override default shading in HTML output\rrow_spec(1:21, background = \u0026#39;white\u0026#39;) %\u0026gt;%\r# Highlight covariates\rrow_spec(c(2, 5:7, 11:15), background = \u0026#39;#FFFFF1\u0026#39;) %\u0026gt;%\r# Format\rkable_classic(full_width = FALSE, html_font = \u0026#39;Cambria\u0026#39;) %\u0026gt;%\r# Footnote describing abbreviations, random slopes, etc. # LaTeX code used to format the text.\rfootnote(escape = FALSE, threeparttable = TRUE, general_title = \u0026#39;\u0026lt;br\u0026gt;\u0026#39;, general = paste(\u0026#39;*Note*. \u0026amp;beta; = Estimate based on $z$-scored predictors; *SE* = standard error;\u0026#39;,\r\u0026#39;CrI = credible interval. Yellow rows contain covariates. Some interactions are \u0026#39;,\r\u0026#39;split over two lines, with the second line indented. \u0026lt;br\u0026gt;\u0026#39;, \u0026#39;\u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt; By-word random slopes were included for this effect.\u0026#39;,\r\u0026#39;\u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt; By-participant random slopes were included for this effect.\u0026#39;))\r\r\r\rβ\r\rSE\r\r95% CrI\r\r\\(\\widehat{R}\\)\r\r\r\r\r\r(Intercept)\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.00\r\r\rIndividual differences\r\r\r\rAttentional control\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.00\r\r\r\rVocabulary size a\r\r-0.01\r\r0.00\r\r[-0.01, 0.00]\r\r1.00\r\r\r\rGender a\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.00\r\r\rTarget-word lexical covariates\r\r\r\rWord frequency\r\r-0.11\r\r0.00\r\r[-0.12, -0.11]\r\r1.00\r\r\r\rNumber of syllables\r\r0.07\r\r0.00\r\r[0.06, 0.07]\r\r1.00\r\r\rPrime–target relationship\r\r\r\rWord-concreteness difference\r\r0.01\r\r0.00\r\r[0.00, 0.01]\r\r1.00\r\r\r\rLanguage-based similarity b\r\r-0.06\r\r0.00\r\r[-0.07, -0.06]\r\r1.00\r\r\r\rVisual-strength difference b\r\r0.01\r\r0.00\r\r[0.01, 0.01]\r\r1.00\r\r\rTask condition\r\r\r\rStimulus onset asynchrony (SOA) b\r\r0.03\r\r0.01\r\r[0.02, 0.04]\r\r1.00\r\r\rInteractions\r\r\r\rWord-concreteness difference × Vocabulary size\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rWord-concreteness difference × SOA\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rWord-concreteness difference × Gender\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rLanguage-based similarity × Attentional control\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r1.00\r\r\r\rVisual-strength difference × Attentional control\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rLanguage-based similarity × Vocabulary size\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r1.00\r\r\r\rVisual-strength difference × Vocabulary size\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rLanguage-based similarity × Gender\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r1.00\r\r\r\rVisual-strength difference × Gender\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rLanguage-based similarity × SOA b\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\rVisual-strength difference × SOA b\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r1.00\r\r\r\r\r\r\r\r\r\r Note. β = Estimate based on \\(z\\)-scored predictors; SE = standard error; CrI = credible interval. Yellow rows contain covariates. Some interactions are split over two lines, with the second line indented. a By-word random slopes were included for this effect. b By-participant random slopes were included for this effect.\r\r\r\r\rShading specific rows\rShading specific rows is done differently when the output is PDF, as shown below (see p. 170 in Bernabeu, 2022).\n\r\r\rSession info\rIf you encounter any blockers while reproducing the table using the materials at https://osf.io/gt5uf, my current session info may be useful.\nsessionInfo()\r## R version 4.3.2 (2023-10-31 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 11 x64 (build 22621)\r## ## Matrix products: default\r## ## ## locale:\r## [1] LC_COLLATE=English_United Kingdom.utf8 ## [2] LC_CTYPE=English_United Kingdom.utf8 ## [3] LC_MONETARY=English_United Kingdom.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United Kingdom.utf8 ## ## time zone: Europe/Oslo\r## tzcode source: internal\r## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] kableExtra_1.3.4 lmerTest_3.1-3 lme4_1.1-35.1 ## [4] Matrix_1.6-4 stringr_1.5.1 tibble_3.2.1 ## [7] dplyr_1.1.4 knitr_1.45 xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] sass_0.4.8 utf8_1.2.4 generics_0.1.3 ## [4] xml2_1.3.6 blogdown_1.18 stringi_1.8.3 ## [7] lattice_0.22-5 digest_0.6.33 magrittr_2.0.3 ## [10] evaluate_0.23 grid_4.3.2 bookdown_0.37 ## [13] fastmap_1.1.1 jsonlite_1.8.8 httr_1.4.7 ## [16] rvest_1.0.3 fansi_1.0.6 viridisLite_0.4.2 ## [19] scales_1.3.0 numDeriv_2016.8-1.1 jquerylib_0.1.4 ## [22] cli_3.6.2 rlang_1.1.2 munsell_0.5.0 ## [25] splines_4.3.2 withr_2.5.2 cachem_1.0.8 ## [28] yaml_2.3.8 tools_4.3.2 uuid_1.1-1 ## [31] nloptr_2.0.3 minqa_1.2.6 colorspace_2.1-0 ## [34] ggplot2_3.4.4 webshot_0.5.5 boot_1.3-28.1 ## [37] vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4 ## [40] MASS_7.3-60 pkgconfig_2.0.3 pillar_1.9.0 ## [43] bslib_0.6.1 gtable_0.3.4 glue_1.6.2 ## [46] Rcpp_1.0.11 systemfonts_1.0.5 xfun_0.41 ## [49] tidyselect_1.2.0 rstudioapi_0.15.0 htmltools_0.5.7 ## [52] nlme_3.1-164 svglite_2.1.3 rmarkdown_2.25 ## [55] compiler_4.3.2\r\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159\nBürkner, P.-C., Gabry, J., Weber, S., Johnson, A., Modrak, M., Badr, H. S., Weber, F., Ben-Shachar, M. S., \u0026amp; Rabel, H. (2022). Package ’brms’. CRAN. https://cran.r-project.org/web/packages/brms/brms.pdf\nZhu, H. (2022). Package ’kableExtra’. CRAN. https://cran.r-project.org/web/packages/kableExtra/kableExtra.pdf\n\r","date":1672272000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1672272000,"objectID":"b1392cb5949a0c807058805dab18b8f9","permalink":"https://pablobernabeu.github.io/2022/a-table-of-results-for-bayesian-mixed-effects-models-grouping-variables-and-specifying-random-slopes/","publishdate":"2022-12-29T00:00:00Z","relpermalink":"/2022/a-table-of-results-for-bayesian-mixed-effects-models-grouping-variables-and-specifying-random-slopes/","section":"post","summary":"Here I share the format applied to tables presenting the results of Bayesian models in Bernabeu (2022). The sample table presents a mixed-effects model that was fitted using the R package 'brms' (Bürkner et al., 2022).","tags":["R","statistics","rstats","brms","credible intervals","s"],"title":"A table of results for Bayesian mixed-effects models: Grouping variables and specifying random slopes","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\r\rHere I share the format applied to tables presenting the results of frequentist models in Bernabeu (2022; the table for Bayesian models is covered in this other post). The sample table presents a mixed-effects model that was fitted using the R package lmerTest (Kuznetsova et al., 2022). The mixed effects were driven by the maximal principle (Brauer \u0026amp; Curtin, 2018). The format of the table resembles one of the examples published by the American Psychological Association. However, there are also deviations from those examples. For instance, in the present table, the effects are grouped under informative labels to facilitate the readers’ comprehension, using the kableExtra package (Zhu, 2022). Furthermore, the random slopes are specified using superscript letters and a footnote. The table can be reproduced using the materials at https://osf.io/gt5uf.\nLoading packages and the results of the models\rlibrary(dplyr)\rlibrary(knitr)\rlibrary(tibble)\rlibrary(stringr)\rlibrary(lmerTest)\rlibrary(kableExtra)\r# Load frequentist coefficients (estimates and confidence intervals)\rKR_summary_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/KR_summary_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\rconfint_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/confint_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\r\rAdjusting the names of the effects\rFirst, to facilitate the understanding of the results, the original names of the effects will be adjusted in the lmerTest summary and in the confidence intervals object.\nIncidentally, the confidence intervals were obtained using the confint.merMod function from the lme4 package, as neither lmerTest nor lme4 currently provide confidence intervals in their default results output. However, computing the confidence intervals is uncomplicated (see code).\n# Rename effects in plain language and specify the random slopes\r# (if any) for each effect, in the footnote. For this purpose, # superscripts are added to the names of the appropriate effects.\r# # In the interactions below, word-level variables are presented # first for the sake of consistency (the order does not affect # the results in any way). Also in the interactions, double # colons are used to inform the \u0026#39;frequentist_model_table\u0026#39; # function that the two terms in the interaction must be split # into two lines.\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_attentional_control\u0026#39;] = \u0026#39;Attentional control\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_vocabulary_size\u0026#39;] = \u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_participant_gender\u0026#39;] = \u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_target_word_frequency\u0026#39;] = \u0026#39;Word frequency\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_target_number_syllables\u0026#39;] = \u0026#39;Number of syllables\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_word_concreteness_diff\u0026#39;] = \u0026#39;Word-concreteness difference\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_word_concreteness_diff:z_vocabulary_size\u0026#39;] = \u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_word_concreteness_diff:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Word-concreteness difference : SOA\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_word_concreteness_diff:z_recoded_participant_gender\u0026#39;] = \u0026#39;Word-concreteness difference : Gender\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_attentional_control:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Attentional control\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_attentional_control:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Attentional control\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_vocabulary_size:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Vocabulary size\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_vocabulary_size:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_participant_gender:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : Gender\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_participant_gender:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : Gender\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(KR_summary_semanticpriming_lmerTest$coefficients)[\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) == \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\r# Next, change the names in the confidence intervals object\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_attentional_control\u0026#39;] = \u0026#39;Attentional control\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_vocabulary_size\u0026#39;] = \u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_participant_gender\u0026#39;] = \u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_target_word_frequency\u0026#39;] = \u0026#39;Word frequency\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_target_number_syllables\u0026#39;] = \u0026#39;Number of syllables\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_word_concreteness_diff\u0026#39;] = \u0026#39;Word-concreteness difference\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_word_concreteness_diff:z_vocabulary_size\u0026#39;] = \u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_word_concreteness_diff:z_recoded_interstimulus_interval\u0026#39;] = \u0026#39;Word-concreteness difference : SOA\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_word_concreteness_diff:z_recoded_participant_gender\u0026#39;] = \u0026#39;Word-concreteness difference : Gender\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_attentional_control:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Attentional control\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_attentional_control:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Attentional control\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_vocabulary_size:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity :: Vocabulary size\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_vocabulary_size:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_participant_gender:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : Gender\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_participant_gender:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : Gender\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;] = \u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\rrownames(confint_semanticpriming_lmerTest)[\rrownames(confint_semanticpriming_lmerTest) == \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;] = \u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;\r\rfrequentist_model_table()\rThe following custom function was used.\n\rLoading the function from GitHub\rsource(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/raw/main/R_functions/frequentist_model_table.R\u0026#39;)\r\r\rThe function in use\r# Create table (using custom function from the \u0026#39;R_functions\u0026#39; folder)\rfrequentist_model_table(\rKR_summary_semanticpriming_lmerTest, confint_semanticpriming_lmerTest,\rorder_effects = c(\u0026#39;(Intercept)\u0026#39;,\r\u0026#39;Attentional control\u0026#39;,\r\u0026#39;Vocabulary size \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Gender \u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Word frequency\u0026#39;,\r\u0026#39;Number of syllables\u0026#39;,\r\u0026#39;Word-concreteness difference\u0026#39;,\r\u0026#39;Language-based similarity \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Visual-strength difference \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Stimulus onset asynchrony (SOA) \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Word-concreteness difference :: Vocabulary size\u0026#39;,\r\u0026#39;Word-concreteness difference : SOA\u0026#39;,\r\u0026#39;Word-concreteness difference : Gender\u0026#39;,\r\u0026#39;Language-based similarity :: Attentional control\u0026#39;,\r\u0026#39;Visual-strength difference :: Attentional control\u0026#39;,\r\u0026#39;Language-based similarity :: Vocabulary size\u0026#39;,\r\u0026#39;Visual-strength difference :: Vocabulary size\u0026#39;,\r\u0026#39;Language-based similarity : Gender\u0026#39;,\r\u0026#39;Visual-strength difference : Gender\u0026#39;,\r\u0026#39;Language-based similarity : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;,\r\u0026#39;Visual-strength difference : SOA \u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt;\u0026#39;),\r# Replace colons in the names of interactions with times symbols\rinteraction_symbol_x = TRUE, # No title\rcaption = NULL) %\u0026gt;%\r# Group predictors under headings\rpack_rows(\u0026#39;Individual differences\u0026#39;, 2, 4) %\u0026gt;% pack_rows(\u0026#39;Target-word lexical covariates\u0026#39;, 5, 6) %\u0026gt;% pack_rows(\u0026#39;Prime--target relationship\u0026#39;, 7, 9) %\u0026gt;% pack_rows(\u0026#39;Task condition\u0026#39;, 10, 10) %\u0026gt;% pack_rows(\u0026#39;Interactions\u0026#39;, 11, 21) %\u0026gt;% # Apply white background to override default shading in HTML output\rrow_spec(1:21, background = \u0026#39;white\u0026#39;) %\u0026gt;%\r# Highlight covariates\rrow_spec(c(2, 5:7, 11:15), background = \u0026#39;#FFFFF1\u0026#39;) %\u0026gt;%\r# Format\rkable_classic(full_width = FALSE, html_font = \u0026#39;Cambria\u0026#39;) %\u0026gt;%\r# Footnote describing abbreviations, random slopes, etc. # LaTeX code used to format the text.\rfootnote(escape = FALSE, threeparttable = TRUE, general_title = \u0026#39;\u0026lt;br\u0026gt;\u0026#39;, general = paste(\u0026#39;*Note*. \u0026amp;beta; = Estimate based on $z$-scored predictors; *SE* = standard error;\u0026#39;,\r\u0026#39;CI = confidence interval. Yellow rows contain covariates. Some interactions are \u0026#39;,\r\u0026#39;split over two lines, with the second line indented. \u0026lt;br\u0026gt;\u0026#39;, \u0026#39;\u0026lt;sup\u0026gt;a\u0026lt;/sup\u0026gt; By-word random slopes were included for this effect.\u0026#39;,\r\u0026#39;\u0026lt;sup\u0026gt;b\u0026lt;/sup\u0026gt; By-participant random slopes were included for this effect.\u0026#39;))\r\r\r\rβ\r\rSE\r\r95% CI\r\rt\r\rp\r\r\r\r\r\r(Intercept)\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.59\r\r.112\r\r\rIndividual differences\r\r\r\rAttentional control\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r-0.56\r\r.577\r\r\r\rVocabulary size a\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r0.02\r\r.987\r\r\r\rGender a\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r-0.03\r\r.979\r\r\rTarget-word lexical covariates\r\r\r\rWord frequency\r\r-0.16\r\r0.00\r\r[-0.16, -0.15]\r\r-49.40\r\r\u0026lt;.001\r\r\r\rNumber of syllables\r\r0.07\r\r0.00\r\r[0.07, 0.08]\r\r22.81\r\r\u0026lt;.001\r\r\rPrime–target relationship\r\r\r\rWord-concreteness difference\r\r0.01\r\r0.00\r\r[0.01, 0.02]\r\r3.48\r\r.001\r\r\r\rLanguage-based similarity b\r\r-0.08\r\r0.00\r\r[-0.08, -0.07]\r\r-22.44\r\r\u0026lt;.001\r\r\r\rVisual-strength difference b\r\r0.01\r\r0.00\r\r[0.01, 0.02]\r\r4.18\r\r\u0026lt;.001\r\r\rTask condition\r\r\r\rStimulus onset asynchrony (SOA) b\r\r0.06\r\r0.01\r\r[0.04, 0.07]\r\r7.47\r\r\u0026lt;.001\r\r\rInteractions\r\r\r\rWord-concreteness difference × Vocabulary size\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.31\r\r.189\r\r\r\rWord-concreteness difference × SOA\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r2.57\r\r.010\r\r\r\rWord-concreteness difference × Gender\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r-0.97\r\r.332\r\r\r\rLanguage-based similarity × Attentional control\r\r-0.01\r\r0.00\r\r[-0.01, 0.00]\r\r-2.46\r\r.014\r\r\r\rVisual-strength difference × Attentional control\r\r0.00\r\r0.00\r\r[0.00, 0.00]\r\r0.24\r\r.810\r\r\r\rLanguage-based similarity × Vocabulary size\r\r-0.01\r\r0.00\r\r[-0.01, 0.00]\r\r-2.34\r\r.020\r\r\r\rVisual-strength difference × Vocabulary size\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r-1.37\r\r.172\r\r\r\rLanguage-based similarity × Gender\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r-0.79\r\r.433\r\r\r\rVisual-strength difference × Gender\r\r0.00\r\r0.00\r\r[0.00, 0.01]\r\r1.46\r\r.144\r\r\r\rLanguage-based similarity × SOA b\r\r0.01\r\r0.00\r\r[0.00, 0.01]\r\r3.22\r\r.001\r\r\r\rVisual-strength difference × SOA b\r\r0.00\r\r0.00\r\r[-0.01, 0.00]\r\r-2.25\r\r.025\r\r\r\r\r\r\r\r\r\r Note. β = Estimate based on \\(z\\)-scored predictors; SE = standard error; CI = confidence interval. Yellow rows contain covariates. Some interactions are split over two lines, with the second line indented. a By-word random slopes were included for this effect. b By-participant random slopes were included for this effect.\r\r\r\r\rShading specific rows\rShading specific rows is done differently when the output is PDF, as shown below (see p. 62 in Bernabeu, 2022).\n\r\r\rSession info\rIf you encounter any blockers while reproducing the table using the materials at https://osf.io/gt5uf, my current session info may be useful.\nsessionInfo()\r## R version 4.3.2 (2023-10-31 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 11 x64 (build 22621)\r## ## Matrix products: default\r## ## ## locale:\r## [1] LC_COLLATE=English_United Kingdom.utf8 ## [2] LC_CTYPE=English_United Kingdom.utf8 ## [3] LC_MONETARY=English_United Kingdom.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United Kingdom.utf8 ## ## time zone: Europe/Oslo\r## tzcode source: internal\r## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] kableExtra_1.3.4 lmerTest_3.1-3 lme4_1.1-35.1 ## [4] Matrix_1.6-4 stringr_1.5.1 tibble_3.2.1 ## [7] dplyr_1.1.4 knitr_1.45 xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] sass_0.4.8 utf8_1.2.4 generics_0.1.3 ## [4] xml2_1.3.6 blogdown_1.18 stringi_1.8.3 ## [7] lattice_0.22-5 digest_0.6.33 magrittr_2.0.3 ## [10] evaluate_0.23 grid_4.3.2 bookdown_0.37 ## [13] fastmap_1.1.1 jsonlite_1.8.8 httr_1.4.7 ## [16] rvest_1.0.3 fansi_1.0.6 viridisLite_0.4.2 ## [19] scales_1.3.0 numDeriv_2016.8-1.1 jquerylib_0.1.4 ## [22] cli_3.6.2 rlang_1.1.2 munsell_0.5.0 ## [25] splines_4.3.2 withr_2.5.2 cachem_1.0.8 ## [28] yaml_2.3.8 tools_4.3.2 uuid_1.1-1 ## [31] nloptr_2.0.3 minqa_1.2.6 colorspace_2.1-0 ## [34] ggplot2_3.4.4 webshot_0.5.5 boot_1.3-28.1 ## [37] vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4 ## [40] MASS_7.3-60 pkgconfig_2.0.3 pillar_1.9.0 ## [43] bslib_0.6.1 gtable_0.3.4 glue_1.6.2 ## [46] Rcpp_1.0.11 systemfonts_1.0.5 xfun_0.41 ## [49] tidyselect_1.2.0 rstudioapi_0.15.0 htmltools_0.5.7 ## [52] nlme_3.1-164 svglite_2.1.3 rmarkdown_2.25 ## [55] compiler_4.3.2\r\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159\nKuznetsova, A., Brockhoff, P. B., \u0026amp; Christensen, R. H. B. (2022). Package ’lmerTest’. CRAN. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf\nZhu, H. (2022). Package ’kableExtra’. CRAN. https://cran.r-project.org/web/packages/kableExtra/kableExtra.pdf\n\r","date":1672272000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1672272000,"objectID":"76438e72432949f7f3e7ec3744994479","permalink":"https://pablobernabeu.github.io/2022/a-table-of-results-for-frequentist-mixed-effects-models-grouping-variables-and-specifying-random-slopes/","publishdate":"2022-12-29T00:00:00Z","relpermalink":"/2022/a-table-of-results-for-frequentist-mixed-effects-models-grouping-variables-and-specifying-random-slopes/","section":"post","summary":"Here I share the format applied to tables presenting the results of frequentist models in Bernabeu (2022). The sample table presents a mixed-effects model that was fitted using the R package 'lmerTest' (Kuznetsova et al., 2022).","tags":["R","statistics","rstats","lmerTest","lme4","confidence intervals","s"],"title":"A table of results for frequentist mixed-effects models: Grouping variables and specifying random slopes","type":"post"},{"authors":[],"categories":["R","data visualisation"],"content":"\rWhereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. One of these functions is alias_interaction_plot, which allows the plotting of interactions between a continuous variable and a categorical variable. Importantly, the categorical variable is replaced with an alias variable. This feature allows the back-transformation of the categorical variable to facilitate the communication of the results, for instance, when the categorical variable was sum-coded, which has been recommended for mixed-effects models (Brauer \u0026amp; Curtin, 2018).\nBelow, we’ll use the function with a model fitted using lmerTest (Kuznetsova et al., 2022), although the function also works with several other models (see sjPlot manual). The plot can be reproduced using the materials at https://osf.io/gt5uf.\nAlias interaction plot\rThe function\r\r\rThe function in use\r\r\n\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10.1037/met0000159\nKuznetsova, A., Brockhoff, P. B., \u0026amp; Christensen, R. H. B. (2022). Package ’lmerTest’. CRAN. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf\nLüdecke, D. (2022). Package ’sjPlot’. CRAN. https://cran.r-project.org/web/packages/sjPlot/sjPlot.pdf\n\r\r","date":1672012800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1672012800,"objectID":"e6979835a88a63c8e8e698615abbb6b4","permalink":"https://pablobernabeu.github.io/2022/plotting-two-way-interactions-from-mixed-effects-models-using-alias-variables/","publishdate":"2022-12-26T00:00:00Z","relpermalink":"/2022/plotting-two-way-interactions-from-mixed-effects-models-using-alias-variables/","section":"post","summary":"Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. One of these functions is alias_interaction_plot, which allows the plotting of interactions between a continuous variable and a categorical variable.","tags":["R","visualisation","plotting","alias","sjPlot","linear mixed-effects models","statistics","s"],"title":"Plotting two-way interactions from mixed-effects models using alias variables","type":"post"},{"authors":[],"categories":["R","data visualisation"],"content":"\rWhereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. Two of these functions are deciles_interaction_plot and sextiles_interaction_plot. These functions allow the plotting of interactions between two continuous variables. In the case of deciles_interaction_plot, one of the variables is divided into ten bins, known as deciles, and the other variable is unchanged. In the case of sextiles_interaction_plot, one of the variables is divided into six bins, or sextiles, and the other variable is unchanged.\nBelow, we’ll use these functions with models fitted using lmerTest (Kuznetsova et al., 2022), although the functions also work with several other models (see sjPlot manual). The plots can be reproduced using the materials at https://osf.io/gt5uf.\nDeciles interaction plot\rThe function\r\r\rThe function in use\r\r\n\r\rSextiles interaction plot\rThe function\r\r\rThe function in use\r\r\n\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nKuznetsova, A., Brockhoff, P. B., \u0026amp; Christensen, R. H. B. (2022). Package ’lmerTest’. CRAN. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf\nLüdecke, D. (2022). Package ’sjPlot’. CRAN. https://cran.r-project.org/web/packages/sjPlot/sjPlot.pdf\n\r\r","date":1672012800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1672012800,"objectID":"795ff41b768a6f22abfeca4c3ccbf2f7","permalink":"https://pablobernabeu.github.io/2022/plotting-two-way-interactions-from-mixed-effects-models-using-ten-or-six-bins/","publishdate":"2022-12-26T00:00:00Z","relpermalink":"/2022/plotting-two-way-interactions-from-mixed-effects-models-using-ten-or-six-bins/","section":"post","summary":"Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. Two of these functions are deciles_interaction_plot and sextiles_interaction_plot. These functions allow the plotting of interactions between two continuous variables.","tags":["R","visualisation","plotting","deciles","sextiles","sjPlot","linear mixed-effects models","statistics","s"],"title":"Plotting two-way interactions from mixed-effects models using ten or six bins","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\rFrequentist and Bayesian statistics are sometimes regarded as fundamentally different philosophies. Indeed, can both methods qualify as philosophies, or is one of them just a pointless ritual? Is frequentist statistics about \\(p\\) values only? Are frequentist estimates diametrically opposed to Bayesian posterior distributions? Are confidence intervals and credible intervals irreconcilable? Will R crash if lmerTest and brms are simultaneously loaded? If only we could fit frequentist and Bayesian models to the same data and plot the results together, we might get a glimpse into these puzzles.\nAll the analyses shown below can be reproduced using the materials at https://osf.io/gt5uf. The combination of the frequentist and the Bayesian estimates in the same plot is achieved using the following custom function from Bernabeu (2022).\nVisualising frequentist and Bayesian estimates in one plot\rBoth frequentist and Bayesian statistics offer the options of hypothesis testing and parameter estimation (Cumming, 2014; Kruschke \u0026amp; Liddell, 2018; Rouder et al., 2018; Schmalz et al., 2022; Tendeiro \u0026amp; Kiers, 2019, 2022; van Ravenzwaaij \u0026amp; Wagenmakers, 2022). In the statistical analyses conducted by Bernabeu (2022), hypothesis testing was performed within the frequentist framework, whereas parameter estimation was performed within both the frequentist and the Bayesian frameworks (for other examples of the estimation approach, see Milek et al., 2018; Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020).\n\rLet’s load the function from GitHub and put it to the test.\n# Presenting the frequentist and the Bayesian estimates in the same plot. # For this purpose, the frequentist results are merged into a plot from # brms::mcmc_plot()\rsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/frequentist_bayesian_plot.R\u0026#39;)\r# install.packages(\u0026#39;devtools\u0026#39;)\r# library(devtools)\r# install_version(\u0026#39;tidyverse\u0026#39;, \u0026#39;1.3.1\u0026#39;) # Due to breaking changes, Version 1.3.1 is required.\r# install_version(\u0026#39;ggplot2\u0026#39;, \u0026#39;3.3.5\u0026#39;) # Due to breaking changes, Version 3.3.5 is required.\rlibrary(tidyverse)\rlibrary(ggplot2)\rlibrary(Cairo)\r# Load frequentist coefficients (estimates and confidence intervals)\rKR_summary_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/KR_summary_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\rconfint_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/confint_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\r# Below are the default names of the effects\r# rownames(KR_summary_semanticpriming_lmerTest$coefficients)\r# rownames(confint_semanticpriming_lmerTest)\r# Load Bayesian posterior distributions\rsemanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian = readRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian.rds?raw=true\u0026#39;)))\r# Below are the default names of the effects\r# levels(semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian$data$parameter)\r# Reorder the components of interactions in the frequentist results to match # with the order present in the Bayesian results.\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) =\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;, replacement = \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;, replacement = \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;)\rrownames(confint_semanticpriming_lmerTest) = rownames(confint_semanticpriming_lmerTest) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;, replacement = \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;, replacement = \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;)\r# Create a vector containing the names of the effects. This vector will be passed # to the plotting function.\rnew_labels = semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian$data$parameter %\u0026gt;% unique %\u0026gt;%\r# Remove the default \u0026#39;b_\u0026#39; from the beginning of each effect\rstr_remove(\u0026#39;^b_\u0026#39;) %\u0026gt;%\r# Put Intercept in parentheses\rstr_replace(pattern = \u0026#39;Intercept\u0026#39;, replacement = \u0026#39;(Intercept)\u0026#39;) %\u0026gt;%\r# First, adjust names of variables (both in main effects and in interactions)\rstr_replace(pattern = \u0026#39;z_target_word_frequency\u0026#39;,\rreplacement = \u0026#39;Target-word frequency\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_target_number_syllables\u0026#39;,\rreplacement = \u0026#39;Number of target-word syllables\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_word_concreteness_diff\u0026#39;,\rreplacement = \u0026#39;Word-concreteness difference\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_cosine_similarity\u0026#39;,\rreplacement = \u0026#39;Language-based similarity\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_visual_rating_diff\u0026#39;,\rreplacement = \u0026#39;Visual-strength difference\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_attentional_control\u0026#39;,\rreplacement = \u0026#39;Attentional control\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_vocabulary_size\u0026#39;,\rreplacement = \u0026#39;Vocabulary size\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_participant_gender\u0026#39;,\rreplacement = \u0026#39;Gender\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval\u0026#39;,\rreplacement = \u0026#39;SOA\u0026#39;) %\u0026gt;%\r# Show acronym in main effect of SOA\rstr_replace(pattern = \u0026#39;^SOA$\u0026#39;,\rreplacement = \u0026#39;Stimulus onset asynchrony (SOA)\u0026#39;) %\u0026gt;%\r# Second, adjust order of effects in interactions. In the output from the model, # the word-level variables of interest (i.e., \u0026#39;z_cosine_similarity\u0026#39; and # \u0026#39;z_visual_rating_diff\u0026#39;) sometimes appeared second in their interactions. For # better consistency, the code below moves those word-level variables (with # their new names) to the first position in their interactions. Note that the # order does not affect the results in any way.\rsub(\u0026#39;(\\\\w+.*):(Language-based similarity|Visual-strength difference)\u0026#39;, \u0026#39;\\\\2:\\\\1\u0026#39;, .) %\u0026gt;%\r# Replace colons denoting interactions with times symbols\rstr_replace(pattern = \u0026#39;:\u0026#39;, replacement = \u0026#39; \u0026amp;times; \u0026#39;)\r# Create plot\rplot_semanticpriming_frequentist_bayesian_plot_weaklyinformativepriors_exgaussian =\rfrequentist_bayesian_plot(KR_summary_semanticpriming_lmerTest,\rconfint_semanticpriming_lmerTest,\rsemanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian,\rlabels = new_labels, interaction_symbol_x = TRUE,\rvertical_line_at_x = 0, x_title = \u0026#39;Effect size (\u0026amp;beta;)\u0026#39;,\rlegend_ncol = 1) + theme(legend.position = \u0026#39;bottom\u0026#39;)\r\r\nplot_semanticpriming_frequentist_bayesian_plot_weaklyinformativepriors_exgaussian\rFrequentist and Bayesian estimates are not so polar opposites, are they? What is more, the larger differences between some estimates are the result of the priors that were set on the corresponding effects. With uninformative priors, the frequentist and the Bayesian estimates are virtually identical.\n\rNow it’s time to consider in earnest:\n\rIs frequentist statistics about \\(p\\) values only? Are frequentist estimates diametrically opposed to Bayesian posterior distributions? Are confidence intervals and credible intervals irreconcilable? Will R crash if lmerTest and brms are simultaneously loaded?\n\r\rSession info\rIf you encounter any blockers while reproducing the above analyses using the materials at https://osf.io/gt5uf, my current session info may be useful. For instance, the legend of the plot may not show if the latest versions of the ggplot2 and the tidyverse packages are used. Instead, ggplot2 3.3.5 and tidyverse 1.3.1 should be installed using install_version('ggplot2', '3.3.5') and install_version('tidyverse', '1.3.1').\nsessionInfo()\r## R version 4.2.3 (2023-03-15 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 10 x64 (build 22621)\r## ## Matrix products: default\r## ## locale:\r## [1] LC_COLLATE=English_United Kingdom.utf8 ## [2] LC_CTYPE=English_United Kingdom.utf8 ## [3] LC_MONETARY=English_United Kingdom.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United Kingdom.utf8 ## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] ggtext_0.1.2 Cairo_1.6-0 forcats_1.0.0 ## [4] stringr_1.5.0 dplyr_1.1.1 purrr_1.0.1 ## [7] readr_2.1.4 tidyr_1.3.0 tibble_3.2.1 ## [10] ggplot2_3.3.5 tidyverse_1.3.1 knitr_1.42 ## [13] xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] Rcpp_1.0.10 lubridate_1.9.2 digest_0.6.31 utf8_1.2.3 ## [5] plyr_1.8.8 R6_2.5.1 cellranger_1.1.0 ggridges_0.5.4 ## [9] backports_1.4.1 reprex_2.0.2 evaluate_0.21 highr_0.10 ## [13] httr_1.4.6 blogdown_1.16 pillar_1.9.0 rlang_1.1.0 ## [17] uuid_1.1-0 readxl_1.4.2 rstudioapi_0.14 jquerylib_0.1.4 ## [21] rmarkdown_2.21 labeling_0.4.2 munsell_0.5.0 gridtext_0.1.5 ## [25] broom_1.0.4 compiler_4.2.3 modelr_0.1.11 xfun_0.38 ## [29] pkgconfig_2.0.3 htmltools_0.5.5 tidyselect_1.2.0 bookdown_0.33.3 ## [33] fansi_1.0.4 crayon_1.5.2 tzdb_0.4.0 dbplyr_2.3.2 ## [37] withr_2.5.0 commonmark_1.9.0 grid_4.2.3 jsonlite_1.8.4 ## [41] gtable_0.3.3 lifecycle_1.0.3 DBI_1.1.3 magrittr_2.0.3 ## [45] scales_1.2.1 cli_3.4.1 stringi_1.7.12 cachem_1.0.7 ## [49] farver_2.1.1 fs_1.6.1 xml2_1.3.3 bslib_0.4.2 ## [53] generics_0.1.3 vctrs_0.6.1 tools_4.2.3 glue_1.6.2 ## [57] markdown_1.5 hms_1.1.3 fastmap_1.1.1 yaml_2.3.7 ## [61] timechange_0.2.0 colorspace_2.1-0 rvest_1.0.3 haven_2.5.2 ## [65] sass_0.4.6\r\rReferences\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\nCumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966\nKruschke, J. K., \u0026amp; Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin \u0026amp; Review, 25(1), 178–206.\nMilek, A., Butler, E. A., Tackman, A. M., Kaplan, D. M., Raison, C. L., Sbarra, D. A., Vazire, S., \u0026amp; Mehl, M. R. (2018). “Eavesdropping on happiness” revisited: A pooled, multisample replication of the association between life satisfaction and observed daily conversation quantity and quality. Psychological Science, 29(9), 1451–1462. https://doi.org/10.1177/0956797618774252\nPregla, D., Lissón, P., Vasishth, S., Burchert, F., \u0026amp; Stadie, N. (2021). Variability in sentence comprehension in aphasia in German. Brain and Language, 222, 105008. https://doi.org/10.1016/j.bandl.2021.105008\nRodríguez-Ferreiro, J., Aguilera, M., \u0026amp; Davies, R. (2020). Semantic priming and schizotypal personality: Reassessing the link between thought disorder and enhanced spreading of semantic activation. PeerJ, 8, e9511. https://doi.org/10.7717/peerj.9511\nRouder, J. N., Haaf, J. M., \u0026amp; Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychonomic Bulletin \u0026amp; Review, 25(1), 102–113. https://doi.org/10.3758/s13423-017-1420-7\nSchmalz, X., Biurrun Manresa, J., \u0026amp; Zhang, L. (2021). What is a Bayes factor? Psychological Methods. https://doi.org/10.1037/met0000421\nTendeiro, J. N., \u0026amp; Kiers, H. A. L. (2019). A review of issues about null hypothesis Bayesian testing. Psychological Methods, 24(6), 774–795. https://doi.org/10.1037/met0000221\nTendeiro, J. N., \u0026amp; Kiers, H. A. L. (2022). On the white, the black, and the many shades of gray in between: Our reply to van Ravenzwaaij and Wagenmakers (2021). Psychological Methods, 27(3), 466–475. https://doi.org/10.1037/met0000505\nvan Ravenzwaaij, D., \u0026amp; Wagenmakers, E.-J. (2022). Advantages masquerading as “issues” in Bayesian hypothesis testing: A commentary on Tendeiro and Kiers (2019). Psychological Methods, 27(3), 451–465. https://doi.org/10.1037/met0000415\n\r","date":1671753600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1671753600,"objectID":"892657f2f258f7626a3a632b6c423db1","permalink":"https://pablobernabeu.github.io/2022/why-can-t-we-be-friends-plotting-frequentist-lmertest-and-bayesian-brms-mixed-effects-models/","publishdate":"2022-12-23T00:00:00Z","relpermalink":"/2022/why-can-t-we-be-friends-plotting-frequentist-lmertest-and-bayesian-brms-mixed-effects-models/","section":"post","summary":"Frequentist and Bayesian statistics are sometimes regarded as fundamentally different philosophies. Indeed, can both qualify as philosophies or is one of them just a pointless ritual? Is frequentist statistics only about $p$ values? Are frequentist estimates diametrically opposed to Bayesian posterior distributions? Are confidence intervals and credible intervals irreconcilable? Will R crash if lmerTest and brms are simultaneously loaded?","tags":["statistics","Bayesian statistics","frequentist statistics","linear-mixed effects models","lmerTest","lme4","brms","plotting","data visualisation","s"],"title":"Why can't we be friends? Plotting frequentist (lmerTest) and Bayesian (brms) mixed-effects models","type":"post"},{"authors":[],"categories":["R","statistics"],"content":"\r\r\rwindow.xaringanExtraClipboard(null, {\"button\":\"Copy Code\",\"success\":\"Copied!\",\"error\":\"Press Ctrl+C to Copy\"})\rlibrary(dplyr)\rlibrary(ggplot2)\rlibrary(ggridges)\rlibrary(ggtext)\rlibrary(patchwork)\rlibrary(papaja)\rThis post presents a code-through of a Bayesian workflow in R, which can be reproduced using the materials at https://osf.io/gt5uf. The content is closely based on Bernabeu (2022), which was in turn based on lots of other references. In addition to those, you may wish to consider Nicenboim et al. (n.d.), a book in preparation that is already available online (https://vasishth.github.io/bayescogsci/book).\nIn Bernabeu (2022), a Bayesian analysis was performed to complement the estimates that had been obtained in the frequentist analysis. Whereas the goal of the frequentist analysis had been hypothesis testing, for which \\(p\\) values were used, the goal of the Bayesian analysis was parameter estimation. Accordingly, we estimated the posterior distribution of every effect, without calculating Bayes factors (for other examples of the same estimation approach, see Milek et al., 2018; Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; for comparisons between estimation and hypothesis testing, see Cumming, 2014; Kruschke \u0026amp; Liddell, 2018; Rouder et al., 2018; Schmalz et al., 2021; Tendeiro \u0026amp; Kiers, 2019, in press; van Ravenzwaaij \u0026amp; Wagenmakers, 2021). In the estimation approach, the estimates are interpreted by considering the position of their credible intervals in relation to the expected effect size. That is, the closer an interval is to an effect size of 0, the smaller the effect of that predictor. For instance, an interval that is symmetrically centred on 0 indicates a very small effect, whereas—in comparison—an interval that does not include 0 at all indicates a far larger effect.\nThis analysis served two purposes: first, to ascertain the interpretation of the smaller effects—which were identified as unreliable in the power analyses—, and second, to complement the estimates obtained in the frequentist analysis. The latter purpose was pertinent because the frequentist models presented convergence warnings—even though it must be noted that a previous study found that frequentist and Bayesian estimates were similar despite convergence warnings appearing in the frequentist analysis (Rodríguez-Ferreiro et al., 2020). Furthermore, the complementary analysis was pertinent because the frequentist models presented residual errors that deviated from normality—even though mixed-effects models are fairly robust to such a deviation (Knief \u0026amp; Forstmeier, 2021; Schielzeth et al., 2020). Owing to these precedents, we expected to find broadly similar estimates in the frequentist analyses and in the Bayesian ones. Across studies, each frequentist model has a Bayesian counterpart, with the exception of the secondary analysis performed in Study 2.1 (semantic priming) that included vision-based similarity as a predictor. The R package ‘brms’, Version 2.17.0, was used for the Bayesian analysis (Bürkner, 2018; Bürkner et al., 2022).\nPriors\rPriors are one of the hardest nuts to crack in Bayesian statistics. First, it can be useful to inspect what priors can be set in the model. Second, it is important to visualise a reasonable set of priors based on the available literature or any other available sources. Third, just before fitting the model, the adequacy of a range of priors should be assessed using prior predictive checks. Fourth, posterior predictive checks were performed to assess the consistency between the observed data and new data predicted by the posterior distributions. Fifth, the influence of the priors on the results should be assessed through a prior sensitivity analysis (Lee \u0026amp; Wagenmakers, 2014; Van de Schoot et al., 2021; also see Bernabeu, 2022; Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; Stone et al., 2021).\n\r1. Checking what priors can be set\rThe brms::get_prior function can be used to check what effects in the model can be assigned a prior. The output (see example) will include the current (perhaps default) prior on each effect.\n\r\r2. Determining the priors\rThe priors were established by inspecting the effect sizes obtained in previous studies as well as the effect sizes obtained in our frequentist analyses of the present data (reported in Studies 2.1, 2.2 and 2.3). In the first regard, the previous studies that were considered were selected because the experimental paradigms, variables and analytical procedures they had used were similar to those used in our current studies. Specifically, regarding paradigms, we sought studies that implemented: (I) semantic priming with a lexical decision task—as in Study 2.1—, (II) semantic decision—as in Study 2.2—, or (III) lexical decision—as in Study 2.3. Regarding analytical procedures, we sought studies in which both the dependent and the independent variables were \\(z\\)-scored. We found two studies that broadly matched these criteria: Lim et al. (2020) (see Table 5 therein) and Pexman \u0026amp; Yap (2018) (see Tables 6 and 7 therein). Out of these studies, Pexman \u0026amp; Yap (2018) contained the variables that were most similar to ours, which included vocabulary size (labelled ‘NAART’) and word frequency.\nBased on both these studies and on the frequentist analyses, a range of effect sizes was identified that spanned between β = -0.30 and β = 0.30. This range was centred around 0 as the variables were \\(z\\)-scored. The bounds of this range were determined by the largest effects, which appeared in Pexman \u0026amp; Yap (2018). Pexman et al. conducted a semantic decision study, and split the data set into abstract and concrete words. The two largest effects they found were—first—a word concreteness effect in the concrete-words analysis of β = -0.41, and—second—a word concreteness effect in the abstract-words analysis of β = 0.20. Unlike Pexman et al., we did not split the data set into abstract and concrete words, but analysed these sets together. Therefore, we averaged between the aforementioned values, obtaining a range between β = -0.30 and β = 0.30.\nIn the results of Lim et al. (2020) and Pexman \u0026amp; Yap (2018), and in our frequentist results, some effects consistently presented a negative polarity (i.e., leading to shorter response times), whereas some other effects were consistently positive. We incorporated the direction of effects into the priors only in cases of large effects that had presented a consistent direction (either positive or negative) in previous studies and in our frequentist analyses in the present studies. These criteria were matched by the following variables: word frequency—with a negative direction, as higher word frequency leads to shorter RTs (Brysbaert et al., 2016; Brysbaert et al., 2018; Lim et al., 2020; Mendes \u0026amp; Undorf, 2021; Pexman \u0026amp; Yap, 2018)—, number of letters and number of syllables—both with positive directions (Barton et al., 2014; Beyersmann et al., 2020; Pexman \u0026amp; Yap, 2018)—, and orthographic Levenshtein distance—with a positive direction (Cerni et al., 2016; Dijkstra et al., 2019; Kim et al., 2018; Yarkoni et al., 2008). We did not incorporate information about the direction of the word concreteness effect, as this effect can follow different directions in abstract and concrete words (Brysbaert et al., 2014; Pexman \u0026amp; Yap, 2018), and we analysed both sets of words together. In conclusion, the four predictors that had directional priors were covariates. All the other predictors had priors centred on 0. Last, as a methodological matter, it is noteworthy that most of the psycholinguistic studies applying Bayesian analysis have not incorporated any directional information in priors (e.g., Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; cf. Stone et al., 2021).\nPrior distributions\rThe choice of priors can influence the results in consequential ways. To assess the extent of this influence, prior sensitivity analyses have been recommended. These analyses are performed by comparing the effect of more and less strict priors—or, in other words, priors varying in their degree of informativeness. The degree of variation is adjusted through the standard deviation, and the means are not varied (Lee \u0026amp; Wagenmakers, 2014; Stone et al., 2020; Van de Schoot et al., 2021).\nIn this way, we compared the results obtained using ‘informative’ priors (\\(SD\\) = 0.1), ‘weakly-informative’ priors (\\(SD\\) = 0.2) and ‘diffuse’ priors (\\(SD\\) = 0.3). These standard deviations were chosen so that around 95% of values in the informative priors would fall within our initial range of effect sizes that spanned from -0.30 to 0.30. All priors are illustrated in the figure below. These priors resembled others from previous psycholinguistic studies (Pregla et al., 2021; Stone et al., 2020; Stone et al., 2021). For instance, Stone et al. (2020) used the following priors: \\(Normal\\)(0, 0.1), \\(Normal\\)(0, 0.3) and \\(Normal\\)(0, 1). The range of standard deviations we used—i.e., 0.1, 0.2 and 0.3—was narrower than those of previous studies because our dependent variable and our predictors were \\(z\\)-scored, resulting in small estimates and small \\(SD\\)s (see Lim et al., 2020; Pexman \u0026amp; Yap, 2018). These priors were used on the fixed effects and on the standard deviation parameters of the fixed effects. For the correlations among the random effects, an \\(LKJ\\)(2) prior was used (Lewandowski et al., 2009). This is a ‘regularising’ prior, as it assumes that high correlations among random effects are rare (also used in Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; Stone et al., 2021; Vasishth et al., 2018).\n# Set seed number to ensure exact reproducibility # of the random distributions\rset.seed(123)\r# The code below plots all our types of priors. Each distribution # contains 10,000 simulations, resulting in 90,000 rows.\r# The green vertical rectangle shows the range of plausible effect # sizes based on previous studies that applied a similar analysis # (Lim et al., 2020, https://doi.org/10.1177/1747021820906566; # Pexman \u0026amp; Yap, 2018, https://doi.org/10.1037/xlm0000499) as # well as on the frequentist analyses of the current data.\rpriors = data.frame(\rinformativeness = as.factor(c(rep(\u0026#39;Informative priors (*SD* = 0.1)\u0026#39;, 30000),\rrep(\u0026#39;Weakly-informative priors (*SD* = 0.2)\u0026#39;, 30000),\rrep(\u0026#39;Diffuse priors (*SD* = 0.3)\u0026#39;, 30000))), direction = as.factor(c(rep(\u0026#39;negative\u0026#39;, 10000), rep(\u0026#39;neutral\u0026#39;, 10000),\rrep(\u0026#39;positive\u0026#39;, 10000),\rrep(\u0026#39;negative\u0026#39;, 10000), rep(\u0026#39;neutral\u0026#39;, 10000),\rrep(\u0026#39;positive\u0026#39;, 10000),\rrep(\u0026#39;negative\u0026#39;, 10000), rep(\u0026#39;neutral\u0026#39;, 10000),\rrep(\u0026#39;positive\u0026#39;, 10000))),\rdirection_and_distribution = as.factor(c(rep(\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.1)\u0026#39;, 10000), rep(\u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.1)\u0026#39;, 10000),\rrep(\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.1)\u0026#39;, 10000),\rrep(\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.2)\u0026#39;, 10000),\rrep(\u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.2)\u0026#39;, 10000),\rrep(\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.2)\u0026#39;, 10000),\rrep(\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.3)\u0026#39;, 10000), rep(\u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.3)\u0026#39;, 10000),\rrep(\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.3)\u0026#39;, 10000))),\restimate = c(rnorm(10000, m = -0.1, sd = 0.1),\rrnorm(10000, m = 0, sd = 0.1),\rrnorm(10000, m = 0.1, sd = 0.1),\rrnorm(10000, m = -0.1, sd = 0.2),\rrnorm(10000, m = 0, sd = 0.2),\rrnorm(10000, m = 0.1, sd = 0.2),\rrnorm(10000, m = -0.1, sd = 0.3),\rrnorm(10000, m = 0, sd = 0.3),\rrnorm(10000, m = 0.1, sd = 0.3))\r)\r# Order factor levels\rpriors$informativeness = ordered(priors$informativeness, levels = c(\u0026#39;Informative priors (*SD* = 0.1)\u0026#39;, \u0026#39;Weakly-informative priors (*SD* = 0.2)\u0026#39;, \u0026#39;Diffuse priors (*SD* = 0.3)\u0026#39;))\rpriors$direction = ordered(priors$direction, levels = c(\u0026#39;negative\u0026#39;, \u0026#39;neutral\u0026#39;, \u0026#39;positive\u0026#39;))\rpriors$direction_and_distribution =\rordered(priors$direction_and_distribution,\rlevels = c(\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.1)\u0026#39;, \u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.1)\u0026#39;,\r\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.1)\u0026#39;,\r\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.2)\u0026#39;, \u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.2)\u0026#39;,\r\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.2)\u0026#39;,\r\u0026#39;Negative (*M* = -0.1)\u0026lt;br\u0026gt;*Normal*(-0.1, 0.3)\u0026#39;, \u0026#39;Neutral (*M* = 0)\u0026lt;br\u0026gt;*Normal*(0, 0.3)\u0026#39;,\r\u0026#39;Positive (*M* = 0.1)\u0026lt;br\u0026gt;*Normal*(0.1, 0.3)\u0026#39;))\r# PLOT zone\rcolours = c(\u0026#39;#7276A2\u0026#39;, \u0026#39;black\u0026#39;, \u0026#39;#A27272\u0026#39;)\rfill_colours = c(\u0026#39;#CCCBE7\u0026#39;, \u0026#39;#D7D7D7\u0026#39;, \u0026#39;#E7CBCB\u0026#39;)\r# Initialise plot (`aes` specified separately to allow # use of `geom_rect` at the end)\rggplot() +\r# Turn to the distributions\rstat_density_ridges(data = priors, aes(x = estimate, y = direction_and_distribution, color = direction, fill = direction),\rgeom = \u0026#39;density_ridges_gradient\u0026#39;, alpha = 0.7, jittered_points = TRUE, quantile_lines = TRUE, quantiles = c(0.025, 0.975), show.legend = F) +\rscale_color_manual(values = colours) + scale_fill_manual(values = fill_colours) + # Adjust X axis to the random distributions obtained\rscale_x_continuous(limits = c(min(priors$estimate), max(priors$estimate)), n.breaks = 6, expand = c(0.04, 0.04)) +\rscale_y_discrete(expand = expansion(add = c(0.18, 1.9))) +\r# Facets containing the three models varying in informativeness\rfacet_wrap(vars(informativeness), scales = \u0026#39;free\u0026#39;, dir = \u0026#39;v\u0026#39;) +\r# Vertical line at x = 0\rgeom_vline(xintercept = 0, linetype = \u0026#39;dashed\u0026#39;, color = \u0026#39;grey50\u0026#39;) +\rxlab(\u0026#39;Effect size (\u0026amp;beta;)\u0026#39;) + ylab(\u0026#39;Direction of the prior and corresponding distribution\u0026#39;) +\rtheme_minimal() +\rtheme(axis.title.x = ggtext::element_markdown(size = 12, margin = margin(t = 9)),\raxis.text.x = ggtext::element_markdown(size = 11, margin = margin(t = 4)),\raxis.title.y = ggtext::element_markdown(size = 12, margin = margin(r = 9)),\raxis.text.y = ggtext::element_markdown(lineheight = 1.6, colour = colours),\rstrip.background = element_rect(fill = \u0026#39;grey98\u0026#39;, colour = \u0026#39;grey90\u0026#39;,\rlinetype = \u0026#39;solid\u0026#39;),\rstrip.text = element_markdown(size = 11, margin = margin(t = 7, b = 7)),\rpanel.spacing.y = unit(9, \u0026#39;pt\u0026#39;), panel.grid.minor = element_blank(), plot.margin = margin(8, 8, 9, 8)\r) +\r# Shaded rectangle containing range of previous effects\rgeom_rect(data = data.frame(x = 1), xmin = -0.3, xmax = 0.3, ymin = -Inf, ymax = Inf, fill = \u0026#39;darkgreen\u0026#39;, alpha = .3)\r\rPriors used in the three studies. The green vertical rectangle shows the range of plausible effect sizes based on previous studies and on our frequentist analyses. In the informative priors, around 95% of the values fall within the range.\n\r\n\r\r3. Prior predictive checks\rThe adequacy of each of these priors was assessed by performing prior predictive checks, in which we compared the observed data to the predictions of the model (Van de Schoot et al., 2021). Furthermore, in these checks we also tested the adequacy of two model-wide distributions: the traditional Gaussian distribution (default in most analyses) and an exponentially modified Gaussian—dubbed ‘ex-Gaussian’—distribution (Matzke \u0026amp; Wagenmakers, 2009). The ex-Gaussian distribution was considered because the residual errors of the frequentist models were not normally distributed (Lo \u0026amp; Andrews, 2015), and because this distribution was found to be more appropriate than the Gaussian one in a previous, related study (see supplementary materials of Rodríguez-Ferreiro et al., 2020). The ex-Gaussian distribution had an identity link function, which preserves the interpretability of the coefficients, as opposed to a transformation applied directly to the dependent variable (Lo \u0026amp; Andrews, 2015). The results of these prior predictive checks revealed that the priors were adequate, and that the ex-Gaussian distribution was more appropriate than the Gaussian one, converging with Rodríguez-Ferreiro et al. (2020). Therefore, the ex-Gaussian distribution was used in the final models.\n\rModels with a Gaussian distribution\rThe figures below show the prior predictive checks for the Gaussian models. These plots show the maximum, mean and minimum values of the observed data (\\(y\\)) and those of the predicted distribution (\\(y_{rep}\\), which stands for replications of the outcome). The way of interpreting these plots is by comparing the observed data to the predicted distribution. The specifics of this comparison vary across the three plots. First, in the upper plot, which shows the maximum values, the ideal scenario would show the observed maximum value (\\(y\\)) overlapping with the maximum value of the predicted distribution (\\(y_{rep}\\)). Second, in the middle plot, showing the mean values, the ideal scenario would show the observed mean value (\\(y\\)) overlapping with the mean value of the predicted distribution (\\(y_{rep}\\)). Last, in the lower plot, which shows the minimum values, the ideal scenario would have the observed minimum value (\\(y\\)) overlapping with the minimum value of the predicted distribution (\\(y_{rep}\\)). While the overlap need not be absolute, the closer the observed and the predicted values are on the X axis, the better. As such, the three predictive checks below—corresponding to models that used the default Gaussian distribution—show that the priors fitted the data acceptably but not very well.\n\rPrior predictive checks for the Gaussian, informative-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rPrior predictive checks for the Gaussian, weakly-informative-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rPrior predictive checks for the Gaussian, diffuse-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rModels with an exponentially-modified Gaussian (i.e., ex-Gaussian) distribution\rIn contrast to the above results, the figures below demonstrate that, when an ex-Gaussian distribution was used, the priors fitted the data far better, which converged with the results of a similar comparison performed by Rodríguez-Ferreiro et al. (2020; see supplementary materials of the latter study).\n\rPrior predictive checks for the ex-Gaussian, informative-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rPrior predictive checks for the ex-Gaussian, weakly-informative-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\rPrior predictive checks for the ex-Gaussian, diffuse-prior model from the semantic priming study. \\(y\\) = observed data; \\(y_{rep}\\) = predicted data.\n\r\n\r\r4. Posterior predictive checks\rBased on the results from the prior predictive checks, the ex-Gaussian distribution was used in the final models. Next, posterior predictive checks were performed to assess the consistency between the observed data and new data predicted by the posterior distributions (Van de Schoot et al., 2021). The figure below presents the posterior predictive checks for the latter models. The interpretation of these plots is simple: the distributions of the observed (\\(y\\)) and the predicted data (\\(y_{rep}\\)) should be as similar as possible. As such, the plots below suggest that the results are trustworthy.\n\r\rPosterior predictive checks for the (ex-Gaussian) models from the semantic priming study. The observed data (\\(y\\)) and the predicted data (\\(y_{rep}\\)) almost entirely overlap with each other, demonstrating a very good fit.\n\r\n\r5. Prior sensitivity analysis\rIn the main analysis, the informative, weakly-informative and diffuse priors were used in separate models. In other words, in each model, all priors had the same degree of informativeness (as done in Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; Stone et al., 2021). In this way, a prior sensitivity analysis was performed to acknowledge the likely influence of the priors on the posterior distributions—that is, on the results (Lee \u0026amp; Wagenmakers, 2014; Stone et al., 2020; Van de Schoot et al., 2021).\nWe’ll first load a custom function (frequentist_bayesian_plot) from GitHub.\nsource(\u0026#39;https://raw.githubusercontent.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/main/R_functions/frequentist_bayesian_plot.R\u0026#39;)\r# Presenting the frequentist and the Bayesian estimates in the same plot. # For this purpose, the frequentist results are merged into a plot from # brms::mcmc_plot()\r# install.packages(\u0026#39;devtools\u0026#39;)\r# library(devtools)\r# install_version(\u0026#39;tidyverse\u0026#39;, \u0026#39;1.3.1\u0026#39;) # Due to breaking changes, Version 1.3.1 is required.\r# install_version(\u0026#39;ggplot2\u0026#39;, \u0026#39;5.3.5\u0026#39;) # Due to breaking changes, Version 5.3.5 is required.\rlibrary(tidyverse)\rlibrary(ggplot2)\rlibrary(Cairo)\r# Load frequentist coefficients (estimates and confidence intervals)\rKR_summary_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/KR_summary_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\rconfint_semanticpriming_lmerTest =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/frequentist_analysis/results/confint_semanticpriming_lmerTest.rds?raw=true\u0026#39;)))\r# Below are the default names of the effects\r# rownames(KR_summary_semanticpriming_lmerTest$coefficients)\r# rownames(confint_semanticpriming_lmerTest)\r# Load Bayesian posterior distributions\rsemanticpriming_posteriordistributions_informativepriors_exgaussian = readRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_posteriordistributions_informativepriors_exgaussian.rds?raw=true\u0026#39;)))\rsemanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian =\rreadRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian.rds?raw=true\u0026#39;)))\rsemanticpriming_posteriordistributions_diffusepriors_exgaussian = readRDS(gzcon(url(\u0026#39;https://github.com/pablobernabeu/language-sensorimotor-simulation-PhD-thesis/blob/main/semanticpriming/bayesian_analysis/results/semanticpriming_posteriordistributions_diffusepriors_exgaussian.rds?raw=true\u0026#39;)))\r# Below are the default names of the effects\r# levels(semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian$data$parameter)\r# Reorder the components of interactions in the frequentist results to match # with the order present in the Bayesian results.\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) =\rrownames(KR_summary_semanticpriming_lmerTest$coefficients) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;, replacement = \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;, replacement = \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;)\rrownames(confint_semanticpriming_lmerTest) = rownames(confint_semanticpriming_lmerTest) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_cosine_similarity\u0026#39;, replacement = \u0026#39;z_cosine_similarity:z_recoded_interstimulus_interval\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval:z_visual_rating_diff\u0026#39;, replacement = \u0026#39;z_visual_rating_diff:z_recoded_interstimulus_interval\u0026#39;)\r# Create a vector containing the names of the effects. This vector will be passed # to the plotting function.\rnew_labels = semanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian$data$parameter %\u0026gt;% unique %\u0026gt;%\r# Remove the default \u0026#39;b_\u0026#39; from the beginning of each effect\rstr_remove(\u0026#39;^b_\u0026#39;) %\u0026gt;%\r# Put Intercept in parentheses\rstr_replace(pattern = \u0026#39;Intercept\u0026#39;, replacement = \u0026#39;(Intercept)\u0026#39;) %\u0026gt;%\r# First, adjust names of variables (both in main effects and in interactions)\rstr_replace(pattern = \u0026#39;z_target_word_frequency\u0026#39;,\rreplacement = \u0026#39;Target-word frequency\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_target_number_syllables\u0026#39;,\rreplacement = \u0026#39;Number of target-word syllables\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_word_concreteness_diff\u0026#39;,\rreplacement = \u0026#39;Word-concreteness difference\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_cosine_similarity\u0026#39;,\rreplacement = \u0026#39;Language-based similarity\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_visual_rating_diff\u0026#39;, replacement = \u0026#39;Visual-strength difference\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_attentional_control\u0026#39;,\rreplacement = \u0026#39;Attentional control\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_vocabulary_size\u0026#39;,\rreplacement = \u0026#39;Vocabulary size\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_participant_gender\u0026#39;,\rreplacement = \u0026#39;Gender\u0026#39;) %\u0026gt;%\rstr_replace(pattern = \u0026#39;z_recoded_interstimulus_interval\u0026#39;,\rreplacement = \u0026#39;SOA\u0026#39;) %\u0026gt;%\r# Show acronym in main effect of SOA\rstr_replace(pattern = \u0026#39;^SOA$\u0026#39;,\rreplacement = \u0026#39;Stimulus onset asynchrony (SOA)\u0026#39;) %\u0026gt;%\r# Second, adjust order of effects in interactions. In the output from the model, # the word-level variables of interest (i.e., \u0026#39;z_cosine_similarity\u0026#39; and # \u0026#39;z_visual_rating_diff\u0026#39;) sometimes appeared second in their interactions. For # better consistency, the code below moves those word-level variables (with # their new names) to the first position in their interactions. Note that the # order does not affect the results in any way.\rsub(\u0026#39;(\\\\w+.*):(Language-based similarity|Visual-strength difference)\u0026#39;, \u0026#39;\\\\2:\\\\1\u0026#39;, .) %\u0026gt;%\r# Replace colons denoting interactions with times symbols\rstr_replace(pattern = \u0026#39;:\u0026#39;, replacement = \u0026#39; \u0026amp;times; \u0026#39;) # Create plots, beginning with the informative-prior model\rplot_semanticpriming_frequentist_bayesian_plot_informativepriors_exgaussian =\rfrequentist_bayesian_plot(KR_summary_semanticpriming_lmerTest,\rconfint_semanticpriming_lmerTest,\rsemanticpriming_posteriordistributions_informativepriors_exgaussian,\rlabels = new_labels, interaction_symbol_x = TRUE,\rvertical_line_at_x = 0, x_title = \u0026#39;Effect size (\u0026amp;beta;)\u0026#39;, x_axis_labels = 3, note_frequentist_no_prior = TRUE) +\rggtitle(\u0026#39;Prior *SD* = 0.1\u0026#39;)\r#####\rplot_semanticpriming_frequentist_bayesian_plot_weaklyinformativepriors_exgaussian =\rfrequentist_bayesian_plot(KR_summary_semanticpriming_lmerTest,\rconfint_semanticpriming_lmerTest,\rsemanticpriming_posteriordistributions_weaklyinformativepriors_exgaussian,\rlabels = new_labels, interaction_symbol_x = TRUE,\rvertical_line_at_x = 0, x_title = \u0026#39;Effect size (\u0026amp;beta;)\u0026#39;,\rx_axis_labels = 3, note_frequentist_no_prior = TRUE) +\rggtitle(\u0026#39;Prior *SD* = 0.2\u0026#39;) +\rtheme(axis.text.y = element_blank())\r#####\rplot_semanticpriming_frequentist_bayesian_plot_diffusepriors_exgaussian =\rfrequentist_bayesian_plot(KR_summary_semanticpriming_lmerTest,\rconfint_semanticpriming_lmerTest,\rsemanticpriming_posteriordistributions_diffusepriors_exgaussian,\rlabels = new_labels, interaction_symbol_x = TRUE,\rvertical_line_at_x = 0, x_title = \u0026#39;Effect size (\u0026amp;beta;)\u0026#39;, x_axis_labels = 3, note_frequentist_no_prior = TRUE) +\rggtitle(\u0026#39;Prior *SD* = 0.3\u0026#39;) + theme(axis.text.y = element_blank())\r\r\nThe figure below presents the posterior distribution of each effect in each model. The frequentist estimates are also shown to facilitate the comparison.\nplot_semanticpriming_frequentist_bayesian_plot_informativepriors_exgaussian +\rplot_semanticpriming_frequentist_bayesian_plot_weaklyinformativepriors_exgaussian +\rplot_semanticpriming_frequentist_bayesian_plot_diffusepriors_exgaussian +\rplot_layout(ncol = 3, guides = \u0026#39;collect\u0026#39;) \u0026amp; theme(legend.position = \u0026#39;bottom\u0026#39;)\r\rEstimates from the frequentist analysis (in red) and from the Bayesian analysis (in blue) for the semantic priming study, in each model. The frequentist means (represented by points) are flanked by 95% confidence intervals. The Bayesian means (represented by vertical lines) are flanked by 95% credible intervals in light blue (in some cases, the interval is occluded by the bar of the mean)\n\r\nA blog post on the frequentist-Bayesian plots is also available.\nSession info\rIf you encounter any blockers while reproduce the above analyses using the materials at https://osf.io/gt5uf, my current session info may be useful. For instance, the legend of the last plot may not show if the latest versions of the ggplot2 and the tidyverse packages are used. Instead, ggplot2 3.3.5 and tidyverse 1.3.1 should be installed using install_version('ggplot2', '3.3.5') and install_version('tidyverse', '1.3.1').\nsessionInfo()\r## R version 4.2.3 (2023-03-15 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 10 x64 (build 22621)\r## ## Matrix products: default\r## ## locale:\r## [1] LC_COLLATE=English_United Kingdom.utf8 ## [2] LC_CTYPE=English_United Kingdom.utf8 ## [3] LC_MONETARY=English_United Kingdom.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United Kingdom.utf8 ## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] Cairo_1.6-0 forcats_1.0.0 stringr_1.5.0 ## [4] purrr_1.0.1 readr_2.1.4 tidyr_1.3.0 ## [7] tibble_3.2.1 tidyverse_1.3.1 papaja_0.1.1 ## [10] tinylabels_0.2.3 patchwork_1.1.2 ggtext_0.1.2 ## [13] ggridges_0.5.4 ggplot2_3.3.5 dplyr_1.1.1 ## [16] knitr_1.42 xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] fs_1.6.1 lubridate_1.9.2 insight_0.19.2 httr_1.4.6 ## [5] tools_4.2.3 backports_1.4.1 bslib_0.4.2 utf8_1.2.3 ## [9] R6_2.5.1 DBI_1.1.3 colorspace_2.1-0 withr_2.5.0 ## [13] tidyselect_1.2.0 emmeans_1.8.7 compiler_4.2.3 cli_3.4.1 ## [17] rvest_1.0.3 xml2_1.3.3 sandwich_3.0-2 labeling_0.4.2 ## [21] bookdown_0.33.3 bayestestR_0.13.1 sass_0.4.6 scales_1.2.1 ## [25] mvtnorm_1.1-3 commonmark_1.9.0 digest_0.6.31 rmarkdown_2.21 ## [29] pkgconfig_2.0.3 htmltools_0.5.5 dbplyr_2.3.2 fastmap_1.1.1 ## [33] highr_0.10 rlang_1.1.0 readxl_1.4.2 rstudioapi_0.14 ## [37] jquerylib_0.1.4 farver_2.1.1 generics_0.1.3 zoo_1.8-11 ## [41] jsonlite_1.8.4 magrittr_2.0.3 parameters_0.21.1 Matrix_1.6-1 ## [45] Rcpp_1.0.10 munsell_0.5.0 fansi_1.0.4 lifecycle_1.0.3 ## [49] stringi_1.7.12 multcomp_1.4-23 yaml_2.3.7 MASS_7.3-60 ## [53] plyr_1.8.8 grid_4.2.3 crayon_1.5.2 lattice_0.21-8 ## [57] haven_2.5.2 splines_4.2.3 gridtext_0.1.5 hms_1.1.3 ## [61] pillar_1.9.0 uuid_1.1-0 markdown_1.5 estimability_1.4.1\r## [65] effectsize_0.8.3 codetools_0.2-19 reprex_2.0.2 glue_1.6.2 ## [69] evaluate_0.21 blogdown_1.16 modelr_0.1.11 vctrs_0.6.1 ## [73] tzdb_0.4.0 cellranger_1.1.0 gtable_0.3.3 datawizard_0.8.0 ## [77] cachem_1.0.7 xfun_0.38 xtable_1.8-4 broom_1.0.4 ## [81] survival_3.5-7 timechange_0.2.0 TH.data_1.1-1\r\rReferences\rBarton, J. J. S., Hanif, H. M., Eklinder Björnström, L., \u0026amp; Hills, C. (2014). The word-length effect in reading: A review. Cognitive Neuropsychology, 31(5-6), 378–412. https://doi.org/10.1080/02643294.2014.895314\r\rBernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\r\rBeyersmann, E., Grainger, J., \u0026amp; Taft, M. (2020). Evidence for embedded word length effects in complex nonwords. Language, Cognition and Neuroscience, 35(2), 235–245. https://doi.org/10.1080/23273798.2019.1659989\r\rBrysbaert, M., Mandera, P., \u0026amp; Keuleers, E. (2018). The word frequency effect in word processing: An updated review. Current Directions in Psychological Science, 27(1), 45–50. https://doi.org/10.1177/0963721417727521\r\rBrysbaert, M., Stevens, M., Mandera, P., \u0026amp; Keuleers, E. (2016). The impact of word prevalence on lexical decision times: Evidence from the Dutch Lexicon Project 2. Journal of Experimental Psychology: Human Perception and Performance, 42(3), 441–458. https://doi.org/10.1037/xhp0000159\r\rBrysbaert, M., Warriner, A. B., \u0026amp; Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46, 904–911. https://doi.org/10.3758/s13428-013-0403-5\r\rBürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411. https://journal.r-project.org/archive/2018/RJ-2018-017/index.html\r\rBürkner, P.-C., Gabry, J., Weber, S., Johnson, A., Modrak, M., Badr, H. S., Weber, F., Ben-Shachar, M. S., \u0026amp; Rabel, H. (2022). Package ’brms’. CRAN. https://cran.r-project.org/web/packages/brms/brms.pdf\r\rCerni, T., Velay, J.-L., Alario, F.-X., Vaugoyeau, M., \u0026amp; Longcamp, M. (2016). Motor expertise for typing impacts lexical decision performance. Trends in Neuroscience and Education, 5(3), 130–138. https://doi.org/10.1016/j.tine.2016.07.007\r\rCumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966\r\rDijkstra, T., Wahl, A., Buytenhuijs, F., Halem, N. V., Al-Jibouri, Z., Korte, M. D., \u0026amp; Rekké, S. (2019). Multilink: A computational model for bilingual word recognition and word translation. Bilingualism: Language and Cognition, 22(4), 657–679. https://doi.org/10.1017/S1366728918000287\r\rKim, M., Crossley, S. A., \u0026amp; Skalicky, S. (2018). Effects of lexical features, textual properties, and individual differences on word processing times during second language reading comprehension. Reading and Writing, 31(5), 1155–1180. https://doi.org/10.1007/s11145-018-9833-x\r\rKnief, U., \u0026amp; Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods. https://doi.org/10.3758/s13428-021-01587-5\r\rKruschke, J. K., \u0026amp; Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin \u0026amp; Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4\r\rLee, M. D., \u0026amp; Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press. https://doi.org/10.1017/CBO9781139087759\r\rLewandowski, D., Kurowicka, D., \u0026amp; Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008\r\rLim, R. Y., Yap, M. J., \u0026amp; Tse, C.-S. (2020). Individual differences in Cantonese Chinese word recognition: Insights from the Chinese Lexicon Project. Quarterly Journal of Experimental Psychology, 73(4), 504–518. https://doi.org/10.1177/1747021820906566\r\rLo, S., \u0026amp; Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, 6, 1171. https://doi.org/10.3389/fpsyg.2015.01171\r\rMatzke, D., \u0026amp; Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin \u0026amp; Review, 16(5), 798–817. https://doi.org/10.3758/PBR.16.5.798\r\rMendes, P. S., \u0026amp; Undorf, M. (2021). On the pervasive effect of word frequency in metamemory. Quarterly Journal of Experimental Psychology, 17470218211053329. https://doi.org/10.1177/17470218211053329\r\rMilek, A., Butler, E. A., Tackman, A. M., Kaplan, D. M., Raison, C. L., Sbarra, D. A., Vazire, S., \u0026amp; Mehl, M. R. (2018). “Eavesdropping on happiness” revisited: A pooled, multisample replication of the association between life satisfaction and observed daily conversation quantity and quality. Psychological Science, 29(9), 1451–1462. https://doi.org/10.1177/0956797618774252\r\rNicenboim, B., Schad, D., \u0026amp; Vasishth, S. (n.d.). An introduction to Bayesian data analysis for cognitive science. Chapman and Hall/CRC Statistics in the Social and Behavioral Sciences Series.\r\rPexman, P. M., \u0026amp; Yap, M. J. (2018). Individual differences in semantic processing: Insights from the Calgary semantic decision project. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1091–1112. https://doi.org/10.1037/xlm0000499\r\rPregla, D., Lissón, P., Vasishth, S., Burchert, F., \u0026amp; Stadie, N. (2021). Variability in sentence comprehension in aphasia in German. Brain and Language, 222, 105008. https://doi.org/10.1016/j.bandl.2021.105008\r\rRodríguez-Ferreiro, J., Aguilera, M., \u0026amp; Davies, R. (2020). Semantic priming and schizotypal personality: Reassessing the link between thought disorder and enhanced spreading of semantic activation. PeerJ, 8, e9511. https://doi.org/10.7717/peerj.9511\r\rRouder, J. N., Haaf, J. M., \u0026amp; Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychonomic Bulletin \u0026amp; Review, 25(1), 102–113. https://doi.org/10.3758/s13423-017-1420-7\r\rSchielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C., Réale, D., Dochtermann, N. A., Garamszegi, L. Z., \u0026amp; Araya‐Ajoy, Y. G. (2020). Robustness of linear mixed‐effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11(9), 1141–1152. https://doi.org/10.1111/2041-210X.13434\r\rSchmalz, X., Biurrun Manresa, J., \u0026amp; Zhang, L. (2021). What is a Bayes factor? Psychological Methods. https://doi.org/10.1037/met0000421\r\rStone, K., Malsburg, T. von der, \u0026amp; Vasishth, S. (2020). The effect of decay and lexical uncertainty on processing long-distance dependencies in reading. PeerJ, 8, e10438. https://doi.org/10.7717/peerj.10438\r\rStone, K., Veríssimo, J., Schad, D. J., Oltrogge, E., Vasishth, S., \u0026amp; Lago, S. (2021). The interaction of grammatically distinct agreement dependencies in predictive processing. Language, Cognition and Neuroscience, 36(9), 1159–1179. https://doi.org/10.1080/23273798.2021.1921816\r\rTendeiro, J. N., \u0026amp; Kiers, H. A. L. (2019). A review of issues about null hypothesis Bayesian testing. Psychological Methods, 24(6), 774–795. https://doi.org/10.1037/met0000221\r\rTendeiro, J. N., \u0026amp; Kiers, H. A. L. (in press). On the white, the black, and the many shades of gray in between: Our reply to van Ravenzwaaij and Wagenmakers (2021). Psychological Methods.\r\rVan de Schoot, R., Depaoli, S., Gelman, A., King, R., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., Willemsen, J., \u0026amp; Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1, 3. https://doi.org/10.1038/s43586-020-00003-0\r\rvan Ravenzwaaij, D., \u0026amp; Wagenmakers, E.-J. (2021). Advantages masquerading as “issues” in Bayesian hypothesis testing: A commentary on Tendeiro and Kiers (2019). Psychological Methods. https://doi.org/10.1037/met0000415\r\rVasishth, S., Nicenboim, B., Beckman, M. E., Li, F., \u0026amp; Kong, E. J. (2018). Bayesian data analysis in the phonetic sciences: A tutorial introduction. Journal of Phonetics, 71, 147–161. https://doi.org/10.1016/j.wocn.2018.07.008\r\rYarkoni, T., Balota, D., \u0026amp; Yap, M. J. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin \u0026amp; Review, 15(5), 971–979. https://doi.org/10.3758/PBR.15.5.971\r\r\r\r\r","date":1671667200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1671667200,"objectID":"2895a175c5fb1f734016c2e19a19dbbe","permalink":"https://pablobernabeu.github.io/2022/bayesian-workflow-prior-determination-predictive-checks-and-sensitivity-analyses/","publishdate":"2022-12-22T00:00:00Z","relpermalink":"/2022/bayesian-workflow-prior-determination-predictive-checks-and-sensitivity-analyses/","section":"post","summary":"This post presents a run-through of a Bayesian workflow in R. The content is *closely* based on Bernabeu (2022), which was in turn based on lots of other references, also cited here.","tags":["Bayesian statistics","linear mixed-effects models","priors","predictive checks","sensitivity analysis","R","visualisation","brms","s"],"title":"Bayesian workflow: Prior determination, predictive checks and sensitivity analyses","type":"post"},{"authors":["Bernabeu, P., Lynott, D., \u0026 Connell, L."],"categories":["conceptual processing","embodied cognition","statistical power","research methods","statistics"],"content":"\r Online book\r\r\r\nReference\rBernabeu, P., Lynott, D., \u0026amp; Connell, L. (2022). Language and vision in conceptual processing: Multilevel analysis and statistical power. OSF. https://osf.io/dnskh\n\r","date":1665792000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1665792000,"objectID":"2df7d61d7171559226e1a31f94ee9097","permalink":"https://pablobernabeu.github.io/publication/language-vision-conceptual-processing/","publishdate":"2022-10-22T09:10:27Z","relpermalink":"/publication/language-vision-conceptual-processing/","section":"publication","summary":"Research has suggested that conceptual processing depends on both language-based and vision-based information. We tested this interplay at three levels of the experimental structure: individuals, words and tasks. To this end, we drew on three existing, large data sets that implemented the paradigms of semantic priming, semantic decision and lexical decision. We extended these data sets with measures of language-based and vision-based information, and analysed how the latter variables interacted with participants' vocabulary size and gender, and also with presentation speed in the semantic priming study. We performed the analysis using mixed-effects models that included a comprehensive array of fixed effects---including covariates---and random effects. First, we found that language-based information was more important than vision-based information. Second, in the semantic priming study---whose task required distinguishing between words and nonwords---, both language-based and vision-based information were more influential when words were presented faster. Third, a 'task-relevance advantage' was identified in higher-vocabulary participants. Specifically, in lexical decision, higher-vocabulary participants were more sensitive to language-based information than lower-vocabulary participants. In contrast, in semantic decision, higher-vocabulary participants were more sensitive to word concreteness. Fourth, we demonstrated the influence of the analytical method on the results. These findings support the interplay between language and vision in conceptual processing, and demonstrate the influence of measurement instruments on the results. Last, we estimated the sample size required to reliably investigate various effects. We found that 300 participants were sufficient to examine the effect of language-based information contained in words, whereas more than 1,000 participants were necessary to examine the effect of vision-based information and the interactions of both former variables with vocabulary size, gender and presentation speed. In conclusion, this power analysis reveals the need to increase sample sizes when conducting research on perceptual simulation and individual differences.","tags":["semantic processing","semantic priming","semantic decision","lexical decision","language","vision","visual strength","cognition","psycholinguistics","reading","linear mixed-effects models","frequentist statistics","lme4","lmerTest","Bayesian statistics","brms","power analysis","sample size","simr","rstats","R"],"title":"Language and vision in conceptual processing: Multilevel analysis and statistical power","type":"publication"},{"authors":["Bernabeu, P."],"categories":["conceptual processing","embodied cognition","statistical power`","research methods","statistics"],"content":"\n\u0026nbsp; Online book \r\rReference Bernabeu, P. (2022). Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power. Lancaster University. https://doi.org/10.17635/lancaster/thesis/1795\n\rRelated references Abrams, M. B., Bjaalie, J. G., Das, S., Egan, G. F., Ghosh, S. S., Goscinski, W. J., Grethe, J. S., Kotaleski, J. H., Ho, E. T. W., Kennedy, D. N., Lanyon, L. J., Leergaard, T. B., Mayberg, H. S., Milanesi, L., Mouček, R., Poline, J. B., Roy, P. K., Strother, S. C., Tang, T. B., \u0026hellip; Martone, M. E. (2022). A Standards Organization for Open and FAIR Neuroscience: The International Neuroinformatics Coordinating Facility. Neuroinformatics, 20(1), 25\u0026ndash;36. https://doi.org/10.1007/s12021-020-09509-0\nAburumman, N., Gillies, M., Ward, J. A., \u0026amp; Hamilton, A. F. de C. (2022). Nonverbal communication in virtual reality: Nodding as a social signal in virtual interactions. International Journal of Human-Computer Studies, 164, 102819. https://doi.org/10.1016/j.ijhcs.2022.102819\nAbu‐Zhaya, R., Arnon, I., \u0026amp; Borovsky, A. (2022). Do Children Use Multi‐Word Information in Real‐Time Sentence Comprehension? Cognitive Science, 46(3), e13111. https://doi.org/10.1111/cogs.13111\nAchterberg, M., Becht, A., Van Der Cruijsen, R., Van De Groep, I. H., Spaans, J. P., Klapwijk, E., \u0026amp; Crone, E. A. (2022). Longitudinal associations between social media use, mental well-being and structural brain development across adolescence. Developmental Cognitive Neuroscience, 54, 101088. https://doi.org/10.1016/j.dcn.2022.101088\nAdamo, P., Oddenino, F., De Leo, D., Agnelli, M., Cescon, C., Temporiti, F., \u0026amp; Gatti, R. (2022). Dispersion of Knee Helical Axes during Walking after Maximal versus Resistant Strength Training in Healthy Subjects. Applied Sciences, 12(12), 5850. https://doi.org/10.3390/app12125850\nAdams, H., Stefanucci, J., Creem-Regehr, S., \u0026amp; Bodenheimer, B. (2022). Depth Perception in Augmented Reality: The Effects of Display, Shadow, and Position. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 792\u0026ndash;801. https://doi.org/10.1109/VR51125.2022.00101\nAdeleke, R., Iyanda, A. E., Osayomi, T., \u0026amp; Alabede, O. (2022). Tackling female digital exclusion: Drivers and constraints of female Internet use in Nigeria. African Geographical Review, 41(4), 531\u0026ndash;544. https://doi.org/10.1080/19376812.2021.1963296\nAggarwal, N., Williams, L. E., Tromp, D. P. M., Pine, D. S., \u0026amp; Kalin, N. H. (2022). A dynamic relation between whole-brain white matter microstructural integrity and anxiety symptoms in preadolescent females with pathological anxiety. Translational Psychiatry, 12(1), 57. https://doi.org/10.1038/s41398-022-01827-y\nAgmon, G., Loewenstein, Y., \u0026amp; Grodzinsky, Y. (2022). Negative sentences exhibit a sustained effect in delayed verification tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(1), 122\u0026ndash;141. https://doi.org/10.1037/xlm0001059\nAgrawal, A., Nag, S., Hari, K. V. S., \u0026amp; Arun, S. P. (2022). Letter processing in upright bigrams predicts reading fluency variations in children. Journal of Experimental Psychology: General, 151(9), 2237\u0026ndash;2249. https://doi.org/10.1037/xge0001175\nAkil, A. M., Ujhelyi, A., \u0026amp; Logemann, H. N. A. (2022). Exposure to Depression Memes on Social Media Increases Depressive Mood and It Is Moderated by Self-Regulation: Evidence From Self-Report and Resting EEG Assessments. Frontiers in Psychology, 13, 880065. https://doi.org/10.3389/fpsyg.2022.880065\nAl-Azary, H., Yu, T., \u0026amp; McRae, K. (2022). Can you touch the N400? The interactive effects of body-object interaction and task demands on N400 amplitudes and decision latencies. Brain and Language, 231, 105147. https://doi.org/10.1016/j.bandl.2022.105147\nAlbert, D. A., Claude Ouimet, M., \u0026amp; Brown, T. G. (2022). Negative mood mind wandering and unsafe driving in young male drivers. Accident Analysis \u0026amp; Prevention, 178, 106867. https://doi.org/10.1016/j.aap.2022.106867\nAlcántara, I., Somma, A., Chalar, G., Fabre, A., Segura, A., Achkar, M., Arocena, R., Aubriot, L., Baladán, C., Barrios, M., Bonilla, S., Burwood, M., Calliari, D. L., Calvo, C., Capurro, L., Carballo, C., Céspedes-Payret, C., Conde, D., Corrales, N., \u0026hellip; García-Rodríguez, F. (2022). A reply to \u0026ldquo;Relevant factors in the eutrophication of the Uruguay River and the Río Negro.\u0026rdquo; Science of The Total Environment, 818, 151854. https://doi.org/10.1016/j.scitotenv.2021.151854\nAlhebshi, A., Alsharif, N., Thorley, J., James, L. J., \u0026amp; Clifford, T. (2021). The Effects of Dietary Protein Supplementation on Exercise-Induced Inflammation and Oxidative Stress: A Systematic Review of Human Trials. Antioxidants, 11(1), 13. https://doi.org/10.3390/antiox11010013\nAlJassmi, M. A., Warrington, K. L., McGowan, V. A., White, S. J., \u0026amp; Paterson, K. B. (2022). Effects of word predictability on eye movements during Arabic reading. Attention, Perception, \u0026amp; Psychophysics, 84(1), 10\u0026ndash;24. https://doi.org/10.3758/s13414-021-02375-1\nAltabella, L., Benetti, G., Camera, L., Cardano, G., Montemezzi, S., \u0026amp; Cavedon, C. (2022). Machine learning for multi-parametric breast MRI: Radiomics-based approaches for lesion classification. Physics in Medicine \u0026amp; Biology, 67(15), 15TR01. https://doi.org/10.1088/1361-6560/ac7d8f\nAltın, E., Okur, N., Yalçın, E., Eraçıkbaş, A. F., \u0026amp; Aktan-Erciyes, A. (2022). Relations Between L2 Proficiency and L1 Lexical Property Evaluations. Frontiers in Psychology, 13, 820702. https://doi.org/10.3389/fpsyg.2022.820702\nAlzahrani, A. (2022). Priming the Arabic dative: Evidence for syntactic abstractness and implicit learning. Frontiers in Education, 7, 951898. https://doi.org/10.3389/feduc.2022.951898\nAmodio, D. M., \u0026amp; Berg, J. J. (2022). The neural underpinnings of intergroup bias. In P. Molenberghs, The Neuroscience of Intergroup Relations (1st ed., pp. 3\u0026ndash;15). Routledge. https://doi.org/10.4324/9781003042426-1\nAnastassopoulou, C., Antoni, D., Manoussopoulos, Y., Stefanou, P., Argyropoulou, S., Vrioni, G., \u0026amp; Tsakris, A. (2022). Age and sex associations of SARS-CoV-2 antibody responses post BNT162b2 vaccination in healthcare workers: A mixed effects model across two vaccination periods. PLOS ONE, 17(4), e0266958. https://doi.org/10.1371/journal.pone.0266958\nAndelius, T. C. K., Henriksen, T. B., Kousholt, B. S., \u0026amp; Kyng, K. J. (2022). Remote ischemic postconditioning for neuroprotection after newborn hypoxia\u0026ndash;ischemia: Systematic review of preclinical studies. Pediatric Research, 91(7), 1654\u0026ndash;1661. https://doi.org/10.1038/s41390-021-01656-7\nAnderson, B. A., \u0026amp; Peterson, S. A. (2022). Concreteness and levels of processing: A test of the dual-coding hypothesis using dynamic visual noise. Memory, 30(10), 1405\u0026ndash;1420. https://doi.org/10.1080/09658211.2022.2120622\nAndria, S., Madi‐Tarabya, B., \u0026amp; Khateb, A. (2022). Behavioural and electrophysiological analyses of written word processing in spoken and literary Arabic: New insights into the diglossia question. European Journal of Neuroscience, 56(6), 4819\u0026ndash;4836. https://doi.org/10.1111/ejn.15781\nAndriguetto-Filho, J. M., Medeiros, R. P., Vaz-dos-Santos, A. M., \u0026amp; Chaves, P. D. T. D. C. (2022). Shrimp up, fish down, and vice-versa: Fishers\u0026rsquo; strategies and long-term changes in small-scale fisheries landings at two spatial levels in Southern Brazil. Marine Policy, 143, 105184. https://doi.org/10.1016/j.marpol.2022.105184\nAndronowski, J. M., Cole, M. E., Hieronymus, T. L., Davis, R. A., Usher, L. R., \u0026amp; Cooper, L. N. (2022). Intraskeletal consistency in patterns of vascularity within bat limb bones. The Anatomical Record, 305(2), 462\u0026ndash;476. https://doi.org/10.1002/ar.24694\nAnlló, H., Herer, B., Delignières, A., Ghergan, A., Bocahu, Y., Segundo, I., Moulin, C., \u0026amp; Larue, F. (2022). Hypnosis for the management of COPD-related anxiety and dyspnoea in pulmonary rehabilitation: Rationale and design for a cluster-randomised, active-control trial (HYPNOBPCO_2). ERJ Open Research, 8(1), 00565\u0026ndash;02021. https://doi.org/10.1183/23120541.00565-2021\nAnlló, H., Watanabe, K., Sackur, J., \u0026amp; De Gardelle, V. (2022). Effects of false statements on visual perception hinge on social suggestibility. Journal of Experimental Psychology: Human Perception and Performance, 48(8), 889\u0026ndash;900. https://doi.org/10.1037/xhp0001024\nAnnala, M. J., Lehosmaa, K., Ahonen, S. H. K., Karttunen, K., Markkola, A. M., Puumala, I., \u0026amp; Mykrä, H. (2022). Effect of riparian soil moisture on bacterial, fungal and plant communities and microbial decomposition rates in boreal stream-side forests. Forest Ecology and Management, 519, 120344. https://doi.org/10.1016/j.foreco.2022.120344\nAntony, J. W., Romero, A., Vierra, A. H., Luenser, R. S., Hawkins, R. D., \u0026amp; Bennion, K. A. (2022). Semantic relatedness retroactively boosts memory and promotes memory interdependence across episodes. eLife, 11, e72519. https://doi.org/10.7554/eLife.72519\nAppelqvist-Dalton, M., Wilmott, J. P., He, M., \u0026amp; Simmons, A. M. (2022). Time perception in film is modulated by sensory modality and arousal. Attention, Perception, \u0026amp; Psychophysics, 84(3), 926\u0026ndash;942. https://doi.org/10.3758/s13414-022-02464-9\nArina, G. A., Dobrushina, O. R., Shvetsova, E. T., Osina, E. D., Meshkov, G. A., Aziatskaya, G. A., Trofimova, A. K., Efremova, I. N., Martunov, S. E., \u0026amp; Nikolaeva, V. V. (2022). Infra-Low Frequency Neurofeedback in Tension-Type Headache: A Cross-Over Sham-Controlled Study. Frontiers in Human Neuroscience, 16, 891323. https://doi.org/10.3389/fnhum.2022.891323\nAristei, S., Knoop, C. A., Lubrich, O., Nehrlich, T., Enge, A., Stark, K., Sommer, W., \u0026amp; Abdel Rahman, R. (2023). Affect as Anaesthetic: How emotional contexts modulate the processing of counterintuitive concepts. Language, Cognition and Neuroscience, 38(10), 1514\u0026ndash;1530. https://doi.org/10.1080/23273798.2022.2085312\nArjmand, S., Wegener, G., Landau, A. M., \u0026amp; Eskelund, A. (2022). Tips and traps for behavioural animal experimentation. Acta Neuropsychiatrica, 34(5), 240\u0026ndash;252. https://doi.org/10.1017/neu.2022.4\nArmitage, K. L., \u0026amp; Redshaw, J. (2022). Children boost their cognitive performance with a novel offloading technique. Child Development, 93(1), 25\u0026ndash;38. https://doi.org/10.1111/cdev.13664\nArriagada-Mödinger, F., \u0026amp; Ferreira, R. A. (2022). The Effect of Emotional Valence on Auditory Word Recognition Memory in English as a Foreign Language. Journal of Psycholinguistic Research, 51(2), 309\u0026ndash;322. https://doi.org/10.1007/s10936-022-09841-3\nArseniev-Koehler, A. (2022). Theoretical Foundations and Limits of Word Embeddings: What Types of Meaning can They Capture? Sociological Methods \u0026amp; Research, 004912412211401. https://doi.org/10.1177/00491241221140142\nArtuso, C., Bossi, F., Belacchi, C., \u0026amp; Palladino, P. (2022). Effects of semantic relationship and preactivation on memory updating. Cognitive Processing, 23(3), 407\u0026ndash;422. https://doi.org/10.1007/s10339-022-01096-z\nAster, H.-C., Romanos, M., Walitza, S., Gerlach, M., Mühlberger, A., Rizzo, A., Andreatta, M., Hasenauer, N., Hartrampf, P. E., Nerlich, K., Reiners, C., Lorenz, R., Buck, A. K., \u0026amp; Deserno, L. (2022). Responsivity of the Striatal Dopamine System to Methylphenidate\u0026mdash;A Within-Subject I-123-β-CIT-SPECT Study in Male Children and Adolescents With Attention-Deficit/Hyperactivity Disorder. Frontiers in Psychiatry, 13, 804730. https://doi.org/10.3389/fpsyt.2022.804730\nAtaturk Universitesi, Veteriner Fakultesi, Biyometri Anabillim Dali, Erzurum, Turkiye, Eltas, O., Topal, M., \u0026amp; Amasya Universitesi, Tip Fakultesi, Biyoistatistik Anabilim Dali, Amasya, Turkiye. (2022). Using Covariance Factor in Genetic Parameter Estimation. Veterinary Sciences and Practices, 17(1), 1\u0026ndash;5. https://doi.org/10.54614/VetSciPract.2022.1015013\nAtkinson, L., Doyle, R. E., Woodward, A., \u0026amp; Jongman, E. C. (2022). Exposure to humans after weaning does not reduce the behavioural reactivity of extensively reared Merino lambs. Behavioural Processes, 201, 104709. https://doi.org/10.1016/j.beproc.2022.104709\nAye, N., Lehmann, N., Kaufmann, J., Heinze, H.-J., Düzel, E., Taubert, M., \u0026amp; Ziegler, G. (2022). Test-retest reliability of multi-parametric maps (MPM) of brain microstructure. NeuroImage, 256, 119249. https://doi.org/10.1016/j.neuroimage.2022.119249\nAzimi, T., Ghoreishi, Z., Nilipour, R., Farazi, M., Ahmadi, A., Krishnan, G., \u0026amp; Aliniaye Asli, P. (2022). Lexical-semantic processing of action verbs and non-action nouns in Persian speakers: Behavioral evidence from the semantic similarity judgment task. Applied Neuropsychology: Adult, 29(4), 718\u0026ndash;730. https://doi.org/10.1080/23279095.2020.1806844\nAzizi, Z., Jandaghi, G., Firoozi, M., Zia-Tohidi, A., \u0026amp; Ebnerasouli, S. (2022). The Relative Importance of Mindfulness Facets and Their Interactions: Relations to Psychological Symptoms in Chronic Pain. Mindfulness, 13(4), 1054\u0026ndash;1068. https://doi.org/10.1007/s12671-022-01862-2\nBacelar, M. F. B., Parma, J. O., Cabral, D., Daou, M., Lohse, K. R., \u0026amp; Miller, M. W. (2022). Dissociating the contributions of motivational and information processing factors to the self-controlled feedback learning benefit. Psychology of Sport and Exercise, 59, 102119. https://doi.org/10.1016/j.psychsport.2021.102119\nBacelar, M. F. B., Parma, J. O., Murrah, W. M., \u0026amp; Miller, M. W. (2022). Meta-analyzing enhanced expectancies on motor learning: Positive effects but methodological concerns. International Review of Sport and Exercise Psychology, 1\u0026ndash;30. https://doi.org/10.1080/1750984X.2022.2042839\nBadia, S. B. I., Silva, P. A., Branco, D., Pinto, A., Carvalho, C., Menezes, P., Almeida, J., \u0026amp; Pilacinski, A. (2022). Virtual Reality for Safe Testing and Development in Collaborative Robotics: Challenges and Perspectives. Electronics, 11(11), 1726. https://doi.org/10.3390/electronics11111726\nBae, S., Pae, H. K., \u0026amp; Yi, K. (2022). The effects of script specificity on word recognition: Syllabic type, syllabic format, and reading direction in Korean Hangul. Journal of Cultural Cognitive Science, 6(2), 179\u0026ndash;198. https://doi.org/10.1007/s41809-022-00094-z\nBaese-Berk, M. M., \u0026amp; Samuel, A. G. (2022). Just give it time: Differential effects of disruption and delay on perceptual learning. Attention, Perception, \u0026amp; Psychophysics, 84(3), 960\u0026ndash;980. https://doi.org/10.3758/s13414-022-02463-w\nBago, B., Rosenzweig, L. R., Berinsky, A. J., \u0026amp; Rand, D. G. (2022). Emotion may predict susceptibility to fake news but emotion regulation does not seem to help. Cognition and Emotion, 36(6), 1166\u0026ndash;1180. https://doi.org/10.1080/02699931.2022.2090318\nBahlinger, K., Lincoln, T. M., \u0026amp; Clamor, A. (2022). Are Acute Increases and Variability in Emotion Regulation Strategies Related to Negative Affect and Paranoid Thoughts in Daily Life? Cognitive Therapy and Research, 46(1), 62\u0026ndash;72. https://doi.org/10.1007/s10608-021-10253-1\nBahnfleth, C. L., Strupp, B. J., Caudill, M. A., \u0026amp; Canfield, R. L. (2022). Prenatal choline supplementation improves child sustained attention: A 7‐year follow‐up of a randomized controlled feeding trial. The FASEB Journal, 36(1). https://doi.org/10.1096/fj.202101217R\nBai, B., Yang, C., \u0026amp; Fan, J. (2022). Semantic integration of multidimensional perceptual information in L1 sentence comprehension. Language and Cognition, 14(1), 109\u0026ndash;130. https://doi.org/10.1017/langcog.2021.24\nBakdash, J. Z., Marusich, L. R., Cox, K. R., Geuss, M. N., Zaroukian, E. G., \u0026amp; Morris, K. M. (2022). The validity of situation awareness for performance: A meta-analysis. Theoretical Issues in Ergonomics Science, 23(2), 221\u0026ndash;244. https://doi.org/10.1080/1463922X.2021.1921310\nBalzus, L., Klawohn, J., Elsner, B., Schmidt, S., Brandt, S. A., \u0026amp; Kathmann, N. (2022). Non-invasive brain stimulation modulates neural correlates of performance monitoring in patients with obsessive-compulsive disorder. NeuroImage: Clinical, 35, 103113. https://doi.org/10.1016/j.nicl.2022.103113\nBarnes, J. L., \u0026amp; Black, J. E. (2022). What's in a name? Book title salience and the psychology of fiction. Psychology of Aesthetics, Creativity, and the Arts, 16(2), 290\u0026ndash;301. https://doi.org/10.1037/aca0000333\nBarroca, N. C. B., Della Santa, G., Suchecki, D., García-Cairasco, N., \u0026amp; Umeoka, E. H. de L. (2022). Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neuroscience \u0026amp; Biobehavioral Reviews, 140, 104771. https://doi.org/10.1016/j.neubiorev.2022.104771\nBars, S. L., Bourgeois-Gironde, S., Wyart, V., Sari, I., Pacherie, E., \u0026amp; Chambon, V. (2022). Motor Coordination and Strategic Cooperation in Joint Action. Psychological Science, 33(5), 736\u0026ndash;751. https://doi.org/10.1177/09567976211053275\nBatailler, C., Brannon, S. M., Teas, P. E., \u0026amp; Gawronski, B. (2022). A Signal Detection Approach to Understanding the Identification of Fake News. Perspectives on Psychological Science, 17(1), 78\u0026ndash;98. https://doi.org/10.1177/1745691620986135\nBatista, L. G., Mello, V. H., Souza, A. P., \u0026amp; Margarido, G. R. A. (2022). Genomic prediction with allele dosage information in highly polyploid species. Theoretical and Applied Genetics, 135(2), 723\u0026ndash;739. https://doi.org/10.1007/s00122-021-03994-w\nBauer, A., Kagedal, M., \u0026amp; Wolfsegger, M. J. (2022). Assessment of pharmacokinetic linearity after repeated drug administration. Pharmaceutical Statistics, 21(5), 932\u0026ndash;943. https://doi.org/10.1002/pst.2206\nBausenhart, K. M., Ulrich, R., \u0026amp; Kaup, B. (2023). Association between abstraction level and time: Are future and past more abstract than the present? Quarterly Journal of Experimental Psychology, 17470218231217732. https://doi.org/10.1177/17470218231217732\nBaxter, P., Bekkering, H., Dijkstra, T., Droop, M., Van Den Hurk, M., \u0026amp; Leoné, F. (2022). Contrasting orthographically similar words facilitates adult second language vocabulary learning. Learning and Instruction, 80, 101582. https://doi.org/10.1016/j.learninstruc.2022.101582\nBehr, H., Ho, A. S., Yang, Q., Mitchell, E. S., DeLuca, L., Greenstein, N., \u0026amp; Michaelides, A. (2023). Men's Weight Loss Outcomes, Behaviors, and Perceptions in a Self-Directed Commercial Mobile Program: Retrospective Analysis. Health Education \u0026amp; Behavior, 50(1), 70\u0026ndash;83. https://doi.org/10.1177/10901981211055467\nBeier, E. J., \u0026amp; Ferreira, F. (2022). Replication of Cutler, A., \u0026amp; Fodor, J. A. (1979). Semantic focus and sentence comprehension. Cognition, 7(1), 49\u0026ndash;59. Journal of Memory and Language, 126, 104339. https://doi.org/10.1016/j.jml.2022.104339\nBell, T. R., Sprague, B. N., \u0026amp; Ross, L. A. (2022). Longitudinal associations of pain and cognitive decline in community-dwelling older adults. Psychology and Aging, 37(6), 715\u0026ndash;730. https://doi.org/10.1037/pag0000699\nBenabdallah, F. Z., Drissi El Maliani, A., Lotfi, D., Jennane, R., \u0026amp; El Hassouni, M. (2022). An autism spectrum disorder adaptive identification based on the Elimination of brain connections: A proof of long-range underconnectivity. Soft Computing, 26(10), 4701\u0026ndash;4711. https://doi.org/10.1007/s00500-022-06890-7\nBenson, T., Bucher, T., Oughton, R., McCloat, A., Mooney, E., Farrell, S., \u0026amp; Dean, M. (2022). The effects of nutrition and health claims on the nutrient composition of single and subsequent meal servings. Appetite, 176, 106105. https://doi.org/10.1016/j.appet.2022.106105\nBernardez, B., Duran, A., Parejo, J. A., Juristo, N., \u0026amp; RuizCortes, A. (2022). Effects of Mindfulness on Conceptual Modeling Performance: A Series of Experiments. IEEE Transactions on Software Engineering, 48(2), 432\u0026ndash;452. https://doi.org/10.1109/TSE.2020.2991699\nBerner, D., \u0026amp; Amrhein, V. (2022). Why and how we should join the shift from significance testing to estimation. Journal of Evolutionary Biology, 35(6), 777\u0026ndash;787. https://doi.org/10.1111/jeb.14009\nBeyer, M., Liebig, J., Sylvester, T., Braun, M., Heekeren, H. R., Froehlich, E., Jacobs, A. M., \u0026amp; Ziegler, J. C. (2022). Structural gray matter features and behavioral preliterate skills predict future literacy \u0026ndash; A machine learning approach. Frontiers in Neuroscience, 16, 920150. https://doi.org/10.3389/fnins.2022.920150\nBhatia, S., \u0026amp; Dillon, B. (2022). Processing agreement in Hindi: When agreement feeds attraction. Journal of Memory and Language, 125, 104322. https://doi.org/10.1016/j.jml.2022.104322\nBiggs, A. T. (2022). How to enhance military research using mathematical psychology. Journal of Mathematical Psychology, 106, 102619. https://doi.org/10.1016/j.jmp.2021.102619\nBiondo, N., Soilemezidi, M., \u0026amp; Mancini, S. (2022). Yesterday is history, tomorrow is a mystery: An eye-tracking investigation of the processing of past and future time reference during sentence reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 1001\u0026ndash;1018. https://doi.org/10.1037/xlm0001053\nBitter, A. N., Wondra, T., McCrea, S. M., Darzi, A., \u0026amp; Novak, V. D. (2022). Does it pay to play? Undermining effects of monetary reward and gamification in a web-based task. Technology, Mind, and Behavior, 3(1). https://doi.org/10.1037/tmb0000056\nBlack, B., Hollingsworth, A., Nunes, L., \u0026amp; Simon, K. (2022). Simulated power analyses for observational studies: An application to the Affordable Care Act Medicaid expansion. Journal of Public Economics, 213, 104713. https://doi.org/10.1016/j.jpubeco.2022.104713\nBloch, C., Tepest, R., Jording, M., Vogeley, K., \u0026amp; Falter-Wagner, C. M. (2022). Intrapersonal synchrony analysis reveals a weaker temporal coherence between gaze and gestures in adults with autism spectrum disorder. Scientific Reports, 12(1), 20417. https://doi.org/10.1038/s41598-022-24605-8\nBloch, C., Viswanathan, S., Tepest, R., Jording, M., Falter-Wagner, C. M., \u0026amp; Vogeley, K. (2023). Differentiated, rather than shared, strategies for time-coordinated action in social and non-social domains in autistic individuals. Cortex, 166, 207\u0026ndash;232. https://doi.org/10.1016/j.cortex.2023.05.008\nBlockley, A., Ogle, D., Woodrow, C., Montealegre-Z, F., \u0026amp; Warren, B. (2022). Physiological changes throughout an insect ear due to age and noise\u0026mdash;A longitudinal study. iScience, 25(9), 104746. https://doi.org/10.1016/j.isci.2022.104746\nBloom, P. A., VanTieghem, M., Gabard‐Durnam, L., Gee, D. G., Flannery, J., Caldera, C., Goff, B., Telzer, E. H., Humphreys, K. L., Fareri, D. S., Shapiro, M., Algharazi, S., Bolger, N., Aly, M., \u0026amp; Tottenham, N. (2022). Age‐related change in task‐evoked amygdala\u0026mdash;prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4\u0026ndash;22 years. Human Brain Mapping, 43(10), 3221\u0026ndash;3244. https://doi.org/10.1002/hbm.25847\nBöckler, A., \u0026amp; Singer, T. (2022). Longitudinal evidence for differential plasticity of cognitive functions: Mindfulness-based mental training enhances working memory, but not perceptual discrimination, response inhibition, and metacognition. Journal of Experimental Psychology: General, 151(7), 1573\u0026ndash;1590. https://doi.org/10.1037/xge0001143\nBøg Petersen, G., Klingenberg, S., \u0026amp; Makransky, G. (2022). Pipetting in virtual reality can predict real-life pipetting performance. Technology, Mind, and Behavior, 3(3). https://doi.org/10.1037/tmb0000076\nBogdány, T., Perakakis, P., Bódizs, R., \u0026amp; Simor, P. (2022). The heartbeat evoked potential is a questionable biomarker in nightmare disorder: A replication study. NeuroImage: Clinical, 33, 102933. https://doi.org/10.1016/j.nicl.2021.102933\nBögge, L., Colás-Blanco, I., \u0026amp; Piolino, P. (2022). Respiratory sinus arrhythmia during biofeedback is linked to persistent improvements in attention, short-term memory, and positive self-referential episodic memory. Frontiers in Neuroscience, 16, 791498. https://doi.org/10.3389/fnins.2022.791498\nBohmann, A. (2023). Future‐time reference in world Englishes. World Englishes, weng.12634. https://doi.org/10.1111/weng.12634\nBolens, G. (2022). Kinesic intelligence, medieval illuminated psalters, and the poetics of the psalms. Studia Neophilologica, 1\u0026ndash;24. https://doi.org/10.1080/00393274.2022.2051733\nBollini, A., Cocchi, E., Salvagno, V., \u0026amp; Gori, M. (2023). The causal role of vision in the development of spatial coordinates: Evidence from visually impaired children. Journal of Experimental Psychology: Human Perception and Performance, 49(7), 1042\u0026ndash;1052. https://doi.org/10.1037/xhp0001122\nBonin, P., Laroche, B., \u0026amp; Méot, A. (2021). Psycholinguistic norms for a set of 506 French compound words. Behavior Research Methods, 54(1), 393\u0026ndash;413. https://doi.org/10.3758/s13428-021-01601-w\nBonito, J. A. (2022). Extending the Group Actor-Partner Interdependence Model: MSEM Applications. Small Group Research, 53(2), 207\u0026ndash;243. https://doi.org/10.1177/10464964211012457\nBooker, J. A., Fivush, R., \u0026amp; Graci, M. E. (2022). Narrative identity informs psychological adjustment: Considering three themes captured across five time points and two event valences. Journal of Personality, 90(3), 324\u0026ndash;342. https://doi.org/10.1111/jopy.12668\nBooth, S. J., Taylor, J. R., Brown, L. J. E., \u0026amp; Pobric, G. (2022). The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex, 147, 112\u0026ndash;139. https://doi.org/10.1016/j.cortex.2021.12.001\nBorders, J. C., \u0026amp; Troche, M. S. (2022). Voluntary Cough Effectiveness and Airway Clearance in Neurodegenerative Disease. Journal of Speech, Language, and Hearing Research, 65(2), 431\u0026ndash;449. https://doi.org/10.1044/2021_JSLHR-21-00308\nBorghi, A. M., Osińska, A., Roepstorff, A., \u0026amp; Raczaszek-Leonardi, J. (2023). Concepts in interaction: Social engagement and inner experiences. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210351. https://doi.org/10.1098/rstb.2021.0351\nBosch-Bayard, J., Razzaq, F. A., Lopez-Naranjo, C., Wang, Y., Li, M., Galan-Garcia, L., Calzada-Reyes, A., Virues-Alba, T., Rabinowitz, A. G., Suarez-Murias, C., Guo, Y., Sanchez-Castillo, M., Roger, K., Gallagher, A., Prichep, L., Anderson, S. G., Michel, C. M., Evans, A. C., Bringas-Vega, M. L., \u0026hellip; Valdes-Sosa, P. A. (2022). Early protein energy malnutrition impacts life-long developmental trajectories of the sources of EEG rhythmic activity. NeuroImage, 254, 119144. https://doi.org/10.1016/j.neuroimage.2022.119144\nBottini, R., Morucci, P., D'Urso, A., Collignon, O., \u0026amp; Crepaldi, D. (2022). The concreteness advantage in lexical decision does not depend on perceptual simulations. Journal of Experimental Psychology: General, 151(3), 731\u0026ndash;738. https://doi.org/10.1037/xge0001090\nBottino, F., Lucignani, M., Pasquini, L., Mastrogiovanni, M., Gazzellini, S., Ritrovato, M., Longo, D., Figà-Talamanca, L., Rossi Espagnet, M. C., \u0026amp; Napolitano, A. (2022). Spatial Stability of Functional Networks: A Measure to Assess the Robustness of Graph-Theoretical Metrics to Spatial Errors Related to Brain Parcellation. Frontiers in Neuroscience, 15, 736524. https://doi.org/10.3389/fnins.2021.736524\nBowers, S. J., Summa, K. C., Thompson, R. S., González, A., Vargas, F., Olker, C., Jiang, P., Lowry, C. A., Dorrestein, P. C., Knight, R., Wright, K. P., Fleshner, M., Turek, F. W., \u0026amp; Vitaterna, M. H. (2022). A Prebiotic Diet Alters the Fecal Microbiome and Improves Sleep in Response to Sleep Disruption in Rats. Frontiers in Neuroscience, 16, 889211. https://doi.org/10.3389/fnins.2022.889211\nBračić, M., Bohn, L., Siewert, V., Von Kortzfleisch, V. T., Schielzeth, H., Kaiser, S., Sachser, N., \u0026amp; Richter, S. H. (2022). Once an optimist, always an optimist? Studying cognitive judgment bias in mice. Behavioral Ecology, 33(4), 775\u0026ndash;788. https://doi.org/10.1093/beheco/arac040\nBraid, J., \u0026amp; Richlan, F. (2022). The Functional Neuroanatomy of Reading Intervention. Frontiers in Neuroscience, 16, 921931. https://doi.org/10.3389/fnins.2022.921931\nBreadmore, H. L., Côté, E., \u0026amp; Deacon, S. H. (2023). The Timing Tells the Tale: Multiple Morphological Processes in Children's and Adults\u0026rsquo; Spelling. Scientific Studies of Reading, 27(5), 408\u0026ndash;427. https://doi.org/10.1080/10888438.2023.2186233\nBredemeyer, O., Patel, S., FitzGerald, J. J., \u0026amp; Antoniades, C. A. (2022). Oculomotor deficits in Parkinson's disease: Increasing sensitivity using multivariate approaches. Frontiers in Digital Health, 4, 939677. https://doi.org/10.3389/fdgth.2022.939677\nBreitfeld, E., \u0026amp; Saffran, J. R. (2023). Early word learning is influenced by physical environments. Child Development, cdev.14046. https://doi.org/10.1111/cdev.14046\nBrewster, G. S., Wang, D., McPhillips, M. V., Epps, F., \u0026amp; Yang, I. (2022). Correlates of Sleep Disturbance Experienced by Informal Caregivers of Persons Living with Dementia: A Systematic Review. Clinical Gerontologist, 1\u0026ndash;28. https://doi.org/10.1080/07317115.2022.2139655\nBrice, H., Siegelman, N., Van Den Bunt, M., Frost, S. J., Rueckl, J. G., Pugh, K. R., \u0026amp; Frost, R. (2022). INDIVIDUAL DIFFERENCES IN L2 LITERACY ACQUISITION: PREDICTING READING SKILL FROM SENSITIVITY TO REGULARITIES BETWEEN ORTHOGRAPHY, PHONOLOGY, AND SEMANTICS. Studies in Second Language Acquisition, 44(3), 737\u0026ndash;758. https://doi.org/10.1017/S0272263121000528\nBrimmell, J., Edwards, E. J., \u0026amp; Vaughan, R. S. (2022). Executive function and visual attention in sport: A systematic review. International Review of Sport and Exercise Psychology, 1\u0026ndash;34. https://doi.org/10.1080/1750984X.2022.2145574\nBringas Vega, M. L., Pedroso Ibáñez, I., Razzaq, F. A., Zhang, M., Morales Chacón, L., Ren, P., Galan Garcia, L., Gan, P., Virues Alba, T., Lopez Naranjo, C., Jahanshahi, M., Bosch-Bayard, J., \u0026amp; Valdes-Sosa, P. A. (2022). The Effect of Neuroepo on Cognition in Parkinson's Disease Patients Is Mediated by Electroencephalogram Source Activity. Frontiers in Neuroscience, 16, 841428. https://doi.org/10.3389/fnins.2022.841428\nBrochhagen, T., \u0026amp; Boleda, G. (2022). When do languages use the same word for different meanings? The Goldilocks principle in colexification. Cognition, 226, 105179. https://doi.org/10.1016/j.cognition.2022.105179\nBrock, K. M., Chelini, M.-C., Ayton, C., Madden, I. E., Ramos, C., Blois, J. L., Pafilis, P., \u0026amp; Edwards, D. L. (2022). Colour morph predicts social behaviour and contest outcomes in a polymorphic lizard (Podarcis erhardii). Animal Behaviour, 191, 91\u0026ndash;103. https://doi.org/10.1016/j.anbehav.2022.06.017\nBrockhoff, L., Schindler, S., Bruchmann, M., \u0026amp; Straube, T. (2022). Effects of perceptual and working memory load on brain responses to task-irrelevant stimuli: Review and implications for future research. Neuroscience \u0026amp; Biobehavioral Reviews, 135, 104580. https://doi.org/10.1016/j.neubiorev.2022.104580\nBrown, C. R. H. (2022). The prioritisation of motivationally salient stimuli in hemi-spatial neglect may be underpinned by goal-relevance: A meta-analytic review. Cortex, 150, 85\u0026ndash;107. https://doi.org/10.1016/j.cortex.2022.03.001\nBruijnzeel, A. W., Behnood-Rod, A., Malphurs, W., Chellian, R., Caudle, R. M., Febo, M., Setlow, B., \u0026amp; Neubert, J. K. (2022). Oxycodone decreases anxiety-like behavior in the elevated plus-maze test in male and female rats. Behavioural Pharmacology, 33(6), 418\u0026ndash;426. https://doi.org/10.1097/FBP.0000000000000690\nBrummelman, E., Nikolić, M., Nevicka, B., \u0026amp; Bögels, S. M. (2022). Early physiological indicators of narcissism and self‐esteem in children. Psychophysiology, 59(10), e14082. https://doi.org/10.1111/psyp.14082\nBuchanan, E. M., Valentine, K. D., \u0026amp; Wilkowsky, A. (2022). An extension of the QWERTY effect: Not just the right hand, expertise and typeability predict valence ratings of words. Psychology of Language and Communication, 26(1), 85\u0026ndash;101. https://doi.org/10.2478/plc-2022-0005\nBuchtel, E. E., Ng, L. C. Y., Bidwell, A., \u0026amp; Cannon, P. R. (2022). Moral expressions in Hong Kong, New Zealand, and the United Kingdom: Cultural similarities and differences in how affective facial muscle activity predicts judgments. Emotion, 22(3), 511\u0026ndash;525. https://doi.org/10.1037/emo0000766\nBuckley, M. G., Holden, L. J., Smith, A. D., \u0026amp; Haselgrove, M. (2022). The developmental trajectories of children's reorientation to global and local properties of environmental geometry. Journal of Experimental Psychology: General. https://doi.org/10.1037/xge0001265\nBurt, T., Roffel, A. F., Langer, O., Anderson, K., \u0026amp; DiMasi, J. (2022). Strategic, feasibility, economic, and cultural aspects of phase 0 approaches: Is it time to change the drug development process in order to increase productivity? Clinical and Translational Science, 15(6), 1355\u0026ndash;1379. https://doi.org/10.1111/cts.13269\nBuzzi, F., Yahya, N. B., Gambazza, S., Binda, F., Galazzi, A., Ferrari, A., Crespan, S., Al-Atroushy, H. A., Cantoni, B. M., Laquintana, D., \u0026amp; Collaborative Group. (2022). Use of Musical Intervention in the Pediatric Intensive Care Unit of a Developing Country: A Pilot Pre\u0026ndash;Post Study. Children, 9(4), 455. https://doi.org/10.3390/children9040455\nByers‐Heinlein, K., Bergmann, C., \u0026amp; Savalei, V. (2022). Six solutions for more reliable infant research. Infant and Child Development, 31(5), e2296. https://doi.org/10.1002/icd.2296\nBylemans, T., Heleven, E., Baetens, K., Deroost, N., Baeken, C., \u0026amp; Van Overwalle, F. (2022). A narrative sequencing and mentalizing training for adults with autism: A pilot study. Frontiers in Behavioral Neuroscience, 16, 941272. https://doi.org/10.3389/fnbeh.2022.941272\nCalafat, F. M., Wahl, T., Tadesse, M. G., \u0026amp; Sparrow, S. N. (2022). Trends in Europe storm surge extremes match the rate of sea-level rise. Nature, 603(7903), 841\u0026ndash;845. https://doi.org/10.1038/s41586-022-04426-5\nCallard, F. (2022). Replication and Reproduction: Crises in Psychology and Academic Labour. Review of General Psychology, 26(2), 199\u0026ndash;211. https://doi.org/10.1177/10892680211055660\nCamarillo‐Rodriguez, L., Leenen, I., Waldman, Z., Serruya, M., Wanda, P. A., Herweg, N. A., Kahana, M. J., Rubinstein, D., Orosz, I., Lega, B., Podkorytova, I., Gross, R. E., Worrell, G., Davis, K. A., Jobst, B. C., Sheth, S. A., Weiss, S. A., \u0026amp; Sperling, M. R. (2022). Temporal lobe interictal spikes disrupt encoding and retrieval of verbal memory: A subregion analysis. Epilepsia, 63(9), 2325\u0026ndash;2337. https://doi.org/10.1111/epi.17334\nCampbell, E. E., \u0026amp; Bergelson, E. (2022). Making sense of sensory language: Acquisition of sensory knowledge by individuals with congenital sensory impairments. Neuropsychologia, 174, 108320. https://doi.org/10.1016/j.neuropsychologia.2022.108320\nCandia-Rivera, D., \u0026amp; Valenza, G. (2022). Cluster permutation analysis for EEG series based on non-parametric Wilcoxon\u0026ndash;Mann\u0026ndash;Whitney statistical tests. SoftwareX, 19, 101170. https://doi.org/10.1016/j.softx.2022.101170\nCanessa, E., Chaigneau, S. E., \u0026amp; Moreno, S. (2022). Using agreement probability to study differences in types of concepts and conceptualizers. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02030-z\nCao, A., \u0026amp; Lewis, M. (2022). Quantifying the syntactic bootstrapping effect in verb learning: A meta‐analytic synthesis. Developmental Science, 25(2), e13176. https://doi.org/10.1111/desc.13176\nCapparini, C., To, M. P. S., \u0026amp; Reid, V. M. (2022). Identifying the limits of peripheral visual processing in 9‐month‐old infants. Developmental Psychobiology, 64(4), e22274. https://doi.org/10.1002/dev.22274\nCaravolas, M. (2022). Reading and Reading Disorders in Alphabetic Orthographies. In M. J. Snowling, C. Hulme, \u0026amp; K. Nation (Eds.), The Science of Reading (1st ed., pp. 327\u0026ndash;353). Wiley. https://doi.org/10.1002/9781119705116.ch15\nCarbon, C.-C., Held, M. J., \u0026amp; Schütz, A. (2022). Reading Emotions in Faces With and Without Masks Is Relatively Independent of Extended Exposure and Individual Difference Variables. Frontiers in Psychology, 13, 856971. https://doi.org/10.3389/fpsyg.2022.856971\nCarli, V., Petros, N. G., Hadlaczky, G., Vitcheva, T., Berchialla, P., Bianchi, S., Carletto, S., Christinaki, E., Citi, L., Dinis, S., Gentili, C., Geraldes, V., Giovinazzo, L., Gonzalez-Martinez, S., Meyer, B., Ostacoli, L., Ottaviano, M., Ouakinin, S., Papastylianou, T., \u0026hellip; Valenza, G. (2022). The NEVERMIND e-health system in the treatment of depressive symptoms among patients with severe somatic conditions: A multicentre, pragmatic randomised controlled trial. eClinicalMedicine, 48, 101423. https://doi.org/10.1016/j.eclinm.2022.101423\nCarlsen, M. F., Christoffersen, B. Ø., Lindgaard, R., Pedersen, H. D., \u0026amp; Olsen, L. H. (2022). Implantation of telemetric blood pressure transmitters in Göttingen Minipigs: Validation of 24-h systemic blood pressure and heart rate monitoring and influence of anaesthesia. Journal of Pharmacological and Toxicological Methods, 115, 107168. https://doi.org/10.1016/j.vascn.2022.107168\nCarney, J., \u0026amp; Robertson, C. (2022). Five studies evaluating the impact on mental health and mood of recalling, reading, and discussing fiction. PLOS ONE, 17(4), e0266323. https://doi.org/10.1371/journal.pone.0266323\nCarrera, P., Sheppard, V. B., Caballero, A., Gómez‐Trillos, S., \u0026amp; Hurtado‐de‐Mendoza, A. (2022). A culturally targeted video to promote genetic counseling in a community sample of at‐risk US Latina women: The role of the concrete mindset. Journal of Community Psychology, 50(3), 1331\u0026ndash;1342. https://doi.org/10.1002/jcop.22718\nCarson, R. G., \u0026amp; Holton, E. (2022). Deficits in rate of force production during multifinger tasks are associated with cognitive status. International Journal of Geriatric Psychiatry, 37(6), gps.5732. https://doi.org/10.1002/gps.5732\nCarter, A. R., Harrison, S., Gill, D., Davey Smith, G., Taylor, A. E., Howe, L. D., \u0026amp; Davies, N. M. (2022). Educational attainment as a modifier for the effect of polygenic scores for cardiovascular risk factors: Cross-sectional and prospective analysis of UK Biobank. International Journal of Epidemiology, 51(3), 885\u0026ndash;897. https://doi.org/10.1093/ije/dyac002\nCasali, N., Ghisi, M., \u0026amp; Meneghetti, C. (2022). The Role of General and Study-Related Intraindividual Factors on Academic Learning Outcomes under COVID-19: A Cross-Sectional and Longitudinal Analysis. Education Sciences, 12(2), 101. https://doi.org/10.3390/educsci12020101\nCassidy, B. S., Wiley, R. W., Sim, M., \u0026amp; Hugenberg, K. (2022). Inversion Reduces Sensitivity to Complex Emotions in Eye Regions. Social Cognition, 40(3), 302\u0026ndash;315. https://doi.org/10.1521/soco.2022.40.3.302\nCauchi, C., Beyersmann, E., Lété, B., \u0026amp; Grainger, J. (2022). A developmental perspective on morphological processing in the flankers task. Journal of Experimental Child Psychology, 221, 105448. https://doi.org/10.1016/j.jecp.2022.105448\nCenter, E. G., Mimnaugh, K., Häkkinen, J., \u0026amp; Lavalle, S. M. (2022). Human Perception Engineering. In M. Alcañiz, M. Sacco, \u0026amp; J. G. Tromp (Eds.), Roadmapping Extended Reality (1st ed., pp. 157\u0026ndash;181). Wiley. https://doi.org/10.1002/9781119865810.ch7\nChafkin, J. E., Yeager, D. S., O'Brien, J. M., Lee, H. Y., McAfee, C. A., \u0026amp; Josephs, R. A. (2022). Gonadal and adrenal hormones interact with pubertal maturation to predict depressive symptoms in a group of high-school females. Development and Psychopathology, 34(3), 1064\u0026ndash;1078. https://doi.org/10.1017/S0954579420001935\nChambers, C. D., \u0026amp; Tzavella, L. (2021). The past, present and future of Registered Reports. Nature Human Behaviour, 6(1), 29\u0026ndash;42. https://doi.org/10.1038/s41562-021-01193-7\nChamilothori, K., Wienold, J., Moscoso, C., Matusiak, B., \u0026amp; Andersen, M. (2022). Subjective and physiological responses towards daylit spaces with contemporary façade patterns in virtual reality: Influence of sky type, space function, and latitude. Journal of Environmental Psychology, 82, 101839. https://doi.org/10.1016/j.jenvp.2022.101839\nChamnanphon, M., Pongpanich, M., Suttichet, T. B., Jantarabenjakul, W., Torvorapanit, P., Putcharoen, O., Sodsai, P., Phokaew, C., Hirankarn, N., Chariyavilaskul, P., \u0026amp; Shotelersuk, V. (2022). Host genetic factors of COVID-19 susceptibility and disease severity in a Thai population. Journal of Human Genetics, 67(5), 295\u0026ndash;301. https://doi.org/10.1038/s10038-021-01009-6\nChan, E. W., Wong, J., Chan, C. S., \u0026amp; Cheung, F. (2022). Reflections on the Reproducibility Project in Psychology and the Insights It Offers for Clinical Psychology. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 401\u0026ndash;417). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_18\nChandler-Campbell, I. L., Ghossainy, M. E., Mills, C. M., \u0026amp; Corriveau, K. H. (2022). Is secondhand information better read or said? Factors influencing children's endorsements of text-based information. Cognitive Development, 63, 101215. https://doi.org/10.1016/j.cogdev.2022.101215\nChang, L.-Y., Tseng, C.-C., Perfetti, C. A., \u0026amp; Chen, H.-C. (2022). Development and validation of a Chinese pseudo-character/non-character producing system. Behavior Research Methods, 54(2), 632\u0026ndash;648. https://doi.org/10.3758/s13428-021-01611-8\nChaouch-Orozco, A., González Alonso, J., Duñabeitia, J. A., \u0026amp; Rothman, J. (2023a). Are translation equivalents really equivalent? Evidence from concreteness effects in translation priming. International Journal of Bilingualism, 136700692211466. https://doi.org/10.1177/13670069221146641\nChaouch-Orozco, A., González Alonso, J., Duñabeitia, J. A., \u0026amp; Rothman, J. (2023b). The elusive impact of L2 immersion on translation priming. Studies in Second Language Acquisition, 45(2), 393\u0026ndash;415. https://doi.org/10.1017/S0272263122000249\nChapman, C. A., \u0026amp; Martin, R. C. (2022). Effects of semantic diversity and word frequency on single word processing. Journal of Experimental Psychology: General, 151(5), 1035\u0026ndash;1068. https://doi.org/10.1037/xge0001123\nCharalampaki, A., Ninija Karabanov, A., Ritterband-Rosenbaum, A., Bo Nielsen, J., Roman Siebner, H., \u0026amp; Schram Christensen, M. (2022). Sense of agency as synecdoche: Multiple neurobiological mechanisms may underlie the phenomenon summarized as sense of agency. Consciousness and Cognition, 101, 103307. https://doi.org/10.1016/j.concog.2022.103307\nCharitonidis, C. (2022). Context concreteness for the second constituent slows down compound-word processing. Lexis, 20. https://doi.org/10.4000/lexis.6769\nChen, G., Lewis, V. A., Gottlieb, D. J., \u0026amp; O'Malley, A. J. (2022). Using a mixed‐effect model with a parameter‐space of heterogenous dimension to evaluate whether accountable care organizations are associated with greater uniformity across constituent practices. Statistics in Medicine, 41(21), 4215\u0026ndash;4226. https://doi.org/10.1002/sim.9506\nChen, X., Chen, H. Y. H., \u0026amp; Chang, S. X. (2022). Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nature Ecology \u0026amp; Evolution, 6(8), 1112\u0026ndash;1121. https://doi.org/10.1038/s41559-022-01794-z\nChen, Y. A., \u0026amp; Toma, C. L. (2023). To Text or Talk in Person? Social Anxiety, Media Affordances, and Preferences for Texting Over Face-To-Face Communication in Dating Relationships. Media Psychology, 1\u0026ndash;27. https://doi.org/10.1080/15213269.2023.2246895\nChen, Y., Ou, Y., Lv, D., Yu, Z., Shang, T., Ma, J., Zhan, C., Ding, Z., Yang, X., Xiao, J., Yang, R., Sun, Z., Zhang, G., Wang, X., Guo, W., \u0026amp; Li, P. (2022). Altered Regional Activity and Network Homogeneity within the Fronto-Limbic Network at Rest in Medicine-Free Obsessive\u0026ndash;Compulsive Disorder. Brain Sciences, 12(7), 857. https://doi.org/10.3390/brainsci12070857\nChen, Y.-W., \u0026amp; Canli, T. (2022). \u0026ldquo;Nothing to see here\u0026rdquo;: No structural brain differences as a function of the Big Five personality traits from a systematic review and meta-analysis. Personality Neuroscience, 5, e8. https://doi.org/10.1017/pen.2021.5\nCheon, E., Bearden, C. E., Sun, D., Ching, C. R. K., Andreassen, O. A., Schmaal, L., Veltman, D. J., Thomopoulos, S. I., Kochunov, P., Jahanshad, N., Thompson, P. M., Turner, J. A., \u0026amp; Van Erp, T. G. M. (2022). Cross disorder comparisons of brain structure in schizophrenia, bipolar disorder, major depressive disorder, and 22q11.2 deletion syndrome: A review of ENIGMA findings. Psychiatry and Clinical Neurosciences, 76(5), 140\u0026ndash;161. https://doi.org/10.1111/pcn.13337\nChiappetta, B., Patel, A. D., \u0026amp; Thompson, C. K. (2022). Musical and linguistic syntactic processing in agrammatic aphasia: An ERP study. Journal of Neurolinguistics, 62, 101043. https://doi.org/10.1016/j.jneuroling.2021.101043\nChing, C. R. K., Hibar, D. P., Gurholt, T. P., Nunes, A., Thomopoulos, S. I., Abé, C., Agartz, I., Brouwer, R. M., Cannon, D. M., De Zwarte, S. M. C., Eyler, L. T., Favre, P., Hajek, T., Haukvik, U. K., Houenou, J., Landén, M., Lett, T. A., McDonald, C., Nabulsi, L., \u0026hellip; ENIGMA Bipolar Disorder Working Group. (2022). What we learn about bipolar disorder from large‐scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Human Brain Mapping, 43(1), 56\u0026ndash;82. https://doi.org/10.1002/hbm.25098\nChuquichambi, E. G., Sarria, D., Corradi, G. B., \u0026amp; Munar, E. (2023). Humans Prefer to See and Imagine Drawing Curved Objects. Empirical Studies of the Arts, 41(1), 135\u0026ndash;156. https://doi.org/10.1177/02762374221084212\nChurchill, N. W. (2022). Neuroimaging of Concussion. In T. A. Schweizer \u0026amp; A. J. Baker (Eds.), Tackling the Concussion Epidemic (pp. 43\u0026ndash;70). Springer International Publishing. https://doi.org/10.1007/978-3-030-93813-0_3\nCirillo, G., Runnqvist, E., Strijkers, K., Nguyen, N., \u0026amp; Baus, C. (2022). Conceptual alignment in a joint picture-naming task performed with a social robot. Cognition, 227, 105213. https://doi.org/10.1016/j.cognition.2022.105213\nClariana, R. B., Tang, H., \u0026amp; Chen, X. (2022). Corroborating a sorting task measure of individual and of local collective knowledge structure. Educational Technology Research and Development, 70(4), 1195\u0026ndash;1219. https://doi.org/10.1007/s11423-022-10123-x\nClark, E. L., Daley, R. T., Deason, R. G., O'Connor, M. K., Budson, A. E., \u0026amp; DeCaro, R. E. (2022). Cue-utilization in the imagination inflation effect paradigm in older adults with mild cognitive impairment. Neuropsychology, 36(4), 297\u0026ndash;313. https://doi.org/10.1037/neu0000801\nClayton, M., Renna, M. E., Klemanski, D. H., Kerns, C., McLaughlin, K. A., \u0026amp; Mennin, D. S. (2023). The Impact of Emotion Regulation on the Relationship Between Momentary Negative Affect and End-of-Day Worry and Rumination. Cognitive Therapy and Research, 47(1), 94\u0026ndash;108. https://doi.org/10.1007/s10608-022-10339-4\nClements, L. J. (2022). Cooperation between preschool peers in relation to their math learning. The Journal of Educational Research, 115(3), 199\u0026ndash;208. https://doi.org/10.1080/00220671.2022.2089087\nClifton, C., Rysling, A., \u0026amp; Bishop, J. (2022). The prosodic accent advantage in phoneme detection: Importance of local context. Attention, Perception, \u0026amp; Psychophysics, 84(1), 244\u0026ndash;259. https://doi.org/10.3758/s13414-021-02371-5\nCoco, M. I., Maruta, C., Pavão Martins, I., \u0026amp; Della Sala, S. (2023). Locations of objects are better remembered than their identities in naturalistic scenes: An eye-tracking experiment in mild cognitive impairment. Neuropsychology, 37(7), 741\u0026ndash;752. https://doi.org/10.1037/neu0000869\nCoker, D. C. (2022). Multiverses, Myths, and the Big Bang: Problems in Educational Research. In V. Wang (Ed.), Advances in Educational Marketing, Administration, and Leadership (pp. 402\u0026ndash;420). IGI Global. https://doi.org/10.4018/978-1-6684-4144-2.ch022\nColes, N. A., Gaertner, L., Frohlich, B., Larsen, J. T., \u0026amp; Basnight-Brown, D. M. (2023). Fact or artifact? Demand characteristics and participants\u0026rsquo; beliefs can moderate, but do not fully account for, the effects of facial feedback on emotional experience. Journal of Personality and Social Psychology, 124(2), 287\u0026ndash;310. https://doi.org/10.1037/pspa0000316\nColizoli, O., De Gee, J. W., Van Der Zwaag, W., \u0026amp; Donner, T. H. (2022). Functional magnetic resonance imaging responses during perceptual decision‐making at 3 and 7 T in human cortex, striatum, and brainstem. Human Brain Mapping, 43(4), 1265\u0026ndash;1279. https://doi.org/10.1002/hbm.25719\nColom-Cadena, M., Davies, C., Sirisi, S., Lee, J.-E., Simzer, E. M., Tzioras, M., Querol-Vilaseca, M., Sánchez-Aced, É., Chang, Y. Y., Holt, K., McGeachan, R. I., Rose, J., Tulloch, J., Wilkins, L., Smith, C., Andrian, T., Belbin, O., Pujals, S., Horrocks, M. H., \u0026hellip; Spires-Jones, T. L. (2023). Synaptic oligomeric tau in Alzheimer's disease\u0026mdash;A potential culprit in the spread of tau pathology through the brain. Neuron, 111(14), 2170-2183.e6. https://doi.org/10.1016/j.neuron.2023.04.020\nCombrisson, E., Allegra, M., Basanisi, R., Ince, R. A. A., Giordano, B. L., Bastin, J., \u0026amp; Brovelli, A. (2022). Group-level inference of information-based measures for the analyses of cognitive brain networks from neurophysiological data. NeuroImage, 258, 119347. https://doi.org/10.1016/j.neuroimage.2022.119347\nCompton, S. L. E., Grieco, J. P., Gollamudi, B., Bae, E., Van Mullekom, J. H., \u0026amp; Schmelz, E. M. (2022). Metabolic Reprogramming of Ovarian Cancer Spheroids during Adhesion. Cancers, 14(6), 1399. https://doi.org/10.3390/cancers14061399\nConklin, K., \u0026amp; Pellicer-Sánchez, A. (2022). Eye-Tracking. In S. Li, P. Hiver, \u0026amp; M. Papi, The Routledge Handbook of Second Language Acquisition and Individual Differences (1st ed., pp. 441\u0026ndash;453). Routledge. https://doi.org/10.4324/9781003270546-35\nConley, M. I., Hernandez, J., Salvati, J. M., Gee, D. G., \u0026amp; Baskin-Sommers, A. (2023). The role of perceived threats on mental health, social, and neurocognitive youth outcomes: A multicontextual, person-centered approach. Development and Psychopathology, 35(2), 689\u0026ndash;710. https://doi.org/10.1017/S095457942100184X\nConnaughton, M., Whelan, R., O'Hanlon, E., \u0026amp; McGrath, J. (2022). White matter microstructure in children and adolescents with ADHD. NeuroImage: Clinical, 33, 102957. https://doi.org/10.1016/j.nicl.2022.102957\nContador, I., Alzola, P., Bermejo-Pareja, F., Del Ser, T., Llamas-Velasco, S., Fernández-Calvo, B., \u0026amp; Benito-León, J. (2022). Education and Literacy as Risk Factors of Dementia after Stroke and Transient Ischemic Attack: NEDICES Study. Journal of Alzheimer's Disease, 88(1), 291\u0026ndash;299. https://doi.org/10.3233/JAD-220109\nContemori, G., Saccani, M. S., \u0026amp; Bonato, M. (2022). Multitasking Effects on Perception and Memory in Older Adults. Vision, 6(3), 48. https://doi.org/10.3390/vision6030048\nCooper, S. E., Hunt, C., Ross, J. P., Hartnell, M. P., \u0026amp; Lissek, S. (2022). Heightened generalized conditioned fear and avoidance in women and underlying psychological processes. Behaviour Research and Therapy, 151, 104051. https://doi.org/10.1016/j.brat.2022.104051\nCoricelli, C., Rumiati, R. I., \u0026amp; Rioux, C. (2022). Implicit and explicit safety evaluation of foods: The importance of food processing. Appetite, 175, 106062. https://doi.org/10.1016/j.appet.2022.106062\nCormican, D. S., Czerny, M., \u0026amp; Ramakrishna, H. (2022). The Dilemma of Moderate Aortic Stenosis in Patients With Heart Failure and Reduced Ejection Fraction: Are We Waiting Too Long to Intervene, or Should We Wait for More Evidence? Journal of Cardiothoracic and Vascular Anesthesia, 36(1), 15\u0026ndash;17. https://doi.org/10.1053/j.jvca.2021.08.024\nCosper, S. H., Männel, C., \u0026amp; Mueller, J. L. (2022). Mechanisms of associative word learning: Benefits from the visual modality and synchrony of labeled objects. Cortex, 152, 36\u0026ndash;52. https://doi.org/10.1016/j.cortex.2022.03.020\nCoulter, K., \u0026amp; Phillips, N. A. (2022). Conflict-based speech error monitoring in bilinguals: Differences between first and second language monitoring. Journal of Neurolinguistics, 63, 101061. https://doi.org/10.1016/j.jneuroling.2022.101061\nCracco, E., Bernardet, U., Sevenhant, R., Vandenhouwe, N., Copman, F., Durnez, W., Bombeke, K., \u0026amp; Brass, M. (2022). Evidence for a two-step model of social group influence. iScience, 25(9), 104891. https://doi.org/10.1016/j.isci.2022.104891\nCrespo, K., Vlach, H., \u0026amp; Kaushanskaya, M. (2023). The effects of bilingualism on children's cross-situational word learning under different variability conditions. Journal of Experimental Child Psychology, 229, 105621. https://doi.org/10.1016/j.jecp.2022.105621\nCring, M. R., Meyer, K. J., Searby, C. C., Hedberg-Buenz, A., Cave, M., Anderson, M. G., Wang, K., \u0026amp; Sheffield, V. C. (2022). Ectopic expression of BBS1 rescues male infertility, but not retinal degeneration, in a BBS1 mouse model. Gene Therapy, 29(5), 227\u0026ndash;235. https://doi.org/10.1038/s41434-021-00241-1\nCristea, I. A., Georgescu, R., \u0026amp; Ioannidis, J. P. A. (2022). Effect Sizes Reported in Highly Cited Emotion Research Compared With Larger Studies and Meta-Analyses Addressing the Same Questions. Clinical Psychological Science, 10(4), 786\u0026ndash;800. https://doi.org/10.1177/21677026211049366\nCui, C., Raslan, R., \u0026amp; Korolija, I. (2021, September 1). A bootstrap method to investigate the variability of overheating risk against the future climate uncertainty in dwellings. 2021 Building Simulation Conference. https://doi.org/10.26868/25222708.2021.30862\nCui, L., \u0026amp; Liu, J. (2022). Recognition of Studied Words in Perceptual Disfluent Sans Forgetica Font. Vision, 6(3), 52. https://doi.org/10.3390/vision6030052\nCurrie, N. K., \u0026amp; Cain, K. (2023). Developmental differences in children's generation of knowledge-based inferences. Discourse Processes, 60(6), 440\u0026ndash;456. https://doi.org/10.1080/0163853X.2023.2225980\nCutter, M. G., Filik, R., \u0026amp; Paterson, K. B. (2022). Do readers maintain word-level uncertainty during reading? A pre-registered replication study. Journal of Memory and Language, 125, 104336. https://doi.org/10.1016/j.jml.2022.104336\nCyr, M.-P., Dostie, R., Camden, C., Dumoulin, C., Bessette, P., Pina, A., Gotlieb, W. H., Lapointe-Milot, K., Mayrand, M.-H., \u0026amp; Morin, M. (2022). Improvements following multimodal pelvic floor physical therapy in gynecological cancer survivors suffering from pain during sexual intercourse: Results from a one-year follow-up mixed-method study. PLOS ONE, 17(1), e0262844. https://doi.org/10.1371/journal.pone.0262844\nD'Agostini, M., Claes, N., Franssen, M., Von Leupoldt, A., \u0026amp; Van Diest, I. (2022). Learn to breathe, breathe to learn? No evidence for effects of slow deep breathing at a 0.1 Hz frequency on reversal learning. International Journal of Psychophysiology, 174, 92\u0026ndash;107. https://doi.org/10.1016/j.ijpsycho.2022.01.008\nDali, G., \u0026amp; Hester, R. (2022). Adaptation following errors: Error awareness predicts future performance. Memory \u0026amp; Cognition, 50(4), 672\u0026ndash;680. https://doi.org/10.3758/s13421-021-01246-2\nDarmasetiyawan, I. M. S., Messenger, K., \u0026amp; Ambridge, B. (2022). Is Passive Priming Really Impervious to Verb Semantics? A High-Powered Replication of Messenger Et al. (2012). Collabra: Psychology, 8(1), 31055. https://doi.org/10.1525/collabra.31055\nDas, S., Abou-Haidar, R., Rabalais, H., Sun, S. D. L. W., Rosli, Z., Chatpar, K., Boivin, M.-N., Tabatabaei, M., Rogers, C., Legault, M., Lo, D., Degroot, C., Dagher, A., Dyke, S. O. M., Durcan, T. M., Seyller, A., Doyon, J., Poupon, V., Fon, E. A., \u0026hellip; Evans, A. C. (2022). The C-BIG Repository: An Institution-Level Open Science Platform. Neuroinformatics, 20(1), 139\u0026ndash;153. https://doi.org/10.1007/s12021-021-09516-9\nDatson, N., Lolli, L., Drust, B., Atkinson, G., Weston, M., \u0026amp; Gregson, W. (2022). Inter-methodological quantification of the target change for performance test outcomes relevant to elite female soccer players. Science and Medicine in Football, 6(2), 248\u0026ndash;261. https://doi.org/10.1080/24733938.2021.1942538\nD'Aurizio, N., Ramundo, T., Baldi, T. L., Moscatelli, A., \u0026amp; Prattichizzo, D. (2023). On the Correlation Between Tactile Stimulation and Pleasantness. IEEE Transactions on Haptics, 16(4), 861\u0026ndash;867. https://doi.org/10.1109/TOH.2023.3322557\nDavies, A. E., Burnette, C. B., Ravyts, S. G., \u0026amp; Mazzeo, S. E. (2022). A randomized control trial of Expand Your Horizon: An intervention for women with weight bias internalization. Body Image, 40, 138\u0026ndash;145. https://doi.org/10.1016/j.bodyim.2021.12.006\nDavis, C. P., Eigsti, I.-M., Healy, R., Joergensen, G. H., \u0026amp; Yee, E. (2022). Autism-spectrum traits in neurotypicals predict the embodiment of manipulation knowledge about object concepts: Evidence from eyetracking. PLOS ONE, 17(7), e0268069. https://doi.org/10.1371/journal.pone.0268069\nDavletyarova, K., Vacher, P., Nicolas, M., Kapilevich, L. V., \u0026amp; Mourot, L. (2022). Associations Between Heart Rate Variability\u0026ndash;Derived Indexes and Training Load: Repeated Measures Correlation Approach Contribution. Journal of Strength and Conditioning Research, 36(7), 2005\u0026ndash;2010. https://doi.org/10.1519/JSC.0000000000003760\nDawes, C., Quinn, D., Bickerdike, A., O'Neill, C., Granger, K. T., Pereira, S. C., Mah, S. L., Haselgrove, M., Waddington, J. L., O'Tuathaigh, C., \u0026amp; Moran, P. M. (2022). Latent inhibition, aberrant salience, and schizotypy traits in cannabis users. Schizophrenia Research: Cognition, 28, 100235. https://doi.org/10.1016/j.scog.2021.100235\nDawood, A. B., Dickinson, A., Aytemur, A., Milne, E., \u0026amp; Jones, M. (2022). No effects of transcranial direct current stimulation on visual evoked potential and peak gamma frequency. Cognitive Processing, 23(2), 235\u0026ndash;254. https://doi.org/10.1007/s10339-022-01076-3\nDe Dios, E., Ali, M. B., Gu, I. Y.-H., Vecchio, T. G., Ge, C., \u0026amp; Jakola, A. S. (2022). Introduction to Deep Learning in Clinical Neuroscience. In V. E. Staartjes, L. Regli, \u0026amp; C. Serra (Eds.), Machine Learning in Clinical Neuroscience (Vol. 134, pp. 79\u0026ndash;89). Springer International Publishing. https://doi.org/10.1007/978-3-030-85292-4_11\nDe Gioannis, E. (2022). Implicit gender-science stereotypes and college-major intentions of italian adolescents. Social Psychology of Education, 25(5), 1093\u0026ndash;1112. https://doi.org/10.1007/s11218-022-09709-3\nDe Joode, N. T., Thorsen, A. L., Vester, E. L., Vriend, C., Pouwels, P. J. W., Hagen, K., Ousdal, O. T., Hansen, B., Kvale, G., \u0026amp; Van Den Heuvel, O. A. (2022). Longitudinal changes in neurometabolite concentrations in the dorsal anterior cingulate cortex after concentrated exposure therapy for obsessive-compulsive disorder. Journal of Affective Disorders, 299, 344\u0026ndash;352. https://doi.org/10.1016/j.jad.2021.12.014\nDe La Vega, A., Rocca, R., Blair, R. W., Markiewicz, C. J., Mentch, J., Kent, J. D., Herholz, P., Ghosh, S. S., Poldrack, R. A., \u0026amp; Yarkoni, T. (2022). Neuroscout, a unified platform for generalizable and reproducible fMRI research. eLife, 11, e79277. https://doi.org/10.7554/eLife.79277\nDe León Rodríguez, D., Mouthon, M., Annoni, J.-M., \u0026amp; Khateb, A. (2022). Current exposure to a second language modulates bilingual visual word recognition: An EEG study. Neuropsychologia, 164, 108109. https://doi.org/10.1016/j.neuropsychologia.2021.108109\nDe Looff, P. C., Cornet, L. J. M., De Kogel, C. H., Fernández-Castilla, B., Embregts, P. J. C. M., Didden, R., \u0026amp; Nijman, H. L. I. (2022). Heart rate and skin conductance associations with physical aggression, psychopathy, antisocial personality disorder and conduct disorder: An updated meta-analysis. Neuroscience \u0026amp; Biobehavioral Reviews, 132, 553\u0026ndash;582. https://doi.org/10.1016/j.neubiorev.2021.11.003\nDe Prada Pérez, A., Feroce, N., \u0026amp; Kennedy, L. (2023). The use of default forms in codeswitching: Mood selection in Spanish. Linguistic Approaches to Bilingualism, 13(4), 439\u0026ndash;467. https://doi.org/10.1075/lab.20107.dep\nDe Ridder, J. (2022). How to trust a scientist. Studies in History and Philosophy of Science, 93, 11\u0026ndash;20. https://doi.org/10.1016/j.shpsa.2022.02.003\nDe Varda, A. G., \u0026amp; Strapparava, C. (2022). A Cross‐Modal and Cross‐lingual Study of Iconicity in Language: Insights From Deep Learning. Cognitive Science, 46(6), e13147. https://doi.org/10.1111/cogs.13147\nDeady, M., Glozier, N., Calvo, R., Johnston, D., Mackinnon, A., Milne, D., Choi, I., Gayed, A., Peters, D., Bryant, R., Christensen, H., \u0026amp; Harvey, S. B. (2022). Preventing depression using a smartphone app: A randomized controlled trial. Psychological Medicine, 52(3), 457\u0026ndash;466. https://doi.org/10.1017/S0033291720002081\nDean, M. C., Cherian, N. J., McBroom, T. J., Eberlin, C. T., Torabian, K. A., Dowley, K. S., LaPorte, Z. L., Kucharik, M. P., \u0026amp; Martin, S. D. (2023). Preoperative Paralabral Cysts Predict More Significant Chondral Damage but Not 2-Year Functional Outcomes Following Arthroscopic Labral Repair. Arthroscopy: The Journal of Arthroscopic \u0026amp; Related Surgery, S0749806323008332. https://doi.org/10.1016/j.arthro.2023.10.009\nDefayette, A. B., Esposito‐Smythers, C., Cero, I., Kleiman, E. M., López, R., Harris, K. M., \u0026amp; Whitmyre, E. D. (2023). Examination of proinflammatory activity as a moderator of the relation between momentary interpersonal stress and suicidal ideation. Suicide and Life-Threatening Behavior, 53(6), 922\u0026ndash;939. https://doi.org/10.1111/sltb.12993\nDel Popolo Cristaldi, F., Gambarota, F., \u0026amp; Oosterwijk, S. (2023). Does your past define you? The role of previous visual experience in subjective reactions to new affective pictures and sounds. Emotion, 23(5), 1317\u0026ndash;1333. https://doi.org/10.1037/emo0001168\nDemidenko, M. I., Huntley, E. D., Weigard, A. S., Keating, D. P., \u0026amp; Beltz, A. M. (2022). Neural heterogeneity underlying late adolescent motivational processing is linked to individual differences in behavioral sensation seeking. Journal of Neuroscience Research, 100(3), 762\u0026ndash;779. https://doi.org/10.1002/jnr.25005\nDennison, J. B., Sazhin, D., \u0026amp; Smith, D. V. (2022). Decision neuroscience and neuroeconomics: Recent progress and ongoing challenges. WIREs Cognitive Science, 13(3), e1589. https://doi.org/10.1002/wcs.1589\nDerreumaux, Y., Bergh, R., \u0026amp; Hughes, B. L. (2022). Partisan-motivated sampling: Re-examining politically motivated reasoning across the information processing stream. Journal of Personality and Social Psychology, 123(2), 316\u0026ndash;336. https://doi.org/10.1037/pspi0000375\nDesai, R., Orji, R., Roudaia, E., \u0026amp; Sekuler, A. B. (2022). Sans Tracas: A Cross-platform Tool for Online EEG Experiments. Companion of the 2022 ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 37\u0026ndash;43. https://doi.org/10.1145/3531706.3536461\nDetjen, H., Faltaous, S., Keppel, J., Prochazka, M., Gruenefeld, U., Sadeghian, S., \u0026amp; Schneegass, S. (2022). Investigating the Influence of Gaze- and Context-Adaptive Head-up Displays on Take-Over Requests. Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 108\u0026ndash;118. https://doi.org/10.1145/3543174.3546089\nDiachek, E., \u0026amp; Brown-Schmidt, S. (2023). The effect of disfluency on memory for what was said. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(8), 1306\u0026ndash;1324. https://doi.org/10.1037/xlm0001156\nDiaz Diaz, A. C., Malone, K., Shearer, J. A., Moore, A. C., \u0026amp; Waeber, C. (2022). Preclinical Evaluation of Fingolimod in Rodent Models of Stroke With Age or Atherosclerosis as Comorbidities. Frontiers in Pharmacology, 13, 920449. https://doi.org/10.3389/fphar.2022.920449\nDiaz, M. T., Zhang, H., Cosgrove, A. L., Gertel, V. H., Troutman, S. B. W., \u0026amp; Karimi, H. (2022). Neural sensitivity to semantic neighbors is stable across the adult lifespan. Neuropsychologia, 171, 108237. https://doi.org/10.1016/j.neuropsychologia.2022.108237\nDickey, A. S., Krafty, R. T., \u0026amp; Pedersen, N. P. (2022). Ordinal regression increases statistical power to predict epilepsy surgical outcomes. Epilepsia Open, 7(2), 344\u0026ndash;349. https://doi.org/10.1002/epi4.12585\nDijkstra, A., \u0026amp; Rotelli, V. (2022). Lowering Red Meat and Processed Meat Consumption With Environmental, Animal Welfare, and Health Arguments in Italy: An Online Experiment. Frontiers in Psychology, 13, 877911. https://doi.org/10.3389/fpsyg.2022.877911\nDillon, D. G., Lazarov, A., Dolan, S., Bar-Haim, Y., Pizzagalli, D. A., \u0026amp; Schneier, F. R. (2022). Fast evidence accumulation in social anxiety disorder enhances decision making in a probabilistic reward task. Emotion, 22(1), 1\u0026ndash;18. https://doi.org/10.1037/emo0001053\nDistiller, N. (2022). Uncomfortable Territory: Coming to Terms With LGBTQ+ Rights. In I. R. Management Association (Ed.), Research Anthology on Inclusivity and Equity for the LGBTQ+ Community (pp. 233\u0026ndash;250). IGI Global. https://doi.org/10.4018/978-1-6684-3674-5.ch013\nDo, H. J., Kong, H.-K., Lee, J., \u0026amp; Bailey, B. P. (2022). How Should the Agent Communicate to the Group? Communication Strategies of a Conversational Agent in Group Chat Discussions. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2), 1\u0026ndash;23. https://doi.org/10.1145/3555112\nDoan, T., Stonehouse, E., Denison, S., \u0026amp; Friedman, O. (2022). The odds tell children what people favor. Developmental Psychology, 58(9), 1759\u0026ndash;1766. https://doi.org/10.1037/dev0001395\nDobbs, C. L., Caselli, N. K., Hartzell, E., Flanagan, C., \u0026amp; Yan, Y. (2022). Understanding middle graders\u0026rsquo; language borrowing: How lexical and demographic characteristics predict similarity. Reading and Writing, 35(4), 971\u0026ndash;994. https://doi.org/10.1007/s11145-021-10210-0\nDokovova, M., Scobbie, J. M., \u0026amp; Lickley, R. (2022). Matched-accent processing: Bulgarian-English bilinguals do not have a processing advantage with Bulgarian-accented English over native English speech. Laboratory Phonology, 13(1). https://doi.org/10.16995/labphon.6423\nDonahoo, S. A., Pfeifer, V., \u0026amp; Lai, V. T. (2022). Cursed Concepts: New insights on combinatorial processing from ERP correlates of swearing in context. Brain and Language, 226, 105079. https://doi.org/10.1016/j.bandl.2022.105079\nDong, Y., Briaire, J. J., Christiaan Stronks, H., \u0026amp; Frijns, J. H. M. (2022). Short- and long-latency components of the eCAP reveal different refractory properties. Hearing Research, 420, 108522. https://doi.org/10.1016/j.heares.2022.108522\nDong, Y., Briaire, J. J., Stronks, H. C., \u0026amp; Frijns, J. H. M. (2023). Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials. Ear \u0026amp; Hearing, 44(2), 276\u0026ndash;286. https://doi.org/10.1097/AUD.0000000000001279\nDonoghue, T., Schaworonkow, N., \u0026amp; Voytek, B. (2022). Methodological considerations for studying neural oscillations. European Journal of Neuroscience, 55(11\u0026ndash;12), 3502\u0026ndash;3527. https://doi.org/10.1111/ejn.15361\nDooley, N., Ruigrok, A., Holt, R., Allison, C., Tsompanidis, A., Waldman, J., Auyeung, B., Lombardo, M. V., \u0026amp; Baron-Cohen, S. (2022). Is there an association between prenatal testosterone and autistic traits in adolescents? Psychoneuroendocrinology, 136, 105623. https://doi.org/10.1016/j.psyneuen.2021.105623\nDöring, A.-L., Abdel Rahman, R., Zwitserlood, P., \u0026amp; Lorenz, A. (2022). Cumulative semantic interference is blind to morphological complexity and originates at the conceptual level. PLOS ONE, 17(6), e0268915. https://doi.org/10.1371/journal.pone.0268915\nDorman, M. F., Natale, S. C., Noble, J. H., \u0026amp; Zeitler, D. M. (2022). Upward Shifts in the Internal Representation of Frequency Can Persist Over a 3-Year Period for Cochlear Implant Patients Fit With a Relatively Short Electrode Array. Frontiers in Human Neuroscience, 16, 863891. https://doi.org/10.3389/fnhum.2022.863891\nDragomanova, S., Pavlov, S., Marinova, D., Hodzev, Y., Petralia, M. C., Fagone, P., Nicoletti, F., Lazarova, M., Tzvetanova, E., Alexandrova, A., Kalfin, R., \u0026amp; Tancheva, L. (2022). Neuroprotective Effects of Myrtenal in an Experimental Model of Dementia Induced in Rats. Antioxidants, 11(2), 374. https://doi.org/10.3390/antiox11020374\nDrieghe, D., \u0026amp; Chan Seem, R. (2022). Parafoveal processing of repeated words during reading. Psychonomic Bulletin \u0026amp; Review, 29(4), 1451\u0026ndash;1460. https://doi.org/10.3758/s13423-021-02054-0\nDubois, T., Grafmiller, J., Paquot, M., \u0026amp; Szmrecsanyi, B. (2023). Animacy effects in the English genitive alternation: Comparing native speakers and EFL learner judgments with corpus data. Language and Cognition, 1\u0026ndash;23. https://doi.org/10.1017/langcog.2023.51\nDubova, M. (2022). Building human-like communicative intelligence: A grounded perspective. Cognitive Systems Research, 72, 63\u0026ndash;79. https://doi.org/10.1016/j.cogsys.2021.12.002\nDubreucq, J., Haesebaert, F., Plasse, J., Dubreucq, M., \u0026amp; Franck, N. (2022). A Systematic Review and Meta-analysis of Social Skills Training for Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 52(4), 1598\u0026ndash;1609. https://doi.org/10.1007/s10803-021-05058-w\nDuffy, K. A., \u0026amp; Epperson, C. N. (2022). Evaluating the evidence for sex differences: A scoping review of human neuroimaging in psychopharmacology research. Neuropsychopharmacology, 47(2), 430\u0026ndash;443. https://doi.org/10.1038/s41386-021-01162-8\nDujardin, E., Jobard, G., Vahine, T., \u0026amp; Mathey, S. (2021). Norms of vocabulary, reading, and spelling tests in French university students. Behavior Research Methods, 54(4), 1611\u0026ndash;1625. https://doi.org/10.3758/s13428-021-01684-5\nDuncan, C., Tölch, U., Walter, H., \u0026amp; Dziobek, I. (2023). Ethnic discrimination unlearned: Experience in the repeated Trust Game reduces trust bias. Frontiers in Psychology, 14, 1139128. https://doi.org/10.3389/fpsyg.2023.1139128\nDurand-López, E. M. (2022). L2 within-language morphological competition during spoken word recognition. Language Acquisition, 29(2), 165\u0026ndash;181. https://doi.org/10.1080/10489223.2021.1982948\nDutt, R. K., Hannon, K., Easley, T. O., Griffis, J. C., Zhang, W., \u0026amp; Bijsterbosch, J. D. (2022). Mental health in the UK Biobank: A roadmap to self‐report measures and neuroimaging correlates. Human Brain Mapping, 43(2), 816\u0026ndash;832. https://doi.org/10.1002/hbm.25690\nEdeh, N. I., Ugwoke, E. O., Anaele, E. N., Madusaba, B. M., Naboth-Odums, A., Isiwu, E. A., Olinya, T. O., Enyi, C., David, A. O., Yumma, D. C., Yeldim, T. P., Odunukwe, M. C., Victor, S. N., \u0026amp; Abubakar, A. (2022). Supporting business educators and students against COVID-19 trauma using trauma-focused cognitive behavioral therapy. Medicine, 101(14), e29133. https://doi.org/10.1097/MD.0000000000029133\nEdwards, A. A., Steacy, L. M., Siegelman, N., Rigobon, V. M., Kearns, D. M., Rueckl, J. G., \u0026amp; Compton, D. L. (2022). Unpacking the unique relationship between set for variability and word reading development: Examining word- and child-level predictors of performance. Journal of Educational Psychology, 114(6), 1242\u0026ndash;1256. https://doi.org/10.1037/edu0000696\nEdwards, V. L. L., \u0026amp; Hammond, S. I. (2023). Mothers\u0026rsquo; communicative cues and the development of infants\u0026rsquo; helping: Linking participation and problem solving in the first year of life. Social Development, 32(4), 1302\u0026ndash;1317. https://doi.org/10.1111/sode.12693\nEffron, D. A. (2022). The moral repetition effect: Bad deeds seem less unethical when repeatedly encountered. Journal of Experimental Psychology: General, 151(10), 2562\u0026ndash;2585. https://doi.org/10.1037/xge0001214\nEgger, M., Florack, A., \u0026amp; Hübel, C. (2022). How placement affects brand preferences in advergames: A test of inhibition and facilitation processes during search. Computers in Human Behavior, 134, 107328. https://doi.org/10.1016/j.chb.2022.107328\nEguchi, M., Suzuki, S., \u0026amp; Suzuki, Y. (2022). LEXICAL COMPETENCE UNDERLYING SECOND LANGUAGE WORD ASSOCIATION TASKS: EXAMINING THE CONSTRUCT VALIDITY OF RESPONSE TYPE AND RESPONSE TIME MEASURES. Studies in Second Language Acquisition, 44(1), 112\u0026ndash;142. https://doi.org/10.1017/S0272263121000164\nEhrhart, T., \u0026amp; Lindner, M. A. (2023). Computer-based multimedia testing: Effects of static and animated representational pictures and text modality. Contemporary Educational Psychology, 73, 102151. https://doi.org/10.1016/j.cedpsych.2023.102151\nEising, E., Mirza-Schreiber, N., De Zeeuw, E. L., Wang, C. A., Truong, D. T., Allegrini, A. G., Shapland, C. Y., Zhu, G., Wigg, K. G., Gerritse, M. L., Molz, B., Alagöz, G., Gialluisi, A., Abbondanza, F., Rimfeld, K., Van Donkelaar, M., Liao, Z., Jansen, P. R., Andlauer, T. F. M., \u0026hellip; Fisher, S. E. (2022). Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proceedings of the National Academy of Sciences, 119(35), e2202764119. https://doi.org/10.1073/pnas.2202764119\nElder, J., Cheung, B., Davis, T., \u0026amp; Hughes, B. (2023). Mapping the self: A network approach for understanding psychological and neural representations of self-concept structure. Journal of Personality and Social Psychology, 124(2), 237\u0026ndash;263. https://doi.org/10.1037/pspa0000315\nElgort, I. (2022). Word knowledge, learning and acquisition in a second language: Proposed replications of Elgort (2011) and Qiao and Forster (2017). Language Teaching, 55(2), 260\u0026ndash;270. https://doi.org/10.1017/S0261444819000338\nElgueta-Cancino, E., Evans, E., Martinez-Valdes, E., \u0026amp; Falla, D. (2022). The Effect of Resistance Training on Motor Unit Firing Properties: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 13, 817631. https://doi.org/10.3389/fphys.2022.817631\nElias, M., \u0026amp; Degani, T. (2022). Cross-language interactions during novel word learning: The contribution of form similarity and participant characteristics. Bilingualism: Language and Cognition, 25(4), 548\u0026ndash;565. https://doi.org/10.1017/S1366728921000857\nEllis, R. J. (2022). Questionable Research Practices, Low Statistical Power, and Other Obstacles to Replicability: Why Preclinical Neuroscience Research Would Benefit from Registered Reports. Eneuro, 9(4), ENEURO.0017-22.2022. https://doi.org/10.1523/ENEURO.0017-22.2022\nElsherif, M. M., \u0026amp; Catling, J. C. (2022). Age of acquisition effects on the decomposition of compound words. Journal of Cognitive Psychology, 34(3), 325\u0026ndash;338. https://doi.org/10.1080/20445911.2021.2013246\nEnver, E. O., Vatansever, P., Guran, O., Bilgin, L., Boran, P., Turan, S., Haklar, G., Bereket, A., \u0026amp; Guran, T. (2022). Adrenal steroids reference ranges in infancy determined by LC-MS/MS. Pediatric Research, 92(1), 265\u0026ndash;274. https://doi.org/10.1038/s41390-021-01739-5\nEsposito, E., \u0026amp; Calanchini, J. (2022). Examining selective migration as attitudinal fit versus gay migration. Journal of Experimental Social Psychology, 101, 104307. https://doi.org/10.1016/j.jesp.2022.104307\nEsteve, A., Jovani, A., Benito, A., Baquero, A., Haro, G., \u0026amp; Rodríguez-Ruiz, F. (2022). Dual Diagnosis in Adolescents with Problematic Use of Video Games: Beyond Substances. Brain Sciences, 12(8), 1110. https://doi.org/10.3390/brainsci12081110\nEtard, A., Pigot, A. L., \u0026amp; Newbold, T. (2022). Intensive human land uses negatively affect vertebrate functional diversity. Ecology Letters, 25(2), 330\u0026ndash;343. https://doi.org/10.1111/ele.13926\nEvans, A. M., Meyers, M. C., De Calseyde, P. P. F. M. V., \u0026amp; Stavrova, O. (2022). Extroversion and Conscientiousness Predict Deteriorating Job Outcomes During the COVID-19 Transition to Enforced Remote Work. Social Psychological and Personality Science, 13(3), 781\u0026ndash;791. https://doi.org/10.1177/19485506211039092\nEvans, N. H., \u0026amp; Field-Fote, E. C. (2022). A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. Journal of Neurologic Physical Therapy, 46(4), 281\u0026ndash;292. https://doi.org/10.1097/NPT.0000000000000403\nFailes, E., \u0026amp; Sommers, M. S. (2022). Using Eye-Tracking to Investigate an Activation-Based Account of False Hearing in Younger and Older Adults. Frontiers in Psychology, 13, 821044. https://doi.org/10.3389/fpsyg.2022.821044\nFairley, K., Vyrastekova, J., Weitzel, U., \u0026amp; Sanfey, A. G. (2022). Beyond lottery-evoked ambiguity aversion: The neural signature of the types and the sources of uncertainty. NeuroImage, 251, 119007. https://doi.org/10.1016/j.neuroimage.2022.119007\nFalck, M. J., \u0026amp; Okonski, L. (2022). Procedure for Identifying Metaphorical Scenes (pims): A Cognitive Linguistics Approach to Bridge Theory and Practice. Cognitive Semantics, 8(2), 294\u0026ndash;322. https://doi.org/10.1163/23526416-bja10031\nFarruggia, M. C., Pellegrino, R., \u0026amp; Scheinost, D. (2022). Functional Connectivity of the Chemosenses: A Review. Frontiers in Systems Neuroscience, 16, 865929. https://doi.org/10.3389/fnsys.2022.865929\nFassbender, I., Haehner, P., Buecker, S., \u0026amp; Luhmann, M. (2022). Perceived Characteristics of Life Events\u0026mdash;Short-Term Changes in Prosociality and Empathy? European Journal of Personality, 36(4), 529\u0026ndash;542. https://doi.org/10.1177/08902070211031762\nFaulkner, A., Ogeil, R. P., Stojcevski, V., \u0026amp; Scott, D. (2022). Identifying Points of Prevention in Firearm-Related Suicides: A Mixed-Methods Study Based on Coronial Records. Archives of Suicide Research, 26(4), 1815\u0026ndash;1830. https://doi.org/10.1080/13811118.2021.1938322\nFauville, G., Queiroz, A. C. M., Luo, M., Hancock, J., \u0026amp; Bailenson, J. N. (2022). Impression formation from video conference screenshots: The role of gaze, camera distance, and angle. Technology, Mind, and Behavior, 3(1). https://doi.org/10.1037/tmb0000055\nFazio, L. K., Pillai, R. M., \u0026amp; Patel, D. (2022). The effects of repetition on belief in naturalistic settings. Journal of Experimental Psychology: General, 151(10), 2604\u0026ndash;2613. https://doi.org/10.1037/xge0001211\nFedeli, R., Vannini, A., Celletti, S., Maresca, V., Munzi, S., Cruz, C., Alexandrov, D., Guarnieri, M., \u0026amp; Loppi, S. (2023). Foliar application of wood distillate boosts plant yield and nutritional parameters of chickpea. Annals of Applied Biology, 182(1), 57\u0026ndash;64. https://doi.org/10.1111/aab.12794\nFeldman, M. J., Jolink, T. A., Alvarez, G. M., Fendinger, N. J., Gaudier-Diaz, M. M., Lindquist, K. A., \u0026amp; Muscatell, K. A. (2023). The roles of inflammation, affect, and interoception in predicting social perception. Brain, Behavior, and Immunity, 112, 246\u0026ndash;253. https://doi.org/10.1016/j.bbi.2023.05.011\nFeng, C., Damian, M. F., \u0026amp; Qu, Q. (2022). A joint investigation of facilitation and interference effects of semantic and phonological similarity in a continuous naming task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(8), 1193\u0026ndash;1201. https://doi.org/10.1037/xlm0001139\nFeng, C., Thompson, W. K., \u0026amp; Paulus, M. P. (2022). Effect sizes of associations between neuroimaging measures and affective symptoms: A meta‐analysis. Depression and Anxiety, 39(1), 19\u0026ndash;25. https://doi.org/10.1002/da.23215\nFenneman, A., Sickmann, J., Füllbrunn, S., Goldbach, C., \u0026amp; Pitz, T. (2022). Psychological price perception may exert a weaker effect on purchasing decisions than previously suggested: Results from a large online experiment fail to reproduce either a left-digit or perceptual-fluency effect. PLOS ONE, 17(8), e0270850. https://doi.org/10.1371/journal.pone.0270850\nFeraco, T., \u0026amp; Meneghetti, C. (2022). Sport Practice, Fluid Reasoning, and Soft Skills in 10- to 18-Year-Olds. Frontiers in Human Neuroscience, 16, 857412. https://doi.org/10.3389/fnhum.2022.857412\nFerdous, T., Jiang, L., Dinu, I., Groizeleau, J., Kozyrskyj, A. L., Greenwood, C. M. T., \u0026amp; Arrieta, M.-C. (2022). The rise to power of the microbiome: Power and sample size calculation for microbiome studies. Mucosal Immunology, 15(6), 1060\u0026ndash;1070. https://doi.org/10.1038/s41385-022-00548-1\nFernandez, A., Quigley, L., Dobson, K., \u0026amp; Sears, C. (2022). Coherence of attention and memory biases in currently and previously depressed women. Cognition and Emotion, 36(7), 1239\u0026ndash;1254. https://doi.org/10.1080/02699931.2022.2099348\nFernandino, L., Tong, J.-Q., Conant, L. L., Humphries, C. J., \u0026amp; Binder, J. R. (2022). Decoding the information structure underlying the neural representation of concepts. Proceedings of the National Academy of Sciences, 119(6), e2108091119. https://doi.org/10.1073/pnas.2108091119\nFini, N. A., Holland, A. E., Bernhardt, J., \u0026amp; Burge, A. T. (2022). How Many Hours of Device Wear Time Are Required to Accurately Measure Physical Activity Post Stroke? International Journal of Environmental Research and Public Health, 19(3), 1191. https://doi.org/10.3390/ijerph19031191\nFiocchi, F. R., Dijkhuizen, S., Koekkoek, S. K. E., De Zeeuw, C. I., \u0026amp; Boele, H. J. (2022). Stimulus Generalization in Mice during Pavlovian Eyeblink Conditioning. Eneuro, 9(2), ENEURO.0400-21.2022. https://doi.org/10.1523/ENEURO.0400-21.2022\nFischer, S., Schumacher, S., \u0026amp; Daniels, J. (2022). Neurobiological Changes in Posttraumatic Stress Disorder and Their Reversibility by Psychotherapy: A Narrative Review. Zeitschrift für Klinische Psychologie und Psychotherapie, 51(2), 77\u0026ndash;86. https://doi.org/10.1026/1616-3443/a000650\nFitzsimmons, C. J., Morehead, K., Thompson, C. A., Buerke, M., \u0026amp; Dunlosky, J. (2023). Can feedback, correct, and incorrect worked examples improve numerical magnitude estimation precision? The Journal of Experimental Education, 91(1), 20\u0026ndash;45. https://doi.org/10.1080/00220973.2021.1891009\nFolwarczny, M., Otterbring, T., Sigurdsson, V., \u0026amp; Gasiorowska, A. (2022). Seasonal cues to food scarcity and calorie cravings: Winter cues elicit preferences for energy-dense foods. Food Quality and Preference, 96, 104379. https://doi.org/10.1016/j.foodqual.2021.104379\nFörster, A., Model, V., Gos, T., Frodl, T., Schiltz, K., Dobrowolny, H., Meyer-Lotz, G., Guest, P. C., Mawrin, C., Bernstein, H.-G., Bogerts, B., Schlaaff, K., \u0026amp; Steiner, J. (2022). Reduced GABAergic neuropil and interneuron profiles in schizophrenia: Complementary analysis of disease course-related differences. Journal of Psychiatric Research, 145, 50\u0026ndash;59. https://doi.org/10.1016/j.jpsychires.2021.11.028\nFrancesco Iani. (2022). La rivoluzione è tenere tutto insieme. Risposta ai commenti. Giornale italiano di psicologia, 2, 473\u0026ndash;479. https://doi.org/10.1421/105160\nFrancis, Z., Jebanesan, A., \u0026amp; Inzlicht, M. (2022). Leading Us Unto Temptation? No Evidence for an Asymmetry in Automatic Associations Between Goals and Temptations. Collabra: Psychology, 8(1), 31030. https://doi.org/10.1525/collabra.31030\nFreeman, M. R., Blumenfeld, H. K., Carlson, M. T., \u0026amp; Marian, V. (2022). First-language influence on second language speech perception depends on task demands. Language and Speech, 65(1), 28\u0026ndash;51. https://doi.org/10.1177/0023830920983368\nFreitas-Lemos, R., Tegge, A. N., Stein, J. S., DeHart, W. B., Reisinger, S. A., Shields, P. G., Hatsukami, D. K., \u0026amp; Bickel, W. K. (2022). The experimental tobacco marketplace: Effects of low-ventilated cigarette exposure. Addictive Behaviors, 125, 107160. https://doi.org/10.1016/j.addbeh.2021.107160\nFriedrich, J., Lindauer, U., \u0026amp; Höllig, A. (2022). Procedural and Methodological Quality in Preclinical Stroke Research\u0026ndash;A Cohort Analysis of the Rat MCAO Model Comparing Periods Before and After the Publication of STAIR/ARRIVE. Frontiers in Neurology, 13, 834003. https://doi.org/10.3389/fneur.2022.834003\nFrischkorn, G. T., Wilhelm, O., \u0026amp; Oberauer, K. (2022). Process-oriented intelligence research: A review from the cognitive perspective. Intelligence, 94, 101681. https://doi.org/10.1016/j.intell.2022.101681\nFrith, E., Miller, S. E., \u0026amp; Loprinzi, P. D. (2022). Effects of Verbal Priming With Acute Exercise on Convergent Creativity. Psychological Reports, 125(1), 375\u0026ndash;397. https://doi.org/10.1177/0033294120981925\nFry, C. M., Ram, N., \u0026amp; Gatzke-Kopp, L. M. (2022). Integrating dynamic and developmental time scales: Emotion-specific autonomic coordination predicts baseline functioning over time. International Journal of Psychophysiology, 171, 29\u0026ndash;37. https://doi.org/10.1016/j.ijpsycho.2021.12.001\nFucci, E., Poublan-Couzardot, A., Abdoun, O., \u0026amp; Lutz, A. (2022). No effect of focused attention and open monitoring meditation on EEG auditory mismatch negativity in expert and novice practitioners. International Journal of Psychophysiology, 176, 62\u0026ndash;72. https://doi.org/10.1016/j.ijpsycho.2022.03.010\nFuhrmeister, P., Madec, S., Lorenz, A., Elbuy, S., \u0026amp; Bürki, A. (2022). Behavioural and EEG evidence for inter-individual variability in late encoding stages of word production. Language, Cognition and Neuroscience, 37(7), 902\u0026ndash;924. https://doi.org/10.1080/23273798.2022.2030483\nFuhrmeister, P., \u0026amp; Myers, E. B. (2022). Structural variation in the temporal lobe predicts learning and retention of non-native speech sounds. Language, Cognition and Neuroscience, 37(1), 63\u0026ndash;79. https://doi.org/10.1080/23273798.2021.1944658\nFujita, H., \u0026amp; Cunnings, I. (2022). Interference and filler-gap dependency formation in native and non-native language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(5), 702\u0026ndash;716. https://doi.org/10.1037/xlm0001134\nFunkhouser, C. J., Ashaie, S. A., Gameroff, M. J., Talati, A., Posner, J., Weissman, M. M., \u0026amp; Shankman, S. A. (2022). Prospectively Predicting Adult Depressive Symptoms from Adolescent Peer Dysfunction: A Sibling Comparison Study. Research on Child and Adolescent Psychopathology, 50(8), 1081\u0026ndash;1093. https://doi.org/10.1007/s10802-022-00906-4\nGaio, D., DeMaere, M. Z., Anantanawat, K., Eamens, G. J., Falconer, L., Chapman, T. A., Djordjevic, S., \u0026amp; Darling, A. E. (2022). Phylogenetic diversity analysis of shotgun metagenomic reads describes gut microbiome development and treatment effects in the post-weaned pig. PLOS ONE, 17(6), e0270372. https://doi.org/10.1371/journal.pone.0270372\nGaither, S. E., \u0026amp; Sims, J. P. (2022). How Cross-Discipline Understanding and Communication Can Improve Research on Multiracial Populations. Social Sciences, 11(3), 90. https://doi.org/10.3390/socsci11030090\nGallicano, G. I., Fu, J., Mahapatra, S., Sharma, M. V. R., Dillon, C., Deng, C., \u0026amp; Zahid, M. (2022). Reversing Cardiac Hypertrophy at the Source Using a Cardiac Targeting Peptide Linked to miRNA106a: Targeting Genes That Cause Cardiac Hypertrophy. Pharmaceuticals, 15(7), 871. https://doi.org/10.3390/ph15070871\nGandelman, E. M., Miller, S. A., \u0026amp; Back, S. E. (2022). Imaginal exposure processing during Concurrent Treatment of PTSD and Substance Use Disorders using Prolonged Exposure (COPE) therapy: Examination of linguistic markers of cohesiveness. Journal of Traumatic Stress, 35(2), 682\u0026ndash;693. https://doi.org/10.1002/jts.22786\nGandhi, N., Zou, W., Meyer, C., Bhatia, S., \u0026amp; Walasek, L. (2022). Computational Methods for Predicting and Understanding Food Judgment. Psychological Science, 33(4), 579\u0026ndash;594. https://doi.org/10.1177/09567976211043426\nGao, C., Shinkareva, S. V., \u0026amp; Peelen, M. V. (2022). Affective valence of words differentially affects visual and auditory word recognition. Journal of Experimental Psychology: General, 151(9), 2144\u0026ndash;2159. https://doi.org/10.1037/xge0001176\nGao, F., Wahl, J. A., \u0026amp; Floyd, T. F. (2022). Anesthesia and neurotoxicity study design, execution, and reporting in the nonhuman primate: A systematic review. Pediatric Anesthesia, 32(4), 509\u0026ndash;521. https://doi.org/10.1111/pan.14401\nGao, X., Xu, J., Yao, T., Liu, X., Zhang, H., \u0026amp; Zhan, C. (2022). Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Advanced Drug Delivery Reviews, 187, 114362. https://doi.org/10.1016/j.addr.2022.114362\nGao, Y., Chao, H., Cavuoto, L., Yan, P., Kruger, U., Norfleet, J. E., Makled, B. A., Schwaitzberg, S., De, S., \u0026amp; Intes, X. (2022). Deep learning-based motion artifact removal in functional near-infrared spectroscopy. Neurophotonics, 9(04). https://doi.org/10.1117/1.NPh.9.4.041406\nGarcia-Guerrero, S., O'Hora, D., Zgonnikov, A., \u0026amp; Scherbaum, S. (2023). The action dynamics of approach-avoidance conflict during decision-making. Quarterly Journal of Experimental Psychology, 76(1), 160\u0026ndash;179. https://doi.org/10.1177/17470218221087625\nGarcia‐Pelegrin, E., Clark, F., \u0026amp; Miller, R. (2022). Increasing animal cognition research in zoos. Zoo Biology, 41(4), 281\u0026ndash;291. https://doi.org/10.1002/zoo.21674\nGarofalo, G., \u0026amp; Riggio, L. (2022). Influence of colour on object motor representation. Neuropsychologia, 164, 108103. https://doi.org/10.1016/j.neuropsychologia.2021.108103\nGarrison, K. E., \u0026amp; Schmeichel, B. J. (2022). Getting over it: Working memory capacity and affective responses to stressful events in daily life. Emotion, 22(3), 418\u0026ndash;429. https://doi.org/10.1037/emo0000755\nGarza, R., \u0026amp; Byrd-Craven, J. (2023). The role of hormones in attraction and visual attention to facial masculinity. Frontiers in Psychology, 14, 1067487. https://doi.org/10.3389/fpsyg.2023.1067487\nGatti, D., Marelli, M., \u0026amp; Rinaldi, L. (2023a). Out-of-vocabulary but not meaningless: Evidence for semantic-priming effects in pseudoword processing. Journal of Experimental Psychology: General, 152(3), 851\u0026ndash;863. https://doi.org/10.1037/xge0001304\nGatti, D., Marelli, M., \u0026amp; Rinaldi, L. (2023b). Out-of-vocabulary but not meaningless: Evidence for semantic-priming effects in pseudoword processing. Journal of Experimental Psychology: General, 152(3), 851\u0026ndash;863. https://doi.org/10.1037/xge0001304\nGatti, D., Rinaldi, L., Marelli, M., Mazzoni, G., \u0026amp; Vecchi, T. (2022). Decomposing the semantic processes underpinning veridical and false memories. Journal of Experimental Psychology: General, 151(2), 363\u0026ndash;389. https://doi.org/10.1037/xge0001079\nGeary, N., \u0026amp; Higgs, S. (2022). Guidelines on design, measurement and statistics for Appetite. Appetite, 168, 105731. https://doi.org/10.1016/j.appet.2021.105731\nGenon, S., Eickhoff, S. B., \u0026amp; Kharabian, S. (2022). Linking interindividual variability in brain structure to behaviour. Nature Reviews Neuroscience, 23(5), 307\u0026ndash;318. https://doi.org/10.1038/s41583-022-00584-7\nGerdemann, S. C., Büchner, R., \u0026amp; Hepach, R. (2022). How being observed influences preschoolers\u0026rsquo; emotions following (less) deserving help. Social Development, 31(3), 862\u0026ndash;882. https://doi.org/10.1111/sode.12578\nGerdemann, S. C., McAuliffe, K., Blake, P. R., Haun, D. B. M., \u0026amp; Hepach, R. (2022). The ontogeny of children's social emotions in response to (un)fairness. Royal Society Open Science, 9(8), 191456. https://doi.org/10.1098/rsos.191456\nGerdemann, S. C., Tippmann, J., Dietrich, B., Engelmann, J. M., \u0026amp; Hepach, R. (2022). Young children show negative emotions after failing to help others. PLOS ONE, 17(4), e0266539. https://doi.org/10.1371/journal.pone.0266539\nGhiglino, D., Floris, F., De Tommaso, D., Kompatsiari, K., Chevalier, P., Priolo, T., \u0026amp; Wykowska, A. (2023). Artificial scaffolding: Augmenting social cognition by means of robot technology. Autism Research, 16(5), 997\u0026ndash;1008. https://doi.org/10.1002/aur.2906\nGhijselings, I., Taylan, O., Delport, H. P., Slane, J., Van Den Wyngaert, H., Demurie, A., \u0026amp; Scheys, L. (2022). Using a patella reduced technique while balancing a TKA results in restored physiological strain in the collateral ligaments: An ex vivo kinematic analysis. Archives of Orthopaedic and Trauma Surgery, 142(7), 1633\u0026ndash;1644. https://doi.org/10.1007/s00402-021-04010-y\nGhosh, S., \u0026amp; Dasgupta, R. (2022). Machine Learning in Biological Sciences: Updates and Future Prospects. Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8881-2\nGintant, G. (2022). Assessing the fidelity of translation of non‐clinical assays: A Pharma perspective. British Journal of Pharmacology, 179(11), 2564\u0026ndash;2576. https://doi.org/10.1111/bph.15796\nGirard, C., \u0026amp; Prado, J. (2022). Prior home learning environment is associated with adaptation to homeschooling during COVID lockdown. Heliyon, 8(4), e09294. https://doi.org/10.1016/j.heliyon.2022.e09294\nGlück, V. M., Boschet-Lange, J. M., Pittig, R., \u0026amp; Pittig, A. (2023). Persistence of extensively trained avoidance is not elevated in anxiety disorders in an outcome devaluation paradigm. Behaviour Research and Therapy, 170, 104417. https://doi.org/10.1016/j.brat.2023.104417\nGoette, W. F., Schaffert, J., Carlew, A., Rossetti, H., Lacritz, L. H., De Boeck, P., \u0026amp; Cullum, C. M. (2023). Impact of word properties on list learning: An explanatory item analysis. Neuropsychology, 37(3), 268\u0026ndash;283. https://doi.org/10.1037/neu0000810\nGoldberg, S. B., Riordan, K. M., Sun, S., \u0026amp; Davidson, R. J. (2022). The Empirical Status of Mindfulness-Based Interventions: A Systematic Review of 44 Meta-Analyses of Randomized Controlled Trials. Perspectives on Psychological Science, 17(1), 108\u0026ndash;130. https://doi.org/10.1177/1745691620968771\nGoldstein-Piekarski, A. N., Ball, T. M., Samara, Z., Staveland, B. R., Keller, A. S., Fleming, S. L., Grisanzio, K. A., Holt-Gosselin, B., Stetz, P., Ma, J., \u0026amp; Williams, L. M. (2022). Mapping Neural Circuit Biotypes to Symptoms and Behavioral Dimensions of Depression and Anxiety. Biological Psychiatry, 91(6), 561\u0026ndash;571. https://doi.org/10.1016/j.biopsych.2021.06.024\nGolicz, K., Piepho, H.-P., Minarsch, E.-M. L., Niether, W., Große-Stoltenberg, A., Oldeland, J., Breuer, L., Gattinger, A., \u0026amp; Jacobs, S. (2023). Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems. Agroforestry Systems, 97(8), 1481\u0026ndash;1489. https://doi.org/10.1007/s10457-023-00871-x\nGolparvar, S. E., \u0026amp; Abolhasani, H. (2022). Unpacking the contribution of linguistic features to graph writing quality: An analytic scoring approach. Assessing Writing, 53, 100644. https://doi.org/10.1016/j.asw.2022.100644\nGołyszny, M., Zieliński, M., Paul-Samojedny, M., Pałasz, A., \u0026amp; Obuchowicz, E. (2022). Chronic treatment with escitalopram and venlafaxine affects the neuropeptide S pathway differently in adult Wistar rats exposed to maternal separation. AIMS Neuroscience, 9(3), 395\u0026ndash;422. https://doi.org/10.3934/Neuroscience.2022022\nGomez Rueda, H., \u0026amp; Bustillo, J. (2022). Brain differential gene expression and blood cross-validation of a molecular signature of patients with major depressive disorder. Psychiatric Genetics, 32(3), 105\u0026ndash;115. https://doi.org/10.1097/YPG.0000000000000309\nGong, T., Gerstenberg, T., Mayrhofer, R., \u0026amp; Bramley, N. R. (2023). Active causal structure learning in continuous time. Cognitive Psychology, 140, 101542. https://doi.org/10.1016/j.cogpsych.2022.101542\nGonzalez, C., Jiang, X., Gonzalez-Martinez, J., \u0026amp; Halgren, E. (2022). Human Spindle Variability. The Journal of Neuroscience, 42(22), 4517\u0026ndash;4537. https://doi.org/10.1523/JNEUROSCI.1786-21.2022\nGonzález-Madruga, K., Staginnus, M., \u0026amp; Fairchild, G. (2022). Alterations in Structural and Functional Connectivity in ADHD: Implications for Theories of ADHD. In S. C. Stanford \u0026amp; E. Sciberras (Eds.), New Discoveries in the Behavioral Neuroscience of Attention-Deficit Hyperactivity Disorder (Vol. 57, pp. 445\u0026ndash;481). Springer International Publishing. https://doi.org/10.1007/7854_2022_345\nGoodridge, C. M., Mole, C. D., Billington, J., Markkula, G., \u0026amp; Wilkie, R. M. (2022). Steering is initiated based on error accumulation. Journal of Experimental Psychology: Human Perception and Performance, 48(1), 64\u0026ndash;76. https://doi.org/10.1037/xhp0000970\nGötz, F. M., Gosling, S. D., \u0026amp; Rentfrow, P. J. (2022). Small Effects: The Indispensable Foundation for a Cumulative Psychological Science. Perspectives on Psychological Science, 17(1), 205\u0026ndash;215. https://doi.org/10.1177/1745691620984483\nGouret, F., \u0026amp; Pfeuffer, C. U. (2023). Anticipatory Saccades Towards the Future Consequences of One's Actions \u0026ndash; an Online Eye Tracking Study. Journal of Cognition, 6(1), 15. https://doi.org/10.5334/joc.261\nGrainger, J. (2022). Word Recognition I: Visual and Orthographic Processing. In M. J. Snowling, C. Hulme, \u0026amp; K. Nation (Eds.), The Science of Reading (1st ed., pp. 60\u0026ndash;78). Wiley. https://doi.org/10.1002/9781119705116.ch3\nGrasso, C. L., Ziegler, J. C., Coull, J. T., \u0026amp; Montant, M. (2022). Space\u0026ndash;Time Congruency Effects Using Eye Movements During Processing of Past- and Future-Related Words. Experimental Psychology, 69(4), 210\u0026ndash;217. https://doi.org/10.1027/1618-3169/a000559\nGravier, M. L., Hula, W. D., Johnson, J. P., Autenreith, A., \u0026amp; Dickey, M. W. (2022). Is There a Relationship Between Cortisol and Treatment Response in Chronic Aphasia? Topics in Language Disorders, 42(3), 193\u0026ndash;211. https://doi.org/10.1097/TLD.0000000000000291\nGreeley, B., Barnhoorn, J. S., Verwey, W. B., \u0026amp; Seidler, R. D. (2022). Anodal Transcranial Direct Current Stimulation Over Prefrontal Cortex Slows Sequence Learning in Older Adults. Frontiers in Human Neuroscience, 16, 814204. https://doi.org/10.3389/fnhum.2022.814204\nGrießbach, E., Raßbach, P., Herbort, O., \u0026amp; Cañal-Bruland, R. (2023). Embodied decision biases: Individually stable across different tasks? Experimental Brain Research, 241(4), 1053\u0026ndash;1064. https://doi.org/10.1007/s00221-023-06591-z\nGrossmann, F., Flueck, J. L., Roelands, B., Meeusen, R., Mason, B., \u0026amp; Perret, C. (2022). Characteristics of Official Wheelchair Basketball Games in Hot and Temperate Conditions. International Journal of Environmental Research and Public Health, 19(3), 1250. https://doi.org/10.3390/ijerph19031250\nGu, L. (2022). The processing of English prefixed and suffixed words by Chinese-English bilinguals. International Journal of Bilingualism, 136700692211374. https://doi.org/10.1177/13670069221137454\nGuareschi, S., Wood, P. J., England, J., Barrett, J., \u0026amp; Laini, A. (2022). Back to the future: Exploring riverine macroinvertebrate communities\u0026rsquo; invasibility. River Research and Applications, 38(8), 1374\u0026ndash;1386. https://doi.org/10.1002/rra.3975\nGuath, M., Stikvoort, B., \u0026amp; Juslin, P. (2022). Nudging for eco-friendly online shopping \u0026ndash; Attraction effect curbs price sensitivity. Journal of Environmental Psychology, 81, 101821. https://doi.org/10.1016/j.jenvp.2022.101821\nGuidi, C., Frey, B., Brunner, I., Meusburger, K., Vogel, M. E., Chen, X., Stucky, T., Gwiazdowicz, D. J., Skubała, P., Bose, A. K., Schaub, M., Rigling, A., \u0026amp; Hagedorn, F. (2022). Soil fauna drives vertical redistribution of soil organic carbon in a long‐term irrigated dry pine forest. Global Change Biology, 28(9), 3145\u0026ndash;3160. https://doi.org/10.1111/gcb.16122\nGünther, F., Marelli, M., Tureski, S., \u0026amp; Petilli, M. A. (2023). ViSpa (Vision Spaces): A computer-vision-based representation system for individual images and concept prototypes, with large-scale evaluation. Psychological Review, 130(4), 896\u0026ndash;934. https://doi.org/10.1037/rev0000392\nGurel, N. Z., Sudarshan, K. B., Tam, S., Ly, D., Armour, J. A., Kember, G., \u0026amp; Ajijola, O. A. (2022). Studying Cardiac Neural Network Dynamics: Challenges and Opportunities for Scientific Computing. Frontiers in Physiology, 13, 835761. https://doi.org/10.3389/fphys.2022.835761\nGuterstam, J., Jayaram-Lindström, N., Berrebi, J., Petrovic, P., Ingvar, M., Fransson, P., \u0026amp; Franck, J. (2022). The Hypothesis of Subliminal Cue Reactivity in Addiction Revisited: An fMRI Study. European Addiction Research, 28(3), 210\u0026ndash;219. https://doi.org/10.1159/000521344\nGuttentag, S., Bishop, S., Doggett, R., Shalev, R., Kaplan, M., Dyson, M., Cohen, M., Lord, C., \u0026amp; Di Martino, A. (2022). The utility of parent-report screening tools in differentiating autism versus attention-deficit/hyperactivity disorder in school-age children. Autism, 26(2), 473\u0026ndash;487. https://doi.org/10.1177/13623613211030071\nGuty, E., \u0026amp; Horner, M. D. (2022). The minimal effect of depression on cognitive functioning when accounting for TOMM performance in a sample of U.S. veterans. Applied Neuropsychology: Adult, 1\u0026ndash;9. https://doi.org/10.1080/23279095.2022.2137026\nGuzman, G. E. C., Takahashi, D. Y., \u0026amp; Fujita, A. (2022). A fast parameter estimator for large complex networks. Journal of Complex Networks, 10(3), cnac022. https://doi.org/10.1093/comnet/cnac022\nHadjipanayi, V., Shimi, A., Ludwig, C. J. H., \u0026amp; Kent, C. (2022). Unequal allocation of overt and covert attention in Multiple Object Tracking. Attention, Perception, \u0026amp; Psychophysics, 84(5), 1519\u0026ndash;1537. https://doi.org/10.3758/s13414-022-02501-7\nHaeffel, G. J., Jeronimus, B. F., Kaiser, B. N., Weaver, L. J., Soyster, P. D., Fisher, A. J., Vargas, I., Goodson, J. T., \u0026amp; Lu, W. (2022). Folk Classification and Factor Rotations: Whales, Sharks, and the Problems With the Hierarchical Taxonomy of Psychopathology (HiTOP). Clinical Psychological Science, 10(2), 259\u0026ndash;278. https://doi.org/10.1177/21677026211002500\nHaeuser, K. I., Kray, J., \u0026amp; Borovsky, A. (2022). Hedging Bets in Linguistic Prediction: Younger and Older Adults Vary in the Breadth of Predictive Processing. Collabra: Psychology, 8(1), 36945. https://doi.org/10.1525/collabra.36945\nHamel, R., Lepage, J., \u0026amp; Bernier, P. (2022). Anterograde interference emerges along a gradient as a function of task similarity: A behavioural study. European Journal of Neuroscience, 55(1), 49\u0026ndash;66. https://doi.org/10.1111/ejn.15561\nHamner, J. W., \u0026amp; Tan, C. O. (2022). Linear Mixed Effect Models for Rehabilitation Research. American Journal of Physical Medicine \u0026amp; Rehabilitation, 101(8), 789\u0026ndash;794. https://doi.org/10.1097/PHM.0000000000001888\nHámori, G., Rádosi, A., Pászthy, B., Réthelyi, J. M., Ulbert, I., Fiáth, R., \u0026amp; Bunford, N. (2022). Reliability of reward ERPs in middle‐late adolescents using a custom and a standardized preprocessing pipeline. Psychophysiology, 59(8), e14043. https://doi.org/10.1111/psyp.14043\nHan, W., \u0026amp; Li, L. (2022). Evaluating and minimizing batch effects in metabolomics. Mass Spectrometry Reviews, 41(3), 421\u0026ndash;442. https://doi.org/10.1002/mas.21672\nHan, X., Ashar, Y. K., Kragel, P., Petre, B., Schelkun, V., Atlas, L. Y., Chang, L. J., Jepma, M., Koban, L., Losin, E. A. R., Roy, M., Woo, C.-W., \u0026amp; Wager, T. D. (2022). Effect sizes and test-retest reliability of the fMRI-based neurologic pain signature. NeuroImage, 247, 118844. https://doi.org/10.1016/j.neuroimage.2021.118844\nHao, Z., Shi, Y., Huang, L., Sun, J., Li, M., Gao, Y., Li, J., Wang, Q., Zhan, L., Ding, Q., Jia, X., \u0026amp; Li, H. (2022). The Atypical Effective Connectivity of Right Temporoparietal Junction in Autism Spectrum Disorder: A Multi-Site Study. Frontiers in Neuroscience, 16, 927556. https://doi.org/10.3389/fnins.2022.927556\nHardin, K. N., Dos Reis, B. R., Dias, N. W., Fiske, D. A., Mercadante, V. R. G., Rhoads, M. L., Wilson, T. B., \u0026amp; White, R. R. (2022). Growth and reproductive responses of heifers consuming endophyte-infected tall fescue seed with or without sodium bicarbonate supplementation. Applied Animal Science, 38(4), 317\u0026ndash;325. https://doi.org/10.15232/aas.2022-02273\nHassanzadeh, R., Silva, R. F., Abrol, A., Salman, M., Bonkhoff, A., Du, Y., Fu, Z., DeRamus, T., Damaraju, E., Baker, B., \u0026amp; Calhoun, V. D. (2022). Individualized spatial network predictions using Siamese convolutional neural networks: A resting-state fMRI study of over 11,000 unaffected individuals. PLOS ONE, 17(1), e0249502. https://doi.org/10.1371/journal.pone.0249502\nHauptman, M., Blanco-Elorrieta, E., \u0026amp; Pylkkänen, L. (2022). Inflection across Categories: Tracking Abstract Morphological Processing in Language Production with MEG. Cerebral Cortex, 32(8), 1721\u0026ndash;1736. https://doi.org/10.1093/cercor/bhab309\nHautala, J., Hawelka, S., \u0026amp; Aro, M. (2022). Dual-stage and dual-deficit? Word recognition processes during text reading across the reading fluency continuum. Reading and Writing, 35(3), 663\u0026ndash;686. https://doi.org/10.1007/s11145-021-10201-1\nHe, C., Rathbun, Z., Buonauro, D., Meyerhoff, H. S., Franconeri, S. L., Stieff, M., \u0026amp; Hegarty, M. (2022). Symmetry and spatial ability enhance change detection in visuospatial structures. Memory \u0026amp; Cognition, 50(6), 1186\u0026ndash;1200. https://doi.org/10.3758/s13421-022-01332-z\nHe, X. (Stella), \u0026amp; Loewen, S. (2023). How to present L2 Chinese words effectively for learning: Exploring learning outcomes and learner perceptions. Studies in Second Language Acquisition, 1\u0026ndash;23. https://doi.org/10.1017/S0272263123000335\nHecksteden, A., Kellner, R., \u0026amp; Donath, L. (2022). Dealing with small samples in football research. Science and Medicine in Football, 6(3), 389\u0026ndash;397. https://doi.org/10.1080/24733938.2021.1978106\nHeffernan, K. S., Samonds, K. E., Godfrey, L. R., Raharison, J.-L., Ranaivoarisoa, J. F., \u0026amp; Irwin, M. T. (2022). Diademed sifakas (Propithecus diadema) in intact and degraded forest habitat at Tsinjoarivo, Madagascar, show high reproductive success and no evidence that dental senescence or rainfall affects reproductive output. Folia Primatologica, 93(1), 21\u0026ndash;40. https://doi.org/10.1163/14219980-20210403\nHeffner, C. C., Fuhrmeister, P., Luthra, S., Mechtenberg, H., Saltzman, D., \u0026amp; Myers, E. B. (2022). Reliability and validity for perceptual flexibility in speech. Brain and Language, 226, 105070. https://doi.org/10.1016/j.bandl.2021.105070\nHeinsberg, L. W., \u0026amp; Weeks, D. E. (2022). Post hoc power is not informative. Genetic Epidemiology, 46(7), 390\u0026ndash;394. https://doi.org/10.1002/gepi.22464\nHeise, M. J., Mon, S. K., \u0026amp; Bowman, L. C. (2022). Utility of linear mixed effects models for event-related potential research with infants and children. Developmental Cognitive Neuroscience, 54, 101070. https://doi.org/10.1016/j.dcn.2022.101070\nHendricks, B. E., Landsman, W. R., \u0026amp; Peña-Romera, F. D. (2022). The Revolving Door between Large Audit Firms and the PCAOB: Implications for Future Inspection Reports and Audit Quality. The Accounting Review, 97(1), 261\u0026ndash;292. https://doi.org/10.2308/TAR-2019-0649\nHenke, J., Holtrup, S., \u0026amp; Moehring, W. (2022). Forgiving the News: The Effects of Error Corrections on News Users\u0026rsquo; Reactions and the Influence of Individual Characteristics and Perceptions. Journalism Studies, 23(7), 840\u0026ndash;857. https://doi.org/10.1080/1461670X.2022.2044889\nHerbet, M., Leonard, J., Santangelo, M. G., \u0026amp; Albaret, L. (2022). Dissimulate or disseminate? A survey on the fate of negative results. Learned Publishing, 35(1), 16\u0026ndash;29. https://doi.org/10.1002/leap.1438\nHéroux, M. E., Butler, A. A., Cashin, A. G., McCaughey, E. J., Affleck, A. J., Green, M. A., Cartwright, A., Jones, M., Kiely, K. M., Van Schooten, K. S., Menant, J. C., Wewege, M., \u0026amp; Gandevia, S. C. (2022). Quality Output Checklist and Content Assessment (QuOCCA): A new tool for assessing research quality and reproducibility. BMJ Open, 12(9), e060976. https://doi.org/10.1136/bmjopen-2022-060976\nHessels, J., Kroon, S., Boerman, S., Nelissen, R. C., Grutters, J. C., Snijder, R. J., Lebrin, F., Post, M. C., Mummery, C. L., \u0026amp; Mager, J.-J. (2022). Efficacy and Safety of Tacrolimus as Treatment for Bleeding Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study. Journal of Clinical Medicine, 11(18), 5280. https://doi.org/10.3390/jcm11185280\nHeydari, A. A., Davalos, O. A., Zhao, L., Hoyer, K. K., \u0026amp; Sindi, S. S. (2022). ACTIVA: Realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders. Bioinformatics, 38(8), 2194\u0026ndash;2201. https://doi.org/10.1093/bioinformatics/btac095\nHiggins, G. A., \u0026amp; Silenieks, L. B. (2022). The Effects of Drug Treatments for ADHD in Measures of Cognitive Performance. In S. C. Stanford \u0026amp; E. Sciberras (Eds.), New Discoveries in the Behavioral Neuroscience of Attention-Deficit Hyperactivity Disorder (Vol. 57, pp. 321\u0026ndash;362). Springer International Publishing. https://doi.org/10.1007/7854_2022_341\nHilger, K., Spinath, F. M., Troche, S., \u0026amp; Schubert, A.-L. (2022). The biological basis of intelligence: Benchmark findings. Intelligence, 93, 101665. https://doi.org/10.1016/j.intell.2022.101665\nHillsley, A., Chin, V., Li, A., \u0026amp; McLachlan, C. S. (2022). Resveratrol for Weight Loss in Obesity: An Assessment of Randomized Control Trial Designs in ClinicalTrials.gov. Nutrients, 14(7), 1424. https://doi.org/10.3390/nu14071424\nHinojosa, J. A., Haro, J., Calvillo-Torres, R., González-Arias, L., Poch, C., \u0026amp; Ferré, P. (2022). I want it small or, rather, give me a bunch: The role of evaluative morphology on the assessment of the emotional properties of words. Cognition and Emotion, 36(6), 1203\u0026ndash;1210. https://doi.org/10.1080/02699931.2022.2093840\nHoeboer, C. M., Oprel, D. A. C., Kooistra, M. J., Schoorl, M., Van Der Does, W., Van Minnen, A., \u0026amp; De Kleine, R. A. (2022). Temporal Relationship Between Change in Subjective Distress and PTSD Symptom Decrease During Prolonged Exposure Therapy for Posttraumatic Stress Disorder. Behavior Therapy, 53(2), 170\u0026ndash;181. https://doi.org/10.1016/j.beth.2021.06.007\nHoffman, P., Lambon Ralph, M. A., \u0026amp; Rogers, T. T. (2021). Semantic diversity is best measured with unscaled vectors: Reply to Cevoli, Watkins and Rastle (2020). Behavior Research Methods, 54(4), 1688\u0026ndash;1700. https://doi.org/10.3758/s13428-021-01693-4\nHofmann, M. J., Mokros, A., \u0026amp; Schneider, S. (2023). The joy of being frightened: Fear experience in psychopathy. Journal of Personality, jopy.12890. https://doi.org/10.1111/jopy.12890\nHofmann, M. J., Remus, S., Biemann, C., Radach, R., \u0026amp; Kuchinke, L. (2022). Language Models Explain Word Reading Times Better Than Empirical Predictability. Frontiers in Artificial Intelligence, 4, 730570. https://doi.org/10.3389/frai.2021.730570\nHogue, O., Harvey, T., Crozier, D., Sonneborn, C., Postle, A., Block-Beach, H., Somasundaram, E., May, F. J., Snyder Braun, M., Pasadyn, F. L., King, K., Johnson, C., Dolansky, M. A., Obuchowski, N. A., Machado, A. G., Baker, K. B., \u0026amp; Barnholtz-Sloan, J. S. (2022). Statistical practice and transparent reporting in the neurosciences: Preclinical motor behavioral experiments. PLOS ONE, 17(3), e0265154. https://doi.org/10.1371/journal.pone.0265154\nHonert, E. C., Harrison, K., \u0026amp; Feeney, D. (2023). Evaluating wrapping alpine ski boots during on-snow carving. Frontiers in Sports and Active Living, 5, 1192737. https://doi.org/10.3389/fspor.2023.1192737\nHoneycutt, D., DelBello, M., Strawn, J., Ramsey, L., Patino, L., Hinman, K., Welge, J., Miklowitz, D., Jo, B., Blom, T., Bruns, K., Hamill Skoch, S., Starace, N., Tallman, M., \u0026amp; Singh, M. (2022). A Double-Blind Randomized Trial to Investigate Mechanisms of Antidepressant-Related Dysfunctional Arousal in Depressed or Anxious Youth at Familial Risk for Bipolar Disorder. Journal of Personalized Medicine, 12(6), 1006. https://doi.org/10.3390/jpm12061006\nHong, I., Kim, M.-S., \u0026amp; Jeong, S. K. (2022). Flexibility and stability of habit learning depend on temporal signal variation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(1), 1\u0026ndash;12. https://doi.org/10.1037/xlm0001113\nHorchak, O. V., \u0026amp; Garrido, M. V. (2022). Simulating background settings during spoken and written sentence comprehension. Psychonomic Bulletin \u0026amp; Review, 29(4), 1426\u0026ndash;1439. https://doi.org/10.3758/s13423-022-02061-9\nHorstman, L. I., Riem, M. M. E., Alyousefi-van Dijk, K., Lotz, A. M., \u0026amp; Bakermans-Kranenburg, M. J. (2022). Fathers\u0026rsquo; involvement in early childcare is associated with amygdala resting-state connectivity. Social Cognitive and Affective Neuroscience, 17(2), 198\u0026ndash;205. https://doi.org/10.1093/scan/nsab086\nHosťovecký, M., Riegert, J., Pazda, A., \u0026amp; Prokop, P. (2022). Skin Conductivity Responses to Images of War and Sports in Men and Women: An Evolutionary Perspective. Adaptive Human Behavior and Physiology, 8(2), 263\u0026ndash;279. https://doi.org/10.1007/s40750-022-00186-8\nHruby, G. G., \u0026amp; Mitra, A. (2023). A naturalized view of literacy education: What the neuro- and life sciences may offer language and literacy research. In International Encyclopedia of Education(Fourth Edition) (pp. 866\u0026ndash;882). Elsevier. https://doi.org/10.1016/B978-0-12-818630-5.07076-7\nHsieh, T.-Y., \u0026amp; Cross, E. S. (2022). People's dispositional cooperative tendencies towards robots are unaffected by robots\u0026rsquo; negative emotional displays in prisoner's dilemma games. Cognition and Emotion, 36(5), 995\u0026ndash;1019. https://doi.org/10.1080/02699931.2022.2054781\nHuang, C., Donk, M., \u0026amp; Theeuwes, J. (2022). Proactive enhancement and suppression elicited by statistical regularities in visual search. Journal of Experimental Psychology: Human Perception and Performance, 48(5), 443\u0026ndash;457. https://doi.org/10.1037/xhp0001002\nHuang, M., Zhang, X., Chen, X., Mai, Y., Wu, X., Zhao, J., \u0026amp; Feng, Q. (2022). Joint-Channel-Connectivity-Based Feature Selection and Classification on fNIRS for Stress Detection in Decision-Making. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1858\u0026ndash;1869. https://doi.org/10.1109/TNSRE.2022.3188560\nHudson, N. W., Lucas, R. E., \u0026amp; Donnellan, M. B. (2022). A direct comparison of the temporal stability and criterion validities of experiential and retrospective global measures of subjective well-being. Journal of Research in Personality, 98, 104230. https://doi.org/10.1016/j.jrp.2022.104230\nHuebert, A. M., \u0026amp; Cleary, A. M. (2022). Do first and last letters carry more weight in the mechanism behind word familiarity? Psychonomic Bulletin \u0026amp; Review, 29(5), 1938\u0026ndash;1945. https://doi.org/10.3758/s13423-022-02093-1\nHuebert, A. M., McNeely-White, K. L., \u0026amp; Cleary, A. M. (2023). On the relationship between tip-of-the-tongue states and partial recollective experience: Illusory partial recollective access during tip-of-the-tongue states. Journal of Experimental Psychology: General, 152(2), 542\u0026ndash;570. https://doi.org/10.1037/xge0001292\nHughes-Berheim, S. S., Cheimariou, S., Shelley-Tremblay, J. F., Doheny, M. M., \u0026amp; Morett, L. M. (2022). Extending Gesture's Impact on Word Learning to Reading: A Self-Paced Reading Study. Discourse Processes, 59(8), 646\u0026ndash;667. https://doi.org/10.1080/0163853X.2022.2132080\nHull, K. E., Overbeck, J. R., Smillie, L. D., \u0026amp; Howe, P. D. L. (2022). The P‐Word: Power aversion and responsibility aversion as explanations for the avoidance of power. Journal of Applied Social Psychology, 52(3), 184\u0026ndash;196. https://doi.org/10.1111/jasp.12857\nHullman, J., Kapoor, S., Nanayakkara, P., Gelman, A., \u0026amp; Narayanan, A. (2022). The Worst of Both Worlds: A Comparative Analysis of Errors in Learning from Data in Psychology and Machine Learning. Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 335\u0026ndash;348. https://doi.org/10.1145/3514094.3534196\nHulme, R. C., Shapiro, L. R., \u0026amp; Taylor, J. S. H. (2022). Learning new words through reading: Do robust spelling\u0026ndash;sound mappings boost learning of word forms and meanings? Royal Society Open Science, 9(12), 210555. https://doi.org/10.1098/rsos.210555\nIanì, F., Limata, T., Bucciarelli, M., \u0026amp; Mazzoni, G. (2023). The implicit effect of action mental simulation on action evaluation. Quarterly Journal of Experimental Psychology, 76(2), 257\u0026ndash;270. https://doi.org/10.1177/17470218221091096\nIanì, F., Schaeken, W., Ras, I. N., \u0026amp; Bucciarelli, M. (2023). Motor imagery and engagement favour spatial reasoning. Memory \u0026amp; Cognition, 51(5), 1103\u0026ndash;1114. https://doi.org/10.3758/s13421-022-01383-2\nIddi, S., \u0026amp; C Donohue, M. (2022). Power and Sample Size for Longitudinal Models in R \u0026ndash; The longpower Package and Shiny App. The R Journal, 14(1), 264\u0026ndash;282. https://doi.org/10.32614/RJ-2022-022\nInohara, K., \u0026amp; Utsumi, A. (2022). JWSAN: Japanese word similarity and association norm. Language Resources and Evaluation, 56(1), 109\u0026ndash;137. https://doi.org/10.1007/s10579-021-09543-7\nIoannucci, S., Borragán, G., \u0026amp; Zénon, A. (2022). Passive visual stimulation induces fatigue under conditions of high arousal elicited by auditory tasks. Journal of Experimental Psychology: General, 151(12), 3097\u0026ndash;3113. https://doi.org/10.1037/xge0001224\nJacob, J., Watanabe, S., Richardson, J., Gonzales, N., Ploppert, E., Lahvis, G., Shiels, A., Wenger, S., Saverino, K., Bhalerao, J., Crockett, B., Burns, E., Harding, O., Fischer-Stenger, K., \u0026amp; Lambert, K. (2022). Divergent neural and endocrine responses in wild-caught and laboratory-bred Rattus norvegicus. Behavioural Brain Research, 432, 113978. https://doi.org/10.1016/j.bbr.2022.113978\nJacobs, A. M., \u0026amp; Kinder, A. (2022). Computational Models of Readers\u0026rsquo; Apperceptive Mass. Frontiers in Artificial Intelligence, 5, 718690. https://doi.org/10.3389/frai.2022.718690\nJaeger, B., Evans, A. M., Stel, M., \u0026amp; Van Beest, I. (2022). Understanding the role of faces in person perception: Increased reliance on facial appearance when judging sociability. Journal of Experimental Social Psychology, 100, 104288. https://doi.org/10.1016/j.jesp.2022.104288\nJaeger, B., Oud, B., Williams, T., Krumhuber, E. G., Fehr, E., \u0026amp; Engelmann, J. B. (2022). Can people detect the trustworthiness of strangers based on their facial appearance? Evolution and Human Behavior, 43(4), 296\u0026ndash;303. https://doi.org/10.1016/j.evolhumbehav.2022.04.004\nJäger, D. T., Behrens, C., \u0026amp; Rüsseler, J. (2022). Current and expected affective valence interact to predict choice in recurrent decisions. Cognition and Emotion, 36(3), 560\u0026ndash;567. https://doi.org/10.1080/02699931.2021.2020730\nJäggi, T., Sato, S., Gillioz, C., \u0026amp; Gygax, P. M. (2022). Is the future near or far depending on the verb tense markers used? An experimental investigation into the effects of the grammaticalization of the future. PLOS ONE, 17(1), e0262778. https://doi.org/10.1371/journal.pone.0262778\nJahn, K. N., Hancock, K. E., Maison, S. F., \u0026amp; Polley, D. B. (2022). Estimated cochlear neural degeneration is associated with loudness hypersensitivity in individuals with normal audiograms. JASA Express Letters, 2(6), 064403. https://doi.org/10.1121/10.0011694\nJakubowski, K., \u0026amp; Eerola, T. (2022). Music evokes fewer but more positive autobiographical memories than emotionally matched sound and word cues. Journal of Applied Research in Memory and Cognition, 11(2), 272\u0026ndash;288. https://doi.org/10.1016/j.jarmac.2021.09.002\nJamalishahni, T., Turrell, G., Villanueva, K., Foster, S., \u0026amp; Davern, M. (2022). Contribution of the built environment to inequity in loneliness by neighbourhood disadvantage in Australia. Cities \u0026amp; Health, 6(6), 1067\u0026ndash;1080. https://doi.org/10.1080/23748834.2022.2145733\nJayes, L. T., Fitzsimmons, G., Weal, M. J., Kaakinen, J. K., \u0026amp; Drieghe, D. (2022). The impact of hyperlinks, skim reading and perceived importance when reading on the Web. PLOS ONE, 17(2), e0263669. https://doi.org/10.1371/journal.pone.0263669\nJeffery, N. D., Budke, C. M., \u0026amp; Chanoit, G. P. (2022). What is the value of statistical testing of observational data? Veterinary Surgery, 51(7), 1043\u0026ndash;1051. https://doi.org/10.1111/vsu.13845\nJeong, J.-W., Lee, M.-H., Fernandes, N., Deol, S., Mody, S., Arslanturk, S., Chinnam, R. B., \u0026amp; Tan, S. (2022). Neonatal encephalopathy prediction of poor outcome with diffusion-weighted imaging connectome and fixel-based analysis. Pediatric Research, 91(6), 1505\u0026ndash;1515. https://doi.org/10.1038/s41390-021-01550-2\nJessop, A., \u0026amp; Chang, F. (2022). Thematic role tracking difficulties across multiple visual events influences role use in language production. Visual Cognition, 30(3), 151\u0026ndash;173. https://doi.org/10.1080/13506285.2021.2013374\nJiang, H., Frank, M. C., Kulkarni, V., \u0026amp; Fourtassi, A. (2022). Exploring Patterns of Stability and Change in Caregivers\u0026rsquo; Word Usage Across Early Childhood. Cognitive Science, 46(7), e13177. https://doi.org/10.1111/cogs.13177\nJiang, N., \u0026amp; Feng, L. (2022). Analytic visual word recognition among Chinese L2 learners. Foreign Language Annals, 55(2), 540\u0026ndash;558. https://doi.org/10.1111/flan.12604\nJiménez, E., \u0026amp; Hills, T. T. (2022). Differences in the semantic structure of the speech experienced by late talkers, late bloomers, and typical talkers. Developmental Psychology. https://doi.org/10.1037/dev0001446\nJing, A., Hughes, N. S., Rajkovic, K., Kaur, H., Uraiqat, R., Adamiak, D. A., Jain, A., Lin, H., Najeeb, S., \u0026amp; Mustafa, A. (2022, January 3). Extrapolation of Conflict Mitigation Strategies from Teams in Isolated Communities on Earth to Long Duration Space Exploration Missions. AIAA SCITECH 2022 Forum. AIAA SCITECH 2022 Forum, San Diego, CA \u0026amp; Virtual. https://doi.org/10.2514/6.2022-0399\nJohari, K., Riccardi, N., Malyutina, S., Modi, M., \u0026amp; Desai, R. H. (2022). HD-tDCS of primary and higher-order motor cortex affects action word processing. Frontiers in Human Neuroscience, 16, 959455. https://doi.org/10.3389/fnhum.2022.959455\nJohns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing word frequency and contextual diversity. Memory \u0026amp; Cognition, 50(5), 1013\u0026ndash;1032. https://doi.org/10.3758/s13421-021-01249-z\nJohns, B. T., \u0026amp; Jones, M. N. (2022). Content matters: Measures of contextual diversity must consider semantic content. Journal of Memory and Language, 123, 104313. https://doi.org/10.1016/j.jml.2021.104313\nJohnson, B. P., Dayan, E., Censor, N., \u0026amp; Cohen, L. G. (2022). Crowdsourcing in Cognitive and Systems Neuroscience. The Neuroscientist, 28(5), 425\u0026ndash;437. https://doi.org/10.1177/10738584211017018\nJones, L. L., Kmiecik, M. J., Irwin, J. L., \u0026amp; Morrison, R. G. (2022). Differential effects of semantic distance, distractor salience, and relations in verbal analogy. Psychonomic Bulletin \u0026amp; Review, 29(4), 1480\u0026ndash;1491. https://doi.org/10.3758/s13423-022-02062-8\nJost, L., \u0026amp; Jansen, P. (2022). Using linear mixed models to analyze learning processes within sessions improves detection of treatment effects: An exemplary study of chronometric mental rotation. Methods in Psychology, 6, 100092. https://doi.org/10.1016/j.metip.2022.100092\nJuhasz, B. J. (2022). Using Eye Movements to Investigate the Impact of Childhood and Recent Frequency of Occurrence on Word Identification During Reading in College. Scientific Studies of Reading, 26(5), 409\u0026ndash;416. https://doi.org/10.1080/10888438.2021.2021206\nJung, W., Peck, J., Palmeira, M., \u0026amp; Kim, K. (2022). An Unintended Consequence of Product Upgrades: How Upgrades Can Make Current Consumers Feel Left Behind. Journal of Marketing Research, 59(5), 1019\u0026ndash;1039. https://doi.org/10.1177/00222437221078551\nKainec, K. A., Paracha, A. W., Ali, S., Bussa, R., Mantua, J., \u0026amp; Spencer, R. (2022). Age-related changes in sleep-dependent novel word consolidation. Acta Psychologica, 222, 103478. https://doi.org/10.1016/j.actpsy.2021.103478\nKajimura, S., Hoshino, T., \u0026amp; Murayama, K. (2023). Stimulus-specific random effects inflate false-positive classification accuracy in multivariate-voxel-pattern-analysis: A solution with generalized mixed-effects modelling. NeuroImage, 269, 119901. https://doi.org/10.1016/j.neuroimage.2023.119901\nKalashnikova, M., Onsuwan, C., \u0026amp; Burnham, D. (2022). Infants\u0026rsquo; Sensitivity to Lexical Tone and Word Stress in Their First Year: A Thai and English Cross-Language Study. Language Learning and Development, 18(3), 278\u0026ndash;293. https://doi.org/10.1080/15475441.2021.1954928\nKalbe, F., \u0026amp; Schwabe, L. (2022). Prediction errors for aversive events shape long-term memory formation through a distinct neural mechanism. Cerebral Cortex, 32(14), 3081\u0026ndash;3097. https://doi.org/10.1093/cercor/bhab402\nKalénine, S., \u0026amp; Decroix, J. (2023). The pain hidden in your hands: Facial expression of pain reduces the influence of goal-related information in action recognition. Neuropsychologia, 189, 108658. https://doi.org/10.1016/j.neuropsychologia.2023.108658\nKalra, H., Tran, T., Romero, L., Chandra, P., \u0026amp; Fisher, J. (2022). Burden of severe maternal peripartum mental disorders in low- and middle-income countries: A systematic review. Archives of Women's Mental Health, 25(2), 267\u0026ndash;275. https://doi.org/10.1007/s00737-021-01201-9\nKam, J. W. Y., Mittner, M., \u0026amp; Knight, R. T. (2022). Mind-wandering: Mechanistic insights from lesion, tDCS, and iEEG. Trends in Cognitive Sciences, 26(3), 268\u0026ndash;282. https://doi.org/10.1016/j.tics.2021.12.005\nKanen, J. W., Robbins, T. W., \u0026amp; Trofimova, I. N. (2022). Harnessing temperament to elucidate the complexities of serotonin function. Current Opinion in Behavioral Sciences, 45, 101108. https://doi.org/10.1016/j.cobeha.2022.101108\nKang, H., Chen, G., \u0026amp; Luna-Reyes, L. F. (2022). Understanding citizens\u0026rsquo; perception of government fiscal information through a survey experiment. Government Information Quarterly, 39(1), 101661. https://doi.org/10.1016/j.giq.2021.101661\nKang, S., Lu, M., Black, J. B., \u0026amp; Kim, S. (2022). Mindful movements matter: Differentiating active body movements in underprivileged students\u0026rsquo; learning of physics concepts. Research in Science \u0026amp; Technological Education, 1\u0026ndash;19. https://doi.org/10.1080/02635143.2022.2093344\nKang, X., \u0026amp; Ge, H. (2022). Tracking Object-State Representations During Real-Time Language Comprehension by Native and Non-native Speakers of English. Frontiers in Psychology, 13, 819243. https://doi.org/10.3389/fpsyg.2022.819243\nKanovský, M., Halamová, J., Strnádelová, B., Moro, R., \u0026amp; Bielikova, M. (2022). Pupil size variation in primary facial expressions\u0026ndash;testing potential biomarker of self-criticism. Artificial Intelligence Review, 55(3), 2001\u0026ndash;2022. https://doi.org/10.1007/s10462-021-10057-5\nKaraduman, A., Karoglu-Eravsar, E. T., Kaya, U., Aydin, A., Adams, M. M., \u0026amp; Kafaligonul, H. (2023). Zebrafish optomotor response to second-order motion illustrates that age-related changes in motion detection depend on the activated motion system. Neurobiology of Aging, 130, 12\u0026ndash;21. https://doi.org/10.1016/j.neurobiolaging.2023.06.005\nKardas, M., Schroeder, J., \u0026amp; O'Brien, E. (2022). Keep talking: (Mis)understanding the hedonic trajectory of conversation. Journal of Personality and Social Psychology, 123(4), 717\u0026ndash;740. https://doi.org/10.1037/pspi0000379\nKearns, D. M., \u0026amp; Hiebert, E. H. (2022). The Word Complexity of Primary‐Level Texts: Differences Between First and Third Grade in Widely Used Curricula. Reading Research Quarterly, 57(1), 255\u0026ndash;285. https://doi.org/10.1002/rrq.429\nKeating, C. T., Fraser, D. S., Sowden, S., \u0026amp; Cook, J. L. (2022). Differences Between Autistic and Non-Autistic Adults in the Recognition of Anger from Facial Motion Remain after Controlling for Alexithymia. Journal of Autism and Developmental Disorders, 52(4), 1855\u0026ndash;1871. https://doi.org/10.1007/s10803-021-05083-9\nKeitel, C., Ruzzoli, M., Dugué, L., Busch, N. A., \u0026amp; Benwell, C. S. Y. (2022). Rhythms in cognition: The evidence revisited. European Journal of Neuroscience, 55(11\u0026ndash;12), 2991\u0026ndash;3009. https://doi.org/10.1111/ejn.15740\nKeller, J., Kwasnicka, D., Wilhelm, L. O., Lorbeer, N., Pauly, T., Domke, A., Knoll, N., \u0026amp; Fleig, L. (2022). Hand Washing and Related Cognitions Following a Brief Behavior Change Intervention During the COVID-19 Pandemic: A Pre-Post Analysis. International Journal of Behavioral Medicine, 29(5), 575\u0026ndash;586. https://doi.org/10.1007/s12529-021-10042-w\nKelley, M. C., \u0026amp; Tucker, B. V. (2022). The recognition of spoken pseudowords. Language, Cognition and Neuroscience, 37(9), 1169\u0026ndash;1190. https://doi.org/10.1080/23273798.2022.2053729\nKelly, R. E., Ahmed, A. O., \u0026amp; Hoptman, M. J. (2022). What Do These Findings Tell Us? Comment on Tinella et al. Cognitive Efficiency and Fitness-to-Drive along the Lifespan: The Mediation Effect of Visuospatial Transformations. Brain Sci. 2021, 11, 1028. Brain Sciences, 12(2), 165. https://doi.org/10.3390/brainsci12020165\nKelly, R. E., \u0026amp; Hoptman, M. J. (2022). Replicability in Brain Imaging. Brain Sciences, 12(3), 397. https://doi.org/10.3390/brainsci12030397\nKenny, B., Fuller-Tyszkiewicz, M., Moodie, M., Brown, V., \u0026amp; Williams, J. (2022). Bi-directional associations between depressive symptoms and eating disorder symptoms in early adolescence. Body Image, 42, 246\u0026ndash;256. https://doi.org/10.1016/j.bodyim.2022.06.012\nKent, M. G., Huynh, N. K., Mishra, A. K., Tartarini, F., Lipczynska, A., Li, J., Sultan, Z., Goh, E., Karunagaran, G., Natarajan, A., Indrajith, A., Hendri, I., Narendra, K. I., Wu, V., Chin, N., Gao, C. P., Sapar, M., Seoh, A., Shuhadah, N., \u0026hellip; Schiavon, S. (2023). Energy savings and thermal comfort in a zero energy office building with fans in Singapore. Building and Environment, 243, 110674. https://doi.org/10.1016/j.buildenv.2023.110674\nKenwood, M. M., Kalin, N. H., \u0026amp; Barbas, H. (2022). The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology, 47(1), 260\u0026ndash;275. https://doi.org/10.1038/s41386-021-01109-z\nKhalfallah, O., Barbosa, S., Martinuzzi, E., Davidovic, L., Yolken, R., \u0026amp; Glaichenhaus, N. (2022). Monitoring inflammation in psychiatry: Caveats and advice. European Neuropsychopharmacology, 54, 126\u0026ndash;135. https://doi.org/10.1016/j.euroneuro.2021.09.003\nKhera, T., Helfand, J., Kelly, L., Mueller, A., Shankar, P., Marcantonio, E. R., \u0026amp; Subramaniam, B. (2022). Twelve-Month Cognitive and Functional Outcomes Following Cardiac Surgery: The DEXACET Trial of Intravenous Acetaminophen Versus Placebo. Frontiers in Pharmacology, 13, 803903. https://doi.org/10.3389/fphar.2022.803903\nKhuri, J., Wang, Y., Holden, K., Fly, A. D., Mbogori, T., Mueller, S., Kandiah, J., \u0026amp; Zhang, M. (2022). Dietary Intake and Nutritional Status among Refugees in Host Countries: A Systematic Review. Advances in Nutrition, 13(5), 1846\u0026ndash;1865. https://doi.org/10.1093/advances/nmac051\nKida, S., Barcroft, J., \u0026amp; Sommers, M. (2022). Word learning and lexicalization in a second language: Evidence from the Prime lexicality effect in masked form priming. Memory \u0026amp; Cognition, 50(7), 1414\u0026ndash;1431. https://doi.org/10.3758/s13421-022-01274-6\nKiefer, M., Pielke, L., \u0026amp; Trumpp, N. M. (2022). Differential temporo-spatial pattern of electrical brain activity during the processing of abstract concepts related to mental states and verbal associations. NeuroImage, 252, 119036. https://doi.org/10.1016/j.neuroimage.2022.119036\nKim, H., \u0026amp; Newman, M. G. (2022). Avoidance of negative emotional contrast from worry and rumination: An application of the Contrast Avoidance Model. Journal of Behavioral and Cognitive Therapy, 32(1), 33\u0026ndash;43. https://doi.org/10.1016/j.jbct.2021.12.007\nKim, K., \u0026amp; Kim, H. (2022). Sequential bilingual heritage children's L1 attrition in lexical retrieval: Age of acquisition versus language experience. Bilingualism: Language and Cognition, 25(4), 537\u0026ndash;547. https://doi.org/10.1017/S1366728921001139\nKim, M. J., Theriault, J., Hirschfeld-Kroen, J., \u0026amp; Young, L. (2022). Reframing of moral dilemmas reveals an unexpected \u0026ldquo;positivity bias\u0026rdquo; in updating and attributions. Journal of Experimental Social Psychology, 101, 104310. https://doi.org/10.1016/j.jesp.2022.104310\nKim, S., Elam, L., Johnson, V., Hess, A., Webb, T., Dow, S., \u0026amp; Duerr, F. (2022). Intra-Articular Injections of Allogeneic Mesenchymal Stromal Cells vs. High Molecular Weight Hyaluronic Acid in Dogs With Osteoarthritis: Exploratory Data From a Double-Blind, Randomized, Prospective Clinical Trial. Frontiers in Veterinary Science, 9, 890704. https://doi.org/10.3389/fvets.2022.890704\nKim, S., Shin, Y., Jeong, Y., Na, S., \u0026amp; Han, C. E. (2023). Autonomy support encourages use of more-affected arm post-stroke. Journal of NeuroEngineering and Rehabilitation, 20(1), 116. https://doi.org/10.1186/s12984-023-01238-0\nKim, Y., Richards, J. S., \u0026amp; Oldehinkel, A. J. (2022). Self-control, Mental Health Problems, and Family Functioning in Adolescence and Young Adulthood: Between-person Differences and Within-person Effects. Journal of Youth and Adolescence, 51(6), 1181\u0026ndash;1195. https://doi.org/10.1007/s10964-021-01564-3\nKim, Y., Sommet, N., Na, J., \u0026amp; Spini, D. (2022). Social Class\u0026mdash;Not Income Inequality\u0026mdash;Predicts Social and Institutional Trust. Social Psychological and Personality Science, 13(1), 186\u0026ndash;198. https://doi.org/10.1177/1948550621999272\nKim, Y.-S., Hofman, J. M., \u0026amp; Goldstein, D. G. (2022). Putting scientific results in perspective: Improving the communication of standardized effect sizes. CHI Conference on Human Factors in Computing Systems, 1\u0026ndash;14. https://doi.org/10.1145/3491102.3502053\nKimmet, F., Pedersen, S., Cardenas, V., Rubiera, C., Johnson, G., Sans, A., Baldwin, M., \u0026amp; Odegaard, B. (2023). Metacognition and Causal Inference in Audiovisual Speech. Multisensory Research, 36(3), 289\u0026ndash;311. https://doi.org/10.1163/22134808-bja10094\nKing, D., \u0026amp; Gentner, D. (2022). Verb Metaphoric Extension Under Semantic Strain. Cognitive Science, 46(5), e13141. https://doi.org/10.1111/cogs.13141\nKlein, A., \u0026amp; Badia, T. (2022). Where Divergent Ideas Converge: Answers to AUT Found on Short List of Word Co-Occurrences Terms. Creativity Research Journal, 1\u0026ndash;17. https://doi.org/10.1080/10400419.2022.2103314\nKleindorfer, S., Colombelli‐Négrel, D., Common, L. K., O'Connor, J. A., Peters, K. J., Katsis, A. C., Dudaniec, R. Y., Sulloway, F. J., \u0026amp; Adreani, N. M. (2022). Functional traits and foraging behaviour: Avian vampire fly larvae change the beak and fitness of their Darwin's finch hosts. Functional Ecology, 36(7), 1806\u0026ndash;1817. https://doi.org/10.1111/1365-2435.14061\nKluwe-Schiavon, B., De Zorzi, L., Meireles, J., Leite, J., Sequeira, H., \u0026amp; Carvalho, S. (2022). The psychological impact of the COVID-19 pandemic in Portugal: The role of personality traits and emotion regulation strategies. PLOS ONE, 17(6), e0269496. https://doi.org/10.1371/journal.pone.0269496\nKöditz, B., Heidenreich, A., \u0026amp; Von Brandenstein, M. (2022). The Current Status of Kidney Cancer Urine Markers \u0026ndash; A Systematic Review. Kidney Cancer, 6(2), 137\u0026ndash;142. https://doi.org/10.3233/KCA-220005\nKoh, J., Farruggia, S. P., Back, L. T., \u0026amp; Han, C. (2022). Self-efficacy and academic success among diverse first-generation college students: The mediating role of self-regulation. Social Psychology of Education, 25(5), 1071\u0026ndash;1092. https://doi.org/10.1007/s11218-022-09713-7\nKoivisto, M., \u0026amp; Grassini, S. (2022). Affective responses to urban but not to natural scenes depend on inter-individual differences in childhood nature exposure. Journal of Environmental Psychology, 82, 101840. https://doi.org/10.1016/j.jenvp.2022.101840\nKoivisto, M., Jalava, E., Kuusisto, L., Railo, H., \u0026amp; Grassini, S. (2022). Top-Down Processing and Nature Connectedness Predict Psychological and Physiological Effects of Nature. Environment and Behavior, 54(5), 917\u0026ndash;945. https://doi.org/10.1177/00139165221107535\nKolovou, M. (2022). In Search of Assessment Shifts in Embodied Learning Science Research: A Review. Journal of Science Education and Technology, 31(2), 246\u0026ndash;257. https://doi.org/10.1007/s10956-021-09952-x\nKong, X., ENIGMA Laterality Working Group, \u0026amp; Francks, C. (2022). Reproducibility in the absence of selective reporting: An illustration from large‐scale brain asymmetry research. Human Brain Mapping, 43(1), 244\u0026ndash;254. https://doi.org/10.1002/hbm.25154\nKong, X., Postema, M. C., Guadalupe, T., De Kovel, C., Boedhoe, P. S. W., Hoogman, M., Mathias, S. R., Van Rooij, D., Schijven, D., Glahn, D. C., Medland, S. E., Jahanshad, N., Thomopoulos, S. I., Turner, J. A., Buitelaar, J., Van Erp, T. G. M., Franke, B., Fisher, S. E., Van Den Heuvel, O. A., \u0026hellip; Francks, C. (2022). Mapping brain asymmetry in health and disease through the ENIGMA consortium. Human Brain Mapping, 43(1), 167\u0026ndash;181. https://doi.org/10.1002/hbm.25033\nKong, X.-Z., Zhang, C., Liu, Y., \u0026amp; Pu, Y. (2022). Scanning reproducible brain-wide associations: Sample size is all you need? Psychoradiology, 2(3), 67\u0026ndash;68. https://doi.org/10.1093/psyrad/kkac010\nKoo, H., Kataoka, R., Swan, J. T., \u0026amp; Tzeng, C. Y. (2023). Effects of lexical frequency on the post-exposure magnitude of recalibration in lexically guided perceptual learning: An explorative analysis. JASA Express Letters, 3(8), 085201. https://doi.org/10.1121/10.0020515\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKorom, M., Camacho, M. C., Filippi, C. A., Licandro, R., Moore, L. A., Dufford, A., Zöllei, L., Graham, A. M., Spann, M., Howell, B., Shultz, S., \u0026amp; Scheinost, D. (2022). Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studies. Developmental Cognitive Neuroscience, 53, 101055. https://doi.org/10.1016/j.dcn.2021.101055\nKovacs, P., \u0026amp; Ashby, F. G. (2022). On what it means to automatize a rule. Cognition, 226, 105168. https://doi.org/10.1016/j.cognition.2022.105168\nKowalczyk, O. S., Mehta, M. A., O'Daly, O. G., \u0026amp; Criaud, M. (2022). Task-Based Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Systematic Review. Biological Psychiatry Global Open Science, 2(4), 350\u0026ndash;367. https://doi.org/10.1016/j.bpsgos.2021.10.006\nKrachtis, A., Karkala, A., Frantzidis, C. A., Gkivogkli, P. T., Ladas, A. I., Strollo, F., \u0026amp; Kourtidou-Papadeli, C. (2022). Arterial Stiffness Alterations in Simulated Microgravity and Reactive Sledge as a Countermeasure. High Blood Pressure \u0026amp; Cardiovascular Prevention, 29(1), 65\u0026ndash;74. https://doi.org/10.1007/s40292-021-00486-2\nKral, T. R. A., Davis, K., Korponay, C., Hirshberg, M. J., Hoel, R., Tello, L. Y., Goldman, R. I., Rosenkranz, M. A., Lutz, A., \u0026amp; Davidson, R. J. (2022). Absence of structural brain changes from mindfulness-based stress reduction: Two combined randomized controlled trials. Science Advances, 8(20), eabk3316. https://doi.org/10.1126/sciadv.abk3316\nKramer, R. S. S., Gous, G., Mireku, M. O., \u0026amp; Ward, R. (2022). Metacognition during unfamiliar face matching. British Journal of Psychology, 113(3), 696\u0026ndash;717. https://doi.org/10.1111/bjop.12553\nKrapf-Bar, D., Davidovitch, M., Rozenblatt-Perkal, Y., \u0026amp; Gueron-Sela, N. (2022). Maternal mobile phone use during mother\u0026ndash;child interactions interferes with the process of establishing joint attention. Developmental Psychology, 58(9), 1639\u0026ndash;1651. https://doi.org/10.1037/dev0001388\nKrautz, A. E., \u0026amp; Keuleers, E. (2022). LinguaPix database: A megastudy of picture-naming norms. Behavior Research Methods, 54(2), 941\u0026ndash;954. https://doi.org/10.3758/s13428-021-01651-0\nKrendl, A. C., \u0026amp; Betzel, R. F. (2022). Social cognitive network neuroscience. Social Cognitive and Affective Neuroscience, 17(5), 510\u0026ndash;529. https://doi.org/10.1093/scan/nsac020\nKrogh, S. M. (2022). Danish-English Bilinguals\u0026rsquo; Cognate Processing in L1 and L2 Visual Lexical Decision Tasks. Languages, 7(3), 228. https://doi.org/10.3390/languages7030228\nKruijne, W., Galli, R. M., \u0026amp; Los, S. A. (2022). Implicitly learning when to be ready: From instances to categories. Psychonomic Bulletin \u0026amp; Review, 29(2), 552\u0026ndash;562. https://doi.org/10.3758/s13423-021-02004-w\nKu, L.-C., Allen, J. J. B., \u0026amp; Lai, V. T. (2022). Attention and regulation during emotional word comprehension in older adults: Evidence from event-related potentials and brain oscillations. Brain and Language, 227, 105086. https://doi.org/10.1016/j.bandl.2022.105086\nKuhl, U., Artelt, A., \u0026amp; Hammer, B. (2023). For Better or Worse: The Impact of Counterfactual Explanations\u0026rsquo; Directionality on User Behavior in xAI. In L. Longo (Ed.), Explainable Artificial Intelligence (Vol. 1903, pp. 280\u0026ndash;300). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44070-0_14\nKuhlen, A. K., \u0026amp; Abdel Rahman, R. (2022). Mental chronometry of speaking in dialogue: Semantic interference turns into facilitation. Cognition, 219, 104962. https://doi.org/10.1016/j.cognition.2021.104962\nKulkarni, R. U., Wang, C. L., \u0026amp; Bertozzi, C. R. (2022). Analyzing nested experimental designs\u0026mdash;A user-friendly resampling method to determine experimental significance. PLOS Computational Biology, 18(5), e1010061. https://doi.org/10.1371/journal.pcbi.1010061\nKumar, A. A., Steyvers, M., \u0026amp; Balota, D. A. (n.d.). A critical review of network-based and distributional approaches to semantic memory structure and processes. Topics in Cognitive Science. https://doi.org/10.1111/tops.12548\nKumari, K., \u0026amp; Goswami, M. (2022). Sensitivity Analysis of Calibration Methods and Factors Effecting the Statistical Nature of Radiation Measurement. Journal of Signal Processing Systems, 94(4), 387\u0026ndash;397. https://doi.org/10.1007/s11265-021-01685-9\nKumcu, A., \u0026amp; Thompson, R. L. (2022). Remembering spatial words: Sensorimotor simulation affects verbal recognition memory. Quarterly Journal of Experimental Psychology, 75(9), 1694\u0026ndash;1710. https://doi.org/10.1177/17470218211059011\nKunst, J. R., Dovidio, J. F., Bailey, A. H., \u0026amp; Obaidi, M. (2022). The way they look: Phenotypic prototypicality shapes the perceived intergroup attitudes of in- and out-group members. Journal of Experimental Social Psychology, 100, 104303. https://doi.org/10.1016/j.jesp.2022.104303\nKunst, J. R., Onyeador, I. N., \u0026amp; Dovidio, J. F. (2022). Knowledge About Individuals\u0026rsquo; Interracial Friendships Is Systematically Associated With Mental Representations of Race, Traits, and Group Solidarity. Personality and Social Psychology Bulletin, 48(5), 718\u0026ndash;734. https://doi.org/10.1177/01461672211024118\nKutscheid, S., Zahner-Ritter, K., Leemann, A., \u0026amp; Braun, B. (2022). How prior experience with pitch accents shapes the perception of word and sentence stress. Language, Cognition and Neuroscience, 37(1), 103\u0026ndash;119. https://doi.org/10.1080/23273798.2021.1946109\nKuzmina, Y., Marakshina, J., Lobaskova, M., Zakharov, I., Tikhomirova, T., \u0026amp; Malykh, S. (2023). The Interaction between Congruency and Numerical Ratio Effects in the Nonsymbolic Comparison Test. Behavioral Sciences, 13(12), 983. https://doi.org/10.3390/bs13120983\nKweon, H., Aydogan, G., Dagher, A., Bzdok, D., Ruff, C. C., Nave, G., Farah, M. J., \u0026amp; Koellinger, P. D. (2022). Human brain anatomy reflects separable genetic and environmental components of socioeconomic status. Science Advances, 8(20), eabm2923. https://doi.org/10.1126/sciadv.abm2923\nLador-Weizman, Y., \u0026amp; Deutsch, A. (2022). The contribution of consonants and vowels to auditory word recognition is shaped by language-specific properties: Evidence from Hebrew. Journal of Experimental Psychology: Human Perception and Performance, 48(5), 401\u0026ndash;426. https://doi.org/10.1037/xhp0001000\nLafit, G., Sels, L., Adolf, J. K., Loeys, T., \u0026amp; Ceulemans, E. (2022). PowerLAPIM: An application to conduct power analysis for linear and quadratic longitudinal actor\u0026ndash;partner interdependence models in intensive longitudinal dyadic designs. Journal of Social and Personal Relationships, 39(10), 3085\u0026ndash;3115. https://doi.org/10.1177/02654075221080128\nLakens, D. (2022). Sample Size Justification. Collabra: Psychology, 8(1), 33267. https://doi.org/10.1525/collabra.33267\nLam, B. P. W., \u0026amp; Marquardt, T. P. (2022). Factors Predicting Mental Effort Associated With Verbal Fluency: Cue Types, Switching, and Fear of Negative Evaluation. Journal of Speech, Language, and Hearing Research, 65(9), 3491\u0026ndash;3501. https://doi.org/10.1044/2022_JSLHR-21-00563\nLam, S. S. L., Liu, T. W., Ng, S. S. M., Lai, C. W. K., \u0026amp; Woo, J. (2022). Bilateral Movement-based Computer Games Improve Sensorimotor Functions in Subacute Stroke Survivors. Journal of Rehabilitation Medicine, 54, jrm00307. https://doi.org/10.2340/jrm.v54.913\nLandau, B., Davis, E. E., Gürcanlı, Ö., \u0026amp; Wilson, C. (2023). How Does English Encode \u0026lsquo;Tight\u0026rsquo; Vs. \u0026lsquo;Loose-fit\u0026rsquo; Motion Events? It's Complicated. Language Learning and Development, 1\u0026ndash;24. https://doi.org/10.1080/15475441.2023.2196531\nLanders, M. J. F., Meesters, S. P. L., Van Zandvoort, M., De Baene, W., \u0026amp; Rutten, G.-J. M. (2022). The frontal aslant tract and its role in executive functions: A quantitative tractography study in glioma patients. Brain Imaging and Behavior, 16(3), 1026\u0026ndash;1039. https://doi.org/10.1007/s11682-021-00581-x\nLandry, É. R., Guitard, D., \u0026amp; Saint-Aubin, J. (2022). Arousal affects short-term serial recall. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 76(2), 99\u0026ndash;110. https://doi.org/10.1037/cep0000272\nLang, M., Chvaja, R., Grant Purzycki, B., Václavík, D., \u0026amp; Staněk, R. (2022). Advertising cooperative phenotype through costly signals facilitates collective action. Royal Society Open Science, 9(5), 202202. https://doi.org/10.1098/rsos.202202\nLang, X., Wang, D., Chen, D., Xiu, M., Zhou, H., Wang, L., Cao, B., \u0026amp; Zhang, X. (2022). Association Between Hippocampal Subfields and Clinical Symptoms of First-Episode and Drug Naive Schizophrenia Patients During 12 Weeks of Risperidone Treatment. Neurotherapeutics, 19(1), 399\u0026ndash;407. https://doi.org/10.1007/s13311-021-01174-8\nLarson, C., Crespo, K., Kaushanskaya, M., \u0026amp; Ellis Weismer, S. (2022). Are items actively removed from working memory during free time in children with developmental language disorder? International Journal of Language \u0026amp; Communication Disorders, 57(5), 1006\u0026ndash;1022. https://doi.org/10.1111/1460-6984.12735\nLarson, C., Mathée-Scott, J., Kaplan, D., \u0026amp; Weismer, S. E. (2023). Cognitive processes associated with working memory in children with developmental language disorder. Journal of Experimental Child Psychology, 234, 105709. https://doi.org/10.1016/j.jecp.2023.105709\nLarson, C., Rivera-Figueroa, K., Thomas, H. R., Fein, D., Stevens, M. C., \u0026amp; Eigsti, I.-M. (2022). Structural language impairment in Autism Spectrum Disorder versus Loss of Autism Diagnosis: Behavioral and neural characteristics. NeuroImage: Clinical, 34, 103043. https://doi.org/10.1016/j.nicl.2022.103043\nLauer, M. S. (2022). From Hype to High-Quality Research. JAMA Network Open, 5(8), e2228683. https://doi.org/10.1001/jamanetworkopen.2022.28683\nLaurinavichyute, A., Yadav, H., \u0026amp; Vasishth, S. (2022). Share the code, not just the data: A case study of the reproducibility of articles published in the Journal of Memory and Language under the open data policy. Journal of Memory and Language, 125, 104332. https://doi.org/10.1016/j.jml.2022.104332\nLavitskaya, Y., Sedelkina, Y., Korotaevskaya, E., Tkacheva, L., Flaksman, M., \u0026amp; Nasledov, A. (2022). Does De-Iconization Affect Visual Recognition of Russian and English Iconic Words? Languages, 7(2), 97. https://doi.org/10.3390/languages7020097\nLawer, E. A., Mupepele, A.-C., Darkoh, E. L., Farwig, N., Oware, S., Larbi, J. A., Essiaw-Quayson, G., \u0026amp; Klein, A.-M. (2022). Logging effects on parasitic infections in a swamp rat ( Malacomys edwardsi ) in West Africa. Journal of Mammalogy, 103(2), 383\u0026ndash;393. https://doi.org/10.1093/jmammal/gyab159\nLawrence, J. F., Knoph, R., McIlraith, A., Kulesz, P. A., \u0026amp; Francis, D. J. (2022). Reading Comprehension and Academic Vocabulary: Exploring Relations of Item Features and Reading Proficiency. Reading Research Quarterly, 57(2), 669\u0026ndash;690. https://doi.org/10.1002/rrq.434\nLeblanc, É., Dégeilh, F., Beauchamp, M. H., \u0026amp; Bernier, A. (2022). Disorganized attachment behaviors in infancy as predictors of brain morphology and peer rejection in late childhood. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(4), 833\u0026ndash;848. https://doi.org/10.3758/s13415-022-00987-0\nLee, J., \u0026amp; Yoon, S.-Y. (2023). Nature and patient waiting: Mediating effects of anxiety and perceived wait time on the association between nature and service perception. Journal of Environmental Psychology, 91, 102113. https://doi.org/10.1016/j.jenvp.2023.102113\nLee, Y., \u0026amp; Warneken, F. (2022). Does third-party punishment in children aim at equality? Developmental Psychology, 58(5), 866\u0026ndash;873. https://doi.org/10.1037/dev0001331\nLees, J., Todd, H., \u0026amp; Barranti, M. (2023). Women, the intellectually humble, and liberals write more persuasive political arguments. PNAS Nexus, 2(5), pgad143. https://doi.org/10.1093/pnasnexus/pgad143\nLees, J., Young, L., \u0026amp; Waytz, A. (2022). Morally questionable actors\u0026rsquo; meta-perceptions are accurate but overly positive. Journal of Experimental Social Psychology, 102, 104371. https://doi.org/10.1016/j.jesp.2022.104371\nLeichtmann, B., Nitsch, V., \u0026amp; Mara, M. (2022). Crisis Ahead? Why Human-Robot Interaction User Studies May Have Replicability Problems and Directions for Improvement. Frontiers in Robotics and AI, 9, 838116. https://doi.org/10.3389/frobt.2022.838116\nLevari, D. E. (2022). Range-frequency effects can explain and eliminate prevalence-induced concept change. Cognition, 226, 105196. https://doi.org/10.1016/j.cognition.2022.105196\nLewis, G., Towlson, C., Roversi, P., Domogalla, C., Herrington, L., \u0026amp; Barrett, S. (2022). Quantifying volume and high-speed technical actions of professional soccer players using foot-mounted inertial measurement units. PLOS ONE, 17(2), e0263518. https://doi.org/10.1371/journal.pone.0263518\nLewis, M. A., Zhou, Z., Fairlie, A. M., Litt, D. M., Kannard, E., Resendiz, R., Walker, T., Seamster, M., Garcia, T., \u0026amp; Lee, C. M. (2023). Occasion-level investigation of playing drinking games: Associations with cognitions, situational factors, alcohol use, and negative consequences among adolescents and young adults. Addictive Behaviors, 137, 107497. https://doi.org/10.1016/j.addbeh.2022.107497\nLi, J., Chu, Y., \u0026amp; Xu, J. (2023). Impression transference from AI to human: The impact of AI's fairness on interpersonal perception in AI-Mediated communication. International Journal of Human-Computer Studies, 179, 103119. https://doi.org/10.1016/j.ijhcs.2023.103119\nLi, L.-L., He, R., Pansini, R., \u0026amp; Quan, R.-C. (2022). Prolonged proximity to humans ensures better performance of semi-captive Asian elephants at discriminating between human individuals by voice. Frontiers in Ecology and Evolution, 10, 963052. https://doi.org/10.3389/fevo.2022.963052\nLi, N., Dimigen, O., Sommer, W., \u0026amp; Wang, S. (2022). Parafoveal words can modulate sentence meaning: Electrophysiological evidence from an RSVP ‐with‐flanker task. Psychophysiology, 59(9), e14053. https://doi.org/10.1111/psyp.14053\nLi, N.-X., Hu, Y.-R., Chen, W.-N., \u0026amp; Zhang, B. (2022). Dose effect of psilocybin on primary and secondary depression: A preliminary systematic review and meta-analysis. Journal of Affective Disorders, 296, 26\u0026ndash;34. https://doi.org/10.1016/j.jad.2021.09.041\nLi, W., Germine, L. T., Mehr, S. A., Srinivasan, M., \u0026amp; Hartshorne, J. (2022). Developmental psychologists should adopt citizen science to improve generalization and reproducibility. Infant and Child Development, e2348. https://doi.org/10.1002/icd.2348\nLi, X., Luo, D., Wang, C., Xia, Y., \u0026amp; Jin, H. (2022). Motor features of abstract verbs determine their representations in the motor system. Frontiers in Psychology, 13, 957426. https://doi.org/10.3389/fpsyg.2022.957426\nLi, X., \u0026amp; Qu, Q. (2023). Verbal working memory capacity modulates semantic and phonological prediction in spoken comprehension. Psychonomic Bulletin \u0026amp; Review. https://doi.org/10.3758/s13423-023-02348-5\nLi, Y., \u0026amp; Bi, H.-Y. (2022). Comparative research on neural dysfunction in children with dyslexia under different writing systems: A meta-analysis study. Neuroscience \u0026amp; Biobehavioral Reviews, 137, 104650. https://doi.org/10.1016/j.neubiorev.2022.104650\nLi, Y., Luo, P., Song, Y., Zhang, L., Qu, Y., \u0026amp; Hou, Z. (2023). A locally explained heterogeneity model for examining wetland disparity. International Journal of Digital Earth, 16(2), 4533\u0026ndash;4552. https://doi.org/10.1080/17538947.2023.2271883\nLi, Y., \u0026amp; Siew, C. S. Q. (2022). Diachronic semantic change in language is constrained by how people use and learn language. Memory \u0026amp; Cognition, 50(6), 1284\u0026ndash;1298. https://doi.org/10.3758/s13421-022-01331-0\nLi, Z., Crinnion, A. M., \u0026amp; Magnuson, J. S. (2021). LexFindR: A fast, simple, and extensible R package for finding similar words in a lexicon. Behavior Research Methods, 54(3), 1388\u0026ndash;1402. https://doi.org/10.3758/s13428-021-01667-6\nLi, Z., Wu, S., \u0026amp; Liu, D. (2023). The effects of context, story-type, and language proficiency on EFL word learning and retention from reading. International Review of Applied Linguistics in Language Teaching, 0(0). https://doi.org/10.1515/iral-2023-0155\nLiang, M., Ahmad, F., \u0026amp; Dickinson, R. (2022). Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: A preclinical systematic review and meta-analysis. British Journal of Anaesthesia, 129(2), 200\u0026ndash;218. https://doi.org/10.1016/j.bja.2022.04.016\nLiang, Y., Xu, G., \u0026amp; Ur Rehman, S. (2022). Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis. Computers, Materials \u0026amp; Continua, 72(3), 4645\u0026ndash;4661. https://doi.org/10.32604/cmc.2022.026999\nLiao, X., \u0026amp; Ni, C. (2022). The effects of emotionality and lexical category on L2 word processing in different tasks: Evidence from late Chinese\u0026ndash;English bilinguals. Quarterly Journal of Experimental Psychology, 75(5), 907\u0026ndash;923. https://doi.org/10.1177/17470218211041833\nLibersky, E., Crespo, K., Reppe, A., \u0026amp; Kaushanskaya, M. (2023). Effects of bilingualism on autobiographical memory: Variation in idea density and retrieval speed. Memory, 31(4), 491\u0026ndash;501. https://doi.org/10.1080/09658211.2023.2171435\nLiceralde, V. R. T., Loukina, A., Beigman Klebanov, B., \u0026amp; Lockwood, J. R. (2022). Beyond text complexity: Production-related sources of text-based variability in oral reading fluency. Journal of Educational Psychology, 114(1), 16\u0026ndash;36. https://doi.org/10.1037/edu0000532\nLim, J. Y. L., Boardman, J., Dyche, J., Anderson, C., Dickinson, D. L., \u0026amp; Drummond, S. P. A. (2022). Sex moderates the effects of total sleep deprivation and sleep restriction on risk preference. Sleep, 45(9), zsac120. https://doi.org/10.1093/sleep/zsac120\nLim, S. M., Shiau, C. W. C., Cheng, L. J., \u0026amp; Lau, Y. (2022). Chatbot-Delivered Psychotherapy for Adults With Depressive and Anxiety Symptoms: A Systematic Review and Meta-Regression. Behavior Therapy, 53(2), 334\u0026ndash;347. https://doi.org/10.1016/j.beth.2021.09.007\nLimumpornpetch, P., Morgan, A. W., Tiganescu, A., Baxter, P. D., Nyawira Nyaga, V., Pujades-Rodriguez, M., \u0026amp; Stewart, P. M. (2022). The Effect of Endogenous Cushing Syndrome on All-cause and Cause-specific Mortality. The Journal of Clinical Endocrinology \u0026amp; Metabolism, 107(8), 2377\u0026ndash;2388. https://doi.org/10.1210/clinem/dgac265\nLin, E., \u0026amp; Schmid, P. C. (2022). Does power increase attention to rewards? Examining the brain and behavior. Journal of Experimental Social Psychology, 101, 104332. https://doi.org/10.1016/j.jesp.2022.104332\nLin, Y., Peng, G., Bruner, D. W., Miller, A. H., Saba, N. F., Higgins, K. A., Shin, D. M., Claussen, H., Johnston, H. R., Houser, M. C., Wommack, E. C., \u0026amp; Xiao, C. (2023). Associations of differentially expressed genes with psychoneurological symptoms in patients with head and neck cancer: A longitudinal study. Journal of Psychosomatic Research, 175, 111518. https://doi.org/10.1016/j.jpsychores.2023.111518\nLindell, T. A. E., Zickfeld, J. H., \u0026amp; Reber, R. (2022). The role of affect in late perceptual processes: Evidence from bi-stable illusions, object identification, and mental rotation. Journal of Experimental Psychology: Human Perception and Performance, 48(12), 1347\u0026ndash;1361. https://doi.org/10.1037/xhp0001059\nLindstromberg, S. (2022). The compositionality of English phrasal verbs in terms of imageability. Lingua, 275, 103373. https://doi.org/10.1016/j.lingua.2022.103373\nLioi, A., Hazoor, A., Castro, M., \u0026amp; Bassani, M. (2022). Impact on driver behaviour of guardrails of different height in horizontal-vertical coordinated road scenarios with a limited available sight distance. Transportation Research Part F: Traffic Psychology and Behaviour, 84, 287\u0026ndash;300. https://doi.org/10.1016/j.trf.2021.12.008\nLiquin, E. G., \u0026amp; Lombrozo, T. (2022). Motivated to learn: An account of explanatory satisfaction. Cognitive Psychology, 132, 101453. https://doi.org/10.1016/j.cogpsych.2021.101453\nLitovsky, C. P., Finley, A. M., Zuckerman, B., Sayers, M., Schoenhard, J. A., Kenett, Y. N., \u0026amp; Reilly, J. (2022). Semantic flow and its relation to controlled semantic retrieval deficits in the narrative production of people with aphasia. Neuropsychologia, 170, 108235. https://doi.org/10.1016/j.neuropsychologia.2022.108235\nLiu, J., Kelly, E., \u0026amp; Bielekova, B. (2022). Current Status and Future Opportunities in Modeling Clinical Characteristics of Multiple Sclerosis. Frontiers in Neurology, 13, 884089. https://doi.org/10.3389/fneur.2022.884089\nLiu, M. (2022). Mental Imagery and Polysemy Processing. Journal of Consciousness Studies, 29(5), 176\u0026ndash;189. https://doi.org/10.53765/20512201.29.5.176\nLiu, S., Hong, D., Huang, J., Wang, S., Liu, X., Branigan, H. P., \u0026amp; Pickering, M. J. (2022). Syntactic priming across highly similar languages is not affected by language proficiency. Language, Cognition and Neuroscience, 37(4), 469\u0026ndash;480. https://doi.org/10.1080/23273798.2021.1994620\nLiu, Z., Wang, Y., Ata-UI-Karim, S. T., Liu, X., Tian, Y., Zhu, Y., Cao, W., \u0026amp; Cao, Q. (2023). Developing a nitrogen application estimation model for diverse wheat fields: A user-friendly approach for smallholder nitrogen fertilizer recommendations. European Journal of Agronomy, 151, 126984. https://doi.org/10.1016/j.eja.2023.126984\nLivingston, N., Leviyah, X., Ameral, V., Hocking, E., \u0026amp; Timko, C. (2022). Scoping review of intervention studies to improve opioid and alcohol use outcomes and links to care following inpatient detoxification. Addiction Research \u0026amp; Theory, 30(2), 134\u0026ndash;148. https://doi.org/10.1080/16066359.2021.1955356\nLluesma-Vidal, M., Carcelén González, R., García-Garcés, L., Sánchez-López, M. I., Peyro, L., \u0026amp; Ruiz-Zaldibar, C. (2022). Effect of Virtual Reality on Pediatric Pain and Fear During Procedures Involving Needles: Systematic Review and Meta-analysis. JMIR Serious Games, 10(3), e35008. https://doi.org/10.2196/35008\nLo, S., \u0026amp; Andrews, S. (2022). The effects of mental abacus expertise on working memory, mental representations and calculation strategies used for two-digit Hindu-Arabic numbers. Journal of Numerical Cognition, 8(1), 89\u0026ndash;122. https://doi.org/10.5964/jnc.8073\nLong, J., Qin, K., Wu, Y., Li, L., \u0026amp; Zhou, J. (2022). Gray matter abnormalities and associated familial risk endophenotype in individuals with first-episode bipolar disorder: Evidence from whole-brain voxel-wise meta-analysis. Asian Journal of Psychiatry, 74, 103179. https://doi.org/10.1016/j.ajp.2022.103179\nLoon, F. H. V., Scholten, H. J., Korsten, H. H., Dierick - Van Daele, A. T., \u0026amp; Bouwman, A. R. (2022). The learning curve for ultrasound-guided peripheral intravenous cannulation in adults: A multicenter study. Medical Ultrasonography, 24(2), 188. https://doi.org/10.11152/mu-3322\nLu, L., Phua, Q. S., Bacchi, S., Goh, R., Gupta, A. K., Kovoor, J. G., Ovenden, C. D., \u0026amp; To, M.-S. (2022). Small Study Effects in Diagnostic Imaging Accuracy: A Meta-Analysis. JAMA Network Open, 5(8), e2228776. https://doi.org/10.1001/jamanetworkopen.2022.28776\nLucas, R. E. (2022). Editorial. Journal of Personality and Social Psychology, 122(1), 102\u0026ndash;105. https://doi.org/10.1037/pspp0000403\nLudwig, B., Wölfel, P., Greenberg, I., Piepho, H., \u0026amp; Spörlein, P. (2022). Application of mixed‐effects modelling and rule‐based models to explain copper variation in soil profiles of southern Germany. European Journal of Soil Science, 73(3), e13258. https://doi.org/10.1111/ejss.13258\nLundqvist, S., Cider, Å., Larsson, M. E. H., Hagberg, L., Björk, M. P., \u0026amp; Börjesson, M. (2022). The effects of a 5-year physical activity on prescription (PAP) intervention in patients with metabolic risk factors. PLOS ONE, 17(10), e0276868. https://doi.org/10.1371/journal.pone.0276868\nŁuniewska, M., Wójcik, M., Kołak, J., Mieszkowska, K., Wodniecka, Z., \u0026amp; Haman, E. (2022). Word knowledge and lexical access in monolingual and bilingual migrant children: Impact of word properties. Language Acquisition, 29(2), 135\u0026ndash;164. https://doi.org/10.1080/10489223.2021.1973475\nLuo, W., Baek, E., \u0026amp; Li, H. (2022). Transparency and Replicability of Multilevel Modeling Applications: A Guideline for Improved Reporting Practices. In M. S. Khine (Ed.), Methodology for Multilevel Modeling in Educational Research (pp. 161\u0026ndash;183). Springer Singapore. https://doi.org/10.1007/978-981-16-9142-3_9\nLusnig, L., Radach, R., \u0026amp; Hofmann, M. J. (2022). Meditation affects word recognition of meditation novices. Psychological Research, 86(3), 723\u0026ndash;736. https://doi.org/10.1007/s00426-021-01522-5\nLuteijn, P. J., Van Der Wurff, I. S. M., Singh, A. S., Savelberg, H. H. C. M., \u0026amp; De Groot, R. H. M. (2022). The Acute Effects of Standing on Executive Functioning in Vocational Education and Training Students: The Phit2Learn Study. Frontiers in Psychology, 13, 810007. https://doi.org/10.3389/fpsyg.2022.810007\nMa, H., Huang, G., Li, M., Han, Y., Sun, J., Zhan, L., Wang, Q., Jia, X., Han, X., Li, H., Song, Y., \u0026amp; Lv, Y. (2022). The Predictive Value of Dynamic Intrinsic Local Metrics in Transient Ischemic Attack. Frontiers in Aging Neuroscience, 13, 808094. https://doi.org/10.3389/fnagi.2021.808094\nMacchi, R., Santuz, A., Hays, A., Vercruyssen, F., Arampatzis, A., Bar-Hen, A., \u0026amp; Nicol, C. (2022). Sex influence on muscle synergies in a ballistic force-velocity test during the delayed recovery phase after a graded endurance run. Heliyon, 8(6), e09573. https://doi.org/10.1016/j.heliyon.2022.e09573\nMacêdo, M. A., Sato, J. R., Bressan, R. A., \u0026amp; Pan, P. M. (2022). Adolescent depression and resting-state fMRI brain networks: A scoping review of longitudinal studies. Brazilian Journal of Psychiatry. https://doi.org/10.47626/1516-4446-2021-2032\nMacGregor, K. A., Rodriguez-Sanchez, N., Di Virgilio, T. G., Barwell, N. D., Gallagher, I. J., \u0026amp; Moran, C. N. (2022). Changes in adipose tissue microRNA expression across the menstrual cycle in regularly menstruating females: A pilot study. Physiological Genomics, 54(1), 1\u0026ndash;10. https://doi.org/10.1152/physiolgenomics.00088.2021\nMackie, D. M., Smith, E. R., Banerji, I., \u0026amp; Munasinghe, A. (2023). Group-based emotion processes generalize across group exemplars and types. Group Processes \u0026amp; Intergroup Relations, 13684302231166856. https://doi.org/10.1177/13684302231166856\nMacMillan, M. B., Field, H. R., Neath, I., \u0026amp; Surprenant, A. M. (2022). Valence does not affect recognition. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 76(2), 111\u0026ndash;121. https://doi.org/10.1037/cep0000275\nMadan, C. R. (2022). Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain. Neuroinformatics, 20(1), 109\u0026ndash;137. https://doi.org/10.1007/s12021-021-09519-6\nMagistro, G., \u0026amp; Crocco, C. (2022). Phonetic erosion and information structure in function words: The case of mia. Interspeech 2022, 91\u0026ndash;95. https://doi.org/10.21437/Interspeech.2022-10305\nMah, K. M., Wu, W., Al-Ali, H., Sun, Y., Han, Q., Ding, Y., Muñoz, M., Xu, X.-M., Lemmon, V. P., \u0026amp; Bixby, J. L. (2022). Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice. Experimental Neurology, 355, 114117. https://doi.org/10.1016/j.expneurol.2022.114117\nMaillet, M. A., \u0026amp; Grouzet, F. M. E. (2022). Healthy eating in daily life: The role of relative autonomous motivation when it is difficult. Motivation and Emotion, 46(5), 640\u0026ndash;657. https://doi.org/10.1007/s11031-022-09960-3\nMakin, A. D., Tyson-Carr, J., Rampone, G., Derpsch, Y., Wright, D., \u0026amp; Bertamini, M. (2022). Lessons from a catalogue of 6674 brain recordings. eLife, 11, e66388. https://doi.org/10.7554/eLife.66388\nMalbec, M., Hindmarsh, J. N., Jongerling, J., Franken, I. H., \u0026amp; Wieser, M. J. (2022). No intolerance of errors: The effect of intolerance of uncertainty on performance monitoring revisited. International Journal of Psychophysiology, 179, 77\u0026ndash;88. https://doi.org/10.1016/j.ijpsycho.2022.07.001\nMalén, T., Karjalainen, T., Isojärvi, J., Vehtari, A., Bürkner, P.-C., Putkinen, V., Kaasinen, V., Hietala, J., Nuutila, P., Rinne, J., \u0026amp; Nummenmaa, L. (2022). Atlas of type 2 dopamine receptors in the human brain: Age and sex dependent variability in a large PET cohort. NeuroImage, 255, 119149. https://doi.org/10.1016/j.neuroimage.2022.119149\nMalloy, C. S., Hughes, C., \u0026amp; Cassidy, B. S. (2023). Perceiver and target partisanship shift facial trustworthiness effects on likability. Scientific Reports, 13(1), 6130. https://doi.org/10.1038/s41598-023-33307-8\nMalykh, S., Tarasov, S., Baeva, I., Nikulchev, E., Kolyasnikov, P., Ilin, D., Marnevskaia, I., Malykh, A., Ismatullina, V., \u0026amp; Kuzmina, Y. (2023). Large-scale study of the precision of the approximate number system: Differences between formats, heterogeneity and congruency effects. Heliyon, 9(4), e14912. https://doi.org/10.1016/j.heliyon.2023.e14912\nManeejuk, P., Yamaka, W., \u0026amp; Sriboonchitta, S. (2022). Entropy inference in smooth transition kink regression. Communications in Statistics - Simulation and Computation, 51(12), 7366\u0026ndash;7389. https://doi.org/10.1080/03610918.2020.1836214\nManeejuk, P., Yamaka, W., \u0026amp; Srichaikul, W. (2022). Tourism Development and Economic Growth in Southeast Asian Countries under the Presence of Structural Break: Panel Kink with GME Estimator. Mathematics, 10(5), 723. https://doi.org/10.3390/math10050723\nMarek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, W., Miller, R. L., Hendrickson, T. J., Malone, S. M., Kandala, S., Feczko, E., Miranda-Dominguez, O., Graham, A. M., Earl, E. A., Perrone, A. J., Cordova, M., Doyle, O., \u0026hellip; Dosenbach, N. U. F. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654\u0026ndash;660. https://doi.org/10.1038/s41586-022-04492-9\nMari, M. A., \u0026amp; Müller, M.-L. (2023). Social cognition and Relevance: How stereotypes impact the processing of definite and indefinite descriptions. Frontiers in Communication, 8, 1088861. https://doi.org/10.3389/fcomm.2023.1088861\nMarinucci, M., Pancani, L., Aureli, N., \u0026amp; Riva, P. (2022). Online social connections as surrogates of face-to-face interactions: A longitudinal study under Covid-19 isolation. Computers in Human Behavior, 128, 107102. https://doi.org/10.1016/j.chb.2021.107102\nMarkostamou, I., \u0026amp; Coventry, K. R. (2022). Naming spatial relations across the adult lifespan: At the crossroads of language and perception. Neuropsychology, 36(3), 216\u0026ndash;230. https://doi.org/10.1037/neu0000789\nMarozzi, M., \u0026amp; Marmolejo-Ramos, F. (2022). Composite indicators in experimental psychology. An example with the semantic space of taste and shape stimuli stimuli. Communications in Statistics - Simulation and Computation, 51(1), 154\u0026ndash;163. https://doi.org/10.1080/03610918.2019.1648823\nMarris, J., Barrett, S., Abt, G., \u0026amp; Towlson, C. (2022). Quantifying technical actions in professional soccer using foot-mounted inertial measurement units. Science and Medicine in Football, 6(2), 203\u0026ndash;214. https://doi.org/10.1080/24733938.2021.1910333\nMasia, V., Garassino, D., Brocca, N., \u0026amp; De Saussure, L. (2023). Recalling presupposed information: Evidence from the online processing of presuppositions in political tweets. Pragmatics \u0026amp; Cognition, 30(1), 92\u0026ndash;119. https://doi.org/10.1075/pc.22011.mas\nMaskor, M., Fladerer, M. P., Fong, P., Steffens, N. K., \u0026amp; Haslam, S. A. (2023). The fish can rot from the heart, not just the head: Exploring the detrimental impact of transgressions by leaders at multiple levels of an organization. British Journal of Social Psychology, 62(1), 431\u0026ndash;455. https://doi.org/10.1111/bjso.12551\nMasuccio, F. G., Grange, E., Di Giovanni, R., Marengo, D., Prosperini, L., \u0026amp; Solaro, C. (2023). Evaluation of mild-to-moderate COVID-19 through dual-task paradigm: A longitudinal case-controlled study. Neurological Sciences, 44(12), 4167\u0026ndash;4177. https://doi.org/10.1007/s10072-023-07137-5\nMateu, V., \u0026amp; Sundara, M. (2022). Spanish input accelerates bilingual infants\u0026rsquo; segmentation of English words. Cognition, 218, 104936. https://doi.org/10.1016/j.cognition.2021.104936\nMathis, A., \u0026amp; Papafragou, A. (2022). Agents\u0026rsquo; goals affect construal of event endpoints. Journal of Memory and Language, 127, 104373. https://doi.org/10.1016/j.jml.2022.104373\nMattfeld, A. T. (2022). Comparative Tasks for Comparative Neurophysiology. In R. P. Vertes \u0026amp; T. Allen (Eds.), Electrophysiological Recording Techniques (Vol. 192, pp. 193\u0026ndash;220). Springer US. https://doi.org/10.1007/978-1-0716-2631-3_9\nMatz, A. F., Nie, Y., \u0026amp; Wheeler, H. J. (2022). Auditory stream segregation of amplitude-modulated narrowband noise in cochlear implant users and individuals with normal hearing. Frontiers in Psychology, 13, 927854. https://doi.org/10.3389/fpsyg.2022.927854\nMauersberger, H., Kastendieck, T., \u0026amp; Hess, U. (2022). I looked at you, you looked at me, I smiled at you, you smiled at me\u0026mdash;The impact of eye contact on emotional mimicry. Frontiers in Psychology, 13, 970954. https://doi.org/10.3389/fpsyg.2022.970954\nMaxwell, N. P., \u0026amp; Huff, M. J. (2022). Reactivity from judgments of learning is not only due to memory forecasting: Evidence from associative memory and frequency judgments. Metacognition and Learning, 17(2), 589\u0026ndash;625. https://doi.org/10.1007/s11409-022-09301-2\nMaxwell, N. P., Huff, M. J., \u0026amp; Buchanan, E. M. (2021). The lrd package: An R package and Shiny application for processing lexical data. Behavior Research Methods, 54(4), 2001\u0026ndash;2024. https://doi.org/10.3758/s13428-021-01718-y\nMaxwell, N. P., Perry, T., \u0026amp; Huff, M. J. (2022). Perceptually fluent features of study words do not inflate judgements of learning: Evidence from font size, highlights, and Sans Forgetica font type. Metacognition and Learning, 17(2), 293\u0026ndash;319. https://doi.org/10.1007/s11409-021-09284-6\nMay, R. J., Tyndall, I., McTiernan, A., Roderique‐Davies, G., \u0026amp; McLoughlin, S. (2022). The impact of the SMART program on cognitive and academic skills: A systematic review and meta‐analysis. British Journal of Educational Technology, 53(5), 1244\u0026ndash;1261. https://doi.org/10.1111/bjet.13192\nMayer, M., \u0026amp; Heck, D. W. (2022). Sequential collaboration: The accuracy of dependent, incremental judgments. Decision. https://doi.org/10.1037/dec0000193\nMazzei, R., Emery, Y., Soares, M. C., \u0026amp; Bshary, R. (2023). Dominance is associated with reduced cleaning activity in group-living Elacatinus prochilos gobies. Animal Behaviour, 206, 29\u0026ndash;38. https://doi.org/10.1016/j.anbehav.2023.09.001\nMcClannahan, K. S., Mainardi, A., Luor, A., Chiu, Y.-F., Sommers, M. S., \u0026amp; Peelle, J. E. (2022). Spoken Word Recognition in Listeners with Mild Dementia Symptoms. Journal of Alzheimer's Disease, 90(2), 749\u0026ndash;759. https://doi.org/10.3233/JAD-215606\nMcFadden, B. A., Vincenty, C. S., Chandler, A. J., Cintineo, H. P., Lints, B. S., Mastrofini, G. F., \u0026amp; Arent, S. M. (2023). Effects of fucoidan supplementation on inflammatory and immune response after high-intensity exercise. Journal of the International Society of Sports Nutrition, 20(1), 2224751. https://doi.org/10.1080/15502783.2023.2224751\nMcFeaters, C. D., \u0026amp; Voyer, D. (2022). Identifying spatial effects in a lateralized duration estimation task. Laterality, 27(2), 190\u0026ndash;220. https://doi.org/10.1080/1357650X.2021.1966436\nMcGill, K., Sackley, C., Godwin, J., Gavaghan, D., Ali, M., Ballester, B. R., Brady, M. C., Brady, M. C., Ali, M., Ashburn, A., Barer, D., Barzel, A., Bernhardt, J., Bowen, A., Drummond, A., Edmans, J., English, C., Gladman, J., Godecke, E., \u0026hellip; Whiteley, W. (2022). Using the Barthel Index and modified Rankin Scale as Outcome Measures for Stroke Rehabilitation Trials; A Comparison of Minimum Sample Size Requirements. Journal of Stroke and Cerebrovascular Diseases, 31(2), 106229. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106229\nMcHuron, E. A., Rosen, D. A. S., Carpenter, J., Leonard, P., Sirpenski, G., \u0026amp; Sterling, J. T. (2022). Variation in body mass and food intake of northern fur seals ( Callorhinus ursinus ). Marine Mammal Science, 38(3), 1160\u0026ndash;1181. https://doi.org/10.1111/mms.12919\nMcKenna, M., Cervone, D., Roy, A., \u0026amp; Burkett, C. (2022). Personality coherence in acts and texts: Searching for coherence within and beyond trait categories. European Journal of Personality, 36(3), 347\u0026ndash;370. https://doi.org/10.1177/08902070211022131\nMcLaughlin, D. J., Zink, M. E., Gaunt, L., Brent Spehar, Van Engen, K. J., Sommers, M. S., \u0026amp; Peelle, J. E. (2022). Pupillometry reveals cognitive demands of lexical competition during spoken word recognition in young and older adults. Psychonomic Bulletin \u0026amp; Review, 29(1), 268\u0026ndash;280. https://doi.org/10.3758/s13423-021-01991-0\nMcNeely-White, K. L., McNeely-White, D. G., Huebert, A. M., Carlaw, B. N., \u0026amp; Cleary, A. M. (2022). Specifying a relationship between semantic and episodic memory in the computation of a feature-based familiarity signal using MINERVA 2. Memory \u0026amp; Cognition, 50(3), 527\u0026ndash;545. https://doi.org/10.3758/s13421-021-01234-6\nMcPhetres, J., \u0026amp; Zickfeld, J. H. (2022). The physiological study of emotional piloerection: A systematic review and guide for future research. International Journal of Psychophysiology, 179, 6\u0026ndash;20. https://doi.org/10.1016/j.ijpsycho.2022.06.010\nMeade, G., Grainger, J., \u0026amp; Holcomb, P. J. (2022). Language Dominance Modulates Transposed-Letter N400 Priming Effects in Bilinguals. Journal of Cognition, 5(1), 12. https://doi.org/10.5334/joc.203\nMedimorec, S. (2022). The Effects of Day of the Week on Temporal Ambiguity Resolution. Psychological Reports, 125(2), 882\u0026ndash;889. https://doi.org/10.1177/0033294120979686\nMeersmans, K., Storms, G., De Deyne, S., Bruffaerts, R., Dupont, P., \u0026amp; Vandenberghe, R. (2022). Orienting to different dimensions of word meaning alters the representation of word meaning in early processing regions. Cerebral Cortex, 32(15), 3302\u0026ndash;3317. https://doi.org/10.1093/cercor/bhab416\nMehrabi, S., Muñoz, J. E., Basharat, A., Boger, J., Cao, S., Barnett-Cowan, M., \u0026amp; Middleton, L. E. (2022). Immersive Virtual Reality Exergames to Promote the Well-being of Community-Dwelling Older Adults: Protocol for a Mixed Methods Pilot Study. JMIR Research Protocols, 11(6), e32955. https://doi.org/10.2196/32955\nMeier, K. J., Song, M., Davis, J. A., \u0026amp; Amirkhanyan, A. A. (2022). Sector Bias and the Credibility of Performance Information: An Experimental Study of Elder Care Provision. Public Administration Review, 82(1), 69\u0026ndash;82. https://doi.org/10.1111/puar.13425\nMeijer, D., \u0026amp; Noppeney, U. (2023). Metacognition in the audiovisual McGurk illusion: Perceptual and causal confidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1886), 20220348. https://doi.org/10.1098/rstb.2022.0348\nMellinger, C. D., \u0026amp; Hanson, T. A. (2022). Research data. In F. Zanettin \u0026amp; C. Rundle, The Routledge Handbook of Translation and Methodology (1st ed., pp. 307\u0026ndash;323). Routledge. https://doi.org/10.4324/9781315158945-23\nMendes, A. J., Pacheco-Barrios, K., Lema, A., Gonçalves, Ó. F., Fregni, F., Leite, J., \u0026amp; Carvalho, S. (2022). Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis. Neuroscience \u0026amp; Biobehavioral Reviews, 132, 894\u0026ndash;907. https://doi.org/10.1016/j.neubiorev.2021.11.002\nMendes, P. S., \u0026amp; Undorf, M. (2022). On the pervasive effect of word frequency in metamemory. Quarterly Journal of Experimental Psychology, 75(8), 1411\u0026ndash;1427. https://doi.org/10.1177/17470218211053329\nMenendez, D., Brown, S. A., \u0026amp; Alibali, M. W. (2023). Some Correct Strategies Are Better Than Others: Individual Differences in Strategy Evaluations Are Related to Strategy Adoption. Cognitive Science, 47(3), e13269. https://doi.org/10.1111/cogs.13269\nMenendez, D., Sabbagh, N. F., Alibali, M. W., \u0026amp; Rosengren, K. S. (2023). Timelines or time cycles: Exposure to different spatial representations of time influences sketching and diagram preferences. Educational Research for Policy and Practice. https://doi.org/10.1007/s10671-023-09331-w\nMeng, D., Wang, S., Wong, P. C. M., \u0026amp; Feng, G. (2022). Generalizable predictive modeling of semantic processing ability from functional brain connectivity. Human Brain Mapping, 43(14), 4274\u0026ndash;4292. https://doi.org/10.1002/hbm.25953\nMerck, C., Noël, A., Jamet, E., Robert, M., Salmon, A., Belliard, S., \u0026amp; Kalénine, S. (2023). Nonspecific Effects of Normal Aging on Taxonomic and Thematic Semantic Processing. Experimental Aging Research, 49(1), 18\u0026ndash;40. https://doi.org/10.1080/0361073X.2022.2046948\nMertens, G., \u0026amp; Krypotos, A.-M. (2022). Preregistration of Studies with Existing Data. In J. Faintuch \u0026amp; S. Faintuch (Eds.), Integrity of Scientific Research (pp. 361\u0026ndash;370). Springer International Publishing. https://doi.org/10.1007/978-3-030-99680-2_36\nMertens, Y. L., Manthey, A., Sierk, A., Walter, H., \u0026amp; Daniels, J. K. (2022). Neural correlates of acute post-traumatic dissociation: A functional neuroimaging script-driven imagery study. BJPsych Open, 8(4), e109. https://doi.org/10.1192/bjo.2022.65\nMesquida, C., Murphy, J., Lakens, D., \u0026amp; Warne, J. (2022). Replication concerns in sports and exercise science: A narrative review of selected methodological issues in the field. Royal Society Open Science, 9(12), 220946. https://doi.org/10.1098/rsos.220946\nMetzen, D., Genç, E., Getzmann, S., Larra, M. F., Wascher, E., \u0026amp; Ocklenburg, S. (2022). Frontal and parietal EEG alpha asymmetry: A large-scale investigation of short-term reliability on distinct EEG systems. Brain Structure and Function, 227(2), 725\u0026ndash;740. https://doi.org/10.1007/s00429-021-02399-1\nMeyer, N., Xu, Y., Karjalainen, K., Adamczyk, S., Biasi, C., Van Delden, L., Martin, A., Mganga, K., Myller, K., Sietiö, O., Suominen, O., \u0026amp; Karhu, K. (2022). Living, dead, and absent trees\u0026mdash;How do moth outbreaks shape small‐scale patterns of soil organic matter stocks and dynamics at the Subarctic mountain birch treeline? Global Change Biology, 28(2), 441\u0026ndash;462. https://doi.org/10.1111/gcb.15951\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMichaelides, A., Mitchell, E. S., Behr, H., Ho, A. S., Hanada, G., Lee, J., \u0026amp; McPartland, S. (2022). Executive Function-Related Improvements on a Commercial CBT-Based Weight Management Intervention: Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(14), 8763. https://doi.org/10.3390/ijerph19148763\nMicheloud, C., \u0026amp; Held, L. (2022). Power Calculations for Replication Studies. Statistical Science, 37(3). https://doi.org/10.1214/21-STS828\nMiegel, F., Bücker, L., Kühn, S., Mostajeran, F., Moritz, S., Baumeister, A., Lohse, L., Blömer, J., Grzella, K., \u0026amp; Jelinek, L. (2022). Exposure and Response Prevention in Virtual Reality for Patients with Contamination-Related Obsessive\u0026ndash;Compulsive Disorder: A Case Series. Psychiatric Quarterly, 93(3), 861\u0026ndash;882. https://doi.org/10.1007/s11126-022-09992-5\nMiles, A., Andiappan, M., Upenieks, L., \u0026amp; Orfanidis, C. (2022). Using prosocial behavior to safeguard mental health and foster emotional well-being during the COVID-19 pandemic: A registered report of a randomized trial. PLOS ONE, 17(7), e0272152. https://doi.org/10.1371/journal.pone.0272152\nMilledge, S. V., Liversedge, S. P., \u0026amp; Blythe, H. I. (2022). The importance of the first letter in children's parafoveal preprocessing in English: Is it phonologically or orthographically driven? Journal of Experimental Psychology: Human Perception and Performance, 48(5), 427\u0026ndash;442. https://doi.org/10.1037/xhp0000998\nMilledge, S. V., Zang, C., Liversedge, S. P., \u0026amp; Blythe, H. I. (2022). Phonological parafoveal pre-processing in children reading English sentences. Cognition, 225, 105141. https://doi.org/10.1016/j.cognition.2022.105141\nMiller, A. C., Harris, L. M., Cavanaugh, J. E., Abou Alaiwa, M., Stoltz, D. A., Hornick, D. B., \u0026amp; Polgreen, P. M. (2022). The Rapid Reduction of Infection-Related Visits and Antibiotic Use Among People With Cystic Fibrosis After Starting Elexacaftor-Tezacaftor-Ivacaftor. Clinical Infectious Diseases, 75(7), 1115\u0026ndash;1122. https://doi.org/10.1093/cid/ciac117\nMiller, J. D. (2022). Editorial for Personality Disorders: Theory, Research, and Treatment. Personality Disorders: Theory, Research, and Treatment, 13(1), 1\u0026ndash;2. https://doi.org/10.1037/per0000536\nMiller, J., \u0026amp; Ulrich, R. (2022). Optimizing Research Output: How Can Psychological Research Methods Be Improved? Annual Review of Psychology, 73(1), 691\u0026ndash;718. https://doi.org/10.1146/annurev-psych-020821-094927\nMiller-Goldwater, H. E., Cronin-Golomb, L. M., Hanft, M. H., \u0026amp; Bauer, P. J. (2023). The influence of books\u0026rsquo; textual features and caregivers\u0026rsquo; extratextual talk on children's science learning in the context of shared book reading. Developmental Psychology, 59(2), 390\u0026ndash;411. https://doi.org/10.1037/dev0001480\nMiller-Goldwater, H. E., Hanft, M. H., Miller, A. G., \u0026amp; Bauer, P. J. (2023). Young Children's Science Learning from Narrative Books: The Role of Text Cohesion and Caregivers\u0026rsquo; Extratextual Talk. Journal of Cognition and Development, 1\u0026ndash;27. https://doi.org/10.1080/15248372.2023.2267229\nMilleville, S. C., Gotts, S. J., Wittig, J. H., Inati, S. K., Zaghloul, K. A., \u0026amp; Martin, A. (2022). Distinct deficits of repetition priming following lateral versus anteromedial frontal cortex damage. Neuropsychologia, 170, 108212. https://doi.org/10.1016/j.neuropsychologia.2022.108212\nMilligan, S., Antúnez, M., Barber, H. A., \u0026amp; Schotter, E. R. (2023). Are eye movements and EEG on the same page?: A coregistration study on parafoveal preview and lexical frequency. Journal of Experimental Psychology: General, 152(1), 188\u0026ndash;210. https://doi.org/10.1037/xge0001278\nMills, K. A., Unsworth, L., \u0026amp; Scholes, L. (2022). Literacy for Digital Futures: Mind, Body, Text (1st ed.). Routledge. https://doi.org/10.4324/9781003137368\nMinassian, A., Kelsoe, J. R., Miranda, A., Young, J. W., \u0026amp; Perry, W. (2022). The relationship between novelty-seeking traits and behavior: Establishing construct validity for the human Behavioral Pattern Monitor. Psychiatry Research, 316, 114776. https://doi.org/10.1016/j.psychres.2022.114776\nMirabolfathi, V., Schweizer, S., Moradi, A., \u0026amp; Jobson, L. (2022). Affective working memory capacity in refugee adolescents. Psychological Trauma: Theory, Research, Practice, and Policy, 14(6), 983\u0026ndash;988. https://doi.org/10.1037/tra0000552\nMirault, J., Leflaëc, C., \u0026amp; Grainger, J. (2022). Orthographic relatedness and transposed-word effects in the grammatical decision task. Attention, Perception, \u0026amp; Psychophysics, 84(3), 1043\u0026ndash;1051. https://doi.org/10.3758/s13414-021-02421-y\nMirault, J., Massol, S., \u0026amp; Grainger, J. (2022). Effects of non-adjacent letter repetition in the same-different matching task. Language, Cognition and Neuroscience, 37(10), 1292\u0026ndash;1302. https://doi.org/10.1080/23273798.2022.2061022\nMiskewicz, K., Furr, R. M., \u0026amp; Fleeson, W. (2022). Do normal personality traits connect to the dynamic processes of psychopathology? Personality Disorders: Theory, Research, and Treatment, 13(5), 423\u0026ndash;437. https://doi.org/10.1037/per0000516\nMiura, Y., Li, M.-Y., Revah, O., Yoon, S.-J., Narazaki, G., \u0026amp; Pașca, S. P. (2022). Engineering brain assembloids to interrogate human neural circuits. Nature Protocols, 17(1), 15\u0026ndash;35. https://doi.org/10.1038/s41596-021-00632-z\nMochizuki, M. (2022). Little to no evidence of the QWERTY effect in Japanese word valence rating. Cognitive Processing, 23(3), 527\u0026ndash;533. https://doi.org/10.1007/s10339-022-01092-3\nMolenmaker, W. E., Lelieveld, G., De Kwaadsteniet, E. W., \u0026amp; Van Dijk, E. (2022). Applying a logic of appropriateness to understand behavioral differences between common resource dilemmas and public good dilemmas. Journal of Behavioral Decision Making, 35(1), e2243. https://doi.org/10.1002/bdm.2243\nMolina-García, J., Menescardi, C., Estevan, I., \u0026amp; Queralt, A. (2021). Associations between Park and Playground Availability and Proximity and Children's Physical Activity and Body Mass Index: The BEACH Study. International Journal of Environmental Research and Public Health, 19(1), 250. https://doi.org/10.3390/ijerph19010250\nMonaco, E., Mouthon, M., Britz, J., Sato, S., Stefanos-Yakoub, I., Annoni, J. M., \u0026amp; Jost, L. B. (2023). Embodiment of action-related language in the native and a late foreign language \u0026ndash; An fMRI-study. Brain and Language, 244, 105312. https://doi.org/10.1016/j.bandl.2023.105312\nMonson, C. M., Wagner, A. C., Crenshaw, A. O., Whitfield, K. M., Newnham, C. M., Valela, R., Varma, S., Di Bartolomeo, A. A., Fulham, L., Collins, A., Donkin, V., Mensah, D. H., Landy, M. S. H., Samonas, C., Morland, L., Doss, B. D., \u0026amp; Fitzpatrick, S. (2022). An uncontrolled trial of couple HOPES: A guided online couple intervention for PTSD and relationship enhancement. Journal of Family Psychology, 36(6), 1036\u0026ndash;1042. https://doi.org/10.1037/fam0000976\nMonster, I., Tellings, A., Burk, W. J., Keuning, J., Segers, E., \u0026amp; Verhoeven, L. (2022). Word Properties Predicting Children's Word Recognition. Scientific Studies of Reading, 26(5), 373\u0026ndash;389. https://doi.org/10.1080/10888438.2021.2020795\nMontero-Melis, G., Van Paridon, J., Ostarek, M., \u0026amp; Bylund, E. (2022). No evidence for embodiment: The motor system is not needed to keep action verbs in working memory. Cortex, 150, 108\u0026ndash;125. https://doi.org/10.1016/j.cortex.2022.02.006\nMoon, J. W., Tratner, A. E., \u0026amp; McDonald, M. M. (2022). Men are less religious in more gender-equal countries. Proceedings of the Royal Society B: Biological Sciences, 289(1968), 20212474. https://doi.org/10.1098/rspb.2021.2474\nMorey, R. D., Kaschak, M. P., Díez-Álamo, A. M., Glenberg, A. M., Zwaan, R. A., Lakens, D., Ibáñez, A., García, A., Gianelli, C., Jones, J. L., Madden, J., Alifano, F., Bergen, B., Bloxsom, N. G., Bub, D. N., Cai, Z. G., Chartier, C. R., Chatterjee, A., Conwell, E., \u0026hellip; Ziv-Crispel, N. (2022). A pre-registered, multi-lab non-replication of the action-sentence compatibility effect (ACE). Psychonomic Bulletin \u0026amp; Review, 29(2), 613\u0026ndash;626. https://doi.org/10.3758/s13423-021-01927-8\nMorgan‐Short, K., Finestrat, I., Luque, A., \u0026amp; Abugaber, D. (2022). Exploring New Insights Into Explicit and Implicit Second Language Processing: Event‐Related Potentials Analyzed by Source Attribution. Language Learning, 72(2), 365\u0026ndash;411. https://doi.org/10.1111/lang.12492\nMorin, E. L., Garza, K. M., Aoued, H., Sannigrahi, S., Siebert, E. R., Howell, B. R., Walum, H., Sanchez, M. M., \u0026amp; Dias, B. G. (2022). Profiling nonhuman primate germline RNA to understand the legacy of early life stress. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 337(1), 15\u0026ndash;23. https://doi.org/10.1002/jez.2501\nMoroshkina, N. V., Savina, A. I., Ammalainen, A. V., Gershkovich, V. A., Zverev, I. V., \u0026amp; Lvova, O. V. (2022). How Difficult Was It? Metacognitive Judgments About Problems and Their Solutions After the Aha Moment. Frontiers in Psychology, 13, 911904. https://doi.org/10.3389/fpsyg.2022.911904\nMorris, A., O'Connor, B. B., \u0026amp; Cushman, F. (2022). The role of episodic simulation in motivating commonplace harms. Cognition, 225, 105104. https://doi.org/10.1016/j.cognition.2022.105104\nMorris, M., Coste, G. I., Redding-Ochoa, J., Guo, H., Graves, A. R., Troncoso, J. C., \u0026amp; Huganir, R. L. (2023). Hippocampal synaptic alterations associated with tau pathology in primary age-related tauopathy. Journal of Neuropathology \u0026amp; Experimental Neurology, 82(10), 836\u0026ndash;844. https://doi.org/10.1093/jnen/nlad064\nMorys, F., Shishikura, M., \u0026amp; Dagher, A. (2022). Population-based research in obesity \u0026ndash; An overview of neuroimaging studies using big data approach. Current Opinion in Endocrine and Metabolic Research, 23, 100323. https://doi.org/10.1016/j.coemr.2022.100323\nMostoufi, S. L., \u0026amp; Singh, N. D. (2022). Diet-induced changes in titer support a discrete response of Wolbachia -associated plastic recombination in Drosophila melanogaster. G3 Genes|Genomes|Genetics, 12(1), jkab375. https://doi.org/10.1093/g3journal/jkab375\nMotoki, K., Saito, T., \u0026amp; Velasco, C. (2022). Spontaneous crossmodal correspondences grounded in contexts. Food Quality and Preference, 100, 104619. https://doi.org/10.1016/j.foodqual.2022.104619\nMueller, S. A. L., Oler, J. A., Roseboom, P. H., Aggarwal, N., Kenwood, M. M., Riedel, M. K., Elam, V. R., Olsen, M. E., DiFilippo, A. H., Christian, B. T., Hu, X., Galvan, A., Boehm, M. A., Michaelides, M., \u0026amp; Kalin, N. H. (2023). DREADD-mediated amygdala activation is sufficient to induce anxiety-like responses in young nonhuman primates. Current Research in Neurobiology, 5, 100111. https://doi.org/10.1016/j.crneur.2023.100111\nMuhr, P. (2022). From Photography to fMRI: Epistemic Functions of Images in Medical Research on Hysteria (1st ed., Vol. 209). transcript Verlag. https://doi.org/10.14361/9783839461761\nMukai, T., Nishio, K., Komatsu, H., \u0026amp; Sasaki, M. (2022). What effect does feedback have on energy conservation? Comparing previous household usage, neighbourhood usage, and social norms in Japan. Energy Research \u0026amp; Social Science, 86, 102430. https://doi.org/10.1016/j.erss.2021.102430\nMüller, N., Nagels, A., \u0026amp; Kauschke, C. (2022). Metaphorical expressions originating from human senses: Psycholinguistic and affective norms for German metaphors for internal state terms (MIST database). Behavior Research Methods, 54(1), 365\u0026ndash;377. https://doi.org/10.3758/s13428-021-01639-w\nMüller, T., Husain, M., \u0026amp; Apps, M. A. J. (2022). Preferences for seeking effort or reward information bias the willingness to work. Scientific Reports, 12(1), 19486. https://doi.org/10.1038/s41598-022-21917-7\nMulligan, N. W., Buchin, Z. L., \u0026amp; Zhang, A. L. (2022). The testing effect with free recall: Organization, attention, and order effects. Journal of Memory and Language, 125, 104333. https://doi.org/10.1016/j.jml.2022.104333\nMumby, P. J., Chaloupka, M., Bozec, Y., Steneck, R. S., \u0026amp; Montero‐Serra, I. (2022). Revisiting the evidentiary basis for ecological cascades with conservation impacts. Conservation Letters, 15(1), e12847. https://doi.org/10.1111/conl.12847\nMurayama, K., Usami, S., \u0026amp; Sakaki, M. (2022). Summary-statistics-based power analysis: A new and practical method to determine sample size for mixed-effects modeling. Psychological Methods. https://doi.org/10.1037/met0000330\nMurphy, D. H., \u0026amp; Castel, A. D. (2022a). Differential effects of proactive and retroactive interference in value-directed remembering for younger and older adults. Psychology and Aging, 37(7), 787\u0026ndash;799. https://doi.org/10.1037/pag0000707\nMurphy, D. H., \u0026amp; Castel, A. D. (2022b). Selective remembering and directed forgetting are influenced by similar stimulus properties. Memory, 30(9), 1130\u0026ndash;1147. https://doi.org/10.1080/09658211.2022.2092152\nMurphy, D. H., Huckins, S. C., Rhodes, M. G., \u0026amp; Castel, A. D. (2022). The effect of perceptual processing fluency and value on metacognition and remembering. Psychonomic Bulletin \u0026amp; Review, 29(3), 910\u0026ndash;921. https://doi.org/10.3758/s13423-021-02030-8\nMurray, S., Jiménez‐Leal, W., \u0026amp; Amaya, S. (2023). Within your rights: Dissociating wrongness and permissibility in moral judgement. British Journal of Social Psychology, bjso.12680. https://doi.org/10.1111/bjso.12680\nMusslick, S., Cherkaev, A., Draut, B., Butt, A. S., Darragh, P., Srikumar, V., Flatt, M., \u0026amp; Cohen, J. D. (2021). SweetPea: A standard language for factorial experimental design. Behavior Research Methods, 54(2), 805\u0026ndash;829. https://doi.org/10.3758/s13428-021-01598-2\nMuziki, J. d'Amour, Uwera, T., Niyonsenga, J., Nshimiyimana, A., Sebatukura, S. G., \u0026amp; Mutabaruka, J. (2022). Negative emotions and personal well-being among incarcerated filicide mothers in Rwanda. PLOS ONE, 17(7), e0271255. https://doi.org/10.1371/journal.pone.0271255\nNakipoğlu, M., Uzundağ, B. A., \u0026amp; Ketrez, F. N. (2023). Analogy is indispensable but rule is a must: Insights from Turkish. Journal of Child Language, 50(2), 437\u0026ndash;463. https://doi.org/10.1017/S0305000921000921\nNakua, H., Hawco, C., Forde, N. J., Jacobs, G. R., Joseph, M., Voineskos, A. N., Wheeler, A. L., Lai, M.-C., Szatmari, P., Kelley, E., Liu, X., Georgiades, S., Nicolson, R., Schachar, R., Crosbie, J., Anagnostou, E., Lerch, J. P., Arnold, P. D., \u0026amp; Ameis, S. H. (2022). Cortico-amygdalar connectivity and externalizing/internalizing behavior in children with neurodevelopmental disorders. Brain Structure and Function, 227(6), 1963\u0026ndash;1979. https://doi.org/10.1007/s00429-022-02483-0\nNamasivayam, A. K., Yan, T., Bali, R., Hayden, D., \u0026amp; Van Lieshout, P. (2022). Cross-Modal Somatosensory Repetition Priming and Speech Processing. Journal of Integrative Neuroscience, 21(5), 146. https://doi.org/10.31083/j.jin2105146\nNavarrete, J., Navarro-Siurana, J., Herrero, R., Vara, M. D., Miragall, M., \u0026amp; Baños, R. (2022). Connecting to Nature through 360° Videos during COVID-19 Confinement: A Pilot Study of a Brief Psychological Intervention. Journal of Healthcare Engineering, 2022, 1\u0026ndash;13. https://doi.org/10.1155/2022/4242888\nNayak, S., Gustavson, D. E., Wang, Y., Below, J. E., Gordon, R. L., \u0026amp; Magne, C. L. (2022). Test of Prosody via Syllable Emphasis (\u0026ldquo;TOPsy\u0026rdquo;): Psychometric Validation of a Brief Scalable Test of Lexical Stress Perception. Frontiers in Neuroscience, 16, 765945. https://doi.org/10.3389/fnins.2022.765945\nNebe, S., Hermann, A., Herrmann, M. J., Mier, D., \u0026amp; Sicorello, U. M. (2022). Im Namen des Vorstands der Deutschen Gesellschaft für Psychophysiologie und ihre Anwendung e.V. (DGPA). Das Potential der biopsychologischen und neurowissenschaftlichen Lehre zur Vermittlung von Open Science Praktiken. Psychologische Rundschau, 73(1), 33\u0026ndash;35. https://doi.org/10.1026/0033-3042/a000570\nNeergaard, K. D., Xu, H., German, J. S., \u0026amp; Huang, C.-R. (2021). Database of word-level statistics for Mandarin Chinese (DoWLS-MAN). Behavior Research Methods, 54(2), 987\u0026ndash;1009. https://doi.org/10.3758/s13428-021-01620-7\nNegussie, E., González-Recio, O., Battagin, M., Bayat, A.-R., Boland, T., De Haas, Y., Garcia-Rodriguez, A., Garnsworthy, P. C., Gengler, N., Kreuzer, M., Kuhla, B., Lassen, J., Peiren, N., Pszczola, M., Schwarm, A., Soyeurt, H., Vanlierde, A., Yan, T., \u0026amp; Biscarini, F. (2022). Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. Journal of Dairy Science, 105(6), 5124\u0026ndash;5140. https://doi.org/10.3168/jds.2021-20158\nNemati, F., Westbury, C., Hollis, G., \u0026amp; Haghbin, H. (2022). The Persian Lexicon Project: Minimized orthographic neighbourhood effects in a dense language. Journal of Psycholinguistic Research, 51(5), 957\u0026ndash;979. https://doi.org/10.1007/s10936-022-09863-x\nNeo, H. S., Tan, J. H., Ang, W. H. D., \u0026amp; Lau, Y. (2022). Internet-delivered psychological interventions for reducing depressive, anxiety symptoms and fear of childbirth in pregnant women: A meta-analysis and meta-regression. Journal of Psychosomatic Research, 157, 110790. https://doi.org/10.1016/j.jpsychores.2022.110790\nNeudorf, J., Gould, L., Mickleborough, M. J. S., Ekstrand, C., \u0026amp; Borowsky, R. (2022). Unique, Shared, and Dominant Brain Activation in Visual Word Form Area and Lateral Occipital Complex during Reading and Picture Naming. Neuroscience, 481, 178\u0026ndash;196. https://doi.org/10.1016/j.neuroscience.2021.11.022\nNeveu, A., \u0026amp; Kaushanskaya, M. (2023). Paired-associate versus cross-situational: How do verbal working memory and word familiarity affect word learning? Memory \u0026amp; Cognition, 51(7), 1670\u0026ndash;1682. https://doi.org/10.3758/s13421-023-01421-7\nNeveu, A., \u0026amp; Kaushanskaya, M. (2024). The role of bilingualism in paired-associate and cross-situational word learning. Bilingualism: Language and Cognition, 27(1), 41\u0026ndash;56. https://doi.org/10.1017/S1366728923000524\nNeville, V., Mounty, J., Benato, L., Hunter, K., Mendl, M., \u0026amp; Paul, E. S. (2022). Thinking outside the lab: Can studies of pet rats inform pet and laboratory rat welfare? Applied Animal Behaviour Science, 246, 105507. https://doi.org/10.1016/j.applanim.2021.105507\nNewel, K. T., Burma, J. S., Carere, J., Kennedy, C. M., \u0026amp; Smirl, J. D. (2022). Does oscillation size matter? Impact of added resistance on the cerebral pressure‐flow Relationship in females and males. Physiological Reports, 10(10), e15278. https://doi.org/10.14814/phy2.15278\nNewman, D. B., \u0026amp; Nezlek, J. B. (2022). The Influence of Daily Events on Emotion Regulation and Well-Being in Daily Life. Personality and Social Psychology Bulletin, 48(1), 19\u0026ndash;33. https://doi.org/10.1177/0146167220980882\nNey, L. J., Laing, P. A. F., Steward, T., Zuj, D. V., Dymond, S., Harrison, B., Graham, B., \u0026amp; Felmingham, K. L. (2022). Methodological implications of sample size and extinction gradient on the robustness of fear conditioning across different analytic strategies. PLOS ONE, 17(5), e0268814. https://doi.org/10.1371/journal.pone.0268814\nNg, M. M. R., Bowers, P. N., \u0026amp; Bowers, J. S. (2022). A promising new tool for literacy instruction: The morphological matrix. PLOS ONE, 17(1), e0262260. https://doi.org/10.1371/journal.pone.0262260\nNgo, G. H., Nguyen, M., Chen, N. F., \u0026amp; Sabuncu, M. R. (2022). A transformer-Based neural language model that synthesizes brain activation maps from free-form text queries. Medical Image Analysis, 81, 102540. https://doi.org/10.1016/j.media.2022.102540\nNickel, M. M., Tiemann, L., Hohn, V. D., May, E. S., Gil Ávila, C., Eippert, F., \u0026amp; Ploner, M. (2022). Temporal\u0026ndash;spectral signaling of sensory information and expectations in the cerebral processing of pain. Proceedings of the National Academy of Sciences, 119(1), e2116616119. https://doi.org/10.1073/pnas.2116616119\nNickels, L., Lampe, L. F., Mason, C., \u0026amp; Hameau, S. (2022). Investigating the influence of semantic factors on word retrieval: Reservations, results and recommendations. Cognitive Neuropsychology, 39(3\u0026ndash;4), 113\u0026ndash;154. https://doi.org/10.1080/02643294.2022.2109958\nNicolas, G., Bai, X., \u0026amp; Fiske, S. T. (2022). A spontaneous stereotype content model: Taxonomy, properties, and prediction. Journal of Personality and Social Psychology, 123(6), 1243\u0026ndash;1263. https://doi.org/10.1037/pspa0000312\nNie, P., Wang, C., Rong, G., Du, B., Lu, J., Li, S., Putkinen, V., Tao, S., \u0026amp; Tervaniemi, M. (2022). Effects of Music Training on the Auditory Working Memory of Chinese-Speaking School-Aged Children: A Longitudinal Intervention Study. Frontiers in Psychology, 12, 770425. https://doi.org/10.3389/fpsyg.2021.770425\nNiehorster-Cook, L. M. (2022). The Spreading-Activation Framework Does not Explain the Effects of Degree and Clustering on Spoken Word Recognition. In Z. Yang \u0026amp; E. Von Briesen (Eds.), Proceedings of the 2021 Conference of The Computational Social Science Society of the Americas (pp. 112\u0026ndash;123). Springer International Publishing. https://doi.org/10.1007/978-3-030-96188-6_9\nNijenkamp, R., Nieuwenstein, M. R., De Jong, R., \u0026amp; Lorist, M. M. (2022). Second Chances in Learning: Does a Resit Prospect Lower Study-Time Investments on a First Test? Journal of Cognition, 5(1), 5. https://doi.org/10.5334/joc.196\nNiranjan, T. T., Ghosalya, N. K., \u0026amp; Gavirneni, S. (2022). Crying Wolf and a Knowing Wink: A Behavioral Study of Order Inflation and Discounting in Supply Chains. Production and Operations Management, 31(3), 1071\u0026ndash;1088. https://doi.org/10.1111/poms.13595\nNishiguchi, M., \u0026amp; Kusumi, T. (2022). Effect of perceptual simulation on sentence production using word sets. The Japanese Journal of Psychology, 93(3), 198\u0026ndash;208. https://doi.org/10.4992/jjpsy.93.21001\nNiso, G., Krol, L. R., Combrisson, E., Dubarry, A. S., Elliott, M. A., François, C., Héjja-Brichard, Y., Herbst, S. K., Jerbi, K., Kovic, V., Lehongre, K., Luck, S. J., Mercier, M., Mosher, J. C., Pavlov, Y. G., Puce, A., Schettino, A., Schön, D., Sinnott-Armstrong, W., \u0026hellip; Chaumon, M. (2022). Good scientific practice in EEG and MEG research: Progress and perspectives. NeuroImage, 257, 119056. https://doi.org/10.1016/j.neuroimage.2022.119056\nNoble, D. W. A., Pottier, P., Lagisz, M., Burke, S., Drobniak, S. M., O'Dea, R. E., \u0026amp; Nakagawa, S. (2022). Meta-analytic approaches and effect sizes to account for \u0026lsquo;nuisance heterogeneity\u0026rsquo; in comparative physiology. Journal of Experimental Biology, 225(Suppl_1), jeb243225. https://doi.org/10.1242/jeb.243225\nNoble, S., Mejia, A. F., Zalesky, A., \u0026amp; Scheinost, D. (2022). Improving power in functional magnetic resonance imaging by moving beyond cluster-level inference. Proceedings of the National Academy of Sciences, 119(32), e2203020119. https://doi.org/10.1073/pnas.2203020119\nNolan, L. N., \u0026amp; Hughes, L. (2022). Premenstrual exacerbation of mental health disorders: A systematic review of prospective studies. Archives of Women's Mental Health, 25(5), 831\u0026ndash;852. https://doi.org/10.1007/s00737-022-01246-4\nNoret, N., Hunter, S. C., Pimenta, S., Taylor, R., \u0026amp; Johnson, R. (2022). Open Science: Recommendations for Research on School Bullying. International Journal of Bullying Prevention. https://doi.org/10.1007/s42380-022-00130-0\nNorman, T., \u0026amp; Peleg, O. (2022). The reduced embodiment of a second language. Bilingualism: Language and Cognition, 25(3), 406\u0026ndash;416. https://doi.org/10.1017/S1366728921001115\nNorman-Haignere, S. V., Long, L. K., Devinsky, O., Doyle, W., Irobunda, I., Merricks, E. M., Feldstein, N. A., McKhann, G. M., Schevon, C. A., Flinker, A., \u0026amp; Mesgarani, N. (2022). Multiscale temporal integration organizes hierarchical computation in human auditory cortex. Nature Human Behaviour, 6(3), 455\u0026ndash;469. https://doi.org/10.1038/s41562-021-01261-y\nNosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler, F., Hilgard, J., Kline Struhl, M., Nuijten, M. B., Rohrer, J. M., Romero, F., Scheel, A. M., Scherer, L. D., Schönbrodt, F. D., \u0026amp; Vazire, S. (2022). Replicability, Robustness, and Reproducibility in Psychological Science. Annual Review of Psychology, 73(1), 719\u0026ndash;748. https://doi.org/10.1146/annurev-psych-020821-114157\nNostedt, S., \u0026amp; Joffe, A. R. (2022). Critical Care Randomized Trials Demonstrate Power Failure: A Low Positive Predictive Value of Findings in the Critical Care Research Field. Journal of Intensive Care Medicine, 37(8), 1082\u0026ndash;1093. https://doi.org/10.1177/08850666221077203\nNour, M. M., Liu, Y., \u0026amp; Dolan, R. J. (2022). Functional neuroimaging in psychiatry and the case for failing better. Neuron, 110(16), 2524\u0026ndash;2544. https://doi.org/10.1016/j.neuron.2022.07.005\nNovak, L., Malinakova, K., Mikoska, P., Van Dijk, J. P., \u0026amp; Tavel, P. (2022). Neural correlates of compassion \u0026ndash; An integrative systematic review. International Journal of Psychophysiology, 172, 46\u0026ndash;59. https://doi.org/10.1016/j.ijpsycho.2021.12.004\nNovak, L., Scholl, J. P., Kiefer, G., \u0026amp; Iler, A. M. (2022). Prescribed burning has limited effects on the population dynamics of rare plants. Conservation Science and Practice, 4(10), e12792. https://doi.org/10.1111/csp2.12792\nNozaki, Y., \u0026amp; Mikolajczak, M. (2023). Effectiveness of extrinsic emotion regulation strategies in text-based online communication. Emotion, 23(6), 1714\u0026ndash;1725. https://doi.org/10.1037/emo0001186\nNRU HSE, Moscow, \u0026amp; Chuprina, A. O. (2022). Russian Verbal Affixation in Mental Lexicon: Priming Study and Its Online Replication With True and Stem-Modified Relative Prime. COMPUTATIONAL LINGUISTICS AND INTELLECTUAL TECHNOLOGIES, 106\u0026ndash;113. https://doi.org/10.28995/2075-7182-2022-21-106-113\nNtoumanis, I., Panidi, K., Grebenschikova, Y., Shestakova, A. N., Kosonogov, V., Jääskeläinen, I. P., Kadieva, D., Baran, S., \u0026amp; Klucharev, V. (2022). \u0026ldquo;Expert persuasion\u0026rdquo; can decrease willingness to pay for sugar-containing food. Frontiers in Nutrition, 9, 926875. https://doi.org/10.3389/fnut.2022.926875\nNuijten, M. B. (2022). Assessing and Improving Robustness of Psychological Research Findings in Four Steps. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 379\u0026ndash;400). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_17\nNuñez-Estupiñan, X., Berticelli, L. Z., De Almeida, R. M. M., \u0026amp; Gauer, G. (2022). Aversiveness of errors and the error-related negativity (ERN): A systematic review on the affective states\u0026rsquo; manipulations findings. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(4), 754\u0026ndash;776. https://doi.org/10.3758/s13415-022-01002-2\nNyberg, A., Milad, N., Martin, M., Patoine, D., Morissette, M. C., Saey, D., \u0026amp; Maltais, F. (2022). Role of progression of training volume on intramuscular adaptations in patients with chronic obstructive pulmonary disease. Frontiers in Physiology, 13, 873465. https://doi.org/10.3389/fphys.2022.873465\nOberpriller, J., De Souza Leite, M., \u0026amp; Pichler, M. (2022). Fixed or random? On the reliability of mixed‐effects models for a small number of levels in grouping variables. Ecology and Evolution, 12(7), e9062. https://doi.org/10.1002/ece3.9062\nOciepka, M., Kałamała, P., \u0026amp; Chuderski, A. (2022). High individual alpha frequency brains run fast, but it does not make them smart. Intelligence, 92, 101644. https://doi.org/10.1016/j.intell.2022.101644\nO'Connor, B. P., \u0026amp; Khattar, N. (2022). Controversies Regarding Null Hypothesis Significance Testing. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 147\u0026ndash;174). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_7\nO'Connor, C., Relihan, D., Thomas, A., Ditto, P. H., Stanford, P. K., \u0026amp; Weatherall, J. O. (2023). Moral Judgments Impact Perceived Risks From COVID-19 Exposure. Collabra: Psychology, 9(1), 74793. https://doi.org/10.1525/collabra.74793\nO'Connor, D. B., Abele, A. E., Baguley, T., Daly, M., Doherty, N., Grange, J. A., Leman, P. J., Pressman, S. D., Rossit, S., \u0026amp; Simms, V. (2022). Improving psychological science: Further thoughts, reflections and ways forward. Cogent Psychology, 9(1), 2103248. https://doi.org/10.1080/23311908.2022.2103248\nO'Day, C., Finkelstein, D. I., Diwakarla, S., \u0026amp; McQuade, R. M. (2022). A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease. Journal of Parkinson's Disease, 12(6), 1841\u0026ndash;1861. https://doi.org/10.3233/JPD-223262\nO'Dea, R. E., Noble, D. W. A., \u0026amp; Nakagawa, S. (2022). Unifying individual differences in personality, predictability and plasticity: A practical guide. Methods in Ecology and Evolution, 13(2), 278\u0026ndash;293. https://doi.org/10.1111/2041-210X.13755\nOgbuewu, I. P., Mokolopi, B. G., \u0026amp; Mbajiorgu, C. A. (2022). Meta-analysis of growth performance indices of broiler chickens in response to turmeric (Curcuma longa L.) supplementation. Animal Feed Science and Technology, 283, 115155. https://doi.org/10.1016/j.anifeedsci.2021.115155\nOliveira, G. A., Remondes, M., \u0026amp; Garcia-Marques, T. (2023). Easy to process, hard to control: Transient and sustained processing fluency impairs cognitive control adjustments to conflict. Quarterly Journal of Experimental Psychology, 76(11), 2524\u0026ndash;2534. https://doi.org/10.1177/17470218231159787\nOlkoniemi, H., Halonen, S., Pexman, P. M., \u0026amp; Häikiö, T. (2023). Children's processing of written irony: An eye-tracking study. Cognition, 238, 105508. https://doi.org/10.1016/j.cognition.2023.105508\nOlson, J. M., Rosenfeld, J. P., Ward, A. C., Sitar, E. J., Gandhi, A., Hernandez, J., \u0026amp; Fanesi, B. (2022). The effects of practicing a novel countermeasure on both the semantic and episodic memory-based complex trial protocols. International Journal of Psychophysiology, 173, 82\u0026ndash;92. https://doi.org/10.1016/j.ijpsycho.2022.01.009\nOltra-Cucarella, J., Sánchez-SanSegundo, M., \u0026amp; Ferrer-Cascales, R. (2022). Predicting Alzheimer's disease with practice effects, APOE genotype and brain metabolism. Neurobiology of Aging, 112, 111\u0026ndash;121. https://doi.org/10.1016/j.neurobiolaging.2021.12.011\nOmmerborn, M. A., Walentek, N., Bergmann, N., Franken, M., Gotter, A., \u0026amp; Schäfer, R. (2022). Validation of a new diagnostic method for quantification of sleep bruxism activity. Clinical Oral Investigations, 26(6), 4351\u0026ndash;4359. https://doi.org/10.1007/s00784-022-04398-w\nO'Neill, S., Minehan, M., Knight-Agarwal, C. R., \u0026amp; Turner, M. (2022). Depression, Is It Treatable in Adults Utilising Dietary Interventions? A Systematic Review of Randomised Controlled Trials. Nutrients, 14(7), 1398. https://doi.org/10.3390/nu14071398\nOng, C. W., Lee, E. B., Levin, M. E., \u0026amp; Twohig, M. P. (2022). Online process-based training for perfectionism: A randomized trial. Behaviour Research and Therapy, 156, 104152. https://doi.org/10.1016/j.brat.2022.104152\nOrange, S. T., Jordan, A. R., Odell, A., Kavanagh, O., Hicks, K. M., Eaglen, T., Todryk, S., \u0026amp; Saxton, J. M. (2022). Acute aerobic exercise‐conditioned serum reduces colon cancer cell proliferation in vitro through interleukin‐6‐induced regulation of DNA damage. International Journal of Cancer, 151(2), 265\u0026ndash;274. https://doi.org/10.1002/ijc.33982\nOren, S., Tittgemeyer, M., Rigoux, L., Schlamann, M., Schonberg, T., \u0026amp; Kuzmanovic, B. (2022). Neural encoding of food and monetary reward delivery. NeuroImage, 257, 119335. https://doi.org/10.1016/j.neuroimage.2022.119335\nOrth, L., Meeh, J., Gur, R. C., Neuner, I., \u0026amp; Sarkheil, P. (2022). Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Frontiers in Human Neuroscience, 16, 933718. https://doi.org/10.3389/fnhum.2022.933718\nOrtner, C. N. M., Chadwick, L., \u0026amp; Pennekamp, P. (2022). Do motives matter? Short- and long-term motives as predictors of emotion regulation in everyday life. Emotion, 22(7), 1625\u0026ndash;1638. https://doi.org/10.1037/emo0000989\nOwens, M., \u0026amp; Bunce, H. L. I. (2022). The Potential for Outdoor Nature-Based Interventions in the Treatment and Prevention of Depression. Frontiers in Psychology, 13, 740210. https://doi.org/10.3389/fpsyg.2022.740210\nPaape, D., \u0026amp; Vasishth, S. (2022). Estimating the True Cost of Garden Pathing: A Computational Model of Latent Cognitive Processes. Cognitive Science, 46(8), e13186. https://doi.org/10.1111/cogs.13186\nPagé, M. G., Gauvin, L., Sylvestre, M.-P., Nitulescu, R., Dyachenko, A., \u0026amp; Choinière, M. (2022). An Ecological Momentary Assessment Study of Pain Intensity Variability: Ascertaining Extent, Predictors, and Associations With Quality of Life, Interference and Health Care Utilization Among Individuals Living With Chronic Low Back Pain. The Journal of Pain, 23(7), 1151\u0026ndash;1166. https://doi.org/10.1016/j.jpain.2022.01.001\nPalana, J., Schwartz, S., \u0026amp; Tager-Flusberg, H. (2022). Evaluating the use of cortical entrainment to measure atypical speech processing: A systematic review. Neuroscience \u0026amp; Biobehavioral Reviews, 133, 104506. https://doi.org/10.1016/j.neubiorev.2021.12.029\nPalmer, A. M., Tomko, R. L., Squeglia, L. M., Gray, K. M., Carpenter, M. J., Smith, T. T., Dahne, J., Toll, B. A., \u0026amp; McClure, E. A. (2022). A pilot feasibility study of a behavioral intervention for nicotine vaping cessation among young adults delivered via telehealth. Drug and Alcohol Dependence, 232, 109311. https://doi.org/10.1016/j.drugalcdep.2022.109311\nPan, J., Yan, M., Richter, E. M., Shu, H., \u0026amp; Kliegl, R. (2021). The Beijing Sentence Corpus: A Chinese sentence corpus with eye movement data and predictability norms. Behavior Research Methods, 54(4), 1989\u0026ndash;2000. https://doi.org/10.3758/s13428-021-01730-2\nPapadimitriou, V., \u0026amp; Argyropoulos, V. (2022). The Word Length Effect on Text Reading Via the Braille Code. Scientific Studies of Reading, 26(5), 432\u0026ndash;447. https://doi.org/10.1080/10888438.2022.2047691\nPapagno, C. (2022). The neural correlates of abstract and concrete words. In Handbook of Clinical Neurology (Vol. 187, pp. 263\u0026ndash;275). Elsevier. https://doi.org/10.1016/B978-0-12-823493-8.00018-3\nPapies, E. K., Barsalou, L. W., Claassen, M. A., Davis, T., Farrar, S. T., Gauthier, E., Rodger, A., Tatar, B., Wehbe, L. H., \u0026amp; Werner, J. (2022). Grounding motivation for behavior change. In Advances in Experimental Social Psychology (Vol. 66, pp. 107\u0026ndash;189). Elsevier. https://doi.org/10.1016/bs.aesp.2022.04.002\nParet, C., Unverhau, N., Feingold, F., Poldrack, R. A., Stirner, M., Schmahl, C., \u0026amp; Sicorello, M. (2022). Survey on Open Science Practices in Functional Neuroimaging. NeuroImage, 257, 119306. https://doi.org/10.1016/j.neuroimage.2022.119306\nPark, H., Klishko, A. N., Oh, K., Zhang, C., Grenga, G., Herrin, K. R., Dalton, J. F., Kistenberg, R. S., Lemay, M. A., Pitkin, M., DeWeerth, S. P., \u0026amp; Prilutsky, B. I. (2023). Electrical Stimulation of Distal Tibial Nerve During Stance Phase of Walking May Reverse Effects of Unilateral Paw Pad Anesthesia in the Cat. Motor Control, 27(1), 71\u0026ndash;95. https://doi.org/10.1123/mc.2022-0096\nPark, J., Woolley, J., \u0026amp; Mendes, W. B. (2022). The effects of intranasal oxytocin on black participants\u0026rsquo; responses to outgroup acceptance and rejection. Frontiers in Psychology, 13, 916305. https://doi.org/10.3389/fpsyg.2022.916305\nPatel, T. A., Wilver, N. L., \u0026amp; Cougle, J. R. (2023). Appearance-related safety behaviors predict symptoms of body dysmorphic disorder following internet-based treatment. Body Image, 46, 84\u0026ndash;90. https://doi.org/10.1016/j.bodyim.2023.05.004\nPathan, S., Ford, C., Benson, S., Illingworth, C., Jackson, C., Trickey, D., Mallak, L., \u0026amp; O'Curry, S. (2022). The impact of a hospital staff supervision group on well-being, sense-making, and compassion fatigue. Traumatology. https://doi.org/10.1037/trm0000405\nPathania, A., Euler, M. J., Clark, M., Cowan, R. L., Duff, K., \u0026amp; Lohse, K. R. (2022). Resting EEG spectral slopes are associated with age-related differences in information processing speed. Biological Psychology, 168, 108261. https://doi.org/10.1016/j.biopsycho.2022.108261\nPatra, A., Kirkwood, J., Middleton, E. L., \u0026amp; Thothathiri, M. (2023). Variation in how cognitive control modulates sentence processing. Royal Society Open Science, 10(4), 211969. https://doi.org/10.1098/rsos.211969\nPatterson, A. (2022). The shape of a word: Single word characteristics\u0026rsquo; effect on novice L2 listening comprehension. Applied Linguistics Review, 0(0). https://doi.org/10.1515/applirev-2021-0157\nPatterson, T. G., Beckenkamp, P. R., Ferreira, M., Bauman, A., Carvalho‐e‐Silva, A. P., Ferreira, L. C., \u0026amp; Ferreira, P. H. (2022). The impact of different intensities and domains of physical activity on analgesic use and activity limitation in people with low back pain: A prospective cohort study with a one‐year followup. European Journal of Pain, 26(8), 1636\u0026ndash;1649. https://doi.org/10.1002/ejp.1987\nPavani, J.-B., \u0026amp; Colombo, D. (2022). Trait Hedonism and the Distribution of Savoring and Positive Emotion States in Everyday Life. Psychological Reports, 003329412211354. https://doi.org/10.1177/00332941221135470\nPeelle, J. E., Spehar, B., Jones, M. S., McConkey, S., Myerson, J., Hale, S., Sommers, M. S., \u0026amp; Tye-Murray, N. (2022). Increased Connectivity among Sensory and Motor Regions during Visual and Audiovisual Speech Perception. The Journal of Neuroscience, 42(3), 435\u0026ndash;442. https://doi.org/10.1523/JNEUROSCI.0114-21.2021\nPek, J., Hoisington-Shaw, K. J., \u0026amp; Wegener, D. T. (2022). Avoiding Questionable Research Practices Surrounding Statistical Power Analysis. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 243\u0026ndash;267). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_11\nPellas, J., Renner, F., Ji, J. L., \u0026amp; Damberg, M. (2022). Telephone‐based behavioral activation with mental imagery for depression: A pilot randomized clinical trial in isolated older adults during the Covid‐19 pandemic. International Journal of Geriatric Psychiatry, 37(1), gps.5646. https://doi.org/10.1002/gps.5646\nPeng, D.-C., Moreau, D., Cowie, S., \u0026amp; Addis, D. R. (2023). Cross-national replication of prosocial simulation effect using cumulative link mixed modelling. Journal of Applied Research in Memory and Cognition. https://doi.org/10.1037/mac0000117\nPeng, S., Xu, P., Jiang, Y., \u0026amp; Gong, G. (2022). Activation network mapping for integration of heterogeneous fMRI findings. Nature Human Behaviour, 6(10), 1417\u0026ndash;1429. https://doi.org/10.1038/s41562-022-01371-1\nPeng, Y., Peng, L., Chen, Z., Peng, H., Wang, P., Zhang, Y., Li, Y., Wang, C., Shi, Y., Hou, X., Long, Z., Yuan, H., Wan, N., Wan, L., Xu, K., Lei, L., Wang, S., He, L., Xie, Y., \u0026hellip; Jiang, H. (2022). The Natural History of Spinocerebellar Ataxia Type 3 in Mainland China: A 2-Year Cohort Study. Frontiers in Aging Neuroscience, 14, 917126. https://doi.org/10.3389/fnagi.2022.917126\nPennington, C. R., Jones, A. J., Tzavella, L., Chambers, C. D., \u0026amp; Button, K. S. (2022). Beyond online participant crowdsourcing: The benefits and opportunities of big team addiction science. Experimental and Clinical Psychopharmacology, 30(4), 444\u0026ndash;451. https://doi.org/10.1037/pha0000541\nPenry-Williams, I. L., Brown, C., \u0026amp; Ioannou, C. C. (2022). Detecting behavioural lateralisation in Poecilia reticulata is strongly dependent on experimental design. Behavioral Ecology and Sociobiology, 76(2), 25. https://doi.org/10.1007/s00265-022-03135-3\nPerez Santangelo, A., Ludwig, C. J. H., Navajas, J., Sigman, M., \u0026amp; Leone, M. J. (2022). Background music changes the policy of human decision-making: Evidence from experimental and drift-diffusion model-based approaches on different decision tasks. Journal of Experimental Psychology: General, 151(9), 2222\u0026ndash;2236. https://doi.org/10.1037/xge0001189\nPeriñán-Pascual, C. (2022). Measuring associational thinking through word embeddings. Artificial Intelligence Review, 55(3), 2065\u0026ndash;2102. https://doi.org/10.1007/s10462-021-10056-6\nPerski, O., Keller, J., Kale, D., Asare, B. Y.-A., Schneider, V., Powell, D., Naughton, F., Ten Hoor, G., Verboon, P., \u0026amp; Kwasnicka, D. (2022). Understanding health behaviours in context: A systematic review and meta-analysis of ecological momentary assessment studies of five key health behaviours. Health Psychology Review, 16(4), 576\u0026ndash;601. https://doi.org/10.1080/17437199.2022.2112258\nPeters, U., Krauss, A., \u0026amp; Braganza, O. (2022). Generalization Bias in Science. Cognitive Science, 46(9), e13188. https://doi.org/10.1111/cogs.13188\nPetersen, I. T., Apfelbaum, K. S., \u0026amp; McMurray, B. (2022). Adapting open science and pre‐registration to longitudinal research. Infant and Child Development, e2315. https://doi.org/10.1002/icd.2315\nPeterson, C., Wang, Q., Lillington, N. B., \u0026amp; Hallett, D. (2022). Strategies for dating earliest memories. Applied Cognitive Psychology, 36(5), 1095\u0026ndash;1105. https://doi.org/10.1002/acp.3993\nPetilli, M. A., Günther, F., \u0026amp; Marelli, M. (2022a). The Flickr frequency norms: What 17 years of images tagged online tell us about lexical processing. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02031-y\nPetilli, M. A., Günther, F., \u0026amp; Marelli, M. (2022b). The Flickr frequency norms: What 17 years of images tagged online tell us about lexical processing. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02031-y\nPetre, B., Kragel, P., Atlas, L. Y., Geuter, S., Jepma, M., Koban, L., Krishnan, A., Lopez-Sola, M., Losin, E. A. R., Roy, M., Woo, C.-W., \u0026amp; Wager, T. D. (2022). A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems. PLOS Biology, 20(5), e3001620. https://doi.org/10.1371/journal.pbio.3001620\nPetsko, C. D., \u0026amp; Rosette, A. S. (2023). Are leaders still presumed white by default? Racial bias in leader categorization revisited. Journal of Applied Psychology, 108(2), 330\u0026ndash;340. https://doi.org/10.1037/apl0001020\nPetsko, C. D., Rosette, A. S., \u0026amp; Bodenhausen, G. V. (2022). Through the looking glass: A lens-based account of intersectional stereotyping. Journal of Personality and Social Psychology, 123(4), 763\u0026ndash;787. https://doi.org/10.1037/pspi0000382\nPickholtz, R., Kiflawi, M., Crossin, G. T., Pickholtz, E. Y., Zamsky, R., Kahan, I., Gavriel, T., \u0026amp; Belmaker, J. (2022). Highly repetitive space-use dynamics in parrotfishes. Coral Reefs, 41(4), 1059\u0026ndash;1073. https://doi.org/10.1007/s00338-022-02258-3\nPietschnig, J., Gerdesmann, D., Zeiler, M., \u0026amp; Voracek, M. (2022). Of differing methods, disputed estimates and discordant interpretations: The meta-analytical multiverse of brain volume and IQ associations. Royal Society Open Science, 9(5), 211621. https://doi.org/10.1098/rsos.211621\nPike, A. C., \u0026amp; Robinson, O. J. (2022). Reinforcement Learning in Patients With Mood and Anxiety Disorders vs Control Individuals: A Systematic Review and Meta-analysis. JAMA Psychiatry, 79(4), 313. https://doi.org/10.1001/jamapsychiatry.2022.0051\nPillai, R. M., Brown-Schmidt, S., \u0026amp; Fazio, L. K. (2023). Does wording matter? Examining the effect of phrasing on memory for negated political fact checks. Journal of Applied Research in Memory and Cognition, 12(1), 48\u0026ndash;58. https://doi.org/10.1037/mac0000022\nPintos, A. S., Hui, C. L.-M., De Deyne, S., Cheung, C., Ko, W. T., Nam, S. Y., Chan, S. K.-W., Chang, W.-C., Lee, E. H.-M., Lo, A. W.-F., Lo, T.-L., Elvevåg, B., \u0026amp; Chen, E. Y.-H. (2022). A Longitudinal Study of Semantic Networks in Schizophrenia and other Psychotic Disorders Using the Word Association Task. Schizophrenia Bulletin Open, 3(1), sgac054. https://doi.org/10.1093/schizbullopen/sgac054\nPirnau, M., Priescu, I., Joita, D., \u0026amp; Priescu, C. (2022). The correlation between Internet user searches and Blockchain technology. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1\u0026ndash;6. https://doi.org/10.1109/ECAI54874.2022.9847447\nPittrich, K., \u0026amp; Schroeder, S. (2023). Reading vertically and horizontally mirrored text: An eye movement investigation. Quarterly Journal of Experimental Psychology, 76(2), 271\u0026ndash;283. https://doi.org/10.1177/17470218221085943\nPlank, I. S., Traiger, L. S., Nelson, A. M., Koehler, J. C., Lang, S. F., Tepest, R., Vogeley, K., Georgescu, A. L., \u0026amp; Falter-Wagner, C. M. (2023). The role of interpersonal synchrony in forming impressions of autistic and non-autistic adults. Scientific Reports, 13(1), 15306. https://doi.org/10.1038/s41598-023-42006-3\nPlate, R. C., Woodard, K., \u0026amp; Pollak, S. D. (2023). Category Flexibility in Emotion Learning. Affective Science, 4(4), 722\u0026ndash;730. https://doi.org/10.1007/s42761-023-00192-3\nPlate, R. C., Zhao, S., Katz, C., Graber, E., Daley, G., Corbett, N., All, K., Neumann, C. S., \u0026amp; Waller, R. (2022). Are you laughing with me or at me? Psychopathic traits and the ability to distinguish between affiliation and dominance laughter cues. Journal of Personality, 90(4), 631\u0026ndash;644. https://doi.org/10.1111/jopy.12687\nPodrekar Loredan, N., Lipovac, D., Jordan, S., Burnard, M. D., \u0026amp; Šarabon, N. (2022). Thermal effusivity of different tabletop materials in relation to users\u0026rsquo; perception. Applied Ergonomics, 100, 103664. https://doi.org/10.1016/j.apergo.2021.103664\nPollok, T. M., Kaiser, A., Kraaijenvanger, E. J., Monninger, M., Brandeis, D., Banaschewski, T., Eickhoff, S. B., \u0026amp; Holz, N. E. (2022). Neurostructural traces of early life adversities: A meta-analysis exploring age- and adversity-specific effects. Neuroscience \u0026amp; Biobehavioral Reviews, 135, 104589. https://doi.org/10.1016/j.neubiorev.2022.104589\nPolonenko, M. J., \u0026amp; Maddox, R. K. (2022). Optimizing Parameters for Using the Parallel Auditory Brainstem Response to Quickly Estimate Hearing Thresholds. Ear \u0026amp; Hearing, 43(2), 646\u0026ndash;658. https://doi.org/10.1097/AUD.0000000000001128\nPoortinga, Y. H., \u0026amp; Fontaine, J. R. J. (2022). Principles and Practices of Methodology and Methods in Cross-Cultural Psychology. Journal of Cross-Cultural Psychology, 53(7\u0026ndash;8), 847\u0026ndash;859. https://doi.org/10.1177/00220221221093811\nPopova, K. (2022). Reproducibility and Instruction Following in the Shop Floor Laboratory Work: The Case of a TMS Experiment. Science, Technology, \u0026amp; Human Values, 47(5), 882\u0026ndash;909. https://doi.org/10.1177/01622439211032392\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355\u0026ndash;381. https://doi.org/10.19090/pp.v15i3.2400\nPorter, T., \u0026amp; Cimpian, A. (2023). A context's emphasis on intellectual ability discourages the expression of intellectual humility. Motivation Science, 9(2), 120\u0026ndash;130. https://doi.org/10.1037/mot0000289\nPott, C. (2022). Das Konstrukt der »Außerhäuslichen Gehfähigkeit von Personen in der chronischen Phase nach Schlaganfall« \u0026ndash; Scoping Review. Neurologie \u0026amp; Rehabilitation, 28(03), 147\u0026ndash;163. https://doi.org/10.14624/NR2203001\nPotts, C. A., \u0026amp; Kantak, S. S. (2023). Post-stroke deficits in the anticipatory control and bimanual coordination during naturalistic cooperative bimanual action. Journal of NeuroEngineering and Rehabilitation, 20(1), 153. https://doi.org/10.1186/s12984-023-01257-x\nPrentice, P. M., Mnatzaganian, C., Houslay, T. M., Thornton, A., \u0026amp; Wilson, A. J. (2022). Individual differences in spatial learning are correlated across tasks but not with stress response behaviour in guppies. Animal Behaviour, 188, 133\u0026ndash;146. https://doi.org/10.1016/j.anbehav.2022.04.009\nPriede, A., Rodríguez‐Pérez, N., Hoyuela, F., Cordero‐Andrés, P., Umaran‐Alfageme, O., \u0026amp; González‐Blanch, C. (2022). Cognitive variables associated with depressive and anxiety symptoms in patients with cancer: A five‐year follow‐up study. Psycho-Oncology, 31(5), 798\u0026ndash;805. https://doi.org/10.1002/pon.5864\nProchazka, A., Charvatova, H., \u0026amp; Vysata, O. (2022). The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2467\u0026ndash;2473. https://doi.org/10.1109/TNSRE.2022.3201487\nPrystauka, Y., Altmann, G. T. M., \u0026amp; Rothman, J. (2023). Online eye tracking and real-time sentence processing: On opportunities and efficacy for capturing psycholinguistic effects of different magnitudes and diversity. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02176-4\nPuiu, A. A., Votinov, M., Habel, U., \u0026amp; Konrad, K. (2022). Testosterone administration does not alter the brain activity supporting cognitive and affective empathy. Comprehensive Psychoneuroendocrinology, 10, 100134. https://doi.org/10.1016/j.cpnec.2022.100134\nPulido, M. F. (2023). Generalizing Knowledge of Second Language Collocations: The Roles of Within‐ and Cross‐Language Similarity on Acceptability and Event‐Related Potentials. Language Learning, 73(2), 578\u0026ndash;612. https://doi.org/10.1111/lang.12543\nPuścian, A., \u0026amp; Knapska, E. (2022). Blueprints for measuring natural behavior. iScience, 25(7), 104635. https://doi.org/10.1016/j.isci.2022.104635\nQiu, Y., Fan, Z., Zhong, M., Yang, J., Wu, K., Huiqing, H., Zhang, R., Guo, Y., Lee, T. M. C., \u0026amp; Huang, R. (2022). Brain activation elicited by acute stress: An ALE meta-analysis. Neuroscience \u0026amp; Biobehavioral Reviews, 132, 706\u0026ndash;724. https://doi.org/10.1016/j.neubiorev.2021.11.020\nQuindazzi, M. J., Summers, A. P., \u0026amp; Juanes, F. (2022). Efficiency is doing things right: High-throughput, automated, 3D methods in the modern era of otolith morphometrics. Canadian Journal of Fisheries and Aquatic Sciences, 79(3), 429\u0026ndash;435. https://doi.org/10.1139/cjfas-2021-0088\nQuique, Y. M., Cavanaugh, R., Lescht, E., \u0026amp; Evans, W. S. (2022). Applying adaptive distributed practice to self-managed computer-based anomia treatment: A single-case experimental design. Journal of Communication Disorders, 99, 106249. https://doi.org/10.1016/j.jcomdis.2022.106249\nQuique, Y. M., Evans, W. S., Ortega-Llebaría, M., Zipse, L., \u0026amp; Dickey, M. W. (2022). Get in Sync: Active Ingredients and Patient Profiles in Scripted-Sentence Learning in Spanish Speakers With Aphasia. Journal of Speech, Language, and Hearing Research, 65(4), 1478\u0026ndash;1493. https://doi.org/10.1044/2021_JSLHR-21-00060\nRaccah, O., Doelling, K. B., Davachi, L., \u0026amp; Poeppel, D. (2023). Acoustic features drive event segmentation in speech. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(9), 1494\u0026ndash;1504. https://doi.org/10.1037/xlm0001150\nRadovanovic, M., Chao, T. W.-T., Onyshko, E., Huynh, Q. D. T., Liu, Y. L., \u0026amp; Sommerville, J. A. (2023). Not just if, but how much: Children and adults use cost and need to make evaluations about generosity across contexts. Cognition, 238, 105533. https://doi.org/10.1016/j.cognition.2023.105533\nRadtke Caneppele, N., Ribeiro Serra, F. A., Contreras Pinochet, L. H., \u0026amp; Ramos Ribeiro, I. M. (2022). Potential and challenges for using neuroscientific tools in strategic management studies. RAUSP Management Journal, 57(3), 235\u0026ndash;263. https://doi.org/10.1108/RAUSP-01-2021-0014\nRaduga, M. (2022). Predicting the efficiency of lucid dreaming practice. Dreaming, 32(4), 382\u0026ndash;392. https://doi.org/10.1037/drm0000223\nRajtmajer, S. M., Errington, T. M., \u0026amp; Hillary, F. G. (2022). How failure to falsify in high-volume science contributes to the replication crisis. eLife, 11, e78830. https://doi.org/10.7554/eLife.78830\nRamos, J., Grant, M. D., Dickert, S., Eom, K., Flores, A., Jiga-Boy, G. M., Kogut, T., Mayorga, M., Pedersen, E. J., Pereira, B., Rubaltelli, E., Sherman, D. K., Slovic, P., Västfjäll, D., \u0026amp; Van Boven, L. (2022). Structured reflection increases intentions to reduce other people's health risks during COVID-19. PNAS Nexus, 1(5), pgac218. https://doi.org/10.1093/pnasnexus/pgac218\nRane, R. P., De Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., Banaschewski, T., Bokde, A. L., Desrivieres, S., Flor, H., Grigis, A., Garavan, H., Gowland, P. A., Brühl, R., Martinot, J.-L., Martinot, M.-L. P., Artiges, E., Nees, F., Papadopoulos Orfanos, D., \u0026hellip; IMAGEN consortium. (2022). Structural differences in adolescent brains can predict alcohol misuse. eLife, 11, e77545. https://doi.org/10.7554/eLife.77545\nRanganathan, R., Doherty, C., Gussert, M., Kaplinski, E., Koje, M., \u0026amp; Krishnan, C. (2022). Scientific basis and active ingredients of current therapeutic interventions for stroke rehabilitation. Restorative Neurology and Neuroscience, 40(2), 97\u0026ndash;107. https://doi.org/10.3233/RNN-211243\nRanjan, S., Rajkumar, R., \u0026amp; Agarwal, S. (2022). Locality and expectation effects in Hindi preverbal constituent ordering. Cognition, 223, 104959. https://doi.org/10.1016/j.cognition.2021.104959\nRapp, P. E., Cellucci, C., Darmon, D., \u0026amp; Keyser, D. (2022). Cautionary Observations Concerning the Introduction of Psychophysiological Biomarkers into Neuropsychiatric Practice. Psychiatry International, 3(2), 181\u0026ndash;205. https://doi.org/10.3390/psychiatryint3020015\nRatcliff, R., \u0026amp; Vanunu, Y. (2022). The effect of aging on decision-making while driving: A diffusion model analysis. Psychology and Aging, 37(4), 441\u0026ndash;455. https://doi.org/10.1037/pag0000690\nRatcliffe, J. H. (2022). Evidence-Based Policing: The Basics (1st ed.). Routledge. https://doi.org/10.4324/9781003145684\nReger, M., Kutschan, S., Freuding, M., Schmidt, T., Josfeld, L., \u0026amp; Huebner, J. (2022). Water therapies (hydrotherapy, balneotherapy or aqua therapy) for patients with cancer: A systematic review. Journal of Cancer Research and Clinical Oncology, 148(6), 1277\u0026ndash;1297. https://doi.org/10.1007/s00432-022-03947-w\nRehman, M. Y. A., Briedé, J. J., Van Herwijnen, M., Krauskopf, J., Jennen, D. G. J., Malik, R. N., \u0026amp; Kleinjans, J. C. S. (2022). Integrating SNPs-based genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals disease-associated signaling pathways. Environmental Pollution, 292, 118279. https://doi.org/10.1016/j.envpol.2021.118279\nReis, D., \u0026amp; Friese, M. (2022). The Myriad Forms of p-Hacking. In W. O'Donohue, A. Masuda, \u0026amp; S. Lilienfeld (Eds.), Avoiding Questionable Research Practices in Applied Psychology (pp. 101\u0026ndash;121). Springer International Publishing. https://doi.org/10.1007/978-3-031-04968-2_5\nReit, E. S., \u0026amp; Gruenfeld, D. H. (2022). Considering the role of second-order respect in individuals\u0026rsquo; deference to dominant actors. Journal of Experimental Social Psychology, 101, 104326. https://doi.org/10.1016/j.jesp.2022.104326\nRen, D., Stavrova, O., \u0026amp; Loh, W. W. (2022). Nonlinear effect of social interaction quantity on psychological well-being: Diminishing returns or inverted U? Journal of Personality and Social Psychology, 122(6), 1056\u0026ndash;1074. https://doi.org/10.1037/pspi0000373\nRen, D., Wesselmann, E. D., Loh, W. W., Van Beest, I., Van Leeuwen, F., \u0026amp; Sleegers, W. W. A. (2023). Do cues of infectious disease shape people's affective responses to social exclusion? Emotion, 23(4), 997\u0026ndash;1010. https://doi.org/10.1037/emo0001157\nRen, W., Ji, B., Guan, Y., Cao, L., \u0026amp; Ni, R. (2022). Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Frontiers in Medicine, 9, 771982. https://doi.org/10.3389/fmed.2022.771982\nRenard Triché, L., Futier, E., De Carvalho, M., Piñol-Domenech, N., Bodet-Contentin, L., Jabaudon, M., \u0026amp; Pereira, B. (2023). Sample size estimation in clinical trials using ventilator-free days as the primary outcome: A systematic review. Critical Care, 27(1), 303. https://doi.org/10.1186/s13054-023-04562-y\nRenna, M. E., Spaeth, P. E., Quintero, J. M., O'Toole, M. S., Sandman, C. F., Fresco, D. M., \u0026amp; Mennin, D. S. (2023). A randomized controlled trial comparing two doses of emotion regulation therapy: Preliminary evidence that gains in attentional and metacognitive regulation reduce worry, rumination, and distress. Behaviour Research and Therapy, 170, 104420. https://doi.org/10.1016/j.brat.2023.104420\nRepetti, C., Eskenazi, M., \u0026amp; Garcia, S. (2022). You feel me? A randomized trial of tDCS on pain empathy. International Journal of Psychophysiology, 179, 1\u0026ndash;5. https://doi.org/10.1016/j.ijpsycho.2022.06.012\nRethlefsen, M. L., Norton, H. F., Meyer, S. L., MacWilkinson, K. A., Smith, P. L., \u0026amp; Ye, H. (2022). Interdisciplinary Approaches and Strategies from Research Reproducibility 2020: Educating for Reproducibility. Journal of Statistics and Data Science Education, 30(3), 219\u0026ndash;227. https://doi.org/10.1080/26939169.2022.2104767\nReverte-Pagola, G., Sánchez-Trigo, H., Saxton, J., \u0026amp; Sañudo, B. (2022). Supervised and Non-Supervised Exercise Programs for the Management of Cancer-Related Fatigue in Women with Breast Cancer: A Systematic Review and Meta-Analysis. Cancers, 14(14), 3428. https://doi.org/10.3390/cancers14143428\nRey, L., Désoche, C., Saive, A.-L., Thévenet, M., Garcia, S., Tillmann, B., \u0026amp; Plailly, J. (2023). Episodic memory and recognition are influenced by cues\u0026rsquo; sensory modality: Comparing odours, music and faces using virtual reality. Memory, 31(9), 1113\u0026ndash;1133. https://doi.org/10.1080/09658211.2023.2208793\nRhodes, S., Buchsbaum, B. R., \u0026amp; Hasher, L. (2022). The influence of long-term memory on working memory: Age-differences in proactive facilitation and interference. Psychonomic Bulletin \u0026amp; Review, 29(1), 191\u0026ndash;202. https://doi.org/10.3758/s13423-021-01981-2\nRiccardi, N., Rorden, C., Fridriksson, J., \u0026amp; Desai, R. H. (2022). Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? Neurobiology of Language, 3(2), 318\u0026ndash;344. https://doi.org/10.1162/nol_a_00067\nRichards, A., Inslicht, S. S., Yack, L. M., Metzler, T. J., Russell Huie, J., Straus, L. D., Dukes, C., Hubachek, S. Q., Felmingham, K. L., Mathalon, D. H., Woodward, S. H., \u0026amp; Neylan, T. C. (2022). The relationship of fear-potentiated startle and polysomnography-measured sleep in trauma-exposed men and women with and without PTSD: Testing REM sleep effects and exploring the roles of an integrative measure of sleep, PTSD symptoms, and biological sex. Sleep, 45(1), zsab271. https://doi.org/10.1093/sleep/zsab271\nRichards, S. E., Sumner, P. J., Tan, E. J., Meyer, D., Rossell, S. L., \u0026amp; Carruthers, S. P. (2023). A detailed examination of pitch discrimination deficits associated with auditory verbal hallucinations in schizophrenia. Schizophrenia Research, 257, 19\u0026ndash;24. https://doi.org/10.1016/j.schres.2023.05.013\nRichie, R., Aka, A., \u0026amp; Bhatia, S. (2023). Free association in a neural network. Psychological Review, 130(5), 1360\u0026ndash;1382. https://doi.org/10.1037/rev0000396\nRickard, T. C., Pan, S. C., \u0026amp; Gupta, M. W. (2022). Severe publication bias contributes to illusory sleep consolidation in the motor sequence learning literature. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(12), 1787\u0026ndash;1796. https://doi.org/10.1037/xlm0001090\nRidley, B. J., Cornelissen, P. L., Maalin, N., Mohamed, S., Kramer, R. S. S., McCarty, K., \u0026amp; Tovée, M. J. (2022). The degree to which the cultural ideal is internalized predicts judgments of male and female physical attractiveness. Frontiers in Psychology, 13, 980277. https://doi.org/10.3389/fpsyg.2022.980277\nRiedel, L., Van Den Heuvel, M. P., \u0026amp; Markett, S. (2022). Trajectory of rich club properties in structural brain networks. Human Brain Mapping, 43(14), 4239\u0026ndash;4253. https://doi.org/10.1002/hbm.25950\nRiesthuis, P., Mangiulli, I., Broers, N., \u0026amp; Otgaar, H. (2022). Expert opinions on the smallest effect size of interest in false memory research. Applied Cognitive Psychology, 36(1), 203\u0026ndash;215. https://doi.org/10.1002/acp.3911\nRighetti, F., Faure, R., Zoppolat, G., Meltzer, A., \u0026amp; McNulty, J. (2022). Factors that contribute to the maintenance or decline of relationship satisfaction. Nature Reviews Psychology, 1(3), 161\u0026ndash;173. https://doi.org/10.1038/s44159-022-00026-2\nRitter, L. A., Maldarelli, M., McCurdy, M. T., Yamane, D. P., Davison, D., Parrino, C., Yim, D. N., Lee, M., Mazzeffi, M. A., \u0026amp; Chow, J. H. (2022). Effects of a single bolus of hydroxocobalamin on hemodynamics in vasodilatory shock. Journal of Critical Care, 67, 66\u0026ndash;71. https://doi.org/10.1016/j.jcrc.2021.09.024\nRivero-Contreras, M., Engelhardt, P. E., Delgado, P., \u0026amp; Saldaña, D. (2023). Does the Timing of Visual Support Affect Sentence Comprehension? An Eye-Tracking Study. The Journal of Experimental Education, 1\u0026ndash;20. https://doi.org/10.1080/00220973.2023.2287444\nRoberto Cubelli. (2022). Embodied cognition: Nessuna rivoluzione. Giornale italiano di psicologia, 2, 437\u0026ndash;443. https://doi.org/10.1421/105154\nRoberts, B. W., \u0026amp; Yoon, H. J. (2022). Personality Psychology. Annual Review of Psychology, 73(1), 489\u0026ndash;516. https://doi.org/10.1146/annurev-psych-020821-114927\nRoche, F., Becker, S., \u0026amp; Thüring, M. (2022). What happens when drivers of automated vehicles take over control in critical lane change situations? Transportation Research Part F: Traffic Psychology and Behaviour, 84, 407\u0026ndash;422. https://doi.org/10.1016/j.trf.2021.11.021\nRodas, J. A., \u0026amp; Greene, C. M. (2022). Working memory training does not improve executive functioning or fluid intelligence. Quarterly Journal of Experimental Psychology, 75(4), 666\u0026ndash;679. https://doi.org/10.1177/17470218211039502\nRohde, A., McCracken, M., Worrall, L., Farrell, A., O'Halloran, R., Godecke, E., David, M., \u0026amp; Doi, S. A. (2022). Inter-rater reliability, intra-rater reliability and internal consistency of the Brisbane Evidence-Based Language Test. Disability and Rehabilitation, 44(4), 637\u0026ndash;645. https://doi.org/10.1080/09638288.2020.1776774\nRolland, X., Maurel, P., \u0026amp; Maumet, C. (2022). Towards Efficient FMRI Data Re-Use: Can We Run Between-Group Analyses with Datasets Processed Differently with SPM? 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 1\u0026ndash;4. https://doi.org/10.1109/ISBI52829.2022.9761471\nRomano, F. (2022). Task effects and the yes-bias in heritage language bilingualism. International Journal of Bilingualism, 136700692110527. https://doi.org/10.1177/13670069211052770\nRootes-Murdy, K., Gazula, H., Verner, E., Kelly, R., DeRamus, T., Plis, S., Sarwate, A., Turner, J., \u0026amp; Calhoun, V. (2022). Federated Analysis of Neuroimaging Data: A Review of the Field. Neuroinformatics, 20(2), 377\u0026ndash;390. https://doi.org/10.1007/s12021-021-09550-7\nRösch, S. A., Schmidt, R., Wimmer, J., Lührs, M., Ehlis, A.-C., \u0026amp; Hilbert, A. (2023). Mechanisms underlying fNIRS-neurofeedback over the prefrontal cortex for participants with binge-eating disorder. Clinical Neurophysiology, 156, 57\u0026ndash;68. https://doi.org/10.1016/j.clinph.2023.09.011\nRosenberg, L., \u0026amp; Kruk, R. S. (2022). Coarse or fine? Grain size and morpho-orthographic segmentation in struggling readers. Annals of Dyslexia, 72(1), 28\u0026ndash;55. https://doi.org/10.1007/s11881-021-00240-2\nRosenblat, M. A., Granata, C., \u0026amp; Thomas, S. G. (2022). Effect of Interval Training on the Factors Influencing Maximal Oxygen Consumption: A Systematic Review and Meta-Analysis. Sports Medicine, 52(6), 1329\u0026ndash;1352. https://doi.org/10.1007/s40279-021-01624-5\nRosenblatt, S. E., Wetmore, L. S., \u0026amp; Anderson, T. W. (2022). Impacts of an invasive alga on recruitment of a temperate reef fish. Journal of Experimental Marine Biology and Ecology, 551, 151733. https://doi.org/10.1016/j.jembe.2022.151733\nRoss-Hellauer, T., Reichmann, S., Cole, N. L., Fessl, A., Klebel, T., \u0026amp; Pontika, N. (2022). Dynamics of cumulative advantage and threats to equity in open science: A scoping review. Royal Society Open Science, 9(1), 211032. https://doi.org/10.1098/rsos.211032\nRouphael, A. B. (2022). The replicability crisis in science and protected area research: Poor practices and potential solutions. Journal for Nature Conservation, 69, 126236. https://doi.org/10.1016/j.jnc.2022.126236\nRozenblatt-Perkal, Y., Davidovitch, M., \u0026amp; Gueron-Sela, N. (2022). Infants\u0026rsquo; physiological and behavioral reactivity to maternal mobile phone use \u0026ndash; An experimental study. Computers in Human Behavior, 127, 107038. https://doi.org/10.1016/j.chb.2021.107038\nRubin, M., Bhattacharya, N., Gwizdka, J., Griffin, Z., \u0026amp; Telch, M. (2022). The influence of PTSD symptoms on selective visual attention while reading. Cognition and Emotion, 36(3), 527\u0026ndash;534. https://doi.org/10.1080/02699931.2021.2016639\nRussell, A. A. M., Sutherland, B. A., Landowski, L. M., Macleod, M., \u0026amp; Howells, D. W. (2022). What has preclinical systematic review ever done for us? BMJ Open Science, 6(1). https://doi.org/10.1136/bmjos-2021-100219\nRusso, D., Hanel, P. H. P., Altnickel, S., \u0026amp; Van Berkel, N. (2023). Satisfaction and performance of software developers during enforced work from home in the COVID-19 pandemic. Empirical Software Engineering, 28(2), 53. https://doi.org/10.1007/s10664-023-10293-z\nRuwe, T., \u0026amp; Mayweg-Paus, E. (2023). \u0026ldquo;Your argumentation is good\u0026rdquo;, says the AI vs humans \u0026ndash; The role of feedback providers and personalised language for feedback effectiveness. Computers and Education: Artificial Intelligence, 5, 100189. https://doi.org/10.1016/j.caeai.2023.100189\nRyeland, J., Magrath, M. J. L., \u0026amp; Weston, M. A. (2022). Day\u0026ndash;night cycle influences the division of incubation in the Hooded Dotterel ( Thinornis cucullatus ). Ibis, 164(3), 785\u0026ndash;792. https://doi.org/10.1111/ibi.13040\nSaberi, A., Mohammadi, E., Zarei, M., Eickhoff, S. B., \u0026amp; Tahmasian, M. (2022). Structural and functional neuroimaging of late-life depression: A coordinate-based meta-analysis. Brain Imaging and Behavior, 16(1), 518\u0026ndash;531. https://doi.org/10.1007/s11682-021-00494-9\nSafavian, N., Lee, G., Dicke, A.-L., Karabenick, S. A., \u0026amp; Eccles, J. S. (2022). Disentangling Perceived Educational Support Sources and Types in Adolescence and Latinas\u0026rsquo; Educational Attainment in Adulthood. Hispanic Journal of Behavioral Sciences, 44(2), 123\u0026ndash;148. https://doi.org/10.1177/07399863231153292\nSafra, L., Lettinga, N., Jacquet, P. O., \u0026amp; Chevallier, C. (2022). Variability in repeated economic games: Comparing trust game decisions to other social trust measures. Royal Society Open Science, 9(9), 210213. https://doi.org/10.1098/rsos.210213\nSaito, T., Almaraz, S. M., \u0026amp; Hugenberg, K. (2022). Happy = Human: A Feeling of Belonging Modulates the \u0026ldquo;Expression-to-Mind\u0026rdquo; Effect. Social Cognition, 40(3), 213\u0026ndash;227. https://doi.org/10.1521/soco.2022.40.3.213\nSaito, T., Motoki, K., \u0026amp; Takano, Y. (2023). Cultural differences in recognizing emotions of masked faces. Emotion, 23(6), 1648\u0026ndash;1657. https://doi.org/10.1037/emo0001181\nSalcedo, J. C., \u0026amp; Jimenez‐Leal, W. (2023). Severity and deservedness determine signalled trustworthiness in third party punishment. British Journal of Social Psychology, bjso.12687. https://doi.org/10.1111/bjso.12687\nSalminen, L. E., Tubi, M. A., Bright, J., Thomopoulos, S. I., Wieand, A., \u0026amp; Thompson, P. M. (2022). Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Human Brain Mapping, 43(1), 500\u0026ndash;542. https://doi.org/10.1002/hbm.25438\nSalvalaggio, S., Cacciante, L., Maistrello, L., \u0026amp; Turolla, A. (2023). Clinical Predictors for Upper Limb Recovery after Stroke Rehabilitation: Retrospective Cohort Study. Healthcare, 11(3), 335. https://doi.org/10.3390/healthcare11030335\nSandgren, O., Andersson, K., Lyberg Åhlander, V., Rosqvist, I., Hansson, K., \u0026amp; Sahlén, B. (2023). A randomized controlled trial of the effectiveness of teacher continued professional development on student language outcomes. International Journal of Language \u0026amp; Communication Disorders, 58(3), 879\u0026ndash;891. https://doi.org/10.1111/1460-6984.12829\nSantana, A. P., Korn, L., Betsch, C., \u0026amp; Böhm, R. (2022). Lessons learned about willingness to adopt various protective measures during the early COVID-19 pandemic in three countries. PLOS ONE, 17(3), e0265892. https://doi.org/10.1371/journal.pone.0265892\nSantos, B. F. E., Costa, F. O., Vasconcelos, A. M. A., Cyrino, R. M., \u0026amp; Cota, L. O. M. (2022). Preemptive effects of ibuprofen and nimesulide on postoperative pain control after open flap periodontal surgeries: A randomized placebo‐controlled split‐mouth clinical trial. Journal of Periodontology, 93(2), 300\u0026ndash;309. https://doi.org/10.1002/JPER.20-0887\nSáringer, S., Fehér, Á., Sáry, G., \u0026amp; Kaposvári, P. (2022). Online measurement of learning temporal statistical structure in categorization tasks. Memory \u0026amp; Cognition, 50(7), 1530\u0026ndash;1545. https://doi.org/10.3758/s13421-022-01302-5\nSatchell, L., Jaeger, B., Jones, A., López, B., \u0026amp; Schild, C. (2023). Beyond reliability in first impressions research: Considering validity and the need to \u0026ldquo;Mix it up with folks.\u0026rdquo; Social Psychological Bulletin, 18, e10211. https://doi.org/10.32872/spb.10211\nSaunders, T. J., McIsaac, T., Campbell, J., Douillette, K., Janssen, I., Tomasone, J. R., Ross-White, A., Prince, S. A., \u0026amp; Chaput, J.-P. (2022). Timing of sedentary behaviour and access to sedentary activities in the bedroom and their association with sleep quality and duration in children and youth: A systematic review. Health Promotion and Chronic Disease Prevention in Canada, 42(4), 139\u0026ndash;149. https://doi.org/10.24095/hpcdp.42.4.03\nScaltritti, M., Job, R., \u0026amp; Sulpizio, S. (2022). Different types of semantic interference, same lapses of attention: Evidence from Stroop tasks. Memory \u0026amp; Cognition, 50(5), 898\u0026ndash;910. https://doi.org/10.3758/s13421-021-01256-0\nSchebesta, A., \u0026amp; Kunter, G. (2022). Constituent durations in English NNN compounds: A case of strategic speaker behavior? Journal of Phonetics, 94, 101164. https://doi.org/10.1016/j.wocn.2022.101164\nScheller, M., \u0026amp; Sui, J. (2022). The power of the self: Anchoring information processing across contexts. Journal of Experimental Psychology: Human Perception and Performance, 48(9), 1001\u0026ndash;1021. https://doi.org/10.1037/xhp0001017\nSchiltz, M., Beeckmans, N., Gillard, B., De Baere, T., \u0026amp; Hatem, S. M. (2022). Randomized controlled trial of suprascapular nerve blocks for subacute adhesive capsulitis. European Journal of Physical and Rehabilitation Medicine, 58(4). https://doi.org/10.23736/S1973-9087.22.07410-X\nSchirmer, A., Cham, C., Zhao, Z., Lai, O., Lo, C., \u0026amp; Croy, I. (2022). Understanding sex differences in affective touch: Sensory pleasantness, social comfort, and precursive experiences. Physiology \u0026amp; Behavior, 250, 113797. https://doi.org/10.1016/j.physbeh.2022.113797\nSchlögl, M., Roller-Wirnsberger, R. E., Hernes, S. S., Perkisas, S., Bakken, M. S., Miot, S., Balci, C., Dani, M., Pajulammi, H., Piaggi, P., Drenth-van Maanen, C., \u0026amp; Singler, K. (2022). Teaching geriatric medicine through gamification: A tool for enhancing postgraduate education in geriatric medicine. Aging Clinical and Experimental Research, 34(2), 455\u0026ndash;463. https://doi.org/10.1007/s40520-021-01933-9\nSchmidtke, D., Rahmanian, S., \u0026amp; Moro, A. L. (2022). Morphological knowledge in English learner university students is sensitive to language statistics: A longitudinal study. Applied Psycholinguistics, 43(4), 889\u0026ndash;919. https://doi.org/10.1017/S0142716422000182\nSchmidtke, D., Rahmanian, S., \u0026amp; Moro, A. L. (2023). Tracking reading development in an English language university-level bridging program: Evidence from eye-movements during passage reading. Bilingualism: Language and Cognition, 26(2), 356\u0026ndash;370. https://doi.org/10.1017/S1366728922000542\nSchnur, T. T., \u0026amp; Lei, C.-M. (2022). Assessing naming errors using an automated machine learning approach. Neuropsychology, 36(8), 709\u0026ndash;718. https://doi.org/10.1037/neu0000860\nSchoenlein, M. A., Campos, J., Lande, K. J., Lessard, L., \u0026amp; Schloss, K. B. (2022). Unifying Effects of Direct and Relational Associations for Visual Communication. IEEE Transactions on Visualization and Computer Graphics, 1\u0026ndash;11. https://doi.org/10.1109/TVCG.2022.3209443\nSchoknecht, P., Roehm, D., Schlesewsky, M., \u0026amp; Bornkessel-Schlesewsky, I. (2022). The interaction of predictive processing and similarity-based retrieval interference: An ERP study. Language, Cognition and Neuroscience, 37(7), 883\u0026ndash;901. https://doi.org/10.1080/23273798.2022.2026421\nSchubert, E. (2023). Unexpected Aspects of Expectancy in Music: A Spreading Activation Explanation. Psihologijske Teme, 32(1), 35\u0026ndash;55. https://doi.org/10.31820/pt.32.1.3\nSchuler, M., Mohnke, S., Amelung, T., Beier, K. M., Walter, M., Ponseti, J., Schiffer, B., Kruger, T. H. C., \u0026amp; Walter, H. (2022). Neural processing associated with cognitive empathy in pedophilia and child sexual offending. Social Cognitive and Affective Neuroscience, 17(8), 712\u0026ndash;722. https://doi.org/10.1093/scan/nsab133\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSchultz, H., Stoffregen, H., \u0026amp; Benoit, R. G. (2023). A reward effect on memory retention, consolidation, and generalization? Learning \u0026amp; Memory, 30(8), 169\u0026ndash;174. https://doi.org/10.1101/lm.053842.123\nSchulz, R., Langen, G., Prill, R., Cassel, M., \u0026amp; Weissgerber, T. L. (2022). Reporting and transparent research practices in sports medicine and orthopaedic clinical trials: A meta-research study. BMJ Open, 12(8), e059347. https://doi.org/10.1136/bmjopen-2021-059347\nSchupp, H. T., \u0026amp; Kirmse, U. (2022). Neural correlates of affective stimulus evaluation: A case-by-case analysis. Social Cognitive and Affective Neuroscience, 17(3), 300\u0026ndash;310. https://doi.org/10.1093/scan/nsab095\nSchutte, M. H., Kleemann, R., Nota, N. M., Wiepjes, C. M., Snabel, J. M., T'Sjoen, G., Thijs, A., \u0026amp; Den Heijer, M. (2022). The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLOS ONE, 17(3), e0261312. https://doi.org/10.1371/journal.pone.0261312\nSchwab, J., Xiang, M., \u0026amp; Liu, M. (2022). Antilocality effect without head-final dependencies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(3), 446\u0026ndash;463. https://doi.org/10.1037/xlm0001079\nSchwab, S., Janiaud, P., Dayan, M., Amrhein, V., Panczak, R., Palagi, P. M., Hemkens, L. G., Ramon, M., Rothen, N., Senn, S., Furrer, E., \u0026amp; Held, L. (2022). Ten simple rules for good research practice. PLOS Computational Biology, 18(6), e1010139. https://doi.org/10.1371/journal.pcbi.1010139\nSchwalm, L., \u0026amp; Radach, R. (2023). Parafoveal syntactic processing from word N + 2 during reading: The case of gender-specific German articles. Psychological Research, 87(8), 2511\u0026ndash;2532. https://doi.org/10.1007/s00426-023-01833-9\nSchweppe, J., Schütte, F., Machleb, F., \u0026amp; Hellfritsch, M. (2022). Syntax, morphosyntax, and serial recall: How language supports short-term memory. Memory \u0026amp; Cognition, 50(1), 174\u0026ndash;191. https://doi.org/10.3758/s13421-021-01203-z\nSchwering, S. C., Jacobs, C. L., Montemayor, J., \u0026amp; MacDonald, M. C. (2023). Lexico-syntactic constraints influence verbal working memory in sentence-like lists. Memory \u0026amp; Cognition. https://doi.org/10.3758/s13421-023-01496-2\nScott, D., Vangsness, L., \u0026amp; Suss, J. (2022). Perceptual\u0026ndash;Cognitive Expertise in Law Enforcement: An Object-Identification Task. Journal of Cognitive Engineering and Decision Making, 16(3), 157\u0026ndash;176. https://doi.org/10.1177/15553434221104600\nSegen, V., Colombo, G., Avraamides, M., Slattery, T., \u0026amp; Wiener, J. M. (2022). The role of memory and perspective shifts in systematic biases during object location estimation. Attention, Perception, \u0026amp; Psychophysics, 84(4), 1208\u0026ndash;1219. https://doi.org/10.3758/s13414-022-02445-y\nSeidenberg, M. S., Farry‐Thorn, M., \u0026amp; Zevin, J. D. (2022). Models of Word Reading: What Have We Learned? In M. J. Snowling, C. Hulme, \u0026amp; K. Nation (Eds.), The Science of Reading (1st ed., pp. 36\u0026ndash;59). Wiley. https://doi.org/10.1002/9781119705116.ch2\nSellbom, M., Lilienfeld, S. O., Latzman, R. D., \u0026amp; Wygant, D. B. (2022). Assessment of Psychopathy: Addressing Myths, Misconceptions, and Fallacies. In L. Malatesti, J. McMillan, \u0026amp; P. Šustar (Eds.), Psychopathy (Vol. 27, pp. 143\u0026ndash;168). Springer International Publishing. https://doi.org/10.1007/978-3-030-82454-9_9\nSendek, K., Herzmann, G., Pfeifer, V., \u0026amp; Lai, V. T. (2022). Social acquisition context matters: Increased neural responses for native but not nonnative taboo words. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(2), 362\u0026ndash;382. https://doi.org/10.3758/s13415-021-00951-4\nSeverijnen, G. G. A., Di Dona, G., Bosker, H. R., \u0026amp; McQueen, J. M. (2023). Tracking talker-specific cues to lexical stress: Evidence from perceptual learning. Journal of Experimental Psychology: Human Perception and Performance, 49(4), 549\u0026ndash;565. https://doi.org/10.1037/xhp0001105\nShader, M. J., Kwon, B. J., Gordon-Salant, S., \u0026amp; Goupell, M. J. (2022). Open-Set Phoneme Recognition Performance With Varied Temporal Cues in Younger and Older Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 65(3), 1196\u0026ndash;1211. https://doi.org/10.1044/2021_JSLHR-21-00299\nShaeri Karimi, S., Saintilan, N., Wen, L., \u0026amp; Cox, J. (2022). Spatio‐temporal effects of inundation and climate on vegetation greenness dynamics in dryland floodplains. Ecohydrology, 15(2), e2378. https://doi.org/10.1002/eco.2378\nShaffer, R. A., \u0026amp; McDermott, K. B. (2022). The dual-process perspective and the benefits of retrieval practice in younger and older adults. Memory, 30(5), 554\u0026ndash;572. https://doi.org/10.1080/09658211.2022.2027986\nShan, Z. Y., Mohamed, A. Z., Andersen, T., Rendall, S., Kwiatek, R. A., Fante, P. D., Calhoun, V. D., Bhuta, S., \u0026amp; Lagopoulos, J. (2022). Multimodal MRI of myalgic encephalomyelitis/chronic fatigue syndrome: A cross-sectional neuroimaging study toward its neuropathophysiology and diagnosis. Frontiers in Neurology, 13, 954142. https://doi.org/10.3389/fneur.2022.954142\nShdo, S. M., Roy, A. R. K., Datta, S., Sible, I. J., Lukic, S., Perry, D. C., Rankin, K. P., Kramer, J. H., Rosen, H. J., Miller, B. L., Seeley, W. W., Holley, S. R., Gorno-Tempini, M. L., \u0026amp; Sturm, V. E. (2022). Enhanced positive emotional reactivity in frontotemporal dementia reflects left-lateralized atrophy in the temporal and frontal lobes. Cortex, 154, 405\u0026ndash;420. https://doi.org/10.1016/j.cortex.2022.02.018\nShechter Shvartzman, L., Lavie, L., \u0026amp; Banai, K. (2022). Speech Perception in Older Adults: An Interplay of Hearing, Cognition, and Learning? Frontiers in Psychology, 13, 816864. https://doi.org/10.3389/fpsyg.2022.816864\nShen, G., Wang, R., Yang, M., \u0026amp; Xie, J. (2022). Chinese Children with Congenital and Acquired Blindness Represent Concrete Concepts in Vertical Space through Tactile Perception. International Journal of Environmental Research and Public Health, 19(17), 11055. https://doi.org/10.3390/ijerph191711055\nSheppard, J., \u0026amp; Von Stein, J. (2022). Attitudes and Action in International Refugee Policy: Evidence from Australia. International Organization, 76(4), 929\u0026ndash;956. https://doi.org/10.1017/S0020818322000133\nShi, J., Peng, G., \u0026amp; Li, D. (2023). Figurativeness Matters in the Second Language Processing of Collocations: Evidence From a Self‐Paced Reading Experiment. Language Learning, 73(1), 47\u0026ndash;83. https://doi.org/10.1111/lang.12516\nShibuya, K., Kasuga, R., Sato, N., Santa, R., Homma, C., \u0026amp; Miyamoto, M. (2022). Preliminary findings: Preferences of right-handed people for food images oriented to the left vs. right side. Food Quality and Preference, 97, 104502. https://doi.org/10.1016/j.foodqual.2021.104502\nShort, J. C., Freeman, M. T., \u0026amp; McKechnie, A. E. (2022). Respirometry protocols for avian thermoregulation at high air temperatures: Stepped and steady-state profiles yield similar results. Journal of Experimental Biology, 225(13), jeb244166. https://doi.org/10.1242/jeb.244166\nShrout, M. R., Black, A. E., Wilson, S. J., Renna, M. E., Madison, A. D., Kiecolt-Glaser, J. K., \u0026amp; Reis, H. T. (2023). How aging couples\u0026rsquo; emotional and physiological associations change across positive, supportive, and conflictual discussions: Roles of capitalization and responsive behaviors. Biological Psychology, 177, 108500. https://doi.org/10.1016/j.biopsycho.2023.108500\nSidhu, D. M., Athanasopoulou, A., Archer, S. L., Czarnecki, N., Curtin, S., \u0026amp; Pexman, P. M. (2023). The maluma/takete effect is late: No longitudinal evidence for shape sound symbolism in the first year. PLOS ONE, 18(11), e0287831. https://doi.org/10.1371/journal.pone.0287831\nSiegelman, N., Rueckl, J. G., Lo, J. C. M., Kearns, D. M., Morris, R. D., \u0026amp; Compton, D. L. (2022). Quantifying the regularities between orthography and semantics and their impact on group- and individual-level behavior. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(6), 839\u0026ndash;855. https://doi.org/10.1037/xlm0001109\nSierksma, J. (2023). Children perpetuate competence-based inequality when they help peers. Npj Science of Learning, 8(1), 41. https://doi.org/10.1038/s41539-023-00192-9\nSiew, C. S. Q., Engelthaler, T., \u0026amp; Hills, T. T. (2022). Nymph piss and gravy orgies: Local and global contrast effects in relational humor. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 1047\u0026ndash;1063. https://doi.org/10.1037/xlm0001120\nSilletti, F., Salvadori, E. A., Presaghi, F., Fasolo, M., Aureli, T., \u0026amp; Coppola, G. (2022). Maternal mind-mindedness during the first year of life: Developmental trajectories and moderators. Developmental Psychology, 58(9), 1615\u0026ndash;1628. https://doi.org/10.1037/dev0001389\nSilvestri, V., Arioli, M., Baccolo, E., \u0026amp; Macchi Cassia, V. (2022). Sensitivity to trustworthiness cues in own- and other-race faces: The role of spatial frequency information. PLOS ONE, 17(9), e0272256. https://doi.org/10.1371/journal.pone.0272256\nSimmering, V. R., Andrews, C. M., Leuenberger, R., \u0026amp; Kovack-Lesh, K. A. (2022). Inconsistent flanker congruency effects across stimulus types and age groups: A cautionary tale. Behavior Research Methods, 55(4), 1778\u0026ndash;1817. https://doi.org/10.3758/s13428-022-01889-2\nSimpson, E., Lee, K., \u0026amp; Bauer, P. J. (2023). Event characteristics help to explain the distribution of autobiographical memories over the first decade of life. Memory, 31(7), 962\u0026ndash;977. https://doi.org/10.1080/09658211.2023.2212924\nSingh, D., Wasan, H., \u0026amp; Reeta, K. H. (2022). Preclinical Stroke Research and Translational Failure: A Bird's Eye View on Preventable Variables. Cellular and Molecular Neurobiology, 42(7), 2003\u0026ndash;2017. https://doi.org/10.1007/s10571-021-01083-6\nSio, U. N., Kotovsky, K., \u0026amp; Cagan, J. (2022). Determinants of creative thinking: The effect of task characteristics in solving remote associate test problems. Thinking \u0026amp; Reasoning, 28(2), 163\u0026ndash;192. https://doi.org/10.1080/13546783.2021.1959400\nSiraji, M. A., Kalavally, V., Schaefer, A., \u0026amp; Haque, S. (2022). Effects of Daytime Electric Light Exposure on Human Alertness and Higher Cognitive Functions: A Systematic Review. Frontiers in Psychology, 12, 765750. https://doi.org/10.3389/fpsyg.2021.765750\nSisson, N. M., Wang, G. A., Le, B. M., Stellar, J. E., \u0026amp; Impett, E. A. (2022). When We're Asked to Change: The Role of Suppression and Reappraisal in Partner Change Outcomes. Journal of Social and Personal Relationships, 39(8), 2388\u0026ndash;2407. https://doi.org/10.1177/02654075221078881\nSiwiec, S., Bodhy, S., Lotfi, S., \u0026amp; Lee, H.-J. (2023). Cognitive bias modification for thought-action fusion: A placebo-controlled randomized experimental trial. Journal of Obsessive-Compulsive and Related Disorders, 37, 100787. https://doi.org/10.1016/j.jocrd.2023.100787\nSkipper, J. I. (2022). A voice without a mouth no more: The neurobiology of language and consciousness. Neuroscience \u0026amp; Biobehavioral Reviews, 140, 104772. https://doi.org/10.1016/j.neubiorev.2022.104772\nSkorska, M. N., Lobaugh, N. J., Lombardo, M. V., Van Bruggen, N., Chavez, S., Thurston, L. T., Aitken, M., Zucker, K. J., Chakravarty, M. M., Lai, M.-C., \u0026amp; VanderLaan, D. P. (2022). Inter-Network Brain Functional Connectivity in Adolescents Assigned Female at Birth Who Experience Gender Dysphoria. Frontiers in Endocrinology, 13, 903058. https://doi.org/10.3389/fendo.2022.903058\nSlattery, E. J., O'Callaghan, E., Ryan, P., Fortune, D. G., \u0026amp; McAvinue, L. P. (2022). Popular interventions to enhance sustained attention in children and adolescents: A critical systematic review. Neuroscience \u0026amp; Biobehavioral Reviews, 137, 104633. https://doi.org/10.1016/j.neubiorev.2022.104633\nSmart, K. M., Ferraro, M. C., Wand, B. M., \u0026amp; O'Connell, N. E. (2022). Physiotherapy for pain and disability in adults with complex regional pain syndrome (CRPS) types I and II. Cochrane Database of Systematic Reviews, 2022(8). https://doi.org/10.1002/14651858.CD010853.pub3\nSmith, L. N. (2022). What's Right and Wrong in Preclinical Science: A Matter of Principled Investigation. Frontiers in Behavioral Neuroscience, 16, 805661. https://doi.org/10.3389/fnbeh.2022.805661\nSmith, M. E., Kurby, C. A., \u0026amp; Bailey, H. R. (2023). Events shape long-term memory for story information. Discourse Processes, 60(2), 141\u0026ndash;161. https://doi.org/10.1080/0163853X.2023.2185408\nSoh, Y. Q., Lee, J., \u0026amp; Tan, Y.-Y. (2022). Ethnicity and Tone Production on Singlish Particles. Languages, 7(3), 243. https://doi.org/10.3390/languages7030243\nSommers, M. S., \u0026amp; Dessenberger, S. (2022). The Effects of Aging on Processing Speed, Inhibitory Control, Executive Function, and Working Memory: An Integrated Account of Age-Cognition Relations Across the Adult Lifespan. In Comprehensive Clinical Psychology (pp. 40\u0026ndash;51). Elsevier. https://doi.org/10.1016/B978-0-12-818697-8.00090-X\nSommet, N., \u0026amp; Elliot, A. J. (2022). The effects of U.S. county and state income inequality on self-reported happiness and health are equivalent to zero. Quality of Life Research, 31(7), 1999\u0026ndash;2009. https://doi.org/10.1007/s11136-022-03137-8\nSon, G., Walther, D. B., \u0026amp; Mack, M. L. (2021). Scene wheels: Measuring perception and memory of real-world scenes with a continuous stimulus space. Behavior Research Methods, 54(1), 444\u0026ndash;456. https://doi.org/10.3758/s13428-021-01630-5\nSpaccasassi, C., Zanon, M., Borgomaneri, S., \u0026amp; Avenanti, A. (2022). Mu rhythm and corticospinal excitability capture two different frames of motor resonance: A TMS\u0026ndash;EEG co-registration study. Cortex, 154, 197\u0026ndash;211. https://doi.org/10.1016/j.cortex.2022.04.019\nSpanagel, R. (2022). Ten Points to Improve Reproducibility and Translation of Animal Research. Frontiers in Behavioral Neuroscience, 16, 869511. https://doi.org/10.3389/fnbeh.2022.869511\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306\u0026ndash;1318. https://doi.org/10.3758/s13428-021-01656-9\nSpitzer, M. W. H., Kiesel, A., \u0026amp; Dignath, D. (2022). Performance errors influence voluntary task choices. Journal of Experimental Psychology: Human Perception and Performance, 48(6), 665\u0026ndash;688. https://doi.org/10.1037/xhp0000991\nSpivey, M. J. (2022). Language happens. In H. L. Colston, T. Matlock, \u0026amp; G. J. Steen (Eds.), Metaphor in Language, Cognition, and Communication (Vol. 9, pp. 341\u0026ndash;356). John Benjamins Publishing Company. https://doi.org/10.1075/milcc.9.18spi\nSpix, M., Schutzeichel, F., \u0026amp; Jansen, A. (2023). Can you learn to starve yourself? Inducing food avoidance in the laboratory. Behaviour Research and Therapy, 166, 104340. https://doi.org/10.1016/j.brat.2023.104340\nSrisurapanont, M., Suttajit, S., Kosachunhanun, N., Likhitsathian, S., Suradom, C., \u0026amp; Maneeton, B. (2022). Antidepressants for depressed patients with type 2 diabetes mellitus: A systematic review and network meta-analysis of short-term randomized controlled trials. Neuroscience \u0026amp; Biobehavioral Reviews, 139, 104731. https://doi.org/10.1016/j.neubiorev.2022.104731\nSt. Germain, L., Williams, A., Balbaa, N., Poskus, A., Leshchyshen, O., Lohse, K. R., \u0026amp; Carter, M. J. (2022). Increased perceptions of autonomy through choice fail to enhance motor skill retention. Journal of Experimental Psychology: Human Perception and Performance, 48(4), 370\u0026ndash;379. https://doi.org/10.1037/xhp0000992\nStajkovic, K., \u0026amp; Stajkovic, A. D. (2023). Ethics of Care Leadership, Racial Inclusion, and Economic Health in the Cities: Is There a Female Leadership Advantage? Journal of Business Ethics. https://doi.org/10.1007/s10551-023-05564-0\nStärk, K., Kidd, E., \u0026amp; Frost, R. L. A. (2022). The effect of children's prior knowledge and language abilities on their statistical learning. Applied Psycholinguistics, 43(5), 1045\u0026ndash;1071. https://doi.org/10.1017/S0142716422000273\nStavrova, O., Reitz, A. K., \u0026amp; Evans, A. M. (2022). Temporal dynamics of interpersonal trust during the transition to parenthood. Journal of Research in Personality, 97, 104188. https://doi.org/10.1016/j.jrp.2022.104188\nSteacy, L. M., Rigobon, V. M., Edwards, A. A., Abes, D. R., Marencin, N. C., Smith, K., Elliott, J. D., Wade-Woolley, L., \u0026amp; Compton, D. L. (2022). Modeling Complex Word Reading: Examining Influences at the Level of the Word and Child on Mono- and Polymorphemic Word Reading. Scientific Studies of Reading, 26(6), 527\u0026ndash;544. https://doi.org/10.1080/10888438.2022.2077109\nStead, J. E., Boucher, V. L., Moyle, P. B., \u0026amp; Rypel, A. L. (2022). Growth of Lahontan cutthroat trout from multiple sources re-introduced into Sagehen Creek, CA. PeerJ, 10, e13322. https://doi.org/10.7717/peerj.13322\nStein, T., Ciorli, T., \u0026amp; Otten, M. (2023). Guns Are Not Faster to Enter Awareness After Seeing a Black Face: Absence of Race-Priming in a Gun/Tool Task During Continuous Flash Suppression. Personality and Social Psychology Bulletin, 49(3), 405\u0026ndash;414. https://doi.org/10.1177/01461672211067068\nSteinhilber, B., Seibt, R., Gabriel, J., Brountsou, J., Muljono, M., Downar, T., Bär, M., Bonsch, R., Brandt, A., Martus, P., \u0026amp; Rieger, M. A. (2022). Effects of Face Masks on Physical Performance and Physiological Response during a Submaximal Bicycle Ergometer Test. International Journal of Environmental Research and Public Health, 19(3), 1063. https://doi.org/10.3390/ijerph19031063\nStern, J., \u0026amp; Shiramizu, V. (2022). Hormones, ovulatory cycle phase and pathogen disgust: A longitudinal investigation of the Compensatory Prophylaxis Hypothesis. Hormones and Behavior, 138, 105103. https://doi.org/10.1016/j.yhbeh.2021.105103\nStevens, M., White, S., Robertson, A. M., \u0026amp; Cruwys, T. (2022a). Repeated exercise class attendance: The role of class members\u0026rsquo; similarity and social identification. Psychology of Sport and Exercise, 61, 102212. https://doi.org/10.1016/j.psychsport.2022.102212\nStevens, M., White, S., Robertson, A. M., \u0026amp; Cruwys, T. (2022b). Understanding exercise class attendees\u0026rsquo; in-class behaviors, experiences, and future class attendance: The role of class leaders\u0026rsquo; identity entrepreneurship. Sport, Exercise, and Performance Psychology, 11(4), 494\u0026ndash;508. https://doi.org/10.1037/spy0000305\nStirner, M., Gurevitch, G., Lubianiker, N., Hendler, T., Schmahl, C., \u0026amp; Paret, C. (2022). An Investigation of Awareness and Metacognition in Neurofeedback with the Amygdala Electrical Fingerprint. Consciousness and Cognition, 98, 103264. https://doi.org/10.1016/j.concog.2021.103264\nStoehr, A., Jevtović, M., De Bruin, A., \u0026amp; Martin, C. D. (2023). Phonetic and Lexical Crosslinguistic Influence in Early Spanish\u0026ndash;Basque\u0026ndash;English Trilinguals. Language Learning, lang.12598. https://doi.org/10.1111/lang.12598\nStoehr, A., Souganidis, C., Thomas, T. B., Jacobsen, J., \u0026amp; Martin, C. D. (2023). Voice onset time and vowel formant measures in online testing and laboratory-based testing with(out) surgical face masks. The Journal of the Acoustical Society of America, 154(1), 152\u0026ndash;166. https://doi.org/10.1121/10.0020064\nStraßer, T., Leinberger, D. T., Hillerkuss, D., Zrenner, E., \u0026amp; Zobor, D. (2022). Comparison of CRT and LCD monitors for objective estimation of visual acuity using the sweep VEP. Documenta Ophthalmologica, 145(2), 133\u0026ndash;145. https://doi.org/10.1007/s10633-022-09883-x\nStreet, T., Lewin, A., Woodall, K., Cruz‐Cano, R., Thoma, M., \u0026amp; Stander, V. A. (2022). Gender differences in marital and military predictors of service member career satisfaction. Family Relations, 71(4), 1515\u0026ndash;1537. https://doi.org/10.1111/fare.12697\nStrelow, J. N., Baldermann, J. C., Dembek, T. A., Jergas, H., Petry-Schmelzer, J. N., Schott, F., Dafsari, H. S., Moll, C. K. E., Hamel, W., Gulberti, A., Visser-Vandewalle, V., Fink, G. R., Pötter-Nerger, M., \u0026amp; Barbe, M. T. (2022). Structural Connectivity of Subthalamic Nucleus Stimulation for Improving Freezing of Gait. Journal of Parkinson's Disease, 12(4), 1251\u0026ndash;1267. https://doi.org/10.3233/JPD-212997\nStruck, J., \u0026amp; Jiang, N. (2022). Language switch costs in a lexical decision task: Symmetry and cognitive correlates. Second Language Research, 38(4), 813\u0026ndash;838. https://doi.org/10.1177/0267658321998740\nStürup, A. E., Hjorthøj, C., Albert, N., Dolmer, S., Birk, M., Ebdrup, B. H., Eplov, L. F., Jensen, H., Vernal, D. L., Speyer, H., Mors, O., \u0026amp; Nordentoft, M. (2022). Tapered discontinuation vs. maintenance therapy of antipsychotic medication in patients with first-episode schizophrenia: Obstacles, findings, and lessons learned in the terminated randomized clinical trial TAILOR. Frontiers in Psychiatry, 13, 910703. https://doi.org/10.3389/fpsyt.2022.910703\nSugimoto, N., Fukasawa, K., Asahara, A., Kasada, M., Matsuba, M., \u0026amp; Miyashita, T. (2022). Positive and negative effects of land abandonment on butterfly communities revealed by a hierarchical sampling design across climatic regions. Proceedings of the Royal Society B: Biological Sciences, 289(1971), 20212222. https://doi.org/10.1098/rspb.2021.2222\nSulpizio, S., Job, R., Leoni, P., \u0026amp; Scaltritti, M. (2022). Prepotent task-irrelevant semantic information is dampened by domain-specific control mechanisms during visual word recognition. Quarterly Journal of Experimental Psychology, 75(3), 390\u0026ndash;405. https://doi.org/10.1177/17470218211030863\nSun, K., \u0026amp; Wang, R. (2022). The Evolutionary Pattern of Language in English Fiction Over the Last Two Centuries: Insights From Linguistic Concreteness and Imageability. SAGE Open, 12(1), 215824402110693. https://doi.org/10.1177/21582440211069386\nSun, L., Liang, X., Duan, D., Liu, J., Chen, Y., Wang, X., Liao, X., Xia, M., Zhao, T., \u0026amp; He, Y. (2022). Structural insight into the individual variability architecture of the functional brain connectome. NeuroImage, 259, 119387. https://doi.org/10.1016/j.neuroimage.2022.119387\nSundara, M., Zhou, Z. L., Breiss, C., Katsuda, H., \u0026amp; Steffman, J. (2022). Infants\u0026rsquo; developing sensitivity to native language phonotactics: A meta-analysis. Cognition, 221, 104993. https://doi.org/10.1016/j.cognition.2021.104993\nSwanson, J. M., Rommelse, N., Cotton, J., Sonuga-Barke, E. J. S., Jensen, P. S., \u0026amp; Castellanos, F. X. (2022). Attention-Deficit Hyperactivity Disorder. In D. W. Pfaff, N. D. Volkow, \u0026amp; J. L. Rubenstein (Eds.), Neuroscience in the 21st Century (pp. 4459\u0026ndash;4495). Springer International Publishing. https://doi.org/10.1007/978-3-030-88832-9_169\nSzabó, Z. P., Kun, Á., Balogh, B. E., Simon, E., \u0026amp; Csike, T. (2022). Dark and Strong?! The associations between dark personality traits, mental toughness and resilience in Hungarian student, employee, leader, and military samples. Personality and Individual Differences, 186, 111339. https://doi.org/10.1016/j.paid.2021.111339\nTa, V. P., Boyd, R. L., Seraj, S., Keller, A., Griffith, C., Loggarakis, A., \u0026amp; Medema, L. (2022). An inclusive, real-world investigation of persuasion in language and verbal behavior. Journal of Computational Social Science, 5(1), 883\u0026ndash;903. https://doi.org/10.1007/s42001-021-00153-5\nTamati, T. N., \u0026amp; Moberly, A. C. (2022). Talker Adaptation and Lexical Difficulty Impact Word Recognition in Adults with Cochlear Implants. Audiology and Neurotology, 27(3), 260\u0026ndash;270. https://doi.org/10.1159/000518643\nTamayo, J. M., Osman, H. C., Schwartzer, J. J., Pinkerton, K. E., \u0026amp; Ashwood, P. (2023). Characterizing the neuroimmune environment of offspring in a novel model of maternal allergic asthma and particulate matter exposure. Journal of Neuroinflammation, 20(1), 252. https://doi.org/10.1186/s12974-023-02930-7\nTan, J. S. I., Cheng, L. J., Chan, E. Y., Lau, Y., \u0026amp; Lau, S. T. (2022). Light therapy for sleep disturbances in older adults with dementia: A systematic review, meta-analysis and meta-regression. Sleep Medicine, 90, 153\u0026ndash;166. https://doi.org/10.1016/j.sleep.2022.01.013\nTancoš, M., Chvojka, E., Jabůrek, M., \u0026amp; Portešová, Š. (2023). Faster ≠ Smarter: Children with Higher Levels of Ability Take Longer to Give Incorrect Answers, Especially When the Task Matches Their Ability. Journal of Intelligence, 11(4), 63. https://doi.org/10.3390/jintelligence11040063\nTani, M., Manuguerra, M., \u0026amp; Khan, S. (2022). Can videos affect learning outcomes? Evidence from an actual learning environment. Educational Technology Research and Development, 70(5), 1675\u0026ndash;1693. https://doi.org/10.1007/s11423-022-10147-3\nTARG Meta-Research Group. (2022). Statistics Education in Undergraduate Psychology: A Survey of UK Curricula. Collabra: Psychology, 8(1), 38037. https://doi.org/10.1525/collabra.38037\nTaylor, E., Nation, K., \u0026amp; Hsiao, Y. (2022). Context Availability and Sentence Availability Ratings for 3,000 English Words and their Association with Lexical Processing. Journal of Cognition, 5(1), 20. https://doi.org/10.5334/joc.211\nTaylor, H., Hand, C. J., Howman, H., \u0026amp; Filik, R. (2022). Autism, Attachment, and Alexithymia: Investigating Emoji Comprehension. International Journal of Human\u0026ndash;Computer Interaction, 1\u0026ndash;14. https://doi.org/10.1080/10447318.2022.2154890\nTeo, E., Hassan, N., Tam, W., \u0026amp; Koh, S. (2022). Effectiveness of continuous glucose monitoring in maintaining glycaemic control among people with type 1 diabetes mellitus: A systematic review of randomised controlled trials and meta-analysis. Diabetologia, 65(4), 604\u0026ndash;619. https://doi.org/10.1007/s00125-021-05648-4\nTham, Y. J., Hashimoto, T., \u0026amp; Karasawa, K. (2022). Social rewards in the volunteer's dilemma in everyday life. Asian Journal of Social Psychology, 25(1), 117\u0026ndash;125. https://doi.org/10.1111/ajsp.12472\nThibault, R. T., \u0026amp; Pedder, H. (2022). Excess significance and power miscalculations in neurofeedback research. NeuroImage: Clinical, 35, 103008. https://doi.org/10.1016/j.nicl.2022.103008\nThierry, K. L., Page, A., Currie, C., Posamentier, J., Liu, Y., Choi, J., Randall, H., Rajanbabu, P., Kim, T. E., \u0026amp; Widen, S. C. (2022). How are schools implementing a universal social\u0026ndash;emotional learning program? Macro- and school-level factors associated with implementation approach. Frontiers in Education, 7, 1044835. https://doi.org/10.3389/feduc.2022.1044835\nThompson, P., Owen, K., \u0026amp; Hastings, R. P. (2024). Examining heterogeneity of education intervention effects using quantile mixed models: A re-analysis of a cluster-randomized controlled trial of a fluency-based mathematics intervention. International Journal of Research \u0026amp; Method in Education, 47(1), 49\u0026ndash;64. https://doi.org/10.1080/1743727X.2023.2215699\nTian, X. (2022). Construction of a Multimodal Corpus of College Students\u0026rsquo; Spoken English Based on Semantic Concepts. Mobile Information Systems, 2022, 1\u0026ndash;10. https://doi.org/10.1155/2022/5270408\nTibon, R., Geerligs, L., \u0026amp; Campbell, K. (2022). Bridging the big (data) gap: Levels of control in small- and large-scale cognitive neuroscience research. Trends in Neurosciences, 45(7), 507\u0026ndash;516. https://doi.org/10.1016/j.tins.2022.03.011\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864\u0026ndash;884. https://doi.org/10.3758/s13428-021-01650-1\nTobias, M. R., Landy, L. N., Levin, M. E., \u0026amp; Arch, J. J. (2022). A Randomized Trial of Brief Online Interventions to Facilitate Treatment Seeking for Social Anxiety. Behavior Modification, 46(5), 1137\u0026ndash;1166. https://doi.org/10.1177/01454455211040051\nTomsk State University (Tomsk, Russian Federation), Rezanova, Z. I., Vladimirova, V. E., Tomsk State University (Tomsk, Russian Federation), Mashanlo, T. E., \u0026amp; Tomsk State University. (2022). Psycholinguistic database TurkWordPerception as a lexicographic source (assessments of the contribution of perception modalities to semantics). Voprosy Leksikografii, 26, 96\u0026ndash;114. https://doi.org/10.17223/22274200/26/5\nTong, C. H. M., Nilsson, M. B., Drott, A., \u0026amp; Peichl, M. (2022). Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden. Forests, 13(6), 842. https://doi.org/10.3390/f13060842\nTorres, F., Khan, S., Fernandez‐Kim, S. O., Spann, R., Albarado, D., Wagner, T. J., Morrison, C. D., \u0026amp; Soto, P. L. (2022). Dynamic effects of dietary protein restriction on body weights, food consumption, and protein preference in C57BL /6J and Fgf21 ‐KO mice. Journal of the Experimental Analysis of Behavior, 117(3), 346\u0026ndash;362. https://doi.org/10.1002/jeab.745\nTrabucchi, P., Savoldelli, A., Mourot, L., Vacher, P., Pellegrini, B., \u0026amp; Schena, F. (2022). Relationship Between Cognitive Appraisal of Control and Cardiac Vagal Regulation During an Unsupported Ski Crossing of Greenland. Frontiers in Physiology, 13, 804710. https://doi.org/10.3389/fphys.2022.804710\nTravaglino, G. A., d'Aniello, C., Pacilli, M. G., \u0026amp; Poppi, F. I. M. (2023). Naming the threat: Lay prototypes of organized crime in Italy and the US. Psychology, Crime \u0026amp; Law, 1\u0026ndash;23. https://doi.org/10.1080/1068316X.2023.2239425\nTruhan, T. E., Gianniou, F.-M., \u0026amp; Papageorgiou, K. A. (2022). Differences in psychiatric symptoms between the UK and Greece prior to and during COVID-19: The roles of subclinical narcissism and mental toughness. Personality and Individual Differences, 185, 111308. https://doi.org/10.1016/j.paid.2021.111308\nTruhan, T. E., Sedikides, C., McIlvenna, M., Andrae, L., Turner, R. N., \u0026amp; Papageorgiou, K. A. (2022). A Tri-Directional Examination of Parental Personality, Parenting Behaviors, and Contextual Factors in Influencing Adolescent Behavioral Outcomes. Journal of Youth and Adolescence, 51(8), 1536\u0026ndash;1551. https://doi.org/10.1007/s10964-022-01602-8\nTruzman, T., Biran, M., Soroker, N., Levy, T., \u0026amp; Bitan, T. (2023). A Novel Morphology-Based Naming Therapy for People with Aphasia. Aphasiology, 1\u0026ndash;31. https://doi.org/10.1080/02687038.2023.2257354\nTse, C., \u0026amp; Altarriba, J. (2022). Independent effects of word concreteness and word valence on immediate serial recall. British Journal of Psychology, 113(3), 820\u0026ndash;834. https://doi.org/10.1111/bjop.12566\nTsukita, K., Sakamaki-Tsukita, H., \u0026amp; Takahashi, R. (2022). Long-term Effect of Regular Physical Activity and Exercise Habits in Patients With Early Parkinson Disease. Neurology, 98(8). https://doi.org/10.1212/WNL.0000000000013218\nTyagi, P., Dhyani, M., Khattri, S., Tejan, V., Tikka, S. K., \u0026amp; Garg, S. (2022). \u0026ldquo;Efficacy of intensive bilateral Temporo-Parietal Continuous theta-burst Stimulation for Auditory VErbal hallucinations (TPC-SAVE) in schizophrenia: A randomized sham-controlled trial\u0026quot;☆. Asian Journal of Psychiatry, 74, 103176. https://doi.org/10.1016/j.ajp.2022.103176\nTybur, J. M., Fan, L., Jones, B. C., Holzleitner, I. J., Lee, A. J., \u0026amp; DeBruine, L. M. (2022). Re-evaluating the relationship between pathogen avoidance and preferences for facial symmetry and sexual dimorphism: A registered report. Evolution and Human Behavior, 43(3), 212\u0026ndash;223. https://doi.org/10.1016/j.evolhumbehav.2022.01.003\nUdochi, A. L., Blain, S. D., Sassenberg, T. A., Burton, P. C., Medrano, L., \u0026amp; DeYoung, C. G. (2022). Activation of the default network during a theory of mind task predicts individual differences in agreeableness and social cognitive ability. Cognitive, Affective, \u0026amp; Behavioral Neuroscience, 22(2), 383\u0026ndash;402. https://doi.org/10.3758/s13415-021-00955-0\nUner, O., \u0026amp; Roediger, H. L. (2022). Do Recall and Recognition Lead to Different Retrieval Experiences? The American Journal of Psychology, 135(1), 33\u0026ndash;43. https://doi.org/10.5406/19398298.135.1.03\nUrquiza-Haas, E. G., \u0026amp; Kotrschal, K. (2022). Human-Animal Similarity and the Imageability of Mental State Concepts for Mentalizing Animals. Journal of Cognition and Culture, 22(3\u0026ndash;4), 220\u0026ndash;245. https://doi.org/10.1163/15685373-12340133\nVacher, M., Porter, T., Milicic, L., Bourgeat, P., Dore, V., Villemagne, V. L., Laws, S. M., \u0026amp; Doecke, J. D. (2022). A Targeted Association Study of Blood-Brain Barrier Gene SNPs and Brain Atrophy. Journal of Alzheimer's Disease, 86(4), 1817\u0026ndash;1829. https://doi.org/10.3233/JAD-210644\nVaghela, P., Mothilal, R. K., Romero, D., \u0026amp; Pal, J. (2022). Caste Capital on Twitter: A Formal Network Analysis of Caste Relations among Indian Politicians. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW1), 1\u0026ndash;29. https://doi.org/10.1145/3512927\nVainio, L., \u0026amp; Vainio, M. (2022). Interaction between grasping and articulation: How vowel and consonant pronunciation influences precision and power grip responses. PLOS ONE, 17(3), e0265651. https://doi.org/10.1371/journal.pone.0265651\nValeggia, C. R., \u0026amp; Fernández‐Duque, E. (2022). Moving biological anthropology research beyond p \u0026lt; 0.05. American Journal of Biological Anthropology, 177(2), 193\u0026ndash;195. https://doi.org/10.1002/ajpa.24444\nVan Andel, D. M., Sprengers, J. J., Keijzer-Veen, M. G., Schulp, A. J. A., Lillien, M. R., Scheepers, F. E., \u0026amp; Bruining, H. (2022). Bumetanide for Irritability in Children With Sensory Processing Problems Across Neurodevelopmental Disorders: A Pilot Randomized Controlled Trial. Frontiers in Psychiatry, 13, 780281. https://doi.org/10.3389/fpsyt.2022.780281\nVan As, S., Veling, H., Beckers, D. G. J., Earle, F., McMaster, S., Kompier, M. A. J., \u0026amp; Geurts, S. A. E. (2022). The impact of cognitive work demands on subsequent physical activity behavior. Journal of Experimental Psychology: Applied, 28(3), 629\u0026ndash;643. https://doi.org/10.1037/xap0000390\nVan Der Sluis, I., Matoušková, G., Niemeier, H., Popp, S., \u0026amp; Carstens, J. (2022). The clarity and correctness of visualized thrust actions: A description and insights from users and experts. Visual Communication, 147035722211352. https://doi.org/10.1177/14703572221135240\nVan Der Wijk, G., Harris, J. K., Hassel, S., Davis, A. D., Zamyadi, M., Arnott, S. R., Milev, R., Lam, R. W., Frey, B. N., Hall, G. B., Müller, D. J., Rotzinger, S., Kennedy, S. H., Strother, S. C., MacQueen, G. M., \u0026amp; Protzner, A. B. (2022). Baseline Functional Connectivity in Resting State Networks Associated with Depression and Remission Status after 16 Weeks of Pharmacotherapy: A CAN-BIND Report. Cerebral Cortex, 32(6), 1223\u0026ndash;1243. https://doi.org/10.1093/cercor/bhab286\nVan Doorn, J., Haaf, J. M., Stefan, A. M., Wagenmakers, E.-J., Cox, G. E., Davis-Stober, C. P., Heathcote, A., Heck, D. W., Kalish, M., Kellen, D., Matzke, D., Morey, R. D., Nicenboim, B., Van Ravenzwaaij, D., Rouder, J. N., Schad, D. J., Shiffrin, R. M., Singmann, H., Vasishth, S., \u0026hellip; Aust, F. (2023). Bayes Factors for Mixed Models: A Discussion. Computational Brain \u0026amp; Behavior, 6(1), 140\u0026ndash;158. https://doi.org/10.1007/s42113-022-00160-3\nVan Kleef, L. A., \u0026amp; De Knegt, R. J. (2022). Reply to: \u0026ldquo;Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD.\u0026rdquo; Hepatology Communications, 6(9), 2605\u0026ndash;2606. https://doi.org/10.1002/hep4.2006\nVan Malderen, S., Hehl, M., Verstraelen, S., Swinnen, S. P., \u0026amp; Cuypers, K. (2023). Dual-site TMS as a tool to probe effective interactions within the motor network: A review. Reviews in the Neurosciences, 34(2), 129\u0026ndash;221. https://doi.org/10.1515/revneuro-2022-0020\nVan Viersen, S., Protopapas, A., Georgiou, G. K., Parrila, R., Ziaka, L., \u0026amp; De Jong, P. F. (2022). Lexicality effects on orthographic learning in beginning and advanced readers of Dutch: An eye-tracking study. Quarterly Journal of Experimental Psychology, 75(6), 1135\u0026ndash;1154. https://doi.org/10.1177/17470218211047420\nVan Zwet, E. W., \u0026amp; Goodman, S. N. (2022). How large should the next study be? Predictive power and sample size requirements for replication studies. Statistics in Medicine, 41(16), 3090\u0026ndash;3101. https://doi.org/10.1002/sim.9406\nVanArsdall, J. E., \u0026amp; Blunt, J. R. (2022). Analyzing the structure of animacy: Exploring relationships among six new animacy and 15 existing normative dimensions for 1,200 concrete nouns. Memory \u0026amp; Cognition, 50(5), 997\u0026ndash;1012. https://doi.org/10.3758/s13421-021-01266-y\nVankrunkelsven, H., Yang, Y., Brysbaert, M., De Deyne, S., \u0026amp; Storms, G. (2022). Semantic gender: Norms for 24,000 Dutch words and its role in word meaning. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02032-x\nVargas Fuentes, N. A., Kroll, J. F., \u0026amp; Torres, J. (2022). What Heritage Bilinguals Tell Us about the Language of Emotion. Languages, 7(2), 144. https://doi.org/10.3390/languages7020144\nVedaei, F., Alizadeh, M., Romo, V., Mohamed, F. B., \u0026amp; Wu, C. (2022). The effect of general anesthesia on the test\u0026ndash;retest reliability of resting-state fMRI metrics and optimization of scan length. Frontiers in Neuroscience, 16, 937172. https://doi.org/10.3389/fnins.2022.937172\nVeldre, A., Reichle, E. D., Yu, L., \u0026amp; Andrews, S. (2023). Understanding the visual constraints on lexical processing: New empirical and simulation results. Journal of Experimental Psychology: General, 152(3), 693\u0026ndash;722. https://doi.org/10.1037/xge0001295\nVentura, P., Tse, H. W.-Y., Guerreiro, J. C., Delgado, J., Ferreira, M. F., Farinha-Fernandes, A., Faustino, B., Banha, A., \u0026amp; Wong, A. C.-N. (2022). The relationships between reading fluency and different measures of holistic word processing. Attention, Perception, \u0026amp; Psychophysics, 84(5), 1734\u0026ndash;1756. https://doi.org/10.3758/s13414-022-02497-0\nVerheyen, S., White, A., \u0026amp; Storms, G. (2022). A Comparison of the Spatial Arrangement Method and the Total-Set Pairwise Rating Method for Obtaining Similarity Data in the Conceptual Domain. Multivariate Behavioral Research, 57(2\u0026ndash;3), 356\u0026ndash;384. https://doi.org/10.1080/00273171.2020.1857216\nVerma, A., Sikarwar, V., Yadav, H., Jaganathan, R., \u0026amp; Kumar, P. (2021). Shabd: A psycholinguistic database for Hindi. Behavior Research Methods, 54(2), 830\u0026ndash;844. https://doi.org/10.3758/s13428-021-01625-2\nVerrier, D., \u0026amp; Day, C. (2021). The moderating effects of mindfulness facets on psychological distress and emotional eating behaviour. Health Psychology Report, 10(2), 103\u0026ndash;110. https://doi.org/10.5114/hpr.2021.109921\nVillamil, N., Sommervogel, B., \u0026amp; Pannell, J. R. (2022). Disentangling the effects of jasmonate and tissue loss on the sex allocation of an annual plant. Frontiers in Plant Science, 13, 812558. https://doi.org/10.3389/fpls.2022.812558\nVitevitch, M. S. (2022). What Can Network Science Tell Us About Phonology and Language Processing? Topics in Cognitive Science, 14(1), 127\u0026ndash;142. https://doi.org/10.1111/tops.12532\nVivas, J. R., Yerro Avincetto, M. M., García Coni Bosch, A., Andrés, M. L., \u0026amp; Calcopietro, M. (2022). El significado de los conceptos que aluden a emociones básicas en niños y adultos. Interdisciplinaria. Revista de Psicología y Ciencias Afines, 39(3). https://doi.org/10.16888/interd.2022.39.3.11\nVogt, A., Hauber, R., Kuhlen, A. K., \u0026amp; Rahman, R. A. (2021). Internet-based language production research with overt articulation: Proof of concept, challenges, and practical advice. Behavior Research Methods, 54(4), 1954\u0026ndash;1975. https://doi.org/10.3758/s13428-021-01686-3\nVon Bastian, C. C., Belleville, S., Udale, R. C., Reinhartz, A., Essounni, M., \u0026amp; Strobach, T. (2022). Mechanisms underlying training-induced cognitive change. Nature Reviews Psychology, 1(1), 30\u0026ndash;41. https://doi.org/10.1038/s44159-021-00001-3\nVon Hoyer, J., Bientzle, M., Cress, U., Grosser, J., Kimmerle, J., \u0026amp; Peter Holtz. (2022). False certainty in the acquisition of anatomical and physiotherapeutic knowledge. BMC Medical Education, 22(1), 765. https://doi.org/10.1186/s12909-022-03820-x\nVon Soest, T., Kozák, M., Rodríguez-Cano, R., Fluit, D. H., Cortés-García, L., Ulset, V. S., Haghish, E. F., \u0026amp; Bakken, A. (2022). Adolescents\u0026rsquo; psychosocial well-being one year after the outbreak of the COVID-19 pandemic in Norway. Nature Human Behaviour, 6(2), 217\u0026ndash;228. https://doi.org/10.1038/s41562-021-01255-w\nWagner, A. R., Kobel, M. J., \u0026amp; Merfeld, D. M. (2022). Impacts of Rotation Axis and Frequency on Vestibular Perceptual Thresholds. Multisensory Research, 35(3), 259\u0026ndash;287. https://doi.org/10.1163/22134808-bja10069\nWagner, D., \u0026amp; Pearcey, S. M. (2022). Perceived stress and salivary biomarkers in educators: Comparison among three stress reduction activities. Health Psychology and Behavioral Medicine, 10(1), 617\u0026ndash;631. https://doi.org/10.1080/21642850.2022.2102016\nWainwright, J. B., \u0026amp; Montgomery, S. H. (2022). Neuroanatomical shifts mirror patterns of ecological divergence in three diverse clades of mimetic butterflies. Evolution, 76(8), 1806\u0026ndash;1820. https://doi.org/10.1111/evo.14547\nWaldron, K. A., Lewis, M. A., Fairlie, A. M., Litt, D. M., Zhou, Z., \u0026amp; Bryant, D. (2023). Daily-level associations between alcohol use cognitions and normative perceptions among adolescents: An intensive longitudinal study. Addictive Behaviors, 143, 107697. https://doi.org/10.1016/j.addbeh.2023.107697\nWalker, J. B., Rinehart, S., Greenberg‐Pines, G., White, W. K., DeSantiago, R., Lipson, D. A., \u0026amp; Long, J. D. (2022). Aboveground competition influences density‐dependent effects of cordgrass on sediment biogeochemistry. Ecology and Evolution, 12(3), e8722. https://doi.org/10.1002/ece3.8722\nWalker, M., \u0026amp; Perry, C. (2022). It's the words you use and how you say them: Electrophysiological correlates of the perception of imitated masculine speech. Language, Cognition and Neuroscience, 37(1), 1\u0026ndash;21. https://doi.org/10.1080/23273798.2021.1939074\nWalsh, D., \u0026amp; Foster, J. (2022). Where does research design fall short? Mental health related‐stigma as example. Journal for the Theory of Social Behaviour, 52(3), 494\u0026ndash;514. https://doi.org/10.1111/jtsb.12337\nWang, H., Jiang, X., De Leone, R., Zhang, Y., Qiao, L., \u0026amp; Zhang, L. (2022). Extracting BOLD signals based on time-constrained multiset canonical correlation analysis for brain functional network estimation and classification. Brain Research, 1775, 147745. https://doi.org/10.1016/j.brainres.2021.147745\nWang, L., Ong, J. H., Ponsot, E., Hou, Q., Jiang, C., \u0026amp; Liu, F. (2023). Mental representations of speech and musical pitch contours reveal a diversity of profiles in autism spectrum disorder. Autism, 27(3), 629\u0026ndash;646. https://doi.org/10.1177/13623613221111207\nWang, S., \u0026amp; De Boeck, P. (2022). Understanding the role of subpopulations and reliability in between-group studies. Behavior Research Methods, 54(5), 2162\u0026ndash;2177. https://doi.org/10.3758/s13428-021-01700-8\nWang, T., \u0026amp; Xu, X. (2023). The good, the bad, and the ambivalent: Extrapolating affective values for 38,000+ Chinese words via a computational model. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02274-3\nWang, T., Xu, X., Xie, X., \u0026amp; Ng, M. L. (2023). Probing Lexical Ambiguity in Chinese Characters via Their Word Formations: Convergence of Perceived and Computed Metrics. Cognitive Science, 47(11), e13379. https://doi.org/10.1111/cogs.13379\nWang, Y. A., Simpson, A. J., \u0026amp; Todd, A. R. (2023). Egocentric anchoring-and-adjustment underlies social inferences about known others varying in similarity and familiarity. Journal of Experimental Psychology: General, 152(4), 1011\u0026ndash;1029. https://doi.org/10.1037/xge0001313\nWang, Y., Tian, X., Song, Q., Wang, W., Guo, X., Cui, T., Pan, Z., Chen, Y., Chen, W., Tan, L., \u0026amp; Zhang, W. (2023). Application and Comparison of Different Regression Models in Iodine Balance Experiment on Women of Childbearing Age and Pregnant Women. Biological Trace Element Research. https://doi.org/10.1007/s12011-023-03867-x\nWang, Y., Wang, Q., Wang, L., Li, F., Weschler, L. B., Huang, J., \u0026amp; Zhang, Y. (2023). Potential benefits of short-term indoor exposure to sweet orange essential oil for relaxation during mental work breaks. Journal of Building Engineering, 78, 107602. https://doi.org/10.1016/j.jobe.2023.107602\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWang, Z. (2022). Application of Semantics Analysis in Text Classification of Computer Technology. In B. J. Jansen, H. Liang, \u0026amp; J. Ye (Eds.), International Conference on Cognitive based Information Processing and Applications (CIPA 2021) (Vol. 85, pp. 643\u0026ndash;650). Springer Singapore. https://doi.org/10.1007/978-981-16-5854-9_82\nWannagat, W., Steinicke, V., Tibken, C., \u0026amp; Nieding, G. (2022). Same topic, different genre: Elementary school children's mental representations of information embedded in narrative and expository texts. Learning and Instruction, 80, 101559. https://doi.org/10.1016/j.learninstruc.2021.101559\nWanner-Kawahara, J., Yoshihara, M., Lupker, S. J., Verdonschot, R. G., \u0026amp; Nakayama, M. (2022). Morphological Priming Effects in L2 English Verbs for Japanese-English Bilinguals. Frontiers in Psychology, 13, 742965. https://doi.org/10.3389/fpsyg.2022.742965\nWarmuth, K. A., DeCapua, A. M., \u0026amp; Fielding, A. M. (2023). Emerging Adults\u0026rsquo; Perceptions of and Responses to Interparental Conflict. Journal of Child and Family Studies. https://doi.org/10.1007/s10826-023-02582-4\nWarner, L., Bach-Hagemann, A., Albanna, W., Clusmann, H., Schubert, G. A., Lindauer, U., \u0026amp; Conzen-Dilger, C. (2022). Vascular Reactivity to Hypercapnia Is Impaired in the Cerebral and Retinal Vasculature in the Acute Phase After Experimental Subarachnoid Hemorrhage. Frontiers in Neurology, 12, 757050. https://doi.org/10.3389/fneur.2021.757050\nWasserman, J. S., \u0026amp; Holtzer, R. (2023). Depressive Symptoms are Associated with Decline Over Time in Verbal Fluency Performance in Female but Not Male Community-Dwelling Older Adults. Experimental Aging Research, 1\u0026ndash;16. https://doi.org/10.1080/0361073X.2023.2195295\nWeakley, J., McCosker, C., Chalkley, D., Johnston, R., Munteanu, G., \u0026amp; Morrison, M. (2022). Comparison of Sprint Timing Methods on Performance, and Displacement and Velocity at Timing Initiation. Journal of Strength and Conditioning Research, Publish Ahead of Print. https://doi.org/10.1519/JSC.0000000000004223\nWeaving, M., Haslam, N., \u0026amp; Fine, C. (2023). Himpathy and status: Attitudes to social hierarchy predict reactions to sexual harassment. PLOS ONE, 18(12), e0292953. https://doi.org/10.1371/journal.pone.0292953\nWebb, C. J. R., Bennett, D. L., \u0026amp; Bywaters, P. (2022). Austerity, Poverty, and Children's Services Quality in England: Consequences for Child Welfare and Public Services. Social Policy and Society, 1\u0026ndash;22. https://doi.org/10.1017/S147474642200001X\nWeber, I., Zorowitz, S., Niv, Y., \u0026amp; Bennett, D. (2022). The effects of induced positive and negative affect on Pavlovian-instrumental interactions. Cognition and Emotion, 36(7), 1343\u0026ndash;1360. https://doi.org/10.1080/02699931.2022.2109600\nWegener, D. T., Fabrigar, L. R., Pek, J., \u0026amp; Hoisington-Shaw, K. (2022). Evaluating Research in Personality and Social Psychology: Considerations of Statistical Power and Concerns About False Findings. Personality and Social Psychology Bulletin, 48(7), 1105\u0026ndash;1117. https://doi.org/10.1177/01461672211030811\nWeigand, R., \u0026amp; Jacobsen, T. (2022). Interruption, work rumination, and stress as indicators of reduced working memory resources affect aesthetic experiences. Quarterly Journal of Experimental Psychology, 75(7), 1272\u0026ndash;1288. https://doi.org/10.1177/17470218211050194\nWeil, R., Pillay, N., \u0026amp; Rochais, C. (2022). Characteristics influencing local enhancement in free-living striped mice. Behavioural Processes, 197, 104621. https://doi.org/10.1016/j.beproc.2022.104621\nWeinreuter, H., Strelau, N.-R., Qiu, K., Jiang, Y., Deml, B., \u0026amp; Heizmann, M. (2022). Intersection Complexity and Its Influence on Human Drivers. IEEE Access, 10, 74059\u0026ndash;74070. https://doi.org/10.1109/ACCESS.2022.3189017\nWeiss, L. (2022). Egocentric Processing: The Advantages of Person-Related Features in Consumers\u0026rsquo; Product Decisions. Journal of Consumer Research, 49(2), 288\u0026ndash;311. https://doi.org/10.1093/jcr/ucab070\nWestbury, C., \u0026amp; Wurm, L. H. (2022). Is it you you're looking for?: Personal relevance as a principal component of semantics. The Mental Lexicon, 17(1), 1\u0026ndash;33. https://doi.org/10.1075/ml.20031.wes\nWhitaker, M. M., Hansen, R. C., Creem-Regehr, S. H., \u0026amp; Stefanucci, J. K. (2022). The relationship between space and time perception: A registered replication of Casasanto and Boroditsky (2008). Attention, Perception, \u0026amp; Psychophysics, 84(2), 347\u0026ndash;351. https://doi.org/10.3758/s13414-021-02420-z\nWhite, C. J. M., Schaller, M., Abraham, E. G., \u0026amp; Rottman, J. (2022). Navigating between punishment, avoidance, and instruction: The form and function of responses to moral violations varies across adult and child transgressors. Cognition, 223, 105048. https://doi.org/10.1016/j.cognition.2022.105048\nWhite, T., Blok, E., \u0026amp; Calhoun, V. D. (2022). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Human Brain Mapping, 43(1), 278\u0026ndash;291. https://doi.org/10.1002/hbm.25120\nWicht, C. A., De Pretto, M., Mouthon, M., \u0026amp; Spierer, L. (2022). Neural correlates of expectations-induced effects of caffeine intake on executive functions. Cortex, 150, 61\u0026ndash;84. https://doi.org/10.1016/j.cortex.2022.02.004\nWicht, C. A., Mouthon, M., Nsimire Chabwine, J., Gaab, J., \u0026amp; Spierer, L. (2022). Experience with opioids does not modify the brain network involved in expectations of placebo analgesia. European Journal of Neuroscience, 55(7), 1840\u0026ndash;1858. https://doi.org/10.1111/ejn.15645\nWidge, A. S., Zhang, F., Gosai, A., Papadimitrou, G., Wilson-Braun, P., Tsintou, M., Palanivelu, S., Noecker, A. M., McIntyre, C. C., O'Donnell, L., McLaughlin, N. C. R., Greenberg, B. D., Makris, N., Dougherty, D. D., \u0026amp; Rathi, Y. (2022). Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology, 47(4), 965\u0026ndash;972. https://doi.org/10.1038/s41386-021-01199-9\nWieczorek, L. L., Bleckmann, E., Brandt, N. D., \u0026amp; Wagner, J. (2022). Gloomy and out of control? Consequences of the COVID-19 pandemic on momentary optimism in daily lives of adolescents. Current Psychology. https://doi.org/10.1007/s12144-022-03313-6\nWild, H., Kyröläinen, A.-J., \u0026amp; Kuperman, V. (2022). How representative are student convenience samples? A study of literacy and numeracy skills in 32 countries. PLOS ONE, 17(7), e0271191. https://doi.org/10.1371/journal.pone.0271191\nWilke, J., Mohr, L., Yuki, G., Bhundoo, A. K., Jiménez-Pavón, D., Laiño, F., Murphy, N., Novak, B., Nuccio, S., Ortega-Gómez, S., Pillay, J. D., Richter, F., Rum, L., Sanchez-Ramírez, C., Url, D., Vogt, L., \u0026amp; Hespanhol, L. (2022). Train at home, but not alone: A randomised controlled multicentre trial assessing the effects of live-streamed tele-exercise during COVID-19-related lockdowns. British Journal of Sports Medicine, 56(12), 667\u0026ndash;675. https://doi.org/10.1136/bjsports-2021-104994\nWilliams, L., Mills, M., Carrigan, A., Rich, A., \u0026amp; Drew, T. (2022). Experience does not protect against missed incidental-findings in radiology. In C. R. Mello-Thoms \u0026amp; S. Taylor-Phillips (Eds.), Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment (p. 33). SPIE. https://doi.org/10.1117/12.2607316\nWilson, A. C., \u0026amp; Bishop, D. V. M. (2022). Stage 2 registered report: Investigating a preference for certainty in conversation among autistic adults. PeerJ, 10, e13110. https://doi.org/10.7717/peerj.13110\nWilson, B. M., Harris, C. R., \u0026amp; Wixted, J. T. (2022). Theoretical false positive psychology. Psychonomic Bulletin \u0026amp; Review, 29(5), 1751\u0026ndash;1775. https://doi.org/10.3758/s13423-022-02098-w\nWilson, J. T., \u0026amp; Bauer, P. J. (2023). Generative processes and knowledge revision. Learning and Motivation, 84, 101936. https://doi.org/10.1016/j.lmot.2023.101936\nWilson, J. T., Miller-Goldwater, H. E., Porter, B. M., \u0026amp; Bauer, P. J. (2023). Learning neuroscience: Investigating influences of notetaking materials and individual differences. Learning and Individual Differences, 101, 102243. https://doi.org/10.1016/j.lindif.2022.102243\nWimmer, J., Rösch, S. A., Schmidt, R., \u0026amp; Hilbert, A. (2023). Neurofeedback strategies in binge-eating disorder as predictors of EEG-neurofeedback regulation success. Frontiers in Human Neuroscience, 17, 1234085. https://doi.org/10.3389/fnhum.2023.1234085\nWindhager, P. F., Marcu, A. V., Trinka, E., Bathke, A., \u0026amp; Höller, Y. (2022). Are High Frequency Oscillations in Scalp EEG Related to Age? Frontiers in Neurology, 12, 722657. https://doi.org/10.3389/fneur.2021.722657\nWingfield, C., \u0026amp; Connell, L. (2022). Understanding the role of linguistic distributional knowledge in cognition. Language, Cognition and Neuroscience, 37(10), 1220\u0026ndash;1270. https://doi.org/10.1080/23273798.2022.2069278\nWinter, B., \u0026amp; Srinivasan, M. (2022). Why is Semantic Change Asymmetric? The Role of Concreteness and Word Frequency and Metaphor and Metonymy. Metaphor and Symbol, 37(1), 39\u0026ndash;54. https://doi.org/10.1080/10926488.2021.1945419\nWong, A. H. K., \u0026amp; Pittig, A. (2023). Reducing avoidance of learnt fear: Extinction of an imminent threat signal partly decreases costly avoidance to a distal threat signal. Journal of Experimental Psychopathology, 14(2), 204380872311751. https://doi.org/10.1177/20438087231175147\nWong, A. H. K., Van Dis, E. A. M., Pittig, A., Hagenaars, M. A., \u0026amp; Engelhard, I. M. (2023). The degree of safety behaviors to a safety stimulus predicts development of threat beliefs. Behaviour Research and Therapy, 170, 104423. https://doi.org/10.1016/j.brat.2023.104423\nWong, Alex. H. K., Lee, J. C., Engelke, P., \u0026amp; Pittig, A. (2023). Reduction of costly safety behaviors after extinction with a generalization stimulus is determined by individual differences in generalization rules. Behaviour Research and Therapy, 160, 104233. https://doi.org/10.1016/j.brat.2022.104233\nWong, F., Diamant, E. S., Walters, M., \u0026amp; Yeh, P. J. (2022). No evidence of repeated song divergence across multiple urban and non-urban populations of dark-eyed juncos ( Junco hyemalis ) in Southern California. Royal Society Open Science, 9(8), 220178. https://doi.org/10.1098/rsos.220178\nWong, J. B., Lisovski, S., Alisauskas, R. T., English, W., Harrison, A.-L., Kellett, D. K., Maftei, M., Nagy-MacArthur, A., Ronconi, R. A., Smith, P. A., Mallory, M. L., \u0026amp; Auger-Méthé, M. (2022). Variation in migration behaviors used by Arctic Terns (Sterna paradisaea) breeding across a wide latitudinal gradient. Polar Biology, 45(5), 909\u0026ndash;922. https://doi.org/10.1007/s00300-022-03043-2\nWong, R., Veldre, A., \u0026amp; Andrews, S. (2022). Are there independent effects of constraint and predictability on eye movements during reading? Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0001206\nWood, W., Mazar, A., \u0026amp; Neal, D. T. (2022). Habits and Goals in Human Behavior: Separate but Interacting Systems. Perspectives on Psychological Science, 17(2), 590\u0026ndash;605. https://doi.org/10.1177/1745691621994226\nWootton, R. E., Riglin, L., Blakey, R., Agnew-Blais, J., Caye, A., Cadman, T., Havdahl, A., Gonçalves, H., Menezes, A. M. B., Wehrmeister, F. C., Rimfeld, K., Davey Smith, G., Eley, T. C., Rohde, L. A., Arseneault, L., Moffitt, T. E., Stergiakouli, E., Thapar, A., \u0026amp; Tilling, K. (2022). Decline in attention-deficit hyperactivity disorder traits over the life course in the general population: Trajectories across five population birth cohorts spanning ages 3 to 45 years. International Journal of Epidemiology, 51(3), 919\u0026ndash;930. https://doi.org/10.1093/ije/dyac049\nWu, S. H., Henderson, L.-M., \u0026amp; Gennari, S. P. (2022). Animacy interactions with individual variability in sentence production and comprehension reveal similar lexically driven competitive processes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(11), 1660\u0026ndash;1679. https://doi.org/10.1037/xlm0000857\nWu, Y., Tao, B., Lan, K., Shen, Y., Huang, W., \u0026amp; Wang, F. (2022). Reliability and accuracy of dynamic navigation for zygomatic implant placement. Clinical Oral Implants Research, 33(4), 362\u0026ndash;376. https://doi.org/10.1111/clr.13897\nWu, Y., Wu, X., Gao, L., Yan, Y., Geng, Z., Zhou, S., Zhu, W., Tian, Y., Yu, Y., Wei, L., \u0026amp; Wang, K. (2022). Abnormal Functional Connectivity of Thalamic Subdivisions in Alzheimer's Disease: A Functional Magnetic Resonance Imaging Study. Neuroscience, 496, 73\u0026ndash;82. https://doi.org/10.1016/j.neuroscience.2022.06.006\nWulff, D. U., De Deyne, S., Aeschbach, S., \u0026amp; Mata, R. (2022). Using Network Science to Understand the Aging Lexicon: Linking Individuals\u0026rsquo; Experience, Semantic Networks, and Cognitive Performance. Topics in Cognitive Science, 14(1), 93\u0026ndash;110. https://doi.org/10.1111/tops.12586\nWulff, D. U., \u0026amp; Mata, R. (2022). On the semantic representation of risk. Science Advances, 8(27), eabm1883. https://doi.org/10.1126/sciadv.abm1883\nWyszynski, M., \u0026amp; Diederich, A. (2022). Keep your budget together! Investigating determinants on risky decision-making about losses. PLOS ONE, 17(3), e0265822. https://doi.org/10.1371/journal.pone.0265822\nXia, Q., \u0026amp; Peng, G. (2022). The roles of object and action, and concreteness and imageability, in the distinction between nouns and verbs: An ERP study on monosyllabic words in Chinese. Journal of Neurolinguistics, 61, 101026. https://doi.org/10.1016/j.jneuroling.2021.101026\nXia, T., Lopes, S., Chen, L., Roth, R., Zinzow, H., Jones, K., Zhang, L., Shi, L., \u0026amp; Jindal, M. (2022). A feasibility study on low-dose mindfulness-based stress reduction intervention among prediabetes and diabetes patients. Complementary Therapies in Medicine, 65, 102810. https://doi.org/10.1016/j.ctim.2022.102810\nXiang, K., Chang, H., \u0026amp; Sun, L. (2022). When the independence of syntactic representation meets the sentence processing of Mandarin: Evidence from syntactic priming. Quarterly Journal of Experimental Psychology, 75(6), 1041\u0026ndash;1055. https://doi.org/10.1177/17470218211044987\nXie, D., Chen, S., \u0026amp; Wu, Y. (2023). Focusing on the positive or the negative: Self‐construal moderates negativity bias in impression updating. PsyCh Journal, 12(4), 547\u0026ndash;560. https://doi.org/10.1002/pchj.651\nXie, H., \u0026amp; Deng, S. (2023). Drawing as a strategy for children to learn ancient Chinese poetry. Acta Psychologica, 240, 104039. https://doi.org/10.1016/j.actpsy.2023.104039\nXirocostas, Z. A., Debono, S. A., Slavich, E., \u0026amp; Moles, A. T. (2022). The ZAX Herbivory Trainer\u0026mdash;Free software for training researchers to visually estimate leaf damage. Methods in Ecology and Evolution, 13(3), 596\u0026ndash;602. https://doi.org/10.1111/2041-210X.13785\nXu, X., Yu, H., Gao, X., Shen, B., Feng, W., \u0026amp; Zhou, X. (2022). Understanding an implicated causality: The brain network for processing concessive relations. Brain and Language, 234, 105177. https://doi.org/10.1016/j.bandl.2022.105177\nXu, Z., \u0026amp; Liu, D. (2022). Perceptual simulation in language comprehension and Chinese character reading among third-grade Hong Kong children. Educational Psychology, 42(5), 587\u0026ndash;606. https://doi.org/10.1080/01443410.2022.2031891\nYamada, K., \u0026amp; Toda, K. (2022). Pupillary dynamics of mice performing a Pavlovian delay conditioning task reflect reward-predictive signals. Frontiers in Systems Neuroscience, 16, 1045764. https://doi.org/10.3389/fnsys.2022.1045764\nYamaguchi, M., \u0026amp; Moriguchi, Y. (2022). Developmental change in attachment objects during childhood. Early Child Development and Care, 192(7), 1119\u0026ndash;1132. https://doi.org/10.1080/03004430.2020.1841756\nYang, H., Reid, J. N., Kong, P., \u0026amp; Chen, J. (2022). Mirror Generalization During Early Word Recognition. Journal of Psycholinguistic Research, 51(3), 543\u0026ndash;561. https://doi.org/10.1007/s10936-022-09857-9\nYang, J., Shao, Y., Li, B., Yu, Q.-Y., Ge, Q.-M., Li, B., Pan, Y.-C., Liang, R.-B., Wu, S.-N., Li, Q.-Y., \u0026amp; He, Y.-L. (2022). Altered regional homogeneity of spontaneous brain activity in patients with toothache: A resting-state functional magnetic resonance imaging study. Frontiers in Neuroscience, 16, 1019989. https://doi.org/10.3389/fnins.2022.1019989\nYang, Y., Hillebrand, H., Lagisz, M., Cleasby, I., \u0026amp; Nakagawa, S. (2022). Low statistical power and overestimated anthropogenic impacts, exacerbated by publication bias, dominate field studies in global change biology. Global Change Biology, 28(3), 969\u0026ndash;989. https://doi.org/10.1111/gcb.15972\nYavne, Y., Edel, Y., Berman, J., Eviatar, T., \u0026amp; Shepshelovich, D. (2021). Quality evaluation of the underlying evidence in the updated treatment recommendations for systemic lupus erythematosus. Rheumatology, 61(1), 240\u0026ndash;248. https://doi.org/10.1093/rheumatology/keab306\nYavuz, M., Küntay, A. C., \u0026amp; Brouwer, S. (2023). The effect of foreign language and psychological distance on moral judgment in Turkish\u0026ndash;English bilinguals. Bilingualism: Language and Cognition, 1\u0026ndash;13. https://doi.org/10.1017/S1366728923000706\nYi, W., Lu, S., \u0026amp; Dekeyser, R. (2022). Orthographic, Semantic, and Contextual Influences on Initial Processing and Learning of Novel Words During Reading: Evidence From Eye Movements. Chinese Journal of Applied Linguistics, 45(2), 194\u0026ndash;219. https://doi.org/10.1515/CJAL-2022-0203\nYin, H., Tao, J., Peng, Y., Xiong, Y., Li, B., Li, S., \u0026amp; Yang, H. (2022). MSPJ: Discovering potential biomarkers in small gene expression datasets via ensemble learning. Computational and Structural Biotechnology Journal, 20, 3783\u0026ndash;3795. https://doi.org/10.1016/j.csbj.2022.07.022\nYoo, H., McNeil, M. R., Dickey, M. W., \u0026amp; Terhorst, L. (2022). Linguistic and nonlinguistic processing speed across age-matched normal healthy controls and individuals with left-hemisphere damage, with and without aphasia. Aphasiology, 36(2), 147\u0026ndash;169. https://doi.org/10.1080/02687038.2020.1853966\nYoshimoto, T., Okazaki, S., Sumiya, M., Takahashi, H. K., Nakagawa, E., Koike, T., Kitada, R., Okamoto, S., Nakata, M., Yada, T., Kosaka, H., Sadato, N., \u0026amp; Chikazoe, J. (2022). Coexistence of sensory qualities and value representations in human orbitofrontal cortex. Neuroscience Research, 180, 48\u0026ndash;57. https://doi.org/10.1016/j.neures.2022.02.004\nYoung, R. C., Westneat, D. F., Vangorder-Braid, J., Sirman, A. E., Siller, S. J., Kittilson, J., Ghimire, A., \u0026amp; Heidinger, B. J. (2022). Stressors interact across generations to influence offspring telomeres and survival. Proceedings of the Royal Society B: Biological Sciences, 289(1982), 20220868. https://doi.org/10.1098/rspb.2022.0868\nYovel, I., Aviram, G., Kahana, N., \u0026amp; Katz, B. A. (2022). Testing a new indirect measure of general self‐worth: The Self‐esteem Questionnaire‐based Implicit Association Test. British Journal of Social Psychology, 61(1), 100\u0026ndash;120. https://doi.org/10.1111/bjso.12472\nYu, W., Ni, L., Zhang, Z., Zheng, W., \u0026amp; Liu, Y. (2023). No need to integrate action information during coarse semantic processing of man-made tools. Psychonomic Bulletin \u0026amp; Review, 30(6), 2230\u0026ndash;2239. https://doi.org/10.3758/s13423-023-02301-6\nYu, Z., Guindani, M., Grieco, S. F., Chen, L., Holmes, T. C., \u0026amp; Xu, X. (2022). Beyond t test and ANOVA: Applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron, 110(1), 21\u0026ndash;35. https://doi.org/10.1016/j.neuron.2021.10.030\nYuan, Y., \u0026amp; Guoyuan, T. (2022). An Empirical Study on Imagery and Emotional Response in Chinese Poetry Translation\u0026mdash;The Visual Grammar Perspective. Frontiers in Psychology, 13, 872497. https://doi.org/10.3389/fpsyg.2022.872497\nZahn, R., Schnur, T. T., \u0026amp; Martin, R. C. (2022). Contributions of semantic and phonological working memory to narrative language independent of single word production: Evidence from acute stroke. Cognitive Neuropsychology, 39(5\u0026ndash;8), 296\u0026ndash;324. https://doi.org/10.1080/02643294.2023.2186782\nZamarripa, C. A., Novak, M. D., Weerts, E. M., Vandrey, R., \u0026amp; Spindle, T. R. (2022). The effects of oral and vaporized cannabis alone, and in combination with alcohol, on driving performance using the STISIM driving simulator: A two-part, double-blind, double-dummy, placebo-controlled, randomized crossover clinical laboratory protocol. Frontiers in Pharmacology, 13, 964749. https://doi.org/10.3389/fphar.2022.964749\nZaouter, C., Moore, A., Carrier, F. M., Girard, J., \u0026amp; Girard, M. (2022). Pressure Support Ventilation and Atelectasis: Comment. Anesthesiology, 136(6), 1043\u0026ndash;1044. https://doi.org/10.1097/ALN.0000000000004193\nZazio, A., Barchiesi, G., Ferrari, C., Marcantoni, E., \u0026amp; Bortoletto, M. (2022). M1-P15 as a cortical marker for transcallosal inhibition: A preregistered TMS-EEG study. Frontiers in Human Neuroscience, 16, 937515. https://doi.org/10.3389/fnhum.2022.937515\nZekelman, L. R., Zhang, F., Makris, N., He, J., Chen, Y., Xue, T., Liera, D., Drane, D. L., Rathi, Y., Golby, A. J., \u0026amp; O'Donnell, L. J. (2022). White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. NeuroImage, 246, 118739. https://doi.org/10.1016/j.neuroimage.2021.118739\nZhang, J. W., Bui, V., Snell, A. N., Howell, R. T., \u0026amp; Bailis, D. (2022). Daily self-compassion protects Asian Americans/Canadians after experiences of COVID-19 discrimination: Implications for subjective well-being and health behaviors. Self and Identity, 21(8), 891\u0026ndash;913. https://doi.org/10.1080/15298868.2021.2012511\nZhang, Q., \u0026amp; An, X. (2022). Sensorimotor Grounding of Chinese Novel Concepts Constructed From Language Alone. Theory and Practice in Language Studies, 12(5), 957\u0026ndash;963. https://doi.org/10.17507/tpls.1205.17\nZhang, X., Lu, X., \u0026amp; Li, W. (2022). Beyond Differences: Assessing Effects of Shared Linguistic Features on L2 Writing Quality of Two Genres. Applied Linguistics, 43(1), 168\u0026ndash;195. https://doi.org/10.1093/applin/amab007\nZhang, Y., Chang, M., \u0026amp; Wang, J. (2022). Increasing intercharacter spacing reduces the transposed-character effect in Chinese reading: Evidence from eye movements. Visual Cognition, 30(5), 371\u0026ndash;377. https://doi.org/10.1080/13506285.2022.2074181\nZhang, Y., Nash, R. A., \u0026amp; Otgaar, H. (2023). Preference for cheap-and-easy memory verification strategies is strongest among people with high memory distrust. Memory, 31(7), 978\u0026ndash;988. https://doi.org/10.1080/09658211.2023.2216910\nZhang, Y., Peng, S., Chen, X., \u0026amp; Chen, H. Y. H. (2022). Plant diversity increases the abundance and diversity of soil fauna: A meta-analysis. Geoderma, 411, 115694. https://doi.org/10.1016/j.geoderma.2022.115694\nZhang, Z., \u0026amp; Peng, P. (2022). Reading real words versus pseudowords: A meta-analysis of research in developmental dyslexia. Developmental Psychology, 58(6), 1035\u0026ndash;1050. https://doi.org/10.1037/dev0001340\nZhang, Z., \u0026amp; Sun, L. (2023). The hidden factor: Accounting for covariate effects in power and sample size computation for a binary trait. Bioinformatics, 39(4), btad139. https://doi.org/10.1093/bioinformatics/btad139\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553\u0026ndash;583. https://doi.org/10.1515/cog-2021-0098\nZhao, R., Jiao, L., Wang, M., \u0026amp; Wei, H. (2023). The influence of L2 experience on L1 speech perception: Evidence from Mandarin\u0026ndash;English bilinguals. International Journal of Bilingualism, 27(5), 533\u0026ndash;547. https://doi.org/10.1177/13670069221104964\nZhong, Y., Huang, C.-R., \u0026amp; Ahrens, K. (2022). Embodied Grounding of Concreteness/Abstractness: A Sensory-Perceptual Account of Concrete and Abstract Concepts in Mandarin Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 72\u0026ndash;83). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_5\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196\u0026ndash;230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000\u0026ndash;1022. https://doi.org/10.1080/23273798.2022.2035416\nZhou, J., Mai, Z., Cai, Q., Liang, Y., \u0026amp; Yip, V. (2022). Reference production in Mandarin\u0026ndash;English bilingual preschoolers: Linguistic, input, and cognitive factors. Frontiers in Psychology, 13, 897031. https://doi.org/10.3389/fpsyg.2022.897031\nZhou, J.-G., Wong, A. H.-H., Wang, H., Jin, S.-H., Tan, F., Chen, Y.-Z., He, S.-S., Shen, G., Frey, B., Fietkau, R., Hecht, M., Carr, S. R., Wang, R., Shen, B., Schrump, D. S., Ma, H., \u0026amp; Gaipl, U. S. (2022). Definition of a new blood cell count score for early survival prediction for non-small cell lung cancer patients treated with atezolizumab: Integrated analysis of four multicenter clinical trials. Frontiers in Immunology, 13, 961926. https://doi.org/10.3389/fimmu.2022.961926\nZhou, T., Li, Y., Liu, H., Zhou, S., \u0026amp; Wang, T. (2022). N400 Indexing the Motion Concept Shared by Music and Words. Frontiers in Psychology, 13, 888226. https://doi.org/10.3389/fpsyg.2022.888226\nZhozhikashvili, N., Zakharov, I., Ismatullina, V., Feklicheva, I., Malykh, S., \u0026amp; Arsalidou, M. (2022). Parietal Alpha Oscillations: Cognitive Load and Mental Toughness. Brain Sciences, 12(9), 1135. https://doi.org/10.3390/brainsci12091135\nZhu, C., Liu, Z., Pei, M., \u0026amp; Su, Y. (2022). Effects of photographer physical attractiveness on photograph aesthetic value assessment. Perception, 51(7), 505\u0026ndash;513. https://doi.org/10.1177/03010066221098158\nZhu, C., \u0026amp; Wu, F. (2023). To stress or not to stress: What can Mandarin pronouns inform us of the accessibility of topic and focus? Phonetica, 0(0). https://doi.org/10.1515/phon-2023-0002\nZiv, G., Lidor, R., \u0026amp; Levin, O. (2022). Providing choice of feedback affects perceived choice but does not affect performance. PeerJ, 10, e13631. https://doi.org/10.7717/peerj.13631\nZivony, A., \u0026amp; Eimer, M. (2022). Expectation-based blindness: Predictions about object categories gate awareness of focally attended objects. Psychonomic Bulletin \u0026amp; Review, 29(5), 1879\u0026ndash;1889. https://doi.org/10.3758/s13423-022-02116-x\nZoppolat, G., Righetti, F., Balzarini, R. N., Alonso-Ferres, M., Urganci, B., Rodrigues, D. L., Debrot, A., Wiwattanapantuwong, J., Dharma, C., Chi, P., Karremans, J. C., Schoebi, D., \u0026amp; Slatcher, R. B. (2022). Relationship difficulties and \u0026ldquo;technoference\u0026rdquo; during the COVID-19 pandemic. Journal of Social and Personal Relationships, 39(11), 3204\u0026ndash;3227. https://doi.org/10.1177/02654075221093611\nZou, J., Gopalakrishnan, S., Parker, C. C., Nicod, J., Mott, R., Cai, N., Lionikas, A., Davies, R. W., Palmer, A. A., \u0026amp; Flint, J. (2022). Analysis of independent cohorts of outbred CFW mice reveals novel loci for behavioral and physiological traits and identifies factors determining reproducibility. G3 Genes|Genomes|Genetics, 12(1), jkab394. https://doi.org/10.1093/g3journal/jkab394\nZuraida, Z., \u0026amp; Husin, A. (2022). Sustainability, Sharī'ah Governance and Financial Performance: Evidence from Companies Listed on the Jakarta Islamic Index. In T. Azid, M. Mukhlisin, \u0026amp; O. Altwijry (Eds.), Wealth Management and Investment in Islamic Settings (pp. 249\u0026ndash;282). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3686-9_16\nZwet, E. V., \u0026amp; Gelman, A. (2022). A Proposal for Informative Default Priors Scaled by the Standard Error of Estimates. The American Statistician, 76(1), 1\u0026ndash;9. https://doi.org/10.1080/00031305.2021.1938225\nКузьмина, Ю. (2023). Psychometrics and Cognitive Research: Contradictions and Possibility for Cooperation. Voprosy Obrazovaniya / Educational Studies Moscow, 3. https://doi.org/10.17323/vo-2023-16875\n\r\r","date":1665705600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1665705600,"objectID":"785b1b124f6f042a721b1cec60f9de86","permalink":"https://pablobernabeu.github.io/publication/pablo-bernabeu-2022-phd-thesis/","publishdate":"2022-10-22T00:00:00Z","relpermalink":"/publication/pablo-bernabeu-2022-phd-thesis/","section":"publication","summary":"Research has suggested that conceptual processing depends on both language-based and sensorimotor information. In this thesis, I investigate the nature of these systems and their interplay at three levels of the experimental structure---namely, individuals, words and tasks. In Study 1, I contributed to a multi-lab replication of the object orientation effect, which has been used to test sensorimotor simulation. The effect did not appear across any of the 18 languages examined, and it was not influenced by individual differences in mental rotation. Next, in Study 2, we drew on three existing data sets that implemented semantic priming, semantic decision and lexical decision. We extended these data sets with measures of language-based and vision-based information, and analysed their interactions with participants' vocabulary size and gender, and with presentation speed. The analysis had a conservative structure of fixed and random effects. First, we found that language-based information was more important than vision-based information. Second, in the semantic priming study---whose task required distinguishing between words and nonwords---, both language-based and vision-based information were more influential when words were presented faster. Third, a 'task-relevance advantage' was identified in higher-vocabulary participants. Specifically, in lexical decision, higher-vocabulary participants were more sensitive to language-based information than lower-vocabulary participants. In contrast, in semantic decision, higher-vocabulary participants were more sensitive to word concreteness. Fourth, we demonstrated the influence of the analytical method on the results. Last, we estimated the sample size required to investigate various effects. We found that 300 participants were sufficient to examine the effect of language-based information in words, whereas more than 1,000 participants were necessary to examine the effect of vision-based information and the interactions of both former variables with vocabulary size, gender and presentation speed. This power analysis reveals the need to increase sample sizes when conduct research on perceptual simulation and individual differences.","tags":["object orientation effects","replication","semantic processing","semantic priming","semantic decision","lexical decision","language","vision","visual strength","cognition","psycholinguistics","reading","linear mixed-effects models","frequentist statistics","lme4","lmerTest","Bayesian statistics","brms","power analysis","sample size","simr","rstats","R"],"title":"Language and sensorimotor simulation in conceptual processing: Multilevel analysis and statistical power","type":"publication"},{"authors":[],"categories":[],"content":"\rI recommend caution when receiving an invitation from Polar Insight (also dubbed ‘Polar Intelligence’) to complete a survey. When I received one, it ended up in a deceptive change of the terms. The deception emerged after two emails exchanged with the company’s managing director, James Tattersfield, and an employee.\nThe case began when the managing director invited me to complete two tasks in exchange for a $125 USD voucher. The two tasks were a survey (‘short form’, in the director’s words) and an hour-long interview. Below is the email:\n\rFrom: James Tattersfield james@polarintelligence.com\nSent: Thursday, January 27, 2022 12:33:32 PM\nTo: De Juan Bernabeu, Pablo p.bernabeu@lancaster.ac.uk\nSubject: [External] Research Interview Request\nThis email originated outside the University. Check before clicking links or attachments.\nHi Pablo,\nI’m emailing you to discuss your participation in a global research study that my organisation (Polar Insight, a research firm based in London) is conducting to better understand how academic researchers are discovering and accessing scholarly articles outside university campus.\nAt this point in the project, we are particularly interested in hearing from those who have completed - or are currently completing - a PhD or post-doctorate degree.\nMy research team has identified you as a potential respondent and asked me to reach out to see whether you may be interested in taking part in one of our online, paid research interviews in February. Does this sound like something you would be interested in?\nDetails:\nFormat: Online Video Interview\nTime required: 60 minutes\nWhen: February 2022\nPrep. required: None\nReward for taking part: $125 USD (via our gifting partner, Tremendous)\nNext steps:\nIf you’d like to take part, please reconfirm your suitability using this short form: https://polarinsight.typeform.com/res-dis\n\rOnce we receive your answers, myself or a member of the team will be in contact to get you scheduled in.\n\rAfter the interview is completed, we’ll be in touch to process your reward.\n\r\rIf you have any questions, please do feel free to reply to this email and I’ll do my best to answer them.\nThanks,\nJames\n--\nJames Tattersfield\nManaging Director\nUK - 68 Hanbury St, London, E1 5JL, United Kingdom\nRegistered in England and Wales as a Private Limited Company.\n‘Polar Insight’ is a registered trademark owned by Polar Insight Limited.\nCompany number: 10587770 VAT: GB 279 4939 34\nIf you no longer want to receive emails regarding our research projects, you are welcome to unsubscribe from any future communications here\n\r\nFollowing this invitation, I—and presumably many other researchers—responded to a survey (see some screenshots below) that provided the company with data that might be used for business purposes.\n\r\r\r\r\r\r\r\r\nOnce the company had received my survey completed, an employee wrote back to change the original terms, on the grounds that ‘we have had a high volume of responses to our survey, so unfortunately, not everyone will be selected on this occasion’. Such a change of the terms was unethical, as it happened after I had accepted the invitation from the company under the original terms. Crucially, if the company had truthfully specified the terms in the first email, they would not have received back anywhere as many surveys completed. Ethics is important in the distribution of surveys, even in business. It is noteworthy that Polar Insight boasts a portfolio of clients on its website that covers a range of private sectors as well as public bodies. It is, therefore, striking that this company decided to scam a PhD student.\nI emailed the company and the CEO James Tattersfield to request my reward. After they had ignored my emails, and then replied with evasive responses, I contacted the CEO on LinkedIn. Again, he yielded evasive responses only.\nThe present case incidentally demonstrates that the role of ethics committees—tasked with assessing surveys, among other things—goes beyond gross themes. Economic deception is one of the negligent acts that must be prevented.\nSimilar survey scams have been documented:\n\rhttps://moneydoneright.com/fast-money/online-work/surveys/surveys-for-money\n\rhttps://www.accc.gov.au/media-release/watch-out-for-scam-surveys-and-fake-gift-card-offers\n\rhttps://www.facebook.com/dollargeneral/posts/pfbid032BmUQrAUh7p9yuw8eQKavZZrUC7zsGeBiT2E4efDEASCFSsem7vLKNiipgWNqYjpl\n\r\r\n","date":1647302400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1647302400,"objectID":"0c4ef4e34a1e8c260c2561477153b261","permalink":"https://pablobernabeu.github.io/2022/deception-in-a-survey-from-polar-insight-/-polar-intelligence/","publishdate":"2022-03-15T00:00:00Z","relpermalink":"/2022/deception-in-a-survey-from-polar-insight-/-polar-intelligence/","section":"post","summary":"I recommend caution when receiving an invitation from Polar Insight (also dubbed ‘Polar Intelligence’) to complete a survey. When I received one, it ended up in a deceptive change of the terms. The deception emerged after two emails exchanged with the company’s managing director, James Tattersfield, and an employee.\nThe case began when the managing director invited me to complete two tasks in exchange for a $125 USD voucher. The two tasks were a survey (‘short form’, in the director’s words) and an hour-long interview.","tags":["survey","scam","fraud"],"title":"Deception in a survey from Polar Insight / Polar Intelligence","type":"post"},{"authors":[],"categories":["R"],"content":"\rThe function knit_deleting_service_files() helps avoid (R) Markdown knitting errors caused by files and folders remaining from previous knittings (e.g., manuscript.tex, ZHJhZnQtYXBhLlJtZA==.Rmd, manuscript.synctex.gz). The only obligatory argument for this function is the name of a .Rmd or .md file. The optional argument is a path to a directory containing this file.\nThe function first offers deleting potential service files and folders, for which the user’s approval is requested in the console (see screenshot below). Next, the document is knitted. Last, the function offers deleting potential service files and folders again.\nNOTE: The deletions, if accepted, are irreversible as they are made through unlink(). Therefore, our familiar adage truly applies: this function comes with ABSOLUTELY NO WARRANTY. Please ensure you understand the source code before using the function.\n\nScreenshot of the function in use.\nThe function\r\r\r","date":1639777566,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1639777566,"objectID":"065f76c7178db1ca66c5ba5b0d0a2908","permalink":"https://pablobernabeu.github.io/2021/avoiding-knitting-errors-in-r-markdown-using-knit-deleting-service-files/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/avoiding-knitting-errors-in-r-markdown-using-knit-deleting-service-files/","section":"post","summary":"The function knit_deleting_service_files() helps avoid (R) Markdown knitting errors caused by files and folders remaining from previous knittings (e.g., manuscript.tex, ZHJhZnQtYXBhLlJtZA==.Rmd, manuscript.synctex.gz). The only obligatory argument for this function is the name of a .Rmd or .md file. The optional argument is a path to a directory containing this file. The function first offers szeleting potential service files and folders in the directory. A confirmation is required in the console (see screenshot below). Next, the document is knitted. Last, the function offers deleting potential service files and folders again.","tags":["s","R Markdown","papaja","render"],"title":"Avoiding (R) Markdown knitting errors using knit_deleting_service_files()","type":"post"},{"authors":[],"categories":["R"],"content":"\r\rAs technology and research methods advance, the data sets tend to be larger and the methods more exhaustive. Consequently, the analyses take longer to run. This poses a challenge when the results are to be presented using R Markdown. One has to balance reproducibility and efficiency. On the one hand, it is desirable to keep the R Markdown document as self-contained as possible, so that those who may later examine the document can easily test and edit the code. On the other hand, it would be inefficient to create a document that is very slow to run or very long. The context of the task will determine how how time-consuming and long the code in an Rmd file can be. For instance, one could decide that the knitting can take up to 15 minutes, and each code chunk can span up to 30 lines.\nSeveral methods can be used in each document to accommodate different types of code. Three methods are presented below, ordered from easier-to-reproduce to easier-to-knit.\nFor fast- and concise-enough code: Provide the original code in the Rmd file. The code is run as the document is knitted. Example:\n nrow(myData)\rFor fast-enough but very long code: Store the code in a separate script and source it in the Rmd file. The code is run as the document is knitted. Example:\n source(\u0026#39;analysis/model_diagnostics.R\u0026#39;)\rFor very slow and/or long code: Store the code in a separate script and run it prior to knitting the Rmd file, so that the output from the code (e.g., a model, a plot) is saved and can be read into the Rmd. Example:\n model_1 = readRDS(\u0026#39;results/model_1.rds\u0026#39;)\r\rImportantly, even the third method allows the reproducibility of the code. It just requires a bit of additional documentation to ensure that the end user can also access the script in which the result was produced (e.g., ‘analysis/model_1.R’).\n","date":1636848608,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1636848608,"objectID":"c2ff67766be99e135b2d65b6a2f2ff4d","permalink":"https://pablobernabeu.github.io/2021/walking-the-line-between-reproducibility-and-efficiency-in-r-markdown-three-methods/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/walking-the-line-between-reproducibility-and-efficiency-in-r-markdown-three-methods/","section":"post","summary":"As technology and research methods advance, the data sets tend to be larger and the methods more exhaustive. Consequently, the analyses take longer to run. This poses a challenge when the results are to be presented using R Markdown. One has to balance reproducibility and efficiency. On the one hand, it is desirable to keep the R Markdown document as self-contained as possible, so that those who may later examine the document can easily test and edit the code.","tags":["s","R","R Markdown"],"title":"Walking the line between reproducibility and efficiency in R Markdown: Three methods","type":"post"},{"authors":[],"categories":["R"],"content":"\r\rWhen knitting an R Markdown document after the first time, errors may sometimes appear. Three tips are recommended below.\n1. Close PDF reader window\rWhen the document is knitted through the ‘Knit’ button, a PDF reader window opens to present the result. Closing this window can help resolve errors.\n\r2. Delete service files\rEvery time the Rmd is knitted, some service files are created. Some of these files have the ‘.tex’ extension (e.g., index.tex, Appendix-B.tex), whereas others do not (e.g., index.log, ZHJhZnQtYXBhLlJtZA==.Rmd, index.synctex.gz). Deleting these files can help resolve errors (see a possible function).\n\r3. Delete code chunks related to the appendices\rWhen knitting papaja documents containing any appendices, some code chunks related to the appendices will automatically appear at the end of the primary Rmd file—e.g.:\n```{r echo = FALSE, results = \u0026#39;asis\u0026#39;, cache = FALSE}\rpapaja::render_appendix(\u0026#39;Appendix-A.Rmd\u0026#39;)\r```\rNormally, these code chunks are automatically removed as the knitting finishes. However, if the chunks remain in place, deleting them manually can help resolve errors.\n\r","date":1636827082,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1636827082,"objectID":"55d2dcb6bb3b71357f49cdd9fc452690","permalink":"https://pablobernabeu.github.io/2021/tackling-knitting-errors-in-r-markdown/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/tackling-knitting-errors-in-r-markdown/","section":"post","summary":"When knitting an R Markdown document after the first time, errors may sometimes appear. Three tips are recommended below.\n1. Close PDF reader window\rWhen the document is knitted through the ‘Knit’ button, a PDF reader window opens to present the result. Closing this window can help resolve errors.\n\r2. Delete service files\rEvery time the Rmd is knitted, some service files are created. Some of these files have the ‘.","tags":["s","R","R Markdown"],"title":"Tackling knitting errors in R Markdown","type":"post"},{"authors":[],"categories":["R","research methods"],"content":"\rThe powercurve function from the R package ‘simr’ (Green \u0026amp; MacLeod, 2016) can incur very long running times when the method used for the calculation of p values is Kenward-Roger or Satterthwaite (see Luke, 2017). Here I suggest three ways for cutting down this time.\nWhere possible, use a high-performance (or high-end) computing cluster. This removes the need to use personal computers for these long jobs.\n\rIn case you’re using the fixed() parameter of the powercurve function, and calculating the power for different effects, run these at the same time (‘in parallel’) on different machines, rather than one after another.\n\rParallelize the breaks argument. The breaks argument of the powercurve function allows the calculation of power for different levels of the grouping factor passed to along. Some grouping factors are participant, trial and item. The breaks argument sets the different sample sizes for which power will be calculated. Parallelizing breaks is done by running each number of levels in a separate function. When each has been run and saved, they are combined to allow the plotting. This procedure is demonstrated below.\n\r\rParallelizing breaks\rLet’s do a minimal example using a toy lmer model. A power curve will be created for the fixed effect of x along different sample sizes of the grouping factor g.\nNotice that the six sections of the power curve below are serially arranged, one after another. In contrast, to enable parallel processing, each power curve would be placed in a single script, and they would all be run at the same time.\nAlthough the power curves below run in a few minutes, the settings that are often used (e.g., a larger model; fixed('x', 'sa') instead of fixed('x'); nsim = 500 instead of nsim = 50) take far longer. That is where parallel processing becomes useful.1\nlibrary(lme4)\rlibrary(simr)\r# Toy model with data from \u0026#39;simr\u0026#39; package\rfm = lmer(y ~ x + (x | g), data = simdata)\r# Extend sample size of `g`\rfm_extended_g = extend(fm, along = \u0026#39;g\u0026#39;, n = 12)\r# Parallelize `breaks` by running each number of levels in a separate function.\r# 4 levels of g\rpwcurve_4g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 4, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 6 levels of g\rpwcurve_6g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 6, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 8 levels of g\rpwcurve_8g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 8, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 10 levels of g\rpwcurve_10g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 10, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 12 levels of g\rpwcurve_12g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 12, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r\nHaving saved each section of the power curve, we must now combine them to be able to plot them together (if you wish to automatise this procedure, consider this function).\n# Create a destination object using any of the power curves above.\rall_pwcurve = pwcurve_4g\r# Combine results\rall_pwcurve$ps = c(pwcurve_4g$ps[1], pwcurve_6g$ps[1], pwcurve_8g$ps[1], pwcurve_10g$ps[1], pwcurve_12g$ps[1])\r# Combine the different numbers of levels.\rall_pwcurve$xval = c(pwcurve_4g$nlevels, pwcurve_6g$nlevels, pwcurve_8g$nlevels, pwcurve_10g$nlevels, pwcurve_12g$nlevels)\rprint(all_pwcurve)\r## Power for predictor \u0026#39;x\u0026#39;, (95% confidence interval),\r## by number of levels in g:\r## 4: 46.00% (31.81, 60.68) - 40 rows\r## 6: 74.00% (59.66, 85.37) - 60 rows\r## 8: 92.00% (80.77, 97.78) - 80 rows\r## 10: 98.00% (89.35, 99.95) - 100 rows\r## 12: 100.0% (92.89, 100.0) - 120 rows\r## ## Time elapsed: 0 h 0 m 7 s\rplot(all_pwcurve, xlab = \u0026#39;Levels of g\u0026#39;)\r# For reproducibility purposes\rsessionInfo()\r## R version 4.2.3 (2023-03-15 ucrt)\r## Platform: x86_64-w64-mingw32/x64 (64-bit)\r## Running under: Windows 10 x64 (build 22621)\r## ## Matrix products: default\r## ## locale:\r## [1] LC_COLLATE=English_United States.utf8 ## [2] LC_CTYPE=English_United States.utf8 ## [3] LC_MONETARY=English_United States.utf8\r## [4] LC_NUMERIC=C ## [5] LC_TIME=English_United States.utf8 ## ## attached base packages:\r## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages:\r## [1] simr_1.0.7 lme4_1.1-32 Matrix_1.5-3 ## [4] knitr_1.42 xaringanExtra_0.7.0\r## ## loaded via a namespace (and not attached):\r## [1] tidyselect_1.2.0 xfun_0.38 bslib_0.4.2 purrr_1.0.1 ## [5] splines_4.2.3 lattice_0.20-45 carData_3.0-5 vctrs_0.6.1 ## [9] generics_0.1.3 htmltools_0.5.5 yaml_2.3.7 mgcv_1.8-42 ## [13] utf8_1.2.3 rlang_1.1.0 jquerylib_0.1.4 nloptr_2.0.3 ## [17] pillar_1.9.0 glue_1.6.2 uuid_1.1-0 plyr_1.8.8 ## [21] binom_1.1-1.1 lifecycle_1.0.3 stringr_1.5.0 blogdown_1.16 ## [25] evaluate_0.21 fastmap_1.1.1 RLRsim_3.1-8 parallel_4.2.3 ## [29] pbkrtest_0.5.2 fansi_1.0.4 broom_1.0.4 Rcpp_1.0.10 ## [33] backports_1.4.1 plotrix_3.8-2 cachem_1.0.7 jsonlite_1.8.4 ## [37] abind_1.4-5 digest_0.6.31 stringi_1.7.12 bookdown_0.33.3 ## [41] dplyr_1.1.1 grid_4.2.3 cli_3.4.1 tools_4.2.3 ## [45] magrittr_2.0.3 sass_0.4.6 tibble_3.2.1 tidyr_1.3.0 ## [49] car_3.1-2 pkgconfig_2.0.3 MASS_7.3-58.3 minqa_1.2.5 ## [53] rmarkdown_2.21 rstudioapi_0.14 iterators_1.0.14 R6_2.5.1 ## [57] boot_1.3-28.1 nlme_3.1-162 compiler_4.2.3\r\nJust the code\r\rlibrary(lme4)\rlibrary(simr)\r# Toy model\rfm = lmer(y ~ x + (x | g), data = simdata)\r# Extend sample size of `g`\rfm_extended_g = extend(fm, along = \u0026#39;g\u0026#39;, n = 12)\r# Parallelize `breaks` by running each number of levels in a separate function.\r# 4 levels of g\rpwcurve_4g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 4, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 6 levels of g\rpwcurve_6g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 6, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 8 levels of g\rpwcurve_8g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 8, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 10 levels of g\rpwcurve_10g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 10, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# 12 levels of g\rpwcurve_12g = powerCurve(fm_extended_g, fixed(\u0026#39;x\u0026#39;), along = \u0026#39;g\u0026#39;, breaks = 12, nsim = 50, seed = 123, # No progress bar\rprogress = FALSE)\r# Create a destination object using any of the power curves above.\rall_pwcurve = pwcurve_4g\r# Combine results\rall_pwcurve$ps = c(pwcurve_4g$ps[1], pwcurve_6g$ps[1], pwcurve_8g$ps[1], pwcurve_10g$ps[1], pwcurve_12g$ps[1])\r# Combine the different numbers of levels.\rall_pwcurve$xval = c(pwcurve_4g$nlevels, pwcurve_6g$nlevels, pwcurve_8g$nlevels, pwcurve_10g$nlevels, pwcurve_12g$nlevels)\rprint(all_pwcurve)\rplot(all_pwcurve, xlab = \u0026#39;Levels of g\u0026#39;)\r\r\n\r\rReferences\rBrysbaert, M., \u0026amp; Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9. http://doi.org/10.5334/joc.10\nGreen, P., \u0026amp; MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution 7(4), 493–498, https://doi.org/10.1111/2041-210X.12504\nKumle, L., Vo, M. L. H., \u0026amp; Draschkow, D. (2021). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. Behavior Research Methods, 1–16. https://doi.org/10.3758/s13428-021-01546-0\nLuke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y\n\n\r\rThe number of simulations set by nsim should be larger (Brysbaert \u0026amp; Stevens, 2018; Green \u0026amp; MacLeod, 2016). In addition, the effect size for x should be adjusted to the value that best fits with the planned study (Kumle et al., 2021).↩︎\n\r\r\r","date":1627055214,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1627055214,"objectID":"b0969a1cecf8eef662e221c5f20b47eb","permalink":"https://pablobernabeu.github.io/2021/parallelizing-simr-powercurve/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/parallelizing-simr-powercurve/","section":"post","summary":"The powercurve function from the R package ‘simr’ (Green \u0026amp; MacLeod, 2016) can incur very long running times when the method used for the calculation of p values is Kenward-Roger or Satterthwaite (see Luke, 2017). Here I suggest three ways for cutting down this time.\nWhere possible, use a high-performance (or high-end) computing cluster. This removes the need to use personal computers for these long jobs.\n\rIn case you’re using the fixed() parameter of the powercurve function, and calculating the power for different effects, run these at the same time (‘in parallel’) on different machines, rather than one after another.","tags":["s","power analysis"],"title":"Parallelizing simr::powercurve() in R","type":"post"},{"authors":[],"categories":[],"content":"This blog post does not provide a complete overview of the atmosphere at university or in academia, where I think that fairness is far more common than discrimination. Let's keep up the good work and be mindful of the rest.\r\rThere is discrimination at European universities and in the corresponding academia. Minorities are too often oppressed and abused through the use of casual remarks, concerted attacks, unequal respect towards different groups, unfair hiring decisions and other negligent behaviours. Professional and personal negligence is the reason why this discrimination is tolerated and condoned by staff of higher authority. Cases of discrimination are not normally shared by the universities, but they are sometimes registered on the websites of student unions, other student forums, or in the press. Discrimination must not be tolerated either at university or in academia. I hope this blog post provides some useful tips for dealing with discrimination from university students and staff alike.\nHomo homini lupus Xenophobia is one of the types of discrimination that sometimes crop up in halls of residence, departments, panels, committees, offices. Xenophobia exists where you are now, as it does where you come from. It is intrinsic to human societies (see Hinton, 2017). In society at large, who doesn't know the way in which different nationalities are ranked in a certain place? The specifics of these hierarchies vary across regions and individuals (thank goodness); and yet, xenophobia always tends to be underlain by an unfair, puny spirit.\nHierarchies among nationalities In society at large, the locals tend to be first. Some locals sometimes utilise official devices and everyday tricks to ensure that immigrants are second to them. We must all remember that more people should not mean more rights. Each person is a person.\nThe first rank of immigrants is formed of one or two nationalities, smiled at by the fortune of historical or cultural ties. The second rank of immigrants is that of merely-tolerated nationalities. The third rank is formed of immigrants who are despised due to historical, political, cultural factors.\nSadly and dangerously enough, in competitive or onerous circumstances (when is that not the case, though!), homo homini lupus est (people are wolves unto people). Then, discrimination breaks loose (Abbink, \u0026amp; Harris, 2019; Meiring et al., 2014; Mendes \u0026amp; Koslov, 2013).\nPolicies Policy statements are increasingly popular and they give reasons for hope. For instance, the employment webpage of Duke University reads (on 21st July 2021; https://hr.duke.edu/policies/diversity/eeo):\n Duke University prohibits discrimination and harassment, and provides equal employment opportunity without regard to an individual's age, color, disability, gender, gender expression, gender identity, genetic information, national origin, race, religion, sex, sexual orientation, or veteran status.\n Such statements, if indeed observed by the employees, constitute historical\u0026mdash;why, historic!\u0026mdash;changes. They should be celebrated, applauded\u0026mdash;even if they simply adhere to fundamental, human rights.\nDealing with discrimination Discrimination takes many forms. Accordingly, surviving and confronting it requires various approaches. Stoicism, bravery, protection and ingenuity are all valuable against the xenophobia that lurks, and occasionally bites, in halls of residence, informal meetings, committees, offices, and other settings at universities across Europe. Inspiration for such approaches can be found in many places\u0026mdash;even in popular literature. For instance, Harper Lee's To Kill a Mockingbird contains a passage in which a lawyer is mobbed by nostalgic townspeople who do not want a Black citizen to be treated as a human. The strategies for the defence from the lynch mob span from the lawyer's stoicism to his son's adolescent bravery, and from the invisible protection offered by a witness to the disarming ingenuity of the lawyer's eight-year-old daughter, who spots one of her neighbours in the mob.\nCollection and presentation of evidence Ironically, complaint cases are sometimes initiated by those who have exerted discrimination. If you receive a complaint and you feel you have been discriminated against, whether before or through the said complaint, it is important to note this in your response.\nThe discrimination can be well described by producing an extensive document that recounts every relevant episode, with the applicable evidence being attached. Don't fret about reading time: the larger the document, the better.\nName it. Discrimination has precise names\u0026mdash;for instance, xenophobia\u0026mdash;, which must be used where relevant and necessary. People know the meaning: perpetrators are likely know it and so will the authorities or mediators who are in charge of resolving the case. Whether these people like the word to be used or not is their own problem, not yours. Nonetheless, more general, and often more objective, hypernyms are also available, such as \u0026lsquo;discrimination\u0026rsquo; and \u0026lsquo;unfairness\u0026rsquo;.\nCase study This year, I was bullied by some of my flatmates. This bullying was finally underscored when they submitted false accusations about me to the Graduate College Accommodation Office at Lancaster University. The latter office embraced and acted upon these accusations. As a result, a flat meeting was suggested by the Deanery. The Deanery would not initially allow me to receive information in writing and to respond likewise. On the contrary, they required a live meeting. As I repeatedly countered, I thought that a written procedure would cause less stress, yield less bias, and allow a more accurate registration of every input for future reference.\n It is due to three reasons that I would prefer working on the basis of a brief written report, to which I could also respond in writing. These reasons are:\n I think that the written mode helps remain more impartial than the oral mode. I think a written discussion would help in keeping a clear, written record of every part of the report. I think a written discussion causes less stress than an oral one. I am hopeful that, having presented my preference for responding in writing to a written report, you may acknowledge my personal preference, and perhaps allow me to proceed in that way.\n A written discussion\u0026mdash;e.g., via email\u0026mdash; is a valuable option in situations that could be unfair or abusive.\nFinally, when I was presented with the necessary written information, I replied with a 36-page document, and participated in a one-hour disciplinary hearing. By those means, I described the way in which some of my flatmates had bullied me throughout the year, finally reinforced through the false accusations they had made. They had lied about their own behaviour, too, while they were at it.\nI think this bullying was motivated by the legitimate differences in the way we were each concerned about the Covid-19 pandemic, along with differences in academic stage, age, nationality and physical appearance. As a general rule, people tend to have difficulties to respect or tolerate others who are different from them. In the present instance, this difficulty drove my flatmates to submit false accusations about me while forgetting crucial information about their own behaviour. The time-consuming, 36-page response that I composed helped clarify the state of affairs. Upon a formal review, I was acquitted on all accusations.\nIt is important to express one's feeling of unfairness where it exists. I did so, following the Dean's resolution, through the email below, which I sent to the College (private information replaced with asterisks).\n\rDear All,\nThe Dean has produced a resolution to the disciplinary hearing that was organised due to complaints from some of my flatmates. This resolution considers my flatmates\u0026rsquo; complaints as well as the 36-page response that I submitted and the one-hour hearing that finally took place. In the resolution, I was acquitted of all three alleged violations (my response to the summons and the Dean's resolution are attached to the present email).\nAs part of a fair procedure, I received documents that reflected my flatmates\u0026rsquo; complaints, as well as the treatment of those complaints from the Graduate Accommodation Office. I would be grateful for your consideration of my views on the role of the Graduate Accommodation Office.\nBiased treatment of accusations\nI have considered the response from the Graduate Accommodation Office as the complaints were raised, and until I was summoned to a disciplinary hearing. In my view, the Graduate Accommodation Office failed to demonstrate enough impartiality, which resulted in unfairness towards me. The claims made by some of my flatmates via email were acted upon by the Accommodation Office without an important consideration\u0026ndash;namely, that the accusations could be deliberately false or inaccurate. Indeed, the accusations happened to be so, as I extensively argued in my response to the summons by providing detailed descriptions of the events and documentary evidence.\nDisappointingly, the embracement of my flatmates\u0026rsquo; accusations by the Graduate Accommodation Office contrasts with the caution that is rightly applied when one calls the porters. I have sometimes called over the past three years regarding residents smoking indoors. Every time, they made me aware of the need for them to catch any students as they are smoking indoors. In the absence of the witnessing by the porters, the students can only be informed about the complaint made, but no action can be taken against them. This is a correct precaution against any false or misinformed accusations. In contrast, I think that the Graduate Accommodation Office, in some of their emails with some of my flatmates, embraced the accusations on a one-sided manner, and finally passed on these accusations to the Dean without having had any input from me about the veracity thereof.\nBiased provision of evidence\nAmong the documents included in the disciplinary case, the Graduate Accommodation Office included a complaint that I had raised regarding the persistent failures to prevent a Covid-19 infection by my flatmates and by the housekeeper. My complaint should by no means have been mixed with the complaints against me. Its inclusion is a demonstration of the bias with which I was treated.\nLegitimate differences across flatmates contributing to discrimination\nI think that the biased response from the response from the Graduate Accommodation Office failed to consider the legitimate differences across the residents in these flats. The Graduate Accommodation Office know (as indeed they should) that the seven-person flats in this college are bound to include residents who are legitimately different from each other. In my flat this year, for instance, we have had important differences regarding academic stage, age and country of origin.\n Academic stage: five master's students, one first-year PhD student and one third-year PhD student (I am the latter one).\n Age: all my flatmates are under ***, whereas I am ***.\n Country of origin: three ***, one ***, one ***, one *** and one *** (I am the latter one).\n These differences must always be considered, as they can contribute to ingroup-outgroup bias in flats. Some of this bias could stem from xenophobia. Unfortunately, Lancaster University has had infamous cases of xenophobia in the past (https://scan.lancastersu.co.uk/2013/05/27/editorial-anonymous-bullying-on-facebook-groups-is-pure-cowardice/).\nIn conclusion, would you please consider the following remarks:\n I think that the treatment of my flatmates\u0026rsquo; complaints was unfair and biased against me.\n I think my flatmates aimed to have me expelled from the flat. Their spite was due to me being the only one who has been properly concerned about the virus in this flat, and due to the legitimate differences that existed between me and my flatmates regarding academic stage, age and country of origin, as listed above.\n I think that this case demonstrates that it is extremely harmful to embrace and act upon accusations in a one-sided manner, as it can result in discrimination. The biased response from the Graduate Accommodation Office has instilled a fear from false accusations in me. As a result, I feel that henceforth I will have to monitor whether I or other residents are discriminated against by the Graduate Accommodation Office.\n I hope that the Graduate Accommodation Office can acknowledge my experience of the present issue, and consider it to allow a fair treatment towards every resident in the future. As such, henceforth, I will consider the present email as an integral part of this process, and I hope that the Graduate Accommodation Office does too.\nThank you for your attention,\nPablo\n\rWhen I had not received a reply within two weeks, I followed up with another email referring to details in the documents that were suggestive of a bias among the staff. This staff had followed directions from some of my flatmates without requesting my perspective on the issue, my side of things, my feedback, with the same degree of trust. Why? Why had they discriminated against me?\u0026mdash;I asked them. Did I not pay the same accommodation fees as the others? Was I not the same kind of a customer? This time, I did not limit my feedback to the Graduate College: I found it necessary to share my disappointment with some other services of the university as well.\n I sincerely believe that the Graduate College Accommodation Office and the Graduate College Deanery would benefit from some training in dealing with complaints fairly, efficiently and professionally. I believe such a training would benefit all students, especially those\u0026ndash;like myself\u0026ndash;who are more likely to be bullied by flatmates due to having a different profile (country of origin, physical appearance, academic requirements, leisure habits, etc.). My flatmates\u0026rsquo; bullying towards me began in the first week, when they blamed me for placing my food on shelves of the fridge which they had unilaterally chosen. They had assigned me a shelf\u0026mdash;one at the bottom of the fridge. Episodes extended throughout the year, as I extensively described in my 36-page response to the Dean's summons, which I can share with you if that were necessary for the revision of the conditions at Graduate College.\n[\u0026hellip;]\nThe present case has already robbed me of precious time. I wonder if this was part of the intention of some persons involved in this process. In any case, I hope this information will be helpful for the future. Discrimination must be confronted at this university. I pay the same accommodation fees and, logically, I deserve the same trust and care as the most beloved of residents.\n A design feature? Perhaps societies are discriminatory by design. As an illustration, a comment by John Bercow on the xenophobia that lurks in a large party provides an idea of the scale of the problem. Perhaps we are not doing enough about this. This insufficiency might explain, for instance, why the death of an innocent Slovak citizen in police custody at Charleroi Airport (Brussels, Belgium) was barely and poorly covered by the European media. In case that you tolerate graphic footage, please consider the unnecessary, illegal treatment given to Jozef Chovanec. Chovanec's case is but an example. The news archives contain evidence of abuses to minority citizens in many European countries since the 2000s to this day.\nCeaseless awareness Lobbying, whether we like it or not, Activism is one of the methods needed to confront this plight. So, talk about it. Make sure that other potential targets of it know that it is not fair, that they should not have to put up with it, and that they might be able to confront it in one way or another. A ceaseless awareness, fostered by a relentless activism, will also help those who exert discrimination themselves, as arguably, they are often unaware of their own act.\nThe internet The creation of awareness does not have to fully depend on close relationships. Email and social media allow safe activity where anonymity is necessary.\nConclusion The university and the academia are formed by members of society. Logically, therefore, care must taken to ward off discriminatory tendencies that exist in society.\nIf you have suffered discrimination, or you are a potential target for it, please ensure that you are aware of this plague. Regardless of the rank that a given type of discrimination occupies in the social agenda, no discrimination should be tolerated. In addition to being unethical, discrimination breaches human and fundamental rights, national laws and institutional rules.\nIf you are not a target but an ally against discrimination, please continue to confront it where you witness it, and to facilitate a widespread awareness.\nReferences Abbink, K., \u0026amp; Harris, D. (2019). In-group favouritism and out-group discrimination in naturally occurring groups. PloS ONE, 14(9), e0221616. https://doi.org/10.1371/journal.pone.0221616\nHinton, P. (2017). Implicit stereotypes and the predictive brain: cognition and culture in “biased” person perception. Palgrave Communications, 3(1), 1-9. https://doi.org/10.1057/palcomms.2017.86\nMeiring, L., Subramoney, S., Thomas, K. G., Decety, J., \u0026amp; Fourie, M. M. (2014). Empathy and helping: Effects of racial group membership and cognitive load. South African Journal of Psychology, 44(4), 426-438. https://doi.org/10.1177/0081246314530280\nMendes, W. B., \u0026amp; Koslov, K. (2013). Brittle smiles: Positive biases toward stigmatized and outgroup targets. Journal of Experimental Psychology: General, 142(3), 923–933. https://doi.org/10.1037/a0029663\n\r\r","date":1626874444,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1626874444,"objectID":"84d12412b2d7cbd970ee6e147b8aa916","permalink":"https://pablobernabeu.github.io/2021/surviving-discrimination-and-confronting-it/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/2021/surviving-discrimination-and-confronting-it/","section":"post","summary":"This blog post does not provide a complete overview of the atmosphere at university or in academia, where I think that fairness is far more common than discrimination. Let's keep up the good work and be mindful of the rest.\r\rThere is discrimination at European universities and in the corresponding academia. Minorities are too often oppressed and abused through the use of casual remarks, concerted attacks, unequal respect towards different groups, unfair hiring decisions and other negligent behaviours.","tags":[],"title":"Surviving discrimination and confronting it","type":"post"},{"authors":["Pablo Bernabeu, Dermot Lynott and Louise Connell"],"categories":["conceptual processing"],"content":"\r\r Video\n Slides\n\rfitvids('.shareagain', {players: 'iframe'});\r\rAbstract\rResearch in conceptual processing has suggested that the comprehension of words draws on complementary cognitive systems. In the milliseconds during which a word is processed, the linguistic system is activated first. Reading the word entity, for instance, may activate words such as being, thing and object (https://smallworldofwords.org/en/project/explore; De Deyne et al., 2019). Thereupon, the embodied system is activated, incorporating sensorimotor, emotional and social dimensions (Borghi et al., 2019). For instance, entity activates visual, auditory and head-specific meanings (https://embodiedcognitionlab.shinyapps.io/sensorimotor_norms; Lynott et al., 2020). Research has also suggested that the linguistic system is more important for relatively abstract words—e.g., attempt—, whereas the embodied system is more important for more concrete words—e.g., building (Bolognesi \u0026amp; Steen, 2018). The role of individual differences has also been investigated (Dils \u0026amp; Boroditsky, 2010), although to a lesser extent. An individual’s linguistic experience (e.g., larger vocabulary) facilitates word processing and task-relevant attention (Pexman \u0026amp; Yap, 2018; Yap et al., 2017), while greater sensorimotor experience enables more detailed meaning activation within specific conceptual areas (e.g., space: Vukovic \u0026amp; Williams, 2015). The variation across individuals and items, within both the linguistic and embodied systems, is seldom considered simultaneously. We are undertaking this in two studies. The first study (Bernabeu et al., 2021) will merge existing datasets (Lynott et al., 2020; Pexman et al., 2017; Pexman \u0026amp; Yap, 2018; Wingfield \u0026amp; Connell, 2019). The second study will collect novel data to investigate questions such as the unique roles of vocabulary size, sensorimotor experience and attentional control. To determine the sample size for the latter study, two pilot studies with larger-than-average samples were conducted, using the aforementioned datasets and that of Hutchison et al. (2013). Simulation-based, prospective power curves were performed. These pilots revealed important roles for linguistic and embodied information, vocabulary size, and attentional control, as well as statistical power considerations.\n\rReferences\rBernabeu, P., Lynott, D., \u0026amp; Connell, L. (2021). Preregistration: The interplay between linguistic and embodied systems in conceptual processing. OSF. https://osf.io/ftydw/\nBolognesi, M., \u0026amp; Steen, G. (2018). Abstract concepts: Structure, processing, and modeling. Topics in Cognitive Science, 10(3), 490–500. https://doi.org/10.1111/tops.12354\nBorghi, A., M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., \u0026amp; Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120–53. https://doi.org/10.1016/j.plrev.2018.12.001\nDe Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., \u0026amp; Storms, G. (2019). The “Small World of Words” English word association norms for over 12,000 cue words. Behavior Research Methods, 51, 987–1006. http://dx.doi.org/10.3758/s13428-018-1115-7\nDils, A. T., \u0026amp; Boroditsky, L. (2010). Visual motion aftereffect from understanding motion language. Proceedings of the National Academy of Sciences, 107(37), 16396-16400. https://doi.org/10.1073/pnas.1009438107\nHutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-Shikora, E. R., Tse, C.-S., Yap, M. J., Bengson, J. J., Niemeyer, D., \u0026amp; Buchanan, E. (2013). The semantic priming project. Behavior Research Methods, 45, 1099–1114. https://doi.org/10.3758/s13428-012-0304-z\nLynott, D., Connell, L., Brysbaert, M., Brand, J., \u0026amp; Carney, J. (2020). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52, 1-21. https://doi.org/10.3758/s13428-019-01316-z\nPexman, P. M., Heard, A., Lloyd, E., \u0026amp; Yap, M. J. (2017). The Calgary semantic decision project: Concrete/abstract decision data for 10,000 English words. Behavior Research Methods, 49(2), 407–417. https://doi.org/10.3758/s13428-016-0720-6\nPexman, P. M., \u0026amp; Yap, M. J. (2018). Individual differences in semantic processing: Insights from the Calgary semantic decision project. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1091–1112.\rhttps://doi.org/10.1037/xlm0000499\nVukovic, N., \u0026amp; Williams, J. N. (2015). Individual differences in spatial cognition influence mental simulation of language. Cognition, 142, 110–122.\rhttps://doi.org/10.1016/j.cognition.2015.05.017\nWingfield, C., \u0026amp; Connell, L. (2019). Understanding the role of linguistic distributional knowledge in cognition. PsyArXiv. https://doi.org/10.31234/osf.io/hpm4z\nYap, M. J., Hutchison, K. A., \u0026amp; Tan, L. C. (2017). Individual differences in semantic priming performance: Insights from the semantic priming project. In M. N. Jones (Ed.), Frontiers of cognitive psychology. Big data in cognitive science (p. 203–226). Routledge/Taylor \u0026amp; Francis Group.\n\r","date":1621814400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1621814400,"objectID":"fe1c8b1f3c757a5c23ff3b01a25fb841","permalink":"https://pablobernabeu.github.io/presentation/linguistic-and-embodied-systems-in-conceptual-processing-variation-across-individuals-and-items/","publishdate":"2021-05-07T23:01:48+01:00","relpermalink":"/presentation/linguistic-and-embodied-systems-in-conceptual-processing-variation-across-individuals-and-items/","section":"presentation","summary":"The first study (Bernabeu et al., 2021) will merge existing datasets (Lynott et al., 2020; Pexman et al., 2017; Pexman \u0026 Yap, 2018; Wingfield \u0026 Connell, 2019). The second study will collect novel data to investigate questions such as the unique roles of vocabulary size, sensorimotor experience and attentional control.","tags":["cognition","conceptual processing","language comprehension","statistics","power analysis"],"title":"Linguistic and embodied systems in conceptual processing: Variation across individuals and items","type":"presentation"},{"authors":null,"categories":["open science"],"content":" Slideshare\r","date":1620950400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1620950400,"objectID":"ece7fdcd00eb04ae0d48f4093866a900","permalink":"https://pablobernabeu.github.io/presentation/towards-reproducibility-and-maximally-open-data/","publishdate":"2021-05-16T13:01:48+01:00","relpermalink":"/presentation/towards-reproducibility-and-maximally-open-data/","section":"presentation","summary":" Slideshare\r","tags":["open science","open scholarship","open data","reproducibility"],"title":"Towards reproducibility and maximally-open data","type":"presentation"},{"authors":[],"categories":["research methods","psycholinguistics"],"content":"Liu et al. (2018) present a study that implements the conceptual modality switch (CMS) paradigm, which has been used to investigate the modality-specific nature of conceptual representations (Pecher et al., 2003). Liu et al.\u0026lsquo;s experiment uses event-related potentials (ERPs; similarly, see Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013). In the design of the switch conditions, the experiment implements a corpus analysis to distinguish between purely-embodied modality switches and switches that are more liable to linguistic bootstrapping (also see Bernabeu et al., 2017; Louwerse \u0026amp; Connell, 2011). The procedure for stimulus selection was novel as well as novel; thus, it could prove useful in future studies, too. In addition, the application of bayesian statistics is an interesting and promising novelty in the present research area.\nIn reviewing the literature, Liu (2018) and Liu et al. (2018) contend that previous studies may be strongly biased due to methodological decisions in the analysis of ERPs. These decisions particularly regard the latency\u0026mdash;i.e., time windows\u0026mdash;and the topographic regions of interest\u0026mdash;i.e., subsets of electrodes. Thus, Liu et al. identify a \u0026lsquo;highly inconsistent\u0026rsquo; (p. 6) landscape in the ERP components that have been ascribed to the CMS effect in previous studies. Similarly, Liu (p. 47) writes:\n Several studies have looked for the ERP manifestations of modality switching costs (Bernabeu, Willems, \u0026amp; Louwerse, 2017; Collins, Pecher, Zeelenberg, \u0026amp; Coulson, 2011; Hald, Hocking, Vernon, Marshall, \u0026amp; Garnham, 2013; Hald, Marshall, Janssen, \u0026amp; Garnham, 2011). However, what they found was not a clear picture. Not only was a significant effect found in the time window for the N400 component, but also a so-called early N400-like effect around 300ms (Bernabeu et al., 2017; Hald et al., 2011), the N1-P2 complex around 200ms (Bernabeu et al., 2017; Hald et al., 2013, 2011), as well as the late positivity component (LPC) after 600ms (Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011).\n Drastic conclusions Liu et al. (2018) conclude that a confirmatory research approach is not warranted, and adopt a semi-exploratory approach, creating time windows of 50 ms each, rather than windows linked to known ERP components (Swaab et al., 2012), and using bayesian statistics. Such a drastic conclusion appears to stem from the assumption that, if the CMS were robust enough, it would present in the same guise across studies. Such an assumption, however, may merit further examination, considering the multiplicity of known and unknown variables that may differ across experiments (Barsalou, 2019). This variability influences the replication praxis, as it were. Indeed, Liu et al. themselves allude to one such variable (p. 7).\n These previous studies did not only examine the effect of modality switching but also other linguistic factors such as negated sentences, which could easily distort observed waveforms (Luck, 2005).\n Liu et al.\u0026lsquo;s (2018) conclusions about the \u0026lsquo;inconsistent\u0026rsquo; results do not seem to duly weigh the differences across studies. None of the existing studies is a direct replication of another. The example quoted from Liu et al. above, regarding the presence of negated sentences, is one of the less important differences because one of the corresponding studies implemented the negation as a controlled, experimental condition, contrasting with affirmative sentences (Hald et al., 2013). Yet, other differences exist in virtually every aspect, from the types of modality switch used to the time-locking of ERPs. For instance, the studies vary in the implementation of the modality switches. Whereas Hald et al. (2011) distinguish between a switch and a non-switch condition, Bernabeu et al. (2017) analysed each type of switch separately\u0026mdash;i.e., auditory-to-visual, haptic-to-visual, visual-to-visual. Another difference across the studies is the onset point for ERPs. For instance, Bernabeu et al. time-locked ERPs to the point at which the modality switch is actually elicited in the CMS paradigm\u0026mdash;namely, the first word in target trials. In contrast, the other studies time-locked ERPs to the second word. In addition, these studies vary in their timelines\u0026mdash;i.e., presentation of words and inter-stimulus intervals\u0026mdash;, as well as in the words that were used as stimuli, in the preprocessing of ERPs, in the statistical analysis, and even in the language of testing in one case (all studies using English except Bernabeu et al., 2017, which used Dutch). Moreover, the studies differ in the sample size, ranging from ten finally-analysed participants (Hald et al, 2011) to 46 finally-analysed participants (Bernabeu et al., 2017). Last, the studies differ in the number of items per modality switch condition, ranging from 17 (in one of Liu et al.\u0026lsquo;s, 2018 conditions) to 40 per condition (Hald et al., 2011, 2013). Undoubtedly, seeing larger sample sizes and more stimulus items used in ERP studies is something to promote and celebrate. Last, it may be noted that Liu et al.\u0026lsquo;s stance on the inconsistency of previous results starkly contrasts with their use of a single study\u0026mdash;Hald et al. (2011)\u0026mdash;, with N = 10, as the motivation for their sample size (Albers \u0026amp; Lakens, 2018).\nClarifications Liu et al. (2018) apply bayesian statistics reportedly to help reduce the bias that may exist in the present literature. However, the reviews by Liu (2018) and Liu et al. appear to gloss over some important aspects regarding previous studies. For instance, Liu writes (p. 53):\n The inflation of the probability of Type I error leads to an over-confidence in the interpretation of the results. For example, in the studies on modality switching costs, different time windows were chosen to test the early effect of modality switching costs. While Bernabeu et al. (2017), Hald et al. (2011) and Hald et al. (2013) examined the segment of ERP waveform between 190ms and 300ms or 160ms and 215ms based on visual inspection and found significant effects, Collins et al. (2011) chose a prescribed time window between 100ms and 200ms before the analysis and did not find the effect.\n Liu also refers to the issue of multiple tests related to the multiple time windows and electrodes we find in ERP studies (p. 59):\n It is typical for ERP studies to conduct multiple comparisons (e.g., running the same ANOVA repeatedly on different subsets of data like different time windows and different groups of electrodes). This would massively increase Type I error if no post hoc correction is conducted. However, if Bonferroni or other correction is conducted, it will render the study over-conservative, thus increasing the chance of Type II error. In the present thesis, 90 electrodes will be analysed individually, with 20 time slices in each trial. That results in 1800 NHSTs for each critical variable. A correction of multiple comparison will require a critical level of 2.78 x 10ˆ-5 for each test for a family-wise critical level of .05 (and an uncorrected test will almost definitely lead to false positive results). This stringent criterion could conceivably render it meaningless any p-values we can obtain from a statistical package.\n Arguably, the scenario presented by Liu (2018), in which a researcher could conduct a purely data-driven analysis of ERP data, is extreme. The field of psycholinguistics, in general, does not have a tradition of purely data-driven analysis. Instead, it blends a humanistic background with a scientific methodology. As a result, the hypotheses and methods tend to be largely driven by the available literature. For instance, Bernabeu et al. (2017, quoted below from p. 1632) based their time windows and regions of interest on the most relevant of the preceding studies (also see Bernabeu, 2017).\n Electrodes were divided into an anterior and a posterior area (also done in Hald et al., 2011). Albeit a superficial division, we found it sufficient for the research question. Time windows were selected as in Hald et al., except for the last window, which was extended up to 750 ms post word onset, instead of 700 ms, because the characteristic component of that latency tends to extend until then, as we confirmed by visual inspection of these results.\n The literature-based approach follows the advice from Luck and Gaspelin (2017, p. 149), who wrote: \u0026lsquo;a researcher who wants to avoid significant but bogus effects would be advised to focus on testing a priori predictions without using the observed data to guide the selection of time windows or electrode sites\u0026rsquo; (also see Armstrong, 2014; for a more conservative stance, see Luck \u0026amp; Gaspelin, 2017). In addition, notice that the extension of the last window by 50 ms was informed by Swaab et al. (2012), who report results by which the P600 component (the main component occurring after the N400 in word reading) extended up to 800 ms.\nNext, Liu et al. (2018, pp. 6\u0026ndash;7) write:\n However, the findings of these components have been highly inconsistent. The N400 effect alone was found in the posterior region in some cases (Bernabeu et al., 2017; Hald et al., 2013), while in anterior region in others (Collins et al., 2011, Hald et al. (2011)).\n Yet, Bernabeu et al. (2017, p. 1632) had written:\n In certain parts over the time course, the effect appeared in both anterior and posterior areas\n Liu et al. (2018) continue (p. 7):\n In some cases, it was found in the typical window around 400ms (Collins et al., 2011), while in others an earlier window from 270ms to 370ms (Bernabeu et al., 2017; Hald et al., 2011).\n However, Bernabeu et al. (2017, p. 1632) had written:\n The ERP results revealed a CMS effect from Time Window 1 on, larger after 350 ms.\n Regarding the time-locking of ERPs, Liu (2018, p. 43) writes:\n Because the properties were usually salient for the concepts, the switching costs might have already been incurred when participants were processing the concept word. Bernabeu et al. (2017), in their recent replication of previous ERP studies, reversed the order of concept and property and did not find an immediate effect from the property onset. In future studies, it is recommended to adopt the reverse order, control the concept words so that they do not automatically activate the properties before the words are shown, or analyse epochs after both the concept and property words.\n The above excerpt seems to reveal a misunderstanding of Bernabeu et al.\u0026lsquo;s (2017) method and results (we may assume that, by \u0026lsquo;immediate\u0026rsquo;, Liu (2018) is referring to the 200 ms point or afterwards, since that is about as immediate as it gets; see Amsel et al., 2014; Swaab et al., 2012; Van Dam et al., 2014). Bernabeu et al.\u0026lsquo;s abstract mentioned (p. 1629):\n Event-Related Potentials (ERPs) were time-locked to the onset of the first word (property) in the target trials so as to measure the effect online and to avoid a within-trial confound. A switch effect was found, characterized by more negative ERP amplitudes for modality switches than no-switches. It proved significant in four typical time windows from 160 to 750 milliseconds post word onset, with greater strength in posterior brain regions, and after 350 milliseconds.\n Indeed, time-locking ERPs to the beginning of the trial was one of the principal features of Bernabeu et al.\u0026lsquo;s (2017) experiment. Complementing that, the property words were placed in the first trial because they are more perceptually loaded than concepts (Lynott \u0026amp; Connell, 2013), thus better suiting the main basis of the CMS paradigm. We know that the semantic processing of a word often commences within the first 200 ms (Amsel et al., 2014; Van Dam et al., 2014). Considering the importance of the time course in the grounding of conceptual representations (Hauk, 2016), it seems important to measure the CMS from the moment that it is elicited\u0026mdash;namely, in all experiments, from the first word of the target trial (Bernabeu, 2017; Bernabeu et al., 2017), rather than letting several hundreds of milliseconds elapse. Nonetheless, from a methodological perspective, it would be interesting to compare the two approaches in a dedicated study. This would precisely reveal the speed at which modality-specific meaning becomes activated during conceptual processing.\nOutstanding issues: Random effects and correction for multiple tests A methodological issue affecting the statistical analysis of all the studies hereby considered (Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013; Liu et al., 2018) is the absence of some applicable random effects. Some of the studies did not apply any random effects (Collins et al., 2011; Hald et al., 2011, 2013). Even in psycholinguistics, use of linear mixed-effects models is still increasing (Meteyard \u0026amp; Davies, 2020; Yarkoni, 2020). Yet, in those studies that did apply random effects, the corresponding structure was not as exhaustive as it should have been, as they lacked random slopes. In Bernabeu et al. (2017), a model selection approach was applied (Matuschek et al., 2017), whereby each random effect was tested and only kept in the model if it significantly improved the fit. In Liu et al. (2018), random slopes were deemed unfeasible due to computational constraints (for background, see Brauer \u0026amp; Curtin, 2017). Applying a complete random effects structure is important for a robust statistical analysis (Barr et al., 2013; Yarkoni, 2020).\nAnother issue is that of multiple tests. Where a small number of levels is used (e.g., time windows, topographic regions of interest) and these are informed by the literature, the advice has often been ambiguous as to whether a correction should be applied (e.g., Armstrong, 2014; for a more conservative stance, see Luck \u0026amp; Gaspelin, 2017). Indeed, no correction was applied in any of the four studies that used frequentist statistics (Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013).\nReanalysis of Bernabeu et al. (2017) The results of Bernabeu et al. (2017) were reanalysed after publication using a more complete random effects structure that incorporated by-participant random slopes for the modality-switch factor\u0026mdash;i.e., (condition | participant). The results were also corrected for multiple tests using the Holm-Bonferroni correction (Holm, 1979). For this purpose, the lowest p-value in the four time windows was multiplied by 4, the next p-value by 3, the next by 2, and the highest p-value was left as it unmodified. In this stepwise correction, if a nonsignificant p-value was reached, all the subsequent p-values became nonsignificant (see analysis script). The results differed from the original, slopes-free models (available script and results) in that the main effect of the modality switch factor became nonsignificant in the second time window (160\u0026ndash;216 ms) and in the fourth one (500\u0026ndash;750 ms), while remaining significant in the third time window (350\u0026ndash;550 ms). Incidentally, note that main effects may not be directly interpretable as the same same variables are present interactions (Kam \u0026amp; Franzese, 2007). Yet, the interactions of modality switch with participant group (quick/slow) and scalp location (anterior/posterior) retained the same significance.\nOpen questions Liu (2018) and Liu et al. (2018) raise interesting and important questions. Firstly, future research may be conducted to investigate what determines the variability of ERP results\u0026mdash;in terms of ERP components, time windows and topographic regions of interest. This research could include a comparison with other measurements, such as response times, to test whether ERPs are less reliable\u0026mdash;i.e., more variable across studies\u0026mdash;than response times. Similarly, future research may investigate whether the ERP literature is more biased than literature employing other measures, such as response times. In addition, future research could investigate whether moving to exploratory, bayesian research designs is a necessary or sufficient condition to reduce bias in research and improve the precision of experimental measurements. Current alternatives to such an approach include direct (or conceptual) replications designed to achieve a higher power than previous studies (e.g., Chen et al., 2019). Arguably, policies determining funding decisions would need to change if we are to fully acknowledge the importance of direct replication (Howe \u0026amp; Perfors, 2018; Kunert, 2016; Simons, 2014; Zwaan et al., 2018). Last, future research may investigate whether \u0026lsquo;clear picture\u0026rsquo; results are realistic, desirable or necessary, and whether unclear-picture results should be eschewed; or whether, on the contrary, clear-picture results may largely be the product of publication bias\u0026mdash;that is, the pressure to hide or misreport those aspects of a study that could challenge its acceptance by peer-reviewers or any other academics.\nReferences Albers, C., \u0026amp; Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195. https://doi.org/10.1016/j.jesp.2017.09.004\nAmsel, B. D., Urbach, T. P., \u0026amp; Kutas, M. (2014). Empirically grounding grounded cognition: the case of color. Neuroimage, 99, 149-157. https://doi.org/10.1016/j.neuroimage.2014.05.025\nArmstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic and Physiological Optics, 34(5), 502-508. https://doi.org/10.1111/opo.12131\nBarr, D. J., Levy, R., Scheepers, C., \u0026amp; Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. http://dx.doi.org/10.1016/j.jml.2012.11.001\nBarsalou, L. W. (2019). Establishing generalizable mechanisms. Psychological Inquiry, 30(4), 220-230. https://doi.org/10.1080/1047840X.2019.1693857\nBernabeu, P. (2017). Modality switches occur early and extend late in conceptual processing: evidence from ERPs [Master's thesis]. School of Humanities, Tilburg University. https://psyarxiv.com/5gjvk\nBernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: evidence from ERPs. In G. Gunzelmann, A. Howes, T. Tenbrink, \u0026amp; E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1629-1634). Austin, TX: Cognitive Science Society. https://doi.org/10.31234/osf.io/a5pcz\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://psych.wisc.edu/Brauer/BrauerLab/wp-content/uploads/2014/04/Brauer-Curtin-2018-on-LMEMs.pdf\nChen, S., Szabelska, A., Chartier, C. R., Kekecs, Z., Lynott, D., Bernabeu, P., … Schmidt, K. (2018). Investigating object orientation effects across 14 languages. PsyArXiv. https://doi.org/10.31234/osf.io/t2pjv/\nCollins, J., Pecher, D., Zeelenberg, R., \u0026amp; Coulson, S. (2011). Modality switching in a property verification task: an ERP study of what happens when candles flicker after high heels click. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00010\nHald, L. A., Hocking, I., Vernon, D., Marshall, J.-A., \u0026amp; Garnham, A. (2013). Exploring modality switching effects in negated sentences: further evidence for grounded representations. Frontiers in Psychology, 4, 93. https://doi.org/10.3389/fpsyg.2013.00093\nHald, L. A., Marshall, J.-A., Janssen, D. P., \u0026amp; Garnham, A. (2011). Switching modalities in a sentence verification task: ERP evidence for embodied language processing. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00045\nHauk, O. (2016). Only time will tell–why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin \u0026amp; Review, 23(4), 1072-1079. https://doi.org/10.3758/s13423-015-0873-9\nHolm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65-70. http://www.jstor.org/stable/4615733.\nHowe, P. D., \u0026amp; Perfors, A. (2018). An argument for how (and why) to incentivise replication. Behavioral and Brain Sciences, 41, e135-e135. http://dx.doi.org/10.1017/S0140525X18000705\nKam, C. D., \u0026amp; Franzese, R. J. (2007). Modeling and interpreting interactive hypotheses in regression analysis. Ann Arbor, MI: University of Michigan Press.\nKunert, R. (2016). Internal conceptual replications do not increase independent replication success. Psychonomic Bulletin \u0026amp; Review, 23(5), 1631-1638. https://doi.org/10.3758/s13423-016-1030-9\nLiu, P. (2018). Embodied-linguistic conceptual representations during metaphor processing. Doctoral thesis, Lancaster University, UK. https://doi.org/10.17635/lancaster/thesis/489\nLiu, P., Lynott, D., \u0026amp; Connell, L. (2018). Continuous neural activations of simulation-linguistic representations in modality switching costs. In P. Liu, Embodied-linguistic conceptual representations during metaphor processing. Doctoral thesis, Lancaster University, UK. https://doi.org/10.17635/lancaster/thesis/489\nLuck, S. J. (2005). Ten simple rules for designing ERP experiments. In T. C. Handy (Ed.), Event-related potentials: A methods handbook. MIT Press.\nLuck, S. J., \u0026amp; Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146-157. https://doi.org/10.1111/psyp.12639\nMatuschek, H., Kliegl, R., Vasishth, S., Baayen, H., \u0026amp; Bates, D. (2017). Balancing type 1 error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001\nMeteyard, L., \u0026amp; Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092\nPecher, D., Zeelenberg, R., \u0026amp; Barsalou, L. W. (2003). Verifying different-modality properties for concepts produces switching costs. Psychological Science, 14, 2, 119-24. https://doi.org/10.1111/1467-9280.t01-1-01429\nSimons, D. J. (2014). The value of direct replication. Perspectives on Psychological Science, 9(1), 76–80. https://doi.org/10.1177/1745691613514755\nSwaab, T. Y., Ledoux, K., Camblin, C. C., \u0026amp; Boudewyn, M. A. (2012). Language-related ERP components. In S. J. Luck \u0026amp; E. S. Kappenman (Eds.), Oxford handbook of event-related potential components (pp. 397–440). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195374148.013.0197\nVan Dam, W. O., Brazil, I. A., Bekkering, H., \u0026amp; Rueschemeyer, S.-A. (2014). Flexibility in embodied language processing: context effects in lexical access. Topics in Cognitive Science, 6(3), 407–424. https://doi.org/10.1111/tops.12100\nYarkoni, T. (2020). The generalizability crisis. Behavioral and Brain Sciences, 1-37. https://doi.org/10.1017/S0140525X20001685\nZwaan, R., Etz, A., Lucas, R., \u0026amp; Donnellan, M. (2018). Making replication mainstream. Behavioral and Brain Sciences, 41, E120. https://doi.org/10.1017/S0140525X17001972\n\r","date":1610150400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1610150400,"objectID":"8615e74a11d73aca72b8c255d3ea331e","permalink":"https://pablobernabeu.github.io/2021/brief-clarifications-open-questions-commentary-on-liu-et-al-2018/","publishdate":"2021-01-09T00:00:00Z","relpermalink":"/2021/brief-clarifications-open-questions-commentary-on-liu-et-al-2018/","section":"post","summary":"Liu et al. (2018) present a study that implements the conceptual modality switch (CMS) paradigm, which has been used to investigate the modality-specific nature of conceptual representations (Pecher et al., 2003). Liu et al.\u0026lsquo;s experiment uses event-related potentials (ERPs; similarly, see Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013). In the design of the switch conditions, the experiment implements a corpus analysis to distinguish between purely-embodied modality switches and switches that are more liable to linguistic bootstrapping (also see Bernabeu et al.","tags":["s","conceptual modality switch","conceptual processing","cognition","conceptual replication","word recognition","research methods","event-related potentials","experiment","statistics","bayesian","frequentist","bias","methodology"],"title":"Brief Clarifications, Open Questions: Commentary on Liu et al. (2018)","type":"post"},{"authors":["Bernabeu, P., Lynott, D., \u0026 Connell, L."],"categories":["conceptual processing","individual differences","psycholinguistics"],"content":"\rReference\rBernabeu, P., Lynott, D., \u0026amp; Connell, L. (2021). Preregistration: The interplay between linguistic and embodied systems in conceptual processing. OSF. https://osf.io/ftydw\n\rRelated references\rAadland, E., Okely, A. D., \u0026amp; Nilsen, A. K. O. (2022). Trajectories of physical activity and sedentary time in Norwegian children aged 3–9 years: A 5-year longitudinal study. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 67. https://doi.org/10.1186/s12966-022-01286-0\nAdams, H., Stefanucci, J., Creem-Regehr, S., \u0026amp; Bodenheimer, B. (2022). Depth Perception in Augmented Reality: The Effects of Display, Shadow, and Position. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 792–801. https://doi.org/10.1109/VR51125.2022.00101\nAgeel, M. (2022). Pandemic Critical Care Research during the COVID-19 (2020-2022): A Bibliometric Analysis Using VOSviewer. BioMed Research International, 2022, 1–13. https://doi.org/10.1155/2022/8564649\nAguirre, R., Macedo, M. N., Villoro Armengol, J., \u0026amp; Vivas, J. R. (2023). El estudio de los efectos de la modalidad lingüística en el léxico mental. Interdisciplinaria. Revista de Psicología y Ciencias Afines, 40(2), 117–131. https://doi.org/10.16888/interd.2023.40.2.7\nAhn, Y., Yan, M., Lin, Y.-R., Chung, W.-T., \u0026amp; Hwa, R. (2022). Tribe or Not? Critical Inspection of Group Differences Using TribalGram. ACM Transactions on Interactive Intelligent Systems, 12(1), 1–34. https://doi.org/10.1145/3484509\nAka Uymaz, H., \u0026amp; Kumova Metin, S. (2022). Vector based sentiment and emotion analysis from text: A survey. Engineering Applications of Artificial Intelligence, 113, 104922. https://doi.org/10.1016/j.engappai.2022.104922\nAkil, A. M., Ujhelyi, A., \u0026amp; Logemann, H. N. A. (2022). Exposure to Depression Memes on Social Media Increases Depressive Mood and It Is Moderated by Self-Regulation: Evidence From Self-Report and Resting EEG Assessments. Frontiers in Psychology, 13, 880065. https://doi.org/10.3389/fpsyg.2022.880065\nAl-Azary, H., \u0026amp; Katz, A. N. (2023). On choosing the vehicles of metaphors 2.0: The interactive effects of semantic neighborhood density and body-object interaction on metaphor production. Frontiers in Psychology, 14, 1216561. https://doi.org/10.3389/fpsyg.2023.1216561\nAl-Azary, H., Yu, T., \u0026amp; McRae, K. (2022). Can you touch the N400? The interactive effects of body-object interaction and task demands on N400 amplitudes and decision latencies. Brain and Language, 231, 105147. https://doi.org/10.1016/j.bandl.2022.105147\nAlduais, A., Alfadda, H., Baraja’a, D., \u0026amp; Allegretta, S. (2022). Psycholinguistics: Analysis of Knowledge Domains on Children’s Language Acquisition, Production, Comprehension, and Dissolution. Children, 9(10), 1471. https://doi.org/10.3390/children9101471\nAli, K. A., Mori, B. A., Prager, S. M., \u0026amp; Willenborg, C. J. (2022). Seed choice in ground beetles is driven by surface-derived hydrocarbons. Communications Biology, 5(1), 724. https://doi.org/10.1038/s42003-022-03678-1\nAllegretta, R. A., Pyke, W., \u0026amp; Galli, G. (2021). ERP evidence of age-related differences in emotional processing. Experimental Brain Research, 239(4), 1261–1271. https://doi.org/10.1007/s00221-021-06053-4\nAllen-Ankins, S., \u0026amp; Schwarzkopf, L. (2021). Spectral overlap and temporal avoidance in a tropical savannah frog community. Animal Behaviour, 180, 1–11. https://doi.org/10.1016/j.anbehav.2021.07.024\nAllison, T. H., Warnick, B. J., Davis, B. C., \u0026amp; Cardon, M. S. (2022). Can you hear me now? Engendering passion and preparedness perceptions with vocal expressions in crowdfunding pitches. Journal of Business Venturing, 37(3), 106193. https://doi.org/10.1016/j.jbusvent.2022.106193\nAlm, C. O. (2022). 11 Linguistic data resources for computational emotion sensing and modeling. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 226–250). De Gruyter. https://doi.org/10.1515/9783110347524-011\nAltın, E., Okur, N., Yalçın, E., Eraçıkbaş, A. F., \u0026amp; Aktan-Erciyes, A. (2022). Relations Between L2 Proficiency and L1 Lexical Property Evaluations. Frontiers in Psychology, 13, 820702. https://doi.org/10.3389/fpsyg.2022.820702\nAmbridge, B., Doherty, L., Maitreyee, R., Tatsumi, T., Zicherman, S., Mateo Pedro, P., Kawakami, A., Bidgood, A., Pye, C., Narasimhan, B., Arnon, I., Bekman, D., Efrati, A., Fabiola Can Pixabaj, S., Marroquín Pelíz, M., Julajuj Mendoza, M., Samanta, S., Campbell, S., McCauley, S., … Fukumura, K. (2022). Testing a computational model of causative overgeneralizations: Child judgment and production data from English, Hebrew, Hindi, Japanese and K’iche’. Open Research Europe, 1, 1. https://doi.org/10.12688/openreseurope.13008.2\nAmelung, W., Meyer, N., Rodionov, A., Knief, C., Aehnelt, M., Bauke, S. L., Biesgen, D., Dultz, S., Guggenberger, G., Jaber, M., Klumpp, E., Kögel-Knabner, I., Nischwitz, V., Schweizer, S. A., Wu, B., Totsche, K. U., \u0026amp; Lehndorff, E. (2023). Process sequence of soil aggregate formation disentangled through multi-isotope labelling. Geoderma, 429, 116226. https://doi.org/10.1016/j.geoderma.2022.116226\nAnastassopoulou, C., Antoni, D., Manoussopoulos, Y., Stefanou, P., Argyropoulou, S., Vrioni, G., \u0026amp; Tsakris, A. (2022). Age and sex associations of SARS-CoV-2 antibody responses post BNT162b2 vaccination in healthcare workers: A mixed effects model across two vaccination periods. PLOS ONE, 17(4), e0266958. https://doi.org/10.1371/journal.pone.0266958\nAnderson, S. J., Iacovone, L., Kankanhalli, S., \u0026amp; Narayanan, S. (2022). Modernizing Retailers in an Emerging Market: Investigating Externally Focused and Internally Focused Approaches. Journal of Marketing Research, 59(3), 472–496. https://doi.org/10.1177/00222437211058437\nAndria, S., Madi‐Tarabya, B., \u0026amp; Khateb, A. (2022). Behavioural and electrophysiological analyses of written word processing in spoken and literary Arabic: New insights into the diglossia question. European Journal of Neuroscience, 56(6), 4819–4836. https://doi.org/10.1111/ejn.15781\nAndriguetto-Filho, J. M., Medeiros, R. P., Vaz-dos-Santos, A. M., \u0026amp; Chaves, P. D. T. D. C. (2022). Shrimp up, fish down, and vice-versa: Fishers’ strategies and long-term changes in small-scale fisheries landings at two spatial levels in Southern Brazil. Marine Policy, 143, 105184. https://doi.org/10.1016/j.marpol.2022.105184\nAnnala, M. J., Lehosmaa, K., Ahonen, S. H. K., Karttunen, K., Markkola, A. M., Puumala, I., \u0026amp; Mykrä, H. (2022). Effect of riparian soil moisture on bacterial, fungal and plant communities and microbial decomposition rates in boreal stream-side forests. Forest Ecology and Management, 519, 120344. https://doi.org/10.1016/j.foreco.2022.120344\nAntony, J. W., Romero, A., Vierra, A. H., Luenser, R. S., Hawkins, R. D., \u0026amp; Bennion, K. A. (2022). Semantic relatedness retroactively boosts memory and promotes memory interdependence across episodes. eLife, 11, e72519. https://doi.org/10.7554/eLife.72519\nAparicio, J. T., Salema De Sequeira, J., \u0026amp; Costa, C. J. (2021). Emotion analysis of Portuguese Political Parties Communication over the covid-19 Pandemic. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), 1–6. https://doi.org/10.23919/CISTI52073.2021.9476557\nApurva, \u0026amp; Husain, S. (2021). Revisiting anti-locality effects: Evidence against prediction-based accounts. Journal of Memory and Language, 121, 104280. https://doi.org/10.1016/j.jml.2021.104280\nAra, A., \u0026amp; Gopalakrishna, R. (2021). A Study on Emotion Identification from Music Lyrics. In F. Saeed, F. Mohammed, \u0026amp; A. Al-Nahari (Eds.), Innovative Systems for Intelligent Health Informatics (Vol. 72, pp. 396–406). Springer International Publishing. https://doi.org/10.1007/978-3-030-70713-2_37\nAraque, O., Gatti, L., Staiano, J., \u0026amp; Guerini, M. (2022). DepecheMood++: A Bilingual Emotion Lexicon Built Through Simple Yet Powerful Techniques. IEEE Transactions on Affective Computing, 13(1), 496–507. https://doi.org/10.1109/TAFFC.2019.2934444\nAraya‐Ajoy, Y. G., Niskanen, A. K., Froy, H., Ranke, P. S., Kvalnes, T., Rønning, B., Le Pepke, M., Jensen, H., Ringsby, T. H., Sæther, B., \u0026amp; Wright, J. (2021). Variation in generation time reveals density regulation as an important driver of pace of life in a bird metapopulation. Ecology Letters, 24(10), 2077–2087. https://doi.org/10.1111/ele.13835\nArcher, L. C., Standley, C. J., \u0026amp; Molnár, P. K. (2022). Fighting a Fire versus Waiting for the Wave: Useful and Not-So-Useful Analogies in Times of SARS-CoV-2. BioScience, 72(6), 573–584. https://doi.org/10.1093/biosci/biac017\nArmitage, J., Lahdelma, I., \u0026amp; Eerola, T. (2021). Automatic responses to musical intervals: Contrasts in acoustic roughness predict affective priming in Western listeners. The Journal of the Acoustical Society of America, 150(1), 551–560. https://doi.org/10.1121/10.0005623\nArmitage, K. L., \u0026amp; Redshaw, J. (2022). Children boost their cognitive performance with a novel offloading technique. Child Development, 93(1), 25–38. https://doi.org/10.1111/cdev.13664\nArnau-Gonzalez, P., Katsigiannis, S., Arevalillo-Herraez, M., \u0026amp; Ramzan, N. (2021). BED: A New Data Set for EEG-Based Biometrics. IEEE Internet of Things Journal, 8(15), 12219–12230. https://doi.org/10.1109/JIOT.2021.3061727\nArriagada-Mödinger, F., \u0026amp; Ferreira, R. A. (2022). The Effect of Emotional Valence on Auditory Word Recognition Memory in English as a Foreign Language. Journal of Psycholinguistic Research, 51(2), 309–322. https://doi.org/10.1007/s10936-022-09841-3\nArseniev-Koehler, A. (2022). Theoretical Foundations and Limits of Word Embeddings: What Types of Meaning can They Capture? Sociological Methods \u0026amp; Research, 004912412211401. https://doi.org/10.1177/00491241221140142\nAshraf, N., Khan, L., Butt, S., Chang, H.-T., Sidorov, G., \u0026amp; Gelbukh, A. (2022). Multi-label emotion classification of Urdu tweets. PeerJ Computer Science, 8, e896. https://doi.org/10.7717/peerj-cs.896\nAtaman, E., Çağlar, O. C., \u0026amp; Kirkici, B. (2021). Dilbilim Araştırmalarında Açık Bilim. Dilbilim Araştırmaları Dergisi, 32(2), 149–175. https://doi.org/10.18492/dad.936072\nAtaturk Universitesi, Veteriner Fakultesi, Biyometri Anabillim Dali, Erzurum, Turkiye, Eltas, O., Topal, M., \u0026amp; Amasya Universitesi, Tip Fakultesi, Biyoistatistik Anabilim Dali, Amasya, Turkiye. (2022). Using Covariance Factor in Genetic Parameter Estimation. Veterinary Sciences and Practices, 17(1), 1–5. https://doi.org/10.54614/VetSciPract.2022.1015013\nAtkinson, L., Doyle, R. E., Woodward, A., \u0026amp; Jongman, E. C. (2022). Exposure to humans after weaning does not reduce the behavioural reactivity of extensively reared Merino lambs. Behavioural Processes, 201, 104709. https://doi.org/10.1016/j.beproc.2022.104709\nAtmaja, B. T., Sasou, A., \u0026amp; Akagi, M. (2022). Survey on bimodal speech emotion recognition from acoustic and linguistic information fusion. Speech Communication, 140, 11–28. https://doi.org/10.1016/j.specom.2022.03.002\nAu, J., Smith-Peirce, R. N., Carbone, E., Moon, A., Evans, M., Jonides, J., \u0026amp; Jaeggi, S. M. (2022). Effects of Multisession Prefrontal Transcranial Direct Current Stimulation on Long-term Memory and Working Memory in Older Adults. Journal of Cognitive Neuroscience, 34(6), 1015–1037. https://doi.org/10.1162/jocn_a_01839\nAuerbach, J. G., Hans, S. L., \u0026amp; Zhang, Y. (2022). Neurocognitive functioning in adult and adolescent offspring of parents with schizophrenia. Schizophrenia Research, 248, 300–308. https://doi.org/10.1016/j.schres.2022.09.015\nAvery, J. A., Liu, A. G., Carrington, M., \u0026amp; Martin, A. (2022). Taste Metaphors Ground Emotion Concepts Through the Shared Attribute of Valence. Frontiers in Psychology, 13, 938663. https://doi.org/10.3389/fpsyg.2022.938663\nAzimi, T., Ghoreishi, Z., Nilipour, R., Farazi, M., Ahmadi, A., Krishnan, G., \u0026amp; Aliniaye Asli, P. (2022). Lexical-semantic processing of action verbs and non-action nouns in Persian speakers: Behavioral evidence from the semantic similarity judgment task. Applied Neuropsychology: Adult, 29(4), 718–730. https://doi.org/10.1080/23279095.2020.1806844\nBaes, N., Vylomova, E., Zyphur, M., \u0026amp; Haslam, N. (2023). The semantic inflation of “trauma” in psychology. Psychology of Language and Communication, 23–45. https://doi.org/10.58734/plc-2023-0002\nBagić Babac, M. (2023). Emotional showdown on social media: Analyzing user reactions to the 2016 US presidential campaign. Global Knowledge, Memory and Communication. https://doi.org/10.1108/GKMC-02-2023-0060\nBagić Babac, M., \u0026amp; Podobnik, V. (2023). World-class sporting events as arenas of emotional eruptions on social media. Soccer \u0026amp; Society, 1–19. https://doi.org/10.1080/14660970.2023.2229743\nBahgat, M., Wilson, S., \u0026amp; Magdy, W. (2022). LIWC-UD: Classifying Online Slang Terms into LIWC Categories. 14th ACM Web Science Conference 2022, 422–432. https://doi.org/10.1145/3501247.3531572\nBąk, H. (2022a). 6 Psychological theories of emotion and their relationship with language. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 103–146). De Gruyter. https://doi.org/10.1515/9783110347524-006\nBąk, H. (2022b). EmCat-Eng: A catalogue of 1,759 basic emotion terms in English. Studia Anglica Posnaniensia, 57(1), 33–59. https://doi.org/10.2478/stap-2022-0003\nBąk, H. (2022c). EMCAT-POL: A catalogue of 817 basic emotion terms in Polish. Poznan Studies in Contemporary Linguistics, 58(4), 689–716. https://doi.org/10.1515/psicl-2022-0028\nBąk, H., \u0026amp; Altarriba, J. (2023). Basic Emotion Prototypes in English and in Polish. Cognitive Semantics, 9(2), 254–280. https://doi.org/10.1163/23526416-bja10053\nBalagopalan, A., Eyre, B., Robin, J., Rudzicz, F., \u0026amp; Novikova, J. (2021). Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer’s Disease Based on Speech. Frontiers in Aging Neuroscience, 13, 635945. https://doi.org/10.3389/fnagi.2021.635945\nBallot, C., Mathey, S., \u0026amp; Robert, C. (2022). Age-related evaluations of imageability and subjective frequency for 1286 neutral and emotional French words: Ratings by young, middle-aged, and older adults. Behavior Research Methods, 54(1), 196–215. https://doi.org/10.3758/s13428-021-01621-6\nBallot, C., Robert, C., \u0026amp; Mathey, S. (2022). Word imageability influences the emotionality effect in episodic memory. Cognitive Processing, 23(4), 655–660. https://doi.org/10.1007/s10339-022-01102-4\nBan Kirigin, T., Bujačić Babić, S., \u0026amp; Perak, B. (2021). Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph. Mathematics, 9(12), 1449. https://doi.org/10.3390/math9121449\nBanks, B., Wingfield, C., \u0026amp; Connell, L. (2021). Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category Production. Cognitive Science, 45(10), e13055. https://doi.org/10.1111/cogs.13055\nBansal, L., Dubagunta, S. P., Chetlur, M., Jagtap, P., \u0026amp; Ganapathiraju, A. (2023). On the Efficacy and Noise-Robustness of Jointly Learned Speech Emotion and Automatic Speech Recognition. INTERSPEECH 2023, 1863–1867. https://doi.org/10.21437/Interspeech.2023-2464\nBarattieri Di San Pietro, C., Luzzatti, C., Ferrari, E., De Girolamo, G., \u0026amp; Marelli, M. (2023). Automated clustering and switching algorithms applied to semantic verbal fluency data in schizophrenia spectrum disorders. Language, Cognition and Neuroscience, 38(7), 950–965. https://doi.org/10.1080/23273798.2023.2178662\nBarker, M. S., Bender, J. R., Chow, J., \u0026amp; Robinson, G. A. (2022). An emotion-eliciting version of the Hayling Sentence Completion Test. Journal of Clinical and Experimental Neuropsychology, 44(9), 665–680. https://doi.org/10.1080/13803395.2022.2157797\nBarnes, L., Petit, S., Badcock, N. A., Whyte, C. J., \u0026amp; Woolgar, A. (2021). Word Detection in Individual Subjects Is Difficult to Probe With Fast Periodic Visual Stimulation. Frontiers in Neuroscience, 15, 602798. https://doi.org/10.3389/fnins.2021.602798\nBarsalou, L. W. (2021). Chapter 3. Categories at the interface of cognition and action. In C. Mauri, I. Fiorentini, \u0026amp; E. Goria (Eds.), Studies in Language Companion Series (Vol. 220, pp. 35–72). John Benjamins Publishing Company. https://doi.org/10.1075/slcs.220.03bar\nBartscherer, S. F. (2023). Emotion in British politics – a mixed methods analysis of Conservative and Labour Party speeches from 1900–2019. European Politics and Society, 24(5), 680–702. https://doi.org/10.1080/23745118.2022.2081016\nBassani, M., Portera, A., \u0026amp; Raimondo, G. (2023). Longitudinal and transversal driver behavior with innovative horizontal markings along curved motorway on-ramps and terminals. Transportation Letters, 15(2), 87–97. https://doi.org/10.1080/19427867.2022.2035121\nBastick, Z. (2021). Would you notice if fake news changed your behavior? An experiment on the unconscious effects of disinformation. Computers in Human Behavior, 116, 106633. https://doi.org/10.1016/j.chb.2020.106633\nBauer, A., Kagedal, M., \u0026amp; Wolfsegger, M. J. (2022). Assessment of pharmacokinetic linearity after repeated drug administration. Pharmaceutical Statistics, 21(5), 932–943. https://doi.org/10.1002/pst.2206\nBauer, G. H., Bode, A., Bode, B., Kramer, W. T., Mendes, C. L., \u0026amp; Saxton, A. (2022). Analysis of User-Support Tickets in the Lifetime of the Blue Waters System. 2022 IEEE/ACM International Workshop on HPC User Support Tools (HUST), 20–28. https://doi.org/10.1109/HUST56722.2022.00008\nBeekhuizen, B., Armstrong, B. C., \u0026amp; Stevenson, S. (2021). Probing Lexical Ambiguity: Word Vectors Encode Number and Relatedness of Senses. Cognitive Science, 45(5), e12943. https://doi.org/10.1111/cogs.12943\nBellagamba, F., Borghi, A. M., Mazzuca, C., Pecora, G., Ferrara, F., \u0026amp; Fogel, A. (2022). Abstractness emerges progressively over the second year of life. Scientific Reports, 12(1), 20940. https://doi.org/10.1038/s41598-022-25426-5\nBelyk, M., Banks, R., Tendera, A., Chen, R., \u0026amp; Beal, D. S. (2021). Paradoxical facilitation alongside interhemispheric inhibition. Experimental Brain Research, 239(11), 3303–3313. https://doi.org/10.1007/s00221-021-06183-9\nBenasi, G., Malik, A., Cheng, B., Aggarwal, B., Shechter, A., \u0026amp; St-Onge, M.-P. (2023). Well-being therapy and sleep hygiene in a non-clinical population of adults reporting poor sleep quality and distress: A remote pilot randomized controlled study. Behavioral Sleep Medicine, 1–14. https://doi.org/10.1080/15402002.2023.2197600\nBenelli, S., \u0026amp; Bartoli, M. (2021). Worms and submersed macrophytes reduce methane release and increase nutrient removal in organic sediments. Limnology and Oceanography Letters, 6(6), 329–338. https://doi.org/10.1002/lol2.10207\nBenetos, E., Ragano, A., Sgroi, D., \u0026amp; Tuckwell, A. (2022). Measuring national mood with music: Using machine learning to construct a measure of national valence from audio data. Behavior Research Methods, 54(6), 3085–3092. https://doi.org/10.3758/s13428-021-01747-7\nBerger, J., \u0026amp; Packard, G. (2022). Using natural language processing to understand people and culture. American Psychologist, 77(4), 525–537. https://doi.org/10.1037/amp0000882\nBerger, J., Rocklage, M. D., \u0026amp; Packard, G. (2022). Expression Modalities: How Speaking Versus Writing Shapes Word of Mouth. Journal of Consumer Research, 49(3), 389–408. https://doi.org/10.1093/jcr/ucab076\nBeyer, S., Alonzo, S., \u0026amp; Sogard, S. (2021). Zero, one or more broods: Reproductive plasticity in response to temperature, food, and body size in the live-bearing rosy rockfish Sebastes rosaceus. Marine Ecology Progress Series, 669, 151–173. https://doi.org/10.3354/meps13718\nBhatia, S., Olivola, C. Y., Bhatia, N., \u0026amp; Ameen, A. (2022). Predicting leadership perception with large-scale natural language data. The Leadership Quarterly, 33(5), 101535. https://doi.org/10.1016/j.leaqua.2021.101535\nBickley, S. L., Helms, B. S., Isenberg, D., Feminella, J. W., Roberts, B. J., \u0026amp; Griffiths, N. A. (2021). Lack of long-term effect of coarse woody debris dam restoration on ecosystem functioning and water quality in Coastal Plain streams. Freshwater Science, 40(4), 593–607. https://doi.org/10.1086/717325\nBilquise, G., Ibrahim, S., \u0026amp; Shaalan, K. (2022). Emotionally Intelligent Chatbots: A Systematic Literature Review. Human Behavior and Emerging Technologies, 2022, 1–23. https://doi.org/10.1155/2022/9601630\nBinks, J. A., Emerson, J. R., Scott, M. W., Wilson, C., Van Schaik, P., \u0026amp; Eaves, D. L. (2023). Enhancing upper-limb neurorehabilitation in chronic stroke survivors using combined action observation and motor imagery therapy. Frontiers in Neurology, 14, 1097422. https://doi.org/10.3389/fneur.2023.1097422\nBireta, T. J., Guitard, D., Neath, I., \u0026amp; Surprenant, A. M. (2021). Valence does not affect serial recall. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 75(1), 35–47. https://doi.org/10.1037/cep0000239\nBlanco, A., Beger, M., Planes, S., Miller, M., \u0026amp; Olabarria, C. (2021). Estimating benthic trophic levels to assess the effectiveness of marine protected area management. Science of The Total Environment, 790, 148234. https://doi.org/10.1016/j.scitotenv.2021.148234\nBleijlevens, N., Contier, F., \u0026amp; Behne, T. (2023). Pragmatics aid referent disambiguation and word learning in young children and adults. Developmental Science, 26(4), e13363. https://doi.org/10.1111/desc.13363\nBloch‐Mullins, C. L. (2021). Similarity Reimagined (with Implications for a Theory of Concepts). Theoria, 87(1), 31–68. https://doi.org/10.1111/theo.12197\nBoele, H.-J., Joung, S., Fil, J. E., Mudd, A. T., Fleming, S. A., Koekkoek, S. K. E., \u0026amp; Dilger, R. N. (2021). Young Domestic Pigs (Sus scrofa) Can Perform Pavlovian Eyeblink Conditioning. Frontiers in Behavioral Neuroscience, 15, 690019. https://doi.org/10.3389/fnbeh.2021.690019\nBögge, L., Colás-Blanco, I., \u0026amp; Piolino, P. (2022). Respiratory sinus arrhythmia during biofeedback is linked to persistent improvements in attention, short-term memory, and positive self-referential episodic memory. Frontiers in Neuroscience, 16, 791498. https://doi.org/10.3389/fnins.2022.791498\nBone, J. K., Lewis, G., Roiser, J. P., Blakemore, S.-J., \u0026amp; Lewis, G. (2021). Recall bias during adolescence: Gender differences and associations with depressive symptoms. Journal of Affective Disorders, 282, 299–307. https://doi.org/10.1016/j.jad.2020.12.133\nBonin, P., Laroche, B., \u0026amp; Méot, A. (2021). Psycholinguistic norms for a set of 506 French compound words. Behavior Research Methods, 54(1), 393–413. https://doi.org/10.3758/s13428-021-01601-w\nBoone, G., \u0026amp; Eyckmans, J. (2023). Productive Collocation Knowledge in L2 German: Study Abroad and L1 Congruency. In B. L. Reynolds (Ed.), Vocabulary Learning in the Wild (pp. 67–86). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-1490-6_2\nBorghi, A. M. (2022). Concepts for Which We Need Others More: The Case of Abstract Concepts. Current Directions in Psychological Science, 31(3), 238–246. https://doi.org/10.1177/09637214221079625\nBorghi, A. M., \u0026amp; Barsalou, L. (2021). Perspective in the conceptualization of categories. Psychological Research, 85(2), 697–719. https://doi.org/10.1007/s00426-019-01269-0\nBorghi, A. M., Fini, C., \u0026amp; Mazzuca, C. (2022). Abstract Concepts, Social Interaction, and Beliefs. Frontiers in Psychology, 13, 919808. https://doi.org/10.3389/fpsyg.2022.919808\nBorghi, A. M., Fini, C., \u0026amp; Tummolini, L. (2021). Abstract Concepts and Metacognition: Searching for Meaning in Self and Others. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 197–220). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_9\nBorghi, A. M., Mazzuca, C., Gervasi, A. M., Mannella, F., \u0026amp; Tummolini, L. (2023). Grounded cognition can be multimodal all the way down. Language, Cognition and Neuroscience, 1–5. https://doi.org/10.1080/23273798.2023.2210238\nBorghi, A. M., Shaki, S., \u0026amp; Fischer, M. H. (2022). Abstract concepts: External influences, internal constraints, and methodological issues. Psychological Research, 86(8), 2370–2388. https://doi.org/10.1007/s00426-022-01698-4\nBosch-Bayard, J., Razzaq, F. A., Lopez-Naranjo, C., Wang, Y., Li, M., Galan-Garcia, L., Calzada-Reyes, A., Virues-Alba, T., Rabinowitz, A. G., Suarez-Murias, C., Guo, Y., Sanchez-Castillo, M., Roger, K., Gallagher, A., Prichep, L., Anderson, S. G., Michel, C. M., Evans, A. C., Bringas-Vega, M. L., … Valdes-Sosa, P. A. (2022). Early protein energy malnutrition impacts life-long developmental trajectories of the sources of EEG rhythmic activity. NeuroImage, 254, 119144. https://doi.org/10.1016/j.neuroimage.2022.119144\nBose, N., \u0026amp; Sgroi, D. (2022). The role of personality beliefs and “small talk” in strategic behaviour. PLOS ONE, 17(9), e0269523. https://doi.org/10.1371/journal.pone.0269523\nBottini, R., Morucci, P., D’Urso, A., Collignon, O., \u0026amp; Crepaldi, D. (2022). The concreteness advantage in lexical decision does not depend on perceptual simulations. Journal of Experimental Psychology: General, 151(3), 731–738. https://doi.org/10.1037/xge0001090\nBowers, S. J., Summa, K. C., Thompson, R. S., González, A., Vargas, F., Olker, C., Jiang, P., Lowry, C. A., Dorrestein, P. C., Knight, R., Wright, K. P., Fleshner, M., Turek, F. W., \u0026amp; Vitaterna, M. H. (2022). A Prebiotic Diet Alters the Fecal Microbiome and Improves Sleep in Response to Sleep Disruption in Rats. Frontiers in Neuroscience, 16, 889211. https://doi.org/10.3389/fnins.2022.889211\nBračić, M., Bohn, L., Siewert, V., Von Kortzfleisch, V. T., Schielzeth, H., Kaiser, S., Sachser, N., \u0026amp; Richter, S. H. (2022). Once an optimist, always an optimist? Studying cognitive judgment bias in mice. Behavioral Ecology, 33(4), 775–788. https://doi.org/10.1093/beheco/arac040\nBrady, W. J., McLoughlin, K., Doan, T. N., \u0026amp; Crockett, M. J. (2021). How social learning amplifies moral outrage expression in online social networks. Science Advances, 7(33), eabe5641. https://doi.org/10.1126/sciadv.abe5641\nBrainerd, C. J., Chang, M., \u0026amp; Bialer, D. M. (2021). Emotional ambiguity and memory. Journal of Experimental Psychology: General, 150(8), 1476–1499. https://doi.org/10.1037/xge0001011\nBrainerd, C. J., Chang, M., Bialer, D. M., \u0026amp; Liu, X. (2023). How does attribute ambiguity improve memory? Memory \u0026amp; Cognition, 51(1), 38–70. https://doi.org/10.3758/s13421-022-01343-w\nBrainerd, C. J., Chang, M., Bialer, D. M., \u0026amp; Toglia, M. P. (2021). Semantic ambiguity and memory. Journal of Memory and Language, 121, 104286. https://doi.org/10.1016/j.jml.2021.104286\nBrandes, L., \u0026amp; Dover, Y. (2022). Offline Context Affects Online Reviews: The Effect of Post-Consumption Weather. Journal of Consumer Research, 49(4), 595–615. https://doi.org/10.1093/jcr/ucac003\nBraun, N., Goudbeek, M., \u0026amp; Krahmer, E. (2022). Affective Words and the Company They Keep: Studying the Accuracy of Affective Word Lists in Determining Sentence and Word Valence in a Domain-Specific Corpus. IEEE Transactions on Affective Computing, 13(3), 1440–1451. https://doi.org/10.1109/TAFFC.2020.3005613\nBraun, N., Van Der Lee, C., Gatti, L., Goudbeek, M., \u0026amp; Krahmer, E. (2021). MEmoFC: Introducing the Multilingual Emotional Football Corpus. Language Resources and Evaluation, 55(2), 389–430. https://doi.org/10.1007/s10579-020-09508-2\nBredemeyer, O., Patel, S., FitzGerald, J. J., \u0026amp; Antoniades, C. A. (2022). Oculomotor deficits in Parkinson’s disease: Increasing sensitivity using multivariate approaches. Frontiers in Digital Health, 4, 939677. https://doi.org/10.3389/fdgth.2022.939677\nBrice, H., Siegelman, N., Van Den Bunt, M., Frost, S. J., Rueckl, J. G., Pugh, K. R., \u0026amp; Frost, R. (2022). INDIVIDUAL DIFFERENCES IN L2 LITERACY ACQUISITION: PREDICTING READING SKILL FROM SENSITIVITY TO REGULARITIES BETWEEN ORTHOGRAPHY, PHONOLOGY, AND SEMANTICS. Studies in Second Language Acquisition, 44(3), 737–758. https://doi.org/10.1017/S0272263121000528\nBrochhagen, T., \u0026amp; Boleda, G. (2022). When do languages use the same word for different meanings? The Goldilocks principle in colexification. Cognition, 226, 105179. https://doi.org/10.1016/j.cognition.2022.105179\nBrock, K. M., Chelini, M.-C., Ayton, C., Madden, I. E., Ramos, C., Blois, J. L., Pafilis, P., \u0026amp; Edwards, D. L. (2022). Colour morph predicts social behaviour and contest outcomes in a polymorphic lizard (Podarcis erhardii). Animal Behaviour, 191, 91–103. https://doi.org/10.1016/j.anbehav.2022.06.017\nBrodhun, C., Borelli, E., \u0026amp; Weiss, T. (2021). Influence of acute pain on valence rating of words. PLOS ONE, 16(3), e0248744. https://doi.org/10.1371/journal.pone.0248744\nBromberek-Dyzman, K., Jończyk, R., Vasileanu, M., Niculescu-Gorpin, A.-G., \u0026amp; Bąk, H. (2021). Cross-linguistic differences affect emotion and emotion-laden word processing: Evidence from Polish-English and Romanian-English bilinguals. International Journal of Bilingualism, 25(5), 1161–1182. https://doi.org/10.1177/1367006920987306\nBrouillet, T., Michalland, A.-H., Martin, S., \u0026amp; Brouillet, D. (2021). When the Action to Be Performed at the Stage of Retrieval Enacts Memory of Action Verbs. Experimental Psychology, 68(1), 18–31. https://doi.org/10.1027/1618-3169/a000507\nBruno, D., Sorando, R., Álvarez-Farizo, B., Castellano, C., Céspedes, V., Gallardo, B., Jiménez, J. J., López, M. V., López-Flores, R., Moret-Fernández, D., Navarro, E., Picazo, F., Sevilla-Callejo, M., Tormo, J., Vidal-Macua, J. J., Nicolau, J. M., \u0026amp; Comín, F. A. (2021). Depopulation impacts on ecosystem services in Mediterranean rural areas. Ecosystem Services, 52, 101369. https://doi.org/10.1016/j.ecoser.2021.101369\nBrysbaert, M. (2021). Power considerations in bilingualism research: Time to step up our game. Bilingualism: Language and Cognition, 24(5), 813–818. https://doi.org/10.1017/S1366728920000437\nBuades-Sitjar, F., Planchuelo, C., \u0026amp; Duñabeitia, J. A. (2021). Valence, Arousal and Concreteness Mediate Word Association. Psicothema, 33.4, 602–609. https://doi.org/10.7334/psicothema2020.484\nBuçinca, Z., Yemez, Y., Erzin, E., \u0026amp; Sezgin, M. (2023). AffectON: Incorporating Affect Into Dialog Generation. IEEE Transactions on Affective Computing, 14(1), 823–835. https://doi.org/10.1109/TAFFC.2020.3043067\nBucur, M., \u0026amp; Papagno, C. (2021). An ALE meta-analytical review of the neural correlates of abstract and concrete words. Scientific Reports, 11(1), 15727. https://doi.org/10.1038/s41598-021-94506-9\nBueno, D., Zimmerman, C., Critchfield, T. S., \u0026amp; Doepke, K. J. (2023). Do Bilinguals Have One Verbal Repertoire or Two? Evidence from Listener Word-Emotion Responses. The Psychological Record. https://doi.org/10.1007/s40732-023-00545-1\nBusch‐Moreno, S., Tuomainen, J., \u0026amp; Vinson, D. (2021). Trait anxiety effects on late phase threatening speech processing: Evidence from electroencephalography. European Journal of Neuroscience, 54(9), 7152–7175. https://doi.org/10.1111/ejn.15470\nCabana, Á., Zugarramurdi, C., Valle-Lisboa, J. C., \u0026amp; De Deyne, S. (2023). The “Small World of Words” free association norms for Rioplatense Spanish. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02070-z\nCai, Y., Elsayed, N. M., \u0026amp; Barch, D. M. (2021). Contributions from resting state functional connectivity and familial risk to early adolescent-onset MDD: Results from the Adolescent Brain Cognitive Development study. Journal of Affective Disorders, 287, 229–239. https://doi.org/10.1016/j.jad.2021.03.031\nCai, Z. G., Huang, S., Xu, Z., \u0026amp; Zhao, N. (2022). Objective ages of acquisition for 3300+ simplified Chinese characters. Behavior Research Methods, 54(1), 311–323. https://doi.org/10.3758/s13428-021-01626-1\nCaliskan, A., Ajay, P. P., Charlesworth, T., Wolfe, R., \u0026amp; Banaji, M. R. (2022). Gender Bias in Word Embeddings: A Comprehensive Analysis of Frequency, Syntax, and Semantics. Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 156–170. https://doi.org/10.1145/3514094.3534162\nCalzavarini, F. (2023). Rethinking modality-specificity in the cognitive neuroscience of concrete word meaning: A position paper. Language, Cognition and Neuroscience, 1–23. https://doi.org/10.1080/23273798.2023.2173789\nCalzolari, S., Boneva, S., \u0026amp; Fernández-Espejo, D. (2022). Investigating the shift between externally and internally oriented cognition: A novel task-switching paradigm. Neuroscience of Consciousness, 2022(1), niac016. https://doi.org/10.1093/nc/niac016\nCambria, E., Mao, R., Han, S., \u0026amp; Liu, Q. (2022). Sentic Parser: A Graph-Based Approach to Concept Extraction for Sentiment Analysis. 2022 IEEE International Conference on Data Mining Workshops (ICDMW), 1–8. https://doi.org/10.1109/ICDMW58026.2022.00060\nCambria, V. E., Campagnaro, T., Trentanovi, G., Testolin, R., Attorre, F., \u0026amp; Sitzia, T. (2021). Citizen Science Data to Measure Human Use of Green Areas and Forests in European Cities. Forests, 12(6), 779. https://doi.org/10.3390/f12060779\nCampbell, E. E., \u0026amp; Bergelson, E. (2022). Making sense of sensory language: Acquisition of sensory knowledge by individuals with congenital sensory impairments. Neuropsychologia, 174, 108320. https://doi.org/10.1016/j.neuropsychologia.2022.108320\nCampillo, B. W., Galguera, D., Cerdan, S., López-Larrubia, P., \u0026amp; Lizarbe, B. (2022). Short-term high-fat diet alters the mouse brain magnetic resonance imaging parameters consistently with neuroinflammation on males and metabolic rearrangements on females. A pre-clinical study with an optimized selection of linear mixed-effects models. Frontiers in Neuroscience, 16, 1025108. https://doi.org/10.3389/fnins.2022.1025108\nCanessa, E., Chaigneau, S. E., \u0026amp; Moreno, S. (2022). Using agreement probability to study differences in types of concepts and conceptualizers. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02030-z\nCapuano, F., Dudschig, C., Günther, F., \u0026amp; Kaup, B. (2021). Semantic Similarity of Alternatives Fostered by Conversational Negation. Cognitive Science, 45(7), e13015. https://doi.org/10.1111/cogs.13015\nCaravolas, M. (2022). Reading and Reading Disorders in Alphabetic Orthographies. In M. J. Snowling, C. Hulme, \u0026amp; K. Nation (Eds.), The Science of Reading (1st ed., pp. 327–353). Wiley. https://doi.org/10.1002/9781119705116.ch15\nCarli, V., Petros, N. G., Hadlaczky, G., Vitcheva, T., Berchialla, P., Bianchi, S., Carletto, S., Christinaki, E., Citi, L., Dinis, S., Gentili, C., Geraldes, V., Giovinazzo, L., Gonzalez-Martinez, S., Meyer, B., Ostacoli, L., Ottaviano, M., Ouakinin, S., Papastylianou, T., … Valenza, G. (2022). The NEVERMIND e-health system in the treatment of depressive symptoms among patients with severe somatic conditions: A multicentre, pragmatic randomised controlled trial. eClinicalMedicine, 48, 101423. https://doi.org/10.1016/j.eclinm.2022.101423\nCarney, J., \u0026amp; Robertson, C. (2022). Five studies evaluating the impact on mental health and mood of recalling, reading, and discussing fiction. PLOS ONE, 17(4), e0266323. https://doi.org/10.1371/journal.pone.0266323\nCasselberry, G. A., Drake, J. C., Perlot, N., Cooke, S. J., Danylchuk, A. J., \u0026amp; Lennox, R. J. (2023). Allometric Scaling of Anaerobic Capacity Estimated from a Unique Field-Based Data Set of Fish Swimming. Physiological and Biochemical Zoology, 96(1), 17–29. https://doi.org/10.1086/722134\nCataldo, A. M., Scheuer, L., Maksimovskiy, A. L., Germine, L. T., \u0026amp; Dillon, D. G. (2023). Abnormal evidence accumulation underlies the positive memory deficit in depression. Journal of Experimental Psychology: General, 152(1), 139–156. https://doi.org/10.1037/xge0001268\nChaisson, C., Jones, C. C., \u0026amp; Warren, R. S. (2022). Seasonal Stem Loss and Self-thinning in Low Marsh Spartina alterniflora in a New England Tidal Marsh. Estuaries and Coasts, 45(7), 2102–2111. https://doi.org/10.1007/s12237-022-01054-0\nChan, S. (2022). Dynamics of nominal classification systems in language processing. Language, Cognition and Neuroscience, 37(6), 671–685. https://doi.org/10.1080/23273798.2021.2011331\nChang, C.-Y., Chen, Y.-C., Tsai, M.-N., Sung, Y.-T., Chang, Y.-L., Lin, S.-Y., Cho, S.-L., Chang, T.-H., \u0026amp; Chen, H.-C. (2022). The Corpus of Emotional Valences for 33,669 Chinese Words Based on Big Data. In F. Fui-Hoon Nah \u0026amp; K. Siau (Eds.), HCI in Business, Government and Organizations (Vol. 13327, pp. 141–152). Springer International Publishing. https://doi.org/10.1007/978-3-031-05544-7_11\nChang, M., \u0026amp; Brainerd, C. J. (2023). The recognition effects of attribute ambiguity. Psychonomic Bulletin \u0026amp; Review, 30(6), 2315–2327. https://doi.org/10.3758/s13423-023-02291-5\nChang, M., Brainerd, C. J., Toglia, M. P., \u0026amp; Schmidt, S. R. (2021). Norms for emotion-false memory lists. Behavior Research Methods, 53(1), 96–112. https://doi.org/10.3758/s13428-020-01410-7\nChang, M., Jones, M. N., \u0026amp; Johns, B. T. (2023). Comparing word frequency, semantic diversity, and semantic distinctiveness in lexical organization. Journal of Experimental Psychology: General, 152(6), 1814–1823. https://doi.org/10.1037/xge0001407\nChapman, R. M., Gardner, M. N., \u0026amp; Lyons, M. (2022). Gender differences in emotional connotative meaning of words measured by Osgood’s semantic differential techniques in young adults. Humanities and Social Sciences Communications, 9(1), 119. https://doi.org/10.1057/s41599-022-01126-3\nCharitonidis, C. (2022). Context concreteness for the second constituent slows down compound-word processing. Lexis, 20. https://doi.org/10.4000/lexis.6769\nCharlesworth, T. E. S., Caliskan, A., \u0026amp; Banaji, M. R. (2022). Historical representations of social groups across 200 years of word embeddings from Google Books. Proceedings of the National Academy of Sciences, 119(28), e2121798119. https://doi.org/10.1073/pnas.2121798119\nChebbi, S., Sekkate, S., Jebara, S. B., \u0026amp; Adib, A. (2021). On the use of MFCC and SWT-based features for offensive speech detection in social media. 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), 1–6. https://doi.org/10.1109/INISTA52262.2021.9548341\nChelmis, C., \u0026amp; Zois, D.-S. (2021). Dynamic, Incremental, and Continuous Detection of Cyberbullying in Online Social Media. ACM Transactions on the Web, 15(3), 1–33. https://doi.org/10.1145/3448014\nChen, C.-H., Chang, Y.-L., Chen, Y.-C., Tsai, M.-N., Sung, Y.-T., Lin, S.-Y., Cho, S.-L., Chang, T.-H., \u0026amp; Chen, H.-C. (2022). Building a “Corpus of 7 Types Emotion Co-occurrences Words” of Chinese Emotional Words with Big Data Corpus. In F. Fui-Hoon Nah \u0026amp; K. Siau (Eds.), HCI in Business, Government and Organizations (Vol. 13327, pp. 163–181). Springer International Publishing. https://doi.org/10.1007/978-3-031-05544-7_13\nChen, G., Lewis, V. A., Gottlieb, D. J., \u0026amp; O’Malley, A. J. (2022). Using a mixed‐effect model with a parameter‐space of heterogenous dimension to evaluate whether accountable care organizations are associated with greater uniformity across constituent practices. Statistics in Medicine, 41(21), 4215–4226. https://doi.org/10.1002/sim.9506\nChen, H., Xu, X., \u0026amp; Wang, T. (2023). Assessing lexical ambiguity of simplified Chinese characters: Plurality and relatedness of character meanings. Quarterly Journal of Experimental Psychology, 17470218231178787. https://doi.org/10.1177/17470218231178787\nChen, L., Thomas, E. H. X., \u0026amp; Fitzgerald, P. B. (2021). Reply to Hudaib. Brain Stimulation, 14(6), 1587–1588. https://doi.org/10.1016/j.brs.2021.09.013\nChen, L., Thomas, E. H. X., Kaewpijit, P., Miljevic, A., Hughes, R., Hahn, L., Kato, Y., Gill, S., Clarke, P., Ng, F., Paterson, T., Giam, A., Sarma, S., Hoy, K. E., Galletly, C., \u0026amp; Fitzgerald, P. B. (2021). Accelerated theta burst stimulation for the treatment of depression: A randomised controlled trial. Brain Stimulation, 14(5), 1095–1105. https://doi.org/10.1016/j.brs.2021.07.018\nChen, T., Yin, H., Yuan, X., Gu, Y., Ren, F., \u0026amp; Sun, X. (2021). Emotion recognition based on fusion of long short-term memory networks and SVMs. Digital Signal Processing, 117, 103153. https://doi.org/10.1016/j.dsp.2021.103153\nChen, Z., Cao, Y., Yao, H., Lu, X., Peng, X., Mei, H., \u0026amp; Liu, X. (2021). Emoji-powered Sentiment and Emotion Detection from Software Developers’ Communication Data. ACM Transactions on Software Engineering and Methodology, 30(2), 1–48. https://doi.org/10.1145/3424308\nChersoni, E., Santus, E., Huang, C.-R., \u0026amp; Lenci, A. (2021). Decoding Word Embeddings with Brain-Based Semantic Features. Computational Linguistics, 47(3), 663–698. https://doi.org/10.1162/coli_a_00412\nChhaya, N., Jaidka, K., \u0026amp; Wadbude, R. (2023). Predicting Email Opens with Domain-Sensitive Affect Detection. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (Vol. 13397, pp. 71–79). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-23804-8_6\nChiu, M. M., Morakhovski, A., Ebert, D., Reinert, A., \u0026amp; Snyder, L. S. (2023). Detecting COVID-19 Fake News on Twitter: Followers, Emotions, Relationships, and Uncertainty. American Behavioral Scientist, 000276422311743. https://doi.org/10.1177/00027642231174329\nChou, Y.-C., Chuang, H. H.-C., \u0026amp; Liang, T.-P. (2022). Elaboration likelihood model, endogenous quality indicators, and online review helpfulness. Decision Support Systems, 153, 113683. https://doi.org/10.1016/j.dss.2021.113683\nChrobak, G., Kowalczyk, T., Fischer, T. B., Szewrański, S., Chrobak, K., Wąsowicz, B., \u0026amp; Kazak, J. K. (2022). First, do no harm—Missing data treatment to support lake ecological condition assessment. Environmental Modelling \u0026amp; Software, 158, 105558. https://doi.org/10.1016/j.envsoft.2022.105558\nClariana, R. B., Tang, H., \u0026amp; Chen, X. (2022). Corroborating a sorting task measure of individual and of local collective knowledge structure. Educational Technology Research and Development, 70(4), 1195–1219. https://doi.org/10.1007/s11423-022-10123-x\nCognitive Flexibility: The Cornerstone of Learning (1st ed.). (2022). Wiley. https://doi.org/10.1002/9781119902737\nColes, N. A., Gaertner, L., Frohlich, B., Larsen, J. T., \u0026amp; Basnight-Brown, D. M. (2023). Fact or artifact? Demand characteristics and participants’ beliefs can moderate, but do not fully account for, the effects of facial feedback on emotional experience. Journal of Personality and Social Psychology, 124(2), 287–310. https://doi.org/10.1037/pspa0000316\nCompton, S. L. E., Grieco, J. P., Gollamudi, B., Bae, E., Van Mullekom, J. H., \u0026amp; Schmelz, E. M. (2022). Metabolic Reprogramming of Ovarian Cancer Spheroids during Adhesion. Cancers, 14(6), 1399. https://doi.org/10.3390/cancers14061399\nConca, F., Borsa, V. M., Cappa, S. F., \u0026amp; Catricalà, E. (2021). The multidimensionality of abstract concepts: A systematic review. Neuroscience \u0026amp; Biobehavioral Reviews, 127, 474–491. https://doi.org/10.1016/j.neubiorev.2021.05.004\nConca, F., Catricalà, E., Canini, M., Petrini, A., Vigliocco, G., Cappa, S. F., \u0026amp; Della Rosa, P. A. (2021). In search of different categories of abstract concepts: A fMRI adaptation study. Scientific Reports, 11(1), 22587. https://doi.org/10.1038/s41598-021-02013-8\nConder, E. B., Jaeger, C. B., \u0026amp; Lane, J. D. (2023). Law and order: The timing of mitigating evidence affects punishment decisions. Thinking \u0026amp; Reasoning, 1–23. https://doi.org/10.1080/13546783.2023.2172077\nConklin, K., \u0026amp; Pellicer-Sánchez, A. (2022). Eye-Tracking. In S. Li, P. Hiver, \u0026amp; M. Papi, The Routledge Handbook of Second Language Acquisition and Individual Differences (1st ed., pp. 441–453). Routledge. https://doi.org/10.4324/9781003270546-35\nConley, M. I., Hernandez, J., Salvati, J. M., Gee, D. G., \u0026amp; Baskin-Sommers, A. (2023). The role of perceived threats on mental health, social, and neurocognitive youth outcomes: A multicontextual, person-centered approach. Development and Psychopathology, 35(2), 689–710. https://doi.org/10.1017/S095457942100184X\nContemori, G., Saccani, M. S., \u0026amp; Bonato, M. (2022). Multitasking Effects on Perception and Memory in Older Adults. Vision, 6(3), 48. https://doi.org/10.3390/vision6030048\nCortese, M. J., \u0026amp; Khanna, M. M. (2022). Relating emotional variables to recognition memory performance: A large-scale re-analysis of megastudy data. Memory, 30(7), 915–922. https://doi.org/10.1080/09658211.2022.2055080\nCosper, S. H., Männel, C., \u0026amp; Mueller, J. L. (2022). Mechanisms of associative word learning: Benefits from the visual modality and synchrony of labeled objects. Cortex, 152, 36–52. https://doi.org/10.1016/j.cortex.2022.03.020\nCox, C. R., \u0026amp; Haebig, E. (2022). Child-oriented word associations improve models of early word learning. Behavior Research Methods, 55(1), 16–37. https://doi.org/10.3758/s13428-022-01790-y\nCreemers, A., \u0026amp; Embick, D. (2021). Retrieving stem meanings in opaque words during auditory lexical processing. Language, Cognition and Neuroscience, 36(9), 1107–1122. https://doi.org/10.1080/23273798.2021.1909085\nCrible, L., Wetzel, M., \u0026amp; Zufferey, S. (2021). Lexical and Structural Cues to Discourse Processing in First and Second Language. Frontiers in Psychology, 12, 685491. https://doi.org/10.3389/fpsyg.2021.685491\nCring, M. R., Meyer, K. J., Searby, C. C., Hedberg-Buenz, A., Cave, M., Anderson, M. G., Wang, K., \u0026amp; Sheffield, V. C. (2022). Ectopic expression of BBS1 rescues male infertility, but not retinal degeneration, in a BBS1 mouse model. Gene Therapy, 29(5), 227–235. https://doi.org/10.1038/s41434-021-00241-1\nCrossfield, E., \u0026amp; Damian, M. F. (2021). The role of valence in word processing: Evidence from lexical decision and emotional Stroop tasks. Acta Psychologica, 218, 103359. https://doi.org/10.1016/j.actpsy.2021.103359\nCui, N., Malleson, N., Houlden, V., \u0026amp; Comber, A. (2021). Using VGI and Social Media Data to Understand Urban Green Space: A Narrative Literature Review. ISPRS International Journal of Geo-Information, 10(7), 425. https://doi.org/10.3390/ijgi10070425\nCui, X., Liu, W., \u0026amp; He, Z. (2021). Attribute reduction algorithm of enterprise credit evaluation and its applications for web-based communities. International Journal of Web Based Communities, 17(4), 293. https://doi.org/10.1504/IJWBC.2021.119473\nCutter, M. G., Filik, R., \u0026amp; Paterson, K. B. (2022). Do readers maintain word-level uncertainty during reading? A pre-registered replication study. Journal of Memory and Language, 125, 104336. https://doi.org/10.1016/j.jml.2022.104336\nCyr, M.-P., Dostie, R., Camden, C., Dumoulin, C., Bessette, P., Pina, A., Gotlieb, W. H., Lapointe-Milot, K., Mayrand, M.-H., \u0026amp; Morin, M. (2022). Improvements following multimodal pelvic floor physical therapy in gynecological cancer survivors suffering from pain during sexual intercourse: Results from a one-year follow-up mixed-method study. PLOS ONE, 17(1), e0262844. https://doi.org/10.1371/journal.pone.0262844\nD’Angiulli, A., \u0026amp; Reeves, A. (2021). Experimental phenomenology meets brain information processing: Vividness of voluntary imagery, consciousness of the present, and priming. Psychology of Consciousness: Theory, Research, and Practice, 8(4), 397–418. https://doi.org/10.1037/cns0000306\nDar, S., Liebenthal, E., Pan, H., Smith, T., Savitz, A., Landa, Y., Silbersweig, D., \u0026amp; Stern, E. (2021). Abnormal semantic processing of threat words associated with excitement and hostility symptoms in schizophrenia. Schizophrenia Research, 228, 394–402. https://doi.org/10.1016/j.schres.2020.12.022\nDaradkeh, M., Mansoor, W., Atalla, S., Himeur, Y., \u0026amp; Kerdjidj, O. (2023). Lifelong Machine Learning for Topic Modeling Based on Hellinger Distance. 2023 International Joint Conference on Neural Networks (IJCNN), 01–08. https://doi.org/10.1109/IJCNN54540.2023.10191745\nDavis, C. P. (2023). Emergence of Covid‐19 as a Novel Concept Shifts Existing Semantic Spaces. Cognitive Science, 47(1), e13237. https://doi.org/10.1111/cogs.13237\nDavis, C. P., Eigsti, I.-M., Healy, R., Joergensen, G. H., \u0026amp; Yee, E. (2022). Autism-spectrum traits in neurotypicals predict the embodiment of manipulation knowledge about object concepts: Evidence from eyetracking. PLOS ONE, 17(7), e0268069. https://doi.org/10.1371/journal.pone.0268069\nDavis, C. P., \u0026amp; Yee, E. (2021). Building semantic memory from embodied and distributional language experience. WIREs Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555\nDavis, J. D., Coulson, S., Arnold, A. J., \u0026amp; Winkielman, P. (2021). Dynamic Grounding of Concepts: Implications for Emotion and Social Cognition. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 23–42). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_2\nDavison, S. M. C., White, M. P., Pahl, S., Taylor, T., Borja, A., McMeel, O., Kellett, P., Roberts, B. R., \u0026amp; Fleming, L. E. (2023). Concern about the human health implications of marine biodiversity loss is higher among less educated and poorer citizens: Results from a 14-country study in Europe. Frontiers in Marine Science, 10, 949263. https://doi.org/10.3389/fmars.2023.949263\nDawes, C., Quinn, D., Bickerdike, A., O’Neill, C., Granger, K. T., Pereira, S. C., Mah, S. L., Haselgrove, M., Waddington, J. L., O’Tuathaigh, C., \u0026amp; Moran, P. M. (2022). Latent inhibition, aberrant salience, and schizotypy traits in cannabis users. Schizophrenia Research: Cognition, 28, 100235. https://doi.org/10.1016/j.scog.2021.100235\nDe Bruyne, L., Atanasova, P., \u0026amp; Augenstein, I. (2022). Joint emotion label space modeling for affect lexica. Computer Speech \u0026amp; Language, 71, 101257. https://doi.org/10.1016/j.csl.2021.101257\nDe Bruyne, L., De Clercq, O., \u0026amp; Hoste, V. (2021). Annotating affective dimensions in user-generated content: Comparing the reliability of best–worst scaling, pairwise comparison and rating scales for annotating valence, arousal and dominance. Language Resources and Evaluation, 55(4), 1017–1045. https://doi.org/10.1007/s10579-020-09524-2\nDe Deyne, S., Brysbaert, M., \u0026amp; Elgort, I. (2023). Chapter 7. Cross-language influences in L2 semantic and conceptual representation and processing. In I. Elgort, A. Siyanova-Chanturia, \u0026amp; M. Brysbaert (Eds.), Bilingual Processing and Acquisition (Vol. 16, pp. 152–186). John Benjamins Publishing Company. https://doi.org/10.1075/bpa.16.07ded\nDe Deyne, S., Navarro, D. J., Collell, G., \u0026amp; Perfors, A. (2021). Visual and Affective Multimodal Models of Word Meaning in Language and Mind. Cognitive Science, 45(1), e12922. https://doi.org/10.1111/cogs.12922\nDe Marco, M., Blackburn, D. J., \u0026amp; Venneri, A. (2021). Serial Recall Order and Semantic Features of Category Fluency Words to Study Semantic Memory in Normal Ageing. Frontiers in Aging Neuroscience, 13, 678588. https://doi.org/10.3389/fnagi.2021.678588\nDe Marco, M., \u0026amp; Venneri, A. (2022). Serial Recall Order of Category Fluency Words: Exploring Its Neural Underpinnings. Frontiers in Psychology, 12, 777838. https://doi.org/10.3389/fpsyg.2021.777838\nDe Oude, N. L., Hoebeek, F. E., Ten Brinke, M. M., De Zeeuw, C. I., \u0026amp; Boele, H.-J. (2021). Pavlovian eyeblink conditioning is severely impaired in tottering mice. Journal of Neurophysiology, 125(2), 398–407. https://doi.org/10.1152/jn.00578.2020\nDe Vries, R., Boesveldt, S., \u0026amp; De Vet, E. (2022). Human spatial memory is biased towards high-calorie foods: A cross-cultural online experiment. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 14. https://doi.org/10.1186/s12966-022-01252-w\nDe Zubicaray, G. I., Arciuli, J., Guenther, F. H., McMahon, K. L., \u0026amp; Kearney, E. (2023). Non-arbitrary mappings between size and sound of English words: Form typicality effects during lexical access and memory. Quarterly Journal of Experimental Psychology, 17470218231184940. https://doi.org/10.1177/17470218231184940\nDe Zubicaray, G. I., Arciuli, J., Kearney, E., Guenther, F., \u0026amp; McMahon, K. L. (2023). On the roles of form systematicity and sensorimotor effects in language processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(3), 431–444. https://doi.org/10.1037/xlm0001201\nDębowska-Kozłowska, K., \u0026amp; Hample, D. (2022). “Agreement Builds and Disagreement Destroys:” How Polish Undergraduates and Graduates Understand Interpersonal Arguing. Argumentation, 36(3), 365–392. https://doi.org/10.1007/s10503-022-09570-w\nDeksne, D., \u0026amp; Skadiņš, R. (2022). Predicting Next Dialogue Action in Emotionally Loaded Conversation. In K. Arai (Ed.), Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1 (Vol. 358, pp. 264–274). Springer International Publishing. https://doi.org/10.1007/978-3-030-89906-6_19\nDelgado-Ballester, E., López-López, I., \u0026amp; Bernal-Palazón, A. (2021). Why Do People Initiate an Online Firestorm? The Role of Sadness, Anger, and Dislike. International Journal of Electronic Commerce, 25(3), 313–337. https://doi.org/10.1080/10864415.2021.1943173\nDelvaux, V., Lavallée, A., Degouis, F., Saloppe, X., Nandrino, J.-L., \u0026amp; Pham, T. (2022). Telling self-defining memories: An acoustic study of natural emotional speech productions. Interspeech 2022, 1337–1341. https://doi.org/10.21437/Interspeech.2022-10554\nDemidenko, M. I., Weigard, A. S., Ganesan, K., Jang, H., Jahn, A., Huntley, E. D., \u0026amp; Keating, D. P. (2021). Interactions between methodological and interindividual variability: How Monetary Incentive Delay (MID) task contrast maps vary and impact associations with behavior. Brain and Behavior, 11(5), e02093. https://doi.org/10.1002/brb3.2093\nDeng, M., Guinote, A., Li, L., Cui, L., \u0026amp; Shi, W. (2021). When Abstract Concepts Rely on Multiple Metaphors: Metaphor Selection in the Case of Power. Social Cognition, 39(3), 408–435. https://doi.org/10.1521/soco.2021.39.3.408\nDeng, Y., Li, J., Niu, M., Wang, Y., Fu, W., Gong, Y., Ding, S., Li, W., He, W., \u0026amp; Cao, L. (2023). A Chinese verb semantic feature dataset (CVFD). Behavior Research Methods. https://doi.org/10.3758/s13428-022-02047-4\nDetjen, H., Faltaous, S., Keppel, J., Prochazka, M., Gruenefeld, U., Sadeghian, S., \u0026amp; Schneegass, S. (2022). Investigating the Influence of Gaze- and Context-Adaptive Head-up Displays on Take-Over Requests. Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 108–118. https://doi.org/10.1145/3543174.3546089\nDíaz, J.-L., Barraza, G., Hernández-Fuentes, E., \u0026amp; Jiménez, S. (2022). Emotion Words in Spanish: Lexical Selection, Affective Dimensions, Sex and Age Differences. Cognitive Semantics, 8(2), 181–209. https://doi.org/10.1163/23526416-08020002\nDíaz‐Ricaurte, J. C., \u0026amp; Serrano, F. C. (2021). Short‐term captivity does not affect immediate voluntary thermal maximum of a neotropical pitviper: Implications for behavioral thermoregulation. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335(2), 199–206. https://doi.org/10.1002/jez.2433\nDillon, D. G., Lazarov, A., Dolan, S., Bar-Haim, Y., Pizzagalli, D. A., \u0026amp; Schneier, F. R. (2022). Fast evidence accumulation in social anxiety disorder enhances decision making in a probabilistic reward task. Emotion, 22(1), 1–18. https://doi.org/10.1037/emo0001053\nDinh, T., Emery Thompson, M., \u0026amp; Gangestad, S. W. (2022). Ovarian hormones in relation to naturally cycling women’s conception risk: Empirical evidence and implications for behavioral endocrinology. Hormones and Behavior, 146, 105276. https://doi.org/10.1016/j.yhbeh.2022.105276\nDonahoo, S. A., Pfeifer, V., \u0026amp; Lai, V. T. (2022). Cursed Concepts: New insights on combinatorial processing from ERP correlates of swearing in context. Brain and Language, 226, 105079. https://doi.org/10.1016/j.bandl.2022.105079\nDong, Y., Briaire, J. J., Christiaan Stronks, H., \u0026amp; Frijns, J. H. M. (2022). Short- and long-latency components of the eCAP reveal different refractory properties. Hearing Research, 420, 108522. https://doi.org/10.1016/j.heares.2022.108522\nDonohue, M. R., Hoyniak, C. P., Tillman, R., Barch, D. M., \u0026amp; Luby, J. (2021). Callous-Unemotional Traits as an Intervention Target and Moderator of Parent–Child Interaction Therapy—Emotion Development Treatment for Preschool Depression and Conduct Problems. Journal of the American Academy of Child \u0026amp; Adolescent Psychiatry, 60(11), 1394–1403. https://doi.org/10.1016/j.jaac.2021.03.018\nDooley, N., Ruigrok, A., Holt, R., Allison, C., Tsompanidis, A., Waldman, J., Auyeung, B., Lombardo, M. V., \u0026amp; Baron-Cohen, S. (2022). Is there an association between prenatal testosterone and autistic traits in adolescents? Psychoneuroendocrinology, 136, 105623. https://doi.org/10.1016/j.psyneuen.2021.105623\nDoqaruni, V. R. (2021). Investigating bilinguals’ cognitive processing of affective words in minimal linguistic contexts. The Mental Lexicon, 16(2–3), 422–447. https://doi.org/10.1075/ml.20026.doq\nDora, J., Piccirillo, M., Foster, K. T., \u0026amp; King, K. M. (2023). Accelerating addiction research via Open Science and Team Science. In Psychology of Learning and Motivation (Vol. 79, pp. 109–146). Elsevier. https://doi.org/10.1016/bs.plm.2023.06.004\nDora, J., Smith, M. R., Seldin, K., Schultz, M. E., Kuczynski, A. M., Moss, D. J., Carpenter, R. W., \u0026amp; King, K. M. (2023). Exploring associations between affect and marijuana use in everyday life via specification curve analysis. Journal of Psychopathology and Clinical Science, 132(4), 461–474. https://doi.org/10.1037/abn0000825\nDotlačil, J. (2021). Parsing as a Cue‐Based Retrieval Model. Cognitive Science, 45(8), e13020. https://doi.org/10.1111/cogs.13020\nDove, G. (2021). The Challenges of Abstract Concepts. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 171–195). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_8\nDove, G., Barca, L., Tummolini, L., \u0026amp; Borghi, A. M. (2022). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research, 86(8), 2451–2467. https://doi.org/10.1007/s00426-020-01438-6\nDubova, M. (2022). Building human-like communicative intelligence: A grounded perspective. Cognitive Systems Research, 72, 63–79. https://doi.org/10.1016/j.cogsys.2021.12.002\nDudschig, C., Kaup, B., \u0026amp; Mackenzie, I. G. (2023). The grounding of logical operations: The role of color, shape, and emotional faces for “yes” or “no” decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(3), 477–492. https://doi.org/10.1037/xlm0001181\nDujardin, E., Jobard, G., Vahine, T., \u0026amp; Mathey, S. (2021). Norms of vocabulary, reading, and spelling tests in French university students. Behavior Research Methods, 54(4), 1611–1625. https://doi.org/10.3758/s13428-021-01684-5\nDurand-López, E. M. (2022). L2 within-language morphological competition during spoken word recognition. Language Acquisition, 29(2), 165–181. https://doi.org/10.1080/10489223.2021.1982948\nDuville, M. M., Alonso-Valerdi, L. M., \u0026amp; Ibarra-Zarate, D. I. (2021). Mexican Emotional Speech Database Based on Semantic, Frequency, Familiarity, Concreteness, and Cultural Shaping of Affective Prosody. Data, 6(12), 130. https://doi.org/10.3390/data6120130\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2022). Linguistic Bootstrapping Allows More Real-world Object Concepts to Be Held in Mind. Collabra: Psychology, 8(1), 40171. https://doi.org/10.1525/collabra.40171\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2023). More is not necessarily better: How different aspects of sensorimotor experience affect recognition memory for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1572–1587. https://doi.org/10.1037/xlm0001265\nDyson, L., Morgan, J., \u0026amp; Herbert, R. (2022). Novel matched stimuli for assessment of lexical semantics. Aphasiology, 36(7), 831–853. https://doi.org/10.1080/02687038.2021.1924354\nDziadkowiec, O. (2021). Use of Statistical Power Analysis in Prospective and Retrospective Research. Journal of Obstetric, Gynecologic \u0026amp; Neonatal Nursing, 50(2), 119–121. https://doi.org/10.1016/j.jogn.2021.01.004\nEjova, A., Badcock, N. A., McKerchar, S., Beath, A. P., Swift, C., Talley, N. J., Holtmann, G., Walker, M. M., \u0026amp; Jones, M. P. (2021). Electroencephalographic evidence of unconscious and conscious attentional bias in people with functional gastrointestinal disorders: A pilot study. International Journal of Psychophysiology, 170, 30–42. https://doi.org/10.1016/j.ijpsycho.2021.09.006\nEllis, R. J. (2022). Questionable Research Practices, Low Statistical Power, and Other Obstacles to Replicability: Why Preclinical Neuroscience Research Would Benefit from Registered Reports. Eneuro, 9(4), ENEURO.0017-22.2022. https://doi.org/10.1523/ENEURO.0017-22.2022\nElmers, M., Werner, R., Muhlack, B., Möbius, B., \u0026amp; Trouvain, J. (2021). Take a Breath: Respiratory Sounds Improve Recollection in Synthetic Speech. Interspeech 2021, 3196–3200. https://doi.org/10.21437/Interspeech.2021-1496\nEmmenegger, M., Kumar, S. S., Emmenegger, V., Malinauskas, T., Buettner, T., Rose, L., Schierack, P., Sprinzl, M. F., Sommer, C. J., Lackner, K. J., Aguzzi, A., Roggenbuck, D., \u0026amp; Frauenknecht, K. B. M. (2021). Anti-prothrombin autoantibodies enriched after infection with SARS-CoV-2 and influenced by strength of antibody response against SARS-CoV-2 proteins. PLOS Pathogens, 17(12), e1010118. https://doi.org/10.1371/journal.ppat.1010118\nEngelen, J. A. A. (2022). The In‐Out Effect in the Perception and Production of Real Words. Cognitive Science, 46(9), e13193. https://doi.org/10.1111/cogs.13193\nEngwall, O., Cumbal, R., Lopes, J., Ljung, M., \u0026amp; Månsson, L. (2022). Identification of Low-engaged Learners in Robot-led Second Language Conversations with Adults. ACM Transactions on Human-Robot Interaction, 11(2), 1–33. https://doi.org/10.1145/3503799\nEnsor, T. M., MacMillan, M. B., Neath, I., \u0026amp; Surprenant, A. M. (2021). Calculating semantic relatedness of lists of nouns using WordNet path length. Behavior Research Methods, 53(6), 2430–2438. https://doi.org/10.3758/s13428-021-01570-0\nEnver, E. O., Vatansever, P., Guran, O., Bilgin, L., Boran, P., Turan, S., Haklar, G., Bereket, A., \u0026amp; Guran, T. (2022). Adrenal steroids reference ranges in infancy determined by LC-MS/MS. Pediatric Research, 92(1), 265–274. https://doi.org/10.1038/s41390-021-01739-5\nEom, S., Kim, S., Jiang, Y., Chen, R. J., Roghanizad, A. R., Rosenthal, M. Z., Dunn, J., \u0026amp; Gorlatova, M. (2023). Investigation of Thermal Perception and Emotional Response in Augmented Reality using Digital Biomarkers: A Pilot Study. 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 170–173. https://doi.org/10.1109/VRW58643.2023.00042\nErel, H., Cohen, Y., Shafrir, K., Levy, S. D., Vidra, I. D., Shem Tov, T., \u0026amp; Zuckerman, O. (2021). Excluded by Robots: Can Robot-Robot-Human Interaction Lead to Ostracism? Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, 312–321. https://doi.org/10.1145/3434073.3444648\nErhardt, E., Horner, A., Shaff, N., Wertz, C., Nitschke, S., Vakhtin, A., Mayer, A., Adair, J., Knoefel, J., Rosenberg, G., Poston, K., Suarez Cedeno, G., Deligtisch, A., Pirio Richardson, S., \u0026amp; Ryman, S. (2023). Longitudinal hippocampal subfields, CSF biomarkers, and cognition in patients with Parkinson disease. Clinical Parkinsonism \u0026amp; Related Disorders, 9, 100199. https://doi.org/10.1016/j.prdoa.2023.100199\nEriksson, K., Vartanova, I., Ornstein, P., \u0026amp; Strimling, P. (2021). The common-is-moral association is stronger among less religious people. Humanities and Social Sciences Communications, 8(1), 109. https://doi.org/10.1057/s41599-021-00791-0\nEspey, L., Ghio, M., Bellebaum, C., \u0026amp; Bechtold, L. (2023). That means something to me: How linguistic and emotional experience affect the acquisition, representation, and processing of novel abstract concepts. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0001236\nEtard, A., Pigot, A. L., \u0026amp; Newbold, T. (2022). Intensive human land uses negatively affect vertebrate functional diversity. Ecology Letters, 25(2), 330–343. https://doi.org/10.1111/ele.13926\nEvans, N. H., \u0026amp; Field-Fote, E. C. (2022). A Pilot Study of Intensive Locomotor-Related Skill Training and Transcranial Direct Current Stimulation in Chronic Spinal Cord Injury. Journal of Neurologic Physical Therapy, 46(4), 281–292. https://doi.org/10.1097/NPT.0000000000000403\nEysenck, M. W., \u0026amp; Brysbaert, M. (2023). Fundamentals of Cognition (4th ed.). Routledge. https://doi.org/10.4324/9781003384694\nFabrizio Calzavarini. (2023). Comprensione e cervello. Sistemi intelligenti, 2, 251–276. https://doi.org/10.1422/107149\nFan, G., Zhao, J., Zhang, K., Wang, Y., \u0026amp; Kang, T. (2022). The consistency of self-reference and mother reference in social evaluation. Social Behavior and Personality: An International Journal, 50(10), 1–11. https://doi.org/10.2224/sbp.11650\nFatima, A., Li, Y., Hills, T. T., \u0026amp; Stella, M. (2021). DASentimental: Detecting Depression, Anxiety, and Stress in Texts via Emotional Recall, Cognitive Networks, and Machine Learning. Big Data and Cognitive Computing, 5(4), 77. https://doi.org/10.3390/bdcc5040077\nFauville, G., Queiroz, A. C. M., Luo, M., Hancock, J., \u0026amp; Bailenson, J. N. (2022). Impression formation from video conference screenshots: The role of gaze, camera distance, and angle. Technology, Mind, and Behavior, 3(1). https://doi.org/10.1037/tmb0000055\nFeldman, L. B., Srinivasan, V., Fernandes, R. B., \u0026amp; Shaikh, S. (2021). Insights into codeswitching from online communication: Effects of language preference and conditions arising from vocabulary richness. Bilingualism: Language and Cognition, 24(4), 791–797. https://doi.org/10.1017/S1366728921000122\nFélix, S. B., \u0026amp; Pandeirada, J. N. S. (2021). Norming studies of European Portuguese words: A literature review. Análise Psicológica, 39(1), 107–131. https://doi.org/10.14417/ap.1823\nFernández-Fontecha, A., \u0026amp; Kenett, Y. N. (2022). Examining the relations between semantic memory structure and creativity in second language. Thinking Skills and Creativity, 45, 101067. https://doi.org/10.1016/j.tsc.2022.101067\nFernandino, L., Tong, J.-Q., Conant, L. L., Humphries, C. J., \u0026amp; Binder, J. R. (2022). Decoding the information structure underlying the neural representation of concepts. Proceedings of the National Academy of Sciences, 119(6), e2108091119. https://doi.org/10.1073/pnas.2108091119\nFerré, P., Guasch, M., Stadthagen-Gonzalez, H., \u0026amp; Comesaña, M. (2022). Love me in L1, but hate me in L2: How native speakers and bilinguals rate the affectivity of words when feeling or thinking about them. Bilingualism: Language and Cognition, 25(5), 786–800. https://doi.org/10.1017/S1366728922000189\nFerré, P., Haro, J., Huete-Pérez, D., \u0026amp; Fraga, I. (2021). Emotionality effects in ambiguous word recognition: The crucial role of the affective congruence between distinct meanings of ambiguous words. Quarterly Journal of Experimental Psychology, 74(7), 1234–1243. https://doi.org/10.1177/1747021821990003\nFini, C., Era, V., Da Rold, F., Candidi, M., \u0026amp; Borghi, A. M. (2021). Abstract concepts in interaction: The need of others when guessing abstract concepts smooths dyadic motor interactions. Royal Society Open Science, 8(7), 201205. https://doi.org/10.1098/rsos.201205\nFini, C., Zannino, G. D., Orsoni, M., Carlesimo, G. A., Benassi, M., \u0026amp; Borghi, A. M. (2022). Articulatory suppression delays processing of abstract words: The role of inner speech. Quarterly Journal of Experimental Psychology, 75(7), 1343–1354. https://doi.org/10.1177/17470218211053623\nFini, N. A., Holland, A. E., Bernhardt, J., \u0026amp; Burge, A. T. (2022). How Many Hours of Device Wear Time Are Required to Accurately Measure Physical Activity Post Stroke? International Journal of Environmental Research and Public Health, 19(3), 1191. https://doi.org/10.3390/ijerph19031191\nFiocchi, F. R., Dijkhuizen, S., Koekkoek, S. K. E., De Zeeuw, C. I., \u0026amp; Boele, H. J. (2022). Stimulus Generalization in Mice during Pavlovian Eyeblink Conditioning. Eneuro, 9(2), ENEURO.0400-21.2022. https://doi.org/10.1523/ENEURO.0400-21.2022\nFlores, R. D., Sanders, C. A., Duan, S. X., Bishop‐Chrzanowski, B. M., Oyler, D. L., Shim, H., Clocksin, H. E., Miller, A. P., \u0026amp; Merkle, E. C. (2022). Before/after Bayes: A comparison of frequentist and Bayesian mixed‐effects models in applied psychological research. British Journal of Psychology, 113(4), 1164–1194. https://doi.org/10.1111/bjop.12585\nFlynn, A. J., Herbers, J. E., Kurko, S. A., \u0026amp; Kan, I. P. (2023). Using spreading activation to understand repetitive negative thinking. Cognition and Emotion, 37(3), 453–465. https://doi.org/10.1080/02699931.2023.2176288\nFontaine, J. R. J., Gillioz, C., Soriano, C., \u0026amp; Scherer, K. R. (2022). Linear and non-linear relationships among the dimensions representing the cognitive structure of emotion. Cognition and Emotion, 36(3), 411–432. https://doi.org/10.1080/02699931.2021.2013163\nFormanowicz, M., Pietraszkiewicz, A., Roessel, J., Suitner, C., Witkowska, M., \u0026amp; Maass, A. (2021). “Make it Happen!”: Verbs as Markers of Agency Increase Message Effectiveness. Social Psychology, 52(2), 75–89. https://doi.org/10.1027/1864-9335/a000435\nFormento, E., Botros, P., \u0026amp; Carmena, J. M. (2021). Skilled independent control of individual motor units via a non-invasive neuromuscular–machine interface. Journal of Neural Engineering, 18(6), 066019. https://doi.org/10.1088/1741-2552/ac35ac\nForneris, A., Nightingale, M., Ismaguilova, A., Sigaeva, T., Neave, L., Bromley, A., Moore, R. D., \u0026amp; Di Martino, E. S. (2021). Heterogeneity of Ex Vivo and In Vivo Properties along the Length of the Abdominal Aortic Aneurysm. Applied Sciences, 11(8), 3485. https://doi.org/10.3390/app11083485\nForoni, F. (2022). 17 Multimodality, facial expression, and emotional language. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 364–384). De Gruyter. https://doi.org/10.1515/9783110347524-017\nFörster, A., Model, V., Gos, T., Frodl, T., Schiltz, K., Dobrowolny, H., Meyer-Lotz, G., Guest, P. C., Mawrin, C., Bernstein, H.-G., Bogerts, B., Schlaaff, K., \u0026amp; Steiner, J. (2022). Reduced GABAergic neuropil and interneuron profiles in schizophrenia: Complementary analysis of disease course-related differences. Journal of Psychiatric Research, 145, 50–59. https://doi.org/10.1016/j.jpsychires.2021.11.028\nFrachi, Y., Takahashi, T., Wang, F., \u0026amp; Barthet, M. (2022). Design of Emotion-Driven Game Interaction Using Biosignals. In X. Fang (Ed.), HCI in Games (Vol. 13334, pp. 160–179). Springer International Publishing. https://doi.org/10.1007/978-3-031-05637-6_10\nFrancesco Iani. (2022). La rivoluzione è tenere tutto insieme. Risposta ai commenti. Giornale italiano di psicologia, 2, 473–479. https://doi.org/10.1421/105160\nFreitas, C., Villegas‐Ríos, D., Moland, E., \u0026amp; Olsen, E. M. (2021). Sea temperature effects on depth use and habitat selection in a marine fish community. Journal of Animal Ecology, 90(7), 1787–1800. https://doi.org/10.1111/1365-2656.13497\nFriese, J. D. S., Temming, A., \u0026amp; Dänhardt, A. (2021). Preference, avoidance or coincidence? How fish and crustaceans use intertidal salt-marsh creeks in the German Wadden Sea. Estuarine, Coastal and Shelf Science, 255, 107297. https://doi.org/10.1016/j.ecss.2021.107297\nFrischkorn, G. T., Wilhelm, O., \u0026amp; Oberauer, K. (2022). Process-oriented intelligence research: A review from the cognitive perspective. Intelligence, 94, 101681. https://doi.org/10.1016/j.intell.2022.101681\nFu, P., Hu, L., Ainsworth, E. A., Tai, X., Myint, S. W., Zhan, W., Blakely, B. J., \u0026amp; Bernacchi, C. J. (2021). Enhanced drought resistance of vegetation growth in cities due to urban heat, CO 2 domes and O 3 troughs. Environmental Research Letters, 16(12), 124052. https://doi.org/10.1088/1748-9326/ac3b17\nFu, Y., Guo, L., Wang, L., Liu, Z., Liu, J., \u0026amp; Dang, J. (2021). A Sentiment Similarity-Oriented Attention Model with Multi-task Learning for Text-Based Emotion Recognition. In J. Lokoč, T. Skopal, K. Schoeffmann, V. Mezaris, X. Li, S. Vrochidis, \u0026amp; I. Patras (Eds.), MultiMedia Modeling (Vol. 12572, pp. 278–289). Springer International Publishing. https://doi.org/10.1007/978-3-030-67832-6_23\nFudolig, M. I., Alshaabi, T., Arnold, M. V., Danforth, C. M., \u0026amp; Dodds, P. S. (2022). Sentiment and structure in word co-occurrence networks on Twitter. Applied Network Science, 7(1), 9. https://doi.org/10.1007/s41109-022-00446-2\nFujita, H., \u0026amp; Cunnings, I. (2021a). Lingering misinterpretation in native and nonnative sentence processing: Evidence from structural priming. Applied Psycholinguistics, 42(2), 475–504. https://doi.org/10.1017/S0142716420000351\nFujita, H., \u0026amp; Cunnings, I. (2021b). Reanalysis processes in non-native sentence comprehension. Bilingualism: Language and Cognition, 24(4), 628–641. https://doi.org/10.1017/S1366728921000195\nFujita, H., \u0026amp; Cunnings, I. (2022). Interference and filler-gap dependency formation in native and non-native language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(5), 702–716. https://doi.org/10.1037/xlm0001134\nGagnon, M.-È., Labbé, A.-P., \u0026amp; Blanchette, I. (2021). Exploring the mechanisms responsible for the modulating role of frowning in emotional reasoning: An ERP study. Brain and Cognition, 152, 105750. https://doi.org/10.1016/j.bandc.2021.105750\nGall, D., Roth, D., Stauffert, J.-P., Zarges, J., \u0026amp; Latoschik, M. E. (2021). Embodiment in Virtual Reality Intensifies Emotional Responses to Virtual Stimuli. Frontiers in Psychology, 12, 674179. https://doi.org/10.3389/fpsyg.2021.674179\nGallant, J., \u0026amp; Libben, G. (2021). Power and Positivity: Psycholinguistic Perspectives on Word Valence in Canadian Parliament. Frontiers in Communication, 6, 770497. https://doi.org/10.3389/fcomm.2021.770497\nGandhi, N., Zou, W., Meyer, C., Bhatia, S., \u0026amp; Walasek, L. (2022). Computational Methods for Predicting and Understanding Food Judgment. Psychological Science, 33(4), 579–594. https://doi.org/10.1177/09567976211043426\nGao, C., Shinkareva, S. V., \u0026amp; Peelen, M. V. (2022). Affective valence of words differentially affects visual and auditory word recognition. Journal of Experimental Psychology: General, 151(9), 2144–2159. https://doi.org/10.1037/xge0001176\nGao, Y., Lin, W., Zhang, M., Zheng, L., Liu, J., Zheng, M., En, Y., Chen, Y., \u0026amp; Mo, L. (2022). Cognitive mechanisms of the face context effect: An event related potential study of the effects of emotional contexts on neutral face perception. Biological Psychology, 175, 108430. https://doi.org/10.1016/j.biopsycho.2022.108430\nGarcía, V., Iglesias‐Lebrija, J. J., \u0026amp; Moreno‐Opo, R. (2021). Null effects of the Garcelon harnessing method and transmitter type on soaring raptors. Ibis, 163(3), 899–912. https://doi.org/10.1111/ibi.12942\nGarg, N., Garg, R., Anand, A., \u0026amp; Baths, V. (2022). Decoding the neural signatures of valence and arousal from portable EEG headset. Frontiers in Human Neuroscience, 16, 1051463. https://doi.org/10.3389/fnhum.2022.1051463\nGatti, D., Marelli, M., \u0026amp; Rinaldi, L. (2023). Out-of-vocabulary but not meaningless: Evidence for semantic-priming effects in pseudoword processing. Journal of Experimental Psychology: General, 152(3), 851–863. https://doi.org/10.1037/xge0001304\nGatti, D., Rinaldi, L., Marelli, M., Mazzoni, G., \u0026amp; Vecchi, T. (2022). Decomposing the semantic processes underpinning veridical and false memories. Journal of Experimental Psychology: General, 151(2), 363–389. https://doi.org/10.1037/xge0001079\nGayler, T., Sas, C., \u0026amp; Kalnikaite, V. (2023). “It took me back 25 years in one bound”: Self-generated flavor-based cues for self-defining memories in later life. Human–Computer Interaction, 38(5–6), 417–458. https://doi.org/10.1080/07370024.2022.2107518\nGeorge, A. W., Verbyla, A., \u0026amp; Bowden, J. (2021). Eagle for better genome-wide association mapping. G3 Genes|Genomes|Genetics, 11(9), jkab204. https://doi.org/10.1093/g3journal/jkab204\nGeorgiou, G. P. (2021). Words are not just words: How the use of media language in the COVID-19 era affects public health. Epidemiology and Health, 43, e2021072. https://doi.org/10.4178/epih.e2021072\nGerth, S., \u0026amp; Festman, J. (2021). Reading Development, Word Length and Frequency Effects: An Eye-Tracking Study with Slow and Fast Readers. Frontiers in Communication, 6, 743113. https://doi.org/10.3389/fcomm.2021.743113\nGevers-Montoro, C., Puente-Tobares, M., Monréal, A., Conesa-Buendía, F. M., Piché, M., \u0026amp; Ortega-De Mues, A. (2023). Urinary TNF-α as a potential biomarker for chronic primary low back pain. Frontiers in Integrative Neuroscience, 17, 1207666. https://doi.org/10.3389/fnint.2023.1207666\nGhijselings, I., Taylan, O., Delport, H. P., Slane, J., Van Den Wyngaert, H., Demurie, A., \u0026amp; Scheys, L. (2022). Using a patella reduced technique while balancing a TKA results in restored physiological strain in the collateral ligaments: An ex vivo kinematic analysis. Archives of Orthopaedic and Trauma Surgery, 142(7), 1633–1644. https://doi.org/10.1007/s00402-021-04010-y\nGhyselen, A.-S., Grondelaers, S., Misier-Patadien, S. D., \u0026amp; Balesar, U. (2022). Standard language dynamics in postcolonial Suriname. Lingua, 273, 103340. https://doi.org/10.1016/j.lingua.2022.103340\nGianluca E. Lebani \u0026amp; Alessandro Lenci. (2021). Investigating Dowty’s proto-roles with embeddings. Lingue e linguaggio, 2, 165–197. https://doi.org/10.1418/102812\nGillespie-Lynch, K., Bisson, J. B., Saade, S., Obeid, R., Kofner, B., Harrison, A. J., Daou, N., Tricarico, N., Delos Santos, J., Pinkava, W., \u0026amp; Jordan, A. (2022). If you want to develop an effective autism training, ask autistic students to help you. Autism, 26(5), 1082–1094. https://doi.org/10.1177/13623613211041006\nGilmary, R., Venkatesan, A., \u0026amp; Vaiyapuri, G. (2021). Discovering social bots on Twitter: A thematic review. International Journal of Internet Technology and Secured Transactions, 11(4), 369. https://doi.org/10.1504/IJITST.2021.116748\nGiorgi, I., Minutolo, A., Tirotto, F., Hagen, O., Esposito, M., Gianni, M., Palomino, M., \u0026amp; Masala, G. L. (2023). I am Robot, Your Health Adviser for Older Adults: Do You Trust My Advice? International Journal of Social Robotics. https://doi.org/10.1007/s12369-023-01019-8\nGirnyk, A., Krylova-Grek, Y., \u0026amp; Khan, A. (2021). A Psycholinguistic Cross-Cultural Study of the Concept “Conflict” in India and Ukraine. East European Journal of Psycholinguistics, 8(2). https://doi.org/10.29038/eejpl.2021.8.2.gir\nGnedykh, D., Tsvetova, D., Mkrtychian, N., Blagovechtchenski, E., Kostromina, S., \u0026amp; Shtyrov, Y. (2022). Broca’s area involvement in abstract and concrete word acquisition: tDCS evidence. Neurobiology of Learning and Memory, 192, 107622. https://doi.org/10.1016/j.nlm.2022.107622\nGodin, J.-G. J., Le Roy, A., Burns, A. L., Seebacher, F., \u0026amp; Ward, A. J. W. (2022). Pace-of-life syndrome: Linking personality, metabolism and colour ornamentation in male guppies. Animal Behaviour, 194, 13–33. https://doi.org/10.1016/j.anbehav.2022.09.012\nGoernert, P. N., Corenblum, B., \u0026amp; Watier, N. (2021). Mood states effect retrieval not encoding in item-method directed forgetting. Journal of Cognitive Psychology, 33(4), 424–438. https://doi.org/10.1080/20445911.2021.1903013\nGoette, W. F., Schaffert, J., Carlew, A., Rossetti, H., Lacritz, L. H., De Boeck, P., \u0026amp; Cullum, C. M. (2023). Impact of word properties on list learning: An explanatory item analysis. Neuropsychology, 37(3), 268–283. https://doi.org/10.1037/neu0000810\nGonzalez, C., Jiang, X., Gonzalez-Martinez, J., \u0026amp; Halgren, E. (2022). Human Spindle Variability. The Journal of Neuroscience, 42(22), 4517–4537. https://doi.org/10.1523/JNEUROSCI.1786-21.2022\nGordon, J. K., \u0026amp; Chen, H. (2023). How well does the discrepancy between semantic and letter verbal fluency performance distinguish Alzheimer’s dementia from typical aging? Aging, Neuropsychology, and Cognition, 30(5), 729–758. https://doi.org/10.1080/13825585.2022.2079602\nGračanin, A., Krahmer, E., Balsters, M., Küster, D., \u0026amp; Vingerhoets, A. J. J. M. (2021). How Weeping Influences the Perception of Facial Expressions: The Signal Value of Tears. Journal of Nonverbal Behavior, 45(1), 83–105. https://doi.org/10.1007/s10919-020-00347-x\nGradoń, K. T., Hołyst, J. A., Moy, W. R., Sienkiewicz, J., \u0026amp; Suchecki, K. (2021). Countering misinformation: A multidisciplinary approach. Big Data \u0026amp; Society, 8(1), 205395172110138. https://doi.org/10.1177/20539517211013848\nGreeley, B., Barnhoorn, J. S., Verwey, W. B., \u0026amp; Seidler, R. D. (2022). Anodal Transcranial Direct Current Stimulation Over Prefrontal Cortex Slows Sequence Learning in Older Adults. Frontiers in Human Neuroscience, 16, 814204. https://doi.org/10.3389/fnhum.2022.814204\nGrêt-Regamey, A., \u0026amp; Galleguillos-Torres, M. (2022). Global urban homogenization and the loss of emotions. Scientific Reports, 12(1), 22515. https://doi.org/10.1038/s41598-022-27141-7\nGrgic, D., \u0026amp; Podobnik, V. (2021). Application of Data Science for Understanding Emotional Dimensional Behavior and Their Connection to Uncertainty and Risk Behavior. IEEE Access, 9, 72624–72636. https://doi.org/10.1109/ACCESS.2021.3079877\nGrzybowski, S. J., Wyczesany, M., Cichecka, H., \u0026amp; Tokarska, A. (2021). The Words of Affectivity. Affect, Category, and Social Evaluation Norms for 400 Polish Adjectives. Frontiers in Psychology, 12, 683012. https://doi.org/10.3389/fpsyg.2021.683012\nGuan, L., Shi, W., Li, Q., Oktavianus, J., \u0026amp; Wu, M. (2023). Have color representations in books changed over the past 200 years? An empirical analysis based on the Google Books Ngram corpus. Color Research \u0026amp; Application, col.22904. https://doi.org/10.1002/col.22904\nGuareschi, S., Laini, A., England, J., Barrett, J., \u0026amp; Wood, P. J. (2021). Multiple co‐occurrent alien invaders constrain aquatic biodiversity in rivers. Ecological Applications, 31(6), e02385. https://doi.org/10.1002/eap.2385\nGuareschi, S., Laini, A., England, J., Johns, T., Winter, M., \u0026amp; Wood, P. J. (2021). Invasive species influence macroinvertebrate biomonitoring tools and functional diversity in British rivers. Journal of Applied Ecology, 58(1), 135–147. https://doi.org/10.1111/1365-2664.13795\nGuareschi, S., Wood, P. J., England, J., Barrett, J., \u0026amp; Laini, A. (2022). Back to the future: Exploring riverine macroinvertebrate communities’ invasibility. River Research and Applications, 38(8), 1374–1386. https://doi.org/10.1002/rra.3975\nGuasch, M., \u0026amp; Ferré, P. (2021). Emotion and concreteness effects when learning novel concepts in the native language. Psicológica Journal, 42(2), 177–191. https://doi.org/10.2478/psicolj-2021-0009\nGuerrini, G., Shefy, D., Shashar, N., Shafir, S., \u0026amp; Rinkevich, B. (2021). Morphometric and allometric rules of polyp’s landscape in regular and chimeric coral colonies of the branching species Stylophora pistillata. Developmental Dynamics, 250(5), 652–668. https://doi.org/10.1002/dvdy.290\nGuitard, D., \u0026amp; Saint-Aubin, J. (2022). Backward recall and foreknowledge of recall direction: A test of the Encoding–Retrieval Matching Hypothesis. Memory, 30(8), 1057–1072. https://doi.org/10.1080/09658211.2022.2079675\nGumus, M., DeSouza, D. D., Xu, M., Fidalgo, C., Simpson, W., \u0026amp; Robin, J. (2023). Evaluating the utility of daily speech assessments for monitoring depression symptoms. DIGITAL HEALTH, 9, 20552076231180523. https://doi.org/10.1177/20552076231180523\nGünther, F., Marelli, M., Tureski, S., \u0026amp; Petilli, M. A. (2023). ViSpa (Vision Spaces): A computer-vision-based representation system for individual images and concept prototypes, with large-scale evaluation. Psychological Review, 130(4), 896–934. https://doi.org/10.1037/rev0000392\nGünther, F., Petilli, M. A., Vergallito, A., \u0026amp; Marelli, M. (2022). Images of the unseen: Extrapolating visual representations for abstract and concrete words in a data-driven computational model. Psychological Research, 86(8), 2512–2532. https://doi.org/10.1007/s00426-020-01429-7\nGünther, F., Press, S. A., Dudschig, C., \u0026amp; Kaup, B. (2022). The limits of automatic sensorimotor processing during word processing: Investigations with repeated linguistic experience, memory consolidation during sleep, and rich linguistic learning contexts. Psychological Research, 86(6), 1792–1803. https://doi.org/10.1007/s00426-021-01620-4\nGupta, M., Hambarde, S., Verma, D., Deshpande, V., \u0026amp; Ranjan, R. (2023). Study and Empirical Analysis of Sentiment Analysis Approaches. In A. Neustein, P. N. Mahalle, P. Joshi, \u0026amp; G. R. Shinde (Eds.), AI, IoT, Big Data and Cloud Computing for Industry 4.0 (pp. 241–253). Springer International Publishing. https://doi.org/10.1007/978-3-031-29713-7_13\nGuzman, G. E. C., Takahashi, D. Y., \u0026amp; Fujita, A. (2022). A fast parameter estimator for large complex networks. Journal of Complex Networks, 10(3), cnac022. https://doi.org/10.1093/comnet/cnac022\nHafri, A., Gleitman, L. R., Landau, B., \u0026amp; Trueswell, J. C. (2023). Where word and world meet: Language and vision share an abstract representation of symmetry. Journal of Experimental Psychology: General, 152(2), 509–527. https://doi.org/10.1037/xge0001283\nHager, N. M., Judah, M. R., \u0026amp; Rawls, E. (2022). Win, lose, or draw: Examining salience, reward memory, and depression with the reward positivity. Psychophysiology, 59(1), e13953. https://doi.org/10.1111/psyp.13953\nHamner, J. W., \u0026amp; Tan, C. O. (2022). Linear Mixed Effect Models for Rehabilitation Research. American Journal of Physical Medicine \u0026amp; Rehabilitation, 101(8), 789–794. https://doi.org/10.1097/PHM.0000000000001888\nHan, C., Moulton, K., Block, T., Gendron, H., \u0026amp; Nederveen, S. (2021). Pronouns Are as Sensitive to Structural Constraints as Reflexives in Early Processing: Evidence From Visual World Paradigm Eye-Tracking. Frontiers in Psychology, 12, 611466. https://doi.org/10.3389/fpsyg.2021.611466\nHan, P., Li, J., Dan, Y., Liu, B., Chen, X., \u0026amp; Fang, Z. (2022). Decadal Changes in the Annual Growth of Two Commercial Ommastrephid Species in the Pacific Ocean. Fishes, 7(5), 280. https://doi.org/10.3390/fishes7050280\nHarmon, T. G., Nielsen, C., Loveridge, C., \u0026amp; Williams, C. (2022). Effects of Positive and Negative Emotions on Picture Naming for People With Mild-to-Moderate Aphasia: A Preliminary Investigation. Journal of Speech, Language, and Hearing Research, 65(3), 1025–1043. https://doi.org/10.1044/2021_JSLHR-21-00190\nHarp, N. R., Brown, C. C., \u0026amp; Neta, M. (2021). Spring Break or Heart Break? Extending Valence Bias to Emotional Words. Social Psychological and Personality Science, 12(7), 1392–1401. https://doi.org/10.1177/1948550620972296\nHarrison, X. A. (2021). A brief introduction to the analysis of time-series data from biologging studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1831), 20200227. https://doi.org/10.1098/rstb.2020.0227\nHaslett, D. A., \u0026amp; Cai, Z. G. (2023). Similar-sounding words flesh out fuzzy meanings. Journal of Experimental Psychology: General, 152(8), 2359–2368. https://doi.org/10.1037/xge0001409\nHauser, D. J., \u0026amp; Schwarz, N. (2022). Implicit Bias Reflects the Company That Words Keep. Frontiers in Psychology, 13, 871221. https://doi.org/10.3389/fpsyg.2022.871221\nHautala, J., Hawelka, S., \u0026amp; Aro, M. (2022). Dual-stage and dual-deficit? Word recognition processes during text reading across the reading fluency continuum. Reading and Writing, 35(3), 663–686. https://doi.org/10.1007/s11145-021-10201-1\nHayes, B., Saitis, C., \u0026amp; Fazekas, G. (2022). Disembodied Timbres: A Study on Semantically Prompted FM Synthesis. Journal of the Audio Engineering Society, 70(5), 373–391. https://doi.org/10.17743/jaes.2022.0006\nHe, N., \u0026amp; Ferguson, S. (2022). Music emotion recognition based on segment-level two-stage learning. International Journal of Multimedia Information Retrieval, 11(3), 383–394. https://doi.org/10.1007/s13735-022-00230-z\nHe, Y., Margoni, F., Wu, Y., \u0026amp; Liu, H. (2021). fMRI evidence reveals emotional biases in bilingual decision making. Brain Structure and Function, 226(5), 1405–1421. https://doi.org/10.1007/s00429-021-02246-3\nHealey, C. G., Dinakaran, G., Padia, K., Nie, S., Benson, J. R., Caira, D., Shaw, D., Catalfu, G., \u0026amp; Devarajan, R. (2021). Visual Analytics of Text Conversation Sentiment and Semantics. Computer Graphics Forum, 40(6), 484–499. https://doi.org/10.1111/cgf.14391\nHein, K., \u0026amp; Kauschke, C. (2022). Word form processing at school age: Evidence for similarities between bilingual and monolingual children. Bilingualism: Language and Cognition, 25(2), 283–295. https://doi.org/10.1017/S1366728921000936\nHeinsberg, L. W., \u0026amp; Weeks, D. E. (2022). Post hoc power is not informative. Genetic Epidemiology, 46(7), 390–394. https://doi.org/10.1002/gepi.22464\nHeise, M. J., Mon, S. K., \u0026amp; Bowman, L. C. (2022). Utility of linear mixed effects models for event-related potential research with infants and children. Developmental Cognitive Neuroscience, 54, 101070. https://doi.org/10.1016/j.dcn.2022.101070\nHembree, A., Beggs, A., Marshall, T., \u0026amp; Ceesay, E. N. (2021). Decoding Linguistic Ambiguity in Times of Emergency based on Twitter Disaster Datasets. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 1239–1244. https://doi.org/10.1109/CCWC51732.2021.9375916\nHenderson, M. E. T., Brayson, D., \u0026amp; Halsey, L. G. (2021). The cardio‐respiratory effects of passive heating and the human thermoneutral zone. Physiological Reports, 9(16). https://doi.org/10.14814/phy2.14973\nHertel, A. G., Royauté, R., Zedrosser, A., \u0026amp; Mueller, T. (2021). Biologging reveals individual variation in behavioural predictability in the wild. Journal of Animal Ecology, 90(3), 723–737. https://doi.org/10.1111/1365-2656.13406\nHinojosa, J. A., Guasch, M., Montoro, P. R., Albert, J., Fraga, I., \u0026amp; Ferré, P. (2023). The bright side of words: Norms for 9000 Spanish words in seven discrete positive emotions. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02229-8\nHinojosa, J. A., Haro, J., Magallares, S., Duñabeitia, J. A., \u0026amp; Ferré, P. (2021). Iconicity ratings for 10,995 Spanish words and their relationship with psycholinguistic variables. Behavior Research Methods, 53(3), 1262–1275. https://doi.org/10.3758/s13428-020-01496-z\nHipson, W. E., Kiritchenko, S., Mohammad, S. M., \u0026amp; Coplan, R. J. (2021). Examining the language of solitude versus loneliness in tweets. Journal of Social and Personal Relationships, 38(5), 1596–1610. https://doi.org/10.1177/0265407521998460\nHitomi, T., Gerrits, R., \u0026amp; Hartsuiker, R. J. (2021). Using functional near-infrared spectroscopy to study word production in the brain: A picture-word interference study. Journal of Neurolinguistics, 57, 100957. https://doi.org/10.1016/j.jneuroling.2020.100957\nHo, J., \u0026amp; Chiu, M. M. (2022). Media portrayals of the Hong Kong Occupy Central Movement’s social actors: Multilevel and critical discourse analysis. Journal of Language and Politics, 21(1), 81–116. https://doi.org/10.1075/jlp.20030.ho\nHoemann, K., Barrett, L. F., \u0026amp; Quigley, K. S. (2021). Emotional Granularity Increases With Intensive Ambulatory Assessment: Methodological and Individual Factors Influence How Much. Frontiers in Psychology, 12, 704125. https://doi.org/10.3389/fpsyg.2021.704125\nHoemann, K., Khan, Z., Kamona, N., Dy, J., Barrett, L. F., \u0026amp; Quigley, K. S. (2021). Investigating the relationship between emotional granularity and cardiorespiratory physiological activity in daily life. Psychophysiology, 58(6), e13818. https://doi.org/10.1111/psyp.13818\nHofmann, K., \u0026amp; Baumann, A. (2021). Trochaic bias overrides stress typicality in English lexical development. Journal of Child Language, 48(4), 645–669. https://doi.org/10.1017/S030500092000046X\nHoltgraves, T. (2021). Understanding Miscommunication: Speech Act Recognition in Digital Contexts. Cognitive Science, 45(10), e13023. https://doi.org/10.1111/cogs.13023\nHomann, L. A., Roberts, B. R. T., Ahmed, S., \u0026amp; Fernandes, M. A. (2022). Are emojis processed visuo-spatially or verbally? Evidence for dual codes. Visual Cognition, 30(4), 267–279. https://doi.org/10.1080/13506285.2022.2050871\nHöne, U., Krause, E. T., Bussemas, R., Traulsen, I., \u0026amp; Schrader, L. (2023). Usage of outdoor runs and defaecation behaviour of fattening pigs. Applied Animal Behaviour Science, 258, 105821. https://doi.org/10.1016/j.applanim.2022.105821\nHopfgartner, N., Ruprechter, T., \u0026amp; Helic, D. (2022). Retention and Relapse in Gambling Self-help Communities on Reddit. In F. Hopfgartner, K. Jaidka, P. Mayr, J. Jose, \u0026amp; J. Breitsohl (Eds.), Social Informatics (Vol. 13618, pp. 305–319). Springer International Publishing. https://doi.org/10.1007/978-3-031-19097-1_19\nHora, M., Struška, M., Matějovská, Z., Kubový, P., \u0026amp; Sládek, V. (2024). Muscle activity during crouched walking. American Journal of Biological Anthropology, 183(1), 79–91. https://doi.org/10.1002/ajpa.24834\nHörberg, T., Larsson, M., \u0026amp; Olofsson, J. K. (2022). The Semantic Organization of the English Odor Vocabulary. Cognitive Science, 46(11), e13205. https://doi.org/10.1111/cogs.13205\nHu, M., Rao, A., Kejriwal, M., \u0026amp; Lerman, K. (2021). Socioeconomic Correlates of Anti-Science Attitudes in the US. Future Internet, 13(6), 160. https://doi.org/10.3390/fi13060160\nHuang, S., Du, H., \u0026amp; Qu, C. (2021). Emotional responses to mortality salience: Behavioral and ERPs evidence. PLOS ONE, 16(3), e0248699. https://doi.org/10.1371/journal.pone.0248699\nHuang, Y.-W., Prehofer, C., Lindskog, W., Puts, R., Mosca, P., \u0026amp; Kauermann, G. (2023). Predictive Energy Management for Battery Electric Vehicles with Hybrid Models. In A. L. Martins, J. C. Ferreira, A. Kocian, \u0026amp; U. Tokkozhina (Eds.), Intelligent Transport Systems (Vol. 486, pp. 182–196). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-30855-0_13\nHudaib, A.-R. (2021). Letter to the editor regarding “Accelerated theta burst stimulation for the treatment of depression: A randomised controlled trial.” Brain Stimulation, 14(6), 1586. https://doi.org/10.1016/j.brs.2021.08.025\nHugentobler, K. G., \u0026amp; Lüdtke, J. (2021). Micropoetry Meets Neurocognitive Poetics: Influence of Associations on the Reception of Poetry. Frontiers in Psychology, 12, 737756. https://doi.org/10.3389/fpsyg.2021.737756\nHung, A.-Y., Chien, L.-C., \u0026amp; Lin, R.-T. (2022). Association between shift rotation and 30-year Framingham risk of cardiovascular disease among male workers in a medium-sized manufacturing factory. Industrial Health, 61(1), 14–23. https://doi.org/10.2486/indhealth.2021-0278\nHunter, C. L., Gray, Z. J., Trudell, E. V., Kennedy, L. D., \u0026amp; Shields, G. S. (2023). Writing about a stressful experience improves semantic clustering of memory in men, not women. Stress and Health, smi.3272. https://doi.org/10.1002/smi.3272\nIaniszewski, A., Fuente, A., \u0026amp; Gagné, J.-P. (2021). Auditory brainstem response asymmetries in older adults: An exploratory study using click and speech stimuli. PLOS ONE, 16(5), e0251287. https://doi.org/10.1371/journal.pone.0251287\nImbault, C., Titone, D., Warriner, A. B., \u0026amp; Kuperman, V. (2021). How are words felt in a second language: Norms for 2,628 English words for valence and arousal by L2 speakers. Bilingualism: Language and Cognition, 24(2), 281–292. https://doi.org/10.1017/S1366728920000474\nImbir, K. K., Duda-Goławska, J., Sobieszek, A., Wielgopolan, A., Pastwa, M., \u0026amp; Żygierewicz, J. (2022). Arousal, subjective significance and the origin of valence aligned words in the processing of an emotional categorisation task. PLOS ONE, 17(3), e0265537. https://doi.org/10.1371/journal.pone.0265537\nImbir, K. K., \u0026amp; Pastwa, M. (2021). Can valence and origin of emotional words influence the assessments of ambiguous stimuli in terms of warmth or competence? PeerJ, 9, e10488. https://doi.org/10.7717/peerj.10488\nInohara, K., \u0026amp; Utsumi, A. (2022). JWSAN: Japanese word similarity and association norm. Language Resources and Evaluation, 56(1), 109–137. https://doi.org/10.1007/s10579-021-09543-7\nIoannucci, S., Borragán, G., \u0026amp; Zénon, A. (2022). Passive visual stimulation induces fatigue under conditions of high arousal elicited by auditory tasks. Journal of Experimental Psychology: General, 151(12), 3097–3113. https://doi.org/10.1037/xge0001224\nIrwin, C., McCartney, D., Grant, G., Delang, N., Bartrim, K., Cox, G. R., \u0026amp; Desbrow, B. (2022). Effects of Different Sources of Low-Dose Caffeine on Mood/Arousal and Cognitive Performance. Perceptual and Motor Skills, 129(6), 1672–1690. https://doi.org/10.1177/00315125221124369\nIsaacs, J. Y., Thompson, K., Yakovenko, PhD, I., Dobson, K., Chen, S.-P., Hudson, A., Mahu, I. T., \u0026amp; Stewart, S. H. (2023). Social norms of college students engaging in non-medical prescription drug use to get high: What’s sex got to do with it? Journal of American College Health, 71(8), 2587–2594. https://doi.org/10.1080/07448481.2021.1979007\nIshiguro, S., \u0026amp; Saito, S. (2021). The detrimental effect of semantic similarity in short-term memory tasks: A meta-regression approach. Psychonomic Bulletin \u0026amp; Review, 28(2), 384–408. https://doi.org/10.3758/s13423-020-01815-7\nJacobs, A. M., \u0026amp; Kinder, A. (2022). Computational Models of Readers’ Apperceptive Mass. Frontiers in Artificial Intelligence, 5, 718690. https://doi.org/10.3389/frai.2022.718690\nJacobs, C. L. (2022). Quantifying Context With and Without Statistical Language Models. In M. Danesi (Ed.), Handbook of Cognitive Mathematics (pp. 1053–1081). Springer International Publishing. https://doi.org/10.1007/978-3-031-03945-4_17\nJaiswal, T., Pandey, M., \u0026amp; Tripathi, P. (2021). State-of-the-Art Natural Language Processing Techniques. In N. Mohan, R. Singla, P. Kaushal, \u0026amp; S. Kadry, Artificial Intelligence, Machine Learning, and Data Science Technologies (1st ed., pp. 219–247). CRC Press. https://doi.org/10.1201/9781003153405-12\nJamalishahni, T., Turrell, G., Villanueva, K., Foster, S., \u0026amp; Davern, M. (2022). Contribution of the built environment to inequity in loneliness by neighbourhood disadvantage in Australia. Cities \u0026amp; Health, 6(6), 1067–1080. https://doi.org/10.1080/23748834.2022.2145733\nJames, E., Gaskell, M. G., Murphy, G., Tulip, J., \u0026amp; Henderson, L. M. (2023). Word learning in the context of semantic prior knowledge: Evidence of interference from feature-based neighbours in children and adults. Language, Cognition and Neuroscience, 38(2), 157–174. https://doi.org/10.1080/23273798.2022.2102198\nJang, S., Chung, J., \u0026amp; Rao, V. R. (2021). The importance of functional and emotional content in online consumer reviews for product sales: Evidence from the mobile gaming market. Journal of Business Research, 130, 583–593. https://doi.org/10.1016/j.jbusres.2019.09.027\nJanse, E., \u0026amp; Andringa, S. J. (2021). The roles of cognitive abilities and hearing acuity in older adults’ recognition of words taken from fast and spectrally reduced speech. Applied Psycholinguistics, 42(3), 763–790. https://doi.org/10.1017/S0142716421000047\nJauch, M., Büttner, C. M., Albath, E. A., \u0026amp; Greifeneder, R. (2023). Unvaccinated and left out: The mismatch of vaccine supply and demand during COVID‐19 as a source of interpersonal and societal exclusion. Analyses of Social Issues and Public Policy, 23(3), 537–551. https://doi.org/10.1111/asap.12360\nJiang, H., Frank, M. C., Kulkarni, V., \u0026amp; Fourtassi, A. (2022). Exploring Patterns of Stability and Change in Caregivers’ Word Usage Across Early Childhood. Cognitive Science, 46(7), e13177. https://doi.org/10.1111/cogs.13177\nJimenez Chavez, C. L., Van Doren, E., Scheldrup, G., Rivera, E., Torres-Gonzalez, J., Herbert, J. N., Denning, C. J. E., Khorsandi, S., Garcia, A., Castro, M., \u0026amp; Szumlinski, K. K. (2023). A subchronic history of binge-drinking elicits mild, age- and sex-selective, affective, and cognitive anomalies in C57BL/6J mice. Frontiers in Behavioral Neuroscience, 17, 1192076. https://doi.org/10.3389/fnbeh.2023.1192076\nJiménez, S., Juárez‐Ramírez, R., Castillo, V. H., Ramírez‐Noriega, A., \u0026amp; Quezada, Á. (2021). The use of a weighted affective lexicon in a tutoring system to improve student motivation to learn. Expert Systems, 38(5), e12483. https://doi.org/10.1111/exsy.12483\nJohari, K., Riccardi, N., Malyutina, S., Modi, M., \u0026amp; Desai, R. H. (2022). HD-tDCS of primary and higher-order motor cortex affects action word processing. Frontiers in Human Neuroscience, 16, 959455. https://doi.org/10.3389/fnhum.2022.959455\nJohns, B. T. (2021a). Disentangling contextual diversity: Communicative need as a lexical organizer. Psychological Review, 128(3), 525–557. https://doi.org/10.1037/rev0000265\nJohns, B. T. (2021b). Distributional social semantics: Inferring word meanings from communication patterns. Cognitive Psychology, 131, 101441. https://doi.org/10.1016/j.cogpsych.2021.101441\nJohns, B. T., Jamieson, R. K., \u0026amp; Jones, M. N. (2023). Scalable cognitive modelling: Putting Simon’s (1969) ant back on the beach. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 77(3), 185–201. https://doi.org/10.1037/cep0000306\nJohnson, E., \u0026amp; Arnold, J. E. (2021). Individual Differences in Print Exposure Predict Use of Implicit Causality in Pronoun Comprehension and Referential Prediction. Frontiers in Psychology, 12, 672109. https://doi.org/10.3389/fpsyg.2021.672109\nJonauskaite, D., Sutton, A., Cristianini, N., \u0026amp; Mohr, C. (2021). English colour terms carry gender and valence biases: A corpus study using word embeddings. PLOS ONE, 16(6), e0251559. https://doi.org/10.1371/journal.pone.0251559\nJongman, S. R., Khoe, Y. H., \u0026amp; Hintz, F. (2021). Vocabulary Size Influences Spontaneous Speech in Native Language Users: Validating the Use of Automatic Speech Recognition in Individual Differences Research. Language and Speech, 64(1), 35–51. https://doi.org/10.1177/0023830920911079\nKaakinen, J. K., Werlen, E., Kammerer, Y., Acartürk, C., Aparicio, X., Baccino, T., Ballenghein, U., Bergamin, P., Castells, N., Costa, A., Falé, I., Mégalakaki, O., \u0026amp; Ruiz Fernández, S. (2022). IDEST: International Database of Emotional Short Texts. PLOS ONE, 17(10), e0274480. https://doi.org/10.1371/journal.pone.0274480\nKabbach, A., \u0026amp; Herbelot, A. (2021). Avoiding Conflict: When Speaker Coordination Does Not Require Conceptual Agreement. Frontiers in Artificial Intelligence, 3, 523920. https://doi.org/10.3389/frai.2020.523920\nKaestner, E., Thesen, T., Devinsky, O., Doyle, W., Carlson, C., \u0026amp; Halgren, E. (2021). An Intracranial Electrophysiology Study of Visual Language Encoding: The Contribution of the Precentral Gyrus to Silent Reading. Journal of Cognitive Neuroscience, 33(11), 2197–2214. https://doi.org/10.1162/jocn_a_01764\nKaiser, E. (2021). Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Frontiers in Psychology, 12, 701486. https://doi.org/10.3389/fpsyg.2021.701486\nKaiser, E., \u0026amp; Wang, C. (2021). Packaging Information as Fact Versus Opinion: Consequences of the (Information-)Structural Position of Subjective Adjectives. Discourse Processes, 58(7), 617–641. https://doi.org/10.1080/0163853X.2020.1838196\nKapteijns, B., \u0026amp; Hintz, F. (2021). Comparing predictors of sentence self-paced reading times: Syntactic complexity versus transitional probability metrics. PLOS ONE, 16(7), e0254546. https://doi.org/10.1371/journal.pone.0254546\nKaran, M., Rahal, D., Almeida, D. M., Bower, J. E., Irwin, M. R., McCreath, H., Seeman, T., \u0026amp; Fuligni, A. J. (2021). School commute time, chronotype, and altered HPA axis functioning during adolescence. Psychoneuroendocrinology, 133, 105371. https://doi.org/10.1016/j.psyneuen.2021.105371\nKareklas, K., Kunc, H. P., \u0026amp; Arnott, G. (2021). Extrinsic stressors modulate resource evaluations: Insights from territoriality under artificial noise. Frontiers in Zoology, 18(1), 12. https://doi.org/10.1186/s12983-021-00397-x\nKarimkhani, F., Rahmani, H., Zare, A., Sahebnassagh, R., \u0026amp; Aghakasiri, K. (2021). Tarvajeh: Word Association Norms for Persian Words. Journal of Psycholinguistic Research, 50(4), 863–882. https://doi.org/10.1007/s10936-020-09751-2\nKarras, S. N., Koufakis, T., Adamidou, L., Dimakopoulos, G., Karalazou, P., Thisiadou, K., Zebekakis, P., Makedou, K., \u0026amp; Kotsa, K. (2023). Different patterns of changes in free 25-hydroxyvitamin D concentrations during intermittent fasting among meat eaters and non-meat eaters and correlations with amino acid intake. International Journal of Food Sciences and Nutrition, 74(2), 257–267. https://doi.org/10.1080/09637486.2023.2171370\nKasri, M., Birjali, M., El Ansari, A., \u0026amp; Beni-Hssane, A. (2022). Enhanced Word Embeddings with Sentiment Contextualized Vectors for Sentiment Analysis. In Y. Maleh, M. Alazab, N. Gherabi, L. Tawalbeh, \u0026amp; A. A. Abd El-Latif (Eds.), Advances in Information, Communication and Cybersecurity (Vol. 357, pp. 77–86). Springer International Publishing. https://doi.org/10.1007/978-3-030-91738-8_8\nKasri, M., Birjali, M., Nabil, M., Beni-Hssane, A., El-Ansari, A., \u0026amp; El Fissaoui, M. (2022). Refining Word Embeddings with Sentiment Information for Sentiment Analysis. Journal of ICT Standardization. https://doi.org/10.13052/jicts2245-800X.1031\nKauselmann, K., Schrader, L., Glitz, B., Gallmann, E., Schrade, H., \u0026amp; Krause, E. T. (2021). Tasty straw pellets – Exploration of flavoured rooting material by pigs. Animal, 15(6), 100239. https://doi.org/10.1016/j.animal.2021.100239\nKauselmann, K., Schrader, L., Schrade, H., \u0026amp; Krause, E. T. (2021). The Effects of Refilling Additional Rooting Material on Exploration Duration and Tail Damages in Rearing and Fattening Pigs. Frontiers in Animal Science, 2, 749583. https://doi.org/10.3389/fanim.2021.749583\nKayabaşı, D., \u0026amp; Gökgöz, K. (2023). The Causative-Inchoative Alternation and Age-of-Acquisition Effects on Multi-predicate Constructions in Turkish Sign Language. Language Learning and Development, 19(2), 125–150. https://doi.org/10.1080/15475441.2022.2047690\nKeller, B. T., \u0026amp; Enders, C. K. (2023). An Investigation of Factored Regression Missing Data Methods for Multilevel Models with Cross-Level Interactions. Multivariate Behavioral Research, 58(5), 938–963. https://doi.org/10.1080/00273171.2022.2147049\nKenett, Y. N. (2023). Creatively Searching Through Semantic Memory Structure. In L. J. Ball \u0026amp; F. Vallée-Tourangeau, The Routledge International Handbook of Creative Cognition (1st ed., pp. 160–179). Routledge. https://doi.org/10.4324/9781003009351-13\nKenett, Y. N., Ungar, L., \u0026amp; Chatterjee, A. (2021). Beauty and Wellness in the Semantic Memory of the Beholder. Frontiers in Psychology, 12, 696507. https://doi.org/10.3389/fpsyg.2021.696507\nKentner, G., Franz, I., \u0026amp; Menninghaus, W. (2022). Poetics of reduplicative word formation: Evidence from a rating and recall experiment. Language and Cognition, 14(3), 333–361. https://doi.org/10.1017/langcog.2021.27\nKernan, C. E., Jones, J. S., Robillard, T., Schöneich, S., \u0026amp; Ter Hofstede, H. M. (2022). Efficacy constraints on female directional preference stabilize a male call component in a multimodal cricket duet. Animal Behaviour, 193, 33–49. https://doi.org/10.1016/j.anbehav.2022.08.011\nKhadilkar, K., KhudaBukhsh, A. R., \u0026amp; Mitchell, T. M. (2022). Gender bias, social bias, and representation in Bollywood and Hollywood. Patterns, 3(2), 100409. https://doi.org/10.1016/j.patter.2021.100409\nKhanna, M. M., \u0026amp; Cortese, M. J. (2021). How well imageability, concreteness, perceptual strength, and action strength predict recognition memory, lexical decision, and reading aloud performance. Memory, 29(5), 622–636. https://doi.org/10.1080/09658211.2021.1924789\nKharlamov, V., Brenner, D., \u0026amp; Tucker, B. V. (2022). Temporal and spectral characteristics of conversational versus read fricatives in American English. The Journal of the Acoustical Society of America, 152(4), 2073–2081. https://doi.org/10.1121/10.0014420\nKhatin-Zadeh, O. (2022). How does Representational Transformation Enhance Mathematical Thinking? Axiomathes, 32(S2), 283–292. https://doi.org/10.1007/s10516-021-09602-2\nKhatin-Zadeh, O., Eskandari, Z., Cervera-Torres, S., Ruiz Fernández, S., Farzi, R., \u0026amp; Marmolejo-Ramos, F. (2021). The strong versions of embodied cognition: Three challenges faced. Psychology \u0026amp; Neuroscience, 14(1), 16–33. https://doi.org/10.1037/pne0000252\nKhatin-Zadeh, O., Eskandari, Z., Yazdani-Fazlabadi, B., \u0026amp; Marmolejo-Ramos, F. (2022). Four Functions of Gesture in Promoting Thought Processes. Psychological Studies, 67(4), 411–418. https://doi.org/10.1007/s12646-022-00680-9\nKhatin-Zadeh, O., Farsani, D., \u0026amp; Breda, A. (2023). How can transforming representation of mathematical entities help us employ more cognitive resources? Frontiers in Psychology, 14, 1091678. https://doi.org/10.3389/fpsyg.2023.1091678\nKhatin-Zadeh, O., Farsani, D., Hu, J., \u0026amp; Marmolejo-Ramos, F. (2023). The role of perceptual and action effector strength of graphs and bases of mathematical metaphors in the metaphorical processing of mathematical concepts. Frontiers in Psychology, 14, 1178095. https://doi.org/10.3389/fpsyg.2023.1178095\nKhatin-Zadeh, O., Hu, J., Banaruee, H., \u0026amp; Marmolejo-Ramos, F. (2023). How emotions are metaphorically embodied: Measuring hand and head action strengths of typical emotional states. Cognition and Emotion, 37(3), 486–498. https://doi.org/10.1080/02699931.2023.2181314\nKhatin-Zadeh, O., Marmolejo-Ramos, F., \u0026amp; Trenholm, S. (2022). The Role of Motion-Based Metaphors in Enhancing Mathematical Thought: A Perspective from Embodiment Theories of Cognition. Journal of Cognitive Enhancement, 6(4), 455–462. https://doi.org/10.1007/s41465-022-00247-6\nKhiali, S., Sarbakhsh, P., Mashayekhi, S., Mohamadrezapour, E., Dousti, S., \u0026amp; Entezari-Maleki, T. (2021). The effects of Allopurinol on levels of cardiac troponin Following Non-ST Elevation Myocardial Infarction: A Pilot Randomized Clinical Trial. Pharmaceutical Sciences, 1. https://doi.org/10.34172/PS.2021.14\nKilb, M., \u0026amp; Labudek, S. (2022). Effects of behavioral performance, intrinsic reward value, and context stability on the formation of a higher-order nutrition habit: An intensive longitudinal diary study. International Journal of Behavioral Nutrition and Physical Activity, 19(1), 105. https://doi.org/10.1186/s12966-022-01343-8\nKim, K., Banquer, A. M., Resnik, S. N., Johnson, J. D., \u0026amp; Fernandez, L. (2022). Self-reference and cognitive effort: Source memory for affectively neutral information is impaired following negative compared to positive self-referential processing. Journal of Cognitive Psychology, 34(7), 833–845. https://doi.org/10.1080/20445911.2022.2067553\nKing, D., \u0026amp; Gentner, D. (2022). Verb Metaphoric Extension Under Semantic Strain. Cognitive Science, 46(5), e13141. https://doi.org/10.1111/cogs.13141\nKissler, J., \u0026amp; Bromberek-Dyzman, K. (2021). Mood Induction Differently Affects Early Neural Correlates of Evaluative Word Processing in L1 and L2. Frontiers in Psychology, 11, 588902. https://doi.org/10.3389/fpsyg.2020.588902\nKizilirmak, J. M., Gallisch, N., Schott, B. H., \u0026amp; Folta-Schoofs, K. (2021). Insight is not always the same: Differences between true, false, and induced insights in the matchstick arithmetic task. Journal of Cognitive Psychology, 33(6–7), 700–717. https://doi.org/10.1080/20445911.2021.1912049\nKjell, O., Giorgi, S., \u0026amp; Schwartz, H. A. (2023). The text-package: An R-package for analyzing and visualizing human language using natural language processing and transformers. Psychological Methods. https://doi.org/10.1037/met0000542\nKlein, A., \u0026amp; Badia, T. (2022). Where Divergent Ideas Converge: Answers to AUT Found on Short List of Word Co-Occurrences Terms. Creativity Research Journal, 1–17. https://doi.org/10.1080/10400419.2022.2103314\nKleindorfer, S., Colombelli‐Négrel, D., Common, L. K., O’Connor, J. A., Peters, K. J., Katsis, A. C., Dudaniec, R. Y., Sulloway, F. J., \u0026amp; Adreani, N. M. (2022). Functional traits and foraging behaviour: Avian vampire fly larvae change the beak and fitness of their Darwin’s finch hosts. Functional Ecology, 36(7), 1806–1817. https://doi.org/10.1111/1365-2435.14061\nKnief, U., \u0026amp; Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53(6), 2576–2590. https://doi.org/10.3758/s13428-021-01587-5\nKnoph, R. E., Lawrence, J. F., \u0026amp; Francis, D. J. (2023). The Dimensionality of Lexical Features in General, Academic, and Disciplinary Vocabulary. Scientific Studies of Reading, 1–25. https://doi.org/10.1080/10888438.2023.2241939\nKompa, N. A. (2021). Language and embodiment—Or the cognitive benefits of abstract representations. Mind \u0026amp; Language, 36(1), 27–47. https://doi.org/10.1111/mila.12266\nKonrath, S., \u0026amp; Luminet, O. (2022). How induced self-focus versus other-focus affect emotional recognition and verbalization. Journal of Cultural Cognitive Science, 6(1), 27–50. https://doi.org/10.1007/s41809-021-00091-8\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKositsky, A., Barrett, R. S., Du Moulin, W., Diamond, L. E., \u0026amp; Saxby, D. J. (2022). Semitendinosus muscle morphology in relation to surface electrode placement in anterior cruciate ligament reconstructed and contralateral legs. Frontiers in Sports and Active Living, 4, 959966. https://doi.org/10.3389/fspor.2022.959966\nKovács, L., Bóta, A., Hajdu, L., \u0026amp; Krész, M. (2022). Brands, networks, communities: How brand names are wired in the mind. PLOS ONE, 17(8), e0273192. https://doi.org/10.1371/journal.pone.0273192\nKovács, L., Orosz, K., \u0026amp; Pollner, P. (2021). Networks in the mental lexicon – contributions from Hungarian. Glottotheory, 12(2), 107–127. https://doi.org/10.1515/glot-2021-2019\nKracizy, R. O., Brazão, C. C., De Marco Viott, A., Ribeiro, K., Koppenol, A., Vaz Dos Santos, A. M., \u0026amp; Ballester, E. L. C. (2021). Evaluation of aflatoxin and fumonisin in the diet of Pacific White Shrimp (Litopenaeus vannamei) on their performance and health. Aquaculture, 544, 737051. https://doi.org/10.1016/j.aquaculture.2021.737051\nKrakenberg, V., Wewer, M., Palme, R., Kaiser, S., Sachser, N., \u0026amp; Richter, S. H. (2021). Regular touchscreen training affects faecal corticosterone metabolites and anxiety-like behaviour in mice. Behavioural Brain Research, 401, 113080. https://doi.org/10.1016/j.bbr.2020.113080\nKrautz, A. E., \u0026amp; Keuleers, E. (2022). LinguaPix database: A megastudy of picture-naming norms. Behavior Research Methods, 54(2), 941–954. https://doi.org/10.3758/s13428-021-01651-0\nKu, L.-C., Allen, J. J. B., \u0026amp; Lai, V. T. (2022). Attention and regulation during emotional word comprehension in older adults: Evidence from event-related potentials and brain oscillations. Brain and Language, 227, 105086. https://doi.org/10.1016/j.bandl.2022.105086\nKühne, K., Nenaschew, K., \u0026amp; Miklashevsky, A. (2022). Space-valence mapping of social concepts: Do we arrange negative and positive ethnic stereotypes from left to right? Frontiers in Psychology, 13, 1070177. https://doi.org/10.3389/fpsyg.2022.1070177\nKuhnke, P., Kiefer, M., \u0026amp; Hartwigsen, G. (2021). Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cerebral Cortex, 31(7), 3475–3493. https://doi.org/10.1093/cercor/bhab026\nKulkarni, R. U., Wang, C. L., \u0026amp; Bertozzi, C. R. (2022). Analyzing nested experimental designs—A user-friendly resampling method to determine experimental significance. PLOS Computational Biology, 18(5), e1010061. https://doi.org/10.1371/journal.pcbi.1010061\nKumar, A. A. (2021). Semantic memory: A review of methods, models, and current challenges. Psychonomic Bulletin \u0026amp; Review, 28(1), 40–80. https://doi.org/10.3758/s13423-020-01792-x\nKumar, A. A., Steyvers, M., \u0026amp; Balota, D. A. (n.d.). A critical review of network-based and distributional approaches to semantic memory structure and processes. Topics in Cognitive Science. https://doi.org/10.1111/tops.12548\nKumar, A. A., Steyvers, M., \u0026amp; Balota, D. A. (2021). Semantic Memory Search and Retrieval in a Novel Cooperative Word Game: A Comparison of Associative and Distributional Semantic Models. Cognitive Science, 45(10), e13053. https://doi.org/10.1111/cogs.13053\nKush, D., \u0026amp; Dillon, B. (2021). Principle B constrains the processing of cataphora: Evidence for syntactic and discourse predictions. Journal of Memory and Language, 120, 104254. https://doi.org/10.1016/j.jml.2021.104254\nKvestad, I., Hysing, M., Kjellevold, M., Næss, S., Dahl, L., \u0026amp; Markhus, M. W. (2021). Maternal Cod Intake during Pregnancy and Infant Development in the First Year of Life: Secondary Analyses from a Randomized Controlled Trial. The Journal of Nutrition, 151(7), 1879–1885. https://doi.org/10.1093/jn/nxab083\nKyröläinen, A.-J., Keuleers, E., Mandera, P., Brysbaert, M., \u0026amp; Kuperman, V. (2021). Affect across adulthood: Evidence from English, Dutch, and Spanish. Journal of Experimental Psychology: General, 150(4), 792–812. https://doi.org/10.1037/xge0000950\nKyröläinen, A.-J., \u0026amp; Kuperman, V. (2023). Emotional State of Older Adults During the COVID-19 Pandemic: Insights from the Cognitive and Social Well-Being (CoSoWELL) Corpus. Experimental Aging Research, 1–24. https://doi.org/10.1080/0361073X.2023.2219188\nKyröläinen, A.-J., Luke, J., Libben, G., \u0026amp; Kuperman, V. (2021). Valence norms for 3,600 English words collected during the COVID-19 pandemic: Effects of age and the pandemic. Behavior Research Methods, 54(5), 2445–2456. https://doi.org/10.3758/s13428-021-01740-0\nLago, S., Acuña Fariña, C., \u0026amp; Meseguer, E. (2021). The Reading Signatures of Agreement Attraction. Open Mind, 5, 132–153. https://doi.org/10.1162/opmi_a_00047\nLahdelma, I., Armitage, J., \u0026amp; Eerola, T. (2022). Affective priming with musical chords is influenced by pitch numerosity. Musicae Scientiae, 26(1), 208–217. https://doi.org/10.1177/1029864920911127\nLahti, L. (2022). Detecting the patient’s need for help with machine learning based on expressions. BMC Medical Research Methodology, 22(1), 60. https://doi.org/10.1186/s12874-021-01502-8\nLai, J., Zou, Y., Zhang, S., Zhang, X., \u0026amp; Mao, L. (2022). glmm.hp: An R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology, 15(6), 1302–1307. https://doi.org/10.1093/jpe/rtac096\nLaicher, H., Int-Veen, I., Torka, F., Kroczek, A., Bihlmaier, I., Storchak, H., Velten-Schurian, K., Dresler, T., Täglich, R., Fallgatter, A. J., Ehlis, A.-C., \u0026amp; Rosenbaum, D. (2022). Trait rumination and social anxiety separately influence stress-induced rumination and hemodynamic responses. Scientific Reports, 12(1), 5512. https://doi.org/10.1038/s41598-022-08579-1\nLam, B. P. W., Griffin, Z. M., \u0026amp; Marquardt, T. P. (2021). Performance Differences Between Native and Non-Native Speakers on a New Happy–Sad Executive Function Measure. Archives of Clinical Neuropsychology, 36(6), 965–975. https://doi.org/10.1093/arclin/acaa124\nLam, B. P. W., \u0026amp; Marquardt, T. P. (2022a). Emotional and Non-Emotional Verbal Fluency in Native and Non-Native Speakers. Archives of Clinical Neuropsychology, 37(1), 199–209. https://doi.org/10.1093/arclin/acab031\nLam, B. P. W., \u0026amp; Marquardt, T. P. (2022b). Factors Predicting Mental Effort Associated With Verbal Fluency: Cue Types, Switching, and Fear of Negative Evaluation. Journal of Speech, Language, and Hearing Research, 65(9), 3491–3501. https://doi.org/10.1044/2022_JSLHR-21-00563\nLam, S. S. L., Liu, T. W., Ng, S. S. M., Lai, C. W. K., \u0026amp; Woo, J. (2022). Bilateral Movement-based Computer Games Improve Sensorimotor Functions in Subacute Stroke Survivors. Journal of Rehabilitation Medicine, 54, jrm00307. https://doi.org/10.2340/jrm.v54.913\nLana, N., \u0026amp; Kuperman, V. (2023). Learning Concrete and Abstract Novel Words in Emotional Contexts: Evidence from Incidental Vocabulary Learning. Language Learning and Development, 1–16. https://doi.org/10.1080/15475441.2023.2246438\nLandry, É. R., Guitard, D., \u0026amp; Saint-Aubin, J. (2022). Arousal affects short-term serial recall. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 76(2), 99–110. https://doi.org/10.1037/cep0000272\nLaplante, É., Geraghty, V., Hendel, E., Sonier, R.-P., Guitard, D., \u0026amp; Saint-Aubin, J. (2023). Aural and written language elicit the same processes: Further evidence from the missing-phoneme effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(11), 1844–1860. https://doi.org/10.1037/xlm0001272\nLarranaga, D., \u0026amp; Sereno, A. (2023). Bigger is really better: Resolution of conflicting behavioural evidence for semantic size bias in a lexical decision task. Quarterly Journal of Experimental Psychology, 17470218231186582. https://doi.org/10.1177/17470218231186582\nLarssen, B. C., \u0026amp; Hodges, N. J. (2023). Updating of Implicit Adaptation Processes through Erroneous Numeric Feedback. Journal of Motor Behavior, 55(5), 475–492. https://doi.org/10.1080/00222895.2023.2232739\nLaurinavichyute, A., Yadav, H., \u0026amp; Vasishth, S. (2022). Share the code, not just the data: A case study of the reproducibility of articles published in the Journal of Memory and Language under the open data policy. Journal of Memory and Language, 125, 104332. https://doi.org/10.1016/j.jml.2022.104332\nLavitskaya, Y., Sedelkina, Y., Korotaevskaya, E., Tkacheva, L., Flaksman, M., \u0026amp; Nasledov, A. (2022). Does De-Iconization Affect Visual Recognition of Russian and English Iconic Words? Languages, 7(2), 97. https://doi.org/10.3390/languages7020097\nLawrason, S. V. C., \u0026amp; Martin Ginis, K. A. (2023). Evaluating the Feasibility, Acceptability, and Engagement of an mHealth Physical Activity Intervention for Adults With Spinal Cord Injury Who Walk: A Randomized Controlled Trial. Journal of Sport \u0026amp; Exercise Psychology, 45(2), 61–76. https://doi.org/10.1123/jsep.2022-0087\nLawrence, J. F., Knoph, R., McIlraith, A., Kulesz, P. A., \u0026amp; Francis, D. J. (2022). Reading Comprehension and Academic Vocabulary: Exploring Relations of Item Features and Reading Proficiency. Reading Research Quarterly, 57(2), 669–690. https://doi.org/10.1002/rrq.434\nLe, N. T., Truong, T. L., Asdornwised, W., Chaitusaney, S., \u0026amp; Benjapolakul, W. (2023). Energy Production Analysis of Rooftop PV Systems Equipped with Module-Level Power Electronics under Partial Shading Conditions Based on Mixed-Effects Model. Energies, 16(2), 970. https://doi.org/10.3390/en16020970\nLeblanc-Sirois, Y., Gélinas, C., \u0026amp; Blanchette, I. (2021). Negative emotions influence EEG correlates of inference formation during analogical reasoning. International Journal of Psychophysiology, 162, 49–59. https://doi.org/10.1016/j.ijpsycho.2021.02.002\nLeding, J. K. (2022). Thinking of death and remembering living things: Mortality salience and the animacy effect. Memory, 30(10), 1258–1266. https://doi.org/10.1080/09658211.2022.2102195\nLee, J., \u0026amp; Shin, J.-A. (2023). The cross-linguistic comparison of perceptual strength norms for Korean, English and L2 English. Frontiers in Psychology, 14, 1188909. https://doi.org/10.3389/fpsyg.2023.1188909\nLee, K. S., Murphy, J., Catmur, C., Bird, G., \u0026amp; Hobson, H. (2022). Furthering the language hypothesis of alexithymia: An integrated review and meta-analysis. Neuroscience \u0026amp; Biobehavioral Reviews, 141, 104864. https://doi.org/10.1016/j.neubiorev.2022.104864\nLee, L.-H., Li, J.-H., \u0026amp; Yu, L.-C. (2022). Chinese EmoBank: Building Valence-Arousal Resources for Dimensional Sentiment Analysis. ACM Transactions on Asian and Low-Resource Language Information Processing, 21(4), 1–18. https://doi.org/10.1145/3489141\nLee Meeuw Kjoe, P. R., Vermeulen, I. E., Agelink Van Rentergem, J. A., Van Der Wall, E., \u0026amp; Schagen, S. (2022). Standardized item selection for alternate computerized versions of Rey Auditory Verbal Learning Test(-based) word lists. Journal of Clinical and Experimental Neuropsychology, 44(9), 681–701. https://doi.org/10.1080/13803395.2023.2166904\nLee, S. T., Van Heuven, W. J. B., Price, J. M., \u0026amp; Leong, C. X. R. (2023). LexMAL: A quick and reliable lexical test for Malay speakers. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02202-5\nLee, Y. R., \u0026amp; Pustejovsky, J. E. (2023). Comparing random effects models, ordinary least squares, or fixed effects with cluster robust standard errors for cross-classified data. Psychological Methods. https://doi.org/10.1037/met0000538\nLeiva, L. A., Hota, A., \u0026amp; Oulasvirta, A. (2023). Describing UI Screenshots in Natural Language. ACM Transactions on Intelligent Systems and Technology, 14(1), 1–28. https://doi.org/10.1145/3564702\nLekkas, D., Gyorda, J. A., Price, G. D., Wortzman, Z., \u0026amp; Jacobson, N. C. (2022). Using the COVID-19 Pandemic to Assess the Influence of News Affect on Online Mental Health-Related Search Behavior Across the United States: Integrated Sentiment Analysis and the Circumplex Model of Affect. Journal of Medical Internet Research, 24(1), e32731. https://doi.org/10.2196/32731\nLepoutre, M., Vilar-Lluch, S., Borg, E., \u0026amp; Hansen, N. (2023). What is Hate Speech? The Case for a Corpus Approach. Criminal Law and Philosophy. https://doi.org/10.1007/s11572-023-09675-7\nLerche, V., Bucher, A., \u0026amp; Voss, A. (2021). Processing emotional expressions under fear of rejection: Findings from diffusion model analyses. Emotion, 21(1), 184–210. https://doi.org/10.1037/emo0000691\nLettieri, G., Handjaras, G., Bucci, E., Pietrini, P., \u0026amp; Cecchetti, L. (2023). How Male and Female Literary Authors Write About Affect Across Cultures and Over Historical Periods. Affective Science. https://doi.org/10.1007/s42761-023-00219-9\nLevy, O., Kenett, Y. N., Oxenberg, O., Castro, N., De Deyne, S., Vitevitch, M. S., \u0026amp; Havlin, S. (2021). Unveiling the nature of interaction between semantics and phonology in lexical access based on multilayer networks. Scientific Reports, 11(1), 14479. https://doi.org/10.1038/s41598-021-93925-y\nLewis, G., Towlson, C., Roversi, P., Domogalla, C., Herrington, L., \u0026amp; Barrett, S. (2022). Quantifying volume and high-speed technical actions of professional soccer players using foot-mounted inertial measurement units. PLOS ONE, 17(2), e0263518. https://doi.org/10.1371/journal.pone.0263518\nLi, B., Ajjaji, O., Gigandet, R., \u0026amp; Nazir, T. (2023). The body images of social robots. 2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO), 1–8. https://doi.org/10.1109/ARSO56563.2023.10187489\nLi, D., \u0026amp; Hauber, M. E. (2021). Parasitic begging calls of nestmate-evictor common cuckoos stimulate more parental provisions by red-winged blackbirds than calls of nest-sharing brown-headed cowbirds. Behavioral Ecology and Sociobiology, 75(1), 11. https://doi.org/10.1007/s00265-020-02955-5\nLi, F., Chao, W., Li, Y., Fu, B., Ji, Y., Wu, H., \u0026amp; Shi, G. (2021). Decoding imagined speech from EEG signals using hybrid-scale spatial-temporal dilated convolution network. Journal of Neural Engineering, 18(4), 0460c4. https://doi.org/10.1088/1741-2552/ac13c0\nLi, H., Warrington, K. L., Pagán, A., Paterson, K. B., \u0026amp; Wang, X. (2021). Independent effects of collocation strength and contextual predictability on eye movements in reading. Language, Cognition and Neuroscience, 36(8), 1001–1009. https://doi.org/10.1080/23273798.2021.1922726\nLi, M. (2022). Application of sentence-level text analysis: The role of emotion in an experimental learning intervention. Journal of Experimental Social Psychology, 99, 104278. https://doi.org/10.1016/j.jesp.2021.104278\nLi, N., Liu, Y., Li, S., Elashoff, R. M., \u0026amp; Li, G. (2021). A flexible joint model for multiple longitudinal biomarkers and a time‐to‐event outcome: With applications to dynamic prediction using highly correlated biomarkers. Biometrical Journal, 63(8), 1575–1586. https://doi.org/10.1002/bimj.202000085\nLi, Q., Li, X., Du, Y., Fan, Y., \u0026amp; Chen, X. (2022). A New Sentiment-Enhanced Word Embedding Method for Sentiment Analysis. Applied Sciences, 12(20), 10236. https://doi.org/10.3390/app122010236\nLi, X., Luo, D., Wang, C., Xia, Y., \u0026amp; Jin, H. (2022). Motor features of abstract verbs determine their representations in the motor system. Frontiers in Psychology, 13, 957426. https://doi.org/10.3389/fpsyg.2022.957426\nLi, Y., \u0026amp; Siew, C. S. Q. (2022). Diachronic semantic change in language is constrained by how people use and learn language. Memory \u0026amp; Cognition, 50(6), 1284–1298. https://doi.org/10.3758/s13421-022-01331-0\nLi, Y., \u0026amp; T. Hills, T. (2021). Language patterns of outgroup prejudice. Cognition, 215, 104813. https://doi.org/10.1016/j.cognition.2021.104813\nLi, Y., Xu, Y., \u0026amp; Liu, P. (2022). Affective norms for 1,558 Chinese words rated by children. 2022 3rd International Conference on Education, Knowledge and Information Management (ICEKIM), 419–422. https://doi.org/10.1109/ICEKIM55072.2022.00100\nLi, Y., Zhao, Z., Klejch, O., Bell, P., \u0026amp; Lai, C. (2023). ASR and Emotional Speech: A Word-Level Investigation of the Mutual Impact of Speech and Emotion Recognition. INTERSPEECH 2023, 1449–1453. https://doi.org/10.21437/Interspeech.2023-2078\nLiang, Y., Jiang, X., \u0026amp; Zhang, B. (2023). Evaluating Risk-Adjusted Hospital Performance Using Large-Scale Data on Mortality Rates of Patients in Intensive Care Units: A Flexible Semi-Nonparametric Modeling Approach. IEEE Journal of Translational Engineering in Health and Medicine, 11, 232–246. https://doi.org/10.1109/JTEHM.2023.3257179\nLiang, Y., Meng, F., Zhang, Y., Chen, Y., Xu, J., \u0026amp; Zhou, J. (2022). Emotional conversation generation with heterogeneous graph neural network. Artificial Intelligence, 308, 103714. https://doi.org/10.1016/j.artint.2022.103714\nLiao, X., \u0026amp; Ni, C. (2022). The effects of emotionality and lexical category on L2 word processing in different tasks: Evidence from late Chinese–English bilinguals. Quarterly Journal of Experimental Psychology, 75(5), 907–923. https://doi.org/10.1177/17470218211041833\nLiebert, J., Cherney, J. H., Ketterings, Q. M., Mirsky, S. B., Pelzer, C. J., \u0026amp; Ryan, M. R. (2023). Winter cereal species, cultivar, and harvest timing affect trade-offs between forage quality and yield. Frontiers in Sustainable Food Systems, 7, 1067506. https://doi.org/10.3389/fsufs.2023.1067506\nLim, J. Y. L., Boardman, J., Dyche, J., Anderson, C., Dickinson, D. L., \u0026amp; Drummond, S. P. A. (2022). Sex moderates the effects of total sleep deprivation and sleep restriction on risk preference. Sleep, 45(9), zsac120. https://doi.org/10.1093/sleep/zsac120\nLin, Y. H. T., Hamid, N., Shepherd, D., Kantono, K., \u0026amp; Spence, C. (2022a). Musical and Non-Musical Sounds Influence the Flavour Perception of Chocolate Ice Cream and Emotional Responses. Foods, 11(12), 1784. https://doi.org/10.3390/foods11121784\nLin, Y. H. T., Hamid, N., Shepherd, D., Kantono, K., \u0026amp; Spence, C. (2022b). Sound pleasantness influences the perception of both emotional and non-emotional foods. Food Research International, 162, 111909. https://doi.org/10.1016/j.foodres.2022.111909\nLindstromberg, S. (2022). The compositionality of English phrasal verbs in terms of imageability. Lingua, 275, 103373. https://doi.org/10.1016/j.lingua.2022.103373\nLindstromberg, S., \u0026amp; Eyckmans, J. (2021). THE RETRIEVABILITY OF L2 ENGLISH MULTIWORD ITEMS IN A CONTEXT OF STRONGLY FORM-FOCUSED EXPOSURE: WHAT MATTERS? Studies in Second Language Acquisition, 43(5), 1040–1067. https://doi.org/10.1017/S0272263120000315\nLioi, A., Hazoor, A., Castro, M., \u0026amp; Bassani, M. (2022). Impact on driver behaviour of guardrails of different height in horizontal-vertical coordinated road scenarios with a limited available sight distance. Transportation Research Part F: Traffic Psychology and Behaviour, 84, 287–300. https://doi.org/10.1016/j.trf.2021.12.008\nLitovsky, C. P., Finley, A. M., Zuckerman, B., Sayers, M., Schoenhard, J. A., Kenett, Y. N., \u0026amp; Reilly, J. (2022). Semantic flow and its relation to controlled semantic retrieval deficits in the narrative production of people with aphasia. Neuropsychologia, 170, 108235. https://doi.org/10.1016/j.neuropsychologia.2022.108235\nLiu, G., \u0026amp; Hou, Y. (2021). Complex-Valued Vectors for Word Representation. 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD), 242–246. https://doi.org/10.1109/ICAIBD51990.2021.9458998\nLiu, J., Fan, L., Tian, L., Li, C., \u0026amp; Feng, W. (2023). The neural mechanisms of explicit and implicit processing of Chinese emotion-label and emotion-laden words: Evidence from emotional categorisation and emotional Stroop tasks. Language, Cognition and Neuroscience, 38(10), 1412–1429. https://doi.org/10.1080/23273798.2022.2093389\nLiu, M., Chen, L., \u0026amp; Zheng, Z. (2022). Similarity Calculation via Passage-Level Event Connection Graph. Applied Sciences, 12(19), 9887. https://doi.org/10.3390/app12199887\nLiu, M., Duan, Y., Ince, R. A. A., Chen, C., Garrod, O. G. B., Schyns, P. G., \u0026amp; Jack, R. E. (2022). Facial expressions elicit multiplexed perceptions of emotion categories and dimensions. Current Biology, 32(1), 200-209.e6. https://doi.org/10.1016/j.cub.2021.10.035\nLiu, P., Lu, Q., Zhang, Z., Tang, J., \u0026amp; Han, B. (2021). Age-Related Differences in Affective Norms for Chinese Words (AANC). Frontiers in Psychology, 12, 585666. https://doi.org/10.3389/fpsyg.2021.585666\nLo, S., \u0026amp; Andrews, S. (2022). The effects of mental abacus expertise on working memory, mental representations and calculation strategies used for two-digit Hindu-Arabic numbers. Journal of Numerical Cognition, 8(1), 89–122. https://doi.org/10.5964/jnc.8073\nLoch, J. M. H., \u0026amp; Cook, G. S. (2023). Restored oyster reefs and living shorelines can augment predator trophic dynamics. Restoration Ecology, e14028. https://doi.org/10.1111/rec.14028\nLogos. (2022). ProLog Verlag. https://doi.org/10.7345/prolog-2202084\nLöhr, G. (2023). Does the mind care about whether a word is abstract or concrete? Why concreteness is probably not a natural kind. Mind \u0026amp; Language, mila.12473. https://doi.org/10.1111/mila.12473\nLöhr, G., \u0026amp; Michel, C. (2022). Copredication in Context: A Predictive Processing Approach. Cognitive Science, 46(5), e13138. https://doi.org/10.1111/cogs.13138\nLorette, P. (2021). Investigating Emotion Perception via the Two-Dimensional Affect and Feeling Space: An Example of a Cross-Cultural Study Among Chinese and Non-Chinese Participants. Frontiers in Psychology, 12, 662610. https://doi.org/10.3389/fpsyg.2021.662610\nLuck, S. J., Stewart, A. X., Simmons, A. M., \u0026amp; Rhemtulla, M. (2021). Standardized measurement error: A universal metric of data quality for averaged event‐related potentials. Psychophysiology, 58(6), e13793. https://doi.org/10.1111/psyp.13793\nLudwig, B., Wölfel, P., Greenberg, I., Piepho, H., \u0026amp; Spörlein, P. (2022). Application of mixed‐effects modelling and rule‐based models to explain copper variation in soil profiles of southern Germany. European Journal of Soil Science, 73(3), e13258. https://doi.org/10.1111/ejss.13258\nLunghi, E., Bacci, F., \u0026amp; Zhao, Y. (2021). How Can We Record Reliable Information on Animal Colouration in the Wild? Diversity, 13(8), 356. https://doi.org/10.3390/d13080356\nLunghi, E., Cianferoni, F., Merilli, S., Zhao, Y., Manenti, R., Ficetola, G. F., \u0026amp; Corti, C. (2021). Ecological Observations on Hybrid Populations of European Plethodontid Salamanders, Genus Speleomantes. Diversity, 13(7), 285. https://doi.org/10.3390/d13070285\nŁuniewska, M., Wójcik, M., Kołak, J., Mieszkowska, K., Wodniecka, Z., \u0026amp; Haman, E. (2022). Word knowledge and lexical access in monolingual and bilingual migrant children: Impact of word properties. Language Acquisition, 29(2), 135–164. https://doi.org/10.1080/10489223.2021.1973475\nLuo, T., Steeneveld, W., Nielen, M., Zanini, L., \u0026amp; Zecconi, A. (2022). Linear Mixed-Effects Model to Quantify the Association between Somatic Cell Count and Milk Production in Italian Dairy Herds. Animals, 13(1), 80. https://doi.org/10.3390/ani13010080\nLuo, W., Li, H., Baek, E., Chen, S., Lam, K. H., \u0026amp; Semma, B. (2021). Reporting Practice in Multilevel Modeling: A Revisit After 10 Years. Review of Educational Research, 91(3), 311–355. https://doi.org/10.3102/0034654321991229\nLuo, W., \u0026amp; Qi, Z. (2022). The influence of concreteness on emotional nouns valence processing: An ERP study. Acta Psychologica Sinica, 54(2), 111–121. https://doi.org/10.3724/SP.J.1041.2022.00111\nLuo, Z., Lin, S., Liu, R., Baba, J., Yoshikawa, Y., \u0026amp; Ishiguro, H. (2023). Decoupling Speaker-Independent Emotions for Voice Conversion via Source-Filter Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31, 11–24. https://doi.org/10.1109/TASLP.2022.3190715\nLusk, S. J., McKinney, A., Hunt, P. J., Fahey, P. G., Patel, J., Chang, A., Sun, J. J., Martinez, V. K., Zhu, P. J., Egbert, J. R., Allen, G., Jiang, X., Arenkiel, B. R., Tolias, A. S., Costa-Mattioli, M., \u0026amp; Ray, R. S. (2022). A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping. BMC Biology, 20(1), 28. https://doi.org/10.1186/s12915-022-01227-0\nLuther, L., Raugh, I. M., Collins, D. E., Berglund, A., Knippenberg, A. R., Mittal, V. A., Walker, E. F., \u0026amp; Strauss, G. P. (2023). Environmental context predicts state fluctuations in negative symptoms in youth at clinical high risk for psychosis. Psychological Medicine, 1–10. https://doi.org/10.1017/S0033291723001393\nLux, V., Non, A. L., Pexman, P. M., Stadler, W., Weber, L. A. E., \u0026amp; Krüger, M. (2021). A Developmental Framework for Embodiment Research: The Next Step Toward Integrating Concepts and Methods. Frontiers in Systems Neuroscience, 15, 672740. https://doi.org/10.3389/fnsys.2021.672740\nMacchi, R., Santuz, A., Hays, A., Vercruyssen, F., Arampatzis, A., Bar-Hen, A., \u0026amp; Nicol, C. (2022). Sex influence on muscle synergies in a ballistic force-velocity test during the delayed recovery phase after a graded endurance run. Heliyon, 8(6), e09573. https://doi.org/10.1016/j.heliyon.2022.e09573\nMacCormack, J. K., Armstrong-Carter, E. L., Gaudier-Diaz, M. M., Meltzer-Brody, S., Sloan, E. K., Lindquist, K. A., \u0026amp; Muscatell, K. A. (2021). β-Adrenergic Contributions to Emotion and Physiology During an Acute Psychosocial Stressor. Psychosomatic Medicine, 83(9), 959–968. https://doi.org/10.1097/PSY.0000000000001009\nMacKay, R. N., Wood, T. C., \u0026amp; Moore, P. A. (2021). Running away or running to? Do prey make decisions solely based on the landscape of fear or do they also include stimuli from a landscape of safety? Journal of Experimental Biology, 224(19), jeb242687. https://doi.org/10.1242/jeb.242687\nMacMillan, M. B., Field, H. R., Neath, I., \u0026amp; Surprenant, A. M. (2022). Valence does not affect recognition. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 76(2), 111–121. https://doi.org/10.1037/cep0000275\nMacmillan, M. B., Neath, I., \u0026amp; Surprenant, A. M. (2021). Re-assessing age of acquisition effects in recognition, free recall, and serial recall. Memory \u0026amp; Cognition, 49(5), 939–954. https://doi.org/10.3758/s13421-021-01137-6\nMacRae, S., Duffels, B., Duchesne, A., Siakaluk, P. D., \u0026amp; Matheson, H. E. (2022). God in body and space: Investigating the sensorimotor grounding of abstract concepts. Frontiers in Psychology, 13, 972193. https://doi.org/10.3389/fpsyg.2022.972193\nMadan, C. R. (2021). Exploring word memorability: How well do different word properties explain item free-recall probability? Psychonomic Bulletin \u0026amp; Review, 28(2), 583–595. https://doi.org/10.3758/s13423-020-01820-w\nMadhyastha, P. (2022). Towards Integration of Embodiment Features for Prosodic Prominence Prediction from Text. INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 42–45. https://doi.org/10.1145/3536220.3558540\nMah, E. Y., Grannon, K. E. L., Campbell, A., Tamburri, N., Jamieson, R. K., \u0026amp; Lindsay, D. S. (2023). A direct replication and extension of Popp and Serra (2016, experiment 1): Better free recall and worse cued recall of animal names than object names, accounting for semantic similarity. Frontiers in Psychology, 14, 1146200. https://doi.org/10.3389/fpsyg.2023.1146200\nMajid, A. (2021). Human Olfaction at the Intersection of Language, Culture, and Biology. Trends in Cognitive Sciences, 25(2), 111–123. https://doi.org/10.1016/j.tics.2020.11.005\nMajor, C. H., Harris, M. S., \u0026amp; Zakrajsek, T. D. (2021). Teaching for Learning: 101 Intentionally Designed Educational Activities to Put Students on the Path to Success (2nd ed.). Routledge. https://doi.org/10.4324/9781003038290\nMak, M. H. C., Hsiao, Y., \u0026amp; Nation, K. (2021). Lexical connectivity effects in immediate serial recall of words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(12), 1971–1997. https://doi.org/10.1037/xlm0001089\nMalhi, S. K., Kost, C., \u0026amp; Buchanan, L. (2021). Does visualisation help or hinder concrete word processing? Quarterly Journal of Experimental Psychology, 74(2), 277–294. https://doi.org/10.1177/1747021820956462\nMamus, E., Speed, L. J., Özyürek, A., \u0026amp; Majid, A. (2023). The effect of input sensory modality on the multimodal encoding of motion events. Language, Cognition and Neuroscience, 38(5), 711–723. https://doi.org/10.1080/23273798.2022.2141282\nMangelschots, K., Ugen, S., \u0026amp; Weth, C. (2023). Profiles of poor and good spellers in German noun capitalization. L1-Educational Studies in Language and Literature, 23, 1–21. https://doi.org/10.21248/l1esll.2023.23.1.460\nManor, A., Megidish, B., Todress, E., Mikulincer, M., \u0026amp; Erel, H. (2022). A Non-Humanoid Robotic Object for Providing a Sense Of Security. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1520–1527. https://doi.org/10.1109/RO-MAN53752.2022.9900747\nMarjamäki, P. H., Dugdale, H. L., Delahay, R., McDonald, R. A., \u0026amp; Wilson, A. J. (2021). Genetic, social and maternal contributions to Mycobacterium bovis infection status in European badgers ( Meles meles ). Journal of Evolutionary Biology, 34(4), 695–709. https://doi.org/10.1111/jeb.13775\nMarkostamou, I., \u0026amp; Coventry, K. R. (2022). Naming spatial relations across the adult lifespan: At the crossroads of language and perception. Neuropsychology, 36(3), 216–230. https://doi.org/10.1037/neu0000789\nMarks, J. R., Sorlin, M., \u0026amp; Lailvaux, S. P. (2023). The maternal energetic environment affects both egg and offspring phenotypes in green anole lizards ( Anolis carolinensis ). Ecology and Evolution, 13(1), e9656. https://doi.org/10.1002/ece3.9656\nMarozzi, M., \u0026amp; Marmolejo-Ramos, F. (2022). Composite indicators in experimental psychology. An example with the semantic space of taste and shape stimuli stimuli. Communications in Statistics - Simulation and Computation, 51(1), 154–163. https://doi.org/10.1080/03610918.2019.1648823\nMarris, J., Barrett, S., Abt, G., \u0026amp; Towlson, C. (2022). Quantifying technical actions in professional soccer using foot-mounted inertial measurement units. Science and Medicine in Football, 6(2), 203–214. https://doi.org/10.1080/24733938.2021.1910333\nMarshall, K. B., Weiss, M. J., Critchfield, T. S., \u0026amp; Leaf, J. B. (2023). Effects of Jargon on Parent Implementation of Discrete Trial Teaching. Journal of Behavioral Education. https://doi.org/10.1007/s10864-023-09523-7\nMarson, F., Paoletti, P., Naor-Ziv, R., Carducci, F., \u0026amp; Ben-Soussan, T. D. (2023). Embodied empathy and abstract concepts’ concreteness: Evidence from contemplative practices. In Progress in Brain Research (Vol. 277, pp. 181–209). Elsevier. https://doi.org/10.1016/bs.pbr.2022.12.005\nMartín-del-Campo-Rodríguez, C., Sidorov, G., \u0026amp; Batyrshin, I. (2023). A Survey of Empathetic Generative Chatbots. In S. N. Shahbazova, A. M. Abbasov, V. Kreinovich, J. Kacprzyk, \u0026amp; I. Z. Batyrshin (Eds.), Recent Developments and the New Directions of Research, Foundations, and Applications (Vol. 423, pp. 215–224). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-23476-7_19\nMartínez-Huertas, J. Á., Jorge-Botana, G., Luzón, J. M., \u0026amp; Olmos, R. (2021). Redundancy, isomorphism, and propagative mechanisms between emotional and amodal representations of words: A computational study. Memory \u0026amp; Cognition, 49(2), 219–234. https://doi.org/10.3758/s13421-020-01086-6\nMartínez‐Huertas, J. Á., Jorge‐Botana, G., \u0026amp; Olmos, R. (2021). Emotional Valence Precedes Semantic Maturation of Words: A Longitudinal Computational Study of Early Verbal Emotional Anchoring. Cognitive Science, 45(7), e13026. https://doi.org/10.1111/cogs.13026\nMartínez-Sanchis, M., Vara, M. D., Herrero, R., Campos, D., García-Campayo, J., \u0026amp; Baños, R. M. (2022). Effectiveness of the Internet Attachment-Based Compassion Therapy (iABCT) to improve the quality of life and well-being in a population with chronic medical illness: A study protocol of a randomized controlled trial (SPIRIT compliant). PLOS ONE, 17(12), e0278462. https://doi.org/10.1371/journal.pone.0278462\nMascelloni, M., McMahon, K. L., Piai, V., Kleinman, D., \u0026amp; De Zubicaray, G. (2021). Mediated phonological–semantic priming in spoken word production: Evidence for cascaded processing from picture–word interference. Quarterly Journal of Experimental Psychology, 74(7), 1284–1294. https://doi.org/10.1177/17470218211010591\nMasid Blanco, O., Pérez Serrano, M., \u0026amp; Martín Leralta, S. (2021). ¿Perciben los hablantes de español como lengua extranjera la lengua emocional igual que los nativos?: Valencia y activación en expresiones literales y figuradas. Cultura, Lenguaje y Representación, 25, 201–227. https://doi.org/10.6035/CLR.2021.25.12\nMavrou, I. (2021). Emotional intelligence, working memory, and emotional vocabulary in L1 and L2: Interactions and dissociations. Lingua, 257, 103083. https://doi.org/10.1016/j.lingua.2021.103083\nMayer, M., \u0026amp; Heck, D. W. (2022). Sequential collaboration: The accuracy of dependent, incremental judgments. Decision. https://doi.org/10.1037/dec0000193\nMazzuca, C., Falcinelli, I., Michalland, A.-H., Tummolini, L., \u0026amp; Borghi, A. M. (2022). Bodily, emotional, and public sphere at the time of COVID-19. An investigation on concrete and abstract concepts. Psychological Research, 86(7), 2266–2277. https://doi.org/10.1007/s00426-021-01633-z\nMazzuca, C., Fini, C., Michalland, A. H., Falcinelli, I., Da Rold, F., Tummolini, L., \u0026amp; Borghi, A. M. (2021). From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding. Brain Sciences, 11(10), 1304. https://doi.org/10.3390/brainsci11101304\nMcCartney, D., Suraev, A. S., Doohan, P. T., Irwin, C., Kevin, R. C., Grunstein, R. R., Hoyos, C. M., \u0026amp; McGregor, I. S. (2022). Effects of cannabidiol on simulated driving and cognitive performance: A dose-ranging randomised controlled trial. Journal of Psychopharmacology, 36(12), 1338–1349. https://doi.org/10.1177/02698811221095356\nMcConnell, K., \u0026amp; Blumenthal-Dramé, A. (2021). Usage-Based Individual Differences in the Probabilistic Processing of Multi-Word Sequences. Frontiers in Communication, 6, 703351. https://doi.org/10.3389/fcomm.2021.703351\nMcCrea, S. M., Erion, C. J., \u0026amp; Thürmer, J. L. (2022). Why punish critical outgroup commenters? Social identity, general norms, and retribution. British Journal of Social Psychology, 61(3), 711–728. https://doi.org/10.1111/bjso.12508\nMcDougle, S. D., Tsay, J. S., Pitt, B., King, M., Saban, W., Taylor, J. A., \u0026amp; Ivry, R. B. (2022). Continuous manipulation of mental representations is compromised in cerebellar degeneration. Brain, 145(12), 4246–4263. https://doi.org/10.1093/brain/awac072\nMcHuron, E. A., Rosen, D. A. S., Carpenter, J., Leonard, P., Sirpenski, G., \u0026amp; Sterling, J. T. (2022). Variation in body mass and food intake of northern fur seals ( Callorhinus ursinus ). Marine Mammal Science, 38(3), 1160–1181. https://doi.org/10.1111/mms.12919\nMcManus, K. (2021). Crosslinguistic Influence and Second Language Learning (1st ed.). Routledge. https://doi.org/10.4324/9780429341663\nMeersmans, K., Storms, G., De Deyne, S., Bruffaerts, R., Dupont, P., \u0026amp; Vandenberghe, R. (2022). Orienting to different dimensions of word meaning alters the representation of word meaning in early processing regions. Cerebral Cortex, 32(15), 3302–3317. https://doi.org/10.1093/cercor/bhab416\nMehta, A., Niles, A. N., Vargas, J. H., Marafon, T., Couto, D. D., \u0026amp; Gross, J. J. (2021). Acceptability and Effectiveness of Artificial Intelligence Therapy for Anxiety and Depression (Youper): Longitudinal Observational Study. Journal of Medical Internet Research, 23(6), e26771. https://doi.org/10.2196/26771\nMeier, B. P., \u0026amp; Fetterman, A. K. (2022). Metaphors for god: God is high, bright, and human in implicit tasks. Psychology of Religion and Spirituality, 14(1), 43–50. https://doi.org/10.1037/rel0000324\nMelotti, L., Siestrup, S., Peng, M., Vitali, V., Dowling, D., Von Kortzfleisch, V. T., Bračić, M., Sachser, N., Kaiser, S., \u0026amp; Richter, S. H. (2021). Individuality, as well as genetic background, affects syntactical features of courtship songs in male mice. Animal Behaviour, 180, 179–196. https://doi.org/10.1016/j.anbehav.2021.08.003\nMendes, G. A., \u0026amp; Martins, B. (2023). Quantifying Valence and Arousal in Text with Multilingual Pre-trained Transformers. In J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz, \u0026amp; A. Caputo (Eds.), Advances in Information Retrieval (Vol. 13980, pp. 84–100). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-28244-7_6\nMeng, D., Wang, S., Wong, P. C. M., \u0026amp; Feng, G. (2022). Generalizable predictive modeling of semantic processing ability from functional brain connectivity. Human Brain Mapping, 43(14), 4274–4292. https://doi.org/10.1002/hbm.25953\nMerhbene, G., Nath, S., Puttick, A. R., \u0026amp; Kurpicz-Briki, M. (2022). BurnoutEnsemble: Augmented Intelligence to Detect Indications for Burnout in Clinical Psychology. Frontiers in Big Data, 5, 863100. https://doi.org/10.3389/fdata.2022.863100\nMerkx, D., Scholten, S., Frank, S. L., Ernestus, M., \u0026amp; Scharenborg, O. (2023). Modelling Human Word Learning and Recognition Using Visually Grounded Speech. Cognitive Computation, 15(1), 272–288. https://doi.org/10.1007/s12559-022-10059-7\nMertzen, D., Lago, S., \u0026amp; Vasishth, S. (2021). The benefits of preregistration for hypothesis-driven bilingualism research. Bilingualism: Language and Cognition, 24(5), 807–812. https://doi.org/10.1017/S1366728921000031\nMeyer, N., Xu, Y., Karjalainen, K., Adamczyk, S., Biasi, C., Van Delden, L., Martin, A., Mganga, K., Myller, K., Sietiö, O., Suominen, O., \u0026amp; Karhu, K. (2022). Living, dead, and absent trees—How do moth outbreaks shape small‐scale patterns of soil organic matter stocks and dynamics at the Subarctic mountain birch treeline? Global Change Biology, 28(2), 441–462. https://doi.org/10.1111/gcb.15951\nMeylan, S. C., Nair, S., \u0026amp; Griffiths, T. L. (2021). Evaluating models of robust word recognition with serial reproduction. Cognition, 210, 104553. https://doi.org/10.1016/j.cognition.2020.104553\nMiani, A., Hills, T., \u0026amp; Bangerter, A. (2021). LOCO: The 88-million-word language of conspiracy corpus. Behavior Research Methods, 54(4), 1794–1817. https://doi.org/10.3758/s13428-021-01698-z\nMiceli, A., Wauthia, E., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2021). Perceptual and Interoceptive Strength Norms for 270 French Words. Frontiers in Psychology, 12, 667271. https://doi.org/10.3389/fpsyg.2021.667271\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMichaelides, A., Mitchell, E. S., Behr, H., Ho, A. S., Hanada, G., Lee, J., \u0026amp; McPartland, S. (2022). Executive Function-Related Improvements on a Commercial CBT-Based Weight Management Intervention: Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(14), 8763. https://doi.org/10.3390/ijerph19148763\nMiklashevsky, A., \u0026amp; Jeglinski-Mende, M. A. (2023). Non-experimental psychological methods. In A. Felisatti \u0026amp; M. H. Fischer, Experimental Methods in Embodied Cognition (1st ed., pp. 151–165). Routledge. https://doi.org/10.4324/9781003290698-13\nMilitaru, I. E., Serapio‐García, G., Ebert, T., Kong, W., Gosling, S. D., Potter, J., Rentfrow, P. J., \u0026amp; Götz, F. M. (2023). The lay of the land: Associations between environmental features and personality. Journal of Personality, jopy.12822. https://doi.org/10.1111/jopy.12822\nMiller, A. C., Harris, L. M., Cavanaugh, J. E., Abou Alaiwa, M., Stoltz, D. A., Hornick, D. B., \u0026amp; Polgreen, P. M. (2022). The Rapid Reduction of Infection-Related Visits and Antibiotic Use Among People With Cystic Fibrosis After Starting Elexacaftor-Tezacaftor-Ivacaftor. Clinical Infectious Diseases, 75(7), 1115–1122. https://doi.org/10.1093/cid/ciac117\nMiller, J. (2023). How Many Participants? How Many Trials? Maximizing the Power of Reaction Time Studies. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02155-9\nMiller-Lewis, L. R., Lewis, T. W., Tieman, J., Rawlings, D., Parker, D., \u0026amp; Sanderson, C. R. (2021). Words describing feelings about death: A comparison of sentiment for self and others and changes over time. PLOS ONE, 16(1), e0242848. https://doi.org/10.1371/journal.pone.0242848\nMirlohi Falavarjani, S. A., Jovanovic, J., Fani, H., Ghorbani, A. A., Noorian, Z., \u0026amp; Bagheri, E. (2021). On the causal relation between real world activities and emotional expressions of social media users. Journal of the Association for Information Science and Technology, 72(6), 723–743. https://doi.org/10.1002/asi.24440\nMiyazaki, K., Uchiba, T., Tanaka, K., \u0026amp; Sasahara, K. (2021). Characterizing the Anti-Vaxxers’ Reply Behavior on Social Media. IEEE/WIC/ACM International Conference on Web Intelligence, 83–89. https://doi.org/10.1145/3498851.3498934\nMiyazaki, K., Uchiba, T., Tanaka, K., \u0026amp; Sasahara, K. (2022). Aggressive behaviour of anti-vaxxers and their toxic replies in English and Japanese. Humanities and Social Sciences Communications, 9(1), 229. https://doi.org/10.1057/s41599-022-01245-x\nMizumoto, N., Bourguignon, T., \u0026amp; Bailey, N. W. (2022). Ancestral sex-role plasticity facilitates the evolution of same-sex sexual behavior. Proceedings of the National Academy of Sciences, 119(46), e2212401119. https://doi.org/10.1073/pnas.2212401119\nMkrtychian, N., Gnedykh, D., Blagovechtchenski, E., Tsvetova, D., Kostromina, S., \u0026amp; Shtyrov, Y. (2021). Contextual Acquisition of Concrete and Abstract Words: Behavioural and Electrophysiological Evidence. Brain Sciences, 11(7), 898. https://doi.org/10.3390/brainsci11070898\nMochizuki, M. (2022). Little to no evidence of the QWERTY effect in Japanese word valence rating. Cognitive Processing, 23(3), 527–533. https://doi.org/10.1007/s10339-022-01092-3\nMohammadi, A. N. (2022). Swearing in a second language: The role of emotions and perceptions. Journal of Multilingual and Multicultural Development, 43(7), 629–646. https://doi.org/10.1080/01434632.2020.1755293\nMolina-García, J., Menescardi, C., Estevan, I., \u0026amp; Queralt, A. (2021). Associations between Park and Playground Availability and Proximity and Children’s Physical Activity and Body Mass Index: The BEACH Study. International Journal of Environmental Research and Public Health, 19(1), 250. https://doi.org/10.3390/ijerph19010250\nMonster, I., Tellings, A., Burk, W. J., Keuning, J., Segers, E., \u0026amp; Verhoeven, L. (2022). Word Properties Predicting Children’s Word Recognition. Scientific Studies of Reading, 26(5), 373–389. https://doi.org/10.1080/10888438.2021.2020795\nMontefinese, M., Ambrosini, E., \u0026amp; Angrilli, A. (2021). Online search trends and word-related emotional response during COVID-19 lockdown in Italy: A cross-sectional online study. PeerJ, 9, e11858. https://doi.org/10.7717/peerj.11858\nMontefinese, M., Pinti, P., Ambrosini, E., Tachtsidis, I., \u0026amp; Vinson, D. (2021). Inferior parietal lobule is sensitive to different semantic similarity relations for concrete and abstract words. Psychophysiology, 58(3), e13750. https://doi.org/10.1111/psyp.13750\nMontero-Melis, G., Van Paridon, J., Ostarek, M., \u0026amp; Bylund, E. (2022). No evidence for embodiment: The motor system is not needed to keep action verbs in working memory. Cortex, 150, 108–125. https://doi.org/10.1016/j.cortex.2022.02.006\nMonticelli, D., Defourny, H., Degros, E., \u0026amp; Degros, A. (2021). Body mass during the spring migration period of two long-lived seabirds varies with capture date, age, sex, and natal origin. Journal of Ornithology, 162(4), 1063–1074. https://doi.org/10.1007/s10336-021-01903-y\nMoon, J. W., Tratner, A. E., \u0026amp; McDonald, M. M. (2022). Men are less religious in more gender-equal countries. Proceedings of the Royal Society B: Biological Sciences, 289(1968), 20212474. https://doi.org/10.1098/rspb.2021.2474\nMoreno-Ortiz, A., Pérez-Hernández, C., \u0026amp; García-Gámez, M. (2022). The language of happiness in self-reported descriptions of happy moments: Words, concepts, and entities. Humanities and Social Sciences Communications, 9(1), 181. https://doi.org/10.1057/s41599-022-01202-8\nMori, K., Hadjur, H., \u0026amp; Haruno, M. (2022). Natural Language Content Mediates the Association Between Active Interactions on Social Network Services and Subjective Well-Being. Cyberpsychology, Behavior, and Social Networking, 25(10), 678–685. https://doi.org/10.1089/cyber.2021.0340\nMori, K., \u0026amp; Haruno, M. (2021). Differential ability of network and natural language information on social media to predict interpersonal and mental health traits. Journal of Personality, 89(2), 228–243. https://doi.org/10.1111/jopy.12578\nMorris, S., Dumontheil, I., \u0026amp; Farran, E. K. (2021). Responses to Navon tasks differ across development and between tasks with differing attentional demands. Vision Research, 185, 17–28. https://doi.org/10.1016/j.visres.2021.03.008\nMoscati, M., Parada-Cabaleiro, E., Deldjoo, Y., Zangerle, E., \u0026amp; Schedl, M. (2022). Music4All-Onion—A Large-Scale Multi-faceted Content-Centric Music Recommendation Dataset. Proceedings of the 31st ACM International Conference on Information \u0026amp; Knowledge Management, 4339–4343. https://doi.org/10.1145/3511808.3557656\nMotoki, K., Saito, T., \u0026amp; Velasco, C. (2022). Spontaneous crossmodal correspondences grounded in contexts. Food Quality and Preference, 100, 104619. https://doi.org/10.1016/j.foodqual.2022.104619\nMüller, N., Nagels, A., \u0026amp; Kauschke, C. (2022). Metaphorical expressions originating from human senses: Psycholinguistic and affective norms for German metaphors for internal state terms (MIST database). Behavior Research Methods, 54(1), 365–377. https://doi.org/10.3758/s13428-021-01639-w\nMuraki, E. J., \u0026amp; Pexman, P. M. (2021). Simulating semantics: Are individual differences in motor imagery related to sensorimotor effects in language processing? Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(12), 1939–1957. https://doi.org/10.1037/xlm0001039\nMuraki, E. J., Siddiqui, I. A., \u0026amp; Pexman, P. M. (2022). Quantifying children’s sensorimotor experience: Child body–object interaction ratings for 3359 English words. Behavior Research Methods, 54(6), 2864–2877. https://doi.org/10.3758/s13428-022-01798-4\nMuraki, E. J., Sidhu, D. M., \u0026amp; Pexman, P. M. (2022). Heterogenous abstract concepts: Is “ponder” different from “dissolve”? Psychological Research, 86(8), 2478–2494. https://doi.org/10.1007/s00426-020-01398-x\nMurphy, C. H., Flanagan, E. M., De Vito, G., Susta, D., Mitchelson, K. A., De Marco Castro, E., Senden, J. M., Goessens, J. P., Mikłosz, A., Chabowski, A., Segurado, R., Corish, C. A., McCarthy, S. N., Egan, B., Van Loon, L. J., \u0026amp; Roche, H. M. (2021). Does supplementation with leucine-enriched protein alone and in combination with fish-oil-derived n–3 PUFA affect muscle mass, strength, physical performance, and muscle protein synthesis in well-nourished older adults? A randomized, double-blind, placebo-controlled trial. The American Journal of Clinical Nutrition, 113(6), 1411–1427. https://doi.org/10.1093/ajcn/nqaa449\nMuszynski, M., Tian, L., Lai, C., Moore, J. D., Kostoulas, T., Lombardo, P., Pun, T., \u0026amp; Chanel, G. (2021). Recognizing Induced Emotions of Movie Audiences from Multimodal Information. IEEE Transactions on Affective Computing, 12(1), 36–52. https://doi.org/10.1109/TAFFC.2019.2902091\nNagler, B., Gleiss, A., Füreder, L., Buchtele, N., Hermann, A., Bojic, A., Schellongowski, P., Staudinger, T., \u0026amp; Robak, O. (2022). Comparison of Hemostatic Changes in Pump-driven Extracorporeal Carbon Dioxide Removal and Venovenous Extracorporeal Membrane Oxygenation. ASAIO Journal, 68(11), 1407–1413. https://doi.org/10.1097/MAT.0000000000001675\nNaidu, P. A., Hine, T. J., \u0026amp; Glendon, A. I. (2022). Methodological weakness of the death-word-fragment task: Alternative implicit death anxiety measures. Death Studies, 46(7), 1706–1715. https://doi.org/10.1080/07481187.2020.1846228\nNandi, A., Xhafa, F., Subirats, L., \u0026amp; Fort, S. (2022). Reward-Penalty Weighted Ensemble for Emotion State Classification from Multi-Modal Data Streams. International Journal of Neural Systems, 32(12), 2250049. https://doi.org/10.1142/S0129065722500496\nNational Institute of Mental Health, Klecany, Czech Republic, Skalníková, P., Juríčková, V., Plechatá, A., Fajnerová, I., \u0026amp; Nekovářová, T. (2022). Methodological approaches in the research of emotional memory. Ceskoslovenska Psychologie, 66(4), 349–364. https://doi.org/10.51561/cspsych.66.4.349\nNeath, I., Hockley, W. E., \u0026amp; Ensor, T. M. (2022). Stimulus-based mirror effects revisited. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(12), 1833–1849. https://doi.org/10.1037/xlm0000901\nNeath, I., \u0026amp; Quinlan, P. T. (2021). The item/order account of word frequency effects: Evidence from serial order tests. Memory \u0026amp; Cognition, 49(6), 1188–1203. https://doi.org/10.3758/s13421-021-01144-7\nNegussie, E., González-Recio, O., Battagin, M., Bayat, A.-R., Boland, T., De Haas, Y., Garcia-Rodriguez, A., Garnsworthy, P. C., Gengler, N., Kreuzer, M., Kuhla, B., Lassen, J., Peiren, N., Pszczola, M., Schwarm, A., Soyeurt, H., Vanlierde, A., Yan, T., \u0026amp; Biscarini, F. (2022). Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. Journal of Dairy Science, 105(6), 5124–5140. https://doi.org/10.3168/jds.2021-20158\nNenadić, F., Podlubny, R. G., Schmidtke, D., Kelley, M. C., \u0026amp; Tucker, B. V. (2022). Semantic richness effects in isolated spoken word recognition: Evidence from massive auditory lexical decision. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/xlm0001208\nNeville, V., Mounty, J., Benato, L., Hunter, K., Mendl, M., \u0026amp; Paul, E. S. (2022). Thinking outside the lab: Can studies of pet rats inform pet and laboratory rat welfare? Applied Animal Behaviour Science, 246, 105507. https://doi.org/10.1016/j.applanim.2021.105507\nNewel, K. T., Burma, J. S., Carere, J., Kennedy, C. M., \u0026amp; Smirl, J. D. (2022). Does oscillation size matter? Impact of added resistance on the cerebral pressure‐flow Relationship in females and males. Physiological Reports, 10(10), e15278. https://doi.org/10.14814/phy2.15278\nNewman, V. E., Yee, H. F., Walker, A. R., Toumbelekis, M., \u0026amp; Most, S. B. (2021). Out of fright, out of mind: Impaired memory for information negated during looming threat. Cognitive Research: Principles and Implications, 6(1), 36. https://doi.org/10.1186/s41235-021-00302-4\nNian, T., Hu, Y., \u0026amp; Chen, C. (2021). Examining the Impact of Television-Program-Induced Emotions on Online Word-of-Mouth Toward Television Advertising. Information Systems Research, 32(2), 605–632. https://doi.org/10.1287/isre.2020.0985\nNickels, L., Lampe, L. F., Mason, C., \u0026amp; Hameau, S. (2022). Investigating the influence of semantic factors on word retrieval: Reservations, results and recommendations. Cognitive Neuropsychology, 39(3–4), 113–154. https://doi.org/10.1080/02643294.2022.2109958\nNiehorster-Cook, L. M. (2022). The Spreading-Activation Framework Does not Explain the Effects of Degree and Clustering on Spoken Word Recognition. In Z. Yang \u0026amp; E. Von Briesen (Eds.), Proceedings of the 2021 Conference of The Computational Social Science Society of the Americas (pp. 112–123). Springer International Publishing. https://doi.org/10.1007/978-3-030-96188-6_9\nNielsen, A. K., \u0026amp; Dingemanse, M. (2021). Iconicity in Word Learning and Beyond: A Critical Review. Language and Speech, 64(1), 52–72. https://doi.org/10.1177/0023830920914339\nNightingale, M., Scott, M. B., Sigaeva, T., Guzzardi, D., Garcia, J., Malaisrie, S. C., McCarthy, P., Markl, M., Fedak, P. W. M., Di Martino, E. S., \u0026amp; Barker, A. J. (2023). Magnetic resonance imaging-based hemodynamic wall shear stress alters aortic wall tissue biomechanics in bicuspid aortic valve patients. The Journal of Thoracic and Cardiovascular Surgery, S0022522323000193. https://doi.org/10.1016/j.jtcvs.2022.12.021\nNikitina, L., \u0026amp; Furuoka, F. (2023). Words of scents: A linguistic analysis of online perfume reviews. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0135\nNita, S., Bitam, S., Heidet, M., \u0026amp; Mellouk, A. (2022). A new data augmentation convolutional neural network for human emotion recognition based on ECG signals. Biomedical Signal Processing and Control, 75, 103580. https://doi.org/10.1016/j.bspc.2022.103580\nNorman-Haignere, S. V., Long, L. K., Devinsky, O., Doyle, W., Irobunda, I., Merricks, E. M., Feldstein, N. A., McKhann, G. M., Schevon, C. A., Flinker, A., \u0026amp; Mesgarani, N. (2022). Multiscale temporal integration organizes hierarchical computation in human auditory cortex. Nature Human Behaviour, 6(3), 455–469. https://doi.org/10.1038/s41562-021-01261-y\nNussinson, R., Elias, Y., Yosef-Nitzan, E., Mentser, S., Zadka, M., Weinstein, Z., \u0026amp; Liberman, N. (2021). Vertical Position is Associated with Construal Level and Psychological Distance. Social Cognition, 39(5), 632–655. https://doi.org/10.1521/soco.2021.39.5.632\nOberpriller, J., De Souza Leite, M., \u0026amp; Pichler, M. (2022). Fixed or random? On the reliability of mixed‐effects models for a small number of levels in grouping variables. Ecology and Evolution, 12(7), e9062. https://doi.org/10.1002/ece3.9062\nO’Dea, R. E., Noble, D. W. A., \u0026amp; Nakagawa, S. (2022). Unifying individual differences in personality, predictability and plasticity: A practical guide. Methods in Ecology and Evolution, 13(2), 278–293. https://doi.org/10.1111/2041-210X.13755\nOdia, T., Malherbe, S. T., Meier, S., Maasdorp, E., Kleynhans, L., Du Plessis, N., Loxton, A. G., Zak, D. E., Thompson, E., Duffy, F. J., Kuivaniemi, H., Ronacher, K., Winter, J., Walzl, G., Tromp, G., \u0026amp; the Catalysis TB-Biomarker Consortium. (2021). The Peripheral Blood Transcriptome Is Correlated With PET Measures of Lung Inflammation During Successful Tuberculosis Treatment. Frontiers in Immunology, 11, 596173. https://doi.org/10.3389/fimmu.2020.596173\nO’Neill, S., Minehan, M., Knight-Agarwal, C. R., \u0026amp; Turner, M. (2022). Depression, Is It Treatable in Adults Utilising Dietary Interventions? A Systematic Review of Randomised Controlled Trials. Nutrients, 14(7), 1398. https://doi.org/10.3390/nu14071398\nOosthuizen, T., \u0026amp; Lutermann, H. (2023). Personality and behavioural syndromes in wild-caught Namaqua rock mice (Micaelamys namaquensis). Behaviour, 160(8–9), 785–806. https://doi.org/10.1163/1568539X-bja10234\nOrtega, J. M., \u0026amp; Bernabé-Moreno, J. (2021). Modelling the Degree of Emotional Concern: COVID-19 Response in Social Media. Applied Sciences, 11(9), 3872. https://doi.org/10.3390/app11093872\nOrtu, M., Uras, N., Conversano, C., Bartolucci, S., \u0026amp; Destefanis, G. (2022). On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Systems with Applications, 198, 116804. https://doi.org/10.1016/j.eswa.2022.116804\nOttenhoff, M. J., Dijkhuizen, S., Ypelaar, A. C. H., De Oude, N. L., Koekkoek, S. K. E., Wang, S. S.-H., De Zeeuw, C. I., Elgersma, Y., \u0026amp; Boele, H. J. (2022). Cerebellum-dependent associative learning is not impaired in a mouse model of neurofibromatosis type 1. Scientific Reports, 12(1), 19041. https://doi.org/10.1038/s41598-022-21429-4\nOuyang, Y., Xu, L., Karim, M. E., Gustafson, P., \u0026amp; Wong, H. (2021). CRTpowerdist: An R package to calculate attained power and construct the power distribution for cross-sectional stepped-wedge and parallel cluster randomized trials. Computer Methods and Programs in Biomedicine, 208, 106255. https://doi.org/10.1016/j.cmpb.2021.106255\nOzcelik, E., \u0026amp; Arslan-Ari, I. (2023). Enhancing Multimedia Learning by Emotional Arousal. The Journal of Experimental Education, 1–15. https://doi.org/10.1080/00220973.2023.2182263\nPaape, D., Avetisyan, S., Lago, S., \u0026amp; Vasishth, S. (2021). Modeling Misretrieval and Feature Substitution in Agreement Attraction: A Computational Evaluation. Cognitive Science, 45(8), e13019. https://doi.org/10.1111/cogs.13019\nPaape, D., \u0026amp; Vasishth, S. (2022). Estimating the True Cost of Garden Pathing: A Computational Model of Latent Cognitive Processes. Cognitive Science, 46(8), e13186. https://doi.org/10.1111/cogs.13186\nPadilla, L., Hosseinpour, H., Fygenson, R., Howell, J., Chunara, R., \u0026amp; Bertini, E. (2022). Impact of COVID-19 forecast visualizations on pandemic risk perceptions. Scientific Reports, 12(1), 2014. https://doi.org/10.1038/s41598-022-05353-1\nPaek, E. J. (2021). Emotional Valence Affects Word Retrieval During Verb Fluency Tasks in Alzheimer’s Dementia. Frontiers in Psychology, 12, 777116. https://doi.org/10.3389/fpsyg.2021.777116\nPaek, S., Hoffman, D. L., \u0026amp; Black, J. B. (2023). Shaping the sensory experience in digital environments: Modality, congruency, and learning. Interactive Learning Environments, 31(9), 5665–5681. https://doi.org/10.1080/10494820.2021.2016860\nPaoletti, M., Fini, C., Filippini, C., Massari, G. M., D’Abundo, E., Merla, A., Bellagamba, F., \u0026amp; Borghi, A. M. (2022). Abstract words processing induces parasympathetic activation: A thermal imaging study. Frontiers in Psychology, 13, 932118. https://doi.org/10.3389/fpsyg.2022.932118\nPapafragou, A., Trueswell, J. C., \u0026amp; Gleitman, L. R. (Eds.). (2022). The Oxford Handbook of the Mental Lexicon (1st ed.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198845003.001.0001\nPapagno, C. (2022). The neural correlates of abstract and concrete words. In Handbook of Clinical Neurology (Vol. 187, pp. 263–275). Elsevier. https://doi.org/10.1016/B978-0-12-823493-8.00018-3\nPark, H., Klishko, A. N., Oh, K., Zhang, C., Grenga, G., Herrin, K. R., Dalton, J. F., Kistenberg, R. S., Lemay, M. A., Pitkin, M., DeWeerth, S. P., \u0026amp; Prilutsky, B. I. (2023). Electrical Stimulation of Distal Tibial Nerve During Stance Phase of Walking May Reverse Effects of Unilateral Paw Pad Anesthesia in the Cat. Motor Control, 27(1), 71–95. https://doi.org/10.1123/mc.2022-0096\nPashchenko, D. E., Razova, E. V., Kotelnikova, A. V., Vychegzhanin, S. V., \u0026amp; Kotelnikov, E. V. (2022). Interpretation of Language Models Attention Matrices in Texts Sentiment Analysis. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), 1–4. https://doi.org/10.1109/ITNT55410.2022.9848691\nPatterson, A. (2021). Predicting second language listening functor comprehension probability with usage-based and embodiment approaches. International Journal of Bilingualism, 25(3), 772–788. https://doi.org/10.1177/13670069211000851\nPatterson, A. (2022). The shape of a word: Single word characteristics’ effect on novice L2 listening comprehension. Applied Linguistics Review, 0(0). https://doi.org/10.1515/applirev-2021-0157\nPavlov, Y. G., Adamian, N., Appelhoff, S., Arvaneh, M., Benwell, C. S. Y., Beste, C., Bland, A. R., Bradford, D. E., Bublatzky, F., Busch, N. A., Clayson, P. E., Cruse, D., Czeszumski, A., Dreber, A., Dumas, G., Ehinger, B., Ganis, G., He, X., Hinojosa, J. A., … Mushtaq, F. (2021). #EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex, 144, 213–229. https://doi.org/10.1016/j.cortex.2021.03.013\nPecher, D., Wolters, F., \u0026amp; Zeelenberg, R. (2021). The Role of Motor Action in Long-Term Memory for Objects. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 291–309). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_13\nPellegrino, R., Hörberg, T., Olofsson, J., \u0026amp; Luckett, C. R. (2021). Duality of Smell: Route-Dependent Effects on Olfactory Perception and Language. Chemical Senses, 46, bjab025. https://doi.org/10.1093/chemse/bjab025\nPeng, C., Xu, X., \u0026amp; Bao, Z. (2023). Sentiment annotations for 3827 simplified Chinese characters. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02068-7\nPérez-Sánchez, M. Á., Stadthagen-Gonzalez, H., Guasch, M., Hinojosa, J. A., Fraga, I., Marín, J., \u0026amp; Ferré, P. (2021). EmoPro – Emotional prototypicality for 1286 Spanish words: Relationships with affective and psycholinguistic variables. Behavior Research Methods, 53(5), 1857–1875. https://doi.org/10.3758/s13428-020-01519-9\nPeriñán-Pascual, C. (2022). Measuring associational thinking through word embeddings. Artificial Intelligence Review, 55(3), 2065–2102. https://doi.org/10.1007/s10462-021-10056-6\nPerry, C. (2022). Using electrophysiological correlates of early semantic priming to test models of reading aloud. Scientific Reports, 12(1), 5224. https://doi.org/10.1038/s41598-022-09279-6\nPessarrodona, A., Filbee‐Dexter, K., Alcoverro, T., Boada, J., Feehan, C. J., Fredriksen, S., Grace, S. P., Nakamura, Y., Narvaez, C. A., Norderhaug, K. M., \u0026amp; Wernberg, T. (2021). Homogenization and miniaturization of habitat structure in temperate marine forests. Global Change Biology, 27(20), 5262–5275. https://doi.org/10.1111/gcb.15759\nPetilli, M. A., Günther, F., \u0026amp; Marelli, M. (2022). The Flickr frequency norms: What 17 years of images tagged online tell us about lexical processing. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02031-y\nPetilli, M. A., Günther, F., Vergallito, A., Ciapparelli, M., \u0026amp; Marelli, M. (2021). Data-driven computational models reveal perceptual simulation in word processing. Journal of Memory and Language, 117, 104194. https://doi.org/10.1016/j.jml.2020.104194\nPeti-Stantić, A., Anđel, M., Gnjidić, V., Keresteš, G., Ljubešić, N., Masnikosa, I., Tonković, M., Tušek, J., Willer-Gold, J., \u0026amp; Stanojević, M.-M. (2021). The Croatian psycholinguistic database: Estimates for 6000 nouns, verbs, adjectives and adverbs. Behavior Research Methods, 53(4), 1799–1816. https://doi.org/10.3758/s13428-020-01533-x\nPetridis, S., Shin, H. V., \u0026amp; Chilton, L. B. (2021). SymbolFinder: Brainstorming Diverse Symbols Using Local Semantic Networks. The 34th Annual ACM Symposium on User Interface Software and Technology, 385–399. https://doi.org/10.1145/3472749.3474757\nPezzuti, L., Dawe, J., \u0026amp; Borghi, A. M. (2021). Does mastering of abstract words decline with age? Educational Gerontology, 47(12), 527–542. https://doi.org/10.1080/03601277.2021.2008709\nPham, G., Simpson, A., \u0026amp; Nguyen, K. (2023). Vietnamese children with and without DLD: Classifier use and grammaticality over time. Journal of Communication Disorders, 101, 106297. https://doi.org/10.1016/j.jcomdis.2022.106297\nPhan, D.-A., Matsumoto, Y., \u0026amp; Shindo, H. (2021). Autoencoder for Semisupervised Multiple Emotion Detection of Conversation Transcripts. IEEE Transactions on Affective Computing, 12(3), 682–691. https://doi.org/10.1109/TAFFC.2018.2885304\nPickholtz, R., Kiflawi, M., Crossin, G. T., Pickholtz, E. Y., Zamsky, R., Kahan, I., Gavriel, T., \u0026amp; Belmaker, J. (2022). Highly repetitive space-use dynamics in parrotfishes. Coral Reefs, 41(4), 1059–1073. https://doi.org/10.1007/s00338-022-02258-3\nPickren, S. E., Stacy, M., Del Tufo, S. N., Spencer, M., \u0026amp; Cutting, L. E. (2022). The Contribution of Text Characteristics to Reading Comprehension: Investigating the Influence of Text Emotionality. Reading Research Quarterly, 57(2), 649–667. https://doi.org/10.1002/rrq.431\nPillaud, N., Ballot, C., Robert, C., Mathey, S., \u0026amp; Ric, F. (2023). Is the approach avoidance compatibility effect moderated by word imageability? Quarterly Journal of Experimental Psychology, 17470218231194499. https://doi.org/10.1177/17470218231194499\nPintos, A. S., Hui, C. L.-M., De Deyne, S., Cheung, C., Ko, W. T., Nam, S. Y., Chan, S. K.-W., Chang, W.-C., Lee, E. H.-M., Lo, A. W.-F., Lo, T.-L., Elvevåg, B., \u0026amp; Chen, E. Y.-H. (2022). A Longitudinal Study of Semantic Networks in Schizophrenia and other Psychotic Disorders Using the Word Association Task. Schizophrenia Bulletin Open, 3(1), sgac054. https://doi.org/10.1093/schizbullopen/sgac054\nPirnau, M., Priescu, I., Joita, D., \u0026amp; Priescu, C. (2022). The correlation between Internet user searches and Blockchain technology. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1–6. https://doi.org/10.1109/ECAI54874.2022.9847447\nPlanchuelo, C., Buades-Sitjar, F., Hinojosa, J. A., \u0026amp; Duñabeitia, J. A. (2022). The Nature of Word Associations in Sentence Contexts. Experimental Psychology, 69(2), 104–110. https://doi.org/10.1027/1618-3169/a000547\nPlisiecki, H., \u0026amp; Sobieszek, A. (2023). Extrapolation of affective norms using transformer-based neural networks and its application to experimental stimuli selection. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02212-3\nPolverino, G., Sagastume-Espinoza, K., Simmons, L. W., \u0026amp; Kelley, J. L. (2022). Background matching explains repeatable individual variation in the defence strategies of a stick insect. Animal Behaviour, 194, 185–192. https://doi.org/10.1016/j.anbehav.2022.10.003\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355–381. https://doi.org/10.19090/pp.v15i3.2400\nPowell, T., Plate, R. C., Miron, C. D., Wagner, N. J., \u0026amp; Waller, R. (2023). Callous-unemotional Traits and Emotion Recognition Difficulties: Do Stimulus Characteristics Play a role? Child Psychiatry \u0026amp; Human Development. https://doi.org/10.1007/s10578-023-01510-3\nPreddie, J. P., \u0026amp; Biernat, M. (2021). More than the Sum of Its Parts: Intersections of Sexual Orientation and Race as They Influence Perceptions of Group Similarity and Stereotype Content. Sex Roles, 84(9–10), 554–573. https://doi.org/10.1007/s11199-020-01185-3\nPrentice, P. M., Mnatzaganian, C., Houslay, T. M., Thornton, A., \u0026amp; Wilson, A. J. (2022). Individual differences in spatial learning are correlated across tasks but not with stress response behaviour in guppies. Animal Behaviour, 188, 133–146. https://doi.org/10.1016/j.anbehav.2022.04.009\nProchazka, A., Charvatova, H., \u0026amp; Vysata, O. (2022). The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2467–2473. https://doi.org/10.1109/TNSRE.2022.3201487\nPuhacheuskaya, V., Hubert Lyall, I., \u0026amp; Järvikivi, J. (2022). COVIDisgust: Language processing through the lens of partisanship. PLOS ONE, 17(7), e0271206. https://doi.org/10.1371/journal.pone.0271206\nQuante, S. M., Siewert, V., Palme, R., Kaiser, S., Sachser, N., \u0026amp; Richter, S. H. (2023). The power of a touch: Regular touchscreen training but not its termination affects hormones and behavior in mice. Frontiers in Behavioral Neuroscience, 17, 1112780. https://doi.org/10.3389/fnbeh.2023.1112780\nRaghunath, B. L., Mulatti, C., Neoh, M. J.-Y., Bornstein, M. H., \u0026amp; Esposito, G. (2021). The Associations between Imageability of Positive and Negative Valence Words and Fear Reactivity. Psychiatry International, 2(1), 32–47. https://doi.org/10.3390/psychiatryint2010003\nRaghupathi, V., Ren, J., \u0026amp; Raghupathi, W. (2021). Understanding the nature and dimensions of litigation crowdfunding: A visual analytics approach. PLOS ONE, 16(4), e0250522. https://doi.org/10.1371/journal.pone.0250522\nRamos, S., Goldschmidt, R., \u0026amp; Garcia, A. (2022). Social Bots Detection: A Method based on a Sentiment Lexicon Learned from Messages: Proceedings of the 24th International Conference on Enterprise Information Systems, 273–280. https://doi.org/10.5220/0011115000003179\nRamotowska, S., Steinert‐Threlkeld, S., Van Maanen, L., \u0026amp; Szymanik, J. (2023). Uncovering the Structure of Semantic Representations Using a Computational Model of Decision‐Making. Cognitive Science, 47(1), e13234. https://doi.org/10.1111/cogs.13234\nRanjan, S., Rajkumar, R., \u0026amp; Agarwal, S. (2022). Locality and expectation effects in Hindi preverbal constituent ordering. Cognition, 223, 104959. https://doi.org/10.1016/j.cognition.2021.104959\nRaw, J., Rorke, A., Ellis, J., Murayama, K., \u0026amp; Sakaki, M. (2023). Memory of the U.K.’s 2016 EU referendum: The effects of valence on the long-term measures of a public event. Emotion, 23(1), 52–74. https://doi.org/10.1037/emo0000788\nRazova, E., Vychegzhanin, S., \u0026amp; Kotelnikov, E. (2022). Does BERT Look at Sentiment Lexicon? In E. Burnaev, D. I. Ignatov, S. Ivanov, M. Khachay, O. Koltsova, A. Kutuzov, S. O. Kuznetsov, N. Loukachevitch, A. Napoli, A. Panchenko, P. M. Pardalos, J. Saramäki, A. V. Savchenko, E. Tsymbalov, \u0026amp; E. Tutubalina (Eds.), Recent Trends in Analysis of Images, Social Networks and Texts (Vol. 1573, pp. 55–67). Springer International Publishing. https://doi.org/10.1007/978-3-031-15168-2_6\nReggin, L. D., Muraki, E. J., \u0026amp; Pexman, P. M. (2021). Development of Abstract Word Knowledge. Frontiers in Psychology, 12, 686478. https://doi.org/10.3389/fpsyg.2021.686478\nReifegerste, J., Meyer, A. S., Zwitserlood, P., \u0026amp; Ullman, M. T. (2021). Aging affects steaks more than knives: Evidence that the processing of words related to motor skills is relatively spared in aging. Brain and Language, 218, 104941. https://doi.org/10.1016/j.bandl.2021.104941\nReilly, J., Finley, A. M., Kelly, A., Zuckerman, B., \u0026amp; Flurie, M. (2021). Olfactory language and semantic processing in anosmia: A neuropsychological case control study. Neurocase, 27(1), 86–96. https://doi.org/10.1080/13554794.2020.1871491\nReilly, J., Finley, A. M., Litovsky, C. P., \u0026amp; Kenett, Y. N. (2023). Bigram semantic distance as an index of continuous semantic flow in natural language: Theory, tools, and applications. Journal of Experimental Psychology: General, 152(9), 2578–2590. https://doi.org/10.1037/xge0001389\nReinboth, T., \u0026amp; Farkaš, I. (2022). Ultimate Grounding of Abstract Concepts: A Graded Account. Journal of Cognition, 5(1), 21. https://doi.org/10.5334/joc.214\nRen, J., Raghupathi, V., \u0026amp; Raghupathi, W. (2021a). Exploring the Factors that Determine the Success of Litigation Crowdfunding: Implications for Social Justice. Technological Forecasting and Social Change, 169, 120813. https://doi.org/10.1016/j.techfore.2021.120813\nRen, J., Raghupathi, V., \u0026amp; Raghupathi, W. (2021b). Exploring the subjective nature of crowdfunding decisions. Journal of Business Venturing Insights, 15, e00233. https://doi.org/10.1016/j.jbvi.2021.e00233\nRGCL, University of Wolverhampton, Wolverhampton, UK, Saadany, H., Orăsan, C., Centre for Translation Studies, University of Surrey, Guildford, UK, Mohamed, E., RGCL, University of Wolverhampton, Wolverhampton, UK, Tantavy, A., \u0026amp; School of Computer Science and Informatics, De Montfort University, Leicester, UK. (2021). Sentiment-Aware Measure (SAM) for Evaluating Sentiment Transfer by Machine Translation Systems. Proceedings of the Conference Recent Advances in Natural Language Processing - Deep Learning for Natural Language Processing Methods and Applications, 1217–1226. https://doi.org/10.26615/978-954-452-072-4_137\nRiccardi, N., Rorden, C., Fridriksson, J., \u0026amp; Desai, R. H. (2022). Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? Neurobiology of Language, 3(2), 318–344. https://doi.org/10.1162/nol_a_00067\nRichetin, J., \u0026amp; Perugini, M. (2022). The organic diet effect on person perception. Appetite, 168, 105696. https://doi.org/10.1016/j.appet.2021.105696\nRichie, R., Aka, A., \u0026amp; Bhatia, S. (2023). Free association in a neural network. Psychological Review, 130(5), 1360–1382. https://doi.org/10.1037/rev0000396\nRichie, R., \u0026amp; Bhatia, S. (2021). Similarity Judgment Within and Across Categories: A Comprehensive Model Comparison. Cognitive Science, 45(8), e13030. https://doi.org/10.1111/cogs.13030\nRiis, J. L., Ahmadi, H., Hamilton, K. R., Bryce, C. I., Blair, C., \u0026amp; Granger, D. A. (2021). The case for the repeatability intra-class correlation as a metric of precision for salivary bioscience data: Justification, assessment, application, and implications. Psychoneuroendocrinology, 128, 105203. https://doi.org/10.1016/j.psyneuen.2021.105203\nRiley, S. P., Harris, J., O’Halloran, B. J., Showalter, C. R., \u0026amp; Learman, K. E. (2021). Symptom response to mobilization and outcomes in patients with subacromial pain syndrome: A cohort study. Physiotherapy Research International, 26(3), e1914. https://doi.org/10.1002/pri.1914\nRoberto Cubelli. (2022). Embodied cognition: Nessuna rivoluzione. Giornale italiano di psicologia, 2, 437–443. https://doi.org/10.1421/105154\nRocca, R., \u0026amp; Yarkoni, T. (2021). Putting Psychology to the Test: Rethinking Model Evaluation Through Benchmarking and Prediction. Advances in Methods and Practices in Psychological Science, 4(3), 251524592110268. https://doi.org/10.1177/25152459211026864\nRochanavibhata, S., \u0026amp; Marian, V. (2023). Culture and Gender Influence Self-Construal in Mother-Preschooler Reminiscing. Journal of Cognition and Development, 24(5), 653–677. https://doi.org/10.1080/15248372.2023.2239920\nRoche, F., Becker, S., \u0026amp; Thüring, M. (2022). What happens when drivers of automated vehicles take over control in critical lane change situations? Transportation Research Part F: Traffic Psychology and Behaviour, 84, 407–422. https://doi.org/10.1016/j.trf.2021.11.021\nRocklage, M. D., Rucker, D. D., \u0026amp; Nordgren, L. F. (2021). Mass-scale emotionality reveals human behaviour and marketplace success. Nature Human Behaviour, 5(10), 1323–1329. https://doi.org/10.1038/s41562-021-01098-5\nRoettger, T. B. (2021). Preregistration in experimental linguistics: Applications, challenges, and limitations. Linguistics, 59(5), 1227–1249. https://doi.org/10.1515/ling-2019-0048\nRonai, E., \u0026amp; Xiang, M. (2023). Memory Versus Expectation: Processing Relative Clauses in a Flexible Word Order Language. Cognitive Science, 47(1), e13227. https://doi.org/10.1111/cogs.13227\nRosá, A., \u0026amp; Chiruzzo, L. (2021). Emotion Classification in Spanish: Exploring the Hard Classes. Information, 12(11), 438. https://doi.org/10.3390/info12110438\nRoth, A. M., Kent, S. M., Hobson, E. A., Kritsky, G., \u0026amp; Nakagawa, S. (2022). Personality-mediated speed-accuracy tradeoffs in mating in a 17-year periodical cicada. Behavioral Ecology, 33(6), 1141–1152. https://doi.org/10.1093/beheco/arac082\nRougier, M., Schmitz, M., \u0026amp; Yzerbyt, V. (2021). When my actions shape your looks: Experience-based properties of approach/avoidance bias the visual representation of others. Journal of Personality and Social Psychology, 120(5), 1146–1174. https://doi.org/10.1037/pspa0000268\nRoxburgh, A., Grasso, F., \u0026amp; Payne, T. R. (2023). A Multi-relationship Language Acquisition Model for Predicting Child Vocabulary Growth. In L. Iliadis, I. Maglogiannis, S. Alonso, C. Jayne, \u0026amp; E. Pimenidis (Eds.), Engineering Applications of Neural Networks (Vol. 1826, pp. 155–167). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-34204-2_14\nRudar, J., Porter, T. M., Wright, M., Golding, G. B., \u0026amp; Hajibabaei, M. (2022). LANDMark: An ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data. BMC Bioinformatics, 23(1), 110. https://doi.org/10.1186/s12859-022-04631-z\nRuíz, J. O., \u0026amp; Macizo, P. (2021). Ambiguous Sentence Processing in Translation. Psicológica Journal, 42(2), 142–176. https://doi.org/10.2478/psicolj-2021-0008\nRuss, B. E., Petkov, C. I., Kwok, S. C., Zhu, Q., Belin, P., Vanduffel, W., \u0026amp; Hamed, S. B. (2021). Common functional localizers to enhance NHP \u0026amp; cross-species neuroscience imaging research. NeuroImage, 237, 118203. https://doi.org/10.1016/j.neuroimage.2021.118203\nSalazar, S. M., García, J. I. C., Kuspiel, M., Fokkema, R. W., Komdeur, J., \u0026amp; Korsten, P. (2021). Male aggressiveness and risk-taking during reproduction are repeatable but not correlated in a wild bird population. Behavioral Ecology and Sociobiology, 75(7), 108. https://doi.org/10.1007/s00265-021-03044-x\nSametoğlu, S., Pelt, D. H. M., Eichstaedt, J. C., Ungar, L. H., \u0026amp; Bartels, M. (2023). The value of social media language for the assessment of wellbeing: A systematic review and meta-analysis. The Journal of Positive Psychology, 1–19. https://doi.org/10.1080/17439760.2023.2218341\nSánchez, M. J., Fernández, M., \u0026amp; Pérez-García, E. (2022). Comparison of the context provision and imagination elicitation approaches to learning emotional vocabulary. Language Teaching Research, 136216882211314. https://doi.org/10.1177/13621688221131449\nSanton, M., Korner-Nievergelt, F., Michiels, N. K., \u0026amp; Anthes, N. (2023). A versatile workflow for linear modelling in R. Frontiers in Ecology and Evolution, 11, 1065273. https://doi.org/10.3389/fevo.2023.1065273\nSargeant, J. M., Ruple, A., Selmic, L. E., \u0026amp; O’Connor, A. M. (2023). The standards of reporting trials in pets (PetSORT): Explanation and elaboration. Frontiers in Veterinary Science, 10, 1137781. https://doi.org/10.3389/fvets.2023.1137781\nSarkar, S., Bhagwat, A., \u0026amp; Mukherjee, A. (2022). A core-periphery structure-based network embedding approach. Social Network Analysis and Mining, 12(1), 32. https://doi.org/10.1007/s13278-021-00749-9\nSarli, L., \u0026amp; Justel, N. (2021). Emotional words in Spanish: Adaptation and cross-cultural differences for the affective norms for English words (ANEW) on a sample of Argentinian adults. Behavior Research Methods, 54(4), 1595–1610. https://doi.org/10.3758/s13428-021-01682-7\nSarraude, T., Hsu, B.-Y., Ruuskanen, S., \u0026amp; Groothuis, T. (2021). Is maternal thyroid hormone deposition subject to a trade-off between self and egg because of iodine? An experimental study in rock pigeon. Journal of Experimental Biology, 224(20), jeb242203. https://doi.org/10.1242/jeb.242203\nSauppe, S., Andrews, C., \u0026amp; Norcliffe, E. (2023). Experimental research in cross-linguistic psycholinguistics. In S. Zufferey \u0026amp; P. Gygax, The Routledge Handbook of Experimental Linguistics (1st ed., pp. 156–172). Routledge. https://doi.org/10.4324/9781003392972-12\nSavela, N., Oksanen, A., Pellert, M., \u0026amp; Garcia, D. (2021). Emotional reactions to robot colleagues in a role-playing experiment. International Journal of Information Management, 60, 102361. https://doi.org/10.1016/j.ijinfomgt.2021.102361\nScaltritti, M., Giacomoni, F., Job, R., \u0026amp; Sulpizio, S. (2023). Redefining the decisional components of motor responses: Evidence from lexical and object decision tasks. Journal of Experimental Psychology: Human Perception and Performance, 49(6), 835–851. https://doi.org/10.1037/xhp0001113\nScaltritti, M., Job, R., \u0026amp; Sulpizio, S. (2022). Different types of semantic interference, same lapses of attention: Evidence from Stroop tasks. Memory \u0026amp; Cognition, 50(5), 898–910. https://doi.org/10.3758/s13421-021-01256-0\nScerrati, E., D’Ascenzo, S., Nicoletti, R., Villani, C., \u0026amp; Lugli, L. (2022). Assessing Interpersonal Proximity Evaluation in the COVID-19 Era: Evidence From the Affective Priming Task. Frontiers in Psychology, 13, 901730. https://doi.org/10.3389/fpsyg.2022.901730\nSchad, D. J., Betancourt, M., \u0026amp; Vasishth, S. (2021). Toward a principled Bayesian workflow in cognitive science. Psychological Methods, 26(1), 103–126. https://doi.org/10.1037/met0000275\nScheffer, M., Van De Leemput, I., Weinans, E., \u0026amp; Bollen, J. (2021). The rise and fall of rationality in language. Proceedings of the National Academy of Sciences, 118(51), e2107848118. https://doi.org/10.1073/pnas.2107848118\nSchlund, M. W., Carter, H., Cudd, G., Murphy, K., Ahmed, N., Dymond, S., \u0026amp; Tone, E. B. (2021). Human social defeat and approach–avoidance: Escalating social‐evaluative threat and threat of aggression increases social avoidance. Journal of the Experimental Analysis of Behavior, 115(1), 157–184. https://doi.org/10.1002/jeab.654\nSchmidtke, D., \u0026amp; Moro, A. L. (2021). Determinants of Word‐Reading Development in English Learner University Students: A Longitudinal Eye Movement Study. Reading Research Quarterly, 56(4), 819–854. https://doi.org/10.1002/rrq.362\nSchmidtke, D., Van Dyke, J. A., \u0026amp; Kuperman, V. (2021). CompLex: An eye-movement database of compound word reading in English. Behavior Research Methods, 53(1), 59–77. https://doi.org/10.3758/s13428-020-01397-1\nSchnatschmidt, M., Lollies, F., \u0026amp; Schlarb, A. A. (2022a). A single-arm pilot study: Can a parental sleep intervention for sleep-disturbed young children in individual settings improve children’s sleep, crying, eating, and parental distress in mothers and fathers? BMC Pediatrics, 22(1), 578. https://doi.org/10.1186/s12887-022-03631-5\nSchnatschmidt, M., Lollies, F., \u0026amp; Schlarb, A. A. (2022b). Can a parental sleep intervention in an individual setting improve the maternal and paternal sense of competence and parent–child interaction in parents of young sleep-disturbed children? Findings from a single-arm pilot intervention study. BMC Psychology, 10(1), 243. https://doi.org/10.1186/s40359-022-00945-y\nSchnepf, J., \u0026amp; Christmann, U. (2022). “It’s a war! It’s a battle! It’s a fight!”: Do militaristic metaphors increase people’s threat perceptions and support for COVID ‐19 policies? International Journal of Psychology, 57(1), 107–126. https://doi.org/10.1002/ijop.12797\nSchnur, T. T., \u0026amp; Lei, C.-M. (2022). Assessing naming errors using an automated machine learning approach. Neuropsychology, 36(8), 709–718. https://doi.org/10.1037/neu0000860\nSchoknecht, P., Roehm, D., Schlesewsky, M., \u0026amp; Bornkessel-Schlesewsky, I. (2022). The interaction of predictive processing and similarity-based retrieval interference: An ERP study. Language, Cognition and Neuroscience, 37(7), 883–901. https://doi.org/10.1080/23273798.2022.2026421\nSchool of Electrical and Computer Engineering, College of Engineering University of Tehran, Tehran, Iran, Sabri, N., Akhavan, R., School of Electrical and Computer Engineering, College of Engineering University of Tehran, Tehran, Iran, Bahrak, B., \u0026amp; School of Electrical and Computer Engineering, College of Engineering University of Tehran, Tehran, Iran. (2021). EmoPars: A Collection of 30K Emotion-Annotated Persian Social Media Texts. 167–173. https://doi.org/10.26615/issn.2603-2821.2021_023\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSchumacher, R. A., \u0026amp; Pierrehumbert, J. B. (2021). Familiarity, consistency, and systematizing in morphology. Cognition, 212, 104512. https://doi.org/10.1016/j.cognition.2020.104512\nSchutte, M. H., Kleemann, R., Nota, N. M., Wiepjes, C. M., Snabel, J. M., T’Sjoen, G., Thijs, A., \u0026amp; Den Heijer, M. (2022). The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLOS ONE, 17(3), e0261312. https://doi.org/10.1371/journal.pone.0261312\nSchwab, J., Xiang, M., \u0026amp; Liu, M. (2022). Antilocality effect without head-final dependencies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(3), 446–463. https://doi.org/10.1037/xlm0001079\nSchwartz, C. E., Stark, R. B., \u0026amp; Stucky, B. D. (2021). Response-shift effects in neuromyelitis optica spectrum disorder: A secondary analysis of clinical trial data. Quality of Life Research, 30(5), 1267–1282. https://doi.org/10.1007/s11136-020-02707-y\nSchwetlick, L., Backhaus, D., \u0026amp; Engbert, R. (2023). A dynamical scan-path model for task-dependence during scene viewing. Psychological Review, 130(3), 807–840. https://doi.org/10.1037/rev0000379\nSerra, M. J. (2021). Animate and Inanimate Words Demonstrate Equivalent Retrieval Dynamics Despite the Occurrence of the Animacy Advantage. Frontiers in Psychology, 12, 661451. https://doi.org/10.3389/fpsyg.2021.661451\nShaeri Karimi, S., Saintilan, N., Wen, L., \u0026amp; Cox, J. (2022). Spatio‐temporal effects of inundation and climate on vegetation greenness dynamics in dryland floodplains. Ecohydrology, 15(2), e2378. https://doi.org/10.1002/eco.2378\nShang, L., Little, D. R., Webb, M. E., Eidels, A., \u0026amp; Yang, C.-T. (2021). The workload capacity of semantic search in convergent thinking. Journal of Experimental Psychology: General, 150(11), 2230–2245. https://doi.org/10.1037/xge0001045\nSharma, C., \u0026amp; Saxena, P. (2021). Stress Analysis for Students in Online Classes. 2021 Grace Hopper Celebration India (GHCI), 1–5. https://doi.org/10.1109/GHCI50508.2021.9514059\nShaver, A. L., Noyes, K., Ochs-Balcom, H. M., Wilding, G., Ray, A. D., Ma, S. J., Farrugia, M., Singh, A. K., \u0026amp; Platek, M. E. (2021). A Retrospective Cohort Study of Myosteatosis and Quality of Life in Head and Neck Cancer Patients. Cancers, 13(17), 4283. https://doi.org/10.3390/cancers13174283\nSheng, Y., Yang, C., Curhan, S., Curhan, G., \u0026amp; Wang, M. (2022). Analytical methods for correlated data arising from multicenter hearing studies. Statistics in Medicine, 41(26), 5335–5348. https://doi.org/10.1002/sim.9572\nShepherd, D. A., Seyb, S. K., \u0026amp; George, G. (2023). Grounding Business Models: Cognition, Boundary Objects, and Business Model Change. Academy of Management Review, 48(1), 100–122. https://doi.org/10.5465/amr.2020.0173\nShi, R., Xie, J., Yang, M., \u0026amp; Wang, R. (2022). The influence of language and context on sensorimotor simulation of concrete concepts. Acta Psychologica Sinica, 54(6), 583–594. https://doi.org/10.3724/SP.J.1041.2022.00583\nShiron, V., Liu, H., \u0026amp; De Bruin, A. (2021). Being a Student or at Home: Does Topic Influence How Bilinguals Process Words in Each Language? Languages, 6(3), 150. https://doi.org/10.3390/languages6030150\nSidhu, D. M., \u0026amp; Pexman, P. M. (2021). Implications of the “Language as Situated” View for Written Iconicity. Journal of Cognition, 4(1), 40. https://doi.org/10.5334/joc.159\nSidhu, D. M., Vigliocco, G., \u0026amp; Pexman, P. M. (2022). Higher order factors of sound symbolism. Journal of Memory and Language, 125, 104323. https://doi.org/10.1016/j.jml.2022.104323\nSidhu, D. M., Westbury, C., Hollis, G., \u0026amp; Pexman, P. M. (2021). Sound symbolism shapes the English language: The maluma/takete effect in English nouns. Psychonomic Bulletin \u0026amp; Review, 28(4), 1390–1398. https://doi.org/10.3758/s13423-021-01883-3\nSiegel-Ramsay, J. E., Wu, B., Bond, M., Spelber, D., Chiang, K. S., Lanza Di Scalea, T., Collier, S. J., Smith, T., Nunez, L., Fuller, E., Strakowski, S. M., Lippard, E., \u0026amp; Almeida, J. R. C. (2022). Subjective cognitive impairment and its relationship to sleep impairment, anxiety severity, and depressive symptoms in individuals with bipolar disorder. Journal of Affective Disorders Reports, 10, 100442. https://doi.org/10.1016/j.jadr.2022.100442\nSiew, C. S. Q., Engelthaler, T., \u0026amp; Hills, T. T. (2022). Nymph piss and gravy orgies: Local and global contrast effects in relational humor. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 1047–1063. https://doi.org/10.1037/xlm0001120\nSilcox, J. W., \u0026amp; Payne, B. R. (2021). The costs (and benefits) of effortful listening on context processing: A simultaneous electrophysiology, pupillometry, and behavioral study. Cortex, 142, 296–316. https://doi.org/10.1016/j.cortex.2021.06.007\nSims, S., Anders, J., Inglis, M., \u0026amp; Lortie-Forgues, H. (2023). Quantifying “Promising Trials Bias” in Randomized Controlled Trials in Education. Journal of Research on Educational Effectiveness, 16(4), 663–680. https://doi.org/10.1080/19345747.2022.2090470\nSinclair, J., Jang, E. E., \u0026amp; Rudzicz, F. (2021). Using machine learning to predict children’s reading comprehension from linguistic features extracted from speech and writing. Journal of Educational Psychology, 113(6), 1088–1106. https://doi.org/10.1037/edu0000658\nSkotis, A., \u0026amp; Livas, C. (2022). A data-driven analysis of experience in urban historic districts. Annals of Tourism Research Empirical Insights, 3(2), 100052. https://doi.org/10.1016/j.annale.2022.100052\nSládeček, M., Brynychová, K., Elhassan, E., Šálek, M. E., Janatová, V., Vozabulová, E., Chajma, P., Firlová, V., Pešková, L., Almuhery, A., \u0026amp; Bulla, M. (2021). Diel timing of nest predation changes across breeding season in a subtropical shorebird. Ecology and Evolution, 11(19), 13101–13117. https://doi.org/10.1002/ece3.8025\nSlavova, V., \u0026amp; Andonov, F. (2022). Bad news or good news when recognizing emotional valence using phonemic content. 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), 1–6. https://doi.org/10.1109/INFOTEH53737.2022.9751339\nSlegers, A., Chafouleas, G., Montembeault, M., Bedetti, C., Welch, A. E., Rabinovici, G. D., Langlais, P., Gorno-Tempini, M. L., \u0026amp; Brambati, S. M. (2021). Connected speech markers of amyloid burden in primary progressive aphasia. Cortex, 145, 160–168. https://doi.org/10.1016/j.cortex.2021.09.010\nSoh, Y. Q., Lee, J., \u0026amp; Tan, Y.-Y. (2022). Ethnicity and Tone Production on Singlish Particles. Languages, 7(3), 243. https://doi.org/10.3390/languages7030243\nSolovyev, V., Islamov, M., \u0026amp; Bayrasheva, V. (2022). Dictionary with the Evaluation of Positivity/Negativity Degree of the Russian Words. In S. R. M. Prasanna, A. Karpov, K. Samudravijaya, \u0026amp; S. S. Agrawal (Eds.), Speech and Computer (Vol. 13721, pp. 651–664). Springer International Publishing. https://doi.org/10.1007/978-3-031-20980-2_55\nSolovyev, V., \u0026amp; Ivanov, V. (2022). Extrapolation of Human Estimates of the Concreteness/ Abstractness of Words by Neural Networks of Various Architectures. Applied Sciences, 12(9), 4750. https://doi.org/10.3390/app12094750\nSong, D., \u0026amp; Li, D. (2021). Psycholinguistic Norms for 3,783 Two-Character Words in Simplified Chinese. SAGE Open, 11(4), 215824402110544. https://doi.org/10.1177/21582440211054495\nSönning, L., \u0026amp; Werner, V. (2021). The replication crisis, scientific revolutions, and linguistics. Linguistics, 59(5), 1179–1206. https://doi.org/10.1515/ling-2019-0045\nSoriano, C. (2022). 23 Affective meaning in language. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 489–510). De Gruyter. https://doi.org/10.1515/9783110347524-023\nSosoo, E. E., MacCormack, J. K., \u0026amp; Neblett, E. W. (2022). Psychophysiological and affective reactivity to vicarious police violence. Psychophysiology, 59(10), e14065. https://doi.org/10.1111/psyp.14065\nSouders, T., Stefaniak, J., Baaki, J., \u0026amp; Dice, T. (2023). The effect of emotive case construction on knowledge acquisition and ethical sense-making. Journal of Computing in Higher Education. https://doi.org/10.1007/s12528-023-09383-0\nSpecker, E., Douda, M., \u0026amp; Leder, H. (2023). How Do We Understand Artworks? Exploring the Role of Artwork Inherent Features in Art Processing. Empirical Studies of the Arts, 02762374231201074. https://doi.org/10.1177/02762374231201074\nSpeed, L. J., Atkinson, H., Wnuk, E., \u0026amp; Majid, A. (2021). The Sound of Smell: Associating Odor Valence With Disgust Sounds. Cognitive Science, 45(5), e12980. https://doi.org/10.1111/cogs.12980\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306–1318. https://doi.org/10.3758/s13428-021-01656-9\nSpeed, L. J., \u0026amp; Brysbaert, M. (2023). Ratings of valence, arousal, happiness, anger, fear, sadness, disgust, and surprise for 24,000 Dutch words. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02239-6\nSpeed, L. J., Iravani, B., Lundström, J. N., \u0026amp; Majid, A. (2022). Losing the sense of smell does not disrupt processing of odor words. Brain and Language, 235, 105200. https://doi.org/10.1016/j.bandl.2022.105200\nSpeed, L. J., Papies, E. K., \u0026amp; Majid, A. (2023). Mental simulation across sensory modalities predicts attractiveness of food concepts. Journal of Experimental Psychology: Applied, 29(3), 557–571. https://doi.org/10.1037/xap0000461\nSrinivasan, V., Santhanam, S., \u0026amp; Shaikh, S. (2021). Using reinforcement learning with external rewards for open-domain natural language generation. Journal of Intelligent Information Systems, 56(1), 189–206. https://doi.org/10.1007/s10844-020-00626-5\nStead, J. E., Boucher, V. L., Moyle, P. B., \u0026amp; Rypel, A. L. (2022). Growth of Lahontan cutthroat trout from multiple sources re-introduced into Sagehen Creek, CA. PeerJ, 10, e13322. https://doi.org/10.7717/peerj.13322\nSteele, J., Fisher, J. P., Giessing, J., Androulakis-Korakakis, P., Wolf, M., Kroeske, B., \u0026amp; Reuters, R. (2023). Long-Term Time-Course of Strength Adaptation to Minimal Dose Resistance Training Through Retrospective Longitudinal Growth Modeling. Research Quarterly for Exercise and Sport, 94(4), 913–930. https://doi.org/10.1080/02701367.2022.2070592\nSteinhilber, B., Seibt, R., Gabriel, J., Brountsou, J., Muljono, M., Downar, T., Bär, M., Bonsch, R., Brandt, A., Martus, P., \u0026amp; Rieger, M. A. (2022). Effects of Face Masks on Physical Performance and Physiological Response during a Submaximal Bicycle Ergometer Test. International Journal of Environmental Research and Public Health, 19(3), 1063. https://doi.org/10.3390/ijerph19031063\nStella, M., Kapuza, A., Cramer, C., \u0026amp; Uzzo, S. (2021). Mapping computational thinking mindsets between educational levels with cognitive network science. Journal of Complex Networks, 9(6), cnab020. https://doi.org/10.1093/comnet/cnab020\nStella, M., Vitevitch, M. S., \u0026amp; Botta, F. (2022). Cognitive Networks Extract Insights on COVID-19 Vaccines from English and Italian Popular Tweets: Anticipation, Logistics, Conspiracy and Loss of Trust. Big Data and Cognitive Computing, 6(2), 52. https://doi.org/10.3390/bdcc6020052\nStepankova, S., Harding, N., Mayorga, D. M., \u0026amp; Trotman, K. T. (2022). Using more effective instructional verbs to elevate auditors’ professional scepticism. International Journal of Auditing, 26(2), 240–251. https://doi.org/10.1111/ijau.12275\nStevens, M., White, S., Robertson, A. M., \u0026amp; Cruwys, T. (2022a). Repeated exercise class attendance: The role of class members’ similarity and social identification. Psychology of Sport and Exercise, 61, 102212. https://doi.org/10.1016/j.psychsport.2022.102212\nStevens, M., White, S., Robertson, A. M., \u0026amp; Cruwys, T. (2022b). Understanding exercise class attendees’ in-class behaviors, experiences, and future class attendance: The role of class leaders’ identity entrepreneurship. Sport, Exercise, and Performance Psychology, 11(4), 494–508. https://doi.org/10.1037/spy0000305\nStirner, M., Gurevitch, G., Lubianiker, N., Hendler, T., Schmahl, C., \u0026amp; Paret, C. (2022). An Investigation of Awareness and Metacognition in Neurofeedback with the Amygdala Electrical Fingerprint. Consciousness and Cognition, 98, 103264. https://doi.org/10.1016/j.concog.2021.103264\nStoinski, L. M., Perkuhn, J., \u0026amp; Hebart, M. N. (2023). THINGSplus: New norms and metadata for the THINGS database of 1854 object concepts and 26,107 natural object images. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02110-8\nStojanovic, I., \u0026amp; Kaiser, E. (2022). Exploring Valence in Judgments of Taste. In J. Wyatt, J. Zakkou, \u0026amp; D. Zeman, Perspectives on Taste (1st ed., pp. 231–259). Routledge. https://doi.org/10.4324/9781003184225-15\nStolicyn, A., Steele, J. D., \u0026amp; Seriès, P. (2022). Prediction of depression symptoms in individual subjects with face and eye movement tracking. Psychological Medicine, 52(9), 1784–1792. https://doi.org/10.1017/S0033291720003608\nStone, J. E., Phillips, A. J. K., Chachos, E., Hand, A. J., Lu, S., Carskadon, M. A., Klerman, E. B., Lockley, S. W., Wiley, J. F., Bei, B., Rajaratnam, S. M. W., \u0026amp; for the CLASS Study Team. (2021). In‐person vs home schooling during the COVID‐19 pandemic: Differences in sleep, circadian timing, and mood in early adolescence. Journal of Pineal Research, 71(2), e12757. https://doi.org/10.1111/jpi.12757\nStone, K., Veríssimo, J., Schad, D. J., Oltrogge, E., Vasishth, S., \u0026amp; Lago, S. (2021). The interaction of grammatically distinct agreement dependencies in predictive processing. Language, Cognition and Neuroscience, 36(9), 1159–1179. https://doi.org/10.1080/23273798.2021.1921816\nStraßer, T., Leinberger, D. T., Hillerkuss, D., Zrenner, E., \u0026amp; Zobor, D. (2022). Comparison of CRT and LCD monitors for objective estimation of visual acuity using the sweep VEP. Documenta Ophthalmologica, 145(2), 133–145. https://doi.org/10.1007/s10633-022-09883-x\nStreet, T., Lewin, A., Woodall, K., Cruz‐Cano, R., Thoma, M., \u0026amp; Stander, V. A. (2022). Gender differences in marital and military predictors of service member career satisfaction. Family Relations, 71(4), 1515–1537. https://doi.org/10.1111/fare.12697\nStrik Lievers, F., Bolognesi, M., \u0026amp; Winter, B. (2021). The linguistic dimensions of concrete and abstract concepts: Lexical category, morphological structure, countability, and etymology. Cognitive Linguistics, 32(4), 641–670. https://doi.org/10.1515/cog-2021-0007\nSugimoto, N., Fukasawa, K., Asahara, A., Kasada, M., Matsuba, M., \u0026amp; Miyashita, T. (2022). Positive and negative effects of land abandonment on butterfly communities revealed by a hierarchical sampling design across climatic regions. Proceedings of the Royal Society B: Biological Sciences, 289(1971), 20212222. https://doi.org/10.1098/rspb.2021.2222\nSulpizio, S., Job, R., Leoni, P., \u0026amp; Scaltritti, M. (2022). Prepotent task-irrelevant semantic information is dampened by domain-specific control mechanisms during visual word recognition. Quarterly Journal of Experimental Psychology, 75(3), 390–405. https://doi.org/10.1177/17470218211030863\nSun, K., \u0026amp; Wang, R. (2022). The Evolutionary Pattern of Language in English Fiction Over the Last Two Centuries: Insights From Linguistic Concreteness and Imageability. SAGE Open, 12(1), 215824402110693. https://doi.org/10.1177/21582440211069386\nSun, K., \u0026amp; Wang, R. (2023). Semantic similarity and mutual information predicting sentence comprehension: The case of dangling topic construction in Chinese. Journal of Cognitive Psychology, 35(2), 142–165. https://doi.org/10.1080/20445911.2022.2154781\nSun, T., Hao, X., He, A., Wang, C., Xu, Y., Guo, C., \u0026amp; Zhou, W. (2021). Evidence for neural re-use hypothesis from the processing of Chinese emotional words. Acta Psychologica Sinica, 53(9), 933–943. https://doi.org/10.3724/SP.J.1041.2021.00933\nSun, Y., Wang, J., Dong, Y., Zheng, H., Yang, J., Zhao, Y., \u0026amp; Dong, W. (2021). The Relationship Between Reading Strategy and Reading Comprehension: A Meta-Analysis. Frontiers in Psychology, 12, 635289. https://doi.org/10.3389/fpsyg.2021.635289\nSundara, M., Zhou, Z. L., Breiss, C., Katsuda, H., \u0026amp; Steffman, J. (2022). Infants’ developing sensitivity to native language phonotactics: A meta-analysis. Cognition, 221, 104993. https://doi.org/10.1016/j.cognition.2021.104993\nSurber, T., Huff, M. J., \u0026amp; Hajnal, A. (2023). The Affordance Directive: Affordance Priming Facilitates Object Detection Similar to Semantic Priming. Psychological Reports, 003329412311743. https://doi.org/10.1177/00332941231174393\nSusanto, Y., \u0026amp; Chin Ng, B. (2022). 25 The use of emotion lexicon in emotion research. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 532–548). De Gruyter. https://doi.org/10.1515/9783110347524-025\nSwaminath, S., Simons, R. M., \u0026amp; Hatwan, M. L. (2023). Understanding Pedophilia: A Theoretical Framework on the Development of Sexual Penchants. Journal of Child Sexual Abuse, 32(6), 732–748. https://doi.org/10.1080/10538712.2023.2236602\nSzubielska, M., \u0026amp; Imbir, K. (2021). The aesthetic experience of critical art: The effects of the context of an art gallery and the way of providing curatorial information. PLOS ONE, 16(5), e0250924. https://doi.org/10.1371/journal.pone.0250924\nTa, V. P., Boyd, R. L., Seraj, S., Keller, A., Griffith, C., Loggarakis, A., \u0026amp; Medema, L. (2022). An inclusive, real-world investigation of persuasion in language and verbal behavior. Journal of Computational Social Science, 5(1), 883–903. https://doi.org/10.1007/s42001-021-00153-5\nTa, V. P., Lande, B., \u0026amp; Suss, J. (2021). Emotional Reactivity and Police Expertise in Use-of-Force Decision-Making. Journal of Police and Criminal Psychology, 36(3), 513–522. https://doi.org/10.1007/s11896-020-09428-5\nTaler, V., \u0026amp; Johns, B. (2022). Using big data to understand bilingual performance in semantic fluency: Findings from the Canadian Longitudinal Study on Aging. PLOS ONE, 17(11), e0277660. https://doi.org/10.1371/journal.pone.0277660\nTallapragada, M., Hardy, B. W., Lybrand, E., \u0026amp; Hallman, W. K. (2021). Impact of Abstract Versus Concrete Conceptualization of Genetic Modification (GM) Technology on Public Perceptions. Risk Analysis, 41(6), 976–991. https://doi.org/10.1111/risa.13591\nTamura, A., Murayama, K., Ishii, R., Sakaki, M., \u0026amp; Tanaka, A. (2022). The effect of low-intensity exercise on emotional and cognitive engagement in the classroom. Npj Science of Learning, 7(1), 9. https://doi.org/10.1038/s41539-022-00125-y\nTan, K. M., Daitch, A. L., Pinheiro-Chagas, P., Fox, K. C. R., Parvizi, J., \u0026amp; Lieberman, M. D. (2022). Electrocorticographic evidence of a common neurocognitive sequence for mentalizing about the self and others. Nature Communications, 13(1), 1919. https://doi.org/10.1038/s41467-022-29510-2\nTang, C., Ahmed, M. H., Yao, C., Mercelis, B., Yoshihara, K., Peumans, M., \u0026amp; Van Meerbeek, B. (2023). Experimental two-step universal adhesives bond durably in a challenging high C-factor cavity model. Dental Materials, 39(1), 70–85. https://doi.org/10.1016/j.dental.2022.11.021\nTang, D., Fu, Y., Wang, H., Liu, B., Zang, A., \u0026amp; Kärkkäinen, T. (2023). The embodiment of emotion-label words and emotion-laden words: Evidence from late Chinese–English bilinguals. Frontiers in Psychology, 14, 1143064. https://doi.org/10.3389/fpsyg.2023.1143064\nTanguay, A. F. N., Johnen, A.-K., Markostamou, I., Lambert, R., Rudrum, M., Davidson, P. S. R., \u0026amp; Renoult, L. (2022). The ERP correlates of self-knowledge in ageing. Memory \u0026amp; Cognition, 50(3), 564–585. https://doi.org/10.3758/s13421-021-01225-7\nTaveter, K., \u0026amp; Kirikal, A. (2022). Prototyping an Architecture of Affective Robotic Systems Based on the Theory of Constructed Emotion. In F. Cavallo, J.-J. Cabibihan, L. Fiorini, A. Sorrentino, H. He, X. Liu, Y. Matsumoto, \u0026amp; S. S. Ge (Eds.), Social Robotics (Vol. 13817, pp. 558–575). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-24667-8_49\nTaylor, E., Nation, K., \u0026amp; Hsiao, Y. (2022). Context Availability and Sentence Availability Ratings for 3,000 English Words and their Association with Lexical Processing. Journal of Cognition, 5(1), 20. https://doi.org/10.5334/joc.211\nTeixeira, A. S., Talaga, S., Swanson, T. J., \u0026amp; Stella, M. (2021). Revealing semantic and emotional structure of suicide notes with cognitive network science. Scientific Reports, 11(1), 19423. https://doi.org/10.1038/s41598-021-98147-w\nTepedino, M., Iancu Potrubacz, M., Imperiale, A., Chimenti, C., Capogreco, M., \u0026amp; D’Amario, M. (2021). Microtensile Bond Strength of Etch-and-Rinse Adhesives in Different Hydroabrasion Conditionings. International Journal of Dentistry, 2021, 1–8. https://doi.org/10.1155/2021/6649578\nTestard, C., Larson, S. M., Watowich, M. M., Kaplinsky, C. H., Bernau, A., Faulder, M., Marshall, H. H., Lehmann, J., Ruiz-Lambides, A., Higham, J. P., Montague, M. J., Snyder-Mackler, N., Platt, M. L., \u0026amp; Brent, L. J. N. (2021). Rhesus macaques build new social connections after a natural disaster. Current Biology, 31(11), 2299-2309.e7. https://doi.org/10.1016/j.cub.2021.03.029\nThemistocleous, C., Webster, K., \u0026amp; Tsapkini, K. (2021). Effects of tDCS on Sound Duration in Patients with Apraxia of Speech in Primary Progressive Aphasia. Brain Sciences, 11(3), 335. https://doi.org/10.3390/brainsci11030335\nTian, X. (2022). Construction of a Multimodal Corpus of College Students’ Spoken English Based on Semantic Concepts. Mobile Information Systems, 2022, 1–10. https://doi.org/10.1155/2022/5270408\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864–884. https://doi.org/10.3758/s13428-021-01650-1\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2023). Curating and extending data for language comparison in Concepticon and NoRaRe. Open Research Europe, 2, 141. https://doi.org/10.12688/openreseurope.15380.2\nTodisco, E., Rocca, R., \u0026amp; Wallentin, M. (2021). The semantics of spatial demonstratives in Spanish: A Demonstrative Choice Task study. Language and Cognition, 13(4), 503–533. https://doi.org/10.1017/langcog.2021.11\nToet, A., Van Der Burg, E., Van Den Broek, T. J., Kaneko, D., Brouwer, A.-M., \u0026amp; Van Erp, J. B. F. (2022). Linking Categorical and Dimensional Approaches to Assess Food-Related Emotions. Foods, 11(7), 972. https://doi.org/10.3390/foods11070972\nTong, C. H. M., Nilsson, M. B., Drott, A., \u0026amp; Peichl, M. (2022). Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden. Forests, 13(6), 842. https://doi.org/10.3390/f13060842\nTong, C. H. M., Nilsson, M. B., Sikström, U., Ring, E., Drott, A., Eklöf, K., Futter, M. N., Peacock, M., Segersten, J., \u0026amp; Peichl, M. (2022). Initial effects of post-harvest ditch cleaning on greenhouse gas fluxes in a hemiboreal peatland forest. Geoderma, 426, 116055. https://doi.org/10.1016/j.geoderma.2022.116055\nTopić, V., Šetić Beg, M., \u0026amp; Domijan, D. (2021). Interakcija između predznaka i pariteta pri obradi jednoznamenkastih brojeva. Psihologijske Teme, 30(2), 327–349. https://doi.org/10.31820/pt.30.2.10\nTran, S. H. N., \u0026amp; Fernandes, M. A. (2023). Age differences in effectiveness of encoding techniques on memory. Aging, Neuropsychology, and Cognition, 1–17. https://doi.org/10.1080/13825585.2023.2202377\nTremblay, M., Rundle, H. D., Videlier, M., \u0026amp; Careau, V. (2021). Territoriality in Drosophila: Indirect effects and covariance with body mass and metabolic rate. Behavioral Ecology, 32(4), 679–685. https://doi.org/10.1093/beheco/arab021\nTrombka, M., Demarzo, M., Campos, D., Antonio, S. B., Cicuto, K., Walcher, A. L., García-Campayo, J., Schuman-Olivier, Z., \u0026amp; Rocha, N. S. (2021). Mindfulness Training Improves Quality of Life and Reduces Depression and Anxiety Symptoms Among Police Officers: Results From the POLICE Study—A Multicenter Randomized Controlled Trial. Frontiers in Psychiatry, 12, 624876. https://doi.org/10.3389/fpsyt.2021.624876\nTroyer, M., \u0026amp; McRae, K. (2022). Thematic and other semantic relations central to abstract (and concrete) concepts. Psychological Research, 86(8), 2399–2416. https://doi.org/10.1007/s00426-021-01484-8\nTrumbower, R. D., Barth, S., Tuthill, C., Slocum, C., Shan, G., Zafonte, R., \u0026amp; Mitchell, G. S. (2022). Caffeine Enhances Intermittent Hypoxia-Induced Gains in Walking Function for People with Chronic Spinal Cord Injury. Journal of Neurotrauma, 39(23–24), 1756–1763. https://doi.org/10.1089/neu.2022.0120\nTruong-Allié, C., Herbeth, M., \u0026amp; Paljic, A. (2023). A study of the influence of AR on the perception, comprehension and projection levels of situation awareness. 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), 541–551. https://doi.org/10.1109/VR55154.2023.00069\nTsang, Y.-K., Huang, J., Wang, S., Wang, J., \u0026amp; Wong, A. W.-K. (2023). Comparing word recognition in simplified and traditional Chinese: A megastudy approach. Quarterly Journal of Experimental Psychology, 174702182311764. https://doi.org/10.1177/17470218231176472\nTse, C., \u0026amp; Altarriba, J. (2022). Independent effects of word concreteness and word valence on immediate serial recall. British Journal of Psychology, 113(3), 820–834. https://doi.org/10.1111/bjop.12566\nTse, C.-S., Huang, Y., Zeng, T., Zhou, Y., \u0026amp; Chan, Y.-L. (2021). The influence of congruency proportion, target eccentricity, and valence strength on the spatial-valence metaphoric congruency effect in a word valence judgment task. Psychological Research, 85(7), 2610–2635. https://doi.org/10.1007/s00426-020-01422-0\nTsukita, K., Sakamaki-Tsukita, H., \u0026amp; Takahashi, R. (2022). Long-term Effect of Regular Physical Activity and Exercise Habits in Patients With Early Parkinson Disease. Neurology, 98(8). https://doi.org/10.1212/WNL.0000000000013218\nTucker, M. A., Idrissi, A., \u0026amp; Almeida, D. (2021). Attraction Effects for Verbal Gender and Number Are Similar but Not Identical: Self-Paced Reading Evidence From Modern Standard Arabic. Frontiers in Psychology, 11, 586464. https://doi.org/10.3389/fpsyg.2020.586464\nUddin, G., Baysal, O., Guerrouj, L., \u0026amp; Khomh, F. (2021). Understanding How and Why Developers Seek and Analyze API-Related Opinions. IEEE Transactions on Software Engineering, 47(4), 694–735. https://doi.org/10.1109/TSE.2019.2903039\nUddin, G., Guéhénuc, Y.-G., Khomh, F., \u0026amp; Roy, C. K. (2022). An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets. ACM Transactions on Software Engineering and Methodology, 31(3), 1–38. https://doi.org/10.1145/3491211\nUddin, G., \u0026amp; Khomh, F. (2021). Automatic Mining of Opinions Expressed About APIs in Stack Overflow. IEEE Transactions on Software Engineering, 47(3), 522–559. https://doi.org/10.1109/TSE.2019.2900245\nUm, M., Revilla, R., \u0026amp; Cyders, M. A. (2023). A meta-analytic review of the effectiveness of mood inductions in eliciting emotion-based behavioral risk-taking and craving in the laboratory. Emotion, 23(1), 214–229. https://doi.org/10.1037/emo0001062\nUniversité Côte d’Azur, Inria, CNRS, I3S, France, Vorakitphan, V., Cabrio, E., Université Côte d’Azur, Inria, CNRS, I3S, France, Villata, S., \u0026amp; Université Côte d’Azur, Inria, CNRS, I3S, France. (2021). “Don’t discuss”: Investigating Semantic and Argumentative Features for Supervised Propagandist Message Detection and Classification. Proceedings of the Conference Recent Advances in Natural Language Processing - Deep Learning for Natural Language Processing Methods and Applications, 1498–1507. https://doi.org/10.26615/978-954-452-072-4_168\nUrquiza-Haas, E. G., \u0026amp; Kotrschal, K. (2022). Human-Animal Similarity and the Imageability of Mental State Concepts for Mentalizing Animals. Journal of Cognition and Culture, 22(3–4), 220–245. https://doi.org/10.1163/15685373-12340133\nUtsumi, A. (2022). A test of indirect grounding of abstract concepts using multimodal distributional semantics. Frontiers in Psychology, 13, 906181. https://doi.org/10.3389/fpsyg.2022.906181\nVainio, L., \u0026amp; Vainio, M. (2022). Interaction between grasping and articulation: How vowel and consonant pronunciation influences precision and power grip responses. PLOS ONE, 17(3), e0265651. https://doi.org/10.1371/journal.pone.0265651\nVan De Weijer, J., Bianchi, I., \u0026amp; Paradis, C. (2023). Sensory modality profiles of antonyms. Language and Cognition, 1–15. https://doi.org/10.1017/langcog.2023.20\nVan Deinsen, L., \u0026amp; Van De Velde, F. (2022). Geslachtelijke geschiedschrijving? Een distant reading van de evaluatie van mannelijke en vrouwelijke auteurs in Nederlandse literatuurgeschiedenissen. Nederlandse Letterkunde, 27(2), 121–160. https://doi.org/10.5117/NEDLET2022.2.001.DEIN\nVan Paridon, J., \u0026amp; Thompson, B. (2021). subs2vec: Word embeddings from subtitles in 55 languages. Behavior Research Methods, 53(2), 629–655. https://doi.org/10.3758/s13428-020-01406-3\nVan Schijndel, M., \u0026amp; Linzen, T. (2021). Single‐Stage Prediction Models Do Not Explain the Magnitude of Syntactic Disambiguation Difficulty. Cognitive Science, 45(6), e12988. https://doi.org/10.1111/cogs.12988\nVanArsdall, J. E., \u0026amp; Blunt, J. R. (2022). Analyzing the structure of animacy: Exploring relationships among six new animacy and 15 existing normative dimensions for 1,200 concrete nouns. Memory \u0026amp; Cognition, 50(5), 997–1012. https://doi.org/10.3758/s13421-021-01266-y\nVankrunkelsven, H., Yang, Y., Brysbaert, M., De Deyne, S., \u0026amp; Storms, G. (2022). Semantic gender: Norms for 24,000 Dutch words and its role in word meaning. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02032-x\nVari, J., \u0026amp; Tamburelli, M. (2023). Standardisation: Bolstering positive attitudes towards endangered language varieties? Evidence from implicit attitudes. Journal of Multilingual and Multicultural Development, 44(6), 447–466. https://doi.org/10.1080/01434632.2020.1829632\nVasishth, S. (2023). New directions in statistical analysis for experimental linguistics. In S. Zufferey \u0026amp; P. Gygax, The Routledge Handbook of Experimental Linguistics (1st ed., pp. 313–329). Routledge. https://doi.org/10.4324/9781003392972-23\nVasishth, S., \u0026amp; Gelman, A. (2021). How to embrace variation and accept uncertainty in linguistic and psycholinguistic data analysis. Linguistics, 59(5), 1311–1342. https://doi.org/10.1515/ling-2019-0051\nVaughn, P. L., Colwell, C., Livingston, E. H., McQueen, W., Pettit, C., Spears, S., Tuhela, L., \u0026amp; Gangloff, E. J. (2023). Climbing and Clinging of Urban Lizards are Differentially Affected by Morphology, Temperature, and Substrate. Integrative Organismal Biology, 5(1), obad006. https://doi.org/10.1093/iob/obad006\nVeiz, E., Kieslich, S.-K., Czesnik, D., Herrmann-Lingen, C., Meyer, T., \u0026amp; Staab, J. (2022). Increased Concentrations of Circulating Interleukins following Non-Invasive Vagus Nerve Stimulation: Results from a Randomized, Sham-Controlled, Crossover Study in Healthy Subjects. Neuroimmunomodulation, 29(4), 450–459. https://doi.org/10.1159/000524646\nVeiz, E., Kieslich, S.-K., Staab, J., Czesnik, D., Herrmann-Lingen, C., \u0026amp; Meyer, T. (2021). Men Show Reduced Cardiac Baroreceptor Sensitivity during Modestly Painful Electrical Stimulation of the Forearm: Exploratory Results from a Sham-Controlled Crossover Vagus Nerve Stimulation Study. International Journal of Environmental Research and Public Health, 18(21), 11193. https://doi.org/10.3390/ijerph182111193\nVeldre, A., Reichle, E. D., Yu, L., \u0026amp; Andrews, S. (2023). Lexical processing across the visual field. Journal of Experimental Psychology: Human Perception and Performance, 49(5), 649–671. https://doi.org/10.1037/xhp0001109\nVentura, P., Tse, H. W.-Y., Guerreiro, J. C., Delgado, J., Ferreira, M. F., Farinha-Fernandes, A., Faustino, B., Banha, A., \u0026amp; Wong, A. C.-N. (2022). The relationships between reading fluency and different measures of holistic word processing. Attention, Perception, \u0026amp; Psychophysics, 84(5), 1734–1756. https://doi.org/10.3758/s13414-022-02497-0\nVerheyen, S., White, A., \u0026amp; Storms, G. (2022). A Comparison of the Spatial Arrangement Method and the Total-Set Pairwise Rating Method for Obtaining Similarity Data in the Conceptual Domain. Multivariate Behavioral Research, 57(2–3), 356–384. https://doi.org/10.1080/00273171.2020.1857216\nVerma, A., Sikarwar, V., Yadav, H., Jaganathan, R., \u0026amp; Kumar, P. (2021). Shabd: A psycholinguistic database for Hindi. Behavior Research Methods, 54(2), 830–844. https://doi.org/10.3758/s13428-021-01625-2\nVillanes, A., \u0026amp; Healey, C. G. (2023). Domain-specific text dictionaries for text analytics. International Journal of Data Science and Analytics, 15(1), 105–118. https://doi.org/10.1007/s41060-022-00344-x\nVillani, C., D’Ascenzo, S., Borghi, A. M., Roversi, C., Benassi, M., \u0026amp; Lugli, L. (2022). Is justice grounded? How expertise shapes conceptual representation of institutional concepts. Psychological Research, 86(8), 2434–2450. https://doi.org/10.1007/s00426-021-01492-8\nVillani, C., Lugli, L., Liuzza, M. T., Nicoletti, R., \u0026amp; Borghi, A. M. (2021). Sensorimotor and interoceptive dimensions in concrete and abstract concepts. Journal of Memory and Language, 116, 104173. https://doi.org/10.1016/j.jml.2020.104173\nVitevitch, M. S., Ng, J. W., Hatley, E., \u0026amp; Castro, N. (2021). Phonological but not semantic influences on the speech-to-song illusion. Quarterly Journal of Experimental Psychology, 74(4), 585–597. https://doi.org/10.1177/1747021820969144\nVittersø, A. D., Buckingham, G., Ten Brink, A. F., Halicka, M., Proulx, M. J., \u0026amp; Bultitude, J. H. (2021). Characterising sensorimotor adaptation in Complex Regional Pain Syndrome. Cortex, 140, 157–178. https://doi.org/10.1016/j.cortex.2021.03.028\nVivas, J., Kogan, B., Yerro, M., Romanelli, S., \u0026amp; Vivas, L. (2021). Describing the structure of concepts through different feature levels. Journal of Cognitive Psychology, 33(1), 49–63. https://doi.org/10.1080/20445911.2020.1858840\nVivas, J. R., Yerro Avincetto, M. M., García Coni Bosch, A., Andrés, M. L., \u0026amp; Calcopietro, M. (2022). El significado de los conceptos que aluden a emociones básicas en niños y adultos. Interdisciplinaria. Revista de Psicología y Ciencias Afines, 39(3). https://doi.org/10.16888/interd.2022.39.3.11\nVon Krause, M., Radev, S. T., Voss, A., Quintus, M., Egloff, B., \u0026amp; Wrzus, C. (2021). Stability and Change in Diffusion Model Parameters over Two Years. Journal of Intelligence, 9(2), 26. https://doi.org/10.3390/jintelligence9020026\nVon Soest, T., Kozák, M., Rodríguez-Cano, R., Fluit, D. H., Cortés-García, L., Ulset, V. S., Haghish, E. F., \u0026amp; Bakken, A. (2022). Adolescents’ psychosocial well-being one year after the outbreak of the COVID-19 pandemic in Norway. Nature Human Behaviour, 6(2), 217–228. https://doi.org/10.1038/s41562-021-01255-w\nVorano, A., Vivas, L., \u0026amp; Menegotto, A. (2021). What comes to mind first? Feature type and order of production in a property generation task. Language and Cognition, 13(3), 337–366. https://doi.org/10.1017/langcog.2021.6\nWachowski, W., \u0026amp; Sullivan, K. (2021). Metonymies and Metaphors for Death Around the World (1st ed.). Routledge. https://doi.org/10.4324/9781003183761\nWaddington, C., Harding, E., Brotherhood, E. V., Davies Abbott, I., Barker, S., Camic, P. M., Ezeofor, V., Gardner, H., Grillo, A., Hardy, C., Hoare, Z., McKee-Jackson, R., Moore, K., O’Hara, T., Roberts, J., Rossi-Harries, S., Suarez-Gonzalez, A., Sullivan, M. P., Edwards, R. T., … Stott, J. (2022). The Development of Videoconference-Based Support for People Living With Rare Dementias and Their Carers: Protocol for a 3-Phase Support Group Evaluation. JMIR Research Protocols, 11(7), e35376. https://doi.org/10.2196/35376\nWagner, A. R., Kobel, M. J., \u0026amp; Merfeld, D. M. (2022). Impacts of Rotation Axis and Frequency on Vestibular Perceptual Thresholds. Multisensory Research, 35(3), 259–287. https://doi.org/10.1163/22134808-bja10069\nWalker, J. B., Grosholz, E. D., \u0026amp; Long, J. D. (2021). Predicting burrowing crab impacts on salt marsh plants. Ecosphere, 12(10), e03803. https://doi.org/10.1002/ecs2.3803\nWalker, J. B., Rinehart, S., Greenberg‐Pines, G., White, W. K., DeSantiago, R., Lipson, D. A., \u0026amp; Long, J. D. (2022). Aboveground competition influences density‐dependent effects of cordgrass on sediment biogeochemistry. Ecology and Evolution, 12(3), e8722. https://doi.org/10.1002/ece3.8722\nWall, D., Foltz, S., Kupfer, A., \u0026amp; Glenberg, A. M. (2022). Embodied Action Scaffolds Dialogic Reading. Educational Psychology Review, 34(1), 401–419. https://doi.org/10.1007/s10648-021-09617-6\nWalser, R., Cram, W. A., Bernroider, E. W. N., \u0026amp; Wiener, M. (2021). Control choices and enactments in IS development projects: Implications for legitimacy perceptions and compliance intentions. Information \u0026amp; Management, 58(7), 103522. https://doi.org/10.1016/j.im.2021.103522\nWan, M., Su, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Perceptional and actional enrichment for metaphor detection with sensorimotor norms. Natural Language Engineering, 1–29. https://doi.org/10.1017/S135132492300044X\nWang, G., Tan, L., Shang, Z., \u0026amp; Liu, H. (2023). Multimodal dual emotion with fusion of visual sentiment for rumor detection. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-16732-9\nWang, J., Zhang, Y., Yu, L.-C., \u0026amp; Zhang, X. (2022). Contextual sentiment embeddings via bi-directional GRU language model. Knowledge-Based Systems, 235, 107663. https://doi.org/10.1016/j.knosys.2021.107663\nWang, L., Li, Y., Zhang, J., \u0026amp; Tao, X. (2022). Quantifying community evolution in developer social networks. Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 157–169. https://doi.org/10.1145/3540250.3549106\nWang, X., Andrinopoulou, E.-R., Veen, K. M., Bogers, A. J. J. C., \u0026amp; Takkenberg, J. J. M. (2022). Statistical primer: An introduction to the application of linear mixed-effects models in cardiothoracic surgery outcomes research—a case study using homograft pulmonary valve replacement data. European Journal of Cardio-Thoracic Surgery, 62(4), ezac429. https://doi.org/10.1093/ejcts/ezac429\nWang, X., Li, G., Zhao, G., Li, Y., Wang, B., Lin, C.-P., Liu, X., \u0026amp; Bi, Y. (2021). Social and emotion dimensional organizations in the abstract semantic space: The neuropsychological evidence. Scientific Reports, 11(1), 23572. https://doi.org/10.1038/s41598-021-02824-9\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWang, Z. (2022). Application of Semantics Analysis in Text Classification of Computer Technology. In B. J. Jansen, H. Liang, \u0026amp; J. Ye (Eds.), International Conference on Cognitive based Information Processing and Applications (CIPA 2021) (Vol. 85, pp. 643–650). Springer Singapore. https://doi.org/10.1007/978-981-16-5854-9_82\nWard, R. T., Lotfi, S., Stout, D. M., Mattson, S., Lee, H.-J., \u0026amp; Larson, C. L. (2021). Neutral and threatening distracter word stimuli are unnecessarily stored in working memory but do not differ in their degree of working memory storage. Biological Psychology, 162, 108091. https://doi.org/10.1016/j.biopsycho.2021.108091\nWasfi, H., \u0026amp; Stone, R. (2023). Usability and Security of Knowledge-based Authentication Systems: A State-of-the-Art Review. International Journal of Advanced Computer Science and Applications, 14(5). https://doi.org/10.14569/IJACSA.2023.0140502\nWaterton, J., Hammond, M., \u0026amp; Lau, J. A. (2022). Evolutionary effects of nitrogen are not easily predicted from ecological responses. American Journal of Botany, 109(11), 1741–1756. https://doi.org/10.1002/ajb2.16095\nWehbe, L., Blank, I. A., Shain, C., Futrell, R., Levy, R., Von Der Malsburg, T., Smith, N., Gibson, E., \u0026amp; Fedorenko, E. (2021). Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cerebral Cortex, 31(9), 4006–4023. https://doi.org/10.1093/cercor/bhab065\nWeiner, O. M., O’Byrne, J., Cross, N. E., Giraud, J., Tarelli, L., Yue, V., Homer, L., Walker, K., Carbone, R., \u0026amp; Dang‐Vu, T. T. (2023). Slow oscillation‐spindle cross‐frequency coupling predicts overnight declarative memory consolidation in older adults. European Journal of Neuroscience, ejn.15980. https://doi.org/10.1111/ejn.15980\nWeinreuter, H., Strelau, N.-R., Qiu, K., Jiang, Y., Deml, B., \u0026amp; Heizmann, M. (2022). Intersection Complexity and Its Influence on Human Drivers. IEEE Access, 10, 74059–74070. https://doi.org/10.1109/ACCESS.2022.3189017\nWeis, P. P., Nikadon, J., Herbert, C., \u0026amp; Formanowicz, M. (2022). The verb–self link: An implicit association test study. Psychonomic Bulletin \u0026amp; Review, 29(5), 1946–1959. https://doi.org/10.3758/s13423-022-02105-0\nWhite, K. K., \u0026amp; Abrams, L. (2021). What makes a tumour worse: Taboo context affects how emotional distractors influence picture naming. Language, Cognition and Neuroscience, 36(9), 1123–1134. https://doi.org/10.1080/23273798.2021.1909741\nWhitfield, J. A., \u0026amp; Holdosh, S. R. (2021). Practice Mediates Bidirectional Dual-Task Interference When Performing a Novel Sequential Nonword Repetition Task. Journal of Speech, Language, and Hearing Research, 64(6), 1904–1917. https://doi.org/10.1044/2021_JSLHR-20-00605\nWierzba, M., Riegel, M., Kocoń, J., Miłkowski, P., Janz, A., Klessa, K., Juszczyk, K., Konat, B., Grimling, D., Piasecki, M., \u0026amp; Marchewka, A. (2021). Emotion norms for 6000 Polish word meanings with a direct mapping to the Polish wordnet. Behavior Research Methods, 54(5), 2146–2161. https://doi.org/10.3758/s13428-021-01697-0\nWilke, J., Mohr, L., Yuki, G., Bhundoo, A. K., Jiménez-Pavón, D., Laiño, F., Murphy, N., Novak, B., Nuccio, S., Ortega-Gómez, S., Pillay, J. D., Richter, F., Rum, L., Sanchez-Ramírez, C., Url, D., Vogt, L., \u0026amp; Hespanhol, L. (2022). Train at home, but not alone: A randomised controlled multicentre trial assessing the effects of live-streamed tele-exercise during COVID-19-related lockdowns. British Journal of Sports Medicine, 56(12), 667–675. https://doi.org/10.1136/bjsports-2021-104994\nWilliams, G. P., Panayotov, N., \u0026amp; Kempe, V. (2022). Exposure to dialect variation in an artificial language prior to literacy training impairs reading of words with competing variants but does not affect decoding skills. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(12), 1868–1904. https://doi.org/10.1037/xlm0001094\nWingfield, C., \u0026amp; Connell, L. (2022). Understanding the role of linguistic distributional knowledge in cognition. Language, Cognition and Neuroscience, 37(10), 1220–1270. https://doi.org/10.1080/23273798.2022.2069278\nWinkielman, P., Davis, J. D., \u0026amp; Coulson, S. (2023). Moving thoughts: Emotion concepts from the perspective of context dependent embodied simulation. Language, Cognition and Neuroscience, 38(10), 1531–1553. https://doi.org/10.1080/23273798.2023.2236731\nWinskel, H., Forrester, D., Hong, M., \u0026amp; O’Connor, K. (2021). Seeing red as anger or romance: An emotion categorisation task. Journal of Cognitive Psychology, 33(5), 581–594. https://doi.org/10.1080/20445911.2021.1936538\nWinter, B. (2022). Mapping the landscape of exploratory and confirmatory data analysis in linguistics. In D. Tay \u0026amp; M. X. Pan (Eds.), Data Analytics in Cognitive Linguistics (pp. 13–48). De Gruyter. https://doi.org/10.1515/9783110687279-002\nWinter, B., Lupyan, G., Perry, L. K., Dingemanse, M., \u0026amp; Perlman, M. (2023). Iconicity ratings for 14,000+ English words. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02112-6\nWinter, B., \u0026amp; Srinivasan, M. (2022). Why is Semantic Change Asymmetric? The Role of Concreteness and Word Frequency and Metaphor and Metonymy. Metaphor and Symbol, 37(1), 39–54. https://doi.org/10.1080/10926488.2021.1945419\nWinter, R. E., Stoeger, H., \u0026amp; Suggate, S. P. (2021). Fine Motor Skills and Lexical Processing in Children and Adults. Frontiers in Psychology, 12, 666200. https://doi.org/10.3389/fpsyg.2021.666200\nWinters, R. M., Walker, B. N., \u0026amp; Leslie, G. (2021). Can You Hear My Heartbeat?: Hearing an Expressive Biosignal Elicits Empathy. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–11. https://doi.org/10.1145/3411764.3445545\nWong, J. B., Lisovski, S., Alisauskas, R. T., English, W., Harrison, A.-L., Kellett, D. K., Maftei, M., Nagy-MacArthur, A., Ronconi, R. A., Smith, P. A., Mallory, M. L., \u0026amp; Auger-Méthé, M. (2022). Variation in migration behaviors used by Arctic Terns (Sterna paradisaea) breeding across a wide latitudinal gradient. Polar Biology, 45(5), 909–922. https://doi.org/10.1007/s00300-022-03043-2\nWong, T. Y., Fang, Z., Yu, Y. T., Cheung, C., Hui, C. L. M., Elvevåg, B., De Deyne, S., Sham, P. C., \u0026amp; Chen, E. Y. H. (2022). Discovering the structure and organization of a free Cantonese emotion-label word association graph to understand mental lexicons of emotions. Scientific Reports, 12(1), 19581. https://doi.org/10.1038/s41598-022-23995-z\nWong, T. Y. Q., Yap, M. J., Obana, T., Asplund, C. L., \u0026amp; Teh, E. J. (2022). Brief Report: Emotional Picture and Language Processing in Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 52(1), 435–446. https://doi.org/10.1007/s10803-021-04920-1\nWoodard, K., Zettersten, M., \u0026amp; Pollak, S. D. (2022). The representation of emotion knowledge across development. Child Development, 93(3). https://doi.org/10.1111/cdev.13716\nWoodin, G., Winter, B., \u0026amp; Padilla, L. (2022). Conceptual Metaphor and Graphical Convention Influence the Interpretation of Line Graphs. IEEE Transactions on Visualization and Computer Graphics, 28(2), 1209–1221. https://doi.org/10.1109/TVCG.2021.3088343\nWootton, R. E., Riglin, L., Blakey, R., Agnew-Blais, J., Caye, A., Cadman, T., Havdahl, A., Gonçalves, H., Menezes, A. M. B., Wehrmeister, F. C., Rimfeld, K., Davey Smith, G., Eley, T. C., Rohde, L. A., Arseneault, L., Moffitt, T. E., Stergiakouli, E., Thapar, A., \u0026amp; Tilling, K. (2022). Decline in attention-deficit hyperactivity disorder traits over the life course in the general population: Trajectories across five population birth cohorts spanning ages 3 to 45 years. International Journal of Epidemiology, 51(3), 919–930. https://doi.org/10.1093/ije/dyac049\nWright, L. M., De Marco, M., \u0026amp; Venneri, A. (2023). Current Understanding of Verbal Fluency in Alzheimer’s Disease: Evidence to Date. Psychology Research and Behavior Management, Volume 16, 1691–1705. https://doi.org/10.2147/PRBM.S284645\nWu, J.-L., \u0026amp; Chung, W.-Y. (2022). Sentiment-based masked language modeling for improving sentence-level valence–arousal prediction. Applied Intelligence, 52(14), 16353–16369. https://doi.org/10.1007/s10489-022-03384-9\nWu, J.-L., Huang, M.-T., Yang, C.-S., \u0026amp; Liu, K.-H. (2021). Sentiment analysis of stock markets using a novel dimensional valence–arousal approach. Soft Computing, 25(6), 4433–4450. https://doi.org/10.1007/s00500-020-05454-x\nWu, S. H., Henderson, L.-M., \u0026amp; Gennari, S. P. (2022). Animacy interactions with individual variability in sentence production and comprehension reveal similar lexically driven competitive processes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(11), 1660–1679. https://doi.org/10.1037/xlm0000857\nWu, W., Morales, M., Patel, T., Pickering, M. J., \u0026amp; Hoffman, P. (2022). Modulation of brain activity by psycholinguistic information during naturalistic speech comprehension and production. Cortex, 155, 287–306. https://doi.org/10.1016/j.cortex.2022.08.002\nWu, Y., Tao, B., Lan, K., Shen, Y., Huang, W., \u0026amp; Wang, F. (2022). Reliability and accuracy of dynamic navigation for zygomatic implant placement. Clinical Oral Implants Research, 33(4), 362–376. https://doi.org/10.1111/clr.13897\nWulff, D. U., De Deyne, S., Aeschbach, S., \u0026amp; Mata, R. (2022). Using Network Science to Understand the Aging Lexicon: Linking Individuals’ Experience, Semantic Networks, and Cognitive Performance. Topics in Cognitive Science, 14(1), 93–110. https://doi.org/10.1111/tops.12586\nWulff, D. U., Hills, T. T., \u0026amp; Mata, R. (2022). Structural differences in the semantic networks of younger and older adults. Scientific Reports, 12(1), 21459. https://doi.org/10.1038/s41598-022-11698-4\nWulff, D. U., \u0026amp; Mata, R. (2022). On the semantic representation of risk. Science Advances, 8(27), eabm1883. https://doi.org/10.1126/sciadv.abm1883\nWurm, L. H. (2022). 27 Studying emotion effects in language. In G. L. Schiewer, J. Altarriba, \u0026amp; B. C. Ng (Eds.), Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Linguistics and Communication Science [HSK] 46/1 (pp. 570–586). De Gruyter. https://doi.org/10.1515/9783110347524-027\nXia, Q., \u0026amp; Peng, G. (2022). The roles of object and action, and concreteness and imageability, in the distinction between nouns and verbs: An ERP study on monosyllabic words in Chinese. Journal of Neurolinguistics, 61, 101026. https://doi.org/10.1016/j.jneuroling.2021.101026\nXie, H., Lin, W., Lin, S., Wang, J., \u0026amp; Yu, L.-C. (2021). A multi-dimensional relation model for dimensional sentiment analysis. Information Sciences, 579, 832–844. https://doi.org/10.1016/j.ins.2021.08.052\nXie, X., Liu, L., \u0026amp; Jaeger, T. F. (2021). Cross-talker generalization in the perception of nonnative speech: A large-scale replication. Journal of Experimental Psychology: General, 150(11), e22–e56. https://doi.org/10.1037/xge0001039\nXu, S., Xu, C., McIntyre, S., Olausson, H., \u0026amp; Gerling, G. J. (2022). Subtle Contact Nuances in the Delivery of Human-to-Human Touch Distinguish Emotional Sentiment. IEEE Transactions on Haptics, 15(1), 97–102. https://doi.org/10.1109/TOH.2021.3137833\nXu, X., Li, J., \u0026amp; Chen, H. (2022). Valence and arousal ratings for 11,310 simplified Chinese words. Behavior Research Methods, 54(1), 26–41. https://doi.org/10.3758/s13428-021-01607-4\nYadav, A., Beilin, L. J., Huang, R.-C., Vlaskovsky, P., Newnham, J. P., White, S. W., \u0026amp; Mori, T. A. (2022). Relationships between intrauterine fetal growth trajectories and markers of adiposity and inflammation in young adults. International Journal of Obesity, 46(10), 1925–1935. https://doi.org/10.1038/s41366-022-01203-2\nYan, J., Wang, W., \u0026amp; Yu, C. (2022). Affective word embedding in affective explanation generation for fine art paintings. Pattern Recognition Letters, 161, 24–29. https://doi.org/10.1016/j.patrec.2022.07.009\nYan, L., Martinez-Maldonado, R., Zhao, L., Li, X., \u0026amp; Gašević, D. (2023). Physiological Synchrony and Arousal as Indicators of Stress and Learning Performance in Embodied Collaborative Learning. In N. Wang, G. Rebolledo-Mendez, N. Matsuda, O. C. Santos, \u0026amp; V. Dimitrova (Eds.), Artificial Intelligence in Education (Vol. 13916, pp. 602–614). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-36272-9_49\nYao, B., Taylor, J. E., \u0026amp; Sereno, S. C. (2022). What can size tell us about abstract conceptual processing? Journal of Memory and Language, 127, 104369. https://doi.org/10.1016/j.jml.2022.104369\nYazar, V., Ruf, W. P., Knehr, A., Günther, K., Ammerpohl, O., Danzer, K. M., \u0026amp; Ludolph, A. C. (2023). DNA Methylation Analysis in Monozygotic Twins Discordant for ALS in Blood Cells. Epigenetics Insights, 16, 251686572311721. https://doi.org/10.1177/25168657231172159\nYeh, P.-W., Lee, C.-Y., Cheng, Y.-Y., \u0026amp; Chiang, C.-H. (2023). Neural correlates of understanding emotional words in late childhood. International Journal of Psychophysiology, 183, 19–31. https://doi.org/10.1016/j.ijpsycho.2022.11.007\nYen, M., Huang, Y., Yu, L., \u0026amp; Chen, Y. (2022). A Two-Dimensional Sentiment Analysis of Online Public Opinion and Future Financial Performance of Publicly Listed Companies. Computational Economics, 59(4), 1677–1698. https://doi.org/10.1007/s10614-021-10111-y\nYeung, R. C., \u0026amp; Fernandes, M. A. (2021). Divided attention at encoding or retrieval interferes with emotionally enhanced memory for words. Memory, 29(3), 284–297. https://doi.org/10.1080/09658211.2021.1887896\nYin, X., Havelka, J., \u0026amp; Allen, R. J. (2021). The effect of value on long-term associative memory. Quarterly Journal of Experimental Psychology, 74(12), 2033–2045. https://doi.org/10.1177/17470218211014439\nYoung, R. C., Westneat, D. F., Vangorder-Braid, J., Sirman, A. E., Siller, S. J., Kittilson, J., Ghimire, A., \u0026amp; Heidinger, B. J. (2022). Stressors interact across generations to influence offspring telomeres and survival. Proceedings of the Royal Society B: Biological Sciences, 289(1982), 20220868. https://doi.org/10.1098/rspb.2022.0868\nYu, C. S. P., McBeath, M. K., \u0026amp; Glenberg, A. M. (2021). Phonemes Convey Embodied Emotion. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 221–243). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_10\nYu, Z., Ponomarenko, V., \u0026amp; Liska, L. I. (2023). How to Allocate White Space in Ad Design? The Impact of Product Layouts on Perceived Entitativity and Advertising Performance. Journal of Advertising, 1–15. https://doi.org/10.1080/00913367.2023.2175280\nYuan, Y., \u0026amp; Guoyuan, T. (2022). An Empirical Study on Imagery and Emotional Response in Chinese Poetry Translation—The Visual Grammar Perspective. Frontiers in Psychology, 13, 872497. https://doi.org/10.3389/fpsyg.2022.872497\nZaharchuk, H. A., \u0026amp; Karuza, E. A. (2021). Multilayer networks: An untapped tool for understanding bilingual neurocognition. Brain and Language, 220, 104977. https://doi.org/10.1016/j.bandl.2021.104977\nZaitsev, D. V. \u0026amp; Institute of Philosophy, Russian Academy of Sciences. (2021). Towards Protolanguage: Bodily Reactions Represent Emotional Type. Epistemology \u0026amp; Philosophy of Science, 58(1), 94–111. https://doi.org/10.5840/eps202158112\nZemla, J. C. (2022). Knowledge Representations Derived From Semantic Fluency Data. Frontiers in Psychology, 13, 815860. https://doi.org/10.3389/fpsyg.2022.815860\nZeng, Q., Zhao, X., Hu, X., Duan, H., Zhao, Z., \u0026amp; Li, C. (2021). Learning emotional word embeddings for sentiment analysis. Journal of Intelligent \u0026amp; Fuzzy Systems, 40(5), 9515–9527. https://doi.org/10.3233/JIFS-201993\nZhang, M., Palade, V., Wang, Y., \u0026amp; Ji, Z. (2022). Word representation using refined contexts. Applied Intelligence, 52(11), 12347–12368. https://doi.org/10.1007/s10489-021-02898-y\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553–583. https://doi.org/10.1515/cog-2021-0098\nZhao, Y., \u0026amp; Wu, C. (2022). Childhood maltreatment experiences and emotion perception in young Chinese adults: Sex as a moderator. Stress and Health, 38(4), 666–678. https://doi.org/10.1002/smi.3122\nZheng, M. (2021). A method of generating Chinese pop music melody. 2021 40th Chinese Control Conference (CCC), 4683–4689. https://doi.org/10.23919/CCC52363.2021.9550140\nZhong, Y., \u0026amp; Ahrens, K. (2023). The Emotion Code in Sensory Modalities: An Investigation of the Relationship Between Sensorimotor Dimensions and Emotional Valence-Arousal. In Q. Su, G. Xu, \u0026amp; X. Yang (Eds.), Chinese Lexical Semantics (Vol. 13496, pp. 183–192). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-28956-9_15\nZhong, Y., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Novel metaphor and embodiment: Comprehending novel synesthetic metaphors. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0020\nZhong, Y., Huang, C.-R., \u0026amp; Ahrens, K. (2022). Embodied Grounding of Concreteness/Abstractness: A Sensory-Perceptual Account of Concrete and Abstract Concepts in Mandarin Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 72–83). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_5\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196–230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000–1022. https://doi.org/10.1080/23273798.2022.2035416\nZhou, N., Huang, C.-M., Cai, Q., Tzeng, O. J. L., \u0026amp; Huang, H.-W. (2022). The effects of aging and perceived loneliness on lexical ambiguity resolution. Frontiers in Psychology, 13, 978616. https://doi.org/10.3389/fpsyg.2022.978616\nZinn, A. K., Lavric, A., Levine, M., \u0026amp; Koschate, M. (2022). Social identity switching: How effective is it? Journal of Experimental Social Psychology, 101, 104309. https://doi.org/10.1016/j.jesp.2022.104309\nZou, W., \u0026amp; Bhatia, S. (2021). Judgment errors in naturalistic numerical estimation. Cognition, 211, 104647. https://doi.org/10.1016/j.cognition.2021.104647\nZühlsdorff, K., López-Cruz, L., Dutcher, E. G., Jones, J. A., Pama, C., Sawiak, S., Khan, S., Milton, A. L., Robbins, T. W., Bullmore, E. T., \u0026amp; Dalley, J. W. (2023). Sex-dependent effects of early life stress on reinforcement learning and limbic cortico-striatal functional connectivity. Neurobiology of Stress, 22, 100507. https://doi.org/10.1016/j.ynstr.2022.100507\nКолмогорова, А. В., \u0026amp; Натпит, А. А. (2023). Нейросемантические характеристики употребительных слов тувинского языка через призму комплексного психолингвистического эксперимента. The New Research of Tuva, 1, 170–185. https://doi.org/10.25178/nit.2023.1.10\n\r\r\r","date":1609804800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1609804800,"objectID":"25833132f5c029c6dddbd38d3d82ea6d","permalink":"https://pablobernabeu.github.io/publication/the-interplay-between-linguistic-and-embodied-systems-in-conceptual-processing/","publishdate":"2021-01-05T09:10:27Z","relpermalink":"/publication/the-interplay-between-linguistic-and-embodied-systems-in-conceptual-processing/","section":"publication","summary":"This preregistration outlines a study that will investigate the dynamic nature of conceptual processing by examining the interplay between linguistic distributional systems—comprising word co-occurrence and word association—and embodied systems—comprising sensorimotor and emotional information. A set of confirmatory research questions are addressed using data from the Calgary Semantic Decision project, along with additional measures for the stimuli corresponding to distributional language statistics, embodied information, and individual differences in vocabulary size.","tags":["conceptual processing","word recognition","semantic decision","linguistic distributional knowledge","embodied cognition","statistics","linear mixed-effects models","R","preregistration"],"title":"Preregistration: The interplay between linguistic and embodied systems in conceptual processing","type":"publication"},{"authors":null,"categories":["research and teaching applications","R"],"content":"\rThis open-source, R-based web application allows the conversion of video captions (subtitles) from the Web Video Text Tracks (WebVTT) Format into plain texts. For this purpose, users upload a WebVTT file with the extension .vtt or .txt (examples available here and here).\n\rDownload VTT file\nWhen the caption file is uploaded to the web application, metadata such as timestamps are automatically removed, and the text is formatted into a paragraph. The result is displayed on the website, and can be downloaded as .docx and .txt documents. Overall, this application serves to improve the accessibility of video captions.\nThe data is only available to the user, and is deleted when the website is closed.\n🌐 Web application\rThe application can be used below, or it can be opened separately here.\n\r\r\r\rProgramming details\rThe source code is available on Github, where the app can be extended via pull requests. Questions and suggestions can be submitted as issues or emailed to pcbernabeu@gmail.com. The licence is Creative Commons Attribution 4.0 International.\nThe core of the application is in the index.Rmd script, which uses ‘regular expressions’ to process the VTT file.\n\rIn turn, the script above draws on the one below to enable the download of .docx documents. Last, the latter script draws on this Word template.\n\r\r","date":1609459200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1609459200,"objectID":"65d1a22cf3d4b77ba36cd825cf7fe51a","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/vtt-transcription-app/","publishdate":"2021-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/vtt-transcription-app/","section":"applications-and-dashboards","summary":"This open-source, R-based web application allows the conversion of video captions (subtitles) from the Web Video Text Tracks (WebVTT) Format into plain texts. For this purpose, users upload a WebVTT file with the extension of 'vtt' or 'txt'. Automatically, metadata such as timestamps are removed, and the text is formatted.","tags":["subtitles","accessibility","transcription","webvtt","web video text tracks format","web application","data science","regular expressions","stringr","R","R Shiny","Flexdashboard","software"],"title":"WebVTT caption transcription app","type":"applications-and-dashboards"},{"authors":[],"categories":["statistics","linear mixed-effects models"],"content":"\rSlides \r\r\rAbstract\rLinear mixed-effects models (LMEMs) are used to account for variation within factors with multiple observations, such as participants, trials, items, channels, etc (for an earlier approach, see Clark, 1973). This variation is modelled in terms of random intercepts (e.g., overall variation per participant) as well as random slopes for the fixed effects (e.g., treatment effect per participant). These measures help reduce false positives and false negatives (Barr et al., 2013), and the resulting models tend to be robust to violations of assumptions (Schielzeth et al., 2020). The use of LMEMs has grown over the past decade, under various implementation forms (Meteyard \u0026amp; Davies, 2020). In this talk, I will look over the rationale for LMEMs, and demonstrate how to fit them in R (Brauer \u0026amp; Curtin, 2018; Luke, 2017). Challenges will also be covered. For instance, when using the widely-accepted ‘maximal’ approach, based on fitting all possible random effects for each fixed effect, models sometimes fail to find a solution, or ‘convergence’. Advice for the problem of nonconvergence will be demonstrated, based on the progressive lightening of the random effects structure (Singman \u0026amp; Kellen, 2017; for an alternative approach, especially with small samples, see Matuschek et al., 2017). At the end, on a different note, I will present a web application that facilitates data simulation for research and teaching (Bernabeu \u0026amp; Lynott, 2020).\n\rReferences\rBarr, D. J., Levy, R., Scheepers, C., \u0026amp; Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. http://dx.doi.org/10.1016/j.jml.2012.11.001\nBernabeu, P., \u0026amp; Lynott, D. (2020). Web application for the simulation of experimental data (Version 1.2). https://github.com/pablobernabeu/Experimental-data-simulation/\nBrauer, M., \u0026amp; Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://psych.wisc.edu/Brauer/BrauerLab/wp-content/uploads/2014/04/Brauer-Curtin-2018-on-LMEMs.pdf\nClark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12(4), 335-359. https://doi.org/10.1016/S0022-5371(73)80014-3\nLuke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y\nMatuschek, H., Kliegl, R., Vasishth, S., Baayen, H., \u0026amp; Bates, D. (2017). Balancing type 1 error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001\nMeteyard, L., \u0026amp; Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10.1016/j.jml.2020.104092\nSchielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H, Teplitsky, C., Reale, D., Dochtermann, N. A., Garamszegi, L. Z., \u0026amp; Araya-Ajoy, Y. G. (2020). Robustness of linear mixed-effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 00, 1– 12. https://doi.org/10.1111/2041-210X.13434\nSingmann, H., \u0026amp; Kellen, D. (2019). An Introduction to Mixed Models for Experimental Psychology. In D. H. Spieler \u0026amp; E. Schumacher (Eds.), New Methods in Cognitive Psychology (pp. 4–31). Hove, UK: Psychology Press. http://singmann.org/download/publications/singmann_kellen-introduction-mixed-models.pdf\n\n\r","date":1606348800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1606348800,"objectID":"b5a7cf88751d9bb001ccd85914568ce7","permalink":"https://pablobernabeu.github.io/presentation/2020-11-26-mixed-effects-models-in-r-and-a-new-tool-for-data-simulation/","publishdate":"2020-10-24T00:00:00Z","relpermalink":"/presentation/2020-11-26-mixed-effects-models-in-r-and-a-new-tool-for-data-simulation/","section":"presentation","summary":"In this talk, I will look over the rationale for LMEMs, and demonstrate how to fit them in R (Brauer \u0026 Curtin, 2018; Luke, 2017). Challenges will also be covered. For instance, when using the widely-accepted 'maximal' approach, based on fitting all possible random effects for each fixed effect, models sometimes fail to find a solution, or 'convergence'. Advice for the problem of nonconvergence will be demonstrated, based on the progressive lightening of the random effects structure (Singman \u0026 Kellen, 2017; for an alternative approach, especially with small samples, see Matuschek et al., 2017). At the end, on a different note, I will present a web application that facilitates data simulation for research and teaching (Bernabeu \u0026 Lynott, 2020).","tags":["statistics","linear mixed-effects models","regression","R","programming","web application","data simulation","Software Sustainability Institute Fellowship"],"title":"Mixed-effects models in R, and a new tool for data simulation","type":"presentation"},{"authors":[],"categories":["research and teaching applications"],"content":"\rResumen\rLas aplicaciones web nos ayudan a facilitar el uso de nuestro trabajo, ya que no requieren programación para utilizarlas (ver ejemplos). Crear estas aplicaciones en R, mediante paquetes como “shiny” o “flexdashboard”, ofrece múltiples ventajas. Entre ellas destaca la reproducibilidad, tal como veremos en torno a una aplicación para la simulación de datos. Por un lado, los usuarios pueden exportar un registro de su actividad. Por otro lado, el código utilizado para crear estas aplicaciones se puede compartir, investigar y editar con la facilidad que ofrece un lenguaje de código abierto como R. Esto facilita el uso gratuito, el desarrollo colaborativo y una documentación accesible sobre cualquiera de los paquetes utilizados. Por último, la reproducibilidad se puede maximizar si se facilita a los usuarios que lo deseen la exportación de un código de R ajustado a sus requerimientos (más allá del código de la aplicación en general), lo cual añadiría a la aplicación las ventajas de un paquete de R. Esta última opción (no disponible actualmente en la aplicación de simulación, ni en la mayoría de las aplicaciones) se puede habilitar adaptando el código de la aplicación a funciones básicas de R.\n\rVídeo y filminas\r\r\rSlideshare\r\r\n\r","date":1602115200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1602115200,"objectID":"a858b1b5f8379613a1eea26268d0e301","permalink":"https://pablobernabeu.github.io/presentation/2020-10-08-reproducibilidad-en-torno-a-una-aplicacion-web/","publishdate":"2020-10-08T00:00:00Z","relpermalink":"/presentation/2020-10-08-reproducibilidad-en-torno-a-una-aplicacion-web/","section":"presentation","summary":"Las aplicaciones web nos ayudan a facilitar el uso de nuestro trabajo, ya que no requieren programación para utilizarlas. Crear estas aplicaciones en R, mediante paquetes como \"shiny\" o \"flexdashboard\", ofrece múltiples ventajas. Entre ellas destaca la reproducibilidad, tal como veremos en torno a una aplicación para la simulación de datos (https://github.com/pablobernabeu/Experimental-data-simulation).","tags":["programming","programación","web application","aplicación web","data simulation","simulación de datos","statistics","estadística","R","Software Sustainability Institute Fellowship"],"title":"Reproducibilidad en torno a una aplicación web","type":"presentation"},{"authors":[],"categories":["research methods"],"content":"In a highly recommendable presentation available on Youtube, Michael Frank walks us through R Markdown. Below, I loosely summarise and partly elaborate on Frank's advice regarding collaboration among colleagues, some of whom may not be used to R Markdown (see relevant time point in Frank's presentation).\n The first way is using GitHub, which has a great version control system, and even allows the rendering of Markdown text, if the file is given the extension \u0026lsquo;.md\u0026rsquo; on GitHub. Furthermore, GitHub has made private repositories with any number of collaborators free.\n The second way is copying the text part of the unrendered R Markdown doc (i.e., excluding any long code chunks) to Word or Google Docs, or any other trackable editor. The collaborators would then edit the text, and refrain from editing any of the R or Markdown code (i.e., any inline code, hashes, etc.). Changes would be tracked and accepted (any unwanted edits of the code may be undone), and transferred to the original document.\n The third way is knitting the document to Word, which allows tracking changes, or otherwise knitting to PDF.\n ","date":1601683200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1601683200,"objectID":"a0ecd1e1e3cce418590be0fb00f25875","permalink":"https://pablobernabeu.github.io/2020/collaboration-while-using-r-markdown/","publishdate":"2020-10-03T00:00:00Z","relpermalink":"/2020/collaboration-while-using-r-markdown/","section":"post","summary":"In a highly recommendable presentation available on Youtube, Michael Frank walks us through R Markdown. Below, I loosely summarise and partly elaborate on Frank's advice regarding collaboration among colleagues, some of whom may not be used to R Markdown (see relevant time point in Frank's presentation).\n The first way is using GitHub, which has a great version control system, and even allows the rendering of Markdown text, if the file is given the extension \u0026lsquo;.","tags":["s","R","R Markdown"],"title":"Collaboration while using R Markdown","type":"post"},{"authors":[],"categories":["writing"],"content":"When writing formal pieces, some pitfalls in the punctuation are easy to avoid once you know them. Punctuation marks such as the comma, the semi-colon, the colon and the period are useful for organising phrases and clauses, facilitating the reading, and disambiguating. However, these marks are also liable to underuse, as in the case of run-on sentences; misuse, as in the comma splice; and overuse, as it often happens with the Oxford comma.\nRun-on sentences: insufficient punctuation Example (notice the absence of punctuation marks around \u0026lsquo;therefore\u0026rsquo;):\n * Specific agendas in media organisations lead to information being manipulated or hidden therefore individual research efforts are valuable.\n Possible alternative:\n Specific agendas in media organisations lead to information being manipulated or hidden. Therefore, individual research efforts are valuable.\n More information\nComma splice: misused punctuation A type of run-on sentence, the comma splice is characterised by the use of of too-weak punctuation forms; often, using a comma instead of a semi-colon or a period.\nExample (notice the comma before \u0026lsquo;therefore\u0026rsquo;):\n * Specific agendas in media organisations lead to information being manipulated or hidden, therefore individual research efforts are valuable.\n Possible alternative: see above.\n More information\nOxford comma: sometimes overused The Oxford, or serial, comma (namely, the comma preceding the word \u0026lsquo;and\u0026rsquo; before the last item in a series) has the purpose of facilitating the reading and disambiguating. Where that purpose is not necessary, neither is the comma.\nFind out more:\n Oxford University guidelines\n The Guardian guidelines\n Overuse of Oxford comma\n","date":1601683200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1601683200,"objectID":"95c4933f561744da5d3336c780d87794","permalink":"https://pablobernabeu.github.io/2020/formal-punctuation/","publishdate":"2020-10-03T00:00:00Z","relpermalink":"/2020/formal-punctuation/","section":"post","summary":"When writing formal pieces, some pitfalls in the punctuation are easy to avoid once you know them. Punctuation marks such as the comma, the semi-colon, the colon and the period are useful for organising phrases and clauses, facilitating the reading, and disambiguating. However, these marks are also liable to underuse, as in the case of run-on sentences; misuse, as in the comma splice; and overuse, as it often happens with the Oxford comma.","tags":["s","writing","punctuation"],"title":"Notes about punctuation in formal writing","type":"post"},{"authors":[],"categories":["research and teaching applications"],"content":"Unwanted, stranded meetings, overlapping with a general one in a channel, can occur when people click on the Meet (now)/📷 button, instead of clicking on the same Join button in the chat field. This may especially happen to those who reach the channel first, or who cannot see the Join button in the chat field because this field has been taken up by messages.\nTo prevent students from creating or joining stray meetings, the channel lead can direct students to a single meeting link in the chat field, which could be upward ion this field, and to avoid the Meet (now)/📷 button at the top right in channels.\nFurther background “Hi All, in Microsoft Teams, if multiple people click the \u0026lsquo;Meet (now)\u0026rsquo; button in a channel, what happens?” See Reddit post\nMore advanced tip to have meeting links ready in each channel Watch tutorial from minute 3:04 to 4:50\n","date":1601683200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1601683200,"objectID":"3d55f1b5bc711bbec6ca25d7ffb051a3","permalink":"https://pablobernabeu.github.io/2020/stray-meetings-in-microsoft-teams/","publishdate":"2020-10-03T00:00:00Z","relpermalink":"/2020/stray-meetings-in-microsoft-teams/","section":"post","summary":"Unwanted, stranded meetings, overlapping with a general one in a channel, can occur when people click on the Meet (now)/:camera: button, instead of clicking on the same Join button in the chat field. This may especially happen to those who reach the channel first, or who cannot see the Join button in the chat field because this field has been taken up by messages.","tags":["s","communications"],"title":"Stray meetings in Microsoft Teams","type":"post"},{"authors":[],"categories":["programming","R"],"content":"\r\r\r\r\r\r\r\rThis document is part of teaching materials created for the workshop ‘Open data and reproducibility v2.1: R Markdown, dashboards and Binder’, delivered at the CarpentryCon 2020 conference. The purpose of this specific document is to practise R Markdown, including basic features such as Markdown markup and code chunks, along with more special features such as cross-references for figures, tables, code chunks, etc. The code is on GitHub.\nSince this conference was originally going to take place in Madison, let’s look at some open data from the City of Madison.\nPark types\r[Placeholder text] Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Figure 1 shows the number of parks within each type.\n# Showing the code because echo = TRUE dat = read.csv(\u0026#39;https://opendata.arcgis.com/datasets/9e00ff81868e49b7ba65d4e628b9e14f_6.csv\u0026#39;)\rdat = dat %\u0026gt;%\rgroup_by(Type) %\u0026gt;%\rmutate(parks_number = n())\rggplotly(\rggplot(dat, aes(x=reorder(Type, parks_number), y=parks_number,\rtext = paste(\u0026#39;Number of parks =\u0026#39;, parks_number))) + theme(axis.title.y=element_blank()) + stat_identity(geom=\u0026#39;bar\u0026#39;) + labs(x=\u0026#39;Type\u0026#39;, y=\u0026#39;Number of parks\u0026#39;) + coord_flip(), tooltip = \u0026#39;text\u0026#39;\r)\r\r\r{\"x\":{\"data\":[{\"orientation\":\"h\",\"width\":[0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.9,0.9,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.899999999999999,0.9,0.9,0.9,0.9,0.9,0.9,0.899999999999999,0.899999999999999,0.899999999999999,0.9,0.9,0.9,0.9,0.899999999999999,0.899999999999999],\"base\":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],\"x\":[100,100,22,78,78,21,31,100,78,100,78,31,100,78,100,78,78,100,21,31,100,78,100,2,100,100,100,100,78,100,100,100,78,100,100,21,2,78,78,100,21,100,31,100,22,1,78,100,78,78,78,100,100,13,78,100,78,100,22,100,78,100,31,78,100,100,78,31,100,100,100,78,100,100,78,21,100,21,100,78,100,21,21,100,100,100,1,31,100,78,100,78,78,13,21,78,22,100,22,100,31,31,31,78,100,31,31,100,22,31,78,100,78,100,100,100,78,100,100,31,21,22,78,78,78,22,13,100,31,100,78,31,78,21,100,21,31,78,100,78,31,100,78,78,22,78,21,100,100,100,31,78,100,78,100,22,22,78,100,78,78,13,78,100,31,78,100,78,31,100,13,100,22,13,13,78,78,100,78,78,78,100,100,22,78,21,13,21,22,78,21,13,22,100,78,31,31,13,78,78,100,100,100,78,100,100,100,21,100,31,100,31,22,100,78,22,100,100,100,78,31,100,78,31,78,100,78,78,78,100,22,78,100,100,100,78,100,100,100,78,78,21,31,78,78,13,22,78,100,100,100,78,21,100,13,21,22,31,31,31,100,78,100,13,22,21,22,100,78],\"y\":[9,9,6,8,8,5,7,9,8,9,8,7,9,8,9,8,8,9,5,7,9,8,9,3,9,9,9,9,8,9,9,9,8,9,9,5,3,8,8,9,5,9,7,9,6,2,8,9,8,8,8,9,9,4,8,9,8,9,6,9,8,9,7,8,9,9,8,7,9,9,9,8,9,9,8,5,9,5,9,8,9,5,5,9,9,9,1,7,9,8,9,8,8,4,5,8,6,9,6,9,7,7,7,8,9,7,7,9,6,7,8,9,8,9,9,9,8,9,9,7,5,6,8,8,8,6,4,9,7,9,8,7,8,5,9,5,7,8,9,8,7,9,8,8,6,8,5,9,9,9,7,8,9,8,9,6,6,8,9,8,8,4,8,9,7,8,9,8,7,9,4,9,6,4,4,8,8,9,8,8,8,9,9,6,8,5,4,5,6,8,5,4,6,9,8,7,7,4,8,8,9,9,9,8,9,9,9,5,9,7,9,7,6,9,8,6,9,9,9,8,7,9,8,7,8,9,8,8,8,9,6,8,9,9,9,8,9,9,9,8,8,5,7,8,8,4,6,8,9,9,9,8,5,9,4,5,6,7,7,7,9,8,9,4,6,5,6,9,8],\"text\":[\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 2\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 2\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 1\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 13\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 1\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 13\",\"Number of parks = 21\",\"Number of parks = 78\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 21\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 22\",\"Number of parks = 13\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 13\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 13\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 13\",\"Number of parks = 13\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 13\",\"Number of parks = 21\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 13\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 13\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 31\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 31\",\"Number of parks = 78\",\"Number of parks = 78\",\"Number of parks = 13\",\"Number of parks = 22\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 21\",\"Number of parks = 100\",\"Number of parks = 13\",\"Number of parks = 21\",\"Number of parks = 22\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 31\",\"Number of parks = 100\",\"Number of parks = 78\",\"Number of parks = 100\",\"Number of parks = 13\",\"Number of parks = 22\",\"Number of parks = 21\",\"Number of parks = 22\",\"Number of parks = 100\",\"Number of parks = 78\"],\"type\":\"bar\",\"textposition\":\"none\",\"marker\":{\"autocolorscale\":false,\"color\":\"rgba(89,89,89,1)\",\"line\":{\"width\":1.88976377952756,\"color\":\"transparent\"}},\"showlegend\":false,\"xaxis\":\"x\",\"yaxis\":\"y\",\"hoverinfo\":\"text\",\"frame\":null}],\"layout\":{\"margin\":{\"t\":26.2283105022831,\"r\":7.30593607305936,\"b\":40.1826484018265,\"l\":92.7853881278539},\"plot_bgcolor\":\"rgba(235,235,235,1)\",\"paper_bgcolor\":\"rgba(255,255,255,1)\",\"font\":{\"color\":\"rgba(0,0,0,1)\",\"family\":\"\",\"size\":14.6118721461187},\"xaxis\":{\"domain\":[0,1],\"automargin\":true,\"type\":\"linear\",\"autorange\":false,\"range\":[-5,105],\"tickmode\":\"array\",\"ticktext\":[\"0\",\"25\",\"50\",\"75\",\"100\"],\"tickvals\":[0,25,50,75,100],\"categoryorder\":\"array\",\"categoryarray\":[\"0\",\"25\",\"50\",\"75\",\"100\"],\"nticks\":null,\"ticks\":\"outside\",\"tickcolor\":\"rgba(51,51,51,1)\",\"ticklen\":3.65296803652968,\"tickwidth\":0.66417600664176,\"showticklabels\":true,\"tickfont\":{\"color\":\"rgba(77,77,77,1)\",\"family\":\"\",\"size\":11.689497716895},\"tickangle\":-0,\"showline\":false,\"linecolor\":null,\"linewidth\":0,\"showgrid\":true,\"gridcolor\":\"rgba(255,255,255,1)\",\"gridwidth\":0.66417600664176,\"zeroline\":false,\"anchor\":\"y\",\"title\":{\"text\":\"Number of parks\",\"font\":{\"color\":\"rgba(0,0,0,1)\",\"family\":\"\",\"size\":14.6118721461187}},\"hoverformat\":\".2f\"},\"yaxis\":{\"domain\":[0,1],\"automargin\":true,\"type\":\"linear\",\"autorange\":false,\"range\":[0.4,9.6],\"tickmode\":\"array\",\"ticktext\":[\"OTHER\",\"SPECIAL\",\"SPORTS COMPLEX\",\"TRAFFICWAY\",\"CONSERVATION\",\"OPEN SPACE\",\"COMMUNITY\",\"NEIGHBORHOOD\",\"MINI\"],\"tickvals\":[1,2,3,4,5,6,7,8,9],\"categoryorder\":\"array\",\"categoryarray\":[\"OTHER\",\"SPECIAL\",\"SPORTS COMPLEX\",\"TRAFFICWAY\",\"CONSERVATION\",\"OPEN SPACE\",\"COMMUNITY\",\"NEIGHBORHOOD\",\"MINI\"],\"nticks\":null,\"ticks\":\"outside\",\"tickcolor\":\"rgba(51,51,51,1)\",\"ticklen\":3.65296803652968,\"tickwidth\":0.66417600664176,\"showticklabels\":true,\"tickfont\":{\"color\":\"rgba(77,77,77,1)\",\"family\":\"\",\"size\":11.689497716895},\"tickangle\":-0,\"showline\":false,\"linecolor\":null,\"linewidth\":0,\"showgrid\":true,\"gridcolor\":\"rgba(255,255,255,1)\",\"gridwidth\":0.66417600664176,\"zeroline\":false,\"anchor\":\"x\",\"title\":{\"text\":\"\",\"font\":{\"color\":null,\"family\":null,\"size\":0}},\"hoverformat\":\".2f\"},\"shapes\":[{\"type\":\"rect\",\"fillcolor\":null,\"line\":{\"color\":null,\"width\":0,\"linetype\":[]},\"yref\":\"paper\",\"xref\":\"paper\",\"x0\":0,\"x1\":1,\"y0\":0,\"y1\":1}],\"showlegend\":false,\"legend\":{\"bgcolor\":\"rgba(255,255,255,1)\",\"bordercolor\":\"transparent\",\"borderwidth\":1.88976377952756,\"font\":{\"color\":\"rgba(0,0,0,1)\",\"family\":\"\",\"size\":11.689497716895}},\"hovermode\":\"closest\",\"barmode\":\"relative\"},\"config\":{\"doubleClick\":\"reset\",\"modeBarButtonsToAdd\":[\"hoverclosest\",\"hovercompare\"],\"showSendToCloud\":false},\"source\":\"A\",\"attrs\":{\"e434646d209\":{\"x\":{},\"y\":{},\"text\":{},\"type\":\"bar\"}},\"cur_data\":\"e434646d209\",\"visdat\":{\"e434646d209\":[\"function (y) \",\"x\"]},\"highlight\":{\"on\":\"plotly_click\",\"persistent\":false,\"dynamic\":false,\"selectize\":false,\"opacityDim\":0.2,\"selected\":{\"opacity\":1},\"debounce\":0},\"shinyEvents\":[\"plotly_hover\",\"plotly_click\",\"plotly_selected\",\"plotly_relayout\",\"plotly_brushed\",\"plotly_brushing\",\"plotly_clickannotation\",\"plotly_doubleclick\",\"plotly_deselect\",\"plotly_afterplot\",\"plotly_sunburstclick\"],\"base_url\":\"https://plot.ly\"},\"evals\":[],\"jsHooks\":[]}\rFigure 1: Number of parks within each type.\r\r\rTwenty largest parks\r[Placeholder text] Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Table 1 shows the twenty largest parks types, along with their type and acreage. The code doesn’t show below because echo = FALSE.\n\rTable 1: The twenty largest parks in Madison.\r\rName\rType\rAcreage\r\r\r\rCherokee Marsh - North Unit\rCONSERVATION\r946.58\r\rCherokee Marsh - South Unit (School Road Unit)\rCONSERVATION\r261.27\r\rElver Park\rCOMMUNITY\r250.82\r\rNortheast Park\rCOMMUNITY\r237.76\r\rWarner Park\rCOMMUNITY\r213.49\r\rDoor Creek Park\rCOMMUNITY\r159.97\r\rCherokee Marsh - Mendota Unit\rCONSERVATION\r122.08\r\rOwen Conservation Park\rCONSERVATION\r96.79\r\rReindahl (Amund) Park\rCOMMUNITY\r90.74\r\rOlbrich Park\rCOMMUNITY\r90.01\r\rYahara Hills Park (West)\rCOMMUNITY\r82.20\r\rSycamore Park\rCOMMUNITY\r71.42\r\rTurville Point Conservation Park\rCONSERVATION\r64.28\r\rEdna Taylor Conservation Park\rCONSERVATION\r60.27\r\rQuann Park\rCOMMUNITY\r55.43\r\rDemetral Park\rCOMMUNITY\r49.18\r\rPrairie Ridge Conservation Park\rCONSERVATION\r48.76\r\rOlin Park\rCOMMUNITY\r47.12\r\rHiestand Park\rCOMMUNITY\r46.27\r\rVilas (Henry) Park\rCOMMUNITY\r45.67\r\r\r\rWe could decide to display the code for the table at this point (or any other), which can be done using the parameters ref.label = 'largest-parks', echo = TRUE, eval = FALSE in the chunk options (Xie, Dervieux, \u0026amp; Riederer, 2020).\ndat %\u0026gt;%\rsummarize(Name = Park_Name, Type, Acreage) %\u0026gt;%\rarrange(-Acreage, Name, Type) %\u0026gt;%\rselect(Name, Type, Acreage) %\u0026gt;%\rhead(20) %\u0026gt;%\rkable(caption = \u0026#39;The twenty largest parks in Madison.\u0026#39;)\r\n\r","date":1597363200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1597363200,"objectID":"bbe7cc7942958a68302a125ad80e07d1","permalink":"https://pablobernabeu.github.io/2020/r-markdown-amidst-madison-parks/","publishdate":"2020-08-14T00:00:00Z","relpermalink":"/2020/r-markdown-amidst-madison-parks/","section":"post","summary":"This document is part of teaching materials created for the workshop 'Open data and reproducibility v2.1: R Markdown, dashboards and Binder', delivered at the CarpentryCon 2020 conference. The purpose of this specific document is to practise R Markdown, including basic features such as Markdown markup and code chunks, along with more special features such as cross-references for figures, tables, code chunks, etc. Since this conference was originally going to take place in Madison, let's look at some open data from the City of Madison.","tags":["s","R","R Markdown","CarpentryCon","workshop","RStudio","bookdown","cross-references"],"title":"R Markdown amidst Madison parks","type":"post"},{"authors":[],"categories":["viewpoint"],"content":"\r\nFluke is a popular term for the statistical concepts of false positive or false negative results (more commonly used for false positives). A false positive occurs when a result that does not exist in reality is observed in an analysis due to a methodological error (be it experimental, statistical, or otherwise). Conversely, a false negative occurs when a genuine result is not observed in an analysis, due to the same kind of error. The concept of fluke is defined by its opposite: a truthful, accurate result.\nThe label ‘fluke’ is ubiquitous where statistics is applied, from medicine to psychology and from sociology to politics.\nWhen I won in 2018, many dismissed our victory as a “fluke.”\nOur win was treated as an aberration, or bc my opponent “didn’t try.”\nSo from the start, tonight’s race was important to me.\nTonight we are proving that the people’s movement in NY isn’t an accident. It‘s a mandate.\r— Alexandria Ocasio-Cortez (@AOC) June 24, 2020\r\r\r\nWhat’s in the label ‘fluke’—or what could there be?\rAOC’s tweet points at two main types of reactions to her results in the previous elections. The first type is dismissal, on the grounds of a fluke or a weak opposition. The other reaction is plain ‘aberration’. A few weeks earlier, Mark Leibovich had also delved into this issue in The New York Times (May 4, 2020, https://nyti.ms/2YsJ9fb):\n\rShe believed misconceptions had taken hold about her: that she was angry and strident. That she was naïve. “That I just don’t know how this town works,” she said. “That I’m stupid. Or I’m lucky. That was a big thing the Democrats were saying. That I was a fluke. Which is basically just 10 different ways of saying she’s not supposed to be here.”\n\rThe seemingly objective term ‘fluke’, with its statistical underpinning, seems to be susceptible to biased uses. We may then have to ask: Have other electoral results, comparable to AOC’s, been equally studied for signs of a fluke? Why is a certain result perceived as a fluke in the first place? From perceptual to cognitive and historical biases, people’s judgements are susceptible to visual mistakes (Zamboni, Ledgeway, McGraw, \u0026amp; Schluppeck, 2016), confirmation bias (Rajsic, Taylor, \u0026amp; Pratt, 2018) and biased records (Hug, 2003).\nIn summary, the label ‘fluke’ may in principle be skewed by:\n the eye of the beholder\n the mind of the perceiver\n the availability or lack of data\n\r\n\rTrust and distrust\rProblems associated with the reliance on trust and distrust have become patent even in fields that are relatively regulated against arbitrary decisions, such as higher education and academia (Barber, Hayes, Johnson, Márquez-Magaña, \u0026amp; 10,234 signatories, 2020; Milkman, Akinola, \u0026amp; Chugh, 2012, 2015).\n\n\rReferences\rBarber, P. H., Hayes, T. B., Johnson, T. L., Márquez-Magaña, L., \u0026amp; 10,234 signatories (2020). Systemic racism in higher education. Science, 369, 6510, 1440-1441. https://doi.org/10.1126/science.abd7140\nHug, S. (2003). Selection Bias in Comparative Research: The Case of Incomplete Data Sets. Political Analysis, 11(3), 255-274. https://doi.org/10.1093/pan/mpg014\nMilkman, K. L., Akinola, M., \u0026amp; Chugh, D. (2012). Temporal distance and discrimination: an audit study in academia. Psychological Science, 23(7), 710–717. https://doi.org/10.1177/0956797611434539\n_____ (2015). What happens before? A field experiment exploring how pay and representation differentially shape bias on the pathway into organizations. Journal of Applied Psychology, 100(6), 1678–1712. https://doi.org/10.1037/apl0000022\nRajsic, J., Taylor, J. E. T., \u0026amp; Pratt, J. (2018) Out of sight, out of mind: Matching bias underlies confirmatory visual search. Attention, Perception, \u0026amp; Psychophysics, 79, 498–507. https://doi.org/10.3758/s13414-016-1259-4\nZamboni, E., Ledgeway, T., McGraw, P. V., \u0026amp; Schluppeck, D. (2016). Do perceptual biases emerge early or late in visual processing? Decision-biases in motion perception. Proceedings of the Royal Society B: Biological Sciences, 283(1833), 20160263. https://doi.org/10.1098/rspb.2016.0263\n\n\r","date":1593043200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1593043200,"objectID":"57e3bb921a728168f4133cdd4dc07187","permalink":"https://pablobernabeu.github.io/2020/whats-in-a-fluke/","publishdate":"2020-06-25T00:00:00Z","relpermalink":"/2020/whats-in-a-fluke/","section":"post","summary":"The label 'fluke' may in principle be skewed by the eye of the beholder, the mind of the perceiver and the availability or lack of data.","tags":["fluke","false positive","false negative","perception","bias","discrimination","trust","distrust"],"title":"What's in a fluke? The problem of trust and distrust","type":"post"},{"authors":["Bernabeu, P., \u0026 Lynott, D."],"categories":["research and teaching applications","R"],"content":"\r Purposes\r\rThis open-source, R-based web application is suitable for educational and research purposes in experimental and quantitative sciences. It allows the creation of varied data sets with specified structures, such as between-group and within-participant variables, that can be categorical or continuous. These parameters can be set throughout the various tabs (sections) from the top menu. In the last tab, the data set can be downloaded. The benefits of this application include time-saving and flexibility in the control of parameters.\nGuidelines\rGeneral guidelines include the following:\n\rIn the names of variables, it’s recommended only to use alphanumeric characters and underscore signs. The latter can be used to separate characters or words (e.g., variable_name). Different names should be used for each variable.\n\rIn the levels of categorical variables, alphanumeric, special characters and spaces are allowed.\n\rIn numeric fields (e.g., ‘Mean’, ‘Standard deviation’, ‘Relative probability [0, 1]’), only numbers and decimal points are allowed.\n\rAs the data set increases, so does the processing time.\n\r\rMore specific guidelines are available in each section.\n\r🌐 The web application can be launched here.\rScreenshot of the Dependent tab (view larger)\r\r\rReference\rBernabeu, P., \u0026amp; Lynott, D. (2020). Web application for the simulation of experimental data (Version 1.4). https://github.com/pablobernabeu/Experiment-simulation-app/\n\rCode\rThis web application was developed in R (R Core Team, 2020). The code is available on Github, where contributions may be made. The initial code for this application was influenced by Section 5.7 (Simulating data for multi-factor designs) in Crump (2017). The R packages used include ‘dplyr’ (Wickham, François, Henry, \u0026amp; Müller, 2018), ‘DT’ (Xie, 2020), ‘flexdashboard’ (Iannone, Allaire, \u0026amp; Borges, 2020), ‘shiny’ (Chang, Cheng, Allaire, Xie, \u0026amp; McPherson, 2020) and ‘stringr’ (Wickham, 2019).\n\rOptions for development and local use of the app\rOption A) Using local R/RStudio or RStudio Cloud project or Binder RStudio environment\r[Step only necessary in R/RStudio] Install the packages in the versions used in the latest release of this application, by running:\ninstall.packages(\u0026#39;devtools\u0026#39;)\rlibrary(devtools)\rinstall_version(\u0026#39;dplyr\u0026#39;, \u0026#39;1.0.2\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;DT\u0026#39;, \u0026#39;0.15\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;flexdashboard\u0026#39;, \u0026#39;0.5.2\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;htmltools\u0026#39;, \u0026#39;0.5.0\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;knitr\u0026#39;, \u0026#39;1.30\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;ngram\u0026#39;, \u0026#39;3.0.4\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;purrr\u0026#39;, \u0026#39;0.3.4\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;shiny\u0026#39;, \u0026#39;1.5.0\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;stringr\u0026#39;, \u0026#39;1.4.0\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rinstall_version(\u0026#39;tidyr\u0026#39;, \u0026#39;1.1.2\u0026#39;, \u0026#39;http://cran.us.r-project.org\u0026#39;)\rOpen the index.Rmd script.\n\rRun the application by clicking on ▶️ Run document at the top left, or by running rmarkdown::run('index.Rmd') in the console.\n\rClick on Open in Browser at the top left.\n\r\r\rOption B) Using Dockerfile (see instructions)\r\r\rAcknowledgements\rThank you to RStudio for the free hosting server used by this application, shinyapps.io.\n\rReferences\rChang, W., Cheng, J., Allaire, J., Xie, Y., \u0026amp; McPherson, J. (2020). shiny: Web Application Framework for R. R package version 1.4.0. Available at http://CRAN.R-project.org/package=shiny.\nCrump, M. J. C. (2017). Programming for Psychologists: Data Creation and Analysis (Version 1.1). https://crumplab.github.io/programmingforpsych/.\nIannone, R., Allaire, J. J., \u0026amp; Borges, B. (2020). Flexdashboard: R Markdown Format for Flexible Dashboards. http://rmarkdown.rstudio.com/flexdashboard.\nR Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.\nWickham, H. (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr.\nWickham, H., François, R., Henry, L., \u0026amp; Müller, K. (2018). dplyr: A Grammar of Data Manipulation. R package version 0.7.6. https://CRAN.R-project.org/package=dplyr.\nXie, Y. (2020). DT: A Wrapper of the JavaScript Library “DataTables”. R package version 0.14. Available at https://CRAN.R-project.org/package=DT.\n\rContact\rTo submit any questions or feedback, please post an issue, or email Pablo Bernabeu at pcbernabeu@gmail.com.\n\r","date":1590969600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1590969600,"objectID":"cb99802ba67d5ec447b8a57edf3c7694","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/experimental-data-simulation/","publishdate":"2020-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/experimental-data-simulation/","section":"applications-and-dashboards","summary":"This open-source, R-based web application is suitable for educational or research purposes in experimental sciences. It allows the **creation of varied data sets with specified structures, such as between-group or within-participant variables, that can be categorical or continuous.** These features can be selected along the different tabs. In the penultimate tab, a custom summary of the current data set can be constructed. In the last tab, the list of parameters and the data set can be downloaded.","tags":["web application","data simulation","randomisation","research methods","experiment","statistics","data science","R","Tidyverse","R Shiny","Flexdashboard","HTML","CSS","Software Sustainability Institute Fellowship"],"title":"Web application for the simulation of experimental data","type":"applications-and-dashboards"},{"authors":["Rand et al."],"categories":["research"],"content":"\r\n\r\n\r\n","date":1590710400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1590710400,"objectID":"356352fe6162095bd1b10790cbffac29","permalink":"https://pablobernabeu.github.io/2020/how-to-engage-research-group-leaders-in-sustainable-software-practices/","publishdate":"2020-05-29T00:00:00Z","relpermalink":"/2020/how-to-engage-research-group-leaders-in-sustainable-software-practices/","section":"post","summary":"There is an increasing number of training courses introducing early career researchers to sustainable software practices but relatively little aimed at Research Group Leaders and Principal Investigators. Expecting group leaders to personally acquire such skills through training such as a two-day Carpentries workshop is unrealistic, as these require a significant time investment and are less directly applicable in the role of research director. In addition, many group leaders would not consider their group as outputting software, or are less aware of the full range of benefits that sustainable practice brings and will thus be less likely to signpost such training to their team members. Even where they do identify benefits, they may have concerns about releasing group software or may feel overwhelmed by the potential scale of the task, especially with respect to legacy projects.","tags":["s","research","sustainable practices"],"title":"How to engage Research Group Leaders in sustainable software practices","type":"post"},{"authors":["Cooper et al."],"categories":["software"],"content":"\r\n\r\n\r\n","date":1590710400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1590710400,"objectID":"0a69641623857190165304e7c0a35302","permalink":"https://pablobernabeu.github.io/2020/incentives-for-good-research-software-practices/","publishdate":"2020-05-29T00:00:00Z","relpermalink":"/2020/incentives-for-good-research-software-practices/","section":"post","summary":"Software is increasingly becoming recognised as fundamental to research. In a 2014 survey of UK researchers undertaken by the Institute, 7 out of 10 researchers supported the view that it would be impossible to conduct research without software. As software continues to underpin more research activities, we must engage a variety of stakeholders to incentivise the uptake of best practice in software development to ensure the quality of research software keeps pace with the research it supports.","tags":["s","research software","best practices"],"title":"Incentives for good research software practices","type":"post"},{"authors":null,"categories":["data visualisation","R"],"content":"\u0026nbsp; Dashboard\r\r\rThis dashboard presents open data (iNaturalist and BioScan) from Prudic, K.L.; Oliver, J.C.; Brown, B.V.; Long, E.C. Comparisons of Citizen Science Data-Gathering Approaches to Evaluate Urban Butterfly Diversity. Insects 2018, 9, 186. In their study, Prudic and colleagues compared citizen science with traditional methods in the measurement of butterfly populations.\nI developed this dashboard after reproducing the analyses of the original study in a Reprohack session.\nMy coding tasks included transforming the data to a long format,\n# There are pseudovariables, that is, observations entered as variables. Since most R processes # need the tidy format, convert below (see https://r4ds.had.co.nz/tidy-data.html).\r# The specific numbers found through traps and crowdsourcing methods are preserved.\rBioScan = BioScan %\u0026gt;% pivot_longer(\rcols = Anthocharis_sara:Vanessa_cardui, names_to = \u0026quot;Species\u0026quot;,\rvalues_to = \u0026quot;Number\u0026quot;, values_drop_na = TRUE\r)\r# Compare\r#str(BioScan)\r#str(dat)\r# 928 rows now; the result of 29 pseudo-variables being transposed into\r# rows, interacting with 32 previous rows, i.e., 29 * 32 = 928.\r merging three data sets,\n# The iNaturalist data set presents a slightly different challenge from the pseudovariables found above.\r# The number of animals of each species must be computed from repeated entries, per site.\riNaturalist = merge(iNaturalist, iNaturalist %\u0026gt;% count(species, site, name = 'Number'))\r and, as ever, wrangling with the format of the dashboard pages to preserve the format of a table.\nSpecies details {style=\u0026quot;background-color: #FCFCFC;\u0026quot;}\r=======================================================================\rColumn {style=\u0026quot;data-width:100%; position:static; height:1000px;\u0026quot;}\r-----------------------------------------------------------------------\r Reference Bernabeu, P. (2020). Dashboard with data from Prudic, Oliver, Brown, \u0026amp; Long (2018), Comparisons of Citizen Science Data-Gathering Approaches to Evaluate Urban Butterfly Diversity, Insects, 9, 186. https://pablobernabeu.github.io/dashboards/Butterfly-species-richness-in-LA.\n\r","date":1577836800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1577836800,"objectID":"96946d5c2cb3747b0122b8bf0160e852","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/butterfly-species-richness-in-la/","publishdate":"2020-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/butterfly-species-richness-in-la/","section":"applications-and-dashboards","summary":"Dashboard with open data from a study by Prudic et al. (2018), that compares citizen science with traditional methods in butterfly sampling. Coding tasks included long-transforming, merging, and as ever, wrangling with a table.","tags":["data dashboard","R","citizen science","butterflies","nature","open data","BioScan","iNaturalist","HTML","CSS","tidy","merge","Software Sustainability Institute Fellowship"],"title":"Data dashboard: Butterfly species richness in Los Angeles","type":"applications-and-dashboards"},{"authors":[],"categories":["education","programming","R"],"content":"\rEnhanced data presentation using reproducible documents and dashboards\rCalendar\r\r\r\r\rDate\rTitle\rEvent and location\rRegistration\r\r\r\r26 Nov 2020\rMixed-effects models in R, and a new tool for data simulation\rNew Tricks Seminars, Dept. Psychology, Lancaster University [online]\r\r\r8 Oct 2020\rReproducibilidad en torno a una aplicación web\rReprohack en español, LatinR Conference 2020 [online]\rLink\r\r13 Aug 2020\rOpen data and reproducibility: R Markdown, data dashboards and Binder v2.1 (co-led with Florencia D’Andrea)\rCarpentryCon, CarpentryCon@Home, The Carpentries [online]\rLink\r\r26 July 2020\rOpen data and reproducibility: R Markdown, data dashboards and Binder (co-led with Eirini Zormpa)\rUK Cognitive Linguistics Conference, University of Birmingham [online]\rLink\r\r6 May 2020\rR Markdown\rLancaster University [online]\r\r\rEvent cancelled\rOpen data and reproducibility 2.0\rSatRday Newcastle upon Tyne, Newcastle University\rLink\r\r\r\r\n\rBackground\rThis project offers free activities to learn and practise reproducible data presentation. Pablo Bernabeu organises these events in the context of a Software Sustainability Institute Fellowship.\nOpen-source software\rProgramming languages such as R and Python offer free, powerful resources for data processing, visualisation and analysis. Experience in these programs is highly valued in data-intensive disciplines.\n\rOpen data\rOriginal data has become a public good in many research fields thanks to cultural and technological advances. On the internet, we can find innumerable data sets from sources such as scientific journals and repositories (e.g., OSF), local and national governments (e.g., London, UK [1, 2]), non-governmental organisations (e.g., data.world), etc. Researchers inside and outside academia nowadays share a lot of their data under attribution licences (e.g., Creative Commons, the UK Open Government Licence, etc.). This allows any external analysts to access these raw data, create (additional) visualisations and analyses, and share these. In society, making data more accessible can demonstrably benefit citizens (despite limitations).\n\r\r\rActivities\rActivities comprise free workshops and datathons.\nWorkshops\rR is a programming language greatly equipped for the creation of reproducible documents and dashboards. Four workshops are offered that cover a suite of interrelated tools—R, R Markdown, data dashboards and Binder environments—, all underlain by reproducible workflows and open-source software.\nEach workshop includes taught and practical sections. The practice provides a chance for participants to experience and address common issues with the code. The level of taught sections is largely tailored to participants; similarly, practice sections are individually adaptable by means of easier and tougher tasks. The duration is also flexible, and some of the workshops can be combined into the same session.\nThe RStudio interface is used in all workshops. Multi-levelled, real code examples are used. Throughout the workshops, and especially in the practice sections, individual questions will be encouraged.\nWorkshop 1: Introduction to R\rThis workshop can serve as an introduction to R or a revision. It demonstrates what can be done in R, and provides resources for individual training. Since the duration is limited, online courses are also recommended (see examples and fee waivers for full content).\n\rData structures\rPackages: general-purpose examples (e.g., tidyverse) and more specific ones (e.g., for statistics or geography)\rLoading and writing data, in native and foreign formats\rWide format (also dubbed ‘untidy’) versus tidy format (also dubbed ‘long’ or ‘narrow’). For most processes in R, data needs to be in a tidy format.\r\r\rImage from Postma and Goedhart (2019; https://doi.org/10.1371/journal.pbio.3000202.g001).\r\rCombining data sets\rData summaries\rPlots with ggplot2::ggplot()\rInteractive plots with plotly::ggplotly()\rStatistics\rLinear mixed-effects models (see also a review of practices)\rHow functions work\rDebugging. Code errors are known as bugs. They can tiresome, but also interesting sometimes! 😅 Some tips for the first many years of experience include: reading and investigating error messages, in both source and console windows; controlling letter case and typos; closing parentheses and inverted commas; ensuring to have the necessary packages installed and loaded; following the format required by each function. To debug, break up code into subcomponents and test each of those to find out the source of the error. Once we act on that, the best outcome is seeing the code work, but sometimes different errors overlap, in which case we may see one error disappearing before another one appears. Debugging soon leads to proficient information seeking. The search process often begins on an internet search engine and extends to user communities, package documentation, tutorials, blogs… (see video explanation). Advanced debugging tools are also available.\rVast availability of free resources on the internet, from Coursera and other MOOC sites, RStudio, University of Glasgow, Carpentries, etc.\rCommunity: StackOverflow, RStudio Community, Github issues (e.g., for R packages), etc. Using and contributing back.\rRStudio Cloud: a personal RStudio environment on the internet\r\r\rWorkshop 2: R Markdown documents\rSet your input and output in stone using R Markdown. The analysis reports may be enriched with website features (HTML/CSS) and published as HTML, PDF or Word documents. Moreover, with R packages such as bookdown, bookdownplus, blogdown and flexdashboard, documents can be formatted as websites, digital papers and books and data dashboards. Other useful packages include rmarkdown, knitr, DT, kableExtra and ggplot2. Further background: presentation by Michael Frank, slides by Ed Berry.\nAs well as facilitating the reproducibility of analyses and results to third parties, R Markdown is helpful during the creation of a report. In particular, it reduces the chances of errors and the number of repetitive tasks. For instance, any part of the data can be inputted in the text directly from the source, rather than manually copying it (e.g., `r mean(dat[dat$location=='Havana', 'measure'])` (expand). Thus, if and when the analysis needs to be changed or updated, the report can be automatically updated at the click of a button. In another area, the captions for figures and tables can be automatised using cross-reference labels (e.g., Table \\@ref(tab:mtcars)). This secures the match between the text and the captions of figures and tables, and it automatically updates the numbering whenever and wherever a new figure or table is introduced.\n\rImage from bookdownplus package (https://bookdownplus.netlify.com/portfolio/).\r\rWorkshop 3: Introduction to data dashboards\rData dashboards are web applications used to visualise data in detail through tables and plots. They assist in explaining and accounting for our data processing and analysis. They don’t require any coding from the end user. While most dashboards and web applications present existing data, a few of them serve the purpose of creating or simulating new data (see example).\n\rThese all-reproducible dashboards are published as websites, and thus, they can include hyperlinks and downloadable files. Some of the R packages used are knitr, DT, kableExtra, reactable, ggplot2, plotly, rmarkdown, flexdashboard and shiny. The aim of this workshop is to practise creating different forms of dashboards—Flexdashboard and Shiny—the latter of which offers greater features, and to practise also with the hosting platforms fitting each type—such as personal websites, RPubs, Binder, Shinyapps and custom servers.\nA great thing about dashboards is that they may be made very simple, but they can also be taken to the next level using some HTML, CSS or Javascript code (on top of the back-end code present in the R packages used), which is addressed in the next workshop.\n\rWorkshop 4: Binder environments and improving data dashboards\rBinder\rBinder is a tool to facilitate public access to software environments—for instance, by publishing an RStudio environment on the internet. Binder can also host Shiny apps. It is generously free for users. After looking at the nuts and bolts of a deployment, participants will be able to deploy their own Binder environments and check the result by the end of the workshop. For this purpose, it’s recommended to have data and R code ready, ideally in a GitHub repository.\n\rImproving data dashboards\rWe will practise how to improve the functionality of dashboards using some HTML, CSS and Javascript code, which is the basis of websites.\n\u0026lt;!-- Javascript function to enable a hovering tooltip --\u0026gt;\r\u0026lt;script\u0026gt;\r$(document).ready(function(){\r$(\u0026#39;[data-toggle=\u0026quot;tooltip1\u0026quot;]\u0026#39;).tooltip();\r});\r\u0026lt;/script\u0026gt;\r\r\rTrade-offs among dashboards\rNext, we will practise with three dashboard types—Flexdashboard, Shiny and Flexdashboard-Shiny—and with the suitable hosting platforms. Firstly, the strength of Flexdashboard (example) is its basis on R Markdown, yielding an unmatched user interface (front-end). Secondly, the strength of Shiny (example) is the input reactivity (back-end) it offers, allowing users to download sections of data they select, in various formats. Last, Flexdashboard-Shiny (example) combines the best of both worlds.\n★ Flexdashboard ★\r★ ★ Shiny ★ ★\r★ ★ ★ Flexdashboard-Shiny ★ ★ ★\rFlexdashboard types are rendered as an HTML document—simple websites—, and can therefore be easily published on personal sites or RPubs. This is convenient because no special hosting is required. In contrast, Shiny and Flexdashboard-Shiny types offer greater features, but require Shiny servers. Fortunately, the shinyapps.io server is available for free, up to some usage limit. This server can host any of the three dashboards mentioned here. Another good option is presented by Binder environments, which can host the Shiny-type dashboards with no (explicit) limit. Yet, the Flexdashboard-Shiny type cannot be hosted in this server (as of January 2020, at least). Consequently, greater functionality may come at a cost for dashboards that have any considerable traffic, whereas dashboards with low traffic may do well on shinyapps.io. Knowing these trade-offs can help navigate usage limits, save on web hosting fees, and increase the availability of our dashboards online, as we can offer fall-back versions on different platforms, as in the example below:\n\r… preferred-dashboard (in case of downtime, please visit this alternative)\n\rTransforming dashboards into the different versions can be as easy as enabling or disabling some features, especially input reactivity. For instance, if we want to downgrade a Flexdashboard-Shiny to a Flexdashboard, to publish it outside of a Shiny server (see example), we must delete runtime:shiny from the header, and disable reactive features, as below.\n\r```r\r# Number of words selected on sidebar\r# reactive(cat(paste0(\u0026#39;Words selected below: \u0026#39;, nrow(selected_props()))))\r```\r\rFree accounts and tips\rHosting sites have specific terms of use. For instance, shinyapps.io has a free starter license with limited use. Free apps can handle a large but limited amount of data, and up to five apps may be created. Beyond this, RStudio offers a wide range of subscriptions starting at $9/month.\nMemory and traffic limits of the free shinyapps.io account can sometimes present problems when heavy data data sets are used, or there are many visits to the app. The memory overload issue is often flagged as Shiny cannot use on-disk bookmarking, whereas excessive traffic may see the app not loading. Fortunately, usage limits need not always require a paid subscription or a custom server, thanks to the following workarounds:\n\rdevelop app locally as far as possible, and only deploy to shinyapps.io only at the last stage;\rprune data set, leaving only the necessary data;\rif necessary, unlink data by splitting it into different sets, reducing computational demands;\rif necessary, use various apps (five are allowed in each free shinyapps.io account);\rif necessary, link from the app to a PDF with visualisations requiring heavy, interlinked data. High-resolution plots can be rendered into a PDF document in a snap, using code such as below.\r\rpdf(\u0026#39;List of plots per page\u0026#39;, width = 13, height = 5)\rprint(plot1)\rprint(plot2)\r# ...\rprint(plot150)\rdev.off()\rConveniently, all text in a PDF—even in plots—is indexed, so it can be searched [ Ctrl+f / Cmd+f / 🔍 ] (see example). Furthermore, you may also merge the rendered PDF with any other documents.\n\r\rPrerequisites and suggestions for participation in each workshop\rNecessary: laptop or computer with R and RStudio installed, or access to RStudio Cloud; familiarity with the content of the preceding workshops through the web links herein.\nSuggested: having your own data and R code ready (on a Github repository if participating in Workshop 4); participation in some of the preceding workshops.\n\r\rDatathons: creating reproducible documents and dashboards\rIn these coding meetups, participants collaborate to create reproducible documents or dashboards using the data and software they prefer (see examples). Since the work can be split across different people and sections, some nice products may be achieved within a session. Any programming languages may be used.\n\rData used: academic or non-academic data of your own or from open-access sources such as OSF, scientific journals, governments, international institutions, NGOs, etc.\n\rInspired by the great Reprohacks, content suggestions are encouraged. That is, if you’d like to have a reproducible document or dashboard created for a certain, open-access data set, please let us know, and some participants may take it on. Suggestions may be posted as issues or emailed to p.bernabeu@lancaster.ac.uk.\r\r\rPurposes\n\rcollaborating to visualise data in novel ways using reproducible documents or interactive dashboards. For this purpose, participants sometimes draw on additional data to look at a bigger picture;\n\rreflecting on the process by reviewing the techniques applied and challenges encountered.\n\r\rOutput: A key aspect of datathons is the creation of output. Documents and dashboards are (co-)authored by the participants who work on them, who can then publish them on their websites, or on RPubs, Binder, Shinyapps or custom servers. Time constraints notwithstanding, a lot of this output may be very enticing for further development by the same participants, or even by other people if the code is shared online. Just like with data, an attribution licence can be attached to the code.\n\r\rPrerequisites and suggestions for participation in datathons\rNecessary: basic knowledge of reproducible documents or dashboards.\nSuggested: familiarity with the development of reproducible documents or dashboards; an idea about the data you’d like to work with and the kind of document or dashboard you want to create.\n\r\r\rContact\rPlease submit any queries or requests by posting an issue or emailing p.bernabeu@lancaster.ac.uk.\n\r","date":1577836800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1577836800,"objectID":"d4c6f6ca4eb0c2665fdbb559c58d2620","permalink":"https://pablobernabeu.github.io/2020/data-is-present-workshops-and-datathons/","publishdate":"2020-01-01T00:00:00Z","relpermalink":"/2020/data-is-present-workshops-and-datathons/","section":"post","summary":"This project offers free activities to learn and practise reproducible data presentation. Pablo Bernabeu organises these events in the context of a Software Sustainability Institute Fellowship. Programming languages such as R and Python offer free, powerful resources for data processing, visualisation and analysis. Experience in these programs is highly valued in data-intensive disciplines. Original data has become a public good in many research fields thanks to cultural and technological advances. On the internet, we can find innumerable data sets from sources such as scientific journals and repositories (e.g., OSF), local and national governments, non-governmental organisations (e.g., data.world), etc. Activities comprise free workshops and datathons.","tags":["s","programming","education","workshop","datathon","data presentation","data visualisation","dashboard","reproducibility","open science","open data","statistics","R","R Shiny","Flexdashboard","HTML","CSS","Software Sustainability Institute Fellowship"],"title":"Data is present: Workshops and datathons","type":"post"},{"authors":[],"categories":["event-related potentials"],"content":"Event-related potentials (ERPs) offer a unique insight in the study of human cognition. Let's look at their reason-to-be for the purposes of research, and how they are defined and processed. Most of this content is based on my master's thesis, which I could fortunately conduct at the Max Planck Institute for Psycholinguistics (see thesis or conference paper).\nElectroencephalography The brain produces electrical activity all the time, which can be measured via electrodes on the scalp—a method known as electroencephalography (EEG). These pulses are produced for every one of our states and actions, in a voltage at a micro (µ) scale, typically between 10 µV (0.000010) and 100 µV (0.000100; Aurlien et al., 2004). The overlapping pulses happen at extremely high frequencies; indeed, the signal can be measured once per millisecond. The high frequency of this signal is very interesting for the study of some cognitive processes in particular, for which the time course is (or may be) critical. One such example is conceptual processing, namely, the process of understanding the meaning of words.\nResearch has revealed the relation between certain EEG patterns and cognitive states and functions. Brain activity includes dozens of types, but broadly, it can be divided into neural oscillations and event-related potentials. Specific oscillations (also known as brain waves) are associated with states such as wakefulness, sleep, arousal, relaxation, etc. (Roohi-Azizi et al., 2017). Event-related potentials instead represent more finite events, such as the presentation of as a stimulus. In cognitive neuroscience, both oscillations and ERPs are studied, whereas in cognitive psychology, ERPs are much more common than oscillations. Let's dive into ERPs below.\nEvent-related potentials In the lab, ERPs are elicited using controlled designs. In each trial, a series of stimuli are presented. At a fixed point therein, an EEG measurement begins and spans for a certain period. In turn, in the analysis, this measurement period is divided into time windows, which often correspond to specific ERP components (e.g., N400 window).\nIn psycholinguistics, for instance, a typical scenario is the presentation of words, and ERPs are systematically time-locked to the same position in consecutive trials, often the onset of a word. By this means, the experimental manipulation is collected, and the non-experimental variation—\u0026lsquo;noise\u0026rsquo;—is largely cancelled out by the aggregation of multiple trials that share the experimental manipulation.\nThe chief reason to employ the ERP method is the measurement of cognitive processes online, that is, precisely as they unfold. This is fitting in the context of language comprehension, where some important processes last for less than a second.\nTime course of word processing Processing a word takes around 800 milliseconds (ms). Within that time, earlier processes (compared to later ones) have been ascribed greater relevance to the core process of understanding a word (Mahon \u0026amp; Caramazza, 2008). This assumes that broader processes start only after more immediate ones have started (but see Lebois, Wilson‐Mendenhall \u0026amp; Barsalou, 2014). The most immediate process is the recognition of a string of letters, which seems to start within 90 ms post word onset in early auditory cortex and the Visual Word Form Area (Willems et al., 2016). Then ensue further, fundamental stages known as lexical and semantic processes. Lexical processing is the identification of a string of letters as a known word, and it happens within around 160 ms post word onset. Next, at around 200 ms, we may see the beginning of semantic processing, which denotes a further step in the cognitive analysis of the word that is akin to meaning (Hauk, 2016). These processes may overlap, as indeed suggested by the sensitivity of the N400 ERP (see also next section) to both lexical and semantic tasks (Kutas \u0026amp; Federmeier, 2011). Both processes also likely extend further in the processing timeline (Hauk, 2016). In spite of this overlap, however, lexical and semantic processing have often been linked to different cognitive phenomena. For instance, tasks promoting semantic processing (e.g., semantic decision, whereby participants describe words as concrete or abstract) have been found to engage sensorimotor simulation of the word's meaning (known as embodiment) more strongly than lexical tasks do (Connell \u0026amp; Lynott, 2013; Pexman et al., 2019; Sato et al., 2008).\nOnce the lexical and semantic stages have emerged, post-lexical, post-semantic processes follow (Mahon \u0026amp; Caramazza, 2008). These are mental imagery and episodic memory processes—both with an approximate emergence around 270 ms after word onset. The gradual progression from the identification of a word up to accessing its broadest meaning is an important anchoring point in the current research on the alleged embodiment of meaning comprehension, even if we might hope to count on more definitive threshold points (Hauk, 2016).\nWord processing data are mainly based on written word processing, but spoken words are processed quite similarly, if slightly faster (Leonard et al., 2016; Pulvermüller et al., 2005; Shtyrov et al., 2004).\nThe bigger take-home messages would be: (1) the processing of meaning might only start at around 160 ms post word onset, and (2) processes outside of meaning comprehension might only start at around 270 ms. These working references must be taken with some caution because particular semantic effects have been found at different stages (e.g., the conceptual modality switch, as in Hald et al., 2011; Collins, Pecher et al., 2011). Indeed, in an influential critique of blooming findings on embodiment, Mahon and Caramazza (2008) argued that even early effects might possibly be explained in terms of non-embodied processing. They contended that working memory processes that were ancillary rather than semantic could be quickly engaged with the function of ‘colouring’ a concept, not building it up. To further complicate the matter, we do not have absolute certainty on the later section of the time course. Thus, as Hauk (2016) reviews, the different stages likely overlap at certain points, with different degrees of relevance. For instance, lexical processing may continue even once semantic processing has started, but would naturally become less relevant. Indeed, the relation among these processes is likely more of a continuum than a set of clear-cut modules. In a nutshell, the time course is important with some experimental effects in word processing, and, to that extent, we depend on our knowledge of the basic time course of word processing.\nThe conceptual modality switch paradigm and its time course In demonstrating the relevance of embodied cognition, a sizeable series of studies have shown that reading about different conceptual modalities (e.g., auditory ‘loud bell’ followed by visual ‘pink background’) incurs processing costs (Pecher et al., 2003). Importantly, this manipulation does not concern the presentation mode of the stimulus, maintained constant, but the intrinsic semantic modality of the stimulus concepts. The conceptual modality switch effect has often been replicated (Pecher et al., 2004; Solomon \u0026amp; Barsalou, 2004; Marques, 2006; Vermeulen et al., 2007; van Dantzig et al., 2008; Lynott \u0026amp; Connell, 2009; Ambrosi et al., 2011; Collins et al., 2011; Hald et al., 2011; Hald et al., 2013; Scerrati et al., 2015).\nBernabeu, Willems and Louwerse (2017) addressed a caveat with the time course of the conceptual modality switch paradigm. In previous experiments, trials presented a concept word followed by a property word. ERPs were time-locked to the latter property word. This design may have left uncontrolled a switch produced already at the concept. Indeed, the property word was already supposed to be in the particular modality of the trial. That pitfall could have had two consequences: loss of power and loss of certainty on the time course of the effect. Thus, Bernabeu et al. created a design in which ERPs were time-locked to the first word in target trials (see some early input from researchers online). The purpose of this relocation was not to completely annul the possibility of post-core sensory processes, but to increase the time accuracy by measuring the modality switch from the point at which it is elicited.\nImplementing this design had an ancillary effect on the measurement of response times. A psycholinguistic experiment like this one requires controlling fundamental variables such as word frequency and length, by matching the means of these variables across experimental conditions. This must be controlled in the target words at least. As it is often the case, this control was only possible in the target words—the first one in target trials—, but it was not possible in the second word, which is the crucial one for response times. Response times could still be measured, but comparisons across conditions were not fully warranted. In sum, this was an ERP design.\nERP components When the ERP signal is plotted, it displays multiple wave shapes, or waveforms, each with a peak flanked by falling tails. Each of these waves often corresponds to an ERP component, which is what cognitive scientists are often interested in.\nMultiple components are known, each having been found to consistently peak around specific points in time during a cognitive process. The peak is one of several features characterising each component. A sketch list is shown below (van Hell \u0026amp; Kroll, 2013).\n Polarity: The component either peaks in the positive or the negative pole of the signal. This polarity is relative to the baseline point that is created in the preprocessing stage (see below);\n Latency: the time course of the component, encompassing an onset, a peak and an overall duration. Time windows are normally set to match relevant components (e.g., the N400 window, etc.);\n Amplitude: the voltage reached at a given time (e.g., the peak) or for a certain period (e.g., a time window);\n Scalp distribution, or topography: the areas on the scalp (the scalp being a reasonable proxy for the brain) in which the component appears;\n Functional role: the cognitive functions that have been consistently associated with the component.\n Examples of components in language processing include the N400, consistently linked to semantic processing, that is, seeking the meaning of words or sentences. The N400 is characterised by a large, negative amplitude peaking at around 400 ms post word onset, primarily found in central and posterior sites. N400 effects, which are comparisons of the N400 component in different experimental conditions, have consistently appeared under violations of semantic expectations, i.e., related to meaning and events (Kutas \u0026amp; Federmeier, 2011; Swaab et al., 2012). Another well-known component in language is the P600, linked to syntactic processing, which allows the comprehension of sentences (Swaab et al., 2012). Other examples of components include lateralized readiness potentials, signalling motor preparation (Mordkoff \u0026amp; Gianaros, 2000), and the P3b component, which appears in the context of responses (van Vliet et al., 2014). Both of the latter components are relevant to researchers across domains, who often need to ward off contamination from these components in their experiments. In Bernabeu et al.\u0026lsquo;s experiment, for instance, part of the reason why ERPs were time-locked to the first word in target trials was to prevent contamination from these components.\nERP data sets are large, being the product of the number of electrodes (also called \u0026lsquo;channels\u0026rsquo;) times the number of time points, times the number of experimental conditions, and times the number of participants. In recent studies, the number of trials often adds to that product, whereas in previous experiments, the trials tended to be aggregated in each condition.\nEEG montage The EEG montage is an important factor. The options are broadly characterised by three parameters of the electrodes:\nBrainwaves exposed at an open day.\n Active / passive: Active electrodes amplify the EEG signal directly at the scalp, whereas passive electrodes require the raw signal to be sent through a lead (i.e., a wire) and up to an amplifier. In the latter case, the lead acts as an antenna, picking up ambient electrical noise. This noise can hinder the subtle measurement of interest. This problem is solved by active electrodes (Laszlo et al., 2014).\n Number: Traditionally, montages with 32, 64 or 128 electrodes have been used. The more electrodes, the \u0026lsquo;denser\u0026rsquo; the montage, and the higher the spatial resolution.\n Wet / dry: In some montages, the electrical conductance on the electrodes\u0026rsquo; contact point must be increased using some fluid solutions, such as a specific gel (often commercialised by the companies that also make EEG apparatuses). Conversely, other electrodes function in a dry way. Ensuring the proper conductance on wet electrodes has traditionally been very time-consuming for experimenters, often taking over half an hour of wiggling a blunt syringe distributing the saline solution around the tip. Traditionally, wet electrodes produced more reliable data than dry ones, but the times they are a'changing (di Flumeri, 2019).\n An EEG/ERP experiment is time-consuming. The preparation (especially conductance-prompting with wet montages) and post-experiment procedures (especially washing the EEG cap) often take four or five times as long as the experiment proper. These procedures are especially long for higher-density, wet montages.\nPreprocessing ERPs ERPs are not the first signal collected in experiments. They are obtained after considerable, systematic preprocessing of the EEG signal.\n\nFor Bernabeu et al. (2017), I used Brain Vision software, and followed the tutorials from the well-known ERP Boot Camp of Steve Luck and Emily Kappenman. I applied the following pipeline for each participant:\n labeling channels (64 electrodes);\n creating channel groups (anterior and posterior);\n re-referencing the signal offline to the right mastoid (RM), having referenced online to the left mastoid (Ref);\n \n separating my three experimental conditions;\n ocular correction for blinks and significant, vertical or horizontal movements of the eyes (seminal method by Gratton et al., 1983, which is the default in Brain Vision);\n baseline correction, which is a standardisation based on a certain period immediately before the onset of the target manipulation;\n further correction of artifacts such as motor action potentials (or lateralised readiness potentials) resulting from even the subtlest muscle activity.\n This pipeline is reflected in the scripts exported from Brain Vision.\n \u0026lt;Nodes\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch/OcularCorrection\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch/OcularCorrection/baselinecorr\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch/OcularCorrection/baselinecorr/baselinecorr_artif\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMatch/OcularCorrection/baselinecorr/baselinecorr_artif/minave_TotalMatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch/OcularCorrection\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch/OcularCorrection/baselinecorr\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch/OcularCorrection/baselinecorr/baselinecorr_artif\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/EmbodiedMismatch/OcularCorrection/baselinecorr/baselinecorr_artif/minave_EmbodiedMismatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch/OcularCorrection\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch/OcularCorrection/baselinecorr\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch/OcularCorrection/baselinecorr/baselinecorr_artif\u0026lt;/string\u0026gt;\r\u0026lt;string\u0026gt;1/Raw Data/labels/positions/rerefRM/TotalMismatch/OcularCorrection/baselinecorr/baselinecorr_artif/minave_TotalMismatch\u0026lt;/string\u0026gt;\r\u0026lt;/Nodes\r Word reading ERPs can look somewhat like this after the preprocessing (plots made in R).\n\nTo visualise these waveforms throughout the different sections of the data, a dashboard is available.\nStatistical analysis With the myriad repeated measures involved in EEG, linear mixed-effects models are a good option, allowing the registration of electrodes and time points in the error term per participant (and trial, too, if these are not aggregated). The analysis I performed, in R, is available (plots visible by downloading the file from the aforementioned link).\n.embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}window.jQuery || document.write('\\x3C/script') var mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/sx3nw/?direct%26mode=render%26action=download%26mode=render\");\rConclusion Event-related potentials fulfil an important role in cognitive neuroscience and psychology, only surpassed by magnetic electroencephalography (MEG), which unites high temporal and spatial resolution. Learning how to use ERPs is demanding but even more rewarding. It certainly does not make for fast science, but allows the measurement of experimental effects online, that is, as they unfold.\nYou can learn about and overcome multiple challenges. One of the issues I faced once regarded some channels (electrodes) that appeared to be missing from the data. I posted a question on ResearchGate, and emailed Brain Products, the maker of Brain Vision Recorder, which I was using.\n Hi everyone,\nIf you could please give me a hand with this error, I would be very grateful. I have EEG from a psychological experiment, recorded with BrainVision Recorder, and being analyzed with BrainVision Analyzer 2. Most of the recordings are perfectly fine, but a few present a big error. Out of 64 original electrodes, only two appear. These are the right mastoid (RM) and the left eye sensor (LEOG). Both are bipolar electrodes. RM is to be re-referenced to the online reference electrode, while LEOG is to be re-referenced to the right eye electrode.\nI just can't fathom the error because all electrodes worked fine during the recording. Also, the data sets with the error are quite as heavy in terms of bytes as those without the error. Further, why should the RM and LEOG channels remain perfectly well as they do?\nThis issue might seem like a simple zoom I've bypassed, or similar\u0026hellip; But unfortunately the channels are just not there. I've confirmed it as I tried to copy the pipeline from the good data sets onto the faulty ones, where I got the error \u0026lsquo;No channels enabled.\u0026rsquo; In case you had access to the BVA analysis software, please find the raw files for one of the faulty data sets here.\n Thanks to invaluable help from a ResearchGate contributor and the Brain Products team, I could put the pieces back together.\n Update: Problem solved.\nAs Nikolay said, the error originated in Recorder (I had used the workspace from the previous experimenter), and the problem was solved by setting the label and position of each channel.\nI tried editing the .vhdr file in raw (it seemed nice and quick to directly assign the channel names as labels) but i didn't quite find the way. Therefore, with a tip from the Brain Products team, I went about it within the program.\nFirst, I used the transform function \u0026lsquo;Edit channels\u0026rsquo; to rename all labels and set each within their coordinates. I did that for just one subject (it doesn't take as long as it sounds). Afterwards, I created a \u0026lsquo;History template\u0026rsquo; out of that process, and copied it to all other nodes. At any rate, never getting out of the comfort workspace again\u0026hellip; :D\n References Ambrosi, S., Kalenine, S., Blaye, A., \u0026amp; Bonthoux, F. (2011). Modality switching cost during property verification by 7 years of age. International Journal of Behavioral Development, 35, 1, 78-83.\nAurlien, H., Gjerde, I., Aarseth, J., Eldøen, G., Karlsen, B., Skeidsvoll, H., \u0026amp; Gilhus, N. (2003). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115, 665–673.\nBernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: evidence from ERPs. In G. Gunzelmann, A. Howes, T. Tenbrink, \u0026amp; E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1629-1634). Austin, TX: Cognitive Science Society.\nCollins, J., Pecher, D., Zeelenberg, R., \u0026amp; Coulson, S. (2011). Modality switching in a property verification task: an ERP study of what happens when candles flicker after high heels click. Frontiers in Psychology, 2.\nConnell, L., \u0026amp; Lynott, D. (2013). Flexible and fast: Linguistic shortcut affects both shallow and deep conceptual processing. Psychonomic Bulletin \u0026amp; Review, 20, 542-550.\nDi Flumeri, G., Aricò, P., Borghini, G., Sciaraffa, N., Di Florio, A., \u0026amp; Babiloni, F. (2019). The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Sensors (Basel, Switzerland), 19(6), 1365.\nGratton, G., Coles, M. G., \u0026amp; Donchin, E. (1983). A new method for offline removal of ocular artefact. Electroencephalography and Clinical Neurophysiology, 55, 4, 468-484.\nHald, L. A., Hocking, I., Vernon, D., Marshall, J.-A., \u0026amp; Garnham, A. (2013). Exploring modality switching effects in negated sentences: further evidence for grounded representations. Frontiers in Psychology, 4, 93.\nHald, L. A., Marshall, J.-A., Janssen, D. P., \u0026amp; Garnham, A. (2011). Switching modalities in a sentence verification task: ERP evidence for embodied language processing. Frontiers in Psychology, 2.\nHauk, O. (2016). Only time will tell—Why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin \u0026amp; Review, 23, 4, 1072-1079.\nKutas, M., \u0026amp; Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647.\nLaszlo, S., Ruiz-Blondet, M., Khalifian, N., Chu, F., \u0026amp; Jin, Z. (2014). A direct comparison of active and passive amplification electrodes in the same amplifier system. Journal of Neuroscience Methods, 235, 298-307.\nLebois, L. A. M., Wilson-Mendenhall, C. D., \u0026amp; Barsalou, L. W. (2014). Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects. Cognitive Science, 39, 8, 1764-801.\nLeonard, M. K., Baud, M. O., Sjerps, M. J., \u0026amp; Chang, E. F. (2016). Perceptual restoration of masked speech in human cortex. Nature Communications, 7, 13619.\nLuck, S. J. \u0026amp; Kappenman, E.S. (Eds.), Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press\nMahon, B.Z., \u0026amp; Caramazza, A. (2008). A critical look at the Embodied Cognition Hypothesis and a new proposal for grounding conceptual content. Journal of Physiology - Paris, 102, 59-70.\nMarques, J. F. (2006). Specialization and semantic organization: Evidence for multiple semantics linked to sensory modalities. *Memory \u0026amp; Cognition, 34, 1, 60-67.\nMordkoff, J. T., \u0026amp; Gianaros, P. J. (2000). Detecting the onset of the lateralized readiness potential: A comparison of available methods and procedures. Psychophysiology, 37(3), 347–360.\nPecher, D., Zeelenberg, R., \u0026amp; Barsalou, L. W. (2003). Verifying different-modality properties for concepts produces switching costs. Psychological Science, 14, 2, 119-24.\n____ (2004). Sensorimotor simulations underlie conceptual representations: Modality-specific effects of prior activation. Psychonomic Bulletin \u0026amp; Review, 11, 1, 164-167.\nPexman, P. M., Muraki, E. J., Sidhu, D. M., Siakaluk, P. D., \u0026amp; Yap, M. J. (2019). Quantifying sensorimotor experience: Body-object interaction ratings for more than 9,000 English words. Behavior Research Methods, 51, 453-466.\nPulvermüller, F., Shtyrov, Y., \u0026amp; Hauk, O. (2009). Understanding in an instant: Neurophysiological evidence for mechanistic language circuits in the brain. Brain and Language, 110, 2, 81–94.\nRoohi-Azizi, M., Azimi, L., Heysieattalab, S., \u0026amp; Aamidfar, M. (2017). Changes of the brain's bioelectrical activity in cognition, consciousness, and some mental disorders. Medical journal of the Islamic Republic of Iran, 31, 53.\nSato, M., Mengarelli, M., Riggio, L., Gallese, V., \u0026amp; Buccino, G. (2008). Task related modulation of the motor system during language processing. Brain and Language, 105, 83–90.\nScerrati, E., Baroni, G., Borghi, A. M., Galatolo, R., Lugli, L., \u0026amp; Nicoletti, R. (2015). The modality-switch effect: visually and aurally presented prime sentences activate our senses. Frontiers in Psychology, 6, 1668.\nShtyrov, Y., Hauk, O., \u0026amp; Pulvermüller, F. (2004). Distributed neuronal networks for encoding category-specific semantic information: the mismatch negativity to action words. European Journal of Neuroscience, 1, 4, 1083–1092.\nSolomon, K. O., \u0026amp; Barsalou, L. W. (2004). Perceptual simulation in property verification. Memory \u0026amp; Cognition, 32, 244-259.\nSwaab, T.Y., Ledoux, K., Camblin, C.C., \u0026amp; Boudewyn, M.A. (2012) Language related ERP components. (Book Chapter). In Luck, S. J. \u0026amp; Kappenman, E.S. (Eds.), Oxford Handbook of Event-Related Potential Components (pp. 397-440). New York: Oxford University Press\nVan Dantzig, S., Pecher, D., Zeelenberg, R., \u0026amp; Barsalou, L. W. (2008). Perceptual processing affects conceptual processing. Cognitive Science, 32, 579–590.\nVan Hell, J. G., \u0026amp; Kroll, J. F. (2013). Using electrophysiological measures to track the mapping of words to concepts in the bilingual brain: a focus on translation. In J. Altarriba \u0026amp; L. Isurin (Eds.), Memory, Language, and Bilingualism: Theoretical and Applied Approaches (pp. 126-160). New York: Cambridge University Press.\nVan Vliet, M., Manyakov, N., Storms, G., Fias, W., Wiersema, J., \u0026amp; Van Hulle, M. (2014). Response-Related Potentials during semantic priming: the effect of a speeded button response task on ERPs. PLoS One, 9, 2, e87650.\nVermeulen, N., Niedenthal, P. M., \u0026amp; Luminet, O. (2007). Switching between sensory and affective systems incurs processing costs. Cognitive Science, 31, 1, 183-192.\nWillems, R. M., Frank, S. L., Nijhoff, A. D., Hagoort, P., \u0026amp; Van den Bosch, A. (2016). Prediction during natural language comprehension. Cerebral Cortex, 26, 6, 2506-2516.\n\r","date":1577836800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1577836800,"objectID":"6a2774b23fea8ee5fe9d0dac3de1cdfc","permalink":"https://pablobernabeu.github.io/2020/event-related-potentials-why-and-how-i-used-them/","publishdate":"2020-01-01T00:00:00Z","relpermalink":"/2020/event-related-potentials-why-and-how-i-used-them/","section":"post","summary":"Event-related potentials (ERPs) offer a unique insight in the study of human cognition. Let's look at their reason-to-be for the purposes of research, and how they are defined and processed. Most of this content is based on my master's thesis, which I could fortunately conduct at the Max Planck Institute for Psycholinguistics (see thesis or conference paper).\nElectroencephalography The brain produces electrical activity all the time, which can be measured via electrodes on the scalp—a method known as electroencephalography (EEG).","tags":["s","event-related potentials","electroencephalography","electrodes","preprocessing","methodology","cognitive neuroscience","Brain Vision","R","statistics","linear mixed-effects models","Max Planck Institute for Psycholinguistics"],"title":"Event-related potentials: Why and how I used them","type":"post"},{"authors":["Bernabeu, P., \u0026 Tillman, R."],"categories":["linguistic relativity"],"content":"Reference Bernabeu, P., \u0026amp; Tillman, R. (2019). More refined typology and design in linguistic relativity: The case of motion event encoding. Dutch Journal of Applied Linguistics, 8(2), 163-171. http://doi.org/10.1075/dujal.15019.ber\n ","date":1546300800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1546300800,"objectID":"d966dfb0977cb54bb103ccd6372d0b42","permalink":"https://pablobernabeu.github.io/publication/bernabeu-tillman-2019/","publishdate":"2019-01-01T00:00:00Z","relpermalink":"/publication/bernabeu-tillman-2019/","section":"publication","summary":"Linguistic relativity is the influence of language on other realms of cognition. For instance, the way movement is expressed in a person’s native language may influence how they perceive movement. Motion event encoding (MEE) is usually framed as a typological dichotomy. Path-in-verb languages tend to encode path information within the verb (e.g., ‘leave’), whereas manner-in-verb languages encode manner (e.g., ‘jump’). The results of MEE-based linguistic relativity experiments range from no effect to effects on verbal and nonverbal cognition. Seeking a more definitive conclusion, we propose linguistic and experimental enhancements. First, we examine state-of-the-art typology, suggesting how a recent MEE classification across twenty languages (Verkerk, 2014) may enable more powerful analyses. Second, we review procedural challenges such as the influence of verbal thought and second-guessing in experiments. To tackle these challenges, we propose distinguishing verbal and nonverbal subgroups, and having enough filler items. Finally we exemplify this in an experimental design.","tags":["linguistic relativity","psycholinguistics","linguistics","motion events"],"title":"More refined typology and design in linguistic relativity: The case of motion event encoding","type":"publication"},{"authors":["Bernabeu, P."],"categories":["linguistic materials","conceptual replication"],"content":"Reference Bernabeu, P. (2018). Dutch modality exclusivity norms for 336 properties and 411 concepts. PsyArXiv. https://doi.org/10.31234/osf.io/s2c5h\n\rRelated references Anderson, A. J., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., Aguilar, M., Wang, X., Doko, D., \u0026amp; Raizada, R. D. S. (2016). Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation. Cerebral Cortex, cercor;bhw240v1. https://doi.org/10.1093/cercor/bhw240\nAnderson, A. J., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., Raizada, R. D. S., Lin, F., \u0026amp; Lalor, E. C. (2019). An Integrated Neural Decoder of Linguistic and Experiential Meaning. The Journal of Neuroscience, 39(45), 8969\u0026ndash;8987. https://doi.org/10.1523/JNEUROSCI.2575-18.2019\nAnderson, A. J., \u0026amp; Lin, F. (2019). How pattern information analyses of semantic brain activity elicited in language comprehension could contribute to the early identification of Alzheimer's Disease. NeuroImage: Clinical, 22, 101788. https://doi.org/10.1016/j.nicl.2019.101788\nBagli, M. (2023). How to Point with Language: English Source-Based Language to Describe Taste Qualities. Lublin Studies in Modern Languages and Literature, 42(2), 31\u0026ndash;46. https://doi.org/10.17951/lsmll.2023.47.2.31-46\nBanks, B., Borghi, A. M., Fargier, R., Fini, C., Jonauskaite, D., Mazzuca, C., Montalti, M., Villani, C., \u0026amp; Woodin, G. (2023). Consensus Paper: Current Perspectives on Abstract Concepts and Future Research Directions. Journal of Cognition, 6(1), 62. https://doi.org/10.5334/joc.238\nBolognesi, M., Burgers, C., \u0026amp; Caselli, T. (2020). On abstraction: Decoupling conceptual concreteness and categorical specificity. Cognitive Processing, 21(3), 365\u0026ndash;381. https://doi.org/10.1007/s10339-020-00965-9\nBorghi, A. M., Mazzuca, C., Gervasi, A. M., Mannella, F., \u0026amp; Tummolini, L. (2023). Grounded cognition can be multimodal all the way down. Language, Cognition and Neuroscience, 1\u0026ndash;5. https://doi.org/10.1080/23273798.2023.2210238\nBottini, R., Morucci, P., D'Urso, A., Collignon, O., \u0026amp; Crepaldi, D. (2022). The concreteness advantage in lexical decision does not depend on perceptual simulations. Journal of Experimental Psychology: General, 151(3), 731\u0026ndash;738. https://doi.org/10.1037/xge0001090\nBruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms, G., \u0026amp; Vandenberghe, R. (2019). Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neuroscience \u0026amp; Biobehavioral Reviews, 103, 3\u0026ndash;13. https://doi.org/10.1016/j.neubiorev.2019.05.015\nCaballero, R., \u0026amp; Paradis, C. (2020). Soundscapes in English and Spanish: A corpus investigation of verb constructions. Language and Cognition, 12(4), 705\u0026ndash;728. https://doi.org/10.1017/langcog.2020.19\nCaballero, R., \u0026amp; Paradis, C. (2023). Sharing Perceptual Experiences through Language. Journal of Intelligence, 11(7), 129. https://doi.org/10.3390/jintelligence11070129\nCalzavarini, F. (2023). Rethinking modality-specificity in the cognitive neuroscience of concrete word meaning: A position paper. Language, Cognition and Neuroscience, 1\u0026ndash;23. https://doi.org/10.1080/23273798.2023.2173789\nCarney, J. (2020). Thinking avant la lettre: A Review of 4E Cognition. Evolutionary Studies in Imaginative Culture, 4(1), 77\u0026ndash;90. https://doi.org/10.26613/esic.4.1.172\nCharmhun Jo, Sun-A Kim, \u0026amp; Chu-Ren Huang. (2022). Linguistic synesthesia in Korean: A compound word-based study of cross-modal directionality. Linguistic Research, 39(2), 275\u0026ndash;296. https://doi.org/10.17250/KHISLI.39.2.202206.002\nChedid, G., Brambati, S. M., Bedetti, C., Rey, A. E., Wilson, M. A., \u0026amp; Vallet, G. T. (2019). Visual and auditory perceptual strength norms for 3,596 French nouns and their relationship with other psycholinguistic variables. Behavior Research Methods, 51(5), 2094\u0026ndash;2105. https://doi.org/10.3758/s13428-019-01254-w\nChedid, G., Wilson, M. A., Bedetti, C., Rey, A. E., Vallet, G. T., \u0026amp; Brambati, S. M. (2019). Norms of conceptual familiarity for 3,596 French nouns and their contribution in lexical decision. Behavior Research Methods, 51(5), 2238\u0026ndash;2247. https://doi.org/10.3758/s13428-018-1106-8\nChen, I.-H., Zhao, Q., Long, Y., Lu, Q., \u0026amp; Huang, C.-R. (2019). Mandarin Chinese modality exclusivity norms. PLOS ONE, 14(2), e0211336. https://doi.org/10.1371/journal.pone.0211336\nConnell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition and Neuroscience, 34(10), 1308\u0026ndash;1318. https://doi.org/10.1080/23273798.2018.1471512\nConnell, L., Lynott, D., \u0026amp; Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170143. https://doi.org/10.1098/rstb.2017.0143\nCorciulo, S., Bioglio, L., Basile, V., Patti, V., \u0026amp; Damiano, R. (2023). The DEEP Sensorium: A multidimensional approach to sensory domain labelling. Companion Proceedings of the ACM Web Conference 2023, 661\u0026ndash;668. https://doi.org/10.1145/3543873.3587631\nDavis, C. P., \u0026amp; Yee, E. (2021). Building semantic memory from embodied and distributional language experience. WIREs Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555\nDe Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., \u0026amp; Storms, G. (2019). The \u0026ldquo;Small World of Words\u0026rdquo; English word association norms for over 12,000 cue words. Behavior Research Methods, 51(3), 987\u0026ndash;1006. https://doi.org/10.3758/s13428-018-1115-7\nDellantonio, S., \u0026amp; Pastore, L. (2017). The \u0026lsquo;Proprioceptive\u0026rsquo; Component of Abstract Concepts. In S. Dellantonio \u0026amp; L. Pastore, Internal Perception (Vol. 40, pp. 297\u0026ndash;357). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55763-1_6\nDíez-Álamo, A. M., Díez, E., Alonso, M. Á., Vargas, C. A., \u0026amp; Fernandez, A. (2018). Normative ratings for perceptual and motor attributes of 750 object concepts in Spanish. Behavior Research Methods, 50(4), 1632\u0026ndash;1644. https://doi.org/10.3758/s13428-017-0970-y\nDíez-Álamo, A. M., Díez, E., Wojcik, D. Z., Alonso, M. A., \u0026amp; Fernandez, A. (2019). Sensory experience ratings for 5,500 Spanish words. Behavior Research Methods, 51(3), 1205\u0026ndash;1215. https://doi.org/10.3758/s13428-018-1057-0\nDove, G. (2021). The Challenges of Abstract Concepts. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 171\u0026ndash;195). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_8\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2023). More is not necessarily better: How different aspects of sensorimotor experience affect recognition memory for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1572\u0026ndash;1587. https://doi.org/10.1037/xlm0001265\nFischer, M. H., \u0026amp; Shaki, S. (2018). Number concepts: Abstract and embodied. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170125. https://doi.org/10.1098/rstb.2017.0125\nFishman, A. (2022). The picture looks like my music sounds: Directional preferences in synesthetic metaphors in the absence of lexical factors. Language and Cognition, 14(2), 208\u0026ndash;227. https://doi.org/10.1017/langcog.2022.2\nGangemi, A. (2020). Closing the Loop between knowledge patterns in cognition and the Semantic Web. Semantic Web, 11(1), 139\u0026ndash;151. https://doi.org/10.3233/SW-190383\nGhandhari, M., Fini, C., Da Rold, F., \u0026amp; Borghi, A. M. (2020). Different kinds of embodied language: A comparison between Italian and Persian languages. Brain and Cognition, 142, 105581. https://doi.org/10.1016/j.bandc.2020.105581\nGijssels, T., \u0026amp; Casasanto, D. (2020). Hand-use norms for Dutch and English manual action verbs: Implicit measures from a pantomime task. Behavior Research Methods, 52(4), 1744\u0026ndash;1767. https://doi.org/10.3758/s13428-020-01347-x\nHarpaintner, M., Sim, E.-J., Trumpp, N. M., Ulrich, M., \u0026amp; Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 1\u0026ndash;22. https://doi.org/10.1016/j.cortex.2019.10.014\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2018). The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words. Frontiers in Psychology, 9, 1748. https://doi.org/10.3389/fpsyg.2018.01748\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2022). Time course of brain activity during the processing of motor- and vision-related abstract concepts: Flexibility and task dependency. Psychological Research, 86(8), 2560\u0026ndash;2582. https://doi.org/10.1007/s00426-020-01374-5\nHartman, J., \u0026amp; Paradis, C. (2023). The language of sound: Events and meaning multitasking of words. Cognitive Linguistics, 34(3\u0026ndash;4), 445\u0026ndash;477. https://doi.org/10.1515/cog-2022-0006\nHörberg, T., Larsson, M., \u0026amp; Olofsson, J. K. (2022). The Semantic Organization of the English Odor Vocabulary. Cognitive Science, 46(11), e13205. https://doi.org/10.1111/cogs.13205\nHuang, C.-R., \u0026amp; Xiong, J. (2019). Linguistic synaesthesia in Chinese. In C.-R. Huang, Z. Jing-Schmidt, \u0026amp; B. Meisterernst (Eds.), The Routledge Handbook of Chinese Applied Linguistics (1st ed., pp. 294\u0026ndash;312). Routledge. https://doi.org/10.4324/9781315625157-20\nIatropoulos, G., Herman, P., Lansner, A., Karlgren, J., Larsson, M., \u0026amp; Olofsson, J. K. (2018). The language of smell: Connecting linguistic and psychophysical properties of odor descriptors. Cognition, 178, 37\u0026ndash;49. https://doi.org/10.1016/j.cognition.2018.05.007\nJacobs, A. M., \u0026amp; Kinder, A. (2017). \u0026ldquo;The Brain Is the Prisoner of Thought\u0026rdquo;: A Machine-Learning Assisted Quantitative Narrative Analysis of Literary Metaphors for Use in Neurocognitive Poetics. Metaphor and Symbol, 32(3), 139\u0026ndash;160. https://doi.org/10.1080/10926488.2017.1338015\nJo, C. (2022). Linguistic Synesthesia in Korean: Universality and Variation. SAGE Open, 12(3), 215824402211178. https://doi.org/10.1177/21582440221117804\nJohns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing word frequency and contextual diversity. Memory \u0026amp; Cognition, 50(5), 1013\u0026ndash;1032. https://doi.org/10.3758/s13421-021-01249-z\nJones, L. L., Wurm, L. H., Calcaterra, R. D., \u0026amp; Ofen, N. (2017). Integrative Priming of Compositional and Locative Relations. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00359\nJulich-Warpakowski, N., \u0026amp; Pérez Sobrino, P. (2023). Introduction: Current challenges in metaphor research. Metaphor and the Social World, 13(1), 1\u0026ndash;15. https://doi.org/10.1075/msw.00026.jul\nKaiser, E. (2021). Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Frontiers in Psychology, 12, 701486. https://doi.org/10.3389/fpsyg.2021.701486\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2017). Novel Text Analysis for Investigating Personality: Identifying the Dark Lady in Shakespeare's Sonnets. Journal of Quantitative Linguistics, 24(4), 255\u0026ndash;272. https://doi.org/10.1080/09296174.2017.1304049\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2018). Using Shakespeare's Sotto Voce to Determine True Identity From Text. Frontiers in Psychology, 9, 289. https://doi.org/10.3389/fpsyg.2018.00289\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2019). The Stylometric Impacts of Ageing and Life Events on Identity. Journal of Quantitative Linguistics, 26(1), 1\u0026ndash;21. https://doi.org/10.1080/09296174.2017.1405719\nKhatin-Zadeh, O., Hu, J., Banaruee, H., \u0026amp; Marmolejo-Ramos, F. (2023). How emotions are metaphorically embodied: Measuring hand and head action strengths of typical emotional states. Cognition and Emotion, 37(3), 486\u0026ndash;498. https://doi.org/10.1080/02699931.2023.2181314\nKiefer, M., Pielke, L., \u0026amp; Trumpp, N. M. (2022). Differential temporo-spatial pattern of electrical brain activity during the processing of abstract concepts related to mental states and verbal associations. NeuroImage, 252, 119036. https://doi.org/10.1016/j.neuroimage.2022.119036\nKim, M.-K., Müller, H. M., \u0026amp; Weiss, S. (2021). What you \u0026ldquo;mean\u0026rdquo; is not what I \u0026ldquo;mean\u0026rdquo;: Categorization of verbs by Germans and Koreans using the semantic differential. Lingua, 252, 103012. https://doi.org/10.1016/j.lingua.2020.103012\nKoblet, O., \u0026amp; Purves, R. S. (2020). From online texts to Landscape Character Assessment: Collecting and analysing first-person landscape perception computationally. Landscape and Urban Planning, 197, 103757. https://doi.org/10.1016/j.landurbplan.2020.103757\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKrishna, P. P., Arulmozi, S., \u0026amp; Mishra, R. K. (2022). \u0026ldquo;Do You See and Hear More? A Study on Telugu Perception Verbs.\u0026rdquo; Journal of Psycholinguistic Research, 51(3), 473\u0026ndash;484. https://doi.org/10.1007/s10936-021-09827-7\nKumcu, A. (2021). Linguistic Synesthesia in Turkish: A Corpus-based Study of Crossmodal Directionality. Metaphor and Symbol, 36(4), 241\u0026ndash;255. https://doi.org/10.1080/10926488.2021.1921557\nLau, S. H., Huang, Y., Ferreira, V. S., \u0026amp; Vul, E. (2019). Perceptual features predict word frequency asymmetry across modalities. Attention, Perception, \u0026amp; Psychophysics, 81(4), 1076\u0026ndash;1087. https://doi.org/10.3758/s13414-019-01682-y\nLee, J., \u0026amp; Shin, J.-A. (2023). The cross-linguistic comparison of perceptual strength norms for Korean, English and L2 English. Frontiers in Psychology, 14, 1188909. https://doi.org/10.3389/fpsyg.2023.1188909\nLi, M., Lu, Q., Long, Y., \u0026amp; Gui, L. (2017). Inferring Affective Meanings of Words from Word Embedding. IEEE Transactions on Affective Computing, 8(4), 443\u0026ndash;456. https://doi.org/10.1109/TAFFC.2017.2723012\nLittlemore, J., Sobrino, P. P., Houghton, D., Shi, J., \u0026amp; Winter, B. (2018). What makes a good metaphor? A cross-cultural study of computer-generated metaphor appreciation. Metaphor and Symbol, 33(2), 101\u0026ndash;122. https://doi.org/10.1080/10926488.2018.1434944\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2023). Learning instance-level N-ary semantic knowledge at scale for robots operating in everyday environments. Autonomous Robots, 47(5), 529\u0026ndash;547. https://doi.org/10.1007/s10514-023-10099-4\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2021, July 12). Learning Instance-Level N-Ary Semantic Knowledge At Scale For Robots Operating in Everyday Environments. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.035\nLong, Y., Xiang, R., Lu, Q., Huang, C.-R., \u0026amp; Li, M. (2021). Improving Attention Model Based on Cognition Grounded Data for Sentiment Analysis. IEEE Transactions on Affective Computing, 12(4), 900\u0026ndash;912. https://doi.org/10.1109/TAFFC.2019.2903056\nLynott, D., Connell, L., Brysbaert, M., Brand, J., \u0026amp; Carney, J. (2020). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52(3), 1271\u0026ndash;1291. https://doi.org/10.3758/s13428-019-01316-z\nMahmood, A., \u0026amp; Yeganegi, S. (2023). Lexical sophistication and crowdfunding outcomes. Venture Capital, 1\u0026ndash;32. https://doi.org/10.1080/13691066.2023.2265565\nMarson, F., Paoletti, P., Naor-Ziv, R., Carducci, F., \u0026amp; Ben-Soussan, T. D. (2023). Embodied empathy and abstract concepts\u0026rsquo; concreteness: Evidence from contemplative practices. In Progress in Brain Research (Vol. 277, pp. 181\u0026ndash;209). Elsevier. https://doi.org/10.1016/bs.pbr.2022.12.005\nMárton, Z. C., Türker, S., Rink, C., Brucker, M., Kriegel, S., Bodenmüller, T., \u0026amp; Riedel, S. (2018). Improving object orientation estimates by considering multiple viewpoints: Orientation histograms of symmetries and measurement models for view selection. Autonomous Robots, 42(2), 423\u0026ndash;442. https://doi.org/10.1007/s10514-017-9633-1\nMiceli, A., Wauthia, E., Kandana Arachchige, K., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2023). Perceptual strength influences lexical decision in Alzheimer's disease. Journal of Neurolinguistics, 68, 101144. https://doi.org/10.1016/j.jneuroling.2023.101144\nMiceli, A., Wauthia, E., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2021). Perceptual and Interoceptive Strength Norms for 270 French Words. Frontiers in Psychology, 12, 667271. https://doi.org/10.3389/fpsyg.2021.667271\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMiklashevsky, A. (2018). Perceptual Experience Norms for 506 Russian Nouns: Modality Rating, Spatial Localization, Manipulability, Imageability and Other Variables. Journal of Psycholinguistic Research, 47(3), 641\u0026ndash;661. https://doi.org/10.1007/s10936-017-9548-1\nMorucci, P., Bottini, R., \u0026amp; Crepaldi, D. (2019). Augmented Modality Exclusivity Norms for Concrete and Abstract Italian Property Words. Journal of Cognition, 2(1), 42. https://doi.org/10.5334/joc.88\nOkuno, H. Y., \u0026amp; Guedes, G. (2020). Automatic XML creation for Multisensorial Books. 2020 XV Conferencia Latinoamericana de Tecnologias de Aprendizaje (LACLO), 1\u0026ndash;6. https://doi.org/10.1109/LACLO50806.2020.9381139\nPathak, A., Velasco, C., Petit, O., \u0026amp; Calvert, G. A. (2019). Going to great lengths in the pursuit of luxury: How longer brand names can enhance the luxury perception of a brand. Psychology \u0026amp; Marketing, 36(10), 951\u0026ndash;963. https://doi.org/10.1002/mar.21247\nPérez-Sánchez, M. Á., Stadthagen-Gonzalez, H., Guasch, M., Hinojosa, J. A., Fraga, I., Marín, J., \u0026amp; Ferré, P. (2021). EmoPro \u0026ndash; Emotional prototypicality for 1286 Spanish words: Relationships with affective and psycholinguistic variables. Behavior Research Methods, 53(5), 1857\u0026ndash;1875. https://doi.org/10.3758/s13428-020-01519-9\nPerlman, M., Little, H., Thompson, B., \u0026amp; Thompson, R. L. (2018). Iconicity in Signed and Spoken Vocabulary: A Comparison Between American Sign Language, British Sign Language, English, and Spanish. Frontiers in Psychology, 9, 1433. https://doi.org/10.3389/fpsyg.2018.01433\nPexman, P. M., Muraki, E., Sidhu, D. M., Siakaluk, P. D., \u0026amp; Yap, M. J. (2019). Quantifying sensorimotor experience: Body\u0026ndash;object interaction ratings for more than 9,000 English words. Behavior Research Methods, 51(2), 453\u0026ndash;466. https://doi.org/10.3758/s13428-018-1171-z\nPlekhanov Russian University of Economics, Simonenko, M. A., Kazaryan, S. Y., \u0026amp; Plekhanov Russian University of Economics. (2023). Synaesthetic metaphor and its reproduction in Russian-to-English translation: A frame-based study. RESEARCH RESULT Theoretical and Applied Linguistics, 9(3). https://doi.org/10.18413/2313-8912-2023-9-3-0-2\nPollock, L. (2018). Statistical and methodological problems with concreteness and other semantic variables: A list memory experiment case study. Behavior Research Methods, 50(3), 1198\u0026ndash;1216. https://doi.org/10.3758/s13428-017-0938-y\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355\u0026ndash;381. https://doi.org/10.19090/pp.v15i3.2400\nPurves, R. S., Striedl, P., Kong, I., \u0026amp; Majid, A. (2023). Conceptualizing Landscapes Through Language: The Role of Native Language and Expertise in the Representation of Waterbody Related Terms. Topics in Cognitive Science, 15(3), 560\u0026ndash;583. https://doi.org/10.1111/tops.12652\nRaj, R., Hörberg, T., Lindroos, R., Larsson, M., Herman, P., Laukka, E. J., \u0026amp; Olofsson, J. K. (2023). Odor identification errors reveal cognitive aspects of age-associated smell loss. Cognition, 236, 105445. https://doi.org/10.1016/j.cognition.2023.105445\nRepetto, C., Rodella, C., Conca, F., Santi, G. C., \u0026amp; Catricalà, E. (2022). The Italian Sensorimotor Norms: Perception and action strength measures for 959 words. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02004-1\nRey, A. E., Riou, B., Vallet, G. T., \u0026amp; Versace, R. (2017). The automatic visual simulation of words: A memory reactivated mask slows down conceptual access. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 71(1), 14\u0026ndash;22. https://doi.org/10.1037/cep0000100\nReymore, L. (2022). Characterizing prototypical musical instrument timbres with timbre trait profiles. Musicae Scientiae, 26(3), 648\u0026ndash;674. https://doi.org/10.1177/10298649211001523\nSan Roque, L., Kendrick, K. H., Norcliffe, E., \u0026amp; Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29(3), 371\u0026ndash;406. https://doi.org/10.1515/cog-2017-0034\nScerrati, E., Lugli, L., Nicoletti, R., \u0026amp; Borghi, A. M. (2017). The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic Bulletin \u0026amp; Review, 24(3), 798\u0026ndash;803. https://doi.org/10.3758/s13423-016-1150-2\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSidhu, D. M., \u0026amp; Pexman, P. M. (2018). Lonely sensational icons: Semantic neighbourhood density, sensory experience and iconicity. Language, Cognition and Neuroscience, 33(1), 25\u0026ndash;31. https://doi.org/10.1080/23273798.2017.1358379\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306\u0026ndash;1318. https://doi.org/10.3758/s13428-021-01656-9\nSpeed, L. J., \u0026amp; Majid, A. (2017). Dutch modality exclusivity norms: Simulating perceptual modality in space. Behavior Research Methods, 49(6), 2204\u0026ndash;2218. https://doi.org/10.3758/s13428-017-0852-3\nSpeed, L. J., \u0026amp; Majid, A. (2018). An Exception to Mental Simulation: No Evidence for Embodied Odor Language. Cognitive Science, 42(4), 1146\u0026ndash;1178. https://doi.org/10.1111/cogs.12593\nSpeed, L. J., \u0026amp; Majid, A. (2020). Grounding language in the neglected senses of touch, taste, and smell. Cognitive Neuropsychology, 37(5\u0026ndash;6), 363\u0026ndash;392. https://doi.org/10.1080/02643294.2019.1623188\nSpeed, L. J., Papies, E. K., \u0026amp; Majid, A. (2023). Mental simulation across sensory modalities predicts attractiveness of food concepts. Journal of Experimental Psychology: Applied, 29(3), 557\u0026ndash;571. https://doi.org/10.1037/xap0000461\nStrik Lievers, F., \u0026amp; Winter, B. (2018). Sensory language across lexical categories. Lingua, 204, 45\u0026ndash;61. https://doi.org/10.1016/j.lingua.2017.11.002\nSu, C., Wang, X., Wang, Z., \u0026amp; Chen, Y. (2019). A model of synesthetic metaphor interpretation based on cross-modality similarity. Computer Speech \u0026amp; Language, 58, 1\u0026ndash;16. https://doi.org/10.1016/j.csl.2019.03.003\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2019). Sensorimotor Cross-Behavior Knowledge Transfer for Grounded Category Recognition. 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 1\u0026ndash;6. https://doi.org/10.1109/DEVLRN.2019.8850715\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2020). A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization. Frontiers in Robotics and AI, 7, 522141. https://doi.org/10.3389/frobt.2020.522141\nTatiya, G., \u0026amp; Sinapov, J. (2019). Deep Multi-Sensory Object Category Recognition Using Interactive Behavioral Exploration. 2019 International Conference on Robotics and Automation (ICRA), 7872\u0026ndash;7878. https://doi.org/10.1109/ICRA.2019.8794095\nTeodorescu, H.-N., \u0026amp; Bolea, S. C. (2019). Text Sectioning based on Stylometric Distances. 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), 1\u0026ndash;6. https://doi.org/10.1109/SPED.2019.8906616\nThomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., Hart, J., Stone, P., \u0026amp; Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327\u0026ndash;374. https://doi.org/10.1613/jair.1.11485\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864\u0026ndash;884. https://doi.org/10.3758/s13428-021-01650-1\nTomsk State University, Rezanova, Z. I., Nekrasova, E. D., Tomsk State University, Miklashevsky, А. А., \u0026amp; Tomsk State University. (2018). INVESTIGATION OF PSYCHO-LINGUISTIC AND COGNITIVE ASPECTS OF LANGUAGE CONTACTING IN THE PROJECT \u0026ldquo;LINGUISTIC AND ETHNOCULTURAL DIVERSITY OF SOUTHERN SIBERIA IN SYNCHRONY AND DIAHRONY: INTERACTION OF LANGUAGES AND CULTURES.\u0026rdquo; Rusin, 52, 107\u0026ndash;117. https://doi.org/10.17223/18572685/52/8\nTomsk State University, Vladimirova, V. E., Rezanova, Z. I., Tomsk State University, Korshunova, I. S., \u0026amp; Tomsk State University. (2022). Ethno-linguistic contact as reflected in language cognition: Does bilingualism affect subjective assessments of perceptual semantics?*. Rusin, 70, 214\u0026ndash;231. https://doi.org/10.17223/18572685/70/12\nTroche, J., Crutch, S. J., \u0026amp; Reilly, J. (2017). Defining a Conceptual Topography of Word Concreteness: Clustering Properties of Emotion, Sensation, and Magnitude among 750 English Words. Frontiers in Psychology, 8, 1787. https://doi.org/10.3389/fpsyg.2017.01787\nVan De Weijer, J., Bianchi, I., \u0026amp; Paradis, C. (2023). Sensory modality profiles of antonyms. Language and Cognition, 1\u0026ndash;15. https://doi.org/10.1017/langcog.2023.20\nVergallito, A., Petilli, M. A., \u0026amp; Marelli, M. (2020). Perceptual modality norms for 1,121 Italian words: A comparison with concreteness and imageability scores and an analysis of their impact in word processing tasks. Behavior Research Methods, 52(4), 1599\u0026ndash;1616. https://doi.org/10.3758/s13428-019-01337-8\nVerheyen, S., De Deyne, S., Linsen, S., \u0026amp; Storms, G. (2020). Lexicosemantic, affective, and distributional norms for 1,000 Dutch adjectives. Behavior Research Methods, 52(3), 1108\u0026ndash;1121. https://doi.org/10.3758/s13428-019-01303-4\nVigliocco, G., Zhang, Y., Del Maschio, N., Todd, R., \u0026amp; Tuomainen, J. (2020). Electrophysiological signatures of English onomatopoeia. Language and Cognition, 12(1), 15\u0026ndash;35. https://doi.org/10.1017/langcog.2019.38\nVillani, C., D'Ascenzo, S., Borghi, A. M., Roversi, C., Benassi, M., \u0026amp; Lugli, L. (2022). Is justice grounded? How expertise shapes conceptual representation of institutional concepts. Psychological Research, 86(8), 2434\u0026ndash;2450. https://doi.org/10.1007/s00426-021-01492-8\nVillani, C., Lugli, L., Liuzza, M. T., \u0026amp; Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403\u0026ndash;430. https://doi.org/10.1017/langcog.2019.23\nWan, M., Su, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Perceptional and actional enrichment for metaphor detection with sensorimotor norms. Natural Language Engineering, 1\u0026ndash;29. https://doi.org/10.1017/S135132492300044X\nWang, X., Su, C., \u0026amp; Chen, Y. (2019). A Method of Abstractness Ratings for Chinese Concepts. In A. Lotfi, H. Bouchachia, A. Gegov, C. Langensiepen, \u0026amp; M. McGinnity (Eds.), Advances in Computational Intelligence Systems (Vol. 840, pp. 217\u0026ndash;226). Springer International Publishing. https://doi.org/10.1007/978-3-319-97982-3_18\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWicke, P., \u0026amp; Bolognesi, M. (2020). Emoji-based semantic representations for abstract and concrete concepts. Cognitive Processing, 21(4), 615\u0026ndash;635. https://doi.org/10.1007/s10339-020-00971-x\nWinter, B. (2019). Statistics for Linguists: An Introduction Using R (1st ed.). Routledge. https://doi.org/10.4324/9781315165547\nWinter, B. (2022). Mapping the landscape of exploratory and confirmatory data analysis in linguistics. In D. Tay \u0026amp; M. X. Pan (Eds.), Data Analytics in Cognitive Linguistics (pp. 13\u0026ndash;48). De Gruyter. https://doi.org/10.1515/9783110687279-002\nWinter, B. (2023). Abstract concepts and emotion: Cross-linguistic evidence and arguments against affective embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210368. https://doi.org/10.1098/rstb.2021.0368\nWinter, B., Lupyan, G., Perry, L. K., Dingemanse, M., \u0026amp; Perlman, M. (2023). Iconicity ratings for 14,000+ English words. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02112-6\nWinter, B., \u0026amp; Perlman, M. (2021). Size sound symbolism in the English lexicon. Glossa: A Journal of General Linguistics, 6(1). https://doi.org/10.5334/gjgl.1646\nWinter, B., Perlman, M., \u0026amp; Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213\u0026ndash;220. https://doi.org/10.1016/j.cognition.2018.05.008\nWinter, B., Perlman, M., Perry, L. K., \u0026amp; Lupyan, G. (2017). Which words are most iconic?: Iconicity in English sensory words. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 18(3), 443\u0026ndash;464. https://doi.org/10.1075/is.18.3.07win\nWinter, B., Sóskuthy, M., Perlman, M., \u0026amp; Dingemanse, M. (2022). Trilled /r/ is associated with roughness, linking sound and touch across spoken languages. Scientific Reports, 12(1), 1035. https://doi.org/10.1038/s41598-021-04311-7\nWinter, B., \u0026amp; Strik-Lievers, F. (2023). Semantic distance predicts metaphoricity and creativity judgments in synesthetic metaphors. Metaphor and the Social World, 13(1), 59\u0026ndash;80. https://doi.org/10.1075/msw.00029.win\nWu, C., \u0026amp; Mu, X. (2023). Sensory experience ratings (SERs) for 1,130 Chinese words: Relationships with other semantic and lexical psycholinguistic variables. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0083\nXiong, J., \u0026amp; Huang, C.-R. (2018). Somewhere in COLDNESS Lies Nibbāna: Lexical Manifestations of COLDNESS. In J.-F. Hong, Q. Su, \u0026amp; J.-S. Wu (Eds.), Chinese Lexical Semantics (Vol. 11173, pp. 70\u0026ndash;81). Springer International Publishing. https://doi.org/10.1007/978-3-030-04015-4_6\nYin Zhong, \u0026amp; Chu-Ren Huang. (2020). Sweetness or Mouthfeel: A corpus-based study of the conceptualization of taste. Linguistic Research, 37(3), 359\u0026ndash;387. https://doi.org/10.17250/KHISLI.37.3.202012.001\nZeng, Y., Zhao, D., Zhao, F., Shen, G., Dong, Y., Lu, E., Zhang, Q., Sun, Y., Liang, Q., Zhao, Y., Zhao, Z., Fang, H., Wang, Y., Li, Y., Liu, X., Du, C., Kong, Q., Ruan, Z., \u0026amp; Bi, W. (2023). BrainCog: A spiking neural network based, brain-inspired cognitive intelligence engine for brain-inspired AI and brain simulation. Patterns, 4(8), 100789. https://doi.org/10.1016/j.patter.2023.100789\nZhang, X., Amiri, S., Sinapov, J., Thomason, J., Stone, P., \u0026amp; Zhang, S. (2023). Multimodal embodied attribute learning by robots for object-centric action policies. Autonomous Robots, 47(5), 505\u0026ndash;528. https://doi.org/10.1007/s10514-023-10098-5\nZhang, X., Sinapov, J., \u0026amp; Zhang, S. (2021, July 12). Planning Multimodal Exploratory Actions for Online Robot Attribute Learning. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.005\nZhao, Q. (2020a). From Linguistic Synaesthesia to Conceptual Metaphor Theory. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 115\u0026ndash;128). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_7\nZhao, Q. (2020b). Methodology: A Corpus-Driven Approach. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 19\u0026ndash;34). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_2\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553\u0026ndash;583. https://doi.org/10.1515/cog-2021-0098\nZhao, Q., Huang, C.-R., \u0026amp; Ahrens, K. (2019). Directionality of linguistic synesthesia in Mandarin: A corpus-based study. Lingua, 232, 102744. https://doi.org/10.1016/j.lingua.2019.102744\nZhao, Q., \u0026amp; Long, Y. (2022). A Diachronic Study on Linguistic Synesthesia in Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 84\u0026ndash;94). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_6\nZhao, Q., Long, Y., \u0026amp; Huang, C.-R. (2020). Linguistic Synaesthesia of Mandarin Sensory Adjectives: Corpus-Based and Experimental Approaches. In J.-F. Hong, Y. Zhang, \u0026amp; P. Liu (Eds.), Chinese Lexical Semantics (Vol. 11831, pp. 139\u0026ndash;146). Springer International Publishing. https://doi.org/10.1007/978-3-030-38189-9_14\nZhong, Y., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Entity, event, and sensory modalities: An onto-cognitive account of sensory nouns. Humanities and Social Sciences Communications, 10(1), 255. https://doi.org/10.1057/s41599-023-01677-z\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196\u0026ndash;230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000\u0026ndash;1022. https://doi.org/10.1080/23273798.2022.2035416\nZhu, S., Wang, X., \u0026amp; Liu, P. (2021). Who Killed Sanmao and Virginia Woolf? A Comparative Study of Writers with Suicidal Attempt Based on a Quantitative Linguistic Method. In M. Liu, C. Kit, \u0026amp; Q. Su (Eds.), Chinese Lexical Semantics (Vol. 12278, pp. 408\u0026ndash;420). Springer International Publishing. https://doi.org/10.1007/978-3-030-81197-6_34\n\r\r","date":1514764800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1514764800,"objectID":"abeb0a72f4f9cafd7395c532b3871bf9","permalink":"https://pablobernabeu.github.io/publication/dutch-modality-exclusivity-norms-for-336-properties-and-411-concepts/","publishdate":"2018-01-01T00:00:00Z","relpermalink":"/publication/dutch-modality-exclusivity-norms-for-336-properties-and-411-concepts/","section":"publication","summary":"Part of the toolkit of language researchers is formed of stimuli that have been rated on various dimensions. The current study presents modality exclusivity norms for 336 properties and 411 concepts in Dutch. Forty-two respondents rated the auditory, haptic, and visual strength of these words. Mean scores were then computed, yielding acceptable reliability values. Measures of modality exclusivity and perceptual strength were also computed. Furthermore, the data includes psycholinguistic variables from other corpora, covering length (e.g., number of phonemes), frequency (e.g., contextual diversity), and distinctiveness (e.g., number of orthographic neighbours), along with concreteness and age of acquisition. To test these norms, Lynott and Connell's (2009, 2013) analyses were replicated. First, unimodal, bimodal, and tri-modal words were found. Vision was the most prevalent modality. Vision and touch were relatively related, leaving a more independent auditory modality. Properties were more strongly perceptual than concepts. Last, sound symbolism was investigated using regression, which revealed that auditory strength predicted lexical properties of the words better than the other modalities did, or else with a different direction. All the data and analysis code, including a web application, are available from https://osf.io/brkjw.","tags":["modality exclusivity norms","conceptual modality switch","crosslinguistic","Dutch","dimensionality reduction","language comprehension","linguistics","linguistic norms","open data","principal component analysis","psycholinguistics","replication","statistics","stimuli"],"title":"Dutch modality exclusivity norms for 336 properties and 411 concepts","type":"publication"},{"authors":null,"categories":["statistics","R"],"content":"\rPrincipal Component Analysis (PCA) is a technique used to find the core components that underlie different variables. It comes in very useful whenever doubts arise about the true origin of three or more variables. There are two main methods for performing a PCA: naive or less naive. In the naive method, you first check some conditions in your data which will determine the essentials of the analysis. In the less-naive method, you set those yourself based on whatever prior information or purposes you had. The latter method is appropriate when you already have enough information about the intercorrelations, or when you are required to select a specific number of components. I will tackle the naive method, mainly by following the guidelines in Field, Miles, and Field (2012), with updated code where necessary. A manual by Charles M. Friel (Sam Houston State University) was also useful.\nThe ‘naive’ approach is characterized by a first stage that checks whether the PCA should actually be performed with your current variables, or if some should be removed. The variables that are accepted are taken to a second stage which identifies the number of principal components that seem to underlie your set of variables.\nSTAGE 1. Determine whether PCA is appropriate at all, considering the variables\r\rVariables should be inter-correlated enough but not too much. Field et al. (2012) provide some thresholds, suggesting that no variable should have many correlations below .30, or any correlation at all above .90. Thus, in the example here, variable Q06 should probably be excluded from the PCA.\n\rBartlett’s test, on the nature of the intercorrelations, should be significant. Significance suggests that the variables are not an ‘identity matrix’ in which correlations are a sampling error.\n\rKMO (Kaiser-Meyer-Olkin), a measure of sampling adequacy based on common variance (so similar purpose as Bartlett’s). As Field et al. review, ‘values between .5 and .7 are mediocre, values between .7 and .8 are good, values between .8 and .9 are great and values above .9 are superb’ (p. 761). There’s a general score as well as one per variable. The general one will often be good, whereas the individual scores may more likely fail. Any variable with a score below .5 should probably be removed, and the test should be run again.\n\rDeterminant: A formula about multicollinearity. The result should preferably fall below .00001.\rNote that some of these tests are run on the dataframe and others on a correlation matrix of the data, as distinguished below.\n# Necessary libraries\rlibrary(ltm)\rlibrary(lattice)\rlibrary(psych)\rlibrary(car)\rlibrary(pastecs)\rlibrary(scales)\rlibrary(ggplot2)\rlibrary(arules)\rlibrary(plyr)\rlibrary(Rmisc)\rlibrary(GPArotation)\rlibrary(gdata)\rlibrary(MASS)\rlibrary(qpcR)\rlibrary(dplyr)\rlibrary(gtools)\rlibrary(Hmisc)\r# Select variables of interest for the PCA\rdataset = mydata[, c(\u0026#39;select_var1\u0026#39;, \u0026#39;select_var1\u0026#39;, \u0026#39;select_var2\u0026#39;, \u0026#39;select_var3\u0026#39;, \u0026#39;select_var4\u0026#39;, \u0026#39;select_var5\u0026#39;, \u0026#39;select_var6\u0026#39;, \u0026#39;select_var7\u0026#39;)]\r# Create matrix: some tests will require it\rdata_matrix = cor(dataset, use = \u0026#39;complete.obs\u0026#39;)\r# See intercorrelations\rround(data_matrix, 2)\r# Bartlett\u0026#39;s\rcortest.bartlett(dataset)\r# KMO (Kaiser-Meyer-Olkin)\rKMO(data_matrix)\r# Determinant\rdet(data_matrix)\r\r\rSTAGE 2. Identify number of components (aka factors)\rIn this stage, principal components (formally called ‘factors’ at this stage) are identified among the set of variables.\n\rThe identification is done through a basic, ‘unrotated’ PCA. The number of components set a priori must equal the number of variables that are being tested.\n# Start off with unrotated PCA\rpc1 = psych::principal(dataset, nfactors = length(dataset), rotate=\u0026quot;none\u0026quot;)\rpc1\rBelow is an example result:\n ## Principal Components Analysis\r## Call: psych::principal(r = eng_prop, nfactors = 3, rotate = \u0026quot;none\u0026quot;)\r## Standardized loadings (pattern matrix) based upon correlation matrix\r## PC1 PC2 PC3 h2 u2 com\r## Aud_eng -0.89 0.13 0.44 1 -2.2e-16 1.5\r## Hap_eng 0.64 0.75 0.15 1 1.1e-16 2.0\r## Vis_eng 0.81 -0.46 0.36 1 -4.4e-16 2.0\r## ## PC1 PC2 PC3\r## SS loadings 1.87 0.79 0.34\r## Proportion Var 0.62 0.26 0.11\r## Cumulative Var 0.62 0.89 1.00\r## Proportion Explained 0.62 0.26 0.11\r## Cumulative Proportion 0.62 0.89 1.00\r## ## Mean item complexity = 1.9\r## Test of the hypothesis that 3 components are sufficient.\r## ## The root mean square of the residuals (RMSR) is 0 ## with the empirical chi square 0 with prob \u0026lt; NA ## ## Fit based upon off diagonal values = 1\r\rAmong the columns, there are first the correlations between variables and components, followed by a column (h2) with the ‘communalities’. If less factors than variables had been selected, communality values would be below 1. Then there is the uniqueness column (u2): uniqueness is equal to 1 minus the communality. Next is ‘com’, which reflects the complexity with which a variable relates to the principal components. Those components are precisely found below. The first row contains the sums of squared loadings, or eigenvalues, namely, the total variance explained by each linear component. This value corresponds to the number of units explained out of all possible factors (which were three in the above example). The rows below all cut from the same cloth. Proportion var = variance explained over a total of 1. This is the result of dividing the eigenvalue by the number of components. Multiply by 100 and you get the percentage of total variance explained, which becomes useful. In the example, 99% of the variance has been explained. Aside from the meddling maths, we should actually expect 100% there because the number of factors equaled the number of variables. Cumulative var: variance added consecutively up to the last component. Proportion explained: variance explained over what has actually been explained (only when variables = factors is this the same as Proportion var). Cumulative proportion: the actually explained variance added consecutively up to the last component (Field et al., 2012).\nAccording to Field et al. (2012), two criteria can be used to determine the number of components that should be carried forward to the next stage:\n\rSS (sum of squares) loadings, with two possible cut-off points. On the one hand, following Kaiser’s threshold, we should select components with SS loadings \u0026gt; 1. In the example result shown above, only PC1 meets this criterion. A more lenient alternative is Kaiser’s threshold, whereby SS loadings \u0026gt; .7 are accepted. In the example result above, PC2 meet this criterion too.\n\rScree plot: retain as many components as the number of points after the point of inflection. To create a scree plot, call:\nplot(pc1$values, type = \u0026#39;b\u0026#39;)\r\rImagine a straight line from the first point on the right. Once this line bends considerably, count the points after the bend and up to the last point on the left. The number of points is the number of components to select. The example here is probably the most complicated (two components were finally chosen), but often it’s easier see examples.\nBased on either or both criteria, select the definitive number of components.\n\rSTAGE 3. Run definitive PCA\rRun a very similar command as you did before, but now with a more advanced method. The first PCA, a heuristic one, worked essentially on the inter-correlations. The definitive PCA, in contrast, will implement a prior shuffling known as ‘rotation’, to ensure that the result is robust enough (just like cards are shuffled). Explained variance is captured better this way. The go-to rotation method is the orthogonal, or ‘varimax’ (though others may be considered too).\n# Now with varimax rotation, Kaiser-normalized by default:\rpc2 = psych::principal(dataset, nfactors=2, rotate = \u0026quot;varimax\u0026quot;, scores = TRUE)\rpc2\rpc2$loadings\r# Sanity check\rpc2$residual\rpc2$fit\rpc2$communality\rAccording to Field et al. (2012), we would want:\n\rLess than half of residuals with absolute values \u0026gt; 0.05\rModel fit \u0026gt; .9\rAll communalities \u0026gt; .7\r\rIf any of this fails, consider changing the number of factors. Next, the rotated components that have been ‘extracted’ from the core of the set of variables can be added to the dataset. This would enable the use of these components as new variables that might prove powerful and useful (as in this research).\ndataset = cbind(dataset, pc2$scores)\rsummary(dataset$RC1, dataset$RC2)\r\rSTAGE 4. Determine ascription of each variable to components\rCheck the main summary by just calling pc2, and see how each variable correlates with the rotated components. This is essential because it reveals how variables load on each component, or in other words, to which component a variable belongs. For instance, the table shown here belongs to a study about the meaning of words (Bernabeu, 2018). These results suggest that the visual and haptic modalities of words are quite related, whereas the auditory modality is relatively unique. When the analysis works out well, a cut-off point of r = .8 may be applied for considering a variable as part of a component.\n\rSTAGE 5. Enjoy the plot\rThe plot is perhaps the coolest part about PCA. It really makes an awesome illustration of the power of data analysis.\nggplot(eng_props,\raes(RC1, RC2, label = as.character(main_eng))) + stat_density2d (color = \u0026quot;gray87\u0026quot;) +\rgeom_text(size = ifelse(eng_props$word_eng %in% w_set, 12, 7),\rfontface = ifelse(eng_props$word_eng %in% w_set, \u0026#39;bold\u0026#39;, \u0026#39;plain\u0026#39;)) +\rgeom_point(data=eng_props[eng_props$word_eng %in% w_set,], pch=21, fill=NA, size=14, stroke=2, alpha=.6) +\rlabs(subtitle=\u0026#39;(Data from Lynott \u0026amp; Connell, 2009)\u0026#39;, x = \u0026quot;Varimax-rotated Principal Component 1\u0026quot;, y = \u0026quot;Varimax-rotated Principal Component 2\u0026quot;) +\ttheme_bw() + theme( plot.background = element_blank(), panel.grid.major = element_blank(),\rpanel.grid.minor = element_blank(), panel.border = element_blank(),\raxis.line = element_line(color = \u0026#39;black\u0026#39;),\raxis.title.x = element_text(colour = \u0026#39;black\u0026#39;, size = 23, margin=margin(15,15,15,15)),\raxis.title.y = element_text(colour = \u0026#39;black\u0026#39;, size = 23, margin=margin(15,15,15,15)),\raxis.text.x = element_text(size=16), axis.text.y = element_text(size=16),\rplot.title = element_text(hjust = 0.5, size = 32, face = \u0026quot;bold\u0026quot;, margin=margin(15,15,15,15)),\rplot.subtitle = element_text(hjust = 0.5, size = 20, margin=margin(2,15,15,15)) ) +\rgeom_label_repel(data = eng_props[eng_props$word_eng %in% w_set,], aes(label = word_eng), size = 8, alpha = 0.77, color = \u0026#39;black\u0026#39;, box.padding = 1.5 )\rBelow is an example combining PCA plots with code similar to the above. These plots illustrate something further with regard to the relationships among modalities. In property words, the different modalities spread out more clearly than they do in concept words. This makes sense because in language, properties define concepts (Bernabeu, 2018).\nAn example of these analyses is available in available in this RStudio environment, in the norms.R script.\n\rReferences\rBernabeu, P. (2018). Dutch modality exclusivity norms for 336 properties and 411 concepts. PsyArXiv. https://doi.org/10.31234/osf.io/s2c5h\nField, A. P., Miles, J., \u0026amp; Field, Z. (2012). Discovering Statistics Using R. London, UK: Sage.\n\r","date":1514764800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1514764800,"objectID":"52150ffe1f840d9f490798734a157268","permalink":"https://pablobernabeu.github.io/2018/naive-principal-component-analysis-in-r/","publishdate":"2018-01-01T00:00:00Z","relpermalink":"/2018/naive-principal-component-analysis-in-r/","section":"post","summary":"Principal Component Analysis (PCA) is a technique used to find the core components that underlie different variables. It comes in very useful whenever doubts arise about the true origin of three or more variables. There are two main methods for performing a PCA: naive or less naive. In the naive method, you first check some conditions in your data which will determine the essentials of the analysis. In the less-naive method, you set those yourself based on whatever prior information or purposes you had. The 'naive' approach is characterized by a first stage that checks whether the PCA should actually be performed with your current variables, or if some should be removed. The variables that are accepted are taken to a second stage which identifies the number of principal components that seem to underlie your set of variables.","tags":["s","principal component analysis","statistics","dimensionality reduction","R"],"title":"Naive principal component analysis in R","type":"post"},{"authors":[],"categories":["psycholinguistics"],"content":"\rThroughout the 1990s, two opposing theories were used to explain how people understand texts, later bridged by the Landscape Model of reading (van den Broek, Young, Tzeng, \u0026amp; Linderholm, 1999). A review is offered below, including a schematic representation of the Landscape Model.\nMemory-based view\rThe memory-based view presented reading as an autonomous, unconscious, effortless process. Readers were purported to achieve an understanding of a text as a whole by combining the concepts, and implications readily afforded, in the text with their own background knowledge (Myers \u0026amp; O’Brien, 1998; O’Brien \u0026amp; Myers, 1999). This memory-based view did not include a conscious (re)activation of meaning. Arguably, this absence raises the question of how readers could recover the meaning if ever distracted while reading.\n\rConstructionist view\rThe constructionist view contended that readers make strategic, time-consuming efforts to access prior text and background knowledge (Graesser, Singer, \u0026amp; Trabasso, 1994; Singer, Graesser, \u0026amp; Trabasso, 1994). A possible challenge for this view is in leisure reading. If reading is effortful, how could it be explained when people become absorbed in leisure reading for hours, and enjoy it? How could this activity become as automatic and fast as it often does?\n\rLandscape Model\rThe memory-based and the constructionist views were bridged in a proposal called the Landscape Model (van den Broek et al., 1999). With a step-based model, van den Broek et al. argued that strategic (re)activations are available to the reader, but need not always be used (see also Converse, 2018). Figure 1 illustrates the dynamic, often cyclical processes.\n\nFigure 1. Mindmap of van den Broek et al.’s Landscape Model of reading comprehension. Created by Pablo Bernabeu and retrieved from https://doi.org/10.6084/m9.figshare.1591215.\nThe Landscape Model was applied to the context of discourse analysis by Yeari and van den Broek (2011). The authors noted that discourse analysts may find it useful to adopt a top-down, inductive approach to their task. That is, suppressing the natural, incremental route of meaning making in reading, discourse analysts may want to read through the text to gain a general idea first, before tackling a detailed analysis (see also Bell, 2011).\n\rReferences\rBell, A. (2011). Re-constructing Babel: Discourse analysis, hermeneutics and the Interpretive Arc. Discourse Studies, 13(5), 519–568. https://doi.org/10.1177/1461445611412699.\nConverse, N. E. (2018). The Use of Explicit Comprehension Strategies During Oral Instruction of Informational Text Structures and the Effect on First-graders’ Listening Comprehension (Doctoral dissertation). Retrieved from https://digitalcommons.usu.edu/etd/7305.\nGraesser, A., Singer, M., \u0026amp; Trabasso, T. (1994). Constructing inferences during narrative comprehension. Psychological Review, 101(3), 371–395. https://doi.org/10.1037/0033-295X.101.3.371.\nMyers, J. L., \u0026amp; O’Brien, E. J. (1998). Accessing the discourse representation during reading. Discourse Processes, 26(2-3), 131–157. https://doi.org/10.1080/01638539809545042.\nO’Brien, E. J., \u0026amp; Myers, J. L. (1999). Text comprehension: A view from the bottom up. In S. R. Goldman, A. C. Graesser \u0026amp; P. van den Broek P (Eds.), Narrative Comprehension, Causality, and Coherence: Essays in Honor of Tom Trabasso (pp. 35-53). Mahwah, NJ: Lawrence Erlbaum Associates.\nSinger, M., Graesser, A. C., \u0026amp; Trabasso, T. (1994). Minimal or global inference during reading. Journal of Memory and Language, 33(4), 421–441. https://doi.org/10.1006/jmla.1994.1020.\nvan den Broek, P., Young, M., Tzeng, Y., \u0026amp; Linderholm, T. (1999). The landscape model of reading. In H. van Oostendorp \u0026amp; S. R. Goldman (Eds.), The construction of mental representations during reading (pp. 71-98). Mahwah, NJ: Erlbaum.\nYeari, M., \u0026amp; van den Broek, P. (2011). A cognitive account of discourse understanding and discourse interpretation: The Landscape Model of reading. Discourse Studies, 13(5), 635-643. https://doi.org/10.1177/1461445611412748.\n\r","date":1514764800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1514764800,"objectID":"356959593f8aaa96e9eb875a8c7783dc","permalink":"https://pablobernabeu.github.io/2018/review-of-the-landscape-model-of-reading-composition-dynamics-and-application/","publishdate":"2018-01-01T00:00:00Z","relpermalink":"/2018/review-of-the-landscape-model-of-reading-composition-dynamics-and-application/","section":"post","summary":"Throughout the 1990s, two opposing theories were used to explain how people understand texts, later bridged by the Landscape Model of reading (van den Broek, Young, Tzeng, \u0026amp; Linderholm, 1999). A review is offered below, including a schematic representation of the Landscape Model.\nMemory-based view\rThe memory-based view presented reading as an autonomous, unconscious, effortless process. Readers were purported to achieve an understanding of a text as a whole by combining the concepts, and implications readily afforded, in the text with their own background knowledge (Myers \u0026amp; O’Brien, 1998; O’Brien \u0026amp; Myers, 1999).","tags":["s","reading","psycholinguistics","cognition"],"title":"Review of the Landscape Model of reading: Composition, dynamics and application","type":"post"},{"authors":null,"categories":["linguistic materials","research methods","web-application","R"],"content":"\u0026nbsp; Complete web application Flexdashboard-Shiny \r\u0026nbsp; Reduced dashboard Flexdashboard \u0026nbsp; This web application presents linguistic data over several tabs. The code combines the great front-end of Flexdashboard—based on R Markdown and yielding an unmatched user interface—, with the great back-end of Shiny—allowing users to download sections of data they select, in various formats.\n A nice find was the \u0026lsquo;reactable\u0026rsquo; package, which implements Javascript under the hood to allow the use of colours, bar charts, etc.\nAuditory = colDef(header = with_tooltip('Auditory Rating',\r'Mean rating of each word on the auditory modality across participants.'),\rcell = function(value) {\rwidth \u0026lt;- paste0(value / max(table_data$Auditory) * 100, \u0026quot;%\u0026quot;)\rvalue = sprintf(\u0026quot;%.2f\u0026quot;, round(value,2)) # Round to two digits, keeping trailing zeros\rbar_chart(value, width = width, fill = '#ff3030')\r},\ralign = 'left'),\r One of the hardest nuts to crack was allowing the full functionality of tables—i.e, scaling to screen, frozen header, and vertical and horizontal scrolling—whilst having tweaked the vertical/horizontal orientation of the dashboard sections. Initial clashes were sorted by adjusting the section's CSS styles\nTable {#table style=\u0026quot;background-color:#FCFCFC;\u0026quot;}\r=======================================================================\rInputs {.sidebar style='position:fixed; padding-top: 65px; padding-bottom:30px;'}\r-----------------------------------------------------------------------\r and by also adjusting the reactable settings.\nrenderReactable({\rreactable(selected_words(),\rdefaultSorted = list(cat = 'desc', word = 'asc'),\rdefaultColDef = colDef(footerStyle = list(fontWeight = \u0026quot;bold\u0026quot;)),\rheight = 840, striped = TRUE, pagination = FALSE, highlight = TRUE,\r A nice feature, especially suited to Flexdashboard, was the use of different formats across tabs. Whereas the Info tab presents long text using HTML and CSS styling, along with rmarkdown code output, the other tabs rely more strongly on Javascript features, enabled by R packages such as ‘shiny’ and sweetalert (e.g., allowing modal dialogs—pop-ups), reactable and plotly (e.g., allowing information opened by hovering—tooltips).\n```{r}\r# reactive for the word bar\rhighlighted_properties = reactive(input$highlighted_properties)\rrenderPlotly({\rggplotly(\rggplot( selected_props(), aes(RC1, RC2, label = as.character(word), color = main, # Html tags below used for format. Decimals rounded to two.\rtext = paste0(' ', '\u0026lt;span style=\u0026quot;padding-top:3px; padding-bottom:3px; font-size:2.2em; color:#EEEEEE\u0026quot;\u0026gt;', capitalize(word), '\u0026lt;/span\u0026gt; ', '\u0026lt;br\u0026gt;',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Dominant modality: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', main, ' ',\r' ', '\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Modality exclusivity: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Exclusivity, 2)), '% ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Perceptual strength: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Perceptualstrength, 2)),\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Auditory rating: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Auditory, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Haptic rating: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Haptic, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Visual rating: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(Visual, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Concreteness (Brysbaert et al., 2014): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(concrete_Brysbaertetal2014, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Number of letters: \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', letters, ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Number of phonemes (DutchPOND): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', round(phonemes_DUTCHPOND, 2), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Contextual diversity (lg10CD SUBTLEX-NL): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;',\rsprintf(\u0026quot;%.2f\u0026quot;, round(freq_lg10CD_SUBTLEXNL, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Word frequency (lg10WF SUBTLEX-NL): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;',\rsprintf(\u0026quot;%.2f\u0026quot;, round(freq_lg10WF_SUBTLEXNL, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Lemma frequency (CELEX): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', sprintf(\u0026quot;%.2f\u0026quot;, round(freq_CELEX_lem, 2)), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Phonological neighbourhood size (DutchPOND): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;', round(phon_neighbours_DUTCHPOND, 2), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Orthographic neighbourhood size (DutchPOND): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;',\rround(orth_neighbours_DUTCHPOND, 2), ' ',\r'\u0026lt;/b\u0026gt;\u0026lt;br\u0026gt;\u0026lt;span style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt; Age of acquisition (Brysbaert et al., 2014): \u0026lt;/span\u0026gt;\u0026lt;b style=\u0026quot;color:#EEEEEE\u0026quot;\u0026gt;',\rsprintf(\u0026quot;%.2f\u0026quot;, round(AoA_Brysbaertetal2014, 2)), ' ', '\u0026lt;br\u0026gt; '\r) ) ) +\rgeom_text(size = ifelse(selected_props()$word %in% highlighted_properties(), 7,\rifelse(is.null(highlighted_properties()), 3, 2.8)),\rfontface = ifelse(selected_props()$word %in% highlighted_properties(), 'bold', 'plain')) +\rgeom_point(alpha = 0) + # This geom_point helps to colour the tooltip according to the dominant modality\rscale_colour_manual(values = colours, drop = FALSE) + theme_bw() + ggtitle('Property words') +\rlabs(x = 'Varimax-rotated Principal Component 1', y = 'Varimax-rotated Principal Component 2') +\rguides(color = guide_legend(title = 'Main\u0026lt;br\u0026gt;modality')) +\rtheme( plot.background = element_blank(), panel.grid.major = element_blank(),\rpanel.grid.minor = element_blank(), panel.border = element_blank(),\raxis.line = element_line(color = 'black'), plot.title = element_text(size = 14, hjust = .5),\raxis.title.x = element_text(colour = 'black', size = 12, margin = margin(15,15,0,15)),\raxis.title.y = element_text(colour = 'black', size = 12, margin = margin(0,15,15,5)),\raxis.text.x = element_text(size = 8), axis.text.y = element_text(size = 8),\rlegend.background = element_rect(size = 2), legend.position = 'none',\rlegend.title = element_blank(),\rlegend.text = element_text(colour = colours, size = 13) ),\rtooltip = 'text'\r)\r})\r# For download, save plot without the interactive 'plotly' part\rproperties_png = reactive({ ggplot(selected_props(), aes(RC1, RC2, color = main, label = as.character(word))) +\rgeom_text(show.legend = FALSE, size = ifelse(selected_props()$word %in% highlighted_properties(), 7,\rifelse(is.null(highlighted_properties()), 3, 2.8)),\rfontface = ifelse(selected_props()$word %in% highlighted_properties(), 'bold', 'plain')) +\rgeom_point(alpha = 0) + scale_colour_manual(values = colours, drop = FALSE) + theme_bw() +\rguides(color = guide_legend(title = 'Main\u0026lt;br\u0026gt;modality', override.aes = list(size = 7, alpha = 1))) +\rggtitle( paste0('Properties', ' (showing ', nrow(selected_props()), ' out of ', nrow(props), ')') ) + labs(x = 'Varimax-rotated Principal Component 1', y = 'Varimax-rotated Principal Component 2') +\rtheme( plot.background = element_blank(), panel.grid.major = element_blank(),\rpanel.grid.minor = element_blank(), panel.border = element_blank(),\raxis.line = element_line(color = 'black'), plot.title = element_text(size = 17, hjust = .5, margin = margin(3,3,7,3)),\raxis.title.x = element_text(colour = 'black', size = 12, margin = margin(10,10,2,10)),\raxis.title.y = element_text(colour = 'black', size = 12, margin = margin(10,10,10,5)),\raxis.text.x = element_text(size = 8), axis.text.y = element_text(size = 8),\rlegend.background = element_rect(size = 2), legend.position = 'right',\rlegend.title = element_blank(), legend.text = element_text(size = 15))\r})\r```\r The only instance in which I drew on javascript code outside R packages was to enable tooltips beyond the packages’ limits—for instance, in the side bar. This javascript feature is created at the top of the script, in the head area.\n\u0026lt;!-- Javascript function to enable a hovering tooltip --\u0026gt;\r\u0026lt;script\u0026gt;\r$(document).ready(function(){\r$('[data-toggle=\u0026quot;tooltip1\u0026quot;]').tooltip();\r});\r\u0026lt;/script\u0026gt;\r In the side bar, I added a reactive mean for each variable, complementing the range selector.\nreactive(cat(paste0('Mean = ', sprintf(\u0026quot;%.2f\u0026quot;, round(mean(selected_words()$Exclusivity),2)))))\r Static version published on RPubs A reduced, static version was also created to increase the availability of the content. Removing some reactivity features allows the dashboard to be published as a standard website (i.e., on a personal website, on RPubs, etc.), without the need for a back-end Shiny server. Note that this type of website is dubbed \u0026lsquo;static\u0026rsquo;, but it can retain multiple interactive features thanks to Javascript-based tools under the hood, allowed by R packages such as leaflet for maps, DT for tables, plotly for plots, etc.\nTo create the Flexdashboard-only version departing from the Flexdashboard-Shiny version, I deleted runtime: shiny from the YAML header, and disabled Shiny reactive inputs and objects, as below.\n```{r}\r# Number of words selected on sidebar\r# reactive(cat(paste0('Words selected below: ', nrow(selected_props()))))\r```\r Reference Bernabeu, P. (2018). Dutch modality exclusivity norms for 336 properties and 411 concepts [Web application]. Retrieved from https://pablobernabeu.shinyapps.io/Dutch-Modality-Exclusivity-Norms\n\r","date":1514764800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1514764800,"objectID":"b6ae96b988a52c16af14e00a29c1b7a6","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/bernabeu-2018-modalitynorms/","publishdate":"2018-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/bernabeu-2018-modalitynorms/","section":"applications-and-dashboards","summary":"This app presents linguistic data over several tabs. The code combines the great front-end of Flexdashboard—based on R Markdown and yielding an unmatched user interface—, with the great back-end of Shiny—allowing users to download sections of data they select, in various formats. The hardest nuts to crack included modifying the rows/columns orientation without affecting the functionality of tables. A cool, recent finding was the reactable package. A nice feature, allowed by Flexdashboard, was the use of quite different formats in different tabs.","tags":["web application","data dashboard","Flexdashboard","R","R Shiny","statistics","regression","principal component analysis","modality exclusivity norms","Dutch","linguistics","HTML","CSS"],"title":"Web application: Dutch modality exclusivity norms","type":"applications-and-dashboards"},{"authors":["Bernabeu, P., Willems, R. M., \u0026 Louwerse, M. M."],"categories":["conceptual processing","conceptual replication"],"content":"Reference Bernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs. In G. Gunzelmann, A. Howes, T. Tenbrink, \u0026amp; E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1629-1634). Austin, TX: Cognitive Science Society. https://doi.org/10.31234/osf.io/a5pcz\n\rBonus: a conference poster with further analyses .embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}window.jQuery || document.write('\\x3C/script') var mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/dj52n/?direct%26mode=render%26action=download%26mode=render\");\rRelated references Ali Qurbi, E. (2022). Ambiguous Word Processing among Second Language Learners. The Canadian Modern Language Review, 78(2), 151\u0026ndash;173. https://doi.org/10.3138/cmlr-2020-0115\nAmenta, S., Crepaldi, D., \u0026amp; Marelli, M. (2020). Consistency measures individuate dissociating semantic modulations in priming paradigms: A new look on semantics in the processing of (complex) words. Quarterly Journal of Experimental Psychology, 73(10), 1546\u0026ndash;1563. https://doi.org/10.1177/1747021820927663\nAmsel, B. D., Kutas, M., \u0026amp; Coulson, S. (2017). Projectors, associators, visual imagery, and the time course of visual processing in grapheme-color synesthesia. Cognitive Neuroscience, 8(4), 206\u0026ndash;223. https://doi.org/10.1080/17588928.2017.1353492\nArgiris, G., Rumiati, R. I., \u0026amp; Crepaldi, D. (2021). No fruits without color: Cross-modal priming and EEG reveal different roles for different features across semantic categories. PLOS ONE, 16(4), e0234219. https://doi.org/10.1371/journal.pone.0234219\nAvramova, Y. R., De Pelsmacker, P., \u0026amp; Dens, N. (2017). Brand placement in text: The short- and long-term effects of placement modality and need for cognition. International Journal of Advertising, 36(5), 682\u0026ndash;704. https://doi.org/10.1080/02650487.2017.1335041\nBagli, M. (2023). How to Point with Language: English Source-Based Language to Describe Taste Qualities. Lublin Studies in Modern Languages and Literature, 42(2), 31\u0026ndash;46. https://doi.org/10.17951/lsmll.2023.47.2.31-46\nBanks, B., Wingfield, C., \u0026amp; Connell, L. (2021). Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category Production. Cognitive Science, 45(10), e13055. https://doi.org/10.1111/cogs.13055\nBarros García, B. (2017). In Other Words: Reformulation Strategies in Dostoevskii's Literary Works. Russian Literature, 91, 1\u0026ndash;25. https://doi.org/10.1016/j.ruslit.2017.09.001\nBarsalou, L. W. (2017a). Cognitively Plausible Theories of Concept Composition. In J. A. Hampton \u0026amp; Y. Winter (Eds.), Compositionality and Concepts in Linguistics and Psychology (Vol. 3, pp. 9\u0026ndash;30). Springer International Publishing. https://doi.org/10.1007/978-3-319-45977-6_2\nBarsalou, L. W. (2017b). What does semantic tiling of the cortex tell us about semantics? Neuropsychologia, 105, 18\u0026ndash;38. https://doi.org/10.1016/j.neuropsychologia.2017.04.011\nBarsalou, L. W. (2020). Challenges and Opportunities for Grounding Cognition. Journal of Cognition, 3(1), 31. https://doi.org/10.5334/joc.116\nBartl, S., \u0026amp; Lahey, E. (2023). \u0026lsquo;As the title implies\u0026rsquo;: How readers talk about titles in Amazon book reviews. Language and Literature: International Journal of Stylistics, 32(2), 209\u0026ndash;230. https://doi.org/10.1177/09639470221147788\nBaumann, A., Hofmann, K., Marakasova, A., Neidhardt, J., \u0026amp; Wissik, T. (2023). Semantic micro-dynamics as a reflex of occurrence frequency: A semantic networks approach. Cognitive Linguistics, 34(3\u0026ndash;4), 533\u0026ndash;568. https://doi.org/10.1515/cog-2022-0008\nBechtold, L., Bellebaum, C., Egan, S., Tettamanti, M., \u0026amp; Ghio, M. (2019). The role of experience for abstract concepts: Expertise modulates the electrophysiological correlates of mathematical word processing. Brain and Language, 188, 1\u0026ndash;10. https://doi.org/10.1016/j.bandl.2018.10.002\nBechtold, L., Bellebaum, C., \u0026amp; Ghio, M. (2023). When a Sunny Day Gives You Butterflies: An Electrophysiological Investigation of Concreteness and Context Effects in Semantic Word Processing. Journal of Cognitive Neuroscience, 35(2), 241\u0026ndash;258. https://doi.org/10.1162/jocn_a_01942\nBechtold, L., Bellebaum, C., Hoffman, P., \u0026amp; Ghio, M. (2021). Corroborating behavioral evidence for the interplay of representational richness and semantic control in semantic word processing. Scientific Reports, 11(1), 6184. https://doi.org/10.1038/s41598-021-85711-7\nBidet-Ildei, C., Gimenes, M., Toussaint, L., Almecija, Y., \u0026amp; Badets, A. (2017). Sentence plausibility influences the link between action words and the perception of biological human movements. Psychological Research, 81(4), 806\u0026ndash;813. https://doi.org/10.1007/s00426-016-0776-z\nBidet-Ildei, C., Gimenes, M., Toussaint, L., Beauprez, S.-A., \u0026amp; Badets, A. (2017). Painful semantic context modulates the relationship between action words and biological movement perception. Journal of Cognitive Psychology, 29(7), 821\u0026ndash;831. https://doi.org/10.1080/20445911.2017.1322093\nBolognesi, M., \u0026amp; Strik Lievers, F. (2020). How language and image construct synaesthetic metaphors in print advertising. Visual Communication, 19(4), 431\u0026ndash;457. https://doi.org/10.1177/1470357218782001\nBorghesani, V., \u0026amp; Piazza, M. (2017). The neuro-cognitive representations of symbols: The case of concrete words. Neuropsychologia, 105, 4\u0026ndash;17. https://doi.org/10.1016/j.neuropsychologia.2017.06.026\nBorghi, A. M., \u0026amp; Barsalou, L. (2021). Perspective in the conceptualization of categories. Psychological Research, 85(2), 697\u0026ndash;719. https://doi.org/10.1007/s00426-019-01269-0\nBorghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., \u0026amp; Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263\u0026ndash;292. https://doi.org/10.1037/bul0000089\nBorghi, A. M., Mazzuca, C., Gervasi, A. M., Mannella, F., \u0026amp; Tummolini, L. (2023). Grounded cognition can be multimodal all the way down. Language, Cognition and Neuroscience, 1\u0026ndash;5. https://doi.org/10.1080/23273798.2023.2210238\nBottini, R., Ferraro, S., Nigri, A., Cuccarini, V., Bruzzone, M. G., \u0026amp; Collignon, O. (2020). Brain Regions Involved in Conceptual Retrieval in Sighted and Blind People. Journal of Cognitive Neuroscience, 32(6), 1009\u0026ndash;1025. https://doi.org/10.1162/jocn_a_01538\nBruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms, G., \u0026amp; Vandenberghe, R. (2019). Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neuroscience \u0026amp; Biobehavioral Reviews, 103, 3\u0026ndash;13. https://doi.org/10.1016/j.neubiorev.2019.05.015\nCaballero, R., \u0026amp; Paradis, C. (2020). Soundscapes in English and Spanish: A corpus investigation of verb constructions. Language and Cognition, 12(4), 705\u0026ndash;728. https://doi.org/10.1017/langcog.2020.19\nCaballero, R., \u0026amp; Paradis, C. (2023). Sharing Perceptual Experiences through Language. Journal of Intelligence, 11(7), 129. https://doi.org/10.3390/jintelligence11070129\nCantarero, K., Parzuchowski, M., \u0026amp; Dukala, K. (2017). White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not. Frontiers in Psychology, 8, 814. https://doi.org/10.3389/fpsyg.2017.00814\nCarney, J. (2020). Thinking avant la lettre: A Review of 4E Cognition. Evolutionary Studies in Imaginative Culture, 4(1), 77\u0026ndash;90. https://doi.org/10.26613/esic.4.1.172\nCaterina Villani \u0026amp; Luisa Lugli. (2020). L'effetto Simon e il suo decorso temporale con stimoli linguistici non spaziali. Giornale italiano di psicologia, 1, 305\u0026ndash;314. https://doi.org/10.1421/96612\nChan, S. (2022). Dynamics of nominal classification systems in language processing. Language, Cognition and Neuroscience, 37(6), 671\u0026ndash;685. https://doi.org/10.1080/23273798.2021.2011331\nCharmhun Jo, Sun-A Kim, \u0026amp; Chu-Ren Huang. (2022). Linguistic synesthesia in Korean: A compound word-based study of cross-modal directionality. Linguistic Research, 39(2), 275\u0026ndash;296. https://doi.org/10.17250/KHISLI.39.2.202206.002\nChedid, G., Brambati, S. M., Bedetti, C., Rey, A. E., Wilson, M. A., \u0026amp; Vallet, G. T. (2019). Visual and auditory perceptual strength norms for 3,596 French nouns and their relationship with other psycholinguistic variables. Behavior Research Methods, 51(5), 2094\u0026ndash;2105. https://doi.org/10.3758/s13428-019-01254-w\nChen, I.-H., Zhao, Q., Long, Y., Lu, Q., \u0026amp; Huang, C.-R. (2019). Mandarin Chinese modality exclusivity norms. PLOS ONE, 14(2), e0211336. https://doi.org/10.1371/journal.pone.0211336\nChoi, U., Sung, Y., \u0026amp; Ogawa, S. (2020). Measurement of ultra‐fast signal progression related to face processing by 7T fMRI. Human Brain Mapping, 41(7), 1754\u0026ndash;1764. https://doi.org/10.1002/hbm.24907\nChwilla, D. J. (2022). Context effects in language comprehension: The role of emotional state and attention on semantic and syntactic processing. Frontiers in Human Neuroscience, 16, 1014547. https://doi.org/10.3389/fnhum.2022.1014547\nCirillo, G., Strijkers, K., Runnqvist, E., \u0026amp; Baus, C. (2023). Effects of Shared Attention on joint language production across processing stages. Language, Cognition and Neuroscience, 1\u0026ndash;12. https://doi.org/10.1080/23273798.2023.2260021\nCochrane, B. A., \u0026amp; Milliken, B. (2019). Imagined event files: An interplay between imagined and perceived objects. Psychonomic Bulletin \u0026amp; Review, 26(2), 538\u0026ndash;544. https://doi.org/10.3758/s13423-019-01572-2\nConnell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition and Neuroscience, 34(10), 1308\u0026ndash;1318. https://doi.org/10.1080/23273798.2018.1471512\nConnell, L., Lynott, D., \u0026amp; Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170143. https://doi.org/10.1098/rstb.2017.0143\nCorciulo, S., Bioglio, L., Basile, V., Patti, V., \u0026amp; Damiano, R. (2023). The DEEP Sensorium: A multidimensional approach to sensory domain labelling. Companion Proceedings of the ACM Web Conference 2023, 661\u0026ndash;668. https://doi.org/10.1145/3543873.3587631\nCourson, M., Macoir, J., \u0026amp; Tremblay, P. (2018). A facilitating role for the primary motor cortex in action sentence processing. Behavioural Brain Research, 336, 244\u0026ndash;249. https://doi.org/10.1016/j.bbr.2017.09.019\nDavis, C. P., Joergensen, G. H., Boddy, P., Dowling, C., \u0026amp; Yee, E. (2020). Making It Harder to \u0026ldquo;See\u0026rdquo; Meaning: The More You See Something, the More Its Conceptual Representation Is Susceptible to Visual Interference. Psychological Science, 31(5), 505\u0026ndash;517. https://doi.org/10.1177/0956797620910748\nDavis, C. P., \u0026amp; Yee, E. (2021). Building semantic memory from embodied and distributional language experience. WIREs Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555\nDavis, J. D., Coulson, S., Arnold, A. J., \u0026amp; Winkielman, P. (2021). Dynamic Grounding of Concepts: Implications for Emotion and Social Cognition. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 23\u0026ndash;42). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_2\nDe Deyne, S., Brysbaert, M., \u0026amp; Elgort, I. (2023). Chapter 7. Cross-language influences in L2 semantic and conceptual representation and processing. In I. Elgort, A. Siyanova-Chanturia, \u0026amp; M. Brysbaert (Eds.), Bilingual Processing and Acquisition (Vol. 16, pp. 152\u0026ndash;186). John Benjamins Publishing Company. https://doi.org/10.1075/bpa.16.07ded\nDellantonio, S., \u0026amp; Pastore, L. (2017). The \u0026lsquo;Proprioceptive\u0026rsquo; Component of Abstract Concepts. In S. Dellantonio \u0026amp; L. Pastore, Internal Perception (Vol. 40, pp. 297\u0026ndash;357). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55763-1_6\nDíez-Álamo, A. M., Díez, E., Alonso, M. Á., Vargas, C. A., \u0026amp; Fernandez, A. (2018). Normative ratings for perceptual and motor attributes of 750 object concepts in Spanish. Behavior Research Methods, 50(4), 1632\u0026ndash;1644. https://doi.org/10.3758/s13428-017-0970-y\nDove, G. (2018). Language as a disruptive technology: Abstract concepts, embodiment and the flexible mind. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170135. https://doi.org/10.1098/rstb.2017.0135\nDove, G. (2021). The Challenges of Abstract Concepts. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 171\u0026ndash;195). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_8\nDove, G., Barca, L., Tummolini, L., \u0026amp; Borghi, A. M. (2022). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research, 86(8), 2451\u0026ndash;2467. https://doi.org/10.1007/s00426-020-01438-6\nDupont, W., Papaxanthis, C., Lebon, F., \u0026amp; Madden-Lombardi, C. (2022). Does the Motor Cortex Want the Full Story? The Influence of Sentence Context on Corticospinal Excitability in Action Language Processing. Neuroscience, 506, 58\u0026ndash;67. https://doi.org/10.1016/j.neuroscience.2022.10.022\nDutriaux, L., Dahiez, X., \u0026amp; Gyselinck, V. (2019). How to change your memory of an object with a posture and a verb. Quarterly Journal of Experimental Psychology, 72(5), 1112\u0026ndash;1118. https://doi.org/10.1177/1747021818785096\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2022). Linguistic Bootstrapping Allows More Real-world Object Concepts to Be Held in Mind. Collabra: Psychology, 8(1), 40171. https://doi.org/10.1525/collabra.40171\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2023). More is not necessarily better: How different aspects of sensorimotor experience affect recognition memory for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1572\u0026ndash;1587. https://doi.org/10.1037/xlm0001265\nEdmiston, P., \u0026amp; Lupyan, G. (2017). Visual interference disrupts visual knowledge. Journal of Memory and Language, 92, 281\u0026ndash;292. https://doi.org/10.1016/j.jml.2016.07.002\nElisa Scerrati, Cristina Iani, Luisa Lugli, \u0026amp; Sandro Rubichi. (2019). C'è un effetto di potenziamento dell'azione con oggetti bimanuali? Giornale italiano di psicologia, 4, 987\u0026ndash;996. https://doi.org/10.1421/95573\nElpidorou, A., \u0026amp; Dove, G. (2018). Consciousness and Physicalism: A Defense of a Research Program (1st ed.). Routledge. https://doi.org/10.4324/9781315682075\nEspino, O., \u0026amp; Byrne, R. M. J. (2018). Thinking About the Opposite of What Is Said: Counterfactual Conditionals and Symbolic or Alternate Simulations of Negation. Cognitive Science, 42(8), 2459\u0026ndash;2501. https://doi.org/10.1111/cogs.12677\nFabrizio Calzavarini. (2023). Comprensione e cervello. Sistemi intelligenti, 2, 251\u0026ndash;276. https://doi.org/10.1422/107149\nFischer, J., \u0026amp; Mahon, B. Z. (2021). What tool representation, intuitive physics, and action have in common: The brain's first-person physics engine. Cognitive Neuropsychology, 38(7\u0026ndash;8), 455\u0026ndash;467. https://doi.org/10.1080/02643294.2022.2106126\nGaletzka, C. (2017). The Story So Far: How Embodied Cognition Advances Our Understanding of Meaning-Making. Frontiers in Psychology, 8, 1315. https://doi.org/10.3389/fpsyg.2017.01315\nGálvez-García, G., Aldunate, N., Bascour-Sandoval, C., Martínez-Molina, A., Peña, J., \u0026amp; Barramuño, M. (2020). Muscle activation in semantic processing: An electromyography approach. Biological Psychology, 152, 107881. https://doi.org/10.1016/j.biopsycho.2020.107881\nGao, C., Baucom, L. B., Kim, J., Wang, J., Wedell, D. H., \u0026amp; Shinkareva, S. V. (2019). Distinguishing abstract from concrete concepts in supramodal brain regions. Neuropsychologia, 131, 102\u0026ndash;110. https://doi.org/10.1016/j.neuropsychologia.2019.05.032\nGatti, D., Marelli, M., Vecchi, T., \u0026amp; Rinaldi, L. (2022). Spatial Representations Without Spatial Computations. Psychological Science, 33(11), 1947\u0026ndash;1958. https://doi.org/10.1177/09567976221094863\nGijssels, T., \u0026amp; Casasanto, D. (2020). Hand-use norms for Dutch and English manual action verbs: Implicit measures from a pantomime task. Behavior Research Methods, 52(4), 1744\u0026ndash;1767. https://doi.org/10.3758/s13428-020-01347-x\nGrand, G., Blank, I. A., Pereira, F., \u0026amp; Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nature Human Behaviour, 6(7), 975\u0026ndash;987. https://doi.org/10.1038/s41562-022-01316-8\nGrant, L. D., \u0026amp; Weissman, D. H. (2023). The binary structure of event files generalizes to abstract features: A nonhierarchical explanation of task set boundaries for the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(7), 1033\u0026ndash;1050. https://doi.org/10.1037/xlm0001148\nGreco, A. (2021). Spatial and Motor Aspects in the \u0026ldquo;Action-Sentence Compatibility Effect.\u0026rdquo; Frontiers in Psychology, 12, 647899. https://doi.org/10.3389/fpsyg.2021.647899\nGuerra, E., \u0026amp; Knoeferle, P. (2018). Semantic Interference and Facilitation: Understanding the Integration of Spatial Distance and Conceptual Similarity During Sentence Reading. Frontiers in Psychology, 9, 718. https://doi.org/10.3389/fpsyg.2018.00718\nGünther, F., Petilli, M. A., Vergallito, A., \u0026amp; Marelli, M. (2022). Images of the unseen: Extrapolating visual representations for abstract and concrete words in a data-driven computational model. Psychological Research, 86(8), 2512\u0026ndash;2532. https://doi.org/10.1007/s00426-020-01429-7\nGünther, F., Rinaldi, L., \u0026amp; Marelli, M. (2019). Vector-Space Models of Semantic Representation From a Cognitive Perspective: A Discussion of Common Misconceptions. Perspectives on Psychological Science, 14(6), 1006\u0026ndash;1033. https://doi.org/10.1177/1745691619861372\nHafri, A., Trueswell, J. C., \u0026amp; Strickland, B. (2018). Encoding of event roles from visual scenes is rapid, spontaneous, and interacts with higher-level visual processing. Cognition, 175, 36\u0026ndash;52. https://doi.org/10.1016/j.cognition.2018.02.011\nHardy, B. W. (2021). Embodied Cognition in Communication Science. Communication Theory, 31(4), 633\u0026ndash;653. https://doi.org/10.1093/ct/qtaa003\nHarpaintner, M., Sim, E.-J., Trumpp, N. M., Ulrich, M., \u0026amp; Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 1\u0026ndash;22. https://doi.org/10.1016/j.cortex.2019.10.014\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2018). The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words. Frontiers in Psychology, 9, 1748. https://doi.org/10.3389/fpsyg.2018.01748\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2022). Time course of brain activity during the processing of motor- and vision-related abstract concepts: Flexibility and task dependency. Psychological Research, 86(8), 2560\u0026ndash;2582. https://doi.org/10.1007/s00426-020-01374-5\nHartman, J., \u0026amp; Paradis, C. (2023). The language of sound: Events and meaning multitasking of words. Cognitive Linguistics, 34(3\u0026ndash;4), 445\u0026ndash;477. https://doi.org/10.1515/cog-2022-0006\nHauk, O., Giraud, A.-L., \u0026amp; Clarke, A. (2017). Brain oscillations in language comprehension. Language, Cognition and Neuroscience, 32(5), 533\u0026ndash;535. https://doi.org/10.1080/23273798.2017.1297842\nHauk, O., Jackson, R. L., \u0026amp; Rahimi, S. (2023). Transforming the neuroscience of language: Estimating pattern-to-pattern transformations of brain activity. Language, Cognition and Neuroscience, 1\u0026ndash;16. https://doi.org/10.1080/23273798.2023.2226268\nHauk, O., Magnabosco, F., \u0026amp; Law, R. (2023). Can we separate semantic representations from computations? A commentary on Calzavarini (2023). Language, Cognition and Neuroscience, 1\u0026ndash;4. https://doi.org/10.1080/23273798.2023.2226269\nHeim, E. M. (2017a). Adoption in Galatians and Romans: Contemporary Metaphor Theories and the Pauline Huiothesia Metaphors. BRILL. https://doi.org/10.1163/9789004339873\nHeim, E. M. (2017b). Adoption in Galatians and Romans: Contemporary Metaphor Theories and the Pauline Huiothesia Metaphors. BRILL. https://doi.org/10.1163/9789004339873\nHoeben Mannaert, L. N., Dijkstra, K., \u0026amp; Zwaan, R. A. (2020). Object combination in mental simulations. Quarterly Journal of Experimental Psychology, 73(11), 1796\u0026ndash;1806. https://doi.org/10.1177/1747021820933214\nHoffman, P., McClelland, J. L., \u0026amp; Lambon Ralph, M. A. (2018). Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychological Review, 125(3), 293\u0026ndash;328. https://doi.org/10.1037/rev0000094\nHohol, M. (2019). Foundations of Geometric Cognition (1st ed.). Routledge. https://doi.org/10.4324/9780429056291\nHolman, A., \u0026amp; Gîrbă, A. (2019). The match in orientation between verbal context and object accelerates change detection. Psihologija, 52(1), 93\u0026ndash;105. https://doi.org/10.2298/PSI180412033H\nHörberg, T., Larsson, M., \u0026amp; Olofsson, J. K. (2022). The Semantic Organization of the English Odor Vocabulary. Cognitive Science, 46(11), e13205. https://doi.org/10.1111/cogs.13205\nHuang, C.-R., \u0026amp; Xiong, J. (2019). Linguistic synaesthesia in Chinese. In C.-R. Huang, Z. Jing-Schmidt, \u0026amp; B. Meisterernst (Eds.), The Routledge Handbook of Chinese Applied Linguistics (1st ed., pp. 294\u0026ndash;312). Routledge. https://doi.org/10.4324/9781315625157-20\nIatropoulos, G., Herman, P., Lansner, A., Karlgren, J., Larsson, M., \u0026amp; Olofsson, J. K. (2018). The language of smell: Connecting linguistic and psychophysical properties of odor descriptors. Cognition, 178, 37\u0026ndash;49. https://doi.org/10.1016/j.cognition.2018.05.007\nIriguchi, M., Fujimura, R., Koda, H., \u0026amp; Masataka, N. (2019). Traffic symbol recognition modulates bodily actions. PLOS ONE, 14(3), e0214281. https://doi.org/10.1371/journal.pone.0214281\nJo, C. (2022). Linguistic Synesthesia in Korean: Universality and Variation. SAGE Open, 12(3), 215824402211178. https://doi.org/10.1177/21582440221117804\nJohns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing word frequency and contextual diversity. Memory \u0026amp; Cognition, 50(5), 1013\u0026ndash;1032. https://doi.org/10.3758/s13421-021-01249-z\nJones, L. L., Wurm, L. H., Calcaterra, R. D., \u0026amp; Ofen, N. (2017). Integrative Priming of Compositional and Locative Relations. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00359\nJulich-Warpakowski, N., \u0026amp; Pérez Sobrino, P. (2023). Introduction: Current challenges in metaphor research. Metaphor and the Social World, 13(1), 1\u0026ndash;15. https://doi.org/10.1075/msw.00026.jul\nKabbach, A., \u0026amp; Herbelot, A. (2021). Avoiding Conflict: When Speaker Coordination Does Not Require Conceptual Agreement. Frontiers in Artificial Intelligence, 3, 523920. https://doi.org/10.3389/frai.2020.523920\nKaiser, E. (2021). Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Frontiers in Psychology, 12, 701486. https://doi.org/10.3389/fpsyg.2021.701486\nKaup, B., Ulrich, R., Bausenhart, K. M., Bryce, D., Butz, M. V., Dignath, D., Dudschig, C., Franz, V. H., Friedrich, C., Gawrilow, C., Heller, J., Huff, M., Hütter, M., Janczyk, M., Leuthold, H., Mallot, H., Nürk, H.-C., Ramscar, M., Said, N., \u0026hellip; Wong, H. Y. (2023). Modal and amodal cognition: An overarching principle in various domains of psychology. Psychological Research. https://doi.org/10.1007/s00426-023-01878-w\nKeogh, R., \u0026amp; Pearson, J. (2017). The perceptual and phenomenal capacity of mental imagery. Cognition, 162, 124\u0026ndash;132. https://doi.org/10.1016/j.cognition.2017.02.004\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2017). Novel Text Analysis for Investigating Personality: Identifying the Dark Lady in Shakespeare's Sonnets. Journal of Quantitative Linguistics, 24(4), 255\u0026ndash;272. https://doi.org/10.1080/09296174.2017.1304049\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2018). Using Shakespeare's Sotto Voce to Determine True Identity From Text. Frontiers in Psychology, 9, 289. https://doi.org/10.3389/fpsyg.2018.00289\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2019). The Stylometric Impacts of Ageing and Life Events on Identity. Journal of Quantitative Linguistics, 26(1), 1\u0026ndash;21. https://doi.org/10.1080/09296174.2017.1405719\nKeus, K., \u0026amp; Harde, R. (2022). \u0026ldquo;She Wished Someone Would Help Them\u0026rdquo;: PTSD and Empathy in the Six of Crows Duology. Children's Literature in Education, 53(1), 130\u0026ndash;146. https://doi.org/10.1007/s10583-021-09441-0\nKhatin-Zadeh, O., Hu, J., Banaruee, H., \u0026amp; Marmolejo-Ramos, F. (2023). How emotions are metaphorically embodied: Measuring hand and head action strengths of typical emotional states. Cognition and Emotion, 37(3), 486\u0026ndash;498. https://doi.org/10.1080/02699931.2023.2181314\nKim, M.-K., Müller, H. M., \u0026amp; Weiss, S. (2021). What you \u0026ldquo;mean\u0026rdquo; is not what I \u0026ldquo;mean\u0026rdquo;: Categorization of verbs by Germans and Koreans using the semantic differential. Lingua, 252, 103012. https://doi.org/10.1016/j.lingua.2020.103012\nKlomberg, B., Schilhab, T., \u0026amp; Burke, M. (2022). Picturing Fiction through Embodied Cognition: Drawn Representations and Viewpoint in Literary Texts (1st ed.). Routledge. https://doi.org/10.4324/9781003225300\nKnoeferle, P. (2019). Predicting (variability of) context effects in language comprehension. Journal of Cultural Cognitive Science, 3(2), 141\u0026ndash;158. https://doi.org/10.1007/s41809-019-00025-5\nKoblet, O., \u0026amp; Purves, R. S. (2020). From online texts to Landscape Character Assessment: Collecting and analysing first-person landscape perception computationally. Landscape and Urban Planning, 197, 103757. https://doi.org/10.1016/j.landurbplan.2020.103757\nKompa, N. A. (2021). Language and embodiment\u0026mdash;Or the cognitive benefits of abstract representations. Mind \u0026amp; Language, 36(1), 27\u0026ndash;47. https://doi.org/10.1111/mila.12266\nKompa, N. A., \u0026amp; Mueller, J. L. (2022). Inner speech as a cognitive tool\u0026mdash;Or what is the point of talking to oneself? Philosophical Psychology, 1\u0026ndash;24. https://doi.org/10.1080/09515089.2022.2112164\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKrishna, P. P., Arulmozi, S., \u0026amp; Mishra, R. K. (2022). \u0026ldquo;Do You See and Hear More? A Study on Telugu Perception Verbs.\u0026rdquo; Journal of Psycholinguistic Research, 51(3), 473\u0026ndash;484. https://doi.org/10.1007/s10936-021-09827-7\nKuhnke, P., Beaupain, M. C., Arola, J., Kiefer, M., \u0026amp; Hartwigsen, G. (2023). Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neuroscience \u0026amp; Biobehavioral Reviews, 144, 104994. https://doi.org/10.1016/j.neubiorev.2022.104994\nKuhnke, P., Kiefer, M., \u0026amp; Hartwigsen, G. (2021). Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cerebral Cortex, 31(7), 3475\u0026ndash;3493. https://doi.org/10.1093/cercor/bhab026\nKumcu, A. (2021). Linguistic Synesthesia in Turkish: A Corpus-based Study of Crossmodal Directionality. Metaphor and Symbol, 36(4), 241\u0026ndash;255. https://doi.org/10.1080/10926488.2021.1921557\nLai, V. T., Hubbard, R., Ku, L.-C., \u0026amp; Pfeifer, V. (2023). Electrophysiology of Non-Literal Language. In M. Grimaldi, E. Brattico, \u0026amp; Y. Shtyrov (Eds.), Language Electrified (Vol. 202, pp. 613\u0026ndash;646). Springer US. https://doi.org/10.1007/978-1-0716-3263-5_19\nLandrigan, J.-F., \u0026amp; Mirman, D. (2018). The cost of switching between taxonomic and thematic semantics. Memory \u0026amp; Cognition, 46(2), 191\u0026ndash;203. https://doi.org/10.3758/s13421-017-0757-5\nLarge, A.-C., Bach, C., \u0026amp; Calvet, G. (2018). CONTACT: A Human Centered Approach of Multimodal Flight Deck Design and Evaluation. In D. Harris (Ed.), Engineering Psychology and Cognitive Ergonomics (Vol. 10906, pp. 593\u0026ndash;604). Springer International Publishing. https://doi.org/10.1007/978-3-319-91122-9_48\nLee, J., \u0026amp; Shin, J.-A. (2023). The cross-linguistic comparison of perceptual strength norms for Korean, English and L2 English. Frontiers in Psychology, 14, 1188909. https://doi.org/10.3389/fpsyg.2023.1188909\nLi, M., Lu, Q., Long, Y., \u0026amp; Gui, L. (2017). Inferring Affective Meanings of Words from Word Embedding. IEEE Transactions on Affective Computing, 8(4), 443\u0026ndash;456. https://doi.org/10.1109/TAFFC.2017.2723012\nLin, K., \u0026amp; Chan, S. (2019). When senses meet functions: An amodal stage in conceptual processing. Journal of Cognitive Psychology, 31(1), 64\u0026ndash;75. https://doi.org/10.1080/20445911.2018.1560299\nLittlemore, J. (2019). Metaphors in the Mind: Sources of Variation in Embodied Metaphor (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108241441\nLiu, S., Zhou, M., \u0026amp; Li, Y. (2019). Internet use experience influence individuals\u0026rsquo; lexical decision performance by changing their body representation. Computers in Human Behavior, 91, 157\u0026ndash;166. https://doi.org/10.1016/j.chb.2018.09.021\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2023). Learning instance-level N-ary semantic knowledge at scale for robots operating in everyday environments. Autonomous Robots, 47(5), 529\u0026ndash;547. https://doi.org/10.1007/s10514-023-10099-4\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2021, July 12). Learning Instance-Level N-Ary Semantic Knowledge At Scale For Robots Operating in Everyday Environments. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.035\nLong, Y., Xiang, R., Lu, Q., Huang, C.-R., \u0026amp; Li, M. (2021). Improving Attention Model Based on Cognition Grounded Data for Sentiment Analysis. IEEE Transactions on Affective Computing, 12(4), 900\u0026ndash;912. https://doi.org/10.1109/TAFFC.2019.2903056\nLouwerse, M. M. (2018). Knowing the Meaning of a Word by the Linguistic and Perceptual Company It Keeps. Topics in Cognitive Science, 10(3), 573\u0026ndash;589. https://doi.org/10.1111/tops.12349\nLupyan, G., \u0026amp; Winter, B. (2018). Language is more abstract than you think, or, why aren't languages more iconic? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170137. https://doi.org/10.1098/rstb.2017.0137\nLynott, D., Connell, L., Brysbaert, M., Brand, J., \u0026amp; Carney, J. (2020). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52(3), 1271\u0026ndash;1291. https://doi.org/10.3758/s13428-019-01316-z\nLynott, D., Walsh, M., McEnery, T., Connell, L., Cross, L., \u0026amp; O'Brien, K. (2019). Are You What You Read? Predicting Implicit Attitudes to Immigration Based on Linguistic Distributional Cues From Newspaper Readership; A Pre-registered Study. Frontiers in Psychology, 10, 842. https://doi.org/10.3389/fpsyg.2019.00842\nMalhi, S. K., \u0026amp; Buchanan, L. (2018). A test of the symbol interdependency hypothesis with both concrete and abstract stimuli. PLOS ONE, 13(3), e0192719. https://doi.org/10.1371/journal.pone.0192719\nMangels, J. A., Rodriguez, S., Ochakovskaya, Y., \u0026amp; Guerra-Carrillo, B. (2017). Achievement Goal Task Framing and Fit With Personal Goals Modulate the Neurocognitive Response to Corrective Feedback. AERA Open, 3(3), 233285841772087. https://doi.org/10.1177/2332858417720875\nMarchetti, R., Vaugoyeau, M., Colé, P., \u0026amp; Assaiante, C. (2022). A sensorimotor representation impairment in dyslexic adults: A specific profile of comorbidity. Neuropsychologia, 165, 108134. https://doi.org/10.1016/j.neuropsychologia.2021.108134\nMarmeleira, J., \u0026amp; Duarte Santos, G. (2019). Do Not Neglect the Body and Action: The Emergence of Embodiment Approaches to Understanding Human Development. Perceptual and Motor Skills, 126(3), 410\u0026ndash;445. https://doi.org/10.1177/0031512519834389\nMarson, F., Paoletti, P., Naor-Ziv, R., Carducci, F., \u0026amp; Ben-Soussan, T. D. (2023). Embodied empathy and abstract concepts\u0026rsquo; concreteness: Evidence from contemplative practices. In Progress in Brain Research (Vol. 277, pp. 181\u0026ndash;209). Elsevier. https://doi.org/10.1016/bs.pbr.2022.12.005\nMárton, Z. C., Türker, S., Rink, C., Brucker, M., Kriegel, S., Bodenmüller, T., \u0026amp; Riedel, S. (2018). Improving object orientation estimates by considering multiple viewpoints: Orientation histograms of symmetries and measurement models for view selection. Autonomous Robots, 42(2), 423\u0026ndash;442. https://doi.org/10.1007/s10514-017-9633-1\nMcRae, K., Nedjadrasul, D., Pau, R., Lo, B. P., \u0026amp; King, L. (2018). Abstract Concepts and Pictures of Real‐World Situations Activate One Another. Topics in Cognitive Science, 10(3), 518\u0026ndash;532. https://doi.org/10.1111/tops.12328\nMeng, X., Sun, C., Du, B., Liu, L., Zhang, Y., Dong, Q., Georgiou, G. K., \u0026amp; Nan, Y. (2022). The development of brain rhythms at rest and its impact on vocabulary acquisition. Developmental Science, 25(2), e13157. https://doi.org/10.1111/desc.13157\nMiceli, A., Wauthia, E., Kandana Arachchige, K., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2023). Perceptual strength influences lexical decision in Alzheimer's disease. Journal of Neurolinguistics, 68, 101144. https://doi.org/10.1016/j.jneuroling.2023.101144\nMiceli, A., Wauthia, E., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2021). Perceptual and Interoceptive Strength Norms for 270 French Words. Frontiers in Psychology, 12, 667271. https://doi.org/10.3389/fpsyg.2021.667271\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMiklashevsky, A. (2018). Perceptual Experience Norms for 506 Russian Nouns: Modality Rating, Spatial Localization, Manipulability, Imageability and Other Variables. Journal of Psycholinguistic Research, 47(3), 641\u0026ndash;661. https://doi.org/10.1007/s10936-017-9548-1\nMiller, J., Brookie, K., Wales, S., Wallace, S., \u0026amp; Kaup, B. (2018). Embodied cognition: Is activation of the motor cortex essential for understanding action verbs? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(3), 335\u0026ndash;370. https://doi.org/10.1037/xlm0000451\nMinervino, R. A., Martín, A., Tavernini, L. M., \u0026amp; Trench, M. (2018). The Understanding of Visual Metaphors by the Congenitally Blind. Frontiers in Psychology, 9, 1242. https://doi.org/10.3389/fpsyg.2018.01242\nMoretti, S., \u0026amp; Greco, A. (2018). Truth is in the head. A nod and shake compatibility effect. Acta Psychologica, 185, 203\u0026ndash;218. https://doi.org/10.1016/j.actpsy.2018.02.010\nMoretti, S., \u0026amp; Greco, A. (2020). Nodding and shaking of the head as simulated approach and avoidance responses. Acta Psychologica, 203, 102988. https://doi.org/10.1016/j.actpsy.2019.102988\nMorucci, P., Bottini, R., \u0026amp; Crepaldi, D. (2019). Augmented Modality Exclusivity Norms for Concrete and Abstract Italian Property Words. Journal of Cognition, 2(1), 42. https://doi.org/10.5334/joc.88\nMueller, C. J., White, C. N., \u0026amp; Kuchinke, L. (2017). Electrophysiological correlates of the drift diffusion model in visual word recognition. Human Brain Mapping, 38(11), 5616\u0026ndash;5627. https://doi.org/10.1002/hbm.23753\nMuraki, E. J., Doyle, A., Protzner, A. B., \u0026amp; Pexman, P. M. (2023). Context matters: How do task demands modulate the recruitment of sensorimotor information during language processing? Frontiers in Human Neuroscience, 16, 976954. https://doi.org/10.3389/fnhum.2022.976954\nMuraki, E. J., Speed, L. J., \u0026amp; Pexman, P. M. (2023). Insights into embodied cognition and mental imagery from aphantasia. Nature Reviews Psychology, 2(10), 591\u0026ndash;605. https://doi.org/10.1038/s44159-023-00221-9\nOkuno, H. Y., \u0026amp; Guedes, G. (2020). Automatic XML creation for Multisensorial Books. 2020 XV Conferencia Latinoamericana de Tecnologias de Aprendizaje (LACLO), 1\u0026ndash;6. https://doi.org/10.1109/LACLO50806.2020.9381139\nOstarek, M., \u0026amp; Vigliocco, G. (2017). Reading sky and seeing a cloud: On the relevance of events for perceptual simulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 579\u0026ndash;590. https://doi.org/10.1037/xlm0000318\nPecher, D. (2018). Curb Your Embodiment. Topics in Cognitive Science, 10(3), 501\u0026ndash;517. https://doi.org/10.1111/tops.12311\nPérez-Gay Juárez, F., Labrecque, D., \u0026amp; Frak, V. (2019). Assessing language-induced motor activity through Event Related Potentials and the Grip Force Sensor, an exploratory study. Brain and Cognition, 135, 103572. https://doi.org/10.1016/j.bandc.2019.05.010\nPérez-Sánchez, M. Á., Stadthagen-Gonzalez, H., Guasch, M., Hinojosa, J. A., Fraga, I., Marín, J., \u0026amp; Ferré, P. (2021). EmoPro \u0026ndash; Emotional prototypicality for 1286 Spanish words: Relationships with affective and psycholinguistic variables. Behavior Research Methods, 53(5), 1857\u0026ndash;1875. https://doi.org/10.3758/s13428-020-01519-9\nPerfecto, H., Galak, J., Simmons, J. P., \u0026amp; Nelson, L. D. (2017). Rejecting a bad option feels like choosing a good one. Journal of Personality and Social Psychology, 113(5), 659\u0026ndash;670. https://doi.org/10.1037/pspa0000092\nPerlman, M., Little, H., Thompson, B., \u0026amp; Thompson, R. L. (2018). Iconicity in Signed and Spoken Vocabulary: A Comparison Between American Sign Language, British Sign Language, English, and Spanish. Frontiers in Psychology, 9, 1433. https://doi.org/10.3389/fpsyg.2018.01433\nPexman, P. M. (2019). The role of embodiment in conceptual development. Language, Cognition and Neuroscience, 34(10), 1274\u0026ndash;1283. https://doi.org/10.1080/23273798.2017.1303522\nPexman, P. M., Muraki, E., Sidhu, D. M., Siakaluk, P. D., \u0026amp; Yap, M. J. (2019). Quantifying sensorimotor experience: Body\u0026ndash;object interaction ratings for more than 9,000 English words. Behavior Research Methods, 51(2), 453\u0026ndash;466. https://doi.org/10.3758/s13428-018-1171-z\nPiai, V., \u0026amp; Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In Psychology of Learning and Motivation (Vol. 71, pp. 265\u0026ndash;302). Elsevier. https://doi.org/10.1016/bs.plm.2019.07.002\nPlekhanov Russian University of Economics, Simonenko, M. A., Kazaryan, S. Y., \u0026amp; Plekhanov Russian University of Economics. (2023). Synaesthetic metaphor and its reproduction in Russian-to-English translation: A frame-based study. RESEARCH RESULT Theoretical and Applied Linguistics, 9(3). https://doi.org/10.18413/2313-8912-2023-9-3-0-2\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355\u0026ndash;381. https://doi.org/10.19090/pp.v15i3.2400\nPulvermüller, F. (2018a). Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology, 160, 1\u0026ndash;44. https://doi.org/10.1016/j.pneurobio.2017.07.001\nPulvermüller, F. (2018b). Neurobiological Mechanisms for Semantic Feature Extraction and Conceptual Flexibility. Topics in Cognitive Science, 10(3), 590\u0026ndash;620. https://doi.org/10.1111/tops.12367\nPurves, R. S., Striedl, P., Kong, I., \u0026amp; Majid, A. (2023). Conceptualizing Landscapes Through Language: The Role of Native Language and Expertise in the Representation of Waterbody Related Terms. Topics in Cognitive Science, 15(3), 560\u0026ndash;583. https://doi.org/10.1111/tops.12652\nRadvansky, G. A. (2017). Human Memory (3rd ed.). Routledge. https://doi.org/10.4324/9781315542768\nRadvansky, G. A. (2021). Human Memory (4th ed.). Routledge. https://doi.org/10.4324/9780429287039\nRahimi, S., Farahibozorg, S.-R., Jackson, R., \u0026amp; Hauk, O. (2022). Task modulation of spatiotemporal dynamics in semantic brain networks: An EEG/MEG study. NeuroImage, 246, 118768. https://doi.org/10.1016/j.neuroimage.2021.118768\nRaia, R. (2023). An analysis of conceptual ambiguities in the debate on the format of concepts. Phenomenology and the Cognitive Sciences. https://doi.org/10.1007/s11097-023-09938-7\nRaj, R., Hörberg, T., Lindroos, R., Larsson, M., Herman, P., Laukka, E. J., \u0026amp; Olofsson, J. K. (2023). Odor identification errors reveal cognitive aspects of age-associated smell loss. Cognition, 236, 105445. https://doi.org/10.1016/j.cognition.2023.105445\nReggin, L. D., Gómez Franco, L. E., Horchak, O. V., Labrecque, D., Lana, N., Rio, L., \u0026amp; Vigliocco, G. (2023). Consensus Paper: Situated and Embodied Language Acquisition. Journal of Cognition, 6(1), 63. https://doi.org/10.5334/joc.308\nRepetto, C., Rodella, C., Conca, F., Santi, G. C., \u0026amp; Catricalà, E. (2022). The Italian Sensorimotor Norms: Perception and action strength measures for 959 words. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02004-1\nRey, A. E., Riou, B., Vallet, G. T., \u0026amp; Versace, R. (2017). The automatic visual simulation of words: A memory reactivated mask slows down conceptual access. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 71(1), 14\u0026ndash;22. https://doi.org/10.1037/cep0000100\nReymore, L. (2022). Characterizing prototypical musical instrument timbres with timbre trait profiles. Musicae Scientiae, 26(3), 648\u0026ndash;674. https://doi.org/10.1177/10298649211001523\nRobinson, M. D., Fetterman, A. K., Meier, B. P., Persich, M. R., \u0026amp; Waters, M. R. (2021). Embodied Perspectives on Personality. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 477\u0026ndash;498). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_21\nRobinson, M. D., \u0026amp; Thomas, L. E. (2021). Introduction to Embodied Psychology: Thinking, Feeling, and Acting. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 1\u0026ndash;19). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_1\nSan Roque, L., Kendrick, K. H., Norcliffe, E., \u0026amp; Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29(3), 371\u0026ndash;406. https://doi.org/10.1515/cog-2017-0034\nScerrati, E., D'Ascenzo, S., Nicoletti, R., Villani, C., \u0026amp; Lugli, L. (2022). Assessing Interpersonal Proximity Evaluation in the COVID-19 Era: Evidence From the Affective Priming Task. Frontiers in Psychology, 13, 901730. https://doi.org/10.3389/fpsyg.2022.901730\nScerrati, E., Iani, C., Lugli, L., Nicoletti, R., \u0026amp; Rubichi, S. (2020). Do my hands prime your hands? The hand-to-response correspondence effect. Acta Psychologica, 203, 103012. https://doi.org/10.1016/j.actpsy.2020.103012\nScerrati, E., Iani, C., \u0026amp; Rubichi, S. (2021). Does the Activation of Motor Information Affect Semantic Processing? In L. Bechberger, K.-U. Kühnberger, \u0026amp; M. Liu (Eds.), Concepts in Action (Vol. 9, pp. 153\u0026ndash;166). Springer International Publishing. https://doi.org/10.1007/978-3-030-69823-2_7\nScerrati, E., Lugli, L., Nicoletti, R., \u0026amp; Borghi, A. M. (2017). The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic Bulletin \u0026amp; Review, 24(3), 798\u0026ndash;803. https://doi.org/10.3758/s13423-016-1150-2\nScherer, D., \u0026amp; Wentura, D. (2018). Combining the Post-Cue Task and the Perceptual Identification Task to Assess Parallel Activation and Mutual Facilitation of Related Primes and Targets. Experimental Psychology, 65(2), 84\u0026ndash;97. https://doi.org/10.1027/1618-3169/a000396\nSchilhab, T. (2017). Derived Embodiment in Abstract Language. Springer International Publishing. https://doi.org/10.1007/978-3-319-56056-4\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSeghier, M. L. (2023). Multiple functions of the angular gyrus at high temporal resolution. Brain Structure and Function, 228(1), 7\u0026ndash;46. https://doi.org/10.1007/s00429-022-02512-y\nŠetić Beg, M. (2021). Uloga utjelovljenja u razumijevanju pojmova. Psihologijske Teme, 30(2), 371\u0026ndash;395. https://doi.org/10.31820/pt.30.2.12\nShen, G., Wang, R., Yang, M., \u0026amp; Xie, J. (2022). Chinese Children with Congenital and Acquired Blindness Represent Concrete Concepts in Vertical Space through Tactile Perception. International Journal of Environmental Research and Public Health, 19(17), 11055. https://doi.org/10.3390/ijerph191711055\nSidhu, D. M., \u0026amp; Pexman, P. M. (2018). Lonely sensational icons: Semantic neighbourhood density, sensory experience and iconicity. Language, Cognition and Neuroscience, 33(1), 25\u0026ndash;31. https://doi.org/10.1080/23273798.2017.1358379\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306\u0026ndash;1318. https://doi.org/10.3758/s13428-021-01656-9\nSpeed, L. J., \u0026amp; Majid, A. (2017). Dutch modality exclusivity norms: Simulating perceptual modality in space. Behavior Research Methods, 49(6), 2204\u0026ndash;2218. https://doi.org/10.3758/s13428-017-0852-3\nSpeed, L. J., \u0026amp; Majid, A. (2018). An Exception to Mental Simulation: No Evidence for Embodied Odor Language. Cognitive Science, 42(4), 1146\u0026ndash;1178. https://doi.org/10.1111/cogs.12593\nSpeed, L. J., \u0026amp; Majid, A. (2020). Grounding language in the neglected senses of touch, taste, and smell. Cognitive Neuropsychology, 37(5\u0026ndash;6), 363\u0026ndash;392. https://doi.org/10.1080/02643294.2019.1623188\nSpeed, L. J., Papies, E. K., \u0026amp; Majid, A. (2023). Mental simulation across sensory modalities predicts attractiveness of food concepts. Journal of Experimental Psychology: Applied, 29(3), 557\u0026ndash;571. https://doi.org/10.1037/xap0000461\nSri-Ganeshan, M. (2021). Modality Effect. In M. Raz \u0026amp; P. Pouryahya (Eds.), Decision Making in Emergency Medicine (pp. 215\u0026ndash;220). Springer Singapore. https://doi.org/10.1007/978-981-16-0143-9_34\nStrik Lievers, F., \u0026amp; Winter, B. (2018). Sensory language across lexical categories. Lingua, 204, 45\u0026ndash;61. https://doi.org/10.1016/j.lingua.2017.11.002\nSu, C., Wang, X., Wang, Z., \u0026amp; Chen, Y. (2019). A model of synesthetic metaphor interpretation based on cross-modality similarity. Computer Speech \u0026amp; Language, 58, 1\u0026ndash;16. https://doi.org/10.1016/j.csl.2019.03.003\nSzychowska, M., \u0026amp; Wiens, S. (2021). Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Physiology \u0026amp; Behavior, 228, 113240. https://doi.org/10.1016/j.physbeh.2020.113240\nTarai, S., Bit, A., Kumar, R., \u0026amp; Savekar, A. (2021). Processing of party symbols and names predicts the results of 2019 Indian parliamentary election: Analysing psycholinguistic behavioural incongruency effects. Psychology of Language and Communication, 25(1), 264\u0026ndash;295. https://doi.org/10.2478/plc-2021-0012\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2019). Sensorimotor Cross-Behavior Knowledge Transfer for Grounded Category Recognition. 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 1\u0026ndash;6. https://doi.org/10.1109/DEVLRN.2019.8850715\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2020). A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization. Frontiers in Robotics and AI, 7, 522141. https://doi.org/10.3389/frobt.2020.522141\nTatiya, G., \u0026amp; Sinapov, J. (2019). Deep Multi-Sensory Object Category Recognition Using Interactive Behavioral Exploration. 2019 International Conference on Robotics and Automation (ICRA), 7872\u0026ndash;7878. https://doi.org/10.1109/ICRA.2019.8794095\nTeodorescu, H.-N., \u0026amp; Bolea, S. C. (2019). Text Sectioning based on Stylometric Distances. 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), 1\u0026ndash;6. https://doi.org/10.1109/SPED.2019.8906616\nThomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., Hart, J., Stone, P., \u0026amp; Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327\u0026ndash;374. https://doi.org/10.1613/jair.1.11485\nTillman, R., \u0026amp; Louwerse, M. (2018). Estimating Emotions Through Language Statistics and Embodied Cognition. Journal of Psycholinguistic Research, 47(1), 159\u0026ndash;167. https://doi.org/10.1007/s10936-017-9522-y\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864\u0026ndash;884. https://doi.org/10.3758/s13428-021-01650-1\nTomsk State University, Vladimirova, V. E., Rezanova, Z. I., Tomsk State University, Korshunova, I. S., \u0026amp; Tomsk State University. (2022). Ethno-linguistic contact as reflected in language cognition: Does bilingualism affect subjective assessments of perceptual semantics?*. Rusin, 70, 214\u0026ndash;231. https://doi.org/10.17223/18572685/70/12\nUtsumi, A. (2020). Exploring What Is Encoded in Distributional Word Vectors: A Neurobiologically Motivated Analysis. Cognitive Science, 44(6), e12844. https://doi.org/10.1111/cogs.12844\nValenzuela, J. (2017). Meaning in English: An Introduction (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781316156278\nVan De Weijer, J., Bianchi, I., \u0026amp; Paradis, C. (2023). Sensory modality profiles of antonyms. Language and Cognition, 1\u0026ndash;15. https://doi.org/10.1017/langcog.2023.20\nVergallito, A., Petilli, M. A., \u0026amp; Marelli, M. (2020). Perceptual modality norms for 1,121 Italian words: A comparison with concreteness and imageability scores and an analysis of their impact in word processing tasks. Behavior Research Methods, 52(4), 1599\u0026ndash;1616. https://doi.org/10.3758/s13428-019-01337-8\nVerheyen, S., De Deyne, S., Linsen, S., \u0026amp; Storms, G. (2020). Lexicosemantic, affective, and distributional norms for 1,000 Dutch adjectives. Behavior Research Methods, 52(3), 1108\u0026ndash;1121. https://doi.org/10.3758/s13428-019-01303-4\nVigliocco, G., Zhang, Y., Del Maschio, N., Todd, R., \u0026amp; Tuomainen, J. (2020). Electrophysiological signatures of English onomatopoeia. Language and Cognition, 12(1), 15\u0026ndash;35. https://doi.org/10.1017/langcog.2019.38\nVolfart, A., Rice, G. E., Lambon Ralph, M. A., \u0026amp; Rossion, B. (2021). Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. NeuroImage, 238, 118228. https://doi.org/10.1016/j.neuroimage.2021.118228\nW, D., C, P., C, M.-L., \u0026amp; F, L. (2023). Imagining and reading actions: Towards similar motor representations. Heliyon, 9(2), e13426. https://doi.org/10.1016/j.heliyon.2023.e13426\nWajnerman Paz, A. (2018). A Defense of an Amodal Number System. Philosophies, 3(2), 13. https://doi.org/10.3390/philosophies3020013\nWajnerman Paz, A. (2019). Using neural response properties to draw the distinction between modal and amodal representations. Philosophical Psychology, 32(3), 301\u0026ndash;331. https://doi.org/10.1080/09515089.2018.1563677\nWajnerman-Paz, A., \u0026amp; Rojas-Líbano, D. (2022). On the role of contextual factors in cognitive neuroscience experiments: A mechanistic approach. Synthese, 200(5), 402. https://doi.org/10.1007/s11229-022-03870-0\nWan, M., Su, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Perceptional and actional enrichment for metaphor detection with sensorimotor norms. Natural Language Engineering, 1\u0026ndash;29. https://doi.org/10.1017/S135132492300044X\nWang, L., Chen, Q., Chen, Y., \u0026amp; Zhong, R. (2019). The Effect of Sweet Taste on Romantic Semantic Processing: An ERP Study. Frontiers in Psychology, 10, 1573. https://doi.org/10.3389/fpsyg.2019.01573\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWassenburg, S. I., De Koning, B. B., De Vries, M. H., Boonstra, A. M., \u0026amp; Van Der Schoot, M. (2017). Gender differences in mental simulation during sentence and word processing. Journal of Research in Reading, 40(3), 274\u0026ndash;296. https://doi.org/10.1111/1467-9817.12066\nWentura, D. (2019). Cognition and emotion: On paradigms and metaphors. Cognition and Emotion, 33(1), 85\u0026ndash;93. https://doi.org/10.1080/02699931.2019.1567464\nWingfield, C., \u0026amp; Connell, L. (2022a). Sensorimotor distance: A grounded measure of semantic similarity for 800 million concept pairs. Behavior Research Methods, 55(7), 3416\u0026ndash;3432. https://doi.org/10.3758/s13428-022-01965-7\nWingfield, C., \u0026amp; Connell, L. (2022b). Understanding the role of linguistic distributional knowledge in cognition. Language, Cognition and Neuroscience, 37(10), 1220\u0026ndash;1270. https://doi.org/10.1080/23273798.2022.2069278\nWinter, A., Dudschig, C., Miller, J., Ulrich, R., \u0026amp; Kaup, B. (2022). The action-sentence compatibility effect (ACE): Meta-analysis of a benchmark finding for embodiment. Acta Psychologica, 230, 103712. https://doi.org/10.1016/j.actpsy.2022.103712\nWinter, B. (2019). Statistics for Linguists: An Introduction Using R (1st ed.). Routledge. https://doi.org/10.4324/9781315165547\nWinter, B. (2022). Mapping the landscape of exploratory and confirmatory data analysis in linguistics. In D. Tay \u0026amp; M. X. Pan (Eds.), Data Analytics in Cognitive Linguistics (pp. 13\u0026ndash;48). De Gruyter. https://doi.org/10.1515/9783110687279-002\nWinter, B. (2023). Abstract concepts and emotion: Cross-linguistic evidence and arguments against affective embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210368. https://doi.org/10.1098/rstb.2021.0368\nWinter, B., Fischer, M. H., Scheepers, C., \u0026amp; Myachykov, A. (2023). More is Better: English Language Statistics are Biased Toward Addition. Cognitive Science, 47(4), e13254. https://doi.org/10.1111/cogs.13254\nWinter, B., Perlman, M., \u0026amp; Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213\u0026ndash;220. https://doi.org/10.1016/j.cognition.2018.05.008\nWinter, B., Perlman, M., Perry, L. K., \u0026amp; Lupyan, G. (2017). Which words are most iconic?: Iconicity in English sensory words. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 18(3), 443\u0026ndash;464. https://doi.org/10.1075/is.18.3.07win\nWinter, B., Sóskuthy, M., Perlman, M., \u0026amp; Dingemanse, M. (2022). Trilled /r/ is associated with roughness, linking sound and touch across spoken languages. Scientific Reports, 12(1), 1035. https://doi.org/10.1038/s41598-021-04311-7\nWinter, B., \u0026amp; Strik-Lievers, F. (2023). Semantic distance predicts metaphoricity and creativity judgments in synesthetic metaphors. Metaphor and the Social World, 13(1), 59\u0026ndash;80. https://doi.org/10.1075/msw.00029.win\nWu, C., \u0026amp; Mu, X. (2023). Sensory experience ratings (SERs) for 1,130 Chinese words: Relationships with other semantic and lexical psycholinguistic variables. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0083\nXiong, J., \u0026amp; Huang, C.-R. (2018). Somewhere in COLDNESS Lies Nibbāna: Lexical Manifestations of COLDNESS. In J.-F. Hong, Q. Su, \u0026amp; J.-S. Wu (Eds.), Chinese Lexical Semantics (Vol. 11173, pp. 70\u0026ndash;81). Springer International Publishing. https://doi.org/10.1007/978-3-030-04015-4_6\nXu, Y., Vignali, L., Sigismondi, F., Crepaldi, D., Bottini, R., \u0026amp; Collignon, O. (2023). Similar object shape representation encoded in the inferolateral occipitotemporal cortex of sighted and early blind people. PLOS Biology, 21(7), e3001930. https://doi.org/10.1371/journal.pbio.3001930\nYan, J., Li, W., Zhang, T., Zhang, J., Jin, Z., \u0026amp; Li, L. (2023). Structural and functional neural substrates underlying the concreteness effect. Brain Structure and Function, 228(6), 1493\u0026ndash;1510. https://doi.org/10.1007/s00429-023-02668-1\nYasuda, M., Stins, J. F., \u0026amp; Higuchi, T. (2017). Effect of Constrained Arm Posture on the Processing of Action Verbs. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00057\nYin Zhong, \u0026amp; Chu-Ren Huang. (2020). Sweetness or Mouthfeel: A corpus-based study of the conceptualization of taste. Linguistic Research, 37(3), 359\u0026ndash;387. https://doi.org/10.17250/KHISLI.37.3.202012.001\nZappa, A., Mestre, D., Pergandi, J.-M., Bolger, D., \u0026amp; Frenck-Mestre, C. (2022). Cross-linguistic gender congruency effects during lexical access in novice L2 learners: Evidence from ERPs. Language, Cognition and Neuroscience, 37(9), 1073\u0026ndash;1098. https://doi.org/10.1080/23273798.2022.2039726\nZeng, Y., Zhao, D., Zhao, F., Shen, G., Dong, Y., Lu, E., Zhang, Q., Sun, Y., Liang, Q., Zhao, Y., Zhao, Z., Fang, H., Wang, Y., Li, Y., Liu, X., Du, C., Kong, Q., Ruan, Z., \u0026amp; Bi, W. (2023). BrainCog: A spiking neural network based, brain-inspired cognitive intelligence engine for brain-inspired AI and brain simulation. Patterns, 4(8), 100789. https://doi.org/10.1016/j.patter.2023.100789\nZhang, M., Wu, X., \u0026amp; Wang, A. (2021). Crossmodal Nonspatial Repetition Inhibition Due to Modality Shift. Perception, 50(2), 116\u0026ndash;128. https://doi.org/10.1177/0301006620988209\nZhang, X., Amiri, S., Sinapov, J., Thomason, J., Stone, P., \u0026amp; Zhang, S. (2023). Multimodal embodied attribute learning by robots for object-centric action policies. Autonomous Robots, 47(5), 505\u0026ndash;528. https://doi.org/10.1007/s10514-023-10098-5\nZhang, X., Sinapov, J., \u0026amp; Zhang, S. (2021, July 12). Planning Multimodal Exploratory Actions for Online Robot Attribute Learning. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.005\nZhang, Y., Mirman, D., \u0026amp; Hoffman, P. (2023). Taxonomic and thematic relations rely on different types of semantic features: Evidence from an fMRI meta-analysis and a semantic priming study. Brain and Language, 242, 105287. https://doi.org/10.1016/j.bandl.2023.105287\nZhao, Q. (2020a). From Linguistic Synaesthesia to Conceptual Metaphor Theory. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 115\u0026ndash;128). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_7\nZhao, Q. (2020b). Methodology: A Corpus-Driven Approach. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 19\u0026ndash;34). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_2\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553\u0026ndash;583. https://doi.org/10.1515/cog-2021-0098\nZhao, Q., Huang, C.-R., \u0026amp; Ahrens, K. (2019). Directionality of linguistic synesthesia in Mandarin: A corpus-based study. Lingua, 232, 102744. https://doi.org/10.1016/j.lingua.2019.102744\nZhao, Q., \u0026amp; Long, Y. (2022). A Diachronic Study on Linguistic Synesthesia in Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 84\u0026ndash;94). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_6\nZhao, Q., Long, Y., \u0026amp; Huang, C.-R. (2020). Linguistic Synaesthesia of Mandarin Sensory Adjectives: Corpus-Based and Experimental Approaches. In J.-F. Hong, Y. Zhang, \u0026amp; P. Liu (Eds.), Chinese Lexical Semantics (Vol. 11831, pp. 139\u0026ndash;146). Springer International Publishing. https://doi.org/10.1007/978-3-030-38189-9_14\nZhao, T., Huang, Y., Chen, D., Jiao, L., Marmolejo-Ramos, F., Wang, R., \u0026amp; Xie, J. (2020). The modality switching costs of Chinese\u0026ndash;English bilinguals in the processing of L1 and L2. Quarterly Journal of Experimental Psychology, 73(3), 396\u0026ndash;412. https://doi.org/10.1177/1747021819878089\nZhong, J., Peniak, M., Tani, J., Ogata, T., \u0026amp; Cangelosi, A. (2019). Sensorimotor input as a language generalisation tool: A neurorobotics model for generation and generalisation of noun-verb combinations with sensorimotor inputs. Autonomous Robots, 43(5), 1271\u0026ndash;1290. https://doi.org/10.1007/s10514-018-9793-7\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196\u0026ndash;230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000\u0026ndash;1022. https://doi.org/10.1080/23273798.2022.2035416\nZhu, S., Wang, X., \u0026amp; Liu, P. (2021). Who Killed Sanmao and Virginia Woolf? A Comparative Study of Writers with Suicidal Attempt Based on a Quantitative Linguistic Method. In M. Liu, C. Kit, \u0026amp; Q. Su (Eds.), Chinese Lexical Semantics (Vol. 12278, pp. 408\u0026ndash;420). Springer International Publishing. https://doi.org/10.1007/978-3-030-81197-6_34\nГарах, Ж. В., Ребрейкина, А. Б., Стрелец, В. Б., Голикова, А. В., \u0026amp; Зайцева, Ю. С. (2019). НЕЙРОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ЧТЕНИЯ. Журнал высшей нервной деятельности им И П Павлова, 69(3), 294\u0026ndash;313. https://doi.org/10.1134/S0044467719030055\n\r\r","date":1498867200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1498867200,"objectID":"54f8c09b786d728c5c440476328c3b7b","permalink":"https://pablobernabeu.github.io/publication/bernabeu-etal-2017/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/publication/bernabeu-etal-2017/","section":"publication","summary":"We tested whether conceptual processing is modality-specific by tracking the time course of the Conceptual Modality Switch effect. Forty-six participants verified the relation between property words and concept words. The conceptual modality of consecutive trials was manipulated in order to produce an Auditory-to-visual switch condition, a Haptic-to-visual switch condition, and a Visual-to-visual, no-switch condition. Event-Related Potentials (ERPs) were time-locked to the onset of the first word (property) in the target trials so as to measure the effect online and to avoid a within-trial confound. A switch effect was found, characterized by more negative ERP amplitudes for modality switches than no-switches. It proved significant in four typical time windows from 160 to 750 milliseconds post word onset, with greater strength in the Slow group, in posterior brain regions, and in the N400 window. The earliest switch effect was located in the language brain region, whereas later it was more prominent in the visual region. In the N400 and Late Positive windows, the Quick group presented the effect especially in the language region, whereas the Slow had it rather in the visual region. These results suggest that contextual factors such as time resources modulate the engagement of linguistic and embodied systems in conceptual processing.","tags":["conceptual modality switch","conceptual processing","reading","event-related potentials","cognition","psycholinguistics","statistics","linear mixed-effects models","replication","CogSci"],"title":"Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs","type":"publication"},{"authors":["Bernabeu, P."],"categories":["conceptual processing","psycholinguistics","event-related potentials"],"content":"Reference Bernabeu, P. (2017). Modality switches occur early and extend late in conceptual processing: Evidence from ERPs. PsyArXiv. https://doi.org/10.31234/osf.io/5gjvk\n\rRelated references Ali Qurbi, E. (2022). Ambiguous Word Processing among Second Language Learners. The Canadian Modern Language Review, 78(2), 151\u0026ndash;173. https://doi.org/10.3138/cmlr-2020-0115\nAmenta, S., Crepaldi, D., \u0026amp; Marelli, M. (2020). Consistency measures individuate dissociating semantic modulations in priming paradigms: A new look on semantics in the processing of (complex) words. Quarterly Journal of Experimental Psychology, 73(10), 1546\u0026ndash;1563. https://doi.org/10.1177/1747021820927663\nAmsel, B. D., Kutas, M., \u0026amp; Coulson, S. (2017). Projectors, associators, visual imagery, and the time course of visual processing in grapheme-color synesthesia. Cognitive Neuroscience, 8(4), 206\u0026ndash;223. https://doi.org/10.1080/17588928.2017.1353492\nArgiris, G., Rumiati, R. I., \u0026amp; Crepaldi, D. (2021). No fruits without color: Cross-modal priming and EEG reveal different roles for different features across semantic categories. PLOS ONE, 16(4), e0234219. https://doi.org/10.1371/journal.pone.0234219\nAvramova, Y. R., De Pelsmacker, P., \u0026amp; Dens, N. (2017). Brand placement in text: The short- and long-term effects of placement modality and need for cognition. International Journal of Advertising, 36(5), 682\u0026ndash;704. https://doi.org/10.1080/02650487.2017.1335041\nBagli, M. (2023). How to Point with Language: English Source-Based Language to Describe Taste Qualities. Lublin Studies in Modern Languages and Literature, 42(2), 31\u0026ndash;46. https://doi.org/10.17951/lsmll.2023.47.2.31-46\nBanks, B., Wingfield, C., \u0026amp; Connell, L. (2021). Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category Production. Cognitive Science, 45(10), e13055. https://doi.org/10.1111/cogs.13055\nBarros García, B. (2017). In Other Words: Reformulation Strategies in Dostoevskii's Literary Works. Russian Literature, 91, 1\u0026ndash;25. https://doi.org/10.1016/j.ruslit.2017.09.001\nBarsalou, L. W. (2017a). Cognitively Plausible Theories of Concept Composition. In J. A. Hampton \u0026amp; Y. Winter (Eds.), Compositionality and Concepts in Linguistics and Psychology (Vol. 3, pp. 9\u0026ndash;30). Springer International Publishing. https://doi.org/10.1007/978-3-319-45977-6_2\nBarsalou, L. W. (2017b). What does semantic tiling of the cortex tell us about semantics? Neuropsychologia, 105, 18\u0026ndash;38. https://doi.org/10.1016/j.neuropsychologia.2017.04.011\nBarsalou, L. W. (2020). Challenges and Opportunities for Grounding Cognition. Journal of Cognition, 3(1), 31. https://doi.org/10.5334/joc.116\nBartl, S., \u0026amp; Lahey, E. (2023). \u0026lsquo;As the title implies\u0026rsquo;: How readers talk about titles in Amazon book reviews. Language and Literature: International Journal of Stylistics, 32(2), 209\u0026ndash;230. https://doi.org/10.1177/09639470221147788\nBaumann, A., Hofmann, K., Marakasova, A., Neidhardt, J., \u0026amp; Wissik, T. (2023). Semantic micro-dynamics as a reflex of occurrence frequency: A semantic networks approach. Cognitive Linguistics, 34(3\u0026ndash;4), 533\u0026ndash;568. https://doi.org/10.1515/cog-2022-0008\nBechtold, L., Bellebaum, C., Egan, S., Tettamanti, M., \u0026amp; Ghio, M. (2019). The role of experience for abstract concepts: Expertise modulates the electrophysiological correlates of mathematical word processing. Brain and Language, 188, 1\u0026ndash;10. https://doi.org/10.1016/j.bandl.2018.10.002\nBechtold, L., Bellebaum, C., \u0026amp; Ghio, M. (2023). When a Sunny Day Gives You Butterflies: An Electrophysiological Investigation of Concreteness and Context Effects in Semantic Word Processing. Journal of Cognitive Neuroscience, 35(2), 241\u0026ndash;258. https://doi.org/10.1162/jocn_a_01942\nBechtold, L., Bellebaum, C., Hoffman, P., \u0026amp; Ghio, M. (2021). Corroborating behavioral evidence for the interplay of representational richness and semantic control in semantic word processing. Scientific Reports, 11(1), 6184. https://doi.org/10.1038/s41598-021-85711-7\nBidet-Ildei, C., Gimenes, M., Toussaint, L., Almecija, Y., \u0026amp; Badets, A. (2017). Sentence plausibility influences the link between action words and the perception of biological human movements. Psychological Research, 81(4), 806\u0026ndash;813. https://doi.org/10.1007/s00426-016-0776-z\nBidet-Ildei, C., Gimenes, M., Toussaint, L., Beauprez, S.-A., \u0026amp; Badets, A. (2017). Painful semantic context modulates the relationship between action words and biological movement perception. Journal of Cognitive Psychology, 29(7), 821\u0026ndash;831. https://doi.org/10.1080/20445911.2017.1322093\nBolognesi, M., \u0026amp; Strik Lievers, F. (2020). How language and image construct synaesthetic metaphors in print advertising. Visual Communication, 19(4), 431\u0026ndash;457. https://doi.org/10.1177/1470357218782001\nBorghesani, V., \u0026amp; Piazza, M. (2017). The neuro-cognitive representations of symbols: The case of concrete words. Neuropsychologia, 105, 4\u0026ndash;17. https://doi.org/10.1016/j.neuropsychologia.2017.06.026\nBorghi, A. M., \u0026amp; Barsalou, L. (2021). Perspective in the conceptualization of categories. Psychological Research, 85(2), 697\u0026ndash;719. https://doi.org/10.1007/s00426-019-01269-0\nBorghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., \u0026amp; Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263\u0026ndash;292. https://doi.org/10.1037/bul0000089\nBorghi, A. M., Mazzuca, C., Gervasi, A. M., Mannella, F., \u0026amp; Tummolini, L. (2023). Grounded cognition can be multimodal all the way down. Language, Cognition and Neuroscience, 1\u0026ndash;5. https://doi.org/10.1080/23273798.2023.2210238\nBottini, R., Ferraro, S., Nigri, A., Cuccarini, V., Bruzzone, M. G., \u0026amp; Collignon, O. (2020). Brain Regions Involved in Conceptual Retrieval in Sighted and Blind People. Journal of Cognitive Neuroscience, 32(6), 1009\u0026ndash;1025. https://doi.org/10.1162/jocn_a_01538\nBruffaerts, R., De Deyne, S., Meersmans, K., Liuzzi, A. G., Storms, G., \u0026amp; Vandenberghe, R. (2019). Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neuroscience \u0026amp; Biobehavioral Reviews, 103, 3\u0026ndash;13. https://doi.org/10.1016/j.neubiorev.2019.05.015\nCaballero, R., \u0026amp; Paradis, C. (2020). Soundscapes in English and Spanish: A corpus investigation of verb constructions. Language and Cognition, 12(4), 705\u0026ndash;728. https://doi.org/10.1017/langcog.2020.19\nCaballero, R., \u0026amp; Paradis, C. (2023). Sharing Perceptual Experiences through Language. Journal of Intelligence, 11(7), 129. https://doi.org/10.3390/jintelligence11070129\nCantarero, K., Parzuchowski, M., \u0026amp; Dukala, K. (2017). White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not. Frontiers in Psychology, 8, 814. https://doi.org/10.3389/fpsyg.2017.00814\nCarney, J. (2020). Thinking avant la lettre: A Review of 4E Cognition. Evolutionary Studies in Imaginative Culture, 4(1), 77\u0026ndash;90. https://doi.org/10.26613/esic.4.1.172\nCaterina Villani \u0026amp; Luisa Lugli. (2020). L'effetto Simon e il suo decorso temporale con stimoli linguistici non spaziali. Giornale italiano di psicologia, 1, 305\u0026ndash;314. https://doi.org/10.1421/96612\nChan, S. (2022). Dynamics of nominal classification systems in language processing. Language, Cognition and Neuroscience, 37(6), 671\u0026ndash;685. https://doi.org/10.1080/23273798.2021.2011331\nCharmhun Jo, Sun-A Kim, \u0026amp; Chu-Ren Huang. (2022). Linguistic synesthesia in Korean: A compound word-based study of cross-modal directionality. Linguistic Research, 39(2), 275\u0026ndash;296. https://doi.org/10.17250/KHISLI.39.2.202206.002\nChedid, G., Brambati, S. M., Bedetti, C., Rey, A. E., Wilson, M. A., \u0026amp; Vallet, G. T. (2019). Visual and auditory perceptual strength norms for 3,596 French nouns and their relationship with other psycholinguistic variables. Behavior Research Methods, 51(5), 2094\u0026ndash;2105. https://doi.org/10.3758/s13428-019-01254-w\nChen, I.-H., Zhao, Q., Long, Y., Lu, Q., \u0026amp; Huang, C.-R. (2019). Mandarin Chinese modality exclusivity norms. PLOS ONE, 14(2), e0211336. https://doi.org/10.1371/journal.pone.0211336\nChoi, U., Sung, Y., \u0026amp; Ogawa, S. (2020). Measurement of ultra‐fast signal progression related to face processing by 7T fMRI. Human Brain Mapping, 41(7), 1754\u0026ndash;1764. https://doi.org/10.1002/hbm.24907\nChwilla, D. J. (2022). Context effects in language comprehension: The role of emotional state and attention on semantic and syntactic processing. Frontiers in Human Neuroscience, 16, 1014547. https://doi.org/10.3389/fnhum.2022.1014547\nCirillo, G., Strijkers, K., Runnqvist, E., \u0026amp; Baus, C. (2023). Effects of Shared Attention on joint language production across processing stages. Language, Cognition and Neuroscience, 1\u0026ndash;12. https://doi.org/10.1080/23273798.2023.2260021\nCochrane, B. A., \u0026amp; Milliken, B. (2019). Imagined event files: An interplay between imagined and perceived objects. Psychonomic Bulletin \u0026amp; Review, 26(2), 538\u0026ndash;544. https://doi.org/10.3758/s13423-019-01572-2\nConnell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition and Neuroscience, 34(10), 1308\u0026ndash;1318. https://doi.org/10.1080/23273798.2018.1471512\nConnell, L., Lynott, D., \u0026amp; Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170143. https://doi.org/10.1098/rstb.2017.0143\nCorciulo, S., Bioglio, L., Basile, V., Patti, V., \u0026amp; Damiano, R. (2023). The DEEP Sensorium: A multidimensional approach to sensory domain labelling. Companion Proceedings of the ACM Web Conference 2023, 661\u0026ndash;668. https://doi.org/10.1145/3543873.3587631\nCourson, M., Macoir, J., \u0026amp; Tremblay, P. (2018). A facilitating role for the primary motor cortex in action sentence processing. Behavioural Brain Research, 336, 244\u0026ndash;249. https://doi.org/10.1016/j.bbr.2017.09.019\nDavis, C. P., Joergensen, G. H., Boddy, P., Dowling, C., \u0026amp; Yee, E. (2020). Making It Harder to \u0026ldquo;See\u0026rdquo; Meaning: The More You See Something, the More Its Conceptual Representation Is Susceptible to Visual Interference. Psychological Science, 31(5), 505\u0026ndash;517. https://doi.org/10.1177/0956797620910748\nDavis, C. P., \u0026amp; Yee, E. (2021). Building semantic memory from embodied and distributional language experience. WIREs Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555\nDavis, J. D., Coulson, S., Arnold, A. J., \u0026amp; Winkielman, P. (2021). Dynamic Grounding of Concepts: Implications for Emotion and Social Cognition. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 23\u0026ndash;42). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_2\nDe Deyne, S., Brysbaert, M., \u0026amp; Elgort, I. (2023). Chapter 7. Cross-language influences in L2 semantic and conceptual representation and processing. In I. Elgort, A. Siyanova-Chanturia, \u0026amp; M. Brysbaert (Eds.), Bilingual Processing and Acquisition (Vol. 16, pp. 152\u0026ndash;186). John Benjamins Publishing Company. https://doi.org/10.1075/bpa.16.07ded\nDellantonio, S., \u0026amp; Pastore, L. (2017). The \u0026lsquo;Proprioceptive\u0026rsquo; Component of Abstract Concepts. In S. Dellantonio \u0026amp; L. Pastore, Internal Perception (Vol. 40, pp. 297\u0026ndash;357). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55763-1_6\nDíez-Álamo, A. M., Díez, E., Alonso, M. Á., Vargas, C. A., \u0026amp; Fernandez, A. (2018). Normative ratings for perceptual and motor attributes of 750 object concepts in Spanish. Behavior Research Methods, 50(4), 1632\u0026ndash;1644. https://doi.org/10.3758/s13428-017-0970-y\nDove, G. (2018). Language as a disruptive technology: Abstract concepts, embodiment and the flexible mind. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170135. https://doi.org/10.1098/rstb.2017.0135\nDove, G. (2021). The Challenges of Abstract Concepts. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 171\u0026ndash;195). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_8\nDove, G., Barca, L., Tummolini, L., \u0026amp; Borghi, A. M. (2022). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research, 86(8), 2451\u0026ndash;2467. https://doi.org/10.1007/s00426-020-01438-6\nDupont, W., Papaxanthis, C., Lebon, F., \u0026amp; Madden-Lombardi, C. (2022). Does the Motor Cortex Want the Full Story? The Influence of Sentence Context on Corticospinal Excitability in Action Language Processing. Neuroscience, 506, 58\u0026ndash;67. https://doi.org/10.1016/j.neuroscience.2022.10.022\nDutriaux, L., Dahiez, X., \u0026amp; Gyselinck, V. (2019). How to change your memory of an object with a posture and a verb. Quarterly Journal of Experimental Psychology, 72(5), 1112\u0026ndash;1118. https://doi.org/10.1177/1747021818785096\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2022). Linguistic Bootstrapping Allows More Real-world Object Concepts to Be Held in Mind. Collabra: Psychology, 8(1), 40171. https://doi.org/10.1525/collabra.40171\nDymarska, A., Connell, L., \u0026amp; Banks, B. (2023). More is not necessarily better: How different aspects of sensorimotor experience affect recognition memory for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1572\u0026ndash;1587. https://doi.org/10.1037/xlm0001265\nEdmiston, P., \u0026amp; Lupyan, G. (2017). Visual interference disrupts visual knowledge. Journal of Memory and Language, 92, 281\u0026ndash;292. https://doi.org/10.1016/j.jml.2016.07.002\nElisa Scerrati, Cristina Iani, Luisa Lugli, \u0026amp; Sandro Rubichi. (2019). C'è un effetto di potenziamento dell'azione con oggetti bimanuali? Giornale italiano di psicologia, 4, 987\u0026ndash;996. https://doi.org/10.1421/95573\nElpidorou, A., \u0026amp; Dove, G. (2018). Consciousness and Physicalism: A Defense of a Research Program (1st ed.). Routledge. https://doi.org/10.4324/9781315682075\nEspino, O., \u0026amp; Byrne, R. M. J. (2018). Thinking About the Opposite of What Is Said: Counterfactual Conditionals and Symbolic or Alternate Simulations of Negation. Cognitive Science, 42(8), 2459\u0026ndash;2501. https://doi.org/10.1111/cogs.12677\nFabrizio Calzavarini. (2023). Comprensione e cervello. Sistemi intelligenti, 2, 251\u0026ndash;276. https://doi.org/10.1422/107149\nFischer, J., \u0026amp; Mahon, B. Z. (2021). What tool representation, intuitive physics, and action have in common: The brain's first-person physics engine. Cognitive Neuropsychology, 38(7\u0026ndash;8), 455\u0026ndash;467. https://doi.org/10.1080/02643294.2022.2106126\nGaletzka, C. (2017). The Story So Far: How Embodied Cognition Advances Our Understanding of Meaning-Making. Frontiers in Psychology, 8, 1315. https://doi.org/10.3389/fpsyg.2017.01315\nGálvez-García, G., Aldunate, N., Bascour-Sandoval, C., Martínez-Molina, A., Peña, J., \u0026amp; Barramuño, M. (2020). Muscle activation in semantic processing: An electromyography approach. Biological Psychology, 152, 107881. https://doi.org/10.1016/j.biopsycho.2020.107881\nGao, C., Baucom, L. B., Kim, J., Wang, J., Wedell, D. H., \u0026amp; Shinkareva, S. V. (2019). Distinguishing abstract from concrete concepts in supramodal brain regions. Neuropsychologia, 131, 102\u0026ndash;110. https://doi.org/10.1016/j.neuropsychologia.2019.05.032\nGatti, D., Marelli, M., Vecchi, T., \u0026amp; Rinaldi, L. (2022). Spatial Representations Without Spatial Computations. Psychological Science, 33(11), 1947\u0026ndash;1958. https://doi.org/10.1177/09567976221094863\nGijssels, T., \u0026amp; Casasanto, D. (2020). Hand-use norms for Dutch and English manual action verbs: Implicit measures from a pantomime task. Behavior Research Methods, 52(4), 1744\u0026ndash;1767. https://doi.org/10.3758/s13428-020-01347-x\nGrand, G., Blank, I. A., Pereira, F., \u0026amp; Fedorenko, E. (2022). Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nature Human Behaviour, 6(7), 975\u0026ndash;987. https://doi.org/10.1038/s41562-022-01316-8\nGrant, L. D., \u0026amp; Weissman, D. H. (2023). The binary structure of event files generalizes to abstract features: A nonhierarchical explanation of task set boundaries for the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(7), 1033\u0026ndash;1050. https://doi.org/10.1037/xlm0001148\nGreco, A. (2021). Spatial and Motor Aspects in the \u0026ldquo;Action-Sentence Compatibility Effect.\u0026rdquo; Frontiers in Psychology, 12, 647899. https://doi.org/10.3389/fpsyg.2021.647899\nGuerra, E., \u0026amp; Knoeferle, P. (2018). Semantic Interference and Facilitation: Understanding the Integration of Spatial Distance and Conceptual Similarity During Sentence Reading. Frontiers in Psychology, 9, 718. https://doi.org/10.3389/fpsyg.2018.00718\nGünther, F., Petilli, M. A., Vergallito, A., \u0026amp; Marelli, M. (2022). Images of the unseen: Extrapolating visual representations for abstract and concrete words in a data-driven computational model. Psychological Research, 86(8), 2512\u0026ndash;2532. https://doi.org/10.1007/s00426-020-01429-7\nGünther, F., Rinaldi, L., \u0026amp; Marelli, M. (2019). Vector-Space Models of Semantic Representation From a Cognitive Perspective: A Discussion of Common Misconceptions. Perspectives on Psychological Science, 14(6), 1006\u0026ndash;1033. https://doi.org/10.1177/1745691619861372\nHafri, A., Trueswell, J. C., \u0026amp; Strickland, B. (2018). Encoding of event roles from visual scenes is rapid, spontaneous, and interacts with higher-level visual processing. Cognition, 175, 36\u0026ndash;52. https://doi.org/10.1016/j.cognition.2018.02.011\nHardy, B. W. (2021). Embodied Cognition in Communication Science. Communication Theory, 31(4), 633\u0026ndash;653. https://doi.org/10.1093/ct/qtaa003\nHarpaintner, M., Sim, E.-J., Trumpp, N. M., Ulrich, M., \u0026amp; Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 1\u0026ndash;22. https://doi.org/10.1016/j.cortex.2019.10.014\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2018). The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words. Frontiers in Psychology, 9, 1748. https://doi.org/10.3389/fpsyg.2018.01748\nHarpaintner, M., Trumpp, N. M., \u0026amp; Kiefer, M. (2022). Time course of brain activity during the processing of motor- and vision-related abstract concepts: Flexibility and task dependency. Psychological Research, 86(8), 2560\u0026ndash;2582. https://doi.org/10.1007/s00426-020-01374-5\nHartman, J., \u0026amp; Paradis, C. (2023). The language of sound: Events and meaning multitasking of words. Cognitive Linguistics, 34(3\u0026ndash;4), 445\u0026ndash;477. https://doi.org/10.1515/cog-2022-0006\nHauk, O., Giraud, A.-L., \u0026amp; Clarke, A. (2017). Brain oscillations in language comprehension. Language, Cognition and Neuroscience, 32(5), 533\u0026ndash;535. https://doi.org/10.1080/23273798.2017.1297842\nHauk, O., Jackson, R. L., \u0026amp; Rahimi, S. (2023). Transforming the neuroscience of language: Estimating pattern-to-pattern transformations of brain activity. Language, Cognition and Neuroscience, 1\u0026ndash;16. https://doi.org/10.1080/23273798.2023.2226268\nHauk, O., Magnabosco, F., \u0026amp; Law, R. (2023). Can we separate semantic representations from computations? A commentary on Calzavarini (2023). Language, Cognition and Neuroscience, 1\u0026ndash;4. https://doi.org/10.1080/23273798.2023.2226269\nHeim, E. M. (2017a). Adoption in Galatians and Romans: Contemporary Metaphor Theories and the Pauline Huiothesia Metaphors. BRILL. https://doi.org/10.1163/9789004339873\nHeim, E. M. (2017b). Adoption in Galatians and Romans: Contemporary Metaphor Theories and the Pauline Huiothesia Metaphors. BRILL. https://doi.org/10.1163/9789004339873\nHoeben Mannaert, L. N., Dijkstra, K., \u0026amp; Zwaan, R. A. (2020). Object combination in mental simulations. Quarterly Journal of Experimental Psychology, 73(11), 1796\u0026ndash;1806. https://doi.org/10.1177/1747021820933214\nHoffman, P., McClelland, J. L., \u0026amp; Lambon Ralph, M. A. (2018). Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychological Review, 125(3), 293\u0026ndash;328. https://doi.org/10.1037/rev0000094\nHohol, M. (2019). Foundations of Geometric Cognition (1st ed.). Routledge. https://doi.org/10.4324/9780429056291\nHolman, A., \u0026amp; Gîrbă, A. (2019). The match in orientation between verbal context and object accelerates change detection. Psihologija, 52(1), 93\u0026ndash;105. https://doi.org/10.2298/PSI180412033H\nHörberg, T., Larsson, M., \u0026amp; Olofsson, J. K. (2022). The Semantic Organization of the English Odor Vocabulary. Cognitive Science, 46(11), e13205. https://doi.org/10.1111/cogs.13205\nHuang, C.-R., \u0026amp; Xiong, J. (2019). Linguistic synaesthesia in Chinese. In C.-R. Huang, Z. Jing-Schmidt, \u0026amp; B. Meisterernst (Eds.), The Routledge Handbook of Chinese Applied Linguistics (1st ed., pp. 294\u0026ndash;312). Routledge. https://doi.org/10.4324/9781315625157-20\nIatropoulos, G., Herman, P., Lansner, A., Karlgren, J., Larsson, M., \u0026amp; Olofsson, J. K. (2018). The language of smell: Connecting linguistic and psychophysical properties of odor descriptors. Cognition, 178, 37\u0026ndash;49. https://doi.org/10.1016/j.cognition.2018.05.007\nIriguchi, M., Fujimura, R., Koda, H., \u0026amp; Masataka, N. (2019). Traffic symbol recognition modulates bodily actions. PLOS ONE, 14(3), e0214281. https://doi.org/10.1371/journal.pone.0214281\nJo, C. (2022). Linguistic Synesthesia in Korean: Universality and Variation. SAGE Open, 12(3), 215824402211178. https://doi.org/10.1177/21582440221117804\nJohns, B. T. (2022). Accounting for item-level variance in recognition memory: Comparing word frequency and contextual diversity. Memory \u0026amp; Cognition, 50(5), 1013\u0026ndash;1032. https://doi.org/10.3758/s13421-021-01249-z\nJones, L. L., Wurm, L. H., Calcaterra, R. D., \u0026amp; Ofen, N. (2017). Integrative Priming of Compositional and Locative Relations. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00359\nJulich-Warpakowski, N., \u0026amp; Pérez Sobrino, P. (2023). Introduction: Current challenges in metaphor research. Metaphor and the Social World, 13(1), 1\u0026ndash;15. https://doi.org/10.1075/msw.00026.jul\nKabbach, A., \u0026amp; Herbelot, A. (2021). Avoiding Conflict: When Speaker Coordination Does Not Require Conceptual Agreement. Frontiers in Artificial Intelligence, 3, 523920. https://doi.org/10.3389/frai.2020.523920\nKaiser, E. (2021). Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Frontiers in Psychology, 12, 701486. https://doi.org/10.3389/fpsyg.2021.701486\nKaup, B., Ulrich, R., Bausenhart, K. M., Bryce, D., Butz, M. V., Dignath, D., Dudschig, C., Franz, V. H., Friedrich, C., Gawrilow, C., Heller, J., Huff, M., Hütter, M., Janczyk, M., Leuthold, H., Mallot, H., Nürk, H.-C., Ramscar, M., Said, N., \u0026hellip; Wong, H. Y. (2023). Modal and amodal cognition: An overarching principle in various domains of psychology. Psychological Research. https://doi.org/10.1007/s00426-023-01878-w\nKeogh, R., \u0026amp; Pearson, J. (2017). The perceptual and phenomenal capacity of mental imagery. Cognition, 162, 124\u0026ndash;132. https://doi.org/10.1016/j.cognition.2017.02.004\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2017). Novel Text Analysis for Investigating Personality: Identifying the Dark Lady in Shakespeare's Sonnets. Journal of Quantitative Linguistics, 24(4), 255\u0026ndash;272. https://doi.org/10.1080/09296174.2017.1304049\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2018). Using Shakespeare's Sotto Voce to Determine True Identity From Text. Frontiers in Psychology, 9, 289. https://doi.org/10.3389/fpsyg.2018.00289\nKernot, D., Bossomaier, T., \u0026amp; Bradbury, R. (2019). The Stylometric Impacts of Ageing and Life Events on Identity. Journal of Quantitative Linguistics, 26(1), 1\u0026ndash;21. https://doi.org/10.1080/09296174.2017.1405719\nKeus, K., \u0026amp; Harde, R. (2022). \u0026ldquo;She Wished Someone Would Help Them\u0026rdquo;: PTSD and Empathy in the Six of Crows Duology. Children's Literature in Education, 53(1), 130\u0026ndash;146. https://doi.org/10.1007/s10583-021-09441-0\nKhatin-Zadeh, O., Hu, J., Banaruee, H., \u0026amp; Marmolejo-Ramos, F. (2023). How emotions are metaphorically embodied: Measuring hand and head action strengths of typical emotional states. Cognition and Emotion, 37(3), 486\u0026ndash;498. https://doi.org/10.1080/02699931.2023.2181314\nKim, M.-K., Müller, H. M., \u0026amp; Weiss, S. (2021). What you \u0026ldquo;mean\u0026rdquo; is not what I \u0026ldquo;mean\u0026rdquo;: Categorization of verbs by Germans and Koreans using the semantic differential. Lingua, 252, 103012. https://doi.org/10.1016/j.lingua.2020.103012\nKlomberg, B., Schilhab, T., \u0026amp; Burke, M. (2022). Picturing Fiction through Embodied Cognition: Drawn Representations and Viewpoint in Literary Texts (1st ed.). Routledge. https://doi.org/10.4324/9781003225300\nKnoeferle, P. (2019). Predicting (variability of) context effects in language comprehension. Journal of Cultural Cognitive Science, 3(2), 141\u0026ndash;158. https://doi.org/10.1007/s41809-019-00025-5\nKoblet, O., \u0026amp; Purves, R. S. (2020). From online texts to Landscape Character Assessment: Collecting and analysing first-person landscape perception computationally. Landscape and Urban Planning, 197, 103757. https://doi.org/10.1016/j.landurbplan.2020.103757\nKompa, N. A. (2021). Language and embodiment\u0026mdash;Or the cognitive benefits of abstract representations. Mind \u0026amp; Language, 36(1), 27\u0026ndash;47. https://doi.org/10.1111/mila.12266\nKompa, N. A., \u0026amp; Mueller, J. L. (2022). Inner speech as a cognitive tool\u0026mdash;Or what is the point of talking to oneself? Philosophical Psychology, 1\u0026ndash;24. https://doi.org/10.1080/09515089.2022.2112164\nKörner, A., Castillo, M., Drijvers, L., Fischer, M. H., Günther, F., Marelli, M., Platonova, O., Rinaldi, L., Shaki, S., Trujillo, J. P., Tsaregorodtseva, O., \u0026amp; Glenberg, A. M. (2023). Embodied Processing at Six Linguistic Granularity Levels: A Consensus Paper. Journal of Cognition, 6(1), 60. https://doi.org/10.5334/joc.231\nKrishna, P. P., Arulmozi, S., \u0026amp; Mishra, R. K. (2022). \u0026ldquo;Do You See and Hear More? A Study on Telugu Perception Verbs.\u0026rdquo; Journal of Psycholinguistic Research, 51(3), 473\u0026ndash;484. https://doi.org/10.1007/s10936-021-09827-7\nKuhnke, P., Beaupain, M. C., Arola, J., Kiefer, M., \u0026amp; Hartwigsen, G. (2023). Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neuroscience \u0026amp; Biobehavioral Reviews, 144, 104994. https://doi.org/10.1016/j.neubiorev.2022.104994\nKuhnke, P., Kiefer, M., \u0026amp; Hartwigsen, G. (2021). Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cerebral Cortex, 31(7), 3475\u0026ndash;3493. https://doi.org/10.1093/cercor/bhab026\nKumcu, A. (2021). Linguistic Synesthesia in Turkish: A Corpus-based Study of Crossmodal Directionality. Metaphor and Symbol, 36(4), 241\u0026ndash;255. https://doi.org/10.1080/10926488.2021.1921557\nLai, V. T., Hubbard, R., Ku, L.-C., \u0026amp; Pfeifer, V. (2023). Electrophysiology of Non-Literal Language. In M. Grimaldi, E. Brattico, \u0026amp; Y. Shtyrov (Eds.), Language Electrified (Vol. 202, pp. 613\u0026ndash;646). Springer US. https://doi.org/10.1007/978-1-0716-3263-5_19\nLandrigan, J.-F., \u0026amp; Mirman, D. (2018). The cost of switching between taxonomic and thematic semantics. Memory \u0026amp; Cognition, 46(2), 191\u0026ndash;203. https://doi.org/10.3758/s13421-017-0757-5\nLarge, A.-C., Bach, C., \u0026amp; Calvet, G. (2018). CONTACT: A Human Centered Approach of Multimodal Flight Deck Design and Evaluation. In D. Harris (Ed.), Engineering Psychology and Cognitive Ergonomics (Vol. 10906, pp. 593\u0026ndash;604). Springer International Publishing. https://doi.org/10.1007/978-3-319-91122-9_48\nLee, J., \u0026amp; Shin, J.-A. (2023). The cross-linguistic comparison of perceptual strength norms for Korean, English and L2 English. Frontiers in Psychology, 14, 1188909. https://doi.org/10.3389/fpsyg.2023.1188909\nLi, M., Lu, Q., Long, Y., \u0026amp; Gui, L. (2017). Inferring Affective Meanings of Words from Word Embedding. IEEE Transactions on Affective Computing, 8(4), 443\u0026ndash;456. https://doi.org/10.1109/TAFFC.2017.2723012\nLin, K., \u0026amp; Chan, S. (2019). When senses meet functions: An amodal stage in conceptual processing. Journal of Cognitive Psychology, 31(1), 64\u0026ndash;75. https://doi.org/10.1080/20445911.2018.1560299\nLittlemore, J. (2019). Metaphors in the Mind: Sources of Variation in Embodied Metaphor (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108241441\nLiu, S., Zhou, M., \u0026amp; Li, Y. (2019). Internet use experience influence individuals\u0026rsquo; lexical decision performance by changing their body representation. Computers in Human Behavior, 91, 157\u0026ndash;166. https://doi.org/10.1016/j.chb.2018.09.021\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2023). Learning instance-level N-ary semantic knowledge at scale for robots operating in everyday environments. Autonomous Robots, 47(5), 529\u0026ndash;547. https://doi.org/10.1007/s10514-023-10099-4\nLiu, W., Bansal, D., Daruna, A., \u0026amp; Chernova, S. (2021, July 12). Learning Instance-Level N-Ary Semantic Knowledge At Scale For Robots Operating in Everyday Environments. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.035\nLong, Y., Xiang, R., Lu, Q., Huang, C.-R., \u0026amp; Li, M. (2021). Improving Attention Model Based on Cognition Grounded Data for Sentiment Analysis. IEEE Transactions on Affective Computing, 12(4), 900\u0026ndash;912. https://doi.org/10.1109/TAFFC.2019.2903056\nLouwerse, M. M. (2018). Knowing the Meaning of a Word by the Linguistic and Perceptual Company It Keeps. Topics in Cognitive Science, 10(3), 573\u0026ndash;589. https://doi.org/10.1111/tops.12349\nLupyan, G., \u0026amp; Winter, B. (2018). Language is more abstract than you think, or, why aren't languages more iconic? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170137. https://doi.org/10.1098/rstb.2017.0137\nLynott, D., Connell, L., Brysbaert, M., Brand, J., \u0026amp; Carney, J. (2020). The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 52(3), 1271\u0026ndash;1291. https://doi.org/10.3758/s13428-019-01316-z\nLynott, D., Walsh, M., McEnery, T., Connell, L., Cross, L., \u0026amp; O'Brien, K. (2019). Are You What You Read? Predicting Implicit Attitudes to Immigration Based on Linguistic Distributional Cues From Newspaper Readership; A Pre-registered Study. Frontiers in Psychology, 10, 842. https://doi.org/10.3389/fpsyg.2019.00842\nMalhi, S. K., \u0026amp; Buchanan, L. (2018). A test of the symbol interdependency hypothesis with both concrete and abstract stimuli. PLOS ONE, 13(3), e0192719. https://doi.org/10.1371/journal.pone.0192719\nMangels, J. A., Rodriguez, S., Ochakovskaya, Y., \u0026amp; Guerra-Carrillo, B. (2017). Achievement Goal Task Framing and Fit With Personal Goals Modulate the Neurocognitive Response to Corrective Feedback. AERA Open, 3(3), 233285841772087. https://doi.org/10.1177/2332858417720875\nMarchetti, R., Vaugoyeau, M., Colé, P., \u0026amp; Assaiante, C. (2022). A sensorimotor representation impairment in dyslexic adults: A specific profile of comorbidity. Neuropsychologia, 165, 108134. https://doi.org/10.1016/j.neuropsychologia.2021.108134\nMarmeleira, J., \u0026amp; Duarte Santos, G. (2019). Do Not Neglect the Body and Action: The Emergence of Embodiment Approaches to Understanding Human Development. Perceptual and Motor Skills, 126(3), 410\u0026ndash;445. https://doi.org/10.1177/0031512519834389\nMarson, F., Paoletti, P., Naor-Ziv, R., Carducci, F., \u0026amp; Ben-Soussan, T. D. (2023). Embodied empathy and abstract concepts\u0026rsquo; concreteness: Evidence from contemplative practices. In Progress in Brain Research (Vol. 277, pp. 181\u0026ndash;209). Elsevier. https://doi.org/10.1016/bs.pbr.2022.12.005\nMárton, Z. C., Türker, S., Rink, C., Brucker, M., Kriegel, S., Bodenmüller, T., \u0026amp; Riedel, S. (2018). Improving object orientation estimates by considering multiple viewpoints: Orientation histograms of symmetries and measurement models for view selection. Autonomous Robots, 42(2), 423\u0026ndash;442. https://doi.org/10.1007/s10514-017-9633-1\nMcRae, K., Nedjadrasul, D., Pau, R., Lo, B. P., \u0026amp; King, L. (2018). Abstract Concepts and Pictures of Real‐World Situations Activate One Another. Topics in Cognitive Science, 10(3), 518\u0026ndash;532. https://doi.org/10.1111/tops.12328\nMeng, X., Sun, C., Du, B., Liu, L., Zhang, Y., Dong, Q., Georgiou, G. K., \u0026amp; Nan, Y. (2022). The development of brain rhythms at rest and its impact on vocabulary acquisition. Developmental Science, 25(2), e13157. https://doi.org/10.1111/desc.13157\nMiceli, A., Wauthia, E., Kandana Arachchige, K., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2023). Perceptual strength influences lexical decision in Alzheimer's disease. Journal of Neurolinguistics, 68, 101144. https://doi.org/10.1016/j.jneuroling.2023.101144\nMiceli, A., Wauthia, E., Lefebvre, L., Ris, L., \u0026amp; Simoes Loureiro, I. (2021). Perceptual and Interoceptive Strength Norms for 270 French Words. Frontiers in Psychology, 12, 667271. https://doi.org/10.3389/fpsyg.2021.667271\nMiceli, A., Wauthia, E., Lefebvre, L., Vallet, G. T., Ris, L., \u0026amp; Loureiro, I. S. (2022). Differences related to aging in sensorimotor knowledge: Investigation of perceptual strength and body object interaction. Archives of Gerontology and Geriatrics, 102, 104715. https://doi.org/10.1016/j.archger.2022.104715\nMiklashevsky, A. (2018). Perceptual Experience Norms for 506 Russian Nouns: Modality Rating, Spatial Localization, Manipulability, Imageability and Other Variables. Journal of Psycholinguistic Research, 47(3), 641\u0026ndash;661. https://doi.org/10.1007/s10936-017-9548-1\nMiller, J., Brookie, K., Wales, S., Wallace, S., \u0026amp; Kaup, B. (2018). Embodied cognition: Is activation of the motor cortex essential for understanding action verbs? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(3), 335\u0026ndash;370. https://doi.org/10.1037/xlm0000451\nMinervino, R. A., Martín, A., Tavernini, L. M., \u0026amp; Trench, M. (2018). The Understanding of Visual Metaphors by the Congenitally Blind. Frontiers in Psychology, 9, 1242. https://doi.org/10.3389/fpsyg.2018.01242\nMoretti, S., \u0026amp; Greco, A. (2018). Truth is in the head. A nod and shake compatibility effect. Acta Psychologica, 185, 203\u0026ndash;218. https://doi.org/10.1016/j.actpsy.2018.02.010\nMoretti, S., \u0026amp; Greco, A. (2020). Nodding and shaking of the head as simulated approach and avoidance responses. Acta Psychologica, 203, 102988. https://doi.org/10.1016/j.actpsy.2019.102988\nMorucci, P., Bottini, R., \u0026amp; Crepaldi, D. (2019). Augmented Modality Exclusivity Norms for Concrete and Abstract Italian Property Words. Journal of Cognition, 2(1), 42. https://doi.org/10.5334/joc.88\nMueller, C. J., White, C. N., \u0026amp; Kuchinke, L. (2017). Electrophysiological correlates of the drift diffusion model in visual word recognition. Human Brain Mapping, 38(11), 5616\u0026ndash;5627. https://doi.org/10.1002/hbm.23753\nMuraki, E. J., Doyle, A., Protzner, A. B., \u0026amp; Pexman, P. M. (2023). Context matters: How do task demands modulate the recruitment of sensorimotor information during language processing? Frontiers in Human Neuroscience, 16, 976954. https://doi.org/10.3389/fnhum.2022.976954\nMuraki, E. J., Speed, L. J., \u0026amp; Pexman, P. M. (2023). Insights into embodied cognition and mental imagery from aphantasia. Nature Reviews Psychology, 2(10), 591\u0026ndash;605. https://doi.org/10.1038/s44159-023-00221-9\nOkuno, H. Y., \u0026amp; Guedes, G. (2020). Automatic XML creation for Multisensorial Books. 2020 XV Conferencia Latinoamericana de Tecnologias de Aprendizaje (LACLO), 1\u0026ndash;6. https://doi.org/10.1109/LACLO50806.2020.9381139\nOstarek, M., \u0026amp; Vigliocco, G. (2017). Reading sky and seeing a cloud: On the relevance of events for perceptual simulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 579\u0026ndash;590. https://doi.org/10.1037/xlm0000318\nPecher, D. (2018). Curb Your Embodiment. Topics in Cognitive Science, 10(3), 501\u0026ndash;517. https://doi.org/10.1111/tops.12311\nPérez-Gay Juárez, F., Labrecque, D., \u0026amp; Frak, V. (2019). Assessing language-induced motor activity through Event Related Potentials and the Grip Force Sensor, an exploratory study. Brain and Cognition, 135, 103572. https://doi.org/10.1016/j.bandc.2019.05.010\nPérez-Sánchez, M. Á., Stadthagen-Gonzalez, H., Guasch, M., Hinojosa, J. A., Fraga, I., Marín, J., \u0026amp; Ferré, P. (2021). EmoPro \u0026ndash; Emotional prototypicality for 1286 Spanish words: Relationships with affective and psycholinguistic variables. Behavior Research Methods, 53(5), 1857\u0026ndash;1875. https://doi.org/10.3758/s13428-020-01519-9\nPerfecto, H., Galak, J., Simmons, J. P., \u0026amp; Nelson, L. D. (2017). Rejecting a bad option feels like choosing a good one. Journal of Personality and Social Psychology, 113(5), 659\u0026ndash;670. https://doi.org/10.1037/pspa0000092\nPerlman, M., Little, H., Thompson, B., \u0026amp; Thompson, R. L. (2018). Iconicity in Signed and Spoken Vocabulary: A Comparison Between American Sign Language, British Sign Language, English, and Spanish. Frontiers in Psychology, 9, 1433. https://doi.org/10.3389/fpsyg.2018.01433\nPexman, P. M. (2019). The role of embodiment in conceptual development. Language, Cognition and Neuroscience, 34(10), 1274\u0026ndash;1283. https://doi.org/10.1080/23273798.2017.1303522\nPexman, P. M., Muraki, E., Sidhu, D. M., Siakaluk, P. D., \u0026amp; Yap, M. J. (2019). Quantifying sensorimotor experience: Body\u0026ndash;object interaction ratings for more than 9,000 English words. Behavior Research Methods, 51(2), 453\u0026ndash;466. https://doi.org/10.3758/s13428-018-1171-z\nPiai, V., \u0026amp; Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In Psychology of Learning and Motivation (Vol. 71, pp. 265\u0026ndash;302). Elsevier. https://doi.org/10.1016/bs.plm.2019.07.002\nPlekhanov Russian University of Economics, Simonenko, M. A., Kazaryan, S. Y., \u0026amp; Plekhanov Russian University of Economics. (2023). Synaesthetic metaphor and its reproduction in Russian-to-English translation: A frame-based study. RESEARCH RESULT Theoretical and Applied Linguistics, 9(3). https://doi.org/10.18413/2313-8912-2023-9-3-0-2\nPopović Stijačić, M., \u0026amp; Filipović Đurđević, D. (2022). Perceptual richness of words and its role in free and cued recall. Primenjena Psihologija, 15(3), 355\u0026ndash;381. https://doi.org/10.19090/pp.v15i3.2400\nPulvermüller, F. (2018a). Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology, 160, 1\u0026ndash;44. https://doi.org/10.1016/j.pneurobio.2017.07.001\nPulvermüller, F. (2018b). Neurobiological Mechanisms for Semantic Feature Extraction and Conceptual Flexibility. Topics in Cognitive Science, 10(3), 590\u0026ndash;620. https://doi.org/10.1111/tops.12367\nPurves, R. S., Striedl, P., Kong, I., \u0026amp; Majid, A. (2023). Conceptualizing Landscapes Through Language: The Role of Native Language and Expertise in the Representation of Waterbody Related Terms. Topics in Cognitive Science, 15(3), 560\u0026ndash;583. https://doi.org/10.1111/tops.12652\nRadvansky, G. A. (2017). Human Memory (3rd ed.). Routledge. https://doi.org/10.4324/9781315542768\nRadvansky, G. A. (2021). Human Memory (4th ed.). Routledge. https://doi.org/10.4324/9780429287039\nRahimi, S., Farahibozorg, S.-R., Jackson, R., \u0026amp; Hauk, O. (2022). Task modulation of spatiotemporal dynamics in semantic brain networks: An EEG/MEG study. NeuroImage, 246, 118768. https://doi.org/10.1016/j.neuroimage.2021.118768\nRaia, R. (2023). An analysis of conceptual ambiguities in the debate on the format of concepts. Phenomenology and the Cognitive Sciences. https://doi.org/10.1007/s11097-023-09938-7\nRaj, R., Hörberg, T., Lindroos, R., Larsson, M., Herman, P., Laukka, E. J., \u0026amp; Olofsson, J. K. (2023). Odor identification errors reveal cognitive aspects of age-associated smell loss. Cognition, 236, 105445. https://doi.org/10.1016/j.cognition.2023.105445\nReggin, L. D., Gómez Franco, L. E., Horchak, O. V., Labrecque, D., Lana, N., Rio, L., \u0026amp; Vigliocco, G. (2023). Consensus Paper: Situated and Embodied Language Acquisition. Journal of Cognition, 6(1), 63. https://doi.org/10.5334/joc.308\nRepetto, C., Rodella, C., Conca, F., Santi, G. C., \u0026amp; Catricalà, E. (2022). The Italian Sensorimotor Norms: Perception and action strength measures for 959 words. Behavior Research Methods. https://doi.org/10.3758/s13428-022-02004-1\nRey, A. E., Riou, B., Vallet, G. T., \u0026amp; Versace, R. (2017). The automatic visual simulation of words: A memory reactivated mask slows down conceptual access. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 71(1), 14\u0026ndash;22. https://doi.org/10.1037/cep0000100\nReymore, L. (2022). Characterizing prototypical musical instrument timbres with timbre trait profiles. Musicae Scientiae, 26(3), 648\u0026ndash;674. https://doi.org/10.1177/10298649211001523\nRobinson, M. D., Fetterman, A. K., Meier, B. P., Persich, M. R., \u0026amp; Waters, M. R. (2021). Embodied Perspectives on Personality. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 477\u0026ndash;498). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_21\nRobinson, M. D., \u0026amp; Thomas, L. E. (2021). Introduction to Embodied Psychology: Thinking, Feeling, and Acting. In M. D. Robinson \u0026amp; L. E. Thomas (Eds.), Handbook of Embodied Psychology (pp. 1\u0026ndash;19). Springer International Publishing. https://doi.org/10.1007/978-3-030-78471-3_1\nSan Roque, L., Kendrick, K. H., Norcliffe, E., \u0026amp; Majid, A. (2018). Universal meaning extensions of perception verbs are grounded in interaction. Cognitive Linguistics, 29(3), 371\u0026ndash;406. https://doi.org/10.1515/cog-2017-0034\nScerrati, E., D'Ascenzo, S., Nicoletti, R., Villani, C., \u0026amp; Lugli, L. (2022). Assessing Interpersonal Proximity Evaluation in the COVID-19 Era: Evidence From the Affective Priming Task. Frontiers in Psychology, 13, 901730. https://doi.org/10.3389/fpsyg.2022.901730\nScerrati, E., Iani, C., Lugli, L., Nicoletti, R., \u0026amp; Rubichi, S. (2020). Do my hands prime your hands? The hand-to-response correspondence effect. Acta Psychologica, 203, 103012. https://doi.org/10.1016/j.actpsy.2020.103012\nScerrati, E., Iani, C., \u0026amp; Rubichi, S. (2021). Does the Activation of Motor Information Affect Semantic Processing? In L. Bechberger, K.-U. Kühnberger, \u0026amp; M. Liu (Eds.), Concepts in Action (Vol. 9, pp. 153\u0026ndash;166). Springer International Publishing. https://doi.org/10.1007/978-3-030-69823-2_7\nScerrati, E., Lugli, L., Nicoletti, R., \u0026amp; Borghi, A. M. (2017). The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic Bulletin \u0026amp; Review, 24(3), 798\u0026ndash;803. https://doi.org/10.3758/s13423-016-1150-2\nScherer, D., \u0026amp; Wentura, D. (2018). Combining the Post-Cue Task and the Perceptual Identification Task to Assess Parallel Activation and Mutual Facilitation of Related Primes and Targets. Experimental Psychology, 65(2), 84\u0026ndash;97. https://doi.org/10.1027/1618-3169/a000396\nSchilhab, T. (2017). Derived Embodiment in Abstract Language. Springer International Publishing. https://doi.org/10.1007/978-3-319-56056-4\nSchulte Im Walde, S., \u0026amp; Frassinelli, D. (2022). Distributional Measures of Semantic Abstraction. Frontiers in Artificial Intelligence, 4, 796756. https://doi.org/10.3389/frai.2021.796756\nSeghier, M. L. (2023). Multiple functions of the angular gyrus at high temporal resolution. Brain Structure and Function, 228(1), 7\u0026ndash;46. https://doi.org/10.1007/s00429-022-02512-y\nŠetić Beg, M. (2021). Uloga utjelovljenja u razumijevanju pojmova. Psihologijske Teme, 30(2), 371\u0026ndash;395. https://doi.org/10.31820/pt.30.2.12\nShen, G., Wang, R., Yang, M., \u0026amp; Xie, J. (2022). Chinese Children with Congenital and Acquired Blindness Represent Concrete Concepts in Vertical Space through Tactile Perception. International Journal of Environmental Research and Public Health, 19(17), 11055. https://doi.org/10.3390/ijerph191711055\nSidhu, D. M., \u0026amp; Pexman, P. M. (2018). Lonely sensational icons: Semantic neighbourhood density, sensory experience and iconicity. Language, Cognition and Neuroscience, 33(1), 25\u0026ndash;31. https://doi.org/10.1080/23273798.2017.1358379\nSpeed, L. J., \u0026amp; Brybaert, M. (2022). Dutch sensory modality norms. Behavior Research Methods, 54(3), 1306\u0026ndash;1318. https://doi.org/10.3758/s13428-021-01656-9\nSpeed, L. J., \u0026amp; Majid, A. (2017). Dutch modality exclusivity norms: Simulating perceptual modality in space. Behavior Research Methods, 49(6), 2204\u0026ndash;2218. https://doi.org/10.3758/s13428-017-0852-3\nSpeed, L. J., \u0026amp; Majid, A. (2018). An Exception to Mental Simulation: No Evidence for Embodied Odor Language. Cognitive Science, 42(4), 1146\u0026ndash;1178. https://doi.org/10.1111/cogs.12593\nSpeed, L. J., \u0026amp; Majid, A. (2020). Grounding language in the neglected senses of touch, taste, and smell. Cognitive Neuropsychology, 37(5\u0026ndash;6), 363\u0026ndash;392. https://doi.org/10.1080/02643294.2019.1623188\nSpeed, L. J., Papies, E. K., \u0026amp; Majid, A. (2023). Mental simulation across sensory modalities predicts attractiveness of food concepts. Journal of Experimental Psychology: Applied, 29(3), 557\u0026ndash;571. https://doi.org/10.1037/xap0000461\nSri-Ganeshan, M. (2021). Modality Effect. In M. Raz \u0026amp; P. Pouryahya (Eds.), Decision Making in Emergency Medicine (pp. 215\u0026ndash;220). Springer Singapore. https://doi.org/10.1007/978-981-16-0143-9_34\nStrik Lievers, F., \u0026amp; Winter, B. (2018). Sensory language across lexical categories. Lingua, 204, 45\u0026ndash;61. https://doi.org/10.1016/j.lingua.2017.11.002\nSu, C., Wang, X., Wang, Z., \u0026amp; Chen, Y. (2019). A model of synesthetic metaphor interpretation based on cross-modality similarity. Computer Speech \u0026amp; Language, 58, 1\u0026ndash;16. https://doi.org/10.1016/j.csl.2019.03.003\nSzychowska, M., \u0026amp; Wiens, S. (2021). Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Physiology \u0026amp; Behavior, 228, 113240. https://doi.org/10.1016/j.physbeh.2020.113240\nTarai, S., Bit, A., Kumar, R., \u0026amp; Savekar, A. (2021). Processing of party symbols and names predicts the results of 2019 Indian parliamentary election: Analysing psycholinguistic behavioural incongruency effects. Psychology of Language and Communication, 25(1), 264\u0026ndash;295. https://doi.org/10.2478/plc-2021-0012\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2019). Sensorimotor Cross-Behavior Knowledge Transfer for Grounded Category Recognition. 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 1\u0026ndash;6. https://doi.org/10.1109/DEVLRN.2019.8850715\nTatiya, G., Hosseini, R., Hughes, M. C., \u0026amp; Sinapov, J. (2020). A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization. Frontiers in Robotics and AI, 7, 522141. https://doi.org/10.3389/frobt.2020.522141\nTatiya, G., \u0026amp; Sinapov, J. (2019). Deep Multi-Sensory Object Category Recognition Using Interactive Behavioral Exploration. 2019 International Conference on Robotics and Automation (ICRA), 7872\u0026ndash;7878. https://doi.org/10.1109/ICRA.2019.8794095\nTeodorescu, H.-N., \u0026amp; Bolea, S. C. (2019). Text Sectioning based on Stylometric Distances. 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), 1\u0026ndash;6. https://doi.org/10.1109/SPED.2019.8906616\nThomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., Hart, J., Stone, P., \u0026amp; Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327\u0026ndash;374. https://doi.org/10.1613/jair.1.11485\nTillman, R., \u0026amp; Louwerse, M. (2018). Estimating Emotions Through Language Statistics and Embodied Cognition. Journal of Psycholinguistic Research, 47(1), 159\u0026ndash;167. https://doi.org/10.1007/s10936-017-9522-y\nTjuka, A., Forkel, R., \u0026amp; List, J.-M. (2021). Linking norms, ratings, and relations of words and concepts across multiple language varieties. Behavior Research Methods, 54(2), 864\u0026ndash;884. https://doi.org/10.3758/s13428-021-01650-1\nTomsk State University, Vladimirova, V. E., Rezanova, Z. I., Tomsk State University, Korshunova, I. S., \u0026amp; Tomsk State University. (2022). Ethno-linguistic contact as reflected in language cognition: Does bilingualism affect subjective assessments of perceptual semantics?*. Rusin, 70, 214\u0026ndash;231. https://doi.org/10.17223/18572685/70/12\nUtsumi, A. (2020). Exploring What Is Encoded in Distributional Word Vectors: A Neurobiologically Motivated Analysis. Cognitive Science, 44(6), e12844. https://doi.org/10.1111/cogs.12844\nValenzuela, J. (2017). Meaning in English: An Introduction (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781316156278\nVan De Weijer, J., Bianchi, I., \u0026amp; Paradis, C. (2023). Sensory modality profiles of antonyms. Language and Cognition, 1\u0026ndash;15. https://doi.org/10.1017/langcog.2023.20\nVergallito, A., Petilli, M. A., \u0026amp; Marelli, M. (2020). Perceptual modality norms for 1,121 Italian words: A comparison with concreteness and imageability scores and an analysis of their impact in word processing tasks. Behavior Research Methods, 52(4), 1599\u0026ndash;1616. https://doi.org/10.3758/s13428-019-01337-8\nVerheyen, S., De Deyne, S., Linsen, S., \u0026amp; Storms, G. (2020). Lexicosemantic, affective, and distributional norms for 1,000 Dutch adjectives. Behavior Research Methods, 52(3), 1108\u0026ndash;1121. https://doi.org/10.3758/s13428-019-01303-4\nVigliocco, G., Zhang, Y., Del Maschio, N., Todd, R., \u0026amp; Tuomainen, J. (2020). Electrophysiological signatures of English onomatopoeia. Language and Cognition, 12(1), 15\u0026ndash;35. https://doi.org/10.1017/langcog.2019.38\nVolfart, A., Rice, G. E., Lambon Ralph, M. A., \u0026amp; Rossion, B. (2021). Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. NeuroImage, 238, 118228. https://doi.org/10.1016/j.neuroimage.2021.118228\nW, D., C, P., C, M.-L., \u0026amp; F, L. (2023). Imagining and reading actions: Towards similar motor representations. Heliyon, 9(2), e13426. https://doi.org/10.1016/j.heliyon.2023.e13426\nWajnerman Paz, A. (2018). A Defense of an Amodal Number System. Philosophies, 3(2), 13. https://doi.org/10.3390/philosophies3020013\nWajnerman Paz, A. (2019). Using neural response properties to draw the distinction between modal and amodal representations. Philosophical Psychology, 32(3), 301\u0026ndash;331. https://doi.org/10.1080/09515089.2018.1563677\nWajnerman-Paz, A., \u0026amp; Rojas-Líbano, D. (2022). On the role of contextual factors in cognitive neuroscience experiments: A mechanistic approach. Synthese, 200(5), 402. https://doi.org/10.1007/s11229-022-03870-0\nWan, M., Su, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2023). Perceptional and actional enrichment for metaphor detection with sensorimotor norms. Natural Language Engineering, 1\u0026ndash;29. https://doi.org/10.1017/S135132492300044X\nWang, L., Chen, Q., Chen, Y., \u0026amp; Zhong, R. (2019). The Effect of Sweet Taste on Romantic Semantic Processing: An ERP Study. Frontiers in Psychology, 10, 1573. https://doi.org/10.3389/fpsyg.2019.01573\nWang, Y., \u0026amp; Zeng, Y. (2022a). Multisensory Concept Learning Framework Based on Spiking Neural Networks. Frontiers in Systems Neuroscience, 16, 845177. https://doi.org/10.3389/fnsys.2022.845177\nWang, Y., \u0026amp; Zeng, Y. (2022b). Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning. Frontiers in Computational Neuroscience, 16, 861265. https://doi.org/10.3389/fncom.2022.861265\nWassenburg, S. I., De Koning, B. B., De Vries, M. H., Boonstra, A. M., \u0026amp; Van Der Schoot, M. (2017). Gender differences in mental simulation during sentence and word processing. Journal of Research in Reading, 40(3), 274\u0026ndash;296. https://doi.org/10.1111/1467-9817.12066\nWentura, D. (2019). Cognition and emotion: On paradigms and metaphors. Cognition and Emotion, 33(1), 85\u0026ndash;93. https://doi.org/10.1080/02699931.2019.1567464\nWingfield, C., \u0026amp; Connell, L. (2022a). Sensorimotor distance: A grounded measure of semantic similarity for 800 million concept pairs. Behavior Research Methods, 55(7), 3416\u0026ndash;3432. https://doi.org/10.3758/s13428-022-01965-7\nWingfield, C., \u0026amp; Connell, L. (2022b). Understanding the role of linguistic distributional knowledge in cognition. Language, Cognition and Neuroscience, 37(10), 1220\u0026ndash;1270. https://doi.org/10.1080/23273798.2022.2069278\nWinter, A., Dudschig, C., Miller, J., Ulrich, R., \u0026amp; Kaup, B. (2022). The action-sentence compatibility effect (ACE): Meta-analysis of a benchmark finding for embodiment. Acta Psychologica, 230, 103712. https://doi.org/10.1016/j.actpsy.2022.103712\nWinter, B. (2019). Statistics for Linguists: An Introduction Using R (1st ed.). Routledge. https://doi.org/10.4324/9781315165547\nWinter, B. (2022). Mapping the landscape of exploratory and confirmatory data analysis in linguistics. In D. Tay \u0026amp; M. X. Pan (Eds.), Data Analytics in Cognitive Linguistics (pp. 13\u0026ndash;48). De Gruyter. https://doi.org/10.1515/9783110687279-002\nWinter, B. (2023). Abstract concepts and emotion: Cross-linguistic evidence and arguments against affective embodiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210368. https://doi.org/10.1098/rstb.2021.0368\nWinter, B., Fischer, M. H., Scheepers, C., \u0026amp; Myachykov, A. (2023). More is Better: English Language Statistics are Biased Toward Addition. Cognitive Science, 47(4), e13254. https://doi.org/10.1111/cogs.13254\nWinter, B., Perlman, M., \u0026amp; Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213\u0026ndash;220. https://doi.org/10.1016/j.cognition.2018.05.008\nWinter, B., Perlman, M., Perry, L. K., \u0026amp; Lupyan, G. (2017). Which words are most iconic?: Iconicity in English sensory words. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 18(3), 443\u0026ndash;464. https://doi.org/10.1075/is.18.3.07win\nWinter, B., Sóskuthy, M., Perlman, M., \u0026amp; Dingemanse, M. (2022). Trilled /r/ is associated with roughness, linking sound and touch across spoken languages. Scientific Reports, 12(1), 1035. https://doi.org/10.1038/s41598-021-04311-7\nWinter, B., \u0026amp; Strik-Lievers, F. (2023). Semantic distance predicts metaphoricity and creativity judgments in synesthetic metaphors. Metaphor and the Social World, 13(1), 59\u0026ndash;80. https://doi.org/10.1075/msw.00029.win\nWu, C., \u0026amp; Mu, X. (2023). Sensory experience ratings (SERs) for 1,130 Chinese words: Relationships with other semantic and lexical psycholinguistic variables. Linguistics Vanguard, 0(0). https://doi.org/10.1515/lingvan-2022-0083\nXiong, J., \u0026amp; Huang, C.-R. (2018). Somewhere in COLDNESS Lies Nibbāna: Lexical Manifestations of COLDNESS. In J.-F. Hong, Q. Su, \u0026amp; J.-S. Wu (Eds.), Chinese Lexical Semantics (Vol. 11173, pp. 70\u0026ndash;81). Springer International Publishing. https://doi.org/10.1007/978-3-030-04015-4_6\nXu, Y., Vignali, L., Sigismondi, F., Crepaldi, D., Bottini, R., \u0026amp; Collignon, O. (2023). Similar object shape representation encoded in the inferolateral occipitotemporal cortex of sighted and early blind people. PLOS Biology, 21(7), e3001930. https://doi.org/10.1371/journal.pbio.3001930\nYan, J., Li, W., Zhang, T., Zhang, J., Jin, Z., \u0026amp; Li, L. (2023). Structural and functional neural substrates underlying the concreteness effect. Brain Structure and Function, 228(6), 1493\u0026ndash;1510. https://doi.org/10.1007/s00429-023-02668-1\nYasuda, M., Stins, J. F., \u0026amp; Higuchi, T. (2017). Effect of Constrained Arm Posture on the Processing of Action Verbs. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00057\nYin Zhong, \u0026amp; Chu-Ren Huang. (2020). Sweetness or Mouthfeel: A corpus-based study of the conceptualization of taste. Linguistic Research, 37(3), 359\u0026ndash;387. https://doi.org/10.17250/KHISLI.37.3.202012.001\nZappa, A., Mestre, D., Pergandi, J.-M., Bolger, D., \u0026amp; Frenck-Mestre, C. (2022). Cross-linguistic gender congruency effects during lexical access in novice L2 learners: Evidence from ERPs. Language, Cognition and Neuroscience, 37(9), 1073\u0026ndash;1098. https://doi.org/10.1080/23273798.2022.2039726\nZeng, Y., Zhao, D., Zhao, F., Shen, G., Dong, Y., Lu, E., Zhang, Q., Sun, Y., Liang, Q., Zhao, Y., Zhao, Z., Fang, H., Wang, Y., Li, Y., Liu, X., Du, C., Kong, Q., Ruan, Z., \u0026amp; Bi, W. (2023). BrainCog: A spiking neural network based, brain-inspired cognitive intelligence engine for brain-inspired AI and brain simulation. Patterns, 4(8), 100789. https://doi.org/10.1016/j.patter.2023.100789\nZhang, M., Wu, X., \u0026amp; Wang, A. (2021). Crossmodal Nonspatial Repetition Inhibition Due to Modality Shift. Perception, 50(2), 116\u0026ndash;128. https://doi.org/10.1177/0301006620988209\nZhang, X., Amiri, S., Sinapov, J., Thomason, J., Stone, P., \u0026amp; Zhang, S. (2023). Multimodal embodied attribute learning by robots for object-centric action policies. Autonomous Robots, 47(5), 505\u0026ndash;528. https://doi.org/10.1007/s10514-023-10098-5\nZhang, X., Sinapov, J., \u0026amp; Zhang, S. (2021, July 12). Planning Multimodal Exploratory Actions for Online Robot Attribute Learning. Robotics: Science and Systems XVII. Robotics: Science and Systems 2021. https://doi.org/10.15607/RSS.2021.XVII.005\nZhang, Y., Mirman, D., \u0026amp; Hoffman, P. (2023). Taxonomic and thematic relations rely on different types of semantic features: Evidence from an fMRI meta-analysis and a semantic priming study. Brain and Language, 242, 105287. https://doi.org/10.1016/j.bandl.2023.105287\nZhao, Q. (2020a). From Linguistic Synaesthesia to Conceptual Metaphor Theory. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 115\u0026ndash;128). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_7\nZhao, Q. (2020b). Methodology: A Corpus-Driven Approach. In Q. Zhao, Embodied Conceptualization or Neural Realization (Vol. 10, pp. 19\u0026ndash;34). Springer Singapore. https://doi.org/10.1007/978-981-32-9315-1_2\nZhao, Q., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Linguistic synesthesia is metaphorical: A lexical-conceptual account. Cognitive Linguistics, 33(3), 553\u0026ndash;583. https://doi.org/10.1515/cog-2021-0098\nZhao, Q., Huang, C.-R., \u0026amp; Ahrens, K. (2019). Directionality of linguistic synesthesia in Mandarin: A corpus-based study. Lingua, 232, 102744. https://doi.org/10.1016/j.lingua.2019.102744\nZhao, Q., \u0026amp; Long, Y. (2022). A Diachronic Study on Linguistic Synesthesia in Chinese. In M. Dong, Y. Gu, \u0026amp; J.-F. Hong (Eds.), Chinese Lexical Semantics (Vol. 13250, pp. 84\u0026ndash;94). Springer International Publishing. https://doi.org/10.1007/978-3-031-06547-7_6\nZhao, Q., Long, Y., \u0026amp; Huang, C.-R. (2020). Linguistic Synaesthesia of Mandarin Sensory Adjectives: Corpus-Based and Experimental Approaches. In J.-F. Hong, Y. Zhang, \u0026amp; P. Liu (Eds.), Chinese Lexical Semantics (Vol. 11831, pp. 139\u0026ndash;146). Springer International Publishing. https://doi.org/10.1007/978-3-030-38189-9_14\nZhao, T., Huang, Y., Chen, D., Jiao, L., Marmolejo-Ramos, F., Wang, R., \u0026amp; Xie, J. (2020). The modality switching costs of Chinese\u0026ndash;English bilinguals in the processing of L1 and L2. Quarterly Journal of Experimental Psychology, 73(3), 396\u0026ndash;412. https://doi.org/10.1177/1747021819878089\nZhong, J., Peniak, M., Tani, J., Ogata, T., \u0026amp; Cangelosi, A. (2019). Sensorimotor input as a language generalisation tool: A neurorobotics model for generation and generalisation of noun-verb combinations with sensorimotor inputs. Autonomous Robots, 43(5), 1271\u0026ndash;1290. https://doi.org/10.1007/s10514-018-9793-7\nZhong, Y., Huang, C.-R., \u0026amp; Dong, S. (2022). Bodily sensation and embodiment: A corpus-based study of gustatory vocabulary in Mandarin Chinese. Journal of Chinese Linguistics, 50(1), 196\u0026ndash;230. https://doi.org/10.1353/jcl.2022.0008\nZhong, Y., Wan, M., Ahrens, K., \u0026amp; Huang, C.-R. (2022). Sensorimotor norms for Chinese nouns and their relationship with orthographic and semantic variables. Language, Cognition and Neuroscience, 37(8), 1000\u0026ndash;1022. https://doi.org/10.1080/23273798.2022.2035416\nZhu, S., Wang, X., \u0026amp; Liu, P. (2021). Who Killed Sanmao and Virginia Woolf? A Comparative Study of Writers with Suicidal Attempt Based on a Quantitative Linguistic Method. In M. Liu, C. Kit, \u0026amp; Q. Su (Eds.), Chinese Lexical Semantics (Vol. 12278, pp. 408\u0026ndash;420). Springer International Publishing. https://doi.org/10.1007/978-3-030-81197-6_34\nГарах, Ж. В., Ребрейкина, А. Б., Стрелец, В. Б., Голикова, А. В., \u0026amp; Зайцева, Ю. С. (2019). НЕЙРОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ЧТЕНИЯ. Журнал высшей нервной деятельности им И П Павлова, 69(3), 294\u0026ndash;313. https://doi.org/10.1134/S0044467719030055\n\r\r","date":1490832000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1490832000,"objectID":"fca4ce877a38106e5fd0c2e5c4383540","permalink":"https://pablobernabeu.github.io/publication/bernabeu-2017-mphil-thesis/","publishdate":"2017-03-31T00:00:00Z","relpermalink":"/publication/bernabeu-2017-mphil-thesis/","section":"publication","summary":"The engagement of sensory brain regions during word recognition is widely documented, yet its precise relevance is less clear. It would constitute perceptual simulation only if it has a functional role in conceptual processing. We investigated this in an Event-Related Potential (ERP) experiment implementing the conceptual modality switch paradigm. In each trial, participants verified the relation between a property word and a concept word. Orthogonally, we manipulated the conceptual modality of successive trials, and tested whether switching modalities incurred any processing costs at different stages of word recognition. Unlike previous studies, we time-locked ERPs to the first word of target trials, in order to measure the modality transitions from the beginning, and also to reduce confounds within the target trial. Further, we included different types of switch\u0026mdash;one from auditory to visual modality, and one from haptic to visual\u0026mdash;, which were compared to the non-switch\u0026mdash;visual to visual. Also, one group of participants was asked to respond quickly (*n* = 21), and another group to respond self-paced (*n* = 21), whilst a few others received no constraints (*n* = 5). We found ERP effects in four typical time windows from 160 to 750 ms post word onset. The overall effect is characterized by a negativity for modality-switching relative to not switching, and it increases over time. Further, the effect arises with both types of switch, and influences both participant groups within anterior and posterior brain regions. The emergence of this effect in the first time window particularly suggests that sensory regions may have a functional role in conceptual processing. The increased effect later on converges with previous studies in supporting the compatibility of distributional and embodied processing. On a less conclusive note, more research may be necessary to ascertain the nature of the effect at late stages.","tags":["Brain Vision","cognition","cognitive neuroscience","conceptual modality switch","conceptual processing","conceptual replication","electrodes","event-related potentials","electroencephalography","language comprehension","linear mixed-effects models","psycholinguistics","reading"],"title":"Modality switches occur early and extend late in conceptual processing: Evidence from ERPs","type":"publication"},{"authors":[],"categories":["statistics"],"content":"\r\rThe clock strikes a certain hour, below all the Greg’s teaspoons at play. Results o’clock. The usual, please.\nUsual table. summaryby (having to get the first peek in the cafeteria can only add zest). summaryBy(RT ~ list(Ptp, Group, Cond), behdata, FUN=summary). So, hardly any of the 95% Confidence Intervals contain 0. Does this really mean…?\n\r‘For example, the hypothesis of equality of population means will be rejected at the 0.05 level if and only if a 95% CI for the mean difference does not contain 0.’\n\r— Dallal (2002; http://www.jerrydallal.com/lhsp/pval.htm)\nOf course. The CI just has that and more. The window is showing a chilly 1999 morning. Let’s see the summary again. Wee standard deviations. By card, please.\nMmm, the air outside is worth gingering up…\n\rThe trials!\n\rThe assumption of independence spoils another morning.\nThis new data consisted of response times (RT) that had been collected over several trials. The single dependent variable, RT, was accompanied by other variables which could be analyzed as independent variables. These included Group, Trial Number, and a within-subjects Condition. What had to be done first off, in order to take the usual table? The trials!\nAssumption of independence of observations\rOne must account for any redundant measures below the level of participants (the experimental trials, in this case), so that the sample size (N) used for any summary statistics match the number of participants (or the largest group, n). Why? This is a central assumption in statistics: observations must be independent. We can observe the independence assumption differently, depending on whether we’re summarizing data or performing statistical tests.\n\rFor descriptive tables and plots (involving Standard Error/Deviation, Confidence Intervals, etc), the data ought to be aggregated to the level from which you want to generalize. That level is—in this case and very often—participants. Trials do not normally serve for statistical generalization (they’re good for experimental validity). This realization may come as a bummer if you have first seen the effect sizes in the un-aggregated data. The mirage (see red lines on the left table below) is caused by an inflated N (cf. red lines on the right-hand table). As an illustration, the tables below summarize data with an actual sample n = 23. However, the table on the right includes repeated measures that should have been aggregated, massively inflating n. The inflation of the sample size equals the product of all repeated measures that failed to be aggregated under participants.\r\rMeasures of variance such as the Standard Deviation divide by the sample size. Thus, the larger the sample (N), the smaller the Standard Deviation, Standard Error, Confidence Interval…—that is, the variation or noise.\nAggregating is a snap. For example, with the aggregate() function in R, you just have to include all of your variables except that or those of the repeated measures:\nbehdata_aggreg = aggregate(behdata$RT, list(behdata$Ptp, behdata$Group, behdata$Cond), data=behdata, FUN=mean)\r\rIn statistical tests, repeated measures below the participant level–e.g., trials–normally must be either factored in or aggregated. Barr and colleagues provide an easy, focused guide on this procedure. This is necessary because when the N in the analyses is augmented by unaccounted, redundant observations, the famous assumption of independence of observations is violated, and the results may be invalid, as Vasishth and Nicenboim (2016, p. 3) put it:\r\r\r‘if we were to do a t-test on the unaggregated data, we would violate the independence assumption and the result of the t-test would be invalid.’\n\rNow, usually the repetitions that concern us are the multiple trials or items in experiments, or other sub-participant measures. So what about participants–what are they never aggregated? McCarthy, Whittaker, Boyle, and Eyal (2017, p.10) note:\n\r‘It has also been proposed that researchers aggregate the responses of participants within the same group and use the groups/clusters as the unit of analysis (Stevens, 2007). However, because this would result in losing sample size at the participant level, this approach is not optimal given the already small numbers of groups typically studied in group work research.’\n\r\rDifferent procedure in linear mixed-effects models\rAggregation is no longer necessary, where linear mixed-effects models can be used. These models allow us to account for any clusters (Participants, Trials, Items…) by signing them into the error term (Brauer \u0026amp; Curtin, 2017).\n\r","date":1483228800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1483228800,"objectID":"72b40be553d5d3f800e313bb7c15010d","permalink":"https://pablobernabeu.github.io/2017/at-greg-8-am/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/2017/at-greg-8-am/","section":"post","summary":"The single dependent variable, RT, was accompanied by other variables which could be analyzed as independent variables. These included Group, Trial Number, and a within-subjects Condition. What had to be done first off, in order to take the usual table? The trials!","tags":["s","R","statistics","aggregate","trials","repeated measures","assumption","independence of observations","variability","standard error","central assumption"],"title":"At Greg, 8 am","type":"post"},{"authors":[],"categories":["psycholinguistics"],"content":"Research has extensively investigated whether conceptual processing is modality-specific—that is, whether meaning is processed to a large extent on the basis of perceptual and motor affordances (Barsalou, 2016). This possibility challenges long-established theories. It suggests a strong link between physical experience and language which is not borne out of the paradigmatic arbitrariness of words (see Lockwood, Dingemanse, \u0026amp; Hagoort, 2016). Modality-specificity also clashes with models of language that have no link to sensory and motor systems (Barsalou, 2016).\n\u0026nbsp; Conference paper \u0026nbsp; \u0026nbsp; Master's thesis \u0026nbsp; Early discussion on ResearchGate Data and code Data dashboard In the Conceptual Modality Switch (CMS) paradigm, participants perform a property verification task, deciding whether certain property words can reasonably describe concept words. Covertly, the conceptual modality of consecutive trials is manipulated in order to produce specific switches in conceptual modality. For instance, after the trial Soundless Answer, which is primarily auditory, the following trial may match in modality—Loud Welcome—or mismatch—Fine Selection (visual).\nModality switches incur processing costs, as reflected in brain signals linked to semantic violation, and in longer response times (RTs) (Scerrati, Lugli, Nicoletti, \u0026amp; Borghi, 2016). This effect suggests that perceptual features of concepts are accessed during conceptual processing. More recently, however, the CMS effect was reanalysed using a non-perceptual alternative. Louwerse and Connell (2011) found that language statistics (the co-occurrence of words in a language) were able to approximately predict visual/haptic, olfactory/gustatory, and auditory modalities, but not the subtler differences between visual and haptic and between olfactory and gustatory, which seemed to be reserved for perceptual simulations. Moreover, faster response times (RTs) were best explained by language statistics, whereas slower RTs were best explained by perceptual simulations.\nThe time course of word processing is important. Research suggests that word processing spans one second, during which different processes—semantic and post-semantic—gradually accumulate (Hauk, 2016). The later an effect, the more reasons to question it. Yet, having an early emergence does not either make an effect lexicosemantic, as the meaning encoded could have gone through working memory before activating the actual system of interest, e.g., sensorimotor (Mahon \u0026amp; Caramazza, 2008). Research also suggests that modal systems may contribute to conceptual processing early on—within 200 ms (Vukovic, Feurra, Shpektor, Myachykov, \u0026amp; Shtyrov, 2017). Thus, measuring effects online may prove valuable.\nExperiment Bernabeu, Willems and Louwerse (2017) investigated whether CMS reflects a functionally relevant process of simulation or instead arises only after basic conceptual processing has been attained. We also examined whether different processing systems, amodal and modal, may compatibly operate.\nWe measured CMS online by time-locking Event-Related brain Potentials (ERPs) to the onset of the first word in the target trials, in order to assess how strongly CMS may be influenced by post-semantic processes. Previous research would predict an increase in the CMS effect over time because earlier processing is relatively amodal (Louwerse \u0026amp; Hutchinson, 2012).\nWe tested the compatibility of amodal and modal processing by drawing on Louwerse and Connell’s (2011) findings. In this conceptual replication, we split participants into a Quick and a Slow group based on RT. Maintaining CMS as a within-subjects factor, we predicted that the larger modality switches (e.g., auditory to visual) would be picked up equally by both groups, whereas the subtler switches (e.g., haptic to visual) would be picked up only—or more clearly—by the Slow group.\nMethod The stimuli were normed (Bernabeu, Louwerse, \u0026amp; Willems, in prep.). Three CMS conditions were created—Auditory-to-visual, Haptic-to-visual, Visual-to-visual—, each with 36 target trials. The property verification task was pretested valid (N = 19).\nResults All participants but one responded correctly to over half of the trials, with an overall accuracy of 63%.\nERPs showed a CMS effect from time window 1 on, larger after 350 ms. It appeared with both switch conditions, and was characterized by a more negative amplitude for the switch conditions compared to the no-switch condition. It was generally stronger in the posterior brain regions, and in the Slow group. The results are illustrated in the figure below, which includes 95% Confidence Intervals and time windows.\nThe analysis was done with Linear Mixed Effects models. Final models presented good fits, with R2 ranging from .748 to .862. First, the CMS effect in time window 1 was confirmed significant. Such an early emergence is unprecedented in the CMS literature, and it may have been enabled by the time-locking of ERPs to the first word in target trials. In this time window, the only process not lexicosemantic is possibly working memory (Hauk, 2016), and therefore this early emergence adds support to the possibility that CMS was directly caused by perceptual simulation.\nWhereas in time window 1, the effect was circumscribed to an interaction with Brain Area, by Time Window 2, a main effect of CMS emerged. In Windows 3 and 4, the only experimental effect was CMS.\nBonferroni-corrected, planned ANOVA contrasts into CMS conditions revealed that the no-switch condition differed significantly from the switch conditions. By contrast, the switch conditions (Haptic-to-visual and Auditory-to-visual) hardly differed from each other, underscoring the CMS effect.\nAlthough the interaction of Group and CMS was only significant in Time Windows 1 and 2, Windows 2 to 4 presented a pattern fitting our predictions (Louwerse \u0026amp; Connell, 2011). While the Slow group picked up the switches across all modalities similarly, the Quick group picked up the Auditory-to-visual switch more clearly than the Haptic-to-visual switch.\nStatistical analysis .embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}window.jQuery || document.write('\\x3C/script') var mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/sx3nw/?direct%26mode=render%26action=download%26mode=render\");\rDiscussion Results broadly suggest that cognition may operate on qualitatively different systems for the same task. In conceptual processing, one of these systems appears to be modality-independent, potentially based on linguistic co-occurrences, whereas another system is modality-specific, linked to physical experience.\nA conference poster with further analyses is also available.\nReferences Barsalou, L. W. (2016). On staying grounded and avoiding quixotic dead ends. Psychonomic Bulletin \u0026amp; Review, 23.\nBernabeu, P., Louwerse, M. M., \u0026amp; Willems, R. M. (in prep.). Modality exclusivity norms for 747 properties and concepts in Dutch: a replication of English. Retrieved from https://osf.io/brkjw/\nBernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs. In G. Gunzelmann, A. Howes, T. Tenbrink, \u0026amp; E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1629-1634). Austin, TX: Cognitive Science Society. https://doi.org/10.31234/osf.io/a5pcz\nHauk, O. (2016). Only time will tell—Why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin \u0026amp; Review, 23, 4, 1072-1079.\nLockwood, G., Hagoort, P., \u0026amp; Dingemanse, M. (2016). How iconicity helps people learn new words: neural correlates and individual differences in sound-symbolic bootstrapping. Collabra, 2, 1, 7.\nLouwerse, M., \u0026amp; Connell, L. (2011). A taste of words: linguistic context and perceptual simulation predict the modality of words. Cognitive Science, 35, 2, 381-98.\nLouwerse, M., \u0026amp; Hutchinson, S. (2012). Neurological evidence linguistic processes precede perceptual simulation in conceptual processing. Frontiers in Psychology, 3, 385.\nMahon, B. Z., \u0026amp; Caramazza, A. (2008). A critical look at the Embodied Cognition Hypothesis and a new proposal for grounding conceptual content. Journal of Physiology - Paris, 102, 59-70.\nScerrati, E., Lugli, L., Nicoletti, R., \u0026amp; Borghi, A. M. (2016). The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic Bulletin \u0026amp; Review, doi:10.3758/s13423-016-1150-2.\nVukovic, V., Feurra, M., Shpektor, A., Myachykov, A., \u0026amp; Shtyrov, Y. (2017). Primary motor cortex functionally contributes to language comprehension: An online rTMS study. Neuropsychologia, 96, 222-229.\n\r","date":1483228800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1483228800,"objectID":"83a0a5285af23deee88232f66d1ade74","permalink":"https://pablobernabeu.github.io/2017/modality-switch-effects-emerge-early-and-increase-throughout-conceptual-processing-evidence-from-erps/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/2017/modality-switch-effects-emerge-early-and-increase-throughout-conceptual-processing-evidence-from-erps/","section":"post","summary":"Research has extensively investigated whether conceptual processing is modality-specific—that is, whether meaning is processed to a large extent on the basis of perceptual and motor affordances (Barsalou, 2016). This possibility challenges long-established theories. It suggests a strong link between physical experience and language which is not borne out of the paradigmatic arbitrariness of words (see Lockwood, Dingemanse, \u0026amp; Hagoort, 2016). Modality-specificity also clashes with models of language that have no link to sensory and motor systems (Barsalou, 2016).","tags":["s","psycholinguistics","conceptual processing","experiment","event-related potentials","language comprehension","open data","cognition","conceptual modality switch","modality exclusivity norms","reading","statistics","linear mixed-effects models","ResearchGate"],"title":"Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs","type":"post"},{"authors":[],"categories":["R","data dashboards","open data"],"content":"\r Dashboards for data visualisation, such as R Shiny and Tableau, allow the interactive exploration of data by means of drop-down lists and checkboxes, with no coding required from the final users. These web applications can be useful for both the data analyst and the public at large. \r\r\nVisualisation apps run on internet browsers. This allows for three options: private viewing (useful during analysis), selective sharing (used within work groups), or internet publication. Among the available platforms, R Shiny and Tableau stand out due to being relatively accessible to new users. Apps serve a broad variety of purposes (see this gallery and this one). In science and beyond, these apps allow us to go the extra mile in sharing data. Alongside files and code shared in repositories, we can present the data in a website, in the form of plots or tables. This facilitates the public exploration of each section of the data (groups, participants, trials…) to anyone interested, and allows researchers to account for their proceeding in the analysis.\nPublishers and journals highly encourage authors to make the most of their data by facilitating its easy exploration by the readership–even though they don’t normally offer the possibility of hosting any web applications yet.\nApps can also prove valuable to those analysing the data. For instance, my app helped me to identify the extent of noise in a section of the data. Instead of running through a heavy score of code, the drop-down lists of the app let me seamlessly surf through the different sections.\nAt a certain point, I found a data section that was consistently noisier than the rest, and eventually I had to discard it from further statistical analyses. Yet, instead of removing that from the app, I maintained it with a note attached. This particular trait in the data was rather salient.\nBeyond such a salient feature in the data, a visualisation app may also help to spot subtler patterns such as third variables or individual differences.\nThere are several platforms for creating apps (e.g., Tableau, D3.js, and R Shiny). I focus on R Shiny here for three reasons: it is affordable to use, fairly accessible to new users, and well suited for science as it is based on the R language (see for instance this article).\nHow to Shiny\rShiny apps draw on any standard R code that you may already have. This is most commonly plots or tables, but other stuff such as images or Markdown texts are valid too. This is a nice thing to keep in mind when having to create a new app. Part of the job may already be done! The app is distributed among five different areas.\n\rData file(s): These are any data files you’re using (e.g., with csv or rds extensions).\r\r1a. server.R script\rThe server script contains the central processes: plots, tables, etc. Code that existed independently of the app app may be brought into this script by slightly adapting it. At the top, call the shiny library and any others used (e.g., ‘ggplot2’), and also read in the data. The snippet below shows the beginning of an example server.R script.\n\r# server\rlibrary(shiny)\rlibrary(ggplot2)\rEEG.ParticipantAndElectrode = readRDS(\u0026#39;EEG.ParticipantAndElectrode.rds\u0026#39;)\rEEG.ParticipantAndBrainArea = readRDS(\u0026#39;EEG.ParticipantAndBrainArea.rds\u0026#39;)\rEEG.GroupAndElectrode = readRDS(\u0026#39;EEG.GroupAndElectrode.rds\u0026#39;)\rEEG.OLDGroupAndElectrode = readRDS(\u0026#39;EEG.OLDGroupAndElectrode.rds\u0026#39;)\rserver =\rshinyServer(\rfunction(input, output) {\r# plot_GroupAndElectrode:\routput$plot_GroupAndElectrode \u0026lt;- renderPlot({\rdfelectrode \u0026lt;- aggregate(microvolts ~ electrode*time*condition, EEG.GroupAndElectrode[EEG.GroupAndElectrode$RT.based_Groups==input$var.Group,], mean)\rdf2 \u0026lt;- subset(dfelectrode, electrode == input$var.Electrodes.1)\rdf2$condition= as.factor(df2$condition)\rdf2$condition \u0026lt;- gsub(\u0026#39;visual2visual\u0026#39;, \u0026#39; Visual / Visual\u0026#39;, df2$condition)\rdf2$condition \u0026lt;- gsub(\u0026#39;haptic2visual\u0026#39;, \u0026#39; Haptic / Visual\u0026#39;, df2$condition)\rdf2$condition \u0026lt;- gsub(\u0026#39;auditory2visual\u0026#39;, \u0026#39; Auditory / Visual\u0026#39;, df2$condition)\rdf2$time \u0026lt;- as.integer(as.character(df2$time))\rcolours \u0026lt;- c(\u0026#39;firebrick1\u0026#39;, \u0026#39;dodgerblue\u0026#39;, \u0026#39;forestgreen\u0026#39;)\r# green:visual2visual, blue:haptic2visual, red:auditory2visual\rspec_title = paste0(\u0026#39;ERP waveforms for \u0026#39;, input$var.Group, \u0026#39; Group, Electrode \u0026#39;, input$var.Electrodes.1, \u0026#39; (negative values upward; time windows displayed)\u0026#39;)\rplot_GroupAndElectrode = ggplot(df2, aes(x=time, y=-microvolts, color=condition)) +\rgeom_rect(xmin=160, xmax=216, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=270, xmax=370, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=350, xmax=550, ymin=8, ymax=-7.5, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=500, xmax=750, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_line(size=1, alpha = 1) + scale_linetype_manual(values=colours) +\rscale_y_continuous(limits=c(-8.38, 8.3), breaks=seq(-8,8,by=1), expand = c(0,0.1)) +\rscale_x_continuous(limits=c(-208,808),breaks=seq(-200,800,by=100), expand = c(0.005,0), labels= c(\u0026#39;-200\u0026#39;,\u0026#39;-100 ms\u0026#39;,\u0026#39;0\u0026#39;,\u0026#39;100 ms\u0026#39;,\u0026#39;200\u0026#39;,\u0026#39;300 ms\u0026#39;,\u0026#39;400\u0026#39;,\u0026#39;500 ms\u0026#39;,\u0026#39;600\u0026#39;,\u0026#39;700 ms\u0026#39;,\u0026#39;800\u0026#39;)) +\rggtitle(spec_title) + theme_bw() + geom_vline(xintercept=0) +\rannotate(geom=\u0026#39;segment\u0026#39;, y=seq(-8,8,1), yend=seq(-8,8,1), x=-4, xend=8, color=\u0026#39;black\u0026#39;) +\rannotate(geom=\u0026#39;segment\u0026#39;, y=-8.2, yend=-8.38, x=seq(-200,800,100), xend=seq(-200,800,100), color=\u0026#39;black\u0026#39;) +\rgeom_segment(x = -200, y = 0, xend = 800, yend = 0, size=0.5, color=\u0026#39;black\u0026#39;) +\rtheme(legend.position = c(0.100, 0.150), legend.background = element_rect(fill=\u0026#39;#EEEEEE\u0026#39;, size=0),\raxis.title=element_blank(), legend.key.width = unit(1.2,\u0026#39;cm\u0026#39;), legend.text=element_text(size=17),\rlegend.title = element_text(size=17, face=\u0026#39;bold\u0026#39;), plot.title= element_text(size=20, hjust = 0.5, vjust=2),\raxis.text.y = element_blank(), axis.text.x = element_text(size = 14, vjust= 2.12, face=\u0026#39;bold\u0026#39;, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;),\raxis.ticks=element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.margin = unit(c(0.1,0.1,0,0), \u0026#39;cm\u0026#39;)) +\rannotate(\u0026#39;segment\u0026#39;, x=160, xend=216, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=270, xend=370, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=350, xend=550, y=-7.5, yend=-7.5, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=500, xend=750, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rscale_fill_manual(name = \u0026#39;Context / Target trial\u0026#39;, values=colours) +\rscale_color_manual(name = \u0026#39;Context / Target trial\u0026#39;, values=colours) +\rguides(linetype=guide_legend(override.aes = list(size=1.2))) +\rguides(color=guide_legend(override.aes = list(size=2.5))) +\r# Print y axis labels within plot area:\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;\\u2013\u0026#39; * \u0026#39;3 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = 3, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;) +\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;+3 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = -3, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;) +\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;\\u2013\u0026#39; * \u0026#39;6 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = 6, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;)\rprint(plot_GroupAndElectrode)\routput$downloadPlot.1 \u0026lt;- downloadHandler(\rfilename \u0026lt;- function(file){\rpaste0(input$var.Group, \u0026#39; group, electrode \u0026#39;, input$var.Electrodes.1, \u0026#39;, \u0026#39;, Sys.Date(), \u0026#39;.png\u0026#39;)},\rcontent \u0026lt;- function(file){\rpng(file, units=\u0026#39;in\u0026#39;, width=13, height=5, res=900)\rprint(plot_GroupAndElectrode)\rdev.off()},\rcontentType = \u0026#39;image/png\u0026#39;)\r} )\r# ...\r\r— Whole script\n\r1b. ui.R script\rThe ui script defines the user interface. For instance, a factor column in the data that has multiple categories may be neatly displayed with a drop-down list on the side bar of the website. The interface may present a central plot before by a legend key below. The snippet below shows the beginning of an example ui.R script.\n\r# UI\rlibrary(shiny)\rlibrary(ggplot2)\rEEG.GroupAndElectrode = readRDS(\u0026#39;EEG.GroupAndElectrode.rds\u0026#39;)\rEEG.ParticipantAndBrainArea = readRDS(\u0026#39;EEG.ParticipantAndBrainArea.rds\u0026#39;)\rEEG.ParticipantAndElectrode = readRDS(\u0026#39;EEG.ParticipantAndElectrode.rds\u0026#39;)\rEEG.OLDGroupAndElectrode = readRDS(\u0026#39;EEG.OLDGroupAndElectrode.rds\u0026#39;)\rui =\rshinyUI(\rfluidPage(\rtags$head(tags$link(rel=\u0026#39;shortcut icon\u0026#39;, href=\u0026#39;https://image.ibb.co/fXUwzb/favic.png\u0026#39;)), # web favicon\rtags$meta(charset=\u0026#39;UTF-8\u0026#39;),\rtags$meta(name=\u0026#39;description\u0026#39;, content=\u0026#39;This R Shiny visualisation dashboard presents data from a psycholinguistic ERP experiment (Bernabeu et al., 2017).\u0026#39;),\rtags$meta(name=\u0026#39;keywords\u0026#39;, content=\u0026#39;R, Shiny, ggplot2, visualisation, data, psycholinguistics, conceptual processing, modality switch, embodied cognition\u0026#39;),\rtags$meta(name=\u0026#39;viewport\u0026#39;, content=\u0026#39;width=device-width, initial-scale=1.0\u0026#39;),\rtitlePanel(h3(strong(\u0026#39;Waveforms in detail from an ERP experiment on the Conceptual Modality Switch\u0026#39;), a(\u0026#39;(Bernabeu et al., 2017)\u0026#39;,\rhref=\u0026#39;https://figshare.com/articles/EEG_study_on_conceptual_modality-switching_Bernabeu_et_al_in_prep_/4210863\u0026#39;, target=\u0026#39;_blank\u0026#39;,\rstyle = \u0026#39;color:#3E454E; text-decoration:underline; font-weight:normal\u0026#39;), align = \u0026#39;center\u0026#39;, style = \u0026#39;color:black\u0026#39;),\rwindowTitle = \u0026#39;Visualization of ERP waveforms from experiment on Conceptual Modality Switch (Bernabeu et al., 2017)\u0026#39;),\rsidebarLayout(\rsidebarPanel(width = 2,\r# Condition 1 for reactivity between tabs and sidebars\rconditionalPanel(\rcondition = \u0026#39;input.tabvals == 1\u0026#39;,\rh5(a(strong(\u0026#39;See paper, statistics, all data.\u0026#39;), \u0026#39;Plots by group and brain area shown in paper.\u0026#39;,\rhref=\u0026#39;https://figshare.com/articles/EEG_study_on_conceptual_modality-switching_Bernabeu_et_al_in_prep_/4210863\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), align = \u0026#39;center\u0026#39;),\rbr(),\rselectInput(\u0026#39;var.Group\u0026#39;, label = \u0026#39;Group\u0026#39;, choices = list(\u0026#39;Quick\u0026#39;,\u0026#39;Slow\u0026#39;), selected = \u0026#39;Quick\u0026#39;),\rh6(\u0026#39;Quick G.: 23 participants\u0026#39;),\rh6(\u0026#39;Slow G.: 23 participants\u0026#39;),\rbr(),\rselectInput(\u0026#39;var.Electrodes.1\u0026#39;, label = h5(strong(\u0026#39;Electrode\u0026#39;), br(), \u0026#39;(see montage below)\u0026#39;),\rchoices = list(\u0026#39;1\u0026#39;,\u0026#39;2\u0026#39;,\u0026#39;3\u0026#39;,\u0026#39;4\u0026#39;,\u0026#39;5\u0026#39;,\u0026#39;6\u0026#39;,\u0026#39;7\u0026#39;,\u0026#39;8\u0026#39;,\u0026#39;9\u0026#39;,\u0026#39;10\u0026#39;,\r\u0026#39;11\u0026#39;,\u0026#39;12\u0026#39;,\u0026#39;13\u0026#39;,\u0026#39;14\u0026#39;,\u0026#39;15\u0026#39;,\u0026#39;16\u0026#39;,\u0026#39;17\u0026#39;,\u0026#39;18\u0026#39;,\u0026#39;19\u0026#39;,\u0026#39;20\u0026#39;,\u0026#39;21\u0026#39;,\r\u0026#39;22\u0026#39;,\u0026#39;23\u0026#39;,\u0026#39;24\u0026#39;,\u0026#39;25\u0026#39;,\u0026#39;26\u0026#39;,\u0026#39;27\u0026#39;,\u0026#39;28\u0026#39;,\u0026#39;29\u0026#39;,\u0026#39;30\u0026#39;,\u0026#39;31\u0026#39;,\u0026#39;33\u0026#39;,\r\u0026#39;34\u0026#39;,\u0026#39;35\u0026#39;,\u0026#39;36\u0026#39;,\u0026#39;37\u0026#39;,\u0026#39;38\u0026#39;,\u0026#39;39\u0026#39;,\u0026#39;40\u0026#39;,\u0026#39;41\u0026#39;,\u0026#39;42\u0026#39;,\u0026#39;43\u0026#39;,\u0026#39;44\u0026#39;,\r\u0026#39;45\u0026#39;,\u0026#39;46\u0026#39;,\u0026#39;47\u0026#39;,\u0026#39;48\u0026#39;,\u0026#39;49\u0026#39;,\u0026#39;50\u0026#39;,\u0026#39;51\u0026#39;,\u0026#39;52\u0026#39;,\u0026#39;53\u0026#39;,\u0026#39;54\u0026#39;,\u0026#39;55\u0026#39;,\r\u0026#39;56\u0026#39;,\u0026#39;57\u0026#39;,\u0026#39;58\u0026#39;,\u0026#39;59\u0026#39;,\u0026#39;60\u0026#39;), selected = \u0026#39;30\u0026#39; ),\rbr(), br(),\rh6(\u0026#39;Source code:\u0026#39;),\rh6(strong(\u0026#39;- \u0026#39;), a(\u0026#39;server.R\u0026#39;, href=\u0026#39;https://osf.io/uj8z4/\u0026#39;, target=\u0026#39;_blank\u0026#39;, style = \u0026#39;text-decoration: underline;\u0026#39;)),\rh6(strong(\u0026#39;- \u0026#39;), a(\u0026#39;ui.R\u0026#39;, href=\u0026#39;https://osf.io/8bwcx/\u0026#39;, target=\u0026#39;_blank\u0026#39;, style = \u0026#39;text-decoration: underline;\u0026#39;)),\rbr(),\rh6(a(\u0026#39;CC-By 4.0 License\u0026#39;, href=\u0026#39;https://osf.io/97unm/\u0026#39;, target=\u0026#39;_blank\u0026#39;), align = \u0026#39;center\u0026#39;, style = \u0026#39;text-decoration: underline;\u0026#39;),\rbr(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(),\rbr(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(),\rh5(a(strong(\u0026#39;See paper, statistics, all data.\u0026#39;),\rhref=\u0026#39;https://figshare.com/articles/EEG_study_on_conceptual_modality-switching_Bernabeu_et_al_in_prep_/4210863\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), align = \u0026#39;center\u0026#39;),\rbr(), br(), br(), br(), br(), br(), br(), br()\r),\r# ...\r\r— Whole script\n\r2. Deployment and logs\rThis script contains the commands for deploying the app on- or off-line, and for checking the session logs in case of any errors.\n\r3. Automatically created folder\rWhen the app is first deployed on the internet, a subfolder is automatically created with the name ‘rsconnect’. This folder contains a text file which can be used to modify the URL and the title of the webpage.\nSteps to create a Shiny app from scratch:\n1. Tutorials (link). Being open-source software, excellent directions are available through a Google search.\nThe core ideas are:\nAs mentioned above, create a ui.R script for the code containing the user interface, and create a server.R script for the code containing the main content (your plots / tables, etc).\nAt the top of both ui.R and server.R scripts, enter the command library(shiny) and also load any other libraries you’re using (e.g., ggplot2).\nTest your app by deploying it locally, before launching online. For this purpose, first save the ui and server parts independently, as in:\n\rui =\rshinyUI(\rfluidPage(\r# ...\r\rThen deploy locally by running:\nshinyApp(ui, server)\rManaging to run the app locally is a great first step before launching online (which may sometimes prove a bit trickier).\n2. User token (link). Sign up and read in your private key—just to be done once in a computer.\n3. Go for it. After locally testing and saving the two main scripts (ui.R and server.R), run deployApp() to launch the app online.\n4. Bugs and session logs. Most often they won’t be bugs actually, but fancies, as it were. For instance, some special characters have to get even more special (technically, UTF-8 encoding). For a character such as ‘μ’, Shiny prefers ‘Âμ’, or better, the Unicode expression(\"\\u03bc\").\nCling to your logs by calling the line below, which you may keep at hand in your ‘Shiny deployer.R’ script.\nshowLogs(appPath = getwd(), appFile = NULL, appName = NULL, account = NULL,\rentries = 50, streaming = FALSE)\rAt best, the log output will mention any typos and unaccepted characters, pointing to specific lines in your code.\nIt may take a couple of intense days to get a first Shiny app running. Although the usual rabbit holes do exist, years of Shiny have already yielded a sizeable body of free resources online (tutorials, blogs, vlogs). Moreover, there’s also the RStudio Community, and then StackOverflow etc., where you can post any needs/despair. Post your code, log, and explanation, and you’ll be rescued out in a couple of days. Long live those contributors.\nIt’s sometimes enough to upload a bare app, but you might then think it can look better.\n5 (optional). Advance. Use tabs to combine multiple apps on one webpage, use different widgets, include a download option, etc. Tutorials like this one on Youtube can take you there, especially those that provide the code, as in the description of that video. Use those scripts as templates. For example, I made use of tabs on the top of the dashboard in order to keep the side bar from having too many widgets. The appearance of these tabs can be adjusted. More importantly, the inputs in the sidebar can be modified depending on the active tab, by means of ‘reactivity’ conditions.\n\rmainPanel(\rtags$style(HTML(\u0026#39;\r.tabbable \u0026gt; .nav \u0026gt; li \u0026gt; a {background-color:white; color:#3E454E}\r.tabbable \u0026gt; .nav \u0026gt; li \u0026gt; a:hover {background-color:#002555; color:white}\r.tabbable \u0026gt; .nav \u0026gt; li[class=active] \u0026gt; a {background-color:#ECF4FF; color:black}\r.tabbable \u0026gt; .nav \u0026gt; li[class=active] \u0026gt; a:hover\t{background-color:#E7F1FF; color:black}\r\u0026#39;)),\rtabsetPanel(id=\u0026#39;tabvals\u0026#39;,\rtabPanel(value=1, h4(strong(\u0026#39;Group \u0026amp; Electrode\u0026#39;)), br(), plotOutput(\u0026#39;plot_GroupAndElectrode\u0026#39;),\rh5(a(strong(\u0026#39;See plots with 95% Confidence Intervals\u0026#39;), href=\u0026#39;https://osf.io/2tpxn/\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), style=\u0026#39;text-decoration: underline;\u0026#39;), downloadButton(\u0026#39;downloadPlot.1\u0026#39;, \u0026#39;Download HD plot\u0026#39;), br(), br(),\r# EEG montage\rimg(src=\u0026#39;https://preview.ibb.co/n7qiYR/EEG_montage.png\u0026#39;, height=500, width=1000)),\rtabPanel(value=2, h4(strong(\u0026#39;Participant \u0026amp; Area\u0026#39;)), br(), plotOutput(\u0026#39;plot_ParticipantAndLocation\u0026#39;),\rh5(a(strong(\u0026#39;See plots with 95% Confidence Intervals\u0026#39;), href=\u0026#39;https://osf.io/86ch9/\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), style=\u0026#39;text-decoration: underline;\u0026#39;), downloadButton(\u0026#39;downloadPlot.2\u0026#39;, \u0026#39;Download HD plot\u0026#39;), br(), br(),\r# EEG montage\rimg(src=\u0026#39;https://preview.ibb.co/n7qiYR/EEG_montage.png\u0026#39;, height=500, width=1000)),\rtabPanel(value=3, h4(strong(\u0026#39;Participant \u0026amp; Electrode\u0026#39;)), br(), plotOutput(\u0026#39;plot_ParticipantAndElectrode\u0026#39;),\rbr(), downloadButton(\u0026#39;downloadPlot.3\u0026#39;, \u0026#39;Download HD plot\u0026#39;), br(), br(),\r# EEG montage\rimg(src=\u0026#39;https://preview.ibb.co/n7qiYR/EEG_montage.png\u0026#39;, height=500, width=1000)),\rtabPanel(value=4, h4(strong(\u0026#39;OLD Group \u0026amp; Electrode\u0026#39;)), br(), plotOutput(\u0026#39;plot_OLDGroupAndElectrode\u0026#39;),\rh5(a(strong(\u0026#39;See plots with 95% Confidence Intervals\u0026#39;), href=\u0026#39;https://osf.io/dvs2z/\u0026#39;,\rtarget=\u0026#39;_blank\u0026#39;), style=\u0026#39;text-decoration: underline;\u0026#39;), downloadButton(\u0026#39;downloadPlot.4\u0026#39;, \u0026#39;Download HD plot\u0026#39;), br(), br(),\r# EEG montage\rimg(src=\u0026#39;https://preview.ibb.co/n7qiYR/EEG_montage.png\u0026#39;, height=500, width=1000))\r),\r\r\nThe official Shiny gallery offers a great array of apps including their code (e.g., basic example). Another feature you may add is the option to download your plots, tables, data…\n\r# In ui.R script\rdownloadButton(\u0026#39;downloadPlot.1\u0026#39;, \u0026#39;Download HD plot\u0026#39;)\r#___________________________________________________\r# In server.R script\rspec_title = paste0(\u0026#39;ERP waveforms for \u0026#39;, input$var.Group, \u0026#39; Group, Electrode \u0026#39;, input$var.Electrodes.1, \u0026#39; (negative values upward; time windows displayed)\u0026#39;)\rplot_GroupAndElectrode = ggplot(df2, aes(x=time, y=-microvolts, color=condition)) +\rgeom_rect(xmin=160, xmax=216, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=270, xmax=370, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=350, xmax=550, ymin=8, ymax=-7.5, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_rect(xmin=500, xmax=750, ymin=7.5, ymax=-8, color = \u0026#39;grey75\u0026#39;, fill=\u0026#39;black\u0026#39;, alpha=0, linetype=\u0026#39;longdash\u0026#39;) +\rgeom_line(size=1, alpha = 1) + scale_linetype_manual(values=colours) +\rscale_y_continuous(limits=c(-8.38, 8.3), breaks=seq(-8,8,by=1), expand = c(0,0.1)) +\rscale_x_continuous(limits=c(-208,808),breaks=seq(-200,800,by=100), expand = c(0.005,0), labels= c(\u0026#39;-200\u0026#39;,\u0026#39;-100 ms\u0026#39;,\u0026#39;0\u0026#39;,\u0026#39;100 ms\u0026#39;,\u0026#39;200\u0026#39;,\u0026#39;300 ms\u0026#39;,\u0026#39;400\u0026#39;,\u0026#39;500 ms\u0026#39;,\u0026#39;600\u0026#39;,\u0026#39;700 ms\u0026#39;,\u0026#39;800\u0026#39;)) +\rggtitle(spec_title) + theme_bw() + geom_vline(xintercept=0) +\rannotate(geom=\u0026#39;segment\u0026#39;, y=seq(-8,8,1), yend=seq(-8,8,1), x=-4, xend=8, color=\u0026#39;black\u0026#39;) +\rannotate(geom=\u0026#39;segment\u0026#39;, y=-8.2, yend=-8.38, x=seq(-200,800,100), xend=seq(-200,800,100), color=\u0026#39;black\u0026#39;) +\rgeom_segment(x = -200, y = 0, xend = 800, yend = 0, size=0.5, color=\u0026#39;black\u0026#39;) +\rtheme(legend.position = c(0.100, 0.150), legend.background = element_rect(fill=\u0026#39;#EEEEEE\u0026#39;, size=0),\raxis.title=element_blank(), legend.key.width = unit(1.2,\u0026#39;cm\u0026#39;), legend.text=element_text(size=17),\rlegend.title = element_text(size=17, face=\u0026#39;bold\u0026#39;), plot.title= element_text(size=20, hjust = 0.5, vjust=2),\raxis.text.y = element_blank(), axis.text.x = element_text(size = 14, vjust= 2.12, face=\u0026#39;bold\u0026#39;, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;),\raxis.ticks=element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.margin = unit(c(0.1,0.1,0,0), \u0026#39;cm\u0026#39;)) +\rannotate(\u0026#39;segment\u0026#39;, x=160, xend=216, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=270, xend=370, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=350, xend=550, y=-7.5, yend=-7.5, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rannotate(\u0026#39;segment\u0026#39;, x=500, xend=750, y=-8, yend=-8, colour = \u0026#39;grey75\u0026#39;, size = 1.5) +\rscale_fill_manual(name = \u0026#39;Context / Target trial\u0026#39;, values=colours) +\rscale_color_manual(name = \u0026#39;Context / Target trial\u0026#39;, values=colours) +\rguides(linetype=guide_legend(override.aes = list(size=1.2))) +\rguides(color=guide_legend(override.aes = list(size=2.5))) +\r# Print y axis labels within plot area:\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;\\u2013\u0026#39; * \u0026#39;3 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = 3, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;) +\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;+3 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = -3, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;) +\rannotate(\u0026#39;text\u0026#39;, label = expression(bold(\u0026#39;\\u2013\u0026#39; * \u0026#39;6 \u0026#39; * \u0026#39;\\u03bc\u0026#39; * \u0026#39;V\u0026#39;)), x = -29, y = 6, size = 4.5, color = \u0026#39;grey32\u0026#39;, family=\u0026#39;sans\u0026#39;)\rprint(plot_GroupAndElectrode)\routput$downloadPlot.1 \u0026lt;- downloadHandler(\rfilename \u0026lt;- function(file){\rpaste0(input$var.Group, \u0026#39; group, electrode \u0026#39;, input$var.Electrodes.1, \u0026#39;, \u0026#39;, Sys.Date(), \u0026#39;.png\u0026#39;)},\rcontent \u0026lt;- function(file){\rpng(file, units=\u0026#39;in\u0026#39;, width=13, height=5, res=900)\rprint(plot_GroupAndElectrode)\rdev.off()},\rcontentType = \u0026#39;image/png\u0026#39;)\r} )\r\r\nApps can include any text, such as explanations of any length and web links. For instance, we can link back to the data repository, where the code for the app can be found.\nAn example of a Shiny app is available, which may also be edited and run in this RStudio environment, inside the ‘Shiny-app’ folder.\nThe Shiny server (shinyapps.io) allows publishing dashboards built with various frameworks besides Shiny proper. Flexdashboard and Shinydashboard are two of these frameworks, which have visible advantages over basic Shiny, in terms of layout. An example with Flexdashboard is available.\n★ Flexdashboard ★\r★ ★ Shiny ★ ★\r★ ★ ★ Flexdashboard-Shiny ★ ★ ★\r\r\rLogistics\rMemory capacity can become an issue as you go on, which will be flagged in the error logs as: ‘Shiny cannot use on-disk bookmarking’. This doesn’t necessarily lead you to a paid subscription or to host the website on a custom server. Try pruning the data file, outsourcing data sections across the five available apps.\nApp providers have specific terms of use. To begin, Shiny has a free starter license with limited use, where free apps can handle a certain amount of data, and up to five apps may be created. Beyond that, RStudio offers a wide range of subscriptions starting at $9/month. For its part, Tableau in principle deals only with subscriptions from $35/month on. While they offer 1-year licenses to students and instructors for free, these don’t include web hosting, unlike Shiny’s free plan. Further comparisons of these platforms are available online. Last, I’ll just mention a third language, D3, which is powerful, and may also be used through R.\nIn the case of very heavy data or frequent public use, if you don’t want to host your Shiny app externally, you might consider rendering a PDF with your visualisations instead.\n\rpdf(\u0026quot;List of plots per page\u0026quot;, width=13, height=5)\rprint(plot1)\rprint(plot2)\r# ...\rprint(plot150)\rdev.off()\r\rHigh-resolution plots can be rendered into a PDF document in a snap. Conveniently, all text is indexed, so it can be searched (Ctrl+f / Cmd+f / 🔍) (see example). Furthermore, you may also merge the rendered PDF with any other documents.\n.embed-responsive{position:relative;height:100%;}.embed-responsive iframe{position:absolute;height:100%;}\rwindow.jQuery || document.write('\\x3C/script') \r\r\rvar mfrRender = new mfr.Render(\"mfrIframe\", \"https://mfr.osf.io/render?url=https://osf.io/2tpxn/?direct%26mode=render%26action=download%26mode=render\");\r\n\rSummary in slides\r\r Presenting data interactively online using R Shiny \r\r\r","date":1483228800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1483228800,"objectID":"634b1bab4555e068cc9e05367ce3f565","permalink":"https://pablobernabeu.github.io/2017/the-case-for-data-dashboards-first-steps-in-r-shiny/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/2017/the-case-for-data-dashboards-first-steps-in-r-shiny/","section":"post","summary":"Dashboards for data visualisation, such as R Shiny and Tableau, allow the interactive exploration of data by means of drop-down lists and checkboxes, with no coding required from the final users. These web applications run on internet browsers, allowing for three viewing modes, catered to both analysts and the public at large: (1) private viewing (useful during analysis), (2) selective sharing (used within work groups), and (3) internet publication. Among the available platforms, R Shiny and Tableau stand out due to being relatively accessible to new users. Apps serve a broad variety of purposes. In science and beyond, these apps allow us to go the extra mile in sharing data. Alongside files and code shared in repositories, we can present the data in a website, in the form of plots or tables. This facilitates the public exploration of each section of the data (groups, participants, trials...) to anyone interested, and allows researchers to account for their proceeding in the analysis.","tags":["s","data presentation","dashboard","reproducibility","open science","open data","R","R Shiny","Flexdashboard"],"title":"The case for data dashboards: First steps in R Shiny","type":"post"},{"authors":null,"categories":["conceptual processing","R"],"content":"\u0026nbsp; Web application \u0026nbsp;\rContent\nThe data is from a psychology experiment on the comprehension of words, in which electroencephalographic (EEG) responses were measured. The data are presented in plots spanning 800 milliseconds (the duration of word processing). The aim of this Shiny app is to facilitate the exploration of the data by researchers and the public. Users can delve into the different sections of the data. In a hierarchical order, these sections are groups of participants, individual participants, brain areas, and electrodes.\nShiny apps in science\nBy creating this app, I tried to reach beyond the scope of current open science, which is often confined to files shared on data repositories. I believe that Shiny apps will become general practice in science within a few years (see blog post or slides for more information).\nTechnical details\nI used tabs on the upper area of the application page to avoid having cramming the side bar with widgets. I adjusted the appearance of these tabs, and by means of \u0026lsquo;reactivity\u0026rsquo; conditions, modified the inputs in the side bar depending on the active tab.\nmainPanel(\rtags$style(HTML('\r.tabbable \u0026gt; .nav \u0026gt; li \u0026gt; a {background-color:white; color:#3E454E}\r.tabbable \u0026gt; .nav \u0026gt; li \u0026gt; a:hover {background-color:#002555; color:white}\r.tabbable \u0026gt; .nav \u0026gt; li[class=active] \u0026gt; a {background-color:#ECF4FF; color:black}\r.tabbable \u0026gt; .nav \u0026gt; li[class=active] \u0026gt; a:hover\t{background-color:#E7F1FF; color:black}\r')),\rtabsetPanel(id='tabvals',\rtabPanel(value=1, h4(strong('Group \u0026amp; Electrode')), br(), plotOutput('plot_GroupAndElectrode'),\rh5(a(strong('See plots with 95% Confidence Intervals'), href='https://osf.io/2tpxn/',\rtarget='_blank'), style='text-decoration: underline;'), downloadButton('downloadPlot.1', 'Download HD plot'), br(), br(),\r# EEG montage\rimg(src='https://preview.ibb.co/n7qiYR/EEG_montage.png', height=500, width=1000)),\rtabPanel(value=2, h4(strong('Participant \u0026amp; Area')), br(), plotOutput('plot_ParticipantAndLocation'),\rh5(a(strong('See plots with 95% Confidence Intervals'), href='https://osf.io/86ch9/',\rtarget='_blank'), style='text-decoration: underline;'), downloadButton('downloadPlot.2', 'Download HD plot'), br(), br(),\r# EEG montage\rimg(src='https://preview.ibb.co/n7qiYR/EEG_montage.png', height=500, width=1000)),\rtabPanel(value=3, h4(strong('Participant \u0026amp; Electrode')), br(), plotOutput('plot_ParticipantAndElectrode'),\rbr(), downloadButton('downloadPlot.3', 'Download HD plot'), br(), br(),\r# EEG montage\rimg(src='https://preview.ibb.co/n7qiYR/EEG_montage.png', height=500, width=1000)),\rtabPanel(value=4, h4(strong('OLD Group \u0026amp; Electrode')), br(), plotOutput('plot_OLDGroupAndElectrode'),\rh5(a(strong('See plots with 95% Confidence Intervals'), href='https://osf.io/dvs2z/',\rtarget='_blank'), style='text-decoration: underline;'), downloadButton('downloadPlot.4', 'Download HD plot'), br(), br(),\r# EEG montage\rimg(src='https://preview.ibb.co/n7qiYR/EEG_montage.png', height=500, width=1000))\r),\r The data set was fairly large, considering the fact that it's hosted with the free plan. In order to lighten the processing, I split the data into various files, reducing the total size. Furthermore, I outsourced a particularly heavy set of plots (those with Confidence Intervals) to PDF files, to which I linked in the app.\nh5(a(strong('See plots with 95% Confidence Intervals'), href='https://osf.io/dvs2z/',\rtarget='_blank'), style='text-decoration: underline;'),\r I also used web links to the published paper and raw data, as well as to the server and ui scripts. These files, along with the data, are publicly available in this repository; they may be accessed within the \u0026ldquo;Files\u0026rdquo; section, by opening the folders \u0026ldquo;ERPs\u0026rdquo; -\u0026gt; \u0026ldquo;Analyses of ERPs averaged across trials\u0026rdquo; -\u0026gt; \u0026ldquo;Shiny app\u0026rdquo;.\nAnother feature I added was the download button.\n# From server.R script\rspec_title = paste0('ERP waveforms for ', input$var.Group, ' Group, Electrode ', input$var.Electrodes.1, ' (negative values upward; time windows displayed)')\rplot_GroupAndElectrode = ggplot(df2, aes(x=time, y=-microvolts, color=condition)) +\rgeom_rect(xmin=160, xmax=216, ymin=7.5, ymax=-8, color = 'grey75', fill='black', alpha=0, linetype='longdash') +\rgeom_rect(xmin=270, xmax=370, ymin=7.5, ymax=-8, color = 'grey75', fill='black', alpha=0, linetype='longdash') +\rgeom_rect(xmin=350, xmax=550, ymin=8, ymax=-7.5, color = 'grey75', fill='black', alpha=0, linetype='longdash') +\rgeom_rect(xmin=500, xmax=750, ymin=7.5, ymax=-8, color = 'grey75', fill='black', alpha=0, linetype='longdash') +\rgeom_line(size=1, alpha = 1) + scale_linetype_manual(values=colours) +\rscale_y_continuous(limits=c(-8.38, 8.3), breaks=seq(-8,8,by=1), expand = c(0,0.1)) +\rscale_x_continuous(limits=c(-208,808),breaks=seq(-200,800,by=100), expand = c(0.005,0), labels= c('-200','-100 ms','0','100 ms','200','300 ms','400','500 ms','600','700 ms','800')) +\rggtitle(spec_title) + theme_bw() + geom_vline(xintercept=0) +\rannotate(geom='segment', y=seq(-8,8,1), yend=seq(-8,8,1), x=-4, xend=8, color='black') +\rannotate(geom='segment', y=-8.2, yend=-8.38, x=seq(-200,800,100), xend=seq(-200,800,100), color='black') +\rgeom_segment(x = -200, y = 0, xend = 800, yend = 0, size=0.5, color='black') +\rtheme(legend.position = c(0.100, 0.150), legend.background = element_rect(fill='#EEEEEE', size=0),\raxis.title=element_blank(), legend.key.width = unit(1.2,'cm'), legend.text=element_text(size=17),\rlegend.title = element_text(size=17, face='bold'), plot.title= element_text(size=20, hjust = 0.5, vjust=2),\raxis.text.y = element_blank(), axis.text.x = element_text(size = 14, vjust= 2.12, face='bold', color = 'grey32', family='sans'),\raxis.ticks=element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.margin = unit(c(0.1,0.1,0,0), 'cm')) +\rannotate('segment', x=160, xend=216, y=-8, yend=-8, colour = 'grey75', size = 1.5) +\rannotate('segment', x=270, xend=370, y=-8, yend=-8, colour = 'grey75', size = 1.5) +\rannotate('segment', x=350, xend=550, y=-7.5, yend=-7.5, colour = 'grey75', size = 1.5) +\rannotate('segment', x=500, xend=750, y=-8, yend=-8, colour = 'grey75', size = 1.5) +\rscale_fill_manual(name = 'Context / Target trial', values=colours) +\rscale_color_manual(name = 'Context / Target trial', values=colours) +\rguides(linetype=guide_legend(override.aes = list(size=1.2))) +\rguides(color=guide_legend(override.aes = list(size=2.5))) +\r# Print y axis labels within plot area:\rannotate('text', label = expression(bold('\\u2013' * '3 ' * '\\u03bc' * 'V')), x = -29, y = 3, size = 4.5, color = 'grey32', family='sans') +\rannotate('text', label = expression(bold('+3 ' * '\\u03bc' * 'V')), x = -29, y = -3, size = 4.5, color = 'grey32', family='sans') +\rannotate('text', label = expression(bold('\\u2013' * '6 ' * '\\u03bc' * 'V')), x = -29, y = 6, size = 4.5, color = 'grey32', family='sans')\rprint(plot_GroupAndElectrode)\routput$downloadPlot.1 \u0026lt;- downloadHandler(\rfilename \u0026lt;- function(file){\rpaste0(input$var.Group, ' group, electrode ', input$var.Electrodes.1, ', ', Sys.Date(), '.png')},\rcontent \u0026lt;- function(file){\rpng(file, units='in', width=13, height=5, res=900)\rprint(plot_GroupAndElectrode)\rdev.off()},\rcontentType = 'image/png')\r} )\r # From ui.R script\rdownloadButton('downloadPlot.1', 'Download HD plot')\r Rising to the challenge\nMy experience with R Shiny has been so good I've been sharing it. Yet, on my first crawling days, I spent an eternity stuck with this elephant in my room: \u0026ldquo;μ\u0026rdquo;. This μ letter (micro-souvenir from hell, as I later knew it), was part of the labels of my plots. All I knew was that I could not deploy the app online, even while I could perfectly launch it locally in my laptop. So, I wondered what use was to deploy locally if I couldn't publish the app?! Eventually, I read about UTF-8 encoding in one forum. Bless them forums. All I had to do was use \u0026ldquo;Âμ\u0026rdquo; instead of the single \u0026ldquo;μ\u0026rdquo;. A better option I found later was: expression(\u0026quot;\\u03bc\u0026quot;).\nBeyond encoding issues, I had a tough time embedding images. You know, the \u0026lsquo;www\u0026rsquo; folder\u0026hellip; To be honest, I still haven't handled the \u0026lsquo;www\u0026rsquo; way\u0026ndash;but where there's a will, there's a way. I managed to include my images by uploading them to a website and then entering their URL in \u0026ldquo;img(src\u0026rdquo;, avoiding the use of folder paths.\nimg(src=\u0026quot;https://preview.ibb.co/n7qiYR/EEG_montage.png 1\u0026quot;, height=500, width=1000)\r Long after I had built the app, I added another image\u0026ndash;the favicon (the little icon on the browser tab).\ntags$head(tags$link(rel=\u0026quot;shortcut icon\u0026quot;, href=\u0026quot;https://image.ibb.co/fXUwzb/favic.png\u0026quot;)), # web favicon\r Reference Bernabeu, P., Willems, R. M., \u0026amp; Louwerse, M. M. (2017). Modality switch effects emerge early and increase throughout conceptual processing: Evidence from ERPs [Web application]. Retrieved from https://pablobernabeu.shinyapps.io/ERP-waveform-visualization_CMS-experiment\n\r","date":1483228800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1483228800,"objectID":"5d4a9692e0623e887564f71b0c57ff97","permalink":"https://pablobernabeu.github.io/applications-and-dashboards/bernabeu-etal-2017-modalityswitch/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/applications-and-dashboards/bernabeu-etal-2017-modalityswitch/","section":"applications-and-dashboards","summary":"We tested whether conceptual processing is modality-specific by tracking the time course of the Conceptual Modality Switch effect. Forty-six participants verified the relation between property words and concept words. The conceptual modality of consecutive trials was manipulated in order to produce an Auditory-to-visual switch condition, a Haptic-to-visual switch condition, and a Visual-to-visual, no-switch condition. Event-Related Potentials (ERPs) were time-locked to the onset of the first word (property) in the target trials so as to measure the effect online and to avoid a within-trial confound. A switch effect was found, characterized by more negative ERP amplitudes for modality switches than no-switches. It proved significant in four typical time windows from 160 to 750 milliseconds post word onset, with greater strength in the Slow group, in posterior brain regions, and in the N400 window. The earliest switch effect was located in the language brain region, whereas later it was more prominent in the visual region. In the N400 and Late Positive windows, the Quick group presented the effect especially in the language region, whereas the Slow had it rather in the visual region. These results suggest that contextual factors such as time resources modulate the engagement of linguistic and embodied systems in conceptual processing.","tags":["web application","data dashboard","R","R Shiny","conceptual modality switch","conceptual processing","reading","event-related potentials","cognition","psycholinguistics","HTML","CSS"],"title":"Web application: Modality switch effects emerge early and increase throughout conceptual processing","type":"applications-and-dashboards"},{"authors":"","categories":["research-methods"],"content":"\r\n\r\n\r\n","date":1471305600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1471305600,"objectID":"3036e3b387edcc8ca3a26fff70912e1a","permalink":"https://pablobernabeu.github.io/2016/eeg-error-datasets-missing-channels/","publishdate":"2016-08-16T00:00:00Z","relpermalink":"/2016/eeg-error-datasets-missing-channels/","section":"post","summary":"Most of the recordings are perfectly fine, but a few present a big error. Out of 64 original electrodes, only two appear. These are the right mastoid (RM) and the left eye sensor (LEOG). Both are bipolar electrodes. RM is to be re-referenced to the online reference electrode, while LEOG is to be re-referenced to the right eye electrode.","tags":["event-related potentials","electroencephalography","BrainVision","s"],"title":"EEG error: datasets missing channels","type":"post"},{"authors":[],"categories":["linguistic materials"],"content":"\r\n\r\n\r\n","date":1451606400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1451606400,"objectID":"7d26799976b91aa583f2467d84638054","permalink":"https://pablobernabeu.github.io/2016/modality-exclusivity-norms-for-747-properties-and-concepts-in-dutch-a-replication-of-english/","publishdate":"2016-01-01T00:00:00Z","relpermalink":"/2016/modality-exclusivity-norms-for-747-properties-and-concepts-in-dutch-a-replication-of-english/","section":"post","summary":"This study is a cross-linguistic, conceptual replication of Lynott and Connell’s (2009, 2013) modality exclusivity norms. The properties and concepts tested therein were translated into Dutch, and independently rated and analyzed (Bernabeu, 2018).","tags":["research methods","stimuli","linguistic norms","modality exclusivity norms","conceptual modality switch","dimensionality reduction","conceptual replication","Dutch","s"],"title":"Modality exclusivity norms for 747 properties and concepts in Dutch: A replication of English","type":"post"},{"authors":["Risto Hinno and Pablo Bernabeu"],"categories":["data mining","big data"],"content":"\rThis is a slightly revised version of a course project I shared with Risto Hinno.\n\r1. Introduction\rRacism has long been ingrained in human societies. Ancient Greek Aristotle already claimed that non-Greeks were slaves by nature, as they easily submitted to despotic government (Reilly, Kaufman, \u0026amp; Bodino, 2002). This study focuses on racism in the United States, which extends from the foundation of the country, when black people were generally born into slavery, and were at any rate regarded as an inferior people. US racism stands out globally for two reasons. First, the country has played a hegemonic part in the World since soon after its foundation. Second, the US is regarded as the most advanced society technology-wise, as it sets the minutes for the technology sector worldwide. In spite of these advantages, the country has long suffered the plague of widespread racism. Indeed, the abolition of slavery in the mid-nineteenth century did not grant equal citizen rights to the black population. Over time, the black population started to confront this situation. Especially the mid-nineteenth century saw large uprisings and a patent division of different societal sectors, as reflected in literary works such as Ellison’s ‘Invisible Man’ (1952). Inequality and confrontation about racism has extended to date, and the costs thereof have been large in terms of lives and otherwise (Feagin, 2004).\nWith the era of global communication, what happens in the World’s most powerful country is quickly and largely spread overseas—so too with racism matters. The last major such event related to racism happened during the first weeks of July 2016. Within five days, two cases of dubious, lethal police intervention with black citizens were followed by the killing of five policemen by a black youth. The specific course of events was as follows. On July 5th, Alton Sterling was killed by police officers in Louisiana. Next day, Philando Castile was also killed by police. In this case, the presence of Castile’s girlfriend during the tragedy likely determined the following events, because she described the event to the media, underscoring how gratuitous the killing was. During the following hours, outrage escalated within the already-wary population of the US. Yet the crisis would not stop there. During one of the various demonstrations held across the country, a dozen policemen were shot by a sniper, leaving five of them dead. The attacker was a black youth linked to black militant groups which target the Establishment on the grounds of patent racial discrimination. We will refer to this concatenation of events as the Louisiana-Minnesota-Texas (LMT) crisis.1\nIn the welter of events in Louisiana, Minnesota and Texas, some journalists warned of the return of social divisions such as those from the mid-nineteenth century. Such divisions might lead some people to an incomplete perception of the situation, and thus hinder the achievement of any solutions. However, President Obama denied such divisions as he spoke at the funeral for the policemen killed. At the same time, he addressed each of the different groups in the problem, including Establishment institutions and black protesters, advising them all to exercise greater open-mindedness towards the other aspects and bands in the problem (see statement).\nIt must be noted that this small study is primarily a way for us to practise data analysis at a course. Neither the background nor the analyses make a realistic study of racism or the LMT crisis.\n\r2. Goals\rWe wanted to look at these developments from the scope of online data. For this purpose, we scraped online discussions on these developments from a variety of media sources, and within defined time frames in the crisis. We then probed for any noticeable fluctuations in the topics throughout the course of events, and also for any differences across the different media. In this analysis, we took an exploratory approach by means of topic modeling. We wanted to check, first, whether topic modeling would be sensitive and useful at all within such a compact time scale. Were it to allow us, we would analyze how the journalistic and the social media reflected any fluctuations based on the live developments in Louisiana, Minnesota and Texas. As such, the dependent variable (DV) in this study is the overall topic under discussion, which we measured via topic modeling. So, the language we analyze are messages related to the LMT crisis. Two factors are checked as potentially affecting the DV, namely Media and Time.\nThe Media factor regarded the three different sources of information from which we retrieved content, namely: (1) the New York Times (NYT), (2) public tweets related to the NYT, and (3) public comments on the NYT’s Facebook posts.\nThe Time factor was based on the following periods. The first period, from 2 to 4 July, was selected as a baseline during which no remarkable events racism-wise happened. The second period, including 5 and 6 July, contains the days when the two black citizens were killed by policemen. The third period, from 7 to 11 July, contains the aftermath of the crisis overall.\n\r3. Hypotheses\rWe had several hypotheses for our planned analyses. For the Media factor, we hypothesized a greater objectivity and formality overall for the NYT articles compared to the other two sources.\nWe did not have any hypotheses about the Time factor, i.e., the nature of any potential topic changes. In fact, we had considerable reservations as to whether any fluctuations would present, given the fact that the latent feeling of such a crisis might stay negative, critical and fearful from the start, regardless of particular events.\nWith respect to the interaction between the two factors, we hypothesized that the NYT articles would present the lowest degree of thematic variation, due to the fact that such journal pieces require time to investigate and write up—even if they are published online. Comparatively, popular comments on Twitter and Facebook would present more emotionality and subjectivity, and likely they would also present greater influence of immediate events. Furthermore, Twitter should be yet more immediate than Facebook.\nLast, with respect to the DV, we did not actually have any hypotheses about the nature of possible topic fluctuations.\n\r4. Methods\rOnline reactions to the LMT developments were scraped from various online sources. This content was constrained to language, bearing no extensions such as pictures or videos. In order to narrow the scope of the information, all scraped sources were related to The New York Times journal. The sources were, first, the NYT online edition (nytimes.com); second, public tweets related to NYT (@nytimes); and, third, public comments posted on the NYT page (@nytimes). Crucially, these sources are different in nature. Whereas the articles in the journal’s online edition broadly follow the standard article form of mainstream journals, Facebook comments on the page are aligned with the Facebook standards, that is, comparatively informal and outspoken. In accord, tweets referring to @nytimes follow the Twitter conventions, characterized by the 140-character restriction, and the relative immediacy of their information (Oh \u0026amp; Syn, 2015; Wang, He \u0026amp; Zhao, 2014; Josephson \u0026amp; Miller, 2015).\nThe method to scrape content related to the LMT crisis was through keywords. For the three media, the following keywords were entered, such that articles containing any of those words would be returned: ‘black’ OR ‘racism’ OR ‘police’ OR ‘dallas’ OR ‘alton’ OR ‘sterling’ OR ‘philando’ OR ‘castile.’ Further particulars are provided in turn.\nNew York Times. This scraping pipeline started from the official API site for NYT (https://developer.nytimes.com). Metadata was downloaded for 2,000 articles adjusting to the abovementioned keywords. This returned articles dating back to the start of the year. After preprocessing, 29 articles were returned for period 1; 53 for period 2; and 275 for period 3.\nTwitter. This scraping was performed through Geoff Jentry’s R package ‘twitteR’ (https://github.com/geoffjentry/twitteR). Here tweets were selected based on the same keywords, in addition to ‘@nytimes’. Due to the ten-day maximum range of Twitter’s API, no time range was entered. Retweets were removed. With the naked eye we realized that the tweets contained considerable information on Saudi events, we entered the word ‘saudi’ as a negative keyword. After preprocessing, 157 articles were returned for period 1; 489 for period 2; and 5025 for period 3.\nFacebook. The ‘RFacebook’ R package, by Pablo Barbera (https://github.com/pablobarbera/Rfacebook), was used for this scraping. The Facebook API currently allows for the download of all or any posts from one page, with no time restrictions (broader-search functions seem to have been deprecated). We downloaded any comments on the pages’ posts which adjusted to our keywords. After preprocessing, 195 articles were returned for period 1; 1107 for period 2; and 8724 for period 3.\nPreprocessing was performed equally for all sources—as standard in topic modeling, by removing non-relevant (‘stop-words’) and non-linguistic elements. Removed items included the names of the media, as well as numbers, punctuation, links, and technical signs such as @.\n\r5. Results\rOur hypothesis about the Media factor was only partially confirmed. First, sentiment analysis showed that NYT posts were very tempered, with an average sentiment score near 0. In contrast, Twitter presented a rather negative sentiment (Thelwall, Buckley, \u0026amp; Paltoglou, 2011; Saif, He, Fernandez, \u0026amp; Alani, 2016). Yet, to our surprise, Facebook came out with a neutrality close to that of NYT articles, even if there was greater variance among the scores of the Facebook posts. These overall tendencies are illustrated in the plot below. Caution must recommended, however, when considering this sentiment analysis, as this technique is arguably fuzzy generally, and especially so with data under such a tight time frame. This is the case because sentiment analysis, as other big data techniques, capitalizes on the size of data. What it lacks on the precision aspect, compared to null-significance hypothesis testing, for instance, it compensates with the size of the samples, in which the noise is suppressed by thousands of cases. In this case, however, the sampling within only nine days of unusual circumstances calls for circumspection.\nNext, topic modeling was conducted on each source separately. The parameters for topic discovery were entered based on several attempts with different numbers of topics (K) and internal-coherence thresholds (alpha). Finally, topics were selected alike for every source, K = 3, alpha = .2. Below, the first ten words for each topic in each source are shown (note that columns are aligned rightward).\nNew York Times articles\r## Foreign policy Shooting Elections\r## 1 said police new\r## 2 percent said one\r## 3 vote officers people\r## 4 year black can\r## 5 brexit dallas like\r## 6 will officer york\r## 7 since shooting trump\r## 8 european two july\r## 9 british shot even\r## 10 britain says just\r\rFacebook comments\r## Police People Black lives matter\r## 1 police people black\r## 2 gun will lives\r## 3 cops can matter\r## 4 people like white\r## 5 officers get people\r## 6 dont one racist\r## 7 just just blm\r## 8 man need police\r## 9 get dont blacks\r## 10 officer police obama\r\rTweets\r## Racism Dallas shooting Philando shooting\r## 1 black police police\r## 2 police dallas blacks\r## 3 white officers new\r## 4 lives killed shooting\r## 5 people protest philando\r## 6 racism shooting force\r## 7 amp shootings castile\r## 8 matter alton use\r## 9 stop sterling says\r## 10 cops baton violence\rTo start, it may stand out that different topics appear across sources, all the while some are indeed shared. This is perfectly normal for topic modeling on different sources, even when the same topic is being studied. Indeed, it is very relevant for us to remark on the inclusion of foreign affairs and election matters within the NYT articles, but not within people’s tweets and Facebook comments. This makes sense for several reasons. To start, the space a journalist counts on in a NYT article is considerable, compared to tweets, and also compared to ruling conventions of Facebook posts (users may write further, but the average simply will not). Second, the breadth of relation in NYT articles likely responds to the expectations from renown journalists to enrich the news with a broader contextualization. Furthermore, this extension of topics might correspond to the tacit but doubtless alignment of journals to concrete political agendas. While people commenting on Twitter or Facebook are plausibly characterized by just the same virtues and vices, their online reactions could be driven by more emotion and immediacy of focus than those of mass media journalists.\nFor greater visualization, we also provide some captions from the interactive LDAvis tool below. Please click on the figure titles to enjoy the full visualization.\n↑ LDAvis visualization of NYT articles (click to explore in detail)\r\r\n↑ LDAvis visualization of Facebook comments (click to explore in detail)\r\r\n↑ LDAvis visualization of tweets (click to explore in detail)\r\r\nIn order to specifically compare different content sources, we plotted the major language from two sources on the same plot, with an axis spanning from one source to the other, as shown below. The size of the words indicates the frequency of use, and the colour is essentially parallel with the axis, with specific different colours for different corpora, and darker hues for greater association.\n↑ Facebook comments and NYT articles\r\r↑ Facebook comments and tweets\r\r↑ Tweets and NYT articles\r\r\nWe went on to analyze the overlap in topics across journals, in order to quantitatively check whether some topics were indeed shared across sources, even if in different positions (for instance, topic 1 in some source and topic 3 in some other). We did this by means of cosine similarity scores. These scores represent the degree of similarity of two sources on a continuous scale from 0 to 1, where 1 would mean identical. The plots illustrate these comparisons in turn.\n↑ Similarity between Facebook comments and NYT articles\r↑ Similarity between Facebook comments and tweets\r↑ Similarity between tweets and NYT articles\rLast, the interaction of Time and Media was analyzed. As expected, we found differences in the way topics fluctuated over time in the different sources, albeit in unexpected ways. NYT and tweets articles presented great variation, suggesting day-bound sensitivity to the developments. This was to be expected from Twitter, as it is famous for its immediacy. However, the immediacy of NYT articles was rather surprising, as they might have lagged behind due to the necessary investigation and editing for such kind of journalistic pieces. Unlike traditional paper-based NYT articles, this immediacy is now enabled by the publication online. Another unexpected finding was the relative stillness of Facebook posts over time. Since they are published at the minute, and nowadays mostly from mobile, we had thought they would present greater immediacy than NYT articles. We could hypothesize on this, but this would be best analyzed in further research. The plot below illustrates this interaction.\n↑ Topic fluctuations over time for the three content sources\r\r\r\r6. Discussion\rIn this small-scale study, we analyzed the impact of a racism-related crisis in the American society online. This crisis started with the killing of two black citizens by policemen under dubious circumstances, which was followed by massive media attention and street demonstrations, and then continued to the fatal shooting of five policemen by a black militant (the crisis continued yet further after our analyses). The impact of this crisis was large, with a state funeral being organized for the killed policemen, and a presidential address warning of the direction of social tensions, and the need for greater empathy from all social sections involved.\nWe scraped the divided the social reaction to these events from three online sources, namely, the NYT online edition, public comments on the NYT Facebook page, and finally NYT-related tweets. The method was based on keywords highly relevant to this crisis, namely: ‘black’ OR ‘racism’ OR ‘police’ OR ‘dallas’ OR ‘alton’ OR ‘sterling’ OR ‘philando’ OR ‘castile’. We analyzed the Media factor and the Time factor separately, and more interestingly we looked at the interaction between these two factors.\nAs results, we found, first, that NYT articles were the most neutral, closely followed by Facebook posts. In contrast, tweets presented greater negativity overall. Next, we looked at topics within each time frame in each of the three sources. These topics differed across sources, even though there were also considerable overlaps. For instance, NYT articles and related tweets shared the content of their second topics, both of which revolved around ‘shooting.’ We went further to quantitatively measure any such overlaps or otherwise differences across sources. Cosine similarity—which ranges from 1, totally related, to 0, not related at all—confirmed our naked eye feeling. For instance, for the overlap between the aforementioned topics, there was a cosine similarity of .71. In contrast, a cosine of .03 came up for other comparisons, which also makes sense due to the intrinsic differences among these sources.\nLast, the interaction between Time and Source was qualitatively analyzed by means of a plot, and we found that Twitter and NYT articles were most sensitive to live developments in the crisis, whereas Facebook comments lagged behind in this immediacy. All of these findings were discussed within a framework of qualitative big data analysis.\nThe data mass probed in these analyses could be described as medium-sized data in the big data field. This field is relatively recent, and the successful, seminal examples we count on tend to feature larger sizes of data. In particular, for time frames, it is rather uncommon to find such a tight scale as we excerpted. This fact complicates the drawing of assured conclusions from our findings, because we lack well-known precedents along these lines.\n\rAdditional materials\rAll materials are made public on the RRisto GitHub page.\n\rReferences\rEllison, R. (1952). Invisible Man. New York: Random House.\nFeagin, J. R. (2004). Documenting the costs of slavery, segregation, and contemporary racism: Why reparations are in order for African Americans. Harvard BlackLetter Law Journal, 20, 49-81.\nJosephson, S., \u0026amp; Miller, J. S. (2015). Just state the facts on Twitter: Eye tracking shows that readers may ignore questions posted by news organizations on Twitter but not on Facebook. Visual Communication Quarterly, 22(2), 94-105.\nOh, S., \u0026amp; Syn, S. Y. (2015). Motivations for sharing information and social support in social media: A comparative analysis of Facebook, Twitter, Delicious, YouTube, and Flickr. Journal Of The Association For Information Science And Technology, 66(10), 2045-2060.\nReilly, K., Kaufman, S., \u0026amp; Bodino, A. (2003). Racism: A global reader. London: M. E. Sharpe\nSaif, H., He, Y., Fernandez, M., \u0026amp; Alani, H. (2016). Contextual semantics for sentiment analysis of Twitter. Information Processing And Management, 52(1), 5-19.\nThelwall, M., Buckley, K., \u0026amp; Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62(2), 406-418.\nWang, P., He, W., \u0026amp; Zhao, J. (2014). A Tale of Three Social Networks: User Activity Comparisons across Facebook, Twitter, and Foursquare. IEEE Internet Computing, 18(2), 10-15.\n\r\rA later update: On July 17, 2016—days after the current analysis—, the LMT crisis was extended with the killing of two policemen in the same Louisiana city where Alton Sterling had been killed.↩︎\n\r\r\r","date":1451606400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1451606400,"objectID":"1ed190c11c06905a7e0f3980ec6e9617","permalink":"https://pablobernabeu.github.io/2016/the-louisiana-minnesota-texas-crisis-across-media-and-time-a-big-data-exercise/","publishdate":"2016-01-01T00:00:00Z","relpermalink":"/2016/the-louisiana-minnesota-texas-crisis-across-media-and-time-a-big-data-exercise/","section":"post","summary":"Racism has long been ingrained in human societies. Ancient Greek Aristotle already claimed that non-Greeks were slaves by nature, as they easily submitted to despotic government (Reilly, Kaufman, \u0026 Bodino, 2002). This study focuses on racism in the United States, which extends from the foundation of the country, when black people were generally born into slavery, and were at any rate regarded as an inferior people. US racism stands out globally for two reasons. First, the country has played a hegemonic part in the World since soon after its foundation. Second, the US is regarded as the most advanced society technology-wise, as it sets the minutes for the technology sector worldwide. In spite of these advantages, the country has long suffered the plague of widespread racism. Indeed, the abolition of slavery in the mid-nineteenth century did not grant equal citizen rights to the black population. Over time, the black population started to confront this situation. Especially the mid-nineteenth century saw large uprisings and a patent division of different societal sectors, as reflected in literary works such as Ellison’s 'Invisible Man' (1952). Inequality and confrontation about racism has extended to date, and the costs thereof have been large in terms of lives and otherwise (Feagin, 2004).","tags":["big data","data mining","racism","web scraping","R","API","social media","news media"],"title":"The Louisiana-Minnesota-Texas crisis across media and time: A big data exercise","type":"post"},{"authors":"","categories":["psycholinguistics"],"content":"\r\n\r\n\r\n","date":1446249600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1446249600,"objectID":"8f4671e0904b851cbe979d4874f833c5","permalink":"https://pablobernabeu.github.io/2015/conceptual-modality-switch-effect-measured-at-first-word/","publishdate":"2015-10-31T00:00:00Z","relpermalink":"/2015/conceptual-modality-switch-effect-measured-at-first-word/","section":"post","summary":"Traditionally, the second word presented (whether noun or adjective) has been the point of measure, both for RTs and ERPs. Yet, could it be better to measure at the first word?","tags":["psycholinguistics","conceptual modality switch","conceptual processing","word recognition","semantic processing","event-related potentials","embodied cognition","s"],"title":"Conceptual modality switch effect measured at first word?","type":"post"},{"authors":["Bernabeu, P., \u0026 Vogt, P."],"categories":["evolution of language"],"content":"Reference Bernabeu, P., \u0026amp; Vogt, P. (2015). Language evolution: Current status and future directions. Tenth Language at the University of Essex (LangUE) Postgraduate Conference. https://researchgate.net/publication/280858062/\n\r","date":1420070400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1420070400,"objectID":"139129944442d259234f2f3367f68490","permalink":"https://pablobernabeu.github.io/publication/bernabeu_vogt2015/","publishdate":"2015-01-01T00:00:00Z","relpermalink":"/publication/bernabeu_vogt2015/","section":"publication","summary":"The topic of language evolution is characterised by the scarcity of records, but also by a large flow of research produced within multiple subtopics and perspectives. Over the past few decades, significant advancement has been made on the geographical and temporal origins of language, while current work is rather devoted to the underpinnings of language, in brain, genes, body, and culture of humans. Much of this literature is polarized over the crucial dichotomy of nativism versus emergentism. Our state of affairs report also confirms a high degree of speculation, albeit with a decrease for modelling. To tackle the speculation and the large research flow, we propose a more impersonal kind of review, focused on the topic’s questions rather than on particular accounts. Another observation is that novel perspectives are on the rise. One of these highlights the importance of perceptual cognition, often dubbed ‘embodiment,’ in the earlier evolution of language. In following this lead, we adapted a previous experiment which had investigated the correspondence between certain perceptual features of events, and different grammatical orders arising as participants acted out those events. That design made a perfect basis for us to put in an additional variable, namely the contrast between body-based communication (gestures), and more disembodied communication (symbol matching). Albeit tentative, the results of this pilot experiment reveal a greater effect of the embodiment variable on the grammatical preferences, which we see as inviting further exploration of embodied cognition in language evolution.","tags":["language evolution","linguistics"],"title":"Language evolution: Current status and future directions","type":"publication"},{"authors":null,"categories":null,"content":"","date":-62135596800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":-62135596800,"objectID":"e7104c9482fe7df2270c530525ed356d","permalink":"https://pablobernabeu.github.io/1/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/1/","section":"post","summary":"","tags":null,"title":"","type":"post"}] \ No newline at end of file diff --git a/index.xml b/index.xml index 0274d0101..e57167436 100644 --- a/index.xml +++ b/index.xml @@ -24,6 +24,25 @@ <h3>Reference</h3> <p>González Alonso, J., Bernabeu, P., Silva, G., DeLuca, V., Poch, C., Ivanova, I., & Rothman, J. (2024). Starting from the very beginning: Unraveling third language (L3) development with longitudinal data from artificial language learning and related epistemology. <em>International Journal of Multilingualism, 1</em>(22). <a href="https://doi.org/10.1080/14790718.2024.2415993" class="uri">https://doi.org/10.1080/14790718.2024.2415993</a></p> </div> +<div id="addendum" class="section level3"> +<h3>Addendum</h3> +<div id="materials" class="section level4"> +<h4>Materials</h4> +<p>Documentation practices and open-source software (namely, R and OpenSesame) were used to prepare the materials for the current study. In previous similar studies, the materials have not generally been very Findable, Accessible, Interoperable or Reusable (Cross et al., 2021; González Alonso et al., 2020; Mitrofanova et al., 2023; Morgan-Short et al., 2012; Pereira Soares et al., 2022). In contrast, in our current study, the stimuli were prepared in R using a modular framework that consisted of interoperable components (se <a href="https://osf.io/974k8" class="uri">https://osf.io/974k8</a>). The modularity of this method facilitates the expansion of the materials within the same languages and to other languages. Specifically, the minimal components of each language were contained in a base file in the ‘stimulus_preparation’ folder. Furthermore, for the creation of the final stimuli, several controls were exerted to prevent spurious effects. For instance, gender and number were counterbalanced across experimental conditions, words were rotated across grammatical properties and sessions, and frequency of occurrence was controlled. The final stimuli can be recreated using the script ‘compile_all_stimuli.R’, and the resulting stimuli are saved to the ‘session_materials’ folder. Furthermore, the final stimuli were presented using OpenSesame, which is a free-of-charge software supporting experiments in the social sciences. The implementation of the four lab-based sessions in OpenSesame involved the use of conditions for controlling the engagement of certain items. In conclusion, the materials of the current study are accessible, and the workflow is reproducible. As a result, the final materials are testable, modifiable and expandable, improving long-term efficiency.</p> +</div> +<div id="acknowledgements" class="section level4"> +<h4>Acknowledgements</h4> +<p>Below, we gratefully acknowledge the help and advice we received from many of our colleagues and students.</p> +<ul> +<li><p>Mona Kirkness Fossum (translation of stimuli) +Gaute Berglund, Anders Gabrielsen, Tekabe Legesse Feleke, My Ngoc Giang Hoang (piloting of sessions)</p></li> +<li><p>Björn Lundquist (OpenSesame)</p></li> +<li><p>Teodóra Vékony (alternating serial reaction time task)</p></li> +<li><p>Antonio Fábregas, Natalia Mitrofanova, Yulia Rodina, Marit Westergaard (study design and translations)</p></li> +<li><p>Merete Anderssen, Fatih Bayram (recruitment)</p></li> +</ul> +</div> +</div> <div id="lay-summary" class="section level3"> <h3>Lay summary</h3> <p>Do people learn a third language differently from their second one? For those already fluent in two languages, acquiring a third one introduces specific complexities. We are investigating this process using artificial languages, which allow for precise control and observation of the learning experience.</p> diff --git a/publication/index.xml b/publication/index.xml index 2a285b5cf..70cbf2a0d 100644 --- a/publication/index.xml +++ b/publication/index.xml @@ -24,6 +24,25 @@ <h3>Reference</h3> <p>González Alonso, J., Bernabeu, P., Silva, G., DeLuca, V., Poch, C., Ivanova, I., & Rothman, J. (2024). Starting from the very beginning: Unraveling third language (L3) development with longitudinal data from artificial language learning and related epistemology. <em>International Journal of Multilingualism, 1</em>(22). <a href="https://doi.org/10.1080/14790718.2024.2415993" class="uri">https://doi.org/10.1080/14790718.2024.2415993</a></p> </div> +<div id="addendum" class="section level3"> +<h3>Addendum</h3> +<div id="materials" class="section level4"> +<h4>Materials</h4> +<p>Documentation practices and open-source software (namely, R and OpenSesame) were used to prepare the materials for the current study. In previous similar studies, the materials have not generally been very Findable, Accessible, Interoperable or Reusable (Cross et al., 2021; González Alonso et al., 2020; Mitrofanova et al., 2023; Morgan-Short et al., 2012; Pereira Soares et al., 2022). In contrast, in our current study, the stimuli were prepared in R using a modular framework that consisted of interoperable components (se <a href="https://osf.io/974k8" class="uri">https://osf.io/974k8</a>). The modularity of this method facilitates the expansion of the materials within the same languages and to other languages. Specifically, the minimal components of each language were contained in a base file in the ‘stimulus_preparation’ folder. Furthermore, for the creation of the final stimuli, several controls were exerted to prevent spurious effects. For instance, gender and number were counterbalanced across experimental conditions, words were rotated across grammatical properties and sessions, and frequency of occurrence was controlled. The final stimuli can be recreated using the script ‘compile_all_stimuli.R’, and the resulting stimuli are saved to the ‘session_materials’ folder. Furthermore, the final stimuli were presented using OpenSesame, which is a free-of-charge software supporting experiments in the social sciences. The implementation of the four lab-based sessions in OpenSesame involved the use of conditions for controlling the engagement of certain items. In conclusion, the materials of the current study are accessible, and the workflow is reproducible. As a result, the final materials are testable, modifiable and expandable, improving long-term efficiency.</p> +</div> +<div id="acknowledgements" class="section level4"> +<h4>Acknowledgements</h4> +<p>Below, we gratefully acknowledge the help and advice we received from many of our colleagues and students.</p> +<ul> +<li><p>Mona Kirkness Fossum (translation of stimuli) +Gaute Berglund, Anders Gabrielsen, Tekabe Legesse Feleke, My Ngoc Giang Hoang (piloting of sessions)</p></li> +<li><p>Björn Lundquist (OpenSesame)</p></li> +<li><p>Teodóra Vékony (alternating serial reaction time task)</p></li> +<li><p>Antonio Fábregas, Natalia Mitrofanova, Yulia Rodina, Marit Westergaard (study design and translations)</p></li> +<li><p>Merete Anderssen, Fatih Bayram (recruitment)</p></li> +</ul> +</div> +</div> <div id="lay-summary" class="section level3"> <h3>Lay summary</h3> <p>Do people learn a third language differently from their second one? For those already fluent in two languages, acquiring a third one introduces specific complexities. We are investigating this process using artificial languages, which allow for precise control and observation of the learning experience.</p> diff --git a/publication/third-language-longitudinal-data-artificial-language-learning-eeg/index.html b/publication/third-language-longitudinal-data-artificial-language-learning-eeg/index.html index d861d538e..7c4a02cc7 100644 --- a/publication/third-language-longitudinal-data-artificial-language-learning-eeg/index.html +++ b/publication/third-language-longitudinal-data-artificial-language-learning-eeg/index.html @@ -760,6 +760,25 @@Documentation practices and open-source software (namely, R and OpenSesame) were used to prepare the materials for the current study. In previous similar studies, the materials have not generally been very Findable, Accessible, Interoperable or Reusable (Cross et al., 2021; González Alonso et al., 2020; Mitrofanova et al., 2023; Morgan-Short et al., 2012; Pereira Soares et al., 2022). In contrast, in our current study, the stimuli were prepared in R using a modular framework that consisted of interoperable components (se https://osf.io/974k8). The modularity of this method facilitates the expansion of the materials within the same languages and to other languages. Specifically, the minimal components of each language were contained in a base file in the ‘stimulus_preparation’ folder. Furthermore, for the creation of the final stimuli, several controls were exerted to prevent spurious effects. For instance, gender and number were counterbalanced across experimental conditions, words were rotated across grammatical properties and sessions, and frequency of occurrence was controlled. The final stimuli can be recreated using the script ‘compile_all_stimuli.R’, and the resulting stimuli are saved to the ‘session_materials’ folder. Furthermore, the final stimuli were presented using OpenSesame, which is a free-of-charge software supporting experiments in the social sciences. The implementation of the four lab-based sessions in OpenSesame involved the use of conditions for controlling the engagement of certain items. In conclusion, the materials of the current study are accessible, and the workflow is reproducible. As a result, the final materials are testable, modifiable and expandable, improving long-term efficiency.
+Below, we gratefully acknowledge the help and advice we received from many of our colleagues and students.
+Mona Kirkness Fossum (translation of stimuli) +Gaute Berglund, Anders Gabrielsen, Tekabe Legesse Feleke, My Ngoc Giang Hoang (piloting of sessions)
Björn Lundquist (OpenSesame)
Teodóra Vékony (alternating serial reaction time task)
Antonio Fábregas, Natalia Mitrofanova, Yulia Rodina, Marit Westergaard (study design and translations)
Merete Anderssen, Fatih Bayram (recruitment)
Do people learn a third language differently from their second one? For those already fluent in two languages, acquiring a third one introduces specific complexities. We are investigating this process using artificial languages, which allow for precise control and observation of the learning experience.
diff --git a/publication_types/2/index.xml b/publication_types/2/index.xml index e724503b5..a40ea6640 100644 --- a/publication_types/2/index.xml +++ b/publication_types/2/index.xml @@ -24,6 +24,25 @@ <h3>Reference</h3> <p>González Alonso, J., Bernabeu, P., Silva, G., DeLuca, V., Poch, C., Ivanova, I., & Rothman, J. (2024). Starting from the very beginning: Unraveling third language (L3) development with longitudinal data from artificial language learning and related epistemology. <em>International Journal of Multilingualism, 1</em>(22). <a href="https://doi.org/10.1080/14790718.2024.2415993" class="uri">https://doi.org/10.1080/14790718.2024.2415993</a></p> </div> +<div id="addendum" class="section level3"> +<h3>Addendum</h3> +<div id="materials" class="section level4"> +<h4>Materials</h4> +<p>Documentation practices and open-source software (namely, R and OpenSesame) were used to prepare the materials for the current study. In previous similar studies, the materials have not generally been very Findable, Accessible, Interoperable or Reusable (Cross et al., 2021; González Alonso et al., 2020; Mitrofanova et al., 2023; Morgan-Short et al., 2012; Pereira Soares et al., 2022). In contrast, in our current study, the stimuli were prepared in R using a modular framework that consisted of interoperable components (se <a href="https://osf.io/974k8" class="uri">https://osf.io/974k8</a>). The modularity of this method facilitates the expansion of the materials within the same languages and to other languages. Specifically, the minimal components of each language were contained in a base file in the ‘stimulus_preparation’ folder. Furthermore, for the creation of the final stimuli, several controls were exerted to prevent spurious effects. For instance, gender and number were counterbalanced across experimental conditions, words were rotated across grammatical properties and sessions, and frequency of occurrence was controlled. The final stimuli can be recreated using the script ‘compile_all_stimuli.R’, and the resulting stimuli are saved to the ‘session_materials’ folder. Furthermore, the final stimuli were presented using OpenSesame, which is a free-of-charge software supporting experiments in the social sciences. The implementation of the four lab-based sessions in OpenSesame involved the use of conditions for controlling the engagement of certain items. In conclusion, the materials of the current study are accessible, and the workflow is reproducible. As a result, the final materials are testable, modifiable and expandable, improving long-term efficiency.</p> +</div> +<div id="acknowledgements" class="section level4"> +<h4>Acknowledgements</h4> +<p>Below, we gratefully acknowledge the help and advice we received from many of our colleagues and students.</p> +<ul> +<li><p>Mona Kirkness Fossum (translation of stimuli) +Gaute Berglund, Anders Gabrielsen, Tekabe Legesse Feleke, My Ngoc Giang Hoang (piloting of sessions)</p></li> +<li><p>Björn Lundquist (OpenSesame)</p></li> +<li><p>Teodóra Vékony (alternating serial reaction time task)</p></li> +<li><p>Antonio Fábregas, Natalia Mitrofanova, Yulia Rodina, Marit Westergaard (study design and translations)</p></li> +<li><p>Merete Anderssen, Fatih Bayram (recruitment)</p></li> +</ul> +</div> +</div> <div id="lay-summary" class="section level3"> <h3>Lay summary</h3> <p>Do people learn a third language differently from their second one? For those already fluent in two languages, acquiring a third one introduces specific complexities. We are investigating this process using artificial languages, which allow for precise control and observation of the learning experience.</p> diff --git a/sitemap.xml b/sitemap.xml index 6306be038..a7f7facbb 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -743,12 +743,12 @@