Usage:
./convert_lib_to_fasta.sh library.tsv library.fasta
where library.tsv
contains two columns, without header, where column 1 is the Ag unique IDs and column 2 the Ag sequences.
Usage:
./bowtie2index.py library.fasta
Usage for one sample:
./main.py read1.fastq read2.fastq library.fasta
Options:
-l --log
name of log file (default: log.txt
)
-o --out
output folder (default: out
)
-t --threads
number of cpus to use, for cutdadapt
and bowtie2
steps (default: 4
)
Usage for multiple sample (requires GNU parallel
installed):
parallel --link -a samples.read1.txt -a samples.read2.txt python3 main.py {1} {2} library.fasta -t 4
where samples.read1.txt
and samples.read2.txt
are lists of paired read1 and read2 fastq files, respectively.
$ cat samples.read1.txt
/path/to/sample1.R1.fastq.gz
/path/to/sample2.R1.fastq.gz
/path/to/sample3.R1.fastq.gz
/path/to/sample4.R1.fastq.gz
...
and
$ cat samples.read2.txt
/path/to/sample1.R2.fastq.gz
/path/to/sample2.R2.fastq.gz
/path/to/sample3.R2.fastq.gz
/path/to/sample4.R2.fastq.gz
...
Make one single count table for all samples
Usage: ./join_counts.R out library.tsv
where out
is the output directory containing the count files for each sample ending with .count
and library.tsv
contains the Ag unique IDs in column 1.