-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
56 lines (43 loc) · 1.89 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import random
import numpy as np
from util import return_frames
class DATALOADER():
def __init__(self, opt, split_name):
self.split_name = split_name
self.k_shot = opt.k
self.n_way = opt.n
self.T = opt.T
self.target = opt.target
def random_sample_each_episode(self):
dir = self.target + "/" + self.split_name + "/"
categories = os.listdir(dir)
n_way_classes = random.sample(categories, self.n_way)
query_x = np.zeros((self.n_way, self.T, 3, 224, 224))
query_y = np.zeros((self.n_way, 1))
support_x = np.zeros((self.n_way * self.k_shot, self.T, 3, 224, 224,))
support_y = np.zeros((self.n_way * self.k_shot, 1))
for n in range(self.n_way):
index = random.randint(0, self.n_way - 1)
class_name = n_way_classes[index]
ex_dir = dir + class_name + "/"
examples = os.listdir(ex_dir)
query_x[n] = self._preprocess(ex_dir + random.sample(examples,1)[0], self.split_name)
query_y[n] = index
for k in range(self.k_shot):
class_name = n_way_classes[n]
ex_dir = dir + class_name + "/"
examples = os.listdir(ex_dir)
support_x[n * self.k_shot + k] = self._preprocess(ex_dir + random.sample(examples,1)[0], self.split_name)
support_y[n * self.k_shot + k] = n
return query_x, query_y, support_x, support_y
def _preprocess(self, dir, split_type):
frames = return_frames(dir, split_type)
length = len(frames)
sub_length = length//self.T
l = np.array([random.randint(0, sub_length - 1) for i in range(self.T)])
s = np.array([i * sub_length for i in range(self.T)] )
#print(l, s, self.T)
indexes = l + s
selected_frames = np.array(frames)[list(indexes)]
return selected_frames