-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
359 lines (304 loc) · 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
r"""PyTorch Detection Training.
To run in a multi-gpu environment, use the distributed launcher::
python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
train.py ... --world-size $NGPU
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
--lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
--epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3
Also, if you train Keypoint R-CNN, the default hyperparameters are
--epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
"""
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, AnchorGenerator
from coco_utils import get_coco, get_coco_kp
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from engine import train_one_epoch, evaluate
import utils
import transforms as T
def get_dataset(name, image_set, transform, data_path,num_classes):
paths = {
"coco": (data_path, get_coco, int(num_classes)+1), # 修改自定义数据集类别数量:num_classes+1(背景 )
"coco_kp": (data_path, get_coco_kp, 2)
}
p, ds_fn, num_classes = paths[name]
ds = ds_fn(p, image_set=image_set, transforms=transform)
return ds, num_classes
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
'''
anchor box优化:https://github.com/martinzlocha/anchor-optimization/
python3 optimize_anchors.py --seed 2020 --objective focal
/media/gaoya/disk/Documents/zhouwenqing/cotterpin_detect/train_GAN_twoclass/csv_annotations.csv --no-resize
先用脚本转换为csv格式,再计算ratio和scale
Final best anchor configuration
Ratios: [0.789, 1.0, 1.267]
Scales: [0.632, 0.801, 1.0]
'''
def get_mobilnet_v2_model_FRCNN(num_classes):
'''
backbone is mobilenet_v2
'''
backbone = torchvision.models.mobilenet_v2(pretrained=True).features
backbone.out_channels = 1280
anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))
# anchor_generator = AnchorGenerator(sizes=((8, 16, 32, 64, 128, 256, 512),),
# aspect_ratios=((0.5, 1.0, 1,5, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
output_size=7,
sampling_ratio=2)
model = torchvision.models.detection.faster_rcnn.FasterRCNN(backbone,
num_classes,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler
)
return model
def get_squeezenet1_0_model_FRCNN(num_classes):
'''
backbone is efficientnet
'''
backbone = torchvision.models.squeezenet1_0(pretrained=True).features
# backbone = EfficientNet.from_pretrained('efficientnet-b7')
backbone.out_channels = 512
anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))
# anchor_generator = AnchorGenerator(sizes=((8, 16, 32, 64, 128, 256, 512),),
# aspect_ratios=((0.5, 1.0, 1,5, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
output_size=7,
sampling_ratio=2)
model = torchvision.models.detection.faster_rcnn.FasterRCNN(backbone,
num_classes,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
return model
def get_alexnet_model_FRCNN(num_classes):
'''
backbone is efficientnet
'''
backbone = torchvision.models.alexnet(pretrained=True).features
# backbone = EfficientNet.from_pretrained('efficientnet-b7')
backbone.out_channels = 256
# anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
# aspect_ratios=((0.5, 1.0, 2.0),))
anchor_generator = AnchorGenerator(sizes=((8, 16, 32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 1,5, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
output_size=7,
sampling_ratio=2)
model = torchvision.models.detection.faster_rcnn.FasterRCNN(backbone,
num_classes,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
return model
def get_mnasnet0_5_model_FRCNN(num_classes):
'''
backbone is efficientnet
'''
backbone = torchvision.models.mnasnet0_5(pretrained=True).layers
# backbone = EfficientNet.from_pretrained('efficientnet-b7')
backbone.out_channels = 1280
# anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
# aspect_ratios=((0.5, 1.0, 2.0),))
anchor_generator = AnchorGenerator(sizes=((8, 16, 32, 64, 128),),
aspect_ratios=((0.5, 1.0, 1,5, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
output_size=5,
sampling_ratio=2)
model = torchvision.models.detection.faster_rcnn.FasterRCNN(backbone,
num_classes,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
return model
class BoxHead(nn.Module):
def __init__(self, vgg):
super(BoxHead, self).__init__()
self.classifier = nn.Sequential(*list(vgg.classifier._modules.values())[:-1])
self.in_features = 4096 # feature out from mlp
def forward(self, x):
x = x.flatten(start_dim=1)
x = self.classifier(x)
return x
def get_vgg16_model_FRCNN(num_classes):
'''
backbone is vgg16
'''
# modified from this issue page https://github.com/pytorch/vision/issues/1116
vgg = torchvision.models.vgg16(pretrained=True)
backbone = vgg.features[:-1]
for layer in backbone[:10]:
for p in layer.parameters():
p.requires_grad = False
backbone.out_channels = 512
# anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
# aspect_ratios=((0.5, 1.0, 2.0),))
anchor_generator = AnchorGenerator(sizes=((2,4,8,16,32, 64, 128, 256,512),),
aspect_ratios=((0.5, 1.0, 1.5, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
output_size=7,
sampling_ratio=2)
box_head = BoxHead(vgg)
in_features = box_head.in_features
model = torchvision.models.detection.faster_rcnn.FasterRCNN(
backbone, # num_classes, #num_classes should be None when box_predictor is specified
rpn_anchor_generator = anchor_generator,
box_roi_pool = roi_pooler,
box_head = box_head,
box_predictor = FastRCNNPredictor(in_features, num_classes))
return model
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# Data loading code
print("Loading data")
dataset, num_classes = get_dataset(args.dataset, "trainval",
get_transform(train=True), args.data_path, args.num_classes)
dataset_test, _ = get_dataset(args.dataset, "test",
get_transform(train=False), args.data_path,args.num_classes)
print("Creating data loaders")
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
else:
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
if args.aspect_ratio_group_factor >= 0:
group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
else:
train_batch_sampler = torch.utils.data.BatchSampler(
train_sampler, args.batch_size, drop_last=True)
data_loader = torch.utils.data.DataLoader(
dataset, batch_sampler=train_batch_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1,
sampler=test_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn)
print("Creating model")
# model = torchvision.models.detection.__dict__[args.model](num_classes=num_classes,
# pretrained=args.pretrained)
if args.model == 'resnet50':
model = torchvision.models.detection.__dict__['fasterrcnn_resnet50_fpn'](num_classes=num_classes,
pretrained=args.pretrained) # 默认backbone为fasterrcnn_resnet50_fpn
elif args.model == 'mobilenet_v2':
model = get_mobilnet_v2_model_FRCNN(num_classes) # backbone为mobilenet_v2
elif args.model == 'vgg16':
model = get_vgg16_model_FRCNN(num_classes) # backbone为vgg16
elif args.model =='squeezenet1_0':
model = get_squeezenet1_0_model_FRCNN(num_classes)
elif args.model =='alexnet':
model = get_alexnet_model_FRCNN(num_classes)
elif args.model =='mnasnet0_5':
model = get_mnasnet0_5_model_FRCNN(num_classes)
model.to(device)
print(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.test_only:
evaluate(model, data_loader_test, device=device)
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq)
lr_scheduler.step()
if args.output_dir:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': args,
'epoch': epoch},
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
# evaluate after every epoch
evaluate(model, data_loader_test, device=device)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
parser.add_argument('--data-path', default=r"D:\simpleod\YOLODataset\CocoDataset",
help='dataset path')
parser.add_argument('--dataset', default='coco', help='dataset')
parser.add_argument('--num-classes', default=3, required=False, help='number of classes in dataset')
parser.add_argument('--model', default='mobilenet_v2',
help='backbone model of fasterrcnn, options are: \
resnet50,vgg16,mobilenet_v2,squeezenet1_0,alexnet,mnasnet0_5')
parser.add_argument('--device', default='cuda', help='device')
parser.add_argument('-b', '--batch-size', default=4, type=int,
help='images per gpu, the total batch size is $NGPU x batch_size')
parser.add_argument('--epochs', default=30, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--lr', default=0.02, type=float,
help='initial learning rate, 0.02 is the default value for training '
'on 8 gpus and 2 images_per_gpu')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-step-size', default=8, type=int, help='decrease lr every step-size epochs')
parser.add_argument('--lr-steps', default=[16, 22], nargs='+', type=int, help='decrease lr every step-size epochs')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('--print-freq', default=50, type=int, help='print frequency')
parser.add_argument('--output-dir', default='checkpoints', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
parser.add_argument('--aspect-ratio-group-factor', default=3, type=int)
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--pretrained",
dest="pretrained",
help="Use pre-trained models from the modelzoo",
action="store_true",
)
# distributed training parameters
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
args = parser.parse_args()
if args.output_dir:
utils.mkdir(args.output_dir)
main(args)