-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet.py
executable file
·218 lines (168 loc) · 7.12 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
import os
os.environ['CUDA_VISIBLE_DEVICES']="1"
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import random_split
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.utils import make_grid
from torchinfo import summary
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import wandb
from sklearn.metrics import confusion_matrix, classification_report
import seaborn as sn
import pandas as pd
from resnet_architecture import ResNet18, ResNet34
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# wandb param
WANDB = 0
ENTITY = 'othmanelhoufi'
EXPERIMENT_NAME = 'ResNet-18-with-MultiStepLR-L2Reg1e-2'
# Hyper-parameters
BATCH_SIZE = 100
EPOCHS = 200
LEARNING_RATE = 0.1
WEIGHT_DECAY = 0.01
DROPOUT = -1
# fetch and split CIFAR10 dataset
def init_dataset_splits(batch_size):
# Image preprocessing modules
transform = transforms.Compose([
transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor()])
# CIFAR-10 dataset
train_dataset = CIFAR10(root='./data', train=True, transform=transform, download=True)
test_dataset = CIFAR10(root='./data', train=False, transform=transforms.ToTensor())
torch.manual_seed(43)
val_size = 10000
train_size = len(train_dataset) - val_size
train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size])
# Data loader
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=3, pin_memory=True)
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=True, num_workers=3, pin_memory=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False, num_workers=3, pin_memory=True)
return train_loader, val_loader, test_loader
def show_sample_images(train_loader):
for images, _ in train_loader:
print('images.shape:', images.shape)
plt.figure(figsize=(10,8))
plt.axis('off')
plt.imshow(make_grid(images, nrow=10).permute((1, 2, 0)))
plt.savefig("cifar10-sample.png",bbox_inches='tight',dpi=100)
# plt.show()
break
def accuracy(outputs, labels):
_, preds = torch.max(outputs, dim=1)
return torch.tensor(torch.sum(preds == labels).item() / len(preds))
def evaluate(model,criterion, val_loader):
val_steps = []
for i, (images, labels) in enumerate(val_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
acc = accuracy(outputs, labels)
val_steps.append({'val_loss': loss.detach(), 'val_acc': acc})
batch_losses = [x['val_loss'] for x in val_steps]
epoch_loss = torch.stack(batch_losses).mean() # Combine losses
batch_accs = [x['val_acc'] for x in val_steps]
epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies
return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
def training_loop(model, optimizer, criterion, scheduler, train_loader, val_loader):
# Magic
if WANDB: wandb.watch(model, log_freq=100)
# Train the model
total_step = len(train_loader)
model.train()
for epoch in tqdm(range(EPOCHS)):
# log lr
if WANDB: wandb.log({"learning_rate": optimizer.param_groups[0]["lr"]})
# losses history
losses = []
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.detach())
if (i+1) % 100 == 0:
print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}" .format(epoch+1, EPOCHS, i+1, total_step, loss.item()))
if WANDB: wandb.log({"train_loss": torch.stack(losses).mean()})
# Decay learning rate
scheduler.step()
# Validation phase
eval_result = evaluate(model, criterion, val_loader)
print("Epoch [{}], val_loss: {:.4f}, val_acc: {:.4f}".format(epoch+1, eval_result['val_loss'], eval_result['val_acc']))
if WANDB:
wandb.log(eval_result)
wandb.log({"epoch": epoch})
def log_confusion_matrix(y_pred, y_true, classes):
# Build confusion matrix
cf_matrix = confusion_matrix(y_true, y_pred)
df_cm = pd.DataFrame(cf_matrix/np.sum(cf_matrix) *10, index = [i for i in classes], columns = [i for i in classes])
plt.figure(figsize = (12,7))
sn.heatmap(df_cm, annot=True)
plt.savefig('output.png')
if WANDB: wandb.log({"Confusion Matrix : " + EXPERIMENT_NAME: wandb.Image(plt.gcf())})
def log_classification_report(y_true, y_pred, classes):
report = classification_report(y_true, y_pred, target_names=classes, digits=3)
print(report)
# if WANDB: wandb.log(report)
def testing_loop(model, test_loader):
# constant for classes
classes = ('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# constructing confusion matrix
y_pred = []
y_true = []
# Test the model
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
y_pred.extend(predicted.data.cpu().numpy())
y_true.extend(labels.data.cpu().numpy() )
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
log_classification_report(y_true, y_pred, classes)
log_confusion_matrix(y_pred, y_true, classes)
def main():
model = ResNet18(dropout=DROPOUT).to(device)
# model = ResNet34().to(device)
train_loader, val_loader, test_loader = init_dataset_splits(BATCH_SIZE)
show_sample_images(train_loader)
summary(model, input_size=(1, 3, 32, 32))
# Loss and Opt
criterion = nn.CrossEntropyLoss()
# optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[80,150], gamma=0.1)
# lambda1 = lambda epoch: 0.65 ** epoch
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
training_loop(model, optimizer, criterion, scheduler, train_loader, val_loader)
testing_loop(model, test_loader)
# Save the model checkpoint
torch.save(model.state_dict(), f'{EXPERIMENT_NAME}.ckpt')
if __name__ == '__main__':
if WANDB:
# init wandb
wandb.init(project='ResNet-Architecture', name=EXPERIMENT_NAME, entity=ENTITY)
main()