-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnnet3read.py
74 lines (63 loc) · 2.97 KB
/
nnet3read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 1 11:12:03 2017
Updated on Tue Sep 5 17:10:03 2017
@author: Omid Sadjadi <s.omid.sadjadi@gmail.com>
"""
import os
import mmap
import re
import numpy as np
import h5py
def nnet3read(dnnFilename, outFilename="", write_to_disk=False):
""" This is a simple, yet fast, routine that reads in Kaldi NNet3 Weight and Bias
parameters, and converts them into lists of 64-bit floating point numpy arrays
and optionally dumps the parameters to disk in HDF5 format.
:param dnnFilename: input DNN file name (it is assumed to be in text format)
:param outFilename: output hdf5 filename [optional]
:param write_to_disk: whether the parameters should be dumped to disk [optional]
:type dnnFilename: string
:type outFilename: string
:type write_to_diks: bool
:return: returns the NN weight and bias parameters (optionally dumps to disk)
:rtype: tuple (b,W) of list of 64-bit floating point numpy arrays
:Example:
>>> b, W = nnet3read('final.txt', 'DNN_1024.h5', write_to_disk=True)
"""
# nn_elements = ['LinearParams', 'BiasParams']
with open(dnnFilename, 'r') as f:
pattern = re.compile(rb'<(\bLinearParams\b|\bBiasParams\b)>\s+\[\s+([-?\d\.\de?\s]+)\]')
with mmap.mmap(f.fileno(), 0,
access=mmap.ACCESS_READ) as m:
b = []
W = []
ix = 0
for arr in pattern.findall(m):
if arr[0] == b'BiasParams':
b.append(arr[1].split())
print("layer{}: [{}x{}]".format(ix, len(b[ix]), len(W[ix])//len(b[ix])))
ix += 1
elif arr[0] == b'LinearParams':
W.append(arr[1].split())
else:
raise ValueError('oops... NN element not recognized!')
# converting list of strings into lists of 64-bit floating point numpy arrays and reshaping
b = [np.array(b[ix], dtype=np.float).reshape(-1, 1) for ix in range(len(b))]
W = [np.array(W[ix], dtype=np.float).reshape(len(b[ix]), len(W[ix])//len(b[ix])) for ix in range(len(W))]
if write_to_disk:
# writing the DNN parameters to an HDF5 file
if not outFilename:
raise ValueError('oops... output file name not specified!')
filepath = os.path.dirname(outFilename)
if filepath and not os.path.exists(filepath):
os.makedirs(filepath)
with h5py.File(outFilename, 'w') as h5f:
for ix in range(len(b)):
h5f.create_dataset('w'+str(ix), data= W[ix],
dtype='f8', compression='gzip', compression_opts=9)
h5f.create_dataset('b'+str(ix), data= b[ix],
dtype='f8', compression='gzip', compression_opts=9)
return b, W
if __name__ == '__main__':
b, W = nnet3read('final.txt', 'DNN_1024.h5', write_to_disk=True)