-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathscheduling.py
385 lines (263 loc) · 14.7 KB
/
scheduling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 24 21:29:42 2020
@author: Denis Wolf
"""
from mip import Model, xsum, BINARY, OptimizationStatus
import pandas as pd
import datetime
import plotly.figure_factory as ff
import plotly.io as pio
# read input data from excel file (has multiple sheets)
def readData(filepath):
data_employees = pd.read_excel(filepath,sheet_name="Employees").set_index("Name")
demand = pd.read_excel(filepath,sheet_name="Demand").set_index("Day")
parameters = pd.read_excel(filepath,sheet_name="Parameters").set_index("Parameter")
input_days = pd.read_excel(filepath,sheet_name="Days").set_index("Day")
optimization_parameters = pd.read_excel(filepath,sheet_name="Optimization_Parameters").set_index("Parameter")
return data_employees, demand, parameters, input_days, optimization_parameters
# from a feasible solution, construct the workforce schedule as pandas dataframe
def generateSchedule(x,z,nr_employees, nr_days, nr_slots, list_employees, days, slots, input_days):
column_names = ["Employee", "Date", "Day", "Start", "End"]
plan = pd.DataFrame(columns = column_names)
rows = []
for m in range(nr_employees):
employee = list_employees[m]
for t in range(nr_days):
day = days[t]
# type timestamp
date = input_days.loc[day,"Date"]
# convert timestamp to datetime
date_datetime = pd.Timestamp(date).to_pydatetime()
# each row in dataframe is represented in dictionary
dic = {}
start = None
end = None
for s in range(nr_slots):
if z[m][t][s].x >= 0.99:
start = slots[s]
if x[m][t][s].x >= 0.99:
end = slots[s]
dic["Employee"] = employee
dic["Date"] = date_datetime
dic["Day"] = day
# check if employee works on given day
if start is not None and end is not None:
start = datetime.datetime(date_datetime.year, date_datetime.month, date_datetime.day, start.hour, start.minute)
end = datetime.datetime(date_datetime.year, date_datetime.month, date_datetime.day, end.hour, end.minute) + datetime.timedelta(minutes=30)
dic["Start"] = start
dic["End"] = end
rows.append(dic)
plan = plan.append(rows)
return plan
# from a workforce schedule, construct a gantt chart using plotly
def getGantt(plan):
df = plan.copy()
df["Resource"] = df["Employee"]
df = df.rename(columns = {"Employee" : "Task", "Start" : "Start", "End": "Finish"})
fig = ff.create_gantt(df,index_col='Resource', group_tasks=True, title = "Workforce schedule")
return fig
# calculate weekly working times for the employees (including minus hours and overtime)
def calculateWorkingTimes(employees, plan, data_employees):
workingTimes = dict.fromkeys(employees,0)
for key, row in plan.iterrows():
employee = row["Employee"]
start = row["Start"]
end = row["End"]
if pd.isna(start):
continue
timeDiff = end - start
hours = timeDiff.total_seconds() / 3600
workingTimes[employee] += hours
df_workingTimes = pd.DataFrame.from_dict(workingTimes, orient = "index", columns = ["WeeklyHours"]).rename_axis("Name")
columns = ["Name", "min_hours_per_week", "max_hours_per_week"]
df = df_workingTimes.merge(data_employees.filter(columns), left_index=True, right_index=True)
df["minusHours"] = df["min_hours_per_week"] - df["WeeklyHours"]
df["overtime"] = df["WeeklyHours"] - df["max_hours_per_week"]
# minusHours and overTime can't be negative
df[df < 0 ] = 0
df = df[["min_hours_per_week", "max_hours_per_week", "WeeklyHours", "minusHours", "overtime"]]
return df
# generate an excel file containing to sheets:
# Schedule: Start and end time of the employees' shifts
# weeklyHours: weekly working hours, minus hours and overtime per employee
def writeToExcel(plan, weeklyHours):
plan_excel = plan.copy()
plan_excel["Date"] = plan_excel["Date"].dt.strftime('%d.%m.%Y')
plan_excel["Start"] = plan_excel["Start"].dt.strftime("%H:%M")
plan_excel["End"] = plan_excel["End"].dt.strftime("%H:%M")
with pd.ExcelWriter("Solution.xlsx", engine='xlsxwriter') as writer:
plan_excel.to_excel(writer, sheet_name="Schedule",index=False,float_format = "%0.1f")
weeklyHours.to_excel(writer, sheet_name="weeklyHours", index=True)
workbook = writer.book
# define green style
green_format = workbook.add_format({'bg_color': '#0acd0a', 'font_color': '#ffffff'})
# define red style
red_format = workbook.add_format({'bg_color': '#f64d00', 'font_color': '#ffffff'})
# sheet schedule
worksheet_schedule = writer.sheets["Schedule"]
# column width and format
worksheet_schedule.set_column('B:B', 12)
worksheet_schedule.set_column('C:C', 10)
worksheet_schedule.set_column('D:F', 6)
# sheet WweklyHours
worksheet_weeklyHours = writer.sheets['weeklyHours']
# column width
worksheet_weeklyHours.set_column('A:A', 17)
worksheet_weeklyHours.set_column('B:C', 18)
worksheet_weeklyHours.set_column('D:F', 11)
# conditional formats for minushours and overtime
worksheet_weeklyHours.conditional_format('E2:E10000', {"type": "cell", "criteria": ">", "value": 0, "format": green_format})
worksheet_weeklyHours.conditional_format('F2:F10000', {"type": "cell", "criteria": ">", "value": 0, "format": red_format})
input_datafile = "./data/InputData.xlsx"
data_employees, demand, parameters, input_days, optimization_parameters = readData(input_datafile)
list_employees = list(data_employees.index)
days = list(input_days.index)
slots = list(demand.columns)
nr_employees = len(list_employees)
nr_days = len(days)
nr_slots = len(slots)
if nr_employees == 0:
raise Exception("Enter at least 1 employee!")
else:
print("Input data read.")
print("Start scheduling.")
print("Build optimization model.")
# build optimization model
model = Model("Workforce_scheduling")
# boolean decision variable: x[m][t][s]: employee m works on day t during slot s
x = [[[model.add_var(name = "x_" + list_employees[m] + "_" + days[t] + "_" + str(slots[s]),var_type=BINARY) for s in range(nr_slots)] for t in range(nr_days)] for m in range(nr_employees)]
# boolean decision variable: z[m][t][s]: employee m starts working day on day t in slot s
z = [[[model.add_var(name = "z_" + list_employees[m] + "_" + days[t] + "_" + str(slots[s]),var_type=BINARY) for s in range(nr_slots)] for t in range(nr_days)] for m in range(nr_employees)]
model.objective = sum(x[m][t][s] for m in range(nr_employees) for t in range(nr_days) for s in range(nr_slots))
# constraint demand satisfaction: the demand for employees per slot must be met or exceeded
for t in range(nr_days):
for s in range(nr_slots):
constraint_name = "constraint_demand_" + days[t] + "_" + str(slots[s])
# important to cast: pandas gives back numpy int64
rhs = float(demand.loc[days[t], slots[s]])
model += xsum(x[m][t][s] for m in range(nr_employees)) >= rhs, constraint_name
# optional constraint: the demand for employees with special qualification must be met or exceeded in each slot with demand
if parameters.loc["demand_specialQualification_per_Slot"]["to consider"] == "yes":
for t in range(nr_days):
for s in range(nr_slots):
if demand.loc[days[t], slots[s]] > 0:
constraint_name = "constraint_special_qualification_" + days[t] + "_" + str(slots[s])
rhs = float(parameters.loc["demand_specialQualification_per_Slot"]["Value"])
model += xsum(data_employees.loc[list_employees[m], "Special Qualification"] * x[m][t][s] for m in range(nr_employees)) >= rhs, constraint_name
# constraint only one start: if an employee works during a day his/her shift can only start once
for m in range(nr_employees):
for t in range(nr_days):
constraint_name = "constraint_one_start_" + list_employees[m] + "_" + days[t]
model += xsum(z[m][t][s] for s in range(nr_slots)) <= 1, constraint_name
# constraint sequential shifts: a shift of an employee has to be consecutive
for m in range(nr_employees):
for t in range(nr_days):
for s in range(nr_slots):
constraint_name = "constraint_sequential_shifts_" + list_employees[m] + "_" + days[t] + "_" + str(slots[s])
if s == 0:
model += z[m][t][s] >= x[m][t][s], constraint_name
else:
model += z[m][t][s] >= x[m][t][s] - x[m][t][s-1], constraint_name
# optional constraint: working time of employee can't exceed maximal allowed working time per day per employee
if parameters.loc["max_workingTime_per_Day"]["to consider"] == "yes":
for m in range(nr_employees):
for t in range(nr_days):
constraint_name = "constraint_maxWorkingTimeDay_" + list_employees[m] + "_" + days[t]
rhs = float(parameters.loc["max_workingTime_per_Day"]["Value"]) * 2
model += xsum(x[m][t][s] for s in range(nr_slots)) <= rhs, constraint_name
# optional constraint: if an employee works on a day, the shift has to be equal or longer than the minimal working time per day
if parameters.loc["min_workingTime_per_Day"]["to consider"] == "yes":
for m in range(nr_employees):
for t in range(nr_days):
constraint_name = "constraint_minWorkingTimeDay_" + list_employees[m] + "_" + days[t]
rhs = 2 * float(parameters.loc["min_workingTime_per_Day"]["Value"]) * (xsum(z[m][t][s] for s in range(nr_slots)))
model += xsum(x[m][t][s] for s in range(nr_slots)) >= rhs, constraint_name
# optional constraint: each employee can only work a given amount of hours per week
if parameters.loc["max_hours_per_week"]["to consider"] == "yes":
for m in range(nr_employees):
hoursPerWeek = float(data_employees.loc[list_employees[m],"max_hours_per_week"])
overtime = 0
if parameters.loc["overtime_per_Week"]["to consider"] == "yes":
overtime = float(parameters.loc["overtime_per_Week"]["Value"])
constraint_name = "constraint_maxWorkingTimePerWeek_" + list_employees[m]
model += xsum(x[m][t][s] for t in range(nr_days) for s in range(nr_slots)) <= (hoursPerWeek + overtime) * 2, constraint_name
# optional constraint: each employee has to work a given amount of hours per week
if parameters.loc["min_hours_per_week"]["to consider"] == "yes":
for m in range(nr_employees):
hoursPerWeek = float(data_employees.loc[list_employees[m],"min_hours_per_week"])
minusHours = 0
if parameters.loc["minusHours_per_Week"]["to consider"] == "yes":
minusHours = float(parameters.loc["minusHours_per_Week"]["Value"])
constraint_name = "constraint_minWorkingTimePerWeek_" + list_employees[m]
model += xsum(x[m][t][s] for t in range(nr_days) for s in range(nr_slots)) >= (hoursPerWeek - minusHours) * 2, constraint_name
# optional constraint: each employee can only work a specific amount of hours on a given day (see data_employees). E.g. if this value is 0 then the employee can't work at all on this day
if parameters.loc["max_employee_WorkingTime_per_Day"]["to consider"] == "yes":
for m in range(nr_employees):
for t in range(nr_days):
rhs = float(data_employees.loc[list_employees[m],days[t]])
constraint_name = "constraint_maxHoursPerDay_Employee_" + list_employees[m] + "_" + days[t]
model += xsum(x[m][t][s] for s in range(nr_slots)) <= rhs * 2, constraint_name
# special ordered set (SOS) type 1 for z variable: at most one of the z variables can be set to one for each employee and day
# seems to slow down
# for m in range(nr_employees):
# for t in range(nr_days):
# model.add_sos([(z[m][t][s],1) for s in range(nr_slots)],1)
#model.write("model.lp")
# get nr of variables in model
nrVariables = model.num_cols
# get nr of constraints in model
nrConstraints = model.num_rows
print("The mode consists of " + str(nrVariables) + " decision variables and " + str(nrConstraints) + " constraints.")
print("Optimization process started.")
# get time limit in seconds for optimization
timeInSeconds = optimization_parameters.loc["timeInSeconds","Value"]
# get mip gap
mipGap = optimization_parameters.loc["mipGap", "Value"]
# if time limit was given use this time limit else default value: +inf
if not pd.isna(timeInSeconds):
model.max_seconds = timeInSeconds
print("Maximal solution time: " + str(timeInSeconds) + " seconds")
# if mip gap was given use this gap else default value: 1e-4
if not pd.isna(mipGap):
model.max_mip_gap = mipGap
print("MIP gap set to " + str(mipGap * 100) + "%")
# start optimizing
status = model.optimize()
solved = False
# optimal solution found
if status == OptimizationStatus.OPTIMAL:
if model.gap < 1e-4:
print("Optimal solution found.")
else:
print("Found a solution with gap <= set mip gap.")
gap = round(model.gap * 100,3)
print("Objective value: {}, gap: {}%".format(model.objective_value, gap))
solved = True
# feasible solution found
elif status == OptimizationStatus.FEASIBLE:
print("Feasible solution found within time limit.")
#print("Objective value: " + str(model.objective_value))
gap = round(model.gap * 100,3)
print("Objective value: {}, gap: {}%".format(model.objective_value, gap))
solved = True
# problem instance is infeasible
elif status == OptimizationStatus.INFEASIBLE:
print("Problem instance not feasible.")
# error
else:
print("ERROR!")
print(status)
# if the instance was solved (optimal or feasible solution found), construct the workforce schedule for a week and visualize via gantt chart
if solved:
print("Generate Gantt Chart.")
plan = generateSchedule(x, z, nr_employees, nr_days, nr_slots, list_employees, days, slots, input_days)
gantt = getGantt(plan)
# show gantt chart in default browser
pio.renderers.default='browser'
#gantt.show()
# create HTML file for gantt chart so that it can be deployed
pio.write_html(gantt, file="index.html", auto_open=True)
# generate solution as excel file
weeklyTimes = calculateWorkingTimes(list_employees, plan, data_employees)
writeToExcel(plan, weeklyTimes)