Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add helper to verify output shape matches result type #2269

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 2 additions & 5 deletions stablehlo/dialect/Base.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,7 @@ bool isCompatibleForHloTypeInference(TypeRange tp1, TypeRange tp2) {
}

bool isCompatibleForHloTypeInference(ArrayRef<int64_t> shape1, Type tp2) {
if (llvm::any_of(shape1, [&](int64_t x) { return x < 0; })) return false;
auto stp2 = dyn_cast<ShapedType>(tp2);
if (!stp2) return false;
return isCompatibleForHloTypeInference(
Expand All @@ -141,11 +142,7 @@ bool isCompatibleForHloTypeInference(ArrayRef<int64_t> shape1, Type tp2) {
bool isCompatibleForHloTypeInference(Value shape1, Type tp2) {
SmallVector<int64_t> shapeVec1;
if (!succeeded(matchInts(shape1, shapeVec1))) return true;
if (llvm::any_of(shapeVec1, [&](int64_t x) { return x < 0; })) return false;
auto stp2 = dyn_cast<ShapedType>(tp2);
if (!stp2) return false;
auto tp1 = RankedTensorType::get(shapeVec1, stp2.getElementType());
return isCompatibleForHloTypeInference(tp1, tp2);
return isCompatibleForHloTypeInference(shapeVec1, tp2);
}

LogicalResult matchInt(Value value, int64_t& result) {
Expand Down
58 changes: 35 additions & 23 deletions stablehlo/dialect/TypeInference.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ limitations under the License.
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Quant/QuantTypes.h"
#include "mlir/IR/Attributes.h"
Expand All @@ -66,9 +67,11 @@ limitations under the License.
namespace mlir {
namespace hlo {
namespace {

//===----------------------------------------------------------------------===//
// Utils for quantization specific verifications
//===----------------------------------------------------------------------===//

template <typename T>
bool allQuantized(ArrayRef<Type> typeRange) {
return llvm::all_of(
Expand Down Expand Up @@ -468,6 +471,27 @@ LogicalResult verifyAddOp(std::optional<Location> location, Operation* op,
return success();
}

// If the shape operand is constant, checks that it is compatible with the
// result's shape. Emits an error if the shapes are incompatible.
LogicalResult verifyShapeOperandIsCompatibleWithResultType(
std::optional<Location> loc, Value shapeOperand, Type resultType) {
if (SmallVector<int64_t> shape;
succeeded(matchInts(shapeOperand, shape)) &&
!isCompatibleForHloTypeInference(shape, resultType)) {
std::string str;
llvm::raw_string_ostream os(str);
llvm::interleaveComma(shape, os, [&](int64_t i) { os << i; });
return emitOptionalError(loc, "output shape [", os.str(),
"] is incompatible with return type of operation ",
resultType);
}
return success();
}

//===----------------------------------------------------------------------===//
// Verifiers
//===----------------------------------------------------------------------===//

LogicalResult verifyTransposeOp(std::optional<Location> location,
Type operandType, ArrayRef<int64_t> permutation,
Type resultType) {
Expand Down Expand Up @@ -3760,26 +3784,23 @@ LogicalResult verifyDynamicBroadcastInDimOp(
}
}

if (!isCompatibleForHloTypeInference(outputDimensions, resultType))
return emitOptionalError(
location,
"output_dimensions are incompatible with return type of operation ",
resultType);
if (failed(verifyShapeOperandIsCompatibleWithResultType(
location, outputDimensions, resultType)))
return failure();

return success();
}

LogicalResult verifyDynamicIotaOp(std::optional<Location> location,
Value outputShape, int64_t iotaDimension,
Value result) {
auto shape = cast<ShapedType>(result.getType());
auto resultType = cast<ShapedType>(result.getType());

if (!isCompatibleForHloTypeInference(outputShape, shape))
return emitOptionalError(
location, "output_shape is incompatible with return type of operation ",
result.getType());
if (failed(verifyShapeOperandIsCompatibleWithResultType(location, outputShape,
resultType)))
return failure();

if (iotaDimension >= shape.getRank() || iotaDimension < 0)
if (iotaDimension >= resultType.getRank() || iotaDimension < 0)
return emitOptionalError(
location,
"iota dimension cannot go beyond the output rank or be negative.");
Expand Down Expand Up @@ -3850,18 +3871,9 @@ LogicalResult verifyDynamicReshapeOp(std::optional<Location> location,
}
}

if (SmallVector<int64_t> shape;
succeeded(matchInts(outputShape, shape)) &&
!isCompatibleForHloTypeInference(shape, resultType)) {
std::string str;
llvm::raw_string_ostream os(str);
os << "[";
llvm::interleaveComma(shape, os, [&](int64_t i) { os << i; });
os << "]";
return emitOptionalError(location, "output_shape ", os.str(),
" is incompatible with return type of operation ",
resultType);
}
if (failed(verifyShapeOperandIsCompatibleWithResultType(location, outputShape,
resultType)))
return failure();
return success();
}

Expand Down
58 changes: 53 additions & 5 deletions stablehlo/tests/ops_stablehlo.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1026,7 +1026,7 @@ func.func @dynamic_broadcast_in_dim_shape_mismatch(%arg0: tensor<32xf32>, %shape
// -----

func.func @dynamic_broadcast_in_dim_output_dimensions_negative_size(%arg0: tensor<4xf32>) -> tensor<3x4xf32> {
// @expected-error@+2 {{output_dimensions are incompatible with return type of operation 'tensor<3x4xf32>'}}
// @expected-error@+2 {{output shape [-1, 4] is incompatible with return type of operation 'tensor<3x4xf32>'}}
%0 = stablehlo.constant dense<[-1, 4]> : tensor<2xi64>
%1 = stablehlo.dynamic_broadcast_in_dim %arg0, %0, dims = [1] : (tensor<4xf32>, tensor<2xi64>) -> tensor<3x4xf32>
return %1 : tensor<3x4xf32>
Expand All @@ -1035,14 +1035,30 @@ func.func @dynamic_broadcast_in_dim_output_dimensions_negative_size(%arg0: tenso
// -----

func.func @dynamic_broadcast_in_dim_output_dimensions_mismatching_size(%arg0: tensor<4xf32>) -> tensor<3x4xf32> {
// @expected-error@+2 {{output_dimensions are incompatible with return type of operation 'tensor<3x4xf32>'}}
// @expected-error@+2 {{output shape [1, 4] is incompatible with return type of operation 'tensor<3x4xf32>'}}
%0 = stablehlo.constant dense<[1, 4]> : tensor<2xi64>
%1 = stablehlo.dynamic_broadcast_in_dim %arg0, %0, dims = [1] : (tensor<4xf32>, tensor<2xi64>) -> tensor<3x4xf32>
return %1 : tensor<3x4xf32>
}

// -----

func.func @dynamic_broadcast_in_dim_output_dimensions_match_result(%arg0: tensor<4xf32>) -> tensor<3x4xf32> {
%0 = stablehlo.constant dense<[3, 4]> : tensor<2xi64>
%1 = stablehlo.dynamic_broadcast_in_dim %arg0, %0, dims = [1] : (tensor<4xf32>, tensor<2xi64>) -> tensor<3x4xf32>
return %1 : tensor<3x4xf32>
}

// -----

func.func @dynamic_broadcast_in_dim_output_dimensions_compatible_with_result(%arg0: tensor<4xf32>) -> tensor<?x?xf32> {
%0 = stablehlo.constant dense<[3, 4]> : tensor<2xi64>
%1 = stablehlo.dynamic_broadcast_in_dim %arg0, %0, dims = [1] : (tensor<4xf32>, tensor<2xi64>) -> tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}

// -----

func.func @dynamic_broadcast_in_dim_negative_size(%arg0: tensor<1xf32>, %shape: tensor<3xi64>) -> tensor<7x8x9xf32> {
// expected-error@+1 {{broadcast_dimensions contains invalid value -1 for result with rank 3}}
%0 = "stablehlo.dynamic_broadcast_in_dim"(%arg0, %shape) {broadcast_dimensions = array<i64: -1>} : (tensor<1xf32>, tensor<3xi64>) -> tensor<7x8x9xf32>
Expand Down Expand Up @@ -3174,14 +3190,30 @@ func.func @dynamic_reshape_incompatible_shapes(%arg0: tensor<?xf32>, %shape: ten
// -----

func.func @dynamic_reshape_output_shape_mismatching_size(%arg0: tensor<4xf32>) -> tensor<1x4xf32> {
// expected-error@+2 {{output_shape [2, 2] is incompatible with return type of operation 'tensor<1x4xf32>'}}
// expected-error@+2 {{output shape [2, 2] is incompatible with return type of operation 'tensor<1x4xf32>'}}
%0 = stablehlo.constant dense<[2, 2]> : tensor<2xi64>
%1 = stablehlo.dynamic_reshape %arg0, %0 : (tensor<4xf32>, tensor<2xi64>) -> tensor<1x4xf32>
return %1 : tensor<1x4xf32>
}

// -----

func.func @dynamic_reshape_output_shape_matches_result(%arg0: tensor<4xf32>) -> tensor<1x4xf32> {
%0 = stablehlo.constant dense<[1, 4]> : tensor<2xi64>
%1 = stablehlo.dynamic_reshape %arg0, %0 : (tensor<4xf32>, tensor<2xi64>) -> tensor<1x4xf32>
return %1 : tensor<1x4xf32>
}

// -----

func.func @dynamic_reshape_output_shape_compatible_with_result(%arg0: tensor<4xf32>) -> tensor<?x?xf32> {
%0 = stablehlo.constant dense<[1, 4]> : tensor<2xi64>
%1 = stablehlo.dynamic_reshape %arg0, %0 : (tensor<4xf32>, tensor<2xi64>) -> tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}

// -----

func.func @dynamic_reshape_dynamic_output_shape(%arg0: tensor<?xf32>, %shape: tensor<?xindex>) -> tensor<1x4xf32> {
// expected-error@+1 {{op operand #1 must be statically shaped}}
%0 = "stablehlo.dynamic_reshape"(%arg0, %shape) : (tensor<?xf32>, tensor<?xindex>) -> tensor<1x4xf32>
Expand Down Expand Up @@ -5431,7 +5463,7 @@ func.func @dynamic_iota_invalid_iota_dimension_too_big() -> tensor<?xf32> {
// -----

func.func @dynamic_iota_output_shape_negative_size() -> tensor<4xf32> {
// @expected-error@+2 {{output_shape is incompatible with return type of operation 'tensor<4xf32>'}}
// @expected-error@+2 {{output shape [-1] is incompatible with return type of operation 'tensor<4xf32>'}}
%0 = stablehlo.constant dense<[-1]> : tensor<1xi64>
%1 = stablehlo.dynamic_iota %0, dim = 0 : (tensor<1xi64>) -> tensor<4xf32>
func.return %1 : tensor<4xf32>
Expand All @@ -5440,14 +5472,30 @@ func.func @dynamic_iota_output_shape_negative_size() -> tensor<4xf32> {
// -----

func.func @dynamic_iota_output_shape_mismatching_size() -> tensor<4xf32> {
// @expected-error@+2 {{output_shape is incompatible with return type of operation 'tensor<4xf32>'}}
// @expected-error@+2 {{output shape [1] is incompatible with return type of operation 'tensor<4xf32>'}}
%0 = stablehlo.constant dense<[1]> : tensor<1xi64>
%1 = stablehlo.dynamic_iota %0, dim = 0 : (tensor<1xi64>) -> tensor<4xf32>
func.return %1 : tensor<4xf32>
}

// -----

func.func @dynamic_iota_output_shape_matches_result() -> tensor<4xf32> {
%0 = stablehlo.constant dense<[4]> : tensor<1xi64>
%1 = stablehlo.dynamic_iota %0, dim = 0 : (tensor<1xi64>) -> tensor<4xf32>
func.return %1 : tensor<4xf32>
}

// -----

func.func @dynamic_iota_output_shape_compatible_with_result() -> tensor<?xf32> {
%0 = stablehlo.constant dense<[4]> : tensor<1xi64>
%1 = stablehlo.dynamic_iota %0, dim = 0 : (tensor<1xi64>) -> tensor<?xf32>
func.return %1 : tensor<?xf32>
}

// -----

func.func @first(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {
func.return %arg0 : tensor<f32>
}
Expand Down
Loading