diff --git a/README.md b/README.md index 01ee077a..77c86639 100644 --- a/README.md +++ b/README.md @@ -74,10 +74,10 @@ For further examples check out the >> metric = metrics.multioutput.MicroAverage(metrics.MAE()) >>> ev = evaluate.progressive_val_score(dataset, model, metric) >>> print(f"MicroAverage(MAE): {metric.get():.2f}") -MicroAverage(MAE): 28.36 +MicroAverage(MAE): 34.31 ``` @@ -153,11 +153,11 @@ MicroAverage(MAE): 28.36 >>> for x, y in dataset: ... score = model.score_one(x) -... model = model.learn_one(x=x) -... metric = metric.update(y, score) +... model.learn_one(x=x) +... metric.update(y, score) ... >>> print(f"ROCAUC: {metric.get():.4f}") -ROCAUC: 0.7447 +ROCAUC: 0.9017 ``` diff --git a/deep_river/anomaly/ae.py b/deep_river/anomaly/ae.py index 9a063e16..a4328134 100644 --- a/deep_river/anomaly/ae.py +++ b/deep_river/anomaly/ae.py @@ -89,11 +89,11 @@ class Autoencoder(DeepEstimator, AnomalyDetector): >>> for x, y in dataset: ... score = model.score_one(x) - ... model = model.learn_one(x=x) - ... metric = metric.update(y, score) + ... model.learn_one(x=x) + ... metric.update(y, score) ... >>> print(f"ROCAUC: {metric.get():.4f}") - ROCAUC: 0.7447 + ROCAUC: 0.9017 """ def __init__( diff --git a/deep_river/anomaly/probability_weighted_ae.py b/deep_river/anomaly/probability_weighted_ae.py index 5bbe42f1..591d2c58 100644 --- a/deep_river/anomaly/probability_weighted_ae.py +++ b/deep_river/anomaly/probability_weighted_ae.py @@ -83,8 +83,8 @@ class ProbabilityWeightedAutoencoder(ae.Autoencoder): >>> for x, y in dataset: ... score = model.score_one(x) - ... model = model.learn_one(x=x) - ... metric = metric.update(y, score) + ... model.learn_one(x=x) + ... metric.update(y, score) ... >>> print(f"ROCAUC: {metric.get():.4f}") ROCAUC: 0.8599 diff --git a/deep_river/classification/classifier.py b/deep_river/classification/classifier.py index 8d188814..a6d08035 100644 --- a/deep_river/classification/classifier.py +++ b/deep_river/classification/classifier.py @@ -116,11 +116,11 @@ class Classifier(DeepEstimator, base.MiniBatchClassifier): >>> for x, y in dataset: ... y_pred = model_pipeline.predict_one(x) # make a prediction - ... metric = metric.update(y, y_pred) # update the metric - ... model_pipeline = model_pipeline.learn_one(x,y) + ... metric.update(y, y_pred) # update the metric + ... model_pipeline.learn_one(x,y) >>> print(f'Accuracy: {metric.get()}') - Accuracy: 0.6728 + Accuracy: 0.6736 """ def __init__( diff --git a/deep_river/classification/rolling_classifier.py b/deep_river/classification/rolling_classifier.py index 1b573342..8fac33f2 100644 --- a/deep_river/classification/rolling_classifier.py +++ b/deep_river/classification/rolling_classifier.py @@ -119,10 +119,10 @@ class RollingClassifier(Classifier, RollingDeepEstimator): >>> for x, y in dataset.take(5000): ... y_pred = model_pipeline.predict_one(x) # make a prediction - ... metric = metric.update(y, y_pred) # update the metric - ... model = model_pipeline.learn_one(x, y) # make the model learn + ... metric.update(y, y_pred) # update the metric + ... model_pipeline.learn_one(x, y) # make the model learn >>> print(f'Accuracy: {metric.get()}') - Accuracy: 0.4552 + Accuracy: 0.4548 """ def __init__( diff --git a/deep_river/classification/zoo.py b/deep_river/classification/zoo.py index 77aab20d..ec41ac7e 100644 --- a/deep_river/classification/zoo.py +++ b/deep_river/classification/zoo.py @@ -60,8 +60,8 @@ class LogisticRegression(Classifier): >>> for x, y in dataset: ... y_pred = model_pipeline.predict_one(x) # make a prediction - ... metric = metric.update(y, y_pred) # update the metric - ... model_pipeline = model_pipeline.learn_one(x, y) # update the model + ... metric.update(y, y_pred) # update the metric + ... model_pipeline.learn_one(x, y) # update the model >>> print(f"Accuracy: {metric.get():.2f}") Accuracy: 0.44 @@ -181,8 +181,8 @@ class MultiLayerPerceptron(Classifier): >>> for x, y in dataset: ... y_pred = model_pipeline.predict_one(x) # make a prediction - ... metric = metric.update(y, y_pred) # update the metric - ... model_pipeline = model_pipeline.learn_one(x, y) # update the model + ... metric.update(y, y_pred) # update the metric + ... model_pipeline.learn_one(x, y) # update the model >>> print(f"Accuracy: {metric.get():.2f}") Accuracy: 0.44 diff --git a/deep_river/regression/multioutput.py b/deep_river/regression/multioutput.py index 0a996d3c..55a587b2 100644 --- a/deep_river/regression/multioutput.py +++ b/deep_river/regression/multioutput.py @@ -82,7 +82,7 @@ class MultiTargetRegressor(RiverMultiTargetRegressor, DeepEstimator): >>> metric = metrics.multioutput.MicroAverage(metrics.MAE()) >>> ev = evaluate.progressive_val_score(dataset, model, metric) >>> print(f"MicroAverage(MAE): {metric.get():.2f}") - MicroAverage(MAE): 28.36 + MicroAverage(MAE): 34.31 """