-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
265 lines (221 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# -*- coding: utf-8 -*-
import re
import time
import numpy as np
import pandas as pd
import nltk as nlp
import torch
import string
import torch.nn as nn
import nltk # Natural Language toolkit
from transformers import AutoTokenizer
from nltk.corpus import stopwords
from nltk import word_tokenize,sent_tokenize
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import XLMRobertaForSequenceClassification, AdamW, get_linear_schedule_with_warmup, AutoModelForSequenceClassification
from options import Options
options = Options()
print(options.model_name)
if torch.cuda.is_available():
# to use GPU
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('GPU is:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
nltk.download("stopwords") #downloading stopwords
nltk.download('punkt')
nltk.download('wordnet')
nltk.download("stopwords")
def clean_text(text):
text = text.lower()
text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
text = re.sub(r'[^ \w\.]', '', text)
text=nltk.word_tokenize(text)
text =[word for word in text if not word in set(stopwords.words("turkish") + ['mi', 'bi'])]
lemma=nlp.WordNetLemmatizer()
text=[lemma.lemmatize(word) for word in text]
text=" ".join(text)
return text
def read_csv(path, path2 = None):
df = pd.read_csv(path, encoding='utf-8', delimiter='|')
print(dict(df.groupby("target").count()["id"]))
if path2== None:
df['clean_text'] = df.text.apply(lambda x: clean_text(x))
return df
df_z = pd.read_csv(path2, encoding='utf-8', delimiter='|')
non = pd.DataFrame(df.values.repeat(df.target=='OTHER', axis=0), columns=df.columns)
df_z['offansive'][58] = 1
df_z.target = df_z.target.apply(lambda x: x.strip())
df_z.offansive = df_z.offansive.apply(lambda x: int(x))
dict(df_z.groupby("target").count()["id"])
df_z.columns = ['id','text','is_offensive','target']
df = df.drop('id', axis=1)
df_z = df_z.drop('id', axis=1)
frames = [df, df_z, non]
result = pd.concat(frames)
df = result
df['clean_text'] = df.text.apply(lambda x: clean_text(x))
return df
def set_tokenizer(df):
if options.model_name == "mdeberta-v3-base":
tokenizer = AutoTokenizer.from_pretrained("microsoft/mdeberta-v3-base")
elif options.model_name == "xlm-roberta-base":
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
tokenized_feature_raw = tokenizer.batch_encode_plus(
# Sentences to encode
df.clean_text.values.tolist(),
# Add '[CLS]' and '[SEP]'
add_special_tokens = True
)
# collect tokenized sentence length
token_sentence_length = [len(x) for x in tokenized_feature_raw['input_ids']]
features = df.clean_text.values.tolist()
target = df.target.values.tolist()
MAX_LEN = options.max_seq_len
tokenized_feature = tokenizer.batch_encode_plus(
# Sentences to encode
features,
# Add '[CLS]' and '[SEP]'
add_special_tokens = True,
# Add empty tokens if len(text)<MAX_LEN
padding = 'max_length',
# Truncate all sentences to max length
truncation=True,
# Set the maximum length
max_length = MAX_LEN,
# Return attention mask
return_attention_mask = True,
# Return pytorch tensors
return_tensors = 'pt'
)
return tokenizer, tokenized_feature
def get_train_val_data_loader(tokenized_feature, target):
le = LabelEncoder()
le.fit(target)
target_num = le.transform(target)
train_inputs, validation_inputs, train_labels, validation_labels, train_masks, validation_masks = train_test_split(tokenized_feature['input_ids'],
target_num,
tokenized_feature['attention_mask'],
random_state=2018, test_size=0.2, stratify=target)
batch_size = options.batch_size
# Create the DataLoader for our training set
train_data = TensorDataset(train_inputs, train_masks, torch.tensor(train_labels))
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
# Create the DataLoader for our test set
validation_data = TensorDataset(validation_inputs, validation_masks, torch.tensor(validation_labels))
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=batch_size)
return train_dataloader, validation_dataloader, le
def get_model(number_of_classes, len_token_embeddings):
if options.model_name == "mdeberta-v3-base":
model = AutoModelForSequenceClassification.from_pretrained("microsoft/mdeberta-v3-base", num_labels = number_of_classes)
elif options.model_name == "xlm-roberta-base":
model = XLMRobertaForSequenceClassification.from_pretrained(
"xlm-roberta-base",
# Specify number of classes
num_labels = len(set(target)),
# Whether the model returns attentions weights
output_attentions = False,
# Whether the model returns all hidden-states
output_hidden_states = False
)
model.resize_token_embeddings(len_token_embeddings)
if device == torch.device("cuda"):
model.cuda()
return model
def train(model, train_dataloader):
# Optimizer & Learning Rate Scheduler
optimizer = AdamW(model.parameters(),
lr = options.learning_rate,
eps = 1e-8
)
criteria = nn.CrossEntropyLoss()
epochs = options.epochs
total_steps = len(train_dataloader) * epochs
loss_values = []
print('total steps per epoch: ', len(train_dataloader) / options.batch_size)
# looping over epochs
for epoch_i in range(0, epochs):
print('training on epoch: ', epoch_i)
t0 = time.time()
total_loss = 0
model.train()
for step, batch in enumerate(train_dataloader):
if step % 50 == 0 and not step == 0:
print('training on step: ', step)
print('total time used is: {0:.2f} s'.format(time.time() - t0))
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
model.zero_grad()
outputs = model(b_input_ids.long(),
token_type_ids=None,
attention_mask=b_input_mask.long(),
labels=b_labels.long())
# get loss
logits = outputs.logits
loss = criteria(logits, b_labels.long())
loss.backward()
# total loss
total_loss += loss.item()
# update optimizer
optimizer.step()
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
final_prediction = np.argmax(logits, axis=-1).flatten()
print(final_prediction, b_labels)
# Calculate the average loss over the training data.
avg_train_loss = total_loss / len(train_dataloader)
# Store the loss value for plotting the learning curve.
loss_values.append(avg_train_loss)
print("average training loss: {0:.2f}".format(avg_train_loss))
return model
def validate(model, validation_dataloader, le):
t0 = time.time()
model.eval()
predictions,true_labels =[],[]
for batch in validation_dataloader:
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
with torch.no_grad():
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
final_prediction = np.argmax(logits, axis=-1).flatten()
predictions.append(final_prediction)
true_labels.append(label_ids)
print('total time used is: {0:.2f} s'.format(time.time() - t0))
# convert numeric label to string
final_prediction_list = le.inverse_transform(np.concatenate(predictions))
final_truelabel_list = le.inverse_transform(np.concatenate(true_labels))
cr = classification_report(final_truelabel_list,
final_prediction_list,
output_dict=False)
print(cr)
def predict_one_sample(model, text):
id2label = {0:'INSULT', 1:'OTHER', 2:'PROFANITY', 3:'RACIST', 4:'SEXIST'}
model =model.to('cpu')
from transformers import pipeline
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
print(id2label[int(classifier(text)[0]['label'].split('_')[-1])])
if __name__ == '__main__':
data_frame = read_csv(options.data_source, options.data_source_2)
features = data_frame.clean_text.values.tolist()
target = data_frame.target.values.tolist()
tokenizer, tokenized_feature = set_tokenizer(data_frame)
train_dataloader, validation_dataloader, le = get_train_val_data_loader(tokenized_feature, target)
model = get_model(len(target), len(tokenizer))
model = train(model, train_dataloader)
validate(model, validation_dataloader, le)
predict_one_sample(model, "Bu bir test cümlesidir.")
tokenizer.save_pretrained(options.model_save_path)
model.save_pretrained(options.tokenizer_save_path)