Skip to content

Code and data used for participation in SemEval-2018 Task 3: "Irony detection in English tweets"

Notifications You must be signed in to change notification settings

omidrohanian/irony_detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Irony Detection in English Tweets

Code and the data used with regard to experiments in the paper WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony.

Dependencies:

  • Ekphrasis (pip install ekphrasis)
  • Stanford CoreNLP
  • Pycore NLP (pip install pycorenlp)
  • Sklearn / scikit-learn (pip install scikit-learn)
  • NLTK (pip install nltk)
    • nltk.download('wordnet')
    • nltk.download('averaged_perceptron_tagger')
    • nltk.download('sentiwordnet')
  • Gensim (pip install gensim)

If you use the code for your project, please cite the following paper (link to PDF):

@inproceedings{rohanian2018wlv,
  title={WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony},
  author={Rohanian, Omid and Taslimipoor, Shiva and Evans, Richard and Mitkov, Ruslan},
  booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
  pages={553--559},
  year={2018}
}