-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
53 lines (37 loc) · 1.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import time
import torch
from torch.utils.data import DataLoader
from engine import get_detection_model, train_one_epoch, evaluate, train
from utils.dataset import PennFudanDataset
from utils.transforms import Compose, ToTensor
from utils.utils import collate_fn, show_sample
root_path = "../data"
save_path = "../models"
show_example = False
num_epochs = 10
batch_size = 1
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
if __name__ == "__main__":
# Create Dataloader
dataset = PennFudanDataset(root_path, transforms=Compose([ToTensor()]))
# split the dataset in train and test set
torch.manual_seed(42)
indices = torch.randperm(len(dataset)).tolist()
dataset_train = torch.utils.data.Subset(dataset, indices[:-50])
dataset_test = torch.utils.data.Subset(dataset, indices[-50:])
if not os.path.exists(save_path):
os.makedirs(save_path)
train_loader = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
test_loader = DataLoader(dataset_test, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
if show_example:
img, target = dataset[10]
show_sample(img, target)
# Create the model
model = get_detection_model(num_classes=2)
model.to(device)
# Construct optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
# Train the model
train(model, num_epochs, train_loader, test_loader, optimizer, device, save_path)