Installation:
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
Usage:
For training set:
python ml_example/train_pipeline.py configs/train_config.yaml
For prediction:
python ml_example/predict_pipeline.py configs/predict_config.yaml
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── metrics <- Data from some models metrics
│ ├── predicts <- Data from some model predicts
│ ├── processed <- The final, canonical data sets for modeling.
│ ├── raw <- The original, immutable data dump.
│ └── make_dataset.py<- Code for datasets process
│
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks for EDA and some prototyping
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
├── configs <- Configs for pipelines
│
├── predict_pipeline.py <- prediction pipeline file
│
├── train_pipeline.py <- training pipeline file
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
|
├── custom_logs <- folder with logging information & code
|
├── enities <- enities code folder
|
├── features <- features code folder
|
├── metrics <- metrics class folder
|
├── model_gen <- metrics class folder
|
└── models <- serialize models storage