forked from kik/progpow-exploit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprogpow.cpp
391 lines (337 loc) · 12.6 KB
/
progpow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// ethash: C/C++ implementation of Ethash, the Ethereum Proof of Work algorithm.
// Copyright 2018-2019 Pawel Bylica.
// Licensed under the Apache License, Version 2.0.
#include <ethash/progpow.hpp>
#include "bit_manipulation.h"
#include "endianness.hpp"
#include "ethash-internal.hpp"
#include "kiss99.hpp"
#include <ethash/keccak.hpp>
#include <array>
namespace progpow
{
namespace
{
/// A variant of Keccak hash function for ProgPoW.
///
/// This Keccak hash function uses 800-bit permutation (Keccak-f[800]) with 576 bitrate.
/// It take exactly 576 bits of input (split across 3 arguments) and adds no padding.
///
/// @param header_hash The 256-bit header hash.
/// @param nonce The 64-bit nonce.
/// @param mix_hash Additional 256-bits of data.
/// @return The 256-bit output of the hash function.
hash256 keccak_progpow_256(
const hash256& header_hash, uint64_t nonce, const hash256& mix_hash) noexcept
{
static constexpr size_t num_words =
sizeof(header_hash.word32s) / sizeof(header_hash.word32s[0]);
uint32_t state[25] = {};
size_t i;
for (i = 0; i < num_words; ++i)
state[i] = le::uint32(header_hash.word32s[i]);
state[i++] = static_cast<uint32_t>(nonce);
state[i++] = static_cast<uint32_t>(nonce >> 32);
for (uint32_t mix_word : mix_hash.word32s)
state[i++] = le::uint32(mix_word);
ethash_keccakf800(state);
hash256 output;
for (i = 0; i < num_words; ++i)
output.word32s[i] = le::uint32(state[i]);
return output;
}
/// The same as keccak_progpow_256() but uses null mix
/// and returns top 64 bits of the output being a big-endian prefix of the 256-bit hash.
inline uint64_t keccak_progpow_64(const hash256& header_hash, uint64_t nonce) noexcept
{
const hash256 h = keccak_progpow_256(header_hash, nonce, {});
return be::uint64(h.word64s[0]);
}
/// ProgPoW mix RNG state.
///
/// Encapsulates the state of the random number generator used in computing ProgPoW mix.
/// This includes the state of the KISS99 RNG and the precomputed random permutation of the
/// sequence of mix item indexes.
class mix_rng_state
{
public:
inline explicit mix_rng_state(uint64_t seed) noexcept;
uint32_t next_dst() noexcept { return dst_seq[(dst_counter++) % num_regs]; }
uint32_t next_src() noexcept { return src_seq[(src_counter++) % num_regs]; }
kiss99 rng;
private:
size_t dst_counter = 0;
std::array<uint32_t, num_regs> dst_seq;
size_t src_counter = 0;
std::array<uint32_t, num_regs> src_seq;
};
mix_rng_state::mix_rng_state(uint64_t seed) noexcept
{
const auto seed_lo = static_cast<uint32_t>(seed);
const auto seed_hi = static_cast<uint32_t>(seed >> 32);
const auto z = fnv1a(fnv_offset_basis, seed_lo);
const auto w = fnv1a(z, seed_hi);
const auto jsr = fnv1a(w, seed_lo);
const auto jcong = fnv1a(jsr, seed_hi);
rng = kiss99{z, w, jsr, jcong};
// Create random permutations of mix destinations / sources.
// Uses Fisher-Yates shuffle.
for (uint32_t i = 0; i < num_regs; ++i)
{
dst_seq[i] = i;
src_seq[i] = i;
}
for (uint32_t i = num_regs; i > 1; --i)
{
std::swap(dst_seq[i - 1], dst_seq[rng() % i]);
std::swap(src_seq[i - 1], src_seq[rng() % i]);
}
}
NO_SANITIZE("unsigned-integer-overflow")
inline uint32_t random_math(uint32_t a, uint32_t b, uint32_t selector) noexcept
{
switch (selector % 11)
{
default:
case 0:
return a + b;
case 1:
return a * b;
case 2:
return mul_hi32(a, b);
case 3:
return std::min(a, b);
case 4:
return rotl32(a, b);
case 5:
return rotr32(a, b);
case 6:
return a & b;
case 7:
return a | b;
case 8:
return a ^ b;
case 9:
return clz32(a) + clz32(b);
case 10:
return popcount32(a) + popcount32(b);
}
}
/// Merge data from `b` and `a`.
/// Assuming `a` has high entropy, only do ops that retain entropy even if `b`
/// has low entropy (i.e. do not do `a & b`).
NO_SANITIZE("unsigned-integer-overflow")
inline void random_merge(uint32_t& a, uint32_t b, uint32_t selector) noexcept
{
const auto x = (selector >> 16) % 31 + 1; // Additional non-zero selector from higher bits.
switch (selector % 4)
{
case 0:
a = (a * 33) + b;
break;
case 1:
a = (a ^ b) * 33;
break;
case 2:
a = rotl32(a, x) ^ b;
break;
case 3:
a = rotr32(a, x) ^ b;
break;
}
}
using lookup_fn = hash2048 (*)(const epoch_context&, uint32_t);
using mix_array = std::array<std::array<uint32_t, num_regs>, num_lanes>;
void round(
const epoch_context& context, uint32_t r, mix_array& mix, mix_rng_state state, lookup_fn lookup)
{
const uint32_t num_items = static_cast<uint32_t>(context.full_dataset_num_items / 2);
const uint32_t item_index = mix[r % num_lanes][0] % num_items;
const hash2048 item = lookup(context, item_index);
constexpr size_t num_words_per_lane = sizeof(item) / (sizeof(uint32_t) * num_lanes);
constexpr int max_operations =
num_cache_accesses > num_math_operations ? num_cache_accesses : num_math_operations;
// Process lanes.
for (int i = 0; i < max_operations; ++i)
{
if (i < num_cache_accesses) // Random access to cached memory.
{
const auto src = state.next_src();
const auto dst = state.next_dst();
const auto sel = state.rng();
for (size_t l = 0; l < num_lanes; ++l)
{
const size_t offset = mix[l][src] % l1_cache_num_items;
random_merge(mix[l][dst], le::uint32(context.l1_cache[offset]), sel);
}
}
if (i < num_math_operations) // Random math.
{
// Generate 2 unique source indexes.
const auto src_rnd = state.rng() % (num_regs * (num_regs - 1));
const auto src1 = src_rnd % num_regs; // O <= src1 < num_regs
auto src2 = src_rnd / num_regs; // 0 <= src2 < num_regs - 1
if (src2 >= src1)
++src2;
const auto sel1 = state.rng();
const auto dst = state.next_dst();
const auto sel2 = state.rng();
for (size_t l = 0; l < num_lanes; ++l)
{
const uint32_t data = random_math(mix[l][src1], mix[l][src2], sel1);
random_merge(mix[l][dst], data, sel2);
}
}
}
// DAG access pattern.
uint32_t dsts[num_words_per_lane];
uint32_t sels[num_words_per_lane];
for (size_t i = 0; i < num_words_per_lane; ++i)
{
dsts[i] = i == 0 ? 0 : state.next_dst();
sels[i] = state.rng();
}
// DAG access.
for (size_t l = 0; l < num_lanes; ++l)
{
const auto offset = ((l ^ r) % num_lanes) * num_words_per_lane;
for (size_t i = 0; i < num_words_per_lane; ++i)
{
const auto word = le::uint32(item.word32s[offset + i]);
random_merge(mix[l][dsts[i]], word, sels[i]);
}
}
}
mix_array init_mix(uint64_t seed)
{
const uint32_t z = fnv1a(fnv_offset_basis, static_cast<uint32_t>(seed));
const uint32_t w = fnv1a(z, static_cast<uint32_t>(seed >> 32));
mix_array mix;
for (uint32_t l = 0; l < mix.size(); ++l)
{
const uint32_t jsr = fnv1a(w, l);
const uint32_t jcong = fnv1a(jsr, l);
kiss99 rng{z, w, jsr, jcong};
for (auto& row : mix[l])
row = rng();
}
return mix;
}
hash256 hash_mix(
const epoch_context& context, int block_number, uint64_t seed, lookup_fn lookup) noexcept
{
auto mix = init_mix(seed);
mix_rng_state state{uint64_t(block_number / period_length)};
for (uint32_t i = 0; i < 64; ++i)
round(context, i, mix, state, lookup);
// Reduce mix data to a single per-lane result.
uint32_t lane_hash[num_lanes];
for (size_t l = 0; l < num_lanes; ++l)
{
lane_hash[l] = fnv_offset_basis;
for (uint32_t i = 0; i < num_regs; ++i)
lane_hash[l] = fnv1a(lane_hash[l], mix[l][i]);
}
// Reduce all lanes to a single 256-bit result.
static constexpr size_t num_words = sizeof(hash256) / sizeof(uint32_t);
hash256 mix_hash;
for (uint32_t& w : mix_hash.word32s)
w = fnv_offset_basis;
for (size_t l = 0; l < num_lanes; ++l)
mix_hash.word32s[l % num_words] = fnv1a(mix_hash.word32s[l % num_words], lane_hash[l]);
return le::uint32s(mix_hash);
}
} // namespace
constexpr int TRUNCATE = 40;
result hash(const epoch_context& context, int block_number, const hash256& header_hash,
uint64_t nonce) noexcept
{
const uint64_t seed = keccak_progpow_64(header_hash, nonce) >> TRUNCATE;
const hash256 mix_hash = hash_mix(context, block_number, seed, calculate_dataset_item_2048);
const hash256 final_hash = keccak_progpow_256(header_hash, seed, mix_hash);
return {final_hash, mix_hash};
}
result hash(const epoch_context_full& context, int block_number, const hash256& header_hash,
uint64_t nonce) noexcept
{
static const auto lazy_lookup = [](const epoch_context& ctx, uint32_t index) noexcept
{
auto* full_dataset_1024 = static_cast<const epoch_context_full&>(ctx).full_dataset;
auto* full_dataset_2048 = reinterpret_cast<hash2048*>(full_dataset_1024);
hash2048& item = full_dataset_2048[index];
if (item.word64s[0] == 0)
{
// TODO: Copy elision here makes it thread-safe?
item = calculate_dataset_item_2048(ctx, index);
}
return item;
};
const uint64_t seed = keccak_progpow_64(header_hash, nonce) >> TRUNCATE;
const hash256 mix_hash = hash_mix(context, block_number, seed, lazy_lookup);
const hash256 final_hash = keccak_progpow_256(header_hash, seed, mix_hash);
return {final_hash, mix_hash};
}
bool verify(const epoch_context& context, int block_number, const hash256& header_hash,
const hash256& mix_hash, uint64_t nonce, const hash256& boundary) noexcept
{
const uint64_t seed = keccak_progpow_64(header_hash, nonce) >> TRUNCATE;
const hash256 final_hash = keccak_progpow_256(header_hash, seed, mix_hash);
if (!is_less_or_equal(final_hash, boundary))
return false;
const hash256 expected_mix_hash =
hash_mix(context, block_number, seed, calculate_dataset_item_2048);
return is_equal(expected_mix_hash, mix_hash);
}
search_result search_light(const epoch_context& context, int block_number,
const hash256& header_hash, const hash256& boundary, uint64_t start_nonce,
size_t iterations) noexcept
{
const uint64_t end_nonce = start_nonce + iterations;
for (uint64_t nonce = start_nonce; nonce < end_nonce; ++nonce)
{
result r = hash(context, block_number, header_hash, nonce);
if (is_less_or_equal(r.final_hash, boundary))
return {r, nonce};
}
return {};
}
search_result search(const epoch_context_full& context, int block_number,
const hash256& header_hash, const hash256& boundary, uint64_t start_nonce,
size_t iterations) noexcept
{
const uint64_t end_nonce = start_nonce + iterations;
for (uint64_t nonce = start_nonce; nonce < end_nonce; ++nonce)
{
result r = hash(context, block_number, header_hash, nonce);
if (is_less_or_equal(r.final_hash, boundary))
return {r, nonce};
}
return {};
}
search_result search_asic(const epoch_context& context, int block_number,
const block_header& header, const hash256& boundary,
uint64_t start_nonce, size_t iterations,
uint64_t start_extra_nonce, size_t extra_iterations) noexcept
{
const uint64_t seed = uint64_t(0) >> TRUNCATE;
const hash256 mix_hash = hash_mix(context, block_number, seed, calculate_dataset_item_2048);
const uint64_t end_extra_nonce = start_extra_nonce + extra_iterations;
for (uint64_t extra_nonce = start_extra_nonce; extra_nonce < end_extra_nonce; ++extra_nonce)
{
const block_header new_header = { header.parent, extra_nonce };
const hash256 header_hash = ethash_keccak256((const uint8_t *)&new_header, sizeof new_header);
const hash256 final_hash = keccak_progpow_256(header_hash, seed, mix_hash);
if (is_less_or_equal(final_hash, boundary))
{
const uint64_t end_nonce = start_nonce + iterations;
for (uint64_t nonce = start_nonce; nonce < end_nonce; ++nonce)
{
const uint64_t result_seed = keccak_progpow_64(header_hash, nonce) >> TRUNCATE;
if (seed == result_seed)
return {{final_hash, mix_hash}, nonce, extra_nonce};
}
}
}
return {};
}
} // namespace progpow