-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmm.c
410 lines (387 loc) · 16.3 KB
/
mm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
/*
* BEFORE GETTING STARTED:
*
* Familiarize yourself with the functions and constants/variables
* in the following included files.
* This will make the project a LOT easier as you go!!
*
* The diagram in Section 4.1 (Specification) of the handout will help you
* understand the constants in mm.h
* Section 4.2 (Support Routines) of the handout has information about
* the functions in mminline.h and memlib.h
*/
#include "./memlib.h"
#include "./mm.h"
#include "./mminline.h"
block_t *prologue;
block_t *epilogue;
/*
*
* coalesces neighboring free blocks
* arguments: my current free block
* returns: void method, but will merge free blocks if neighboring
*/
void coalesce(block_t *myBlock) {
block_t *previousBlock = block_prev(myBlock);
block_t *nextBlock = block_next(myBlock);
// if next block is free
if (block_next_allocated(myBlock) == 0) {
pull_free_block(nextBlock);
block_set_size(myBlock, (block_size(nextBlock) + block_size(myBlock)));
}
// if previous block is free
if (block_prev_allocated(myBlock) == 0) {
pull_free_block(myBlock);
block_set_size(previousBlock,
(block_size(previousBlock) + block_size(myBlock)));
}
}
// rounds up to the nearest multiple of WORD_SIZE
static inline size_t align(size_t size) {
return (((size) + (WORD_SIZE - 1)) & ~(WORD_SIZE - 1));
}
/*
* _ _ _
* _ __ ___ _ __ ___ (_)_ __ (_) |_
* | '_ ` _ \| '_ ` _ \ | | '_ \| | __|
* | | | | | | | | | | | | | | | | | |_
* |_| |_| |_|_| |_| |_|___|_|_| |_|_|\__|
* |_____|
*
* initializes the dynamic storage allocator (allocate initial heap space)
* arguments: none
* returns: 0, if successful
* -1, if an error occurs
*/
int mm_init(void) {
// initializes prologue and epilogue memory
if ((prologue = mem_sbrk(16)) == (void *)-1) {
fprintf(stderr, "mem_sbrk");
return -1;
}
if ((epilogue = mem_sbrk(16)) == (void *)-1) {
fprintf(stderr, "mem_sbrk");
return -1;
}
// sets block size and allocation
block_set_size_and_allocated(prologue, TAGS_SIZE, 1);
block_set_size_and_allocated(epilogue, TAGS_SIZE, 1);
flist_first = NULL;
return 0;
}
/* _ __ ___ _ __ ___ _ __ ___ __ _| | | ___ ___
* | '_ ` _ \| '_ ` _ \ | '_ ` _ \ / _` | | |/ _ \ / __|
* | | | | | | | | | | | | | | | | | (_| | | | (_) | (__
* |_| |_| |_|_| |_| |_|___|_| |_| |_|\__,_|_|_|\___/ \___|
* |_____|
*
* allocates a block of memory and returns a pointer to that block's payload
* arguments: size: the desired payload size for the block
* returns: a pointer to the newly-allocated block's payload (whose size
* is a multiple of ALIGNMENT), or NULL if an error occurred
*/
void *mm_malloc(size_t size) {
// TODO
if (size <= 0) {
fprintf(stderr, "size is 0 or below");
return NULL;
}
// align the size at the beginning to avoid any weird errors
size_t minimumSize = 24;
size_t alignedSize = align(size);
size_t newBlockSize = (alignedSize + TAGS_SIZE);
block_t *freeBlock;
freeBlock = flist_first;
// loop through free list
while (flist_first != NULL) {
size_t freeBlockSize = block_size(freeBlock);
// size_t freeBlockPayload = block_size(freeBlock)-(TAGS_SIZE);
if (freeBlockSize >= newBlockSize) {
// make sure that split block will then be >= minimum size or will
// fit exactly leftover size of block must be at least big enough to
// fit the tags and wordsize (24 bytes)
size_t leftOverSize = freeBlockSize - newBlockSize;
// perfect size
if (leftOverSize == 0) {
pull_free_block(freeBlock);
block_set_size_and_allocated(freeBlock, newBlockSize, 1);
return &freeBlock->payload[0];
}
// able to split
else if (leftOverSize >= minimumSize) {
pull_free_block(freeBlock);
block_set_size_and_allocated(freeBlock, newBlockSize, 1);
block_t *splitBlock = block_next(freeBlock);
// size_t alignedLeftoverSize = align(leftOverSize-TAGS_SIZE);
block_set_size_and_allocated(splitBlock, leftOverSize, 0);
// pull_free_block(splitBlock);
insert_free_block(splitBlock);
coalesce(splitBlock);
return &freeBlock->payload[0];
}
// cannot split, then will take up the entire free block
else {
pull_free_block(freeBlock);
block_set_size_and_allocated(freeBlock, freeBlockSize, 1);
return &freeBlock->payload[0];
}
}
// if I have looped through the entire free list, then break
if (block_flink(freeBlock) == flist_first) {
break;
}
freeBlock = block_flink(freeBlock);
}
if (block_prev_allocated(epilogue) == 0) {
block_t *previousFreeBlock = block_prev(epilogue);
block_t *newBlock;
size_t sizeToExtend = newBlockSize - block_size(previousFreeBlock);
if ((newBlock = mem_sbrk(sizeToExtend)) == (void *)-1) {
fprintf(stderr, "mem_sbrk");
return (void *)-1;
}
// reset the address of my new block to behind the epilogue
newBlock = (block_t *)((char *)newBlock - block_size(epilogue));
block_set_size_and_allocated(newBlock, sizeToExtend, 0);
insert_free_block(newBlock);
// move epilogue foward
epilogue = (block_t *)((char *)epilogue + block_size(newBlock));
block_set_size_and_allocated(epilogue, TAGS_SIZE, 1);
coalesce(previousFreeBlock);
pull_free_block(previousFreeBlock);
// set previous free block
block_set_size_and_allocated(previousFreeBlock, newBlockSize, 1);
return &previousFreeBlock->payload[0];
}
size_t extraAlignedSize = 128;
// if chunk size is greater than precise size
if (extraAlignedSize > newBlockSize) {
if ((extraAlignedSize - newBlockSize) >= (int)MINBLOCKSIZE) {
// now check for extending the heap
block_t *newBlock;
if ((newBlock = mem_sbrk(extraAlignedSize)) == (void *)-1) {
fprintf(stderr, "mem_sbrk");
return (void *)-1;
}
// reset the address of my new block to behind the epilogue
newBlock = (block_t *)((char *)newBlock - block_size(epilogue));
// set block as huge free block
block_set_size_and_allocated(newBlock, extraAlignedSize, 1);
// move epilogue foward
epilogue = (block_t *)((char *)epilogue + block_size(newBlock));
block_set_size_and_allocated(epilogue, TAGS_SIZE, 1);
// now focus on splitting the new block
block_set_size(newBlock, newBlockSize);
block_t *extraSpaceBlock = block_next(newBlock);
block_set_size_and_allocated(extraSpaceBlock,
extraAlignedSize - newBlockSize, 0);
insert_free_block(extraSpaceBlock);
coalesce(extraSpaceBlock);
return &newBlock->payload[0];
}
}
// now check for extending the heap
block_t *newBlock;
if ((newBlock = mem_sbrk(newBlockSize)) == (void *)-1) {
fprintf(stderr, "mem_sbrk");
return (void *)-1;
}
// reset the address of my new block to behind the epilogue
newBlock = (block_t *)((char *)newBlock - block_size(epilogue));
// set block as huge free block
block_set_size_and_allocated(newBlock, (newBlockSize), 1);
// move epilogue foward
epilogue = (block_t *)((char *)epilogue + block_size(newBlock));
block_set_size_and_allocated(epilogue, TAGS_SIZE, 1);
return &newBlock->payload[0];
}
/* __
* _ __ ___ _ __ ___ / _|_ __ ___ ___
* | '_ ` _ \| '_ ` _ \ | |_| '__/ _ \/ _ \
* | | | | | | | | | | | | _| | | __/ __/
* |_| |_| |_|_| |_| |_|___|_| |_| \___|\___|
* |_____|
*
* frees a block of memory, enabling it to be reused later
* arguments: ptr: pointer to the block's payload
* returns: nothing
*/
void mm_free(void *ptr) {
if (ptr != NULL) {
block_t *myFreeBlock = payload_to_block(ptr);
block_set_allocated(myFreeBlock, 0);
insert_free_block(myFreeBlock);
coalesce(myFreeBlock);
}
}
/*
* _ _
* _ __ ___ _ __ ___ _ __ ___ __ _| | | ___ ___
* | '_ ` _ \| '_ ` _ \ | '__/ _ \/ _` | | |/ _ \ / __|
* | | | | | | | | | | | | | | __/ (_| | | | (_) | (__
* |_| |_| |_|_| |_| |_|___|_| \___|\__,_|_|_|\___/ \___|
* |_____|
*
* reallocates a memory block to update it with a new given size
* arguments: ptr: a pointer to the memory block's payload
* size: the desired new payload size
* returns: a pointer to the new memory block's payload
*/
void *mm_realloc(void *ptr, size_t size) {
// TODO
// edge cases
if (ptr == NULL) {
return mm_malloc(size);
}
if (size == 0) {
return NULL;
}
// keeping tracks of sizes
size_t newAlignedSize = align(size);
size_t requestedSize = newAlignedSize + TAGS_SIZE;
block_t *myBlock = payload_to_block(ptr);
size_t originalSize = block_size(myBlock);
size_t availableSpace = originalSize;
// if I am shrinking, then can coalesce if minimum size is not found, if no
// free blocks and not minimum size then don't do anything
if (requestedSize < originalSize) {
// check for surrounding free blocks
// check next block is free
if (block_next_allocated(myBlock) == 0) {
availableSpace = availableSpace + block_next_size(myBlock);
// set sizing
pull_free_block(block_next(myBlock));
block_set_size_and_allocated(myBlock, requestedSize, 1);
block_t *splitBlock = block_next(myBlock);
block_set_size_and_allocated(splitBlock,
(availableSpace - requestedSize), 0);
insert_free_block(splitBlock);
coalesce(splitBlock);
// set surrounding block size
block_set_size(block_prev(myBlock), block_prev_size(myBlock));
block_set_size_and_allocated(myBlock, (requestedSize), 1);
block_set_size(block_next(myBlock), block_next_size(myBlock));
return &myBlock->payload[0];
} else if (block_prev_allocated(myBlock) == 0) {
availableSpace = availableSpace + block_prev_size(myBlock);
block_t *previousBlock = block_prev(myBlock);
// set sizing
pull_free_block(previousBlock);
block_set_size_and_allocated(previousBlock,
availableSpace - requestedSize, 0);
block_t *splitBlock = block_next(previousBlock);
block_set_size_and_allocated(splitBlock, (requestedSize), 1);
insert_free_block(previousBlock);
coalesce(previousBlock);
// set surrounding block size
block_set_size(block_prev(splitBlock), block_prev_size(splitBlock));
block_set_size_and_allocated(splitBlock, (requestedSize), 1);
block_set_size(block_next(splitBlock), block_next_size(splitBlock));
return &splitBlock->payload[0];
}
// if no free block is found
else {
// check to see if shrinking will cause less than minimum size, then
// do nothing
if (((int)availableSpace - (int)requestedSize) <
(int)MINBLOCKSIZE) {
// set sizing
block_set_size_and_allocated(myBlock, originalSize, 1);
return &myBlock->payload[0];
} else {
block_set_size_and_allocated(myBlock, requestedSize, 1);
block_t *splitBlock = block_next(myBlock);
block_set_size_and_allocated(
splitBlock, (availableSpace - requestedSize), 0);
insert_free_block(splitBlock);
coalesce(splitBlock);
// set surrounding block size
block_set_size(block_prev(myBlock), block_prev_size(myBlock));
block_set_size_and_allocated(myBlock, (requestedSize), 1);
block_set_size(block_next(myBlock), block_next_size(myBlock));
return &myBlock->payload[0];
}
}
}
// else if requested > original size
if ((int)requestedSize > (int)originalSize) {
////check for surrounding free blocks
if (block_next_allocated(myBlock) == 0) {
availableSpace = availableSpace + block_next_size(myBlock);
if (((int)availableSpace - (int)requestedSize) >=
(int)MINBLOCKSIZE) {
// now reallocate and coalesce
block_t *nextBlock = block_next(myBlock);
pull_free_block(nextBlock);
block_set_size_and_allocated(myBlock, requestedSize, 1);
block_t *splitBlock = block_next(myBlock);
block_set_size_and_allocated(
splitBlock, (availableSpace - requestedSize), 0);
insert_free_block(splitBlock);
coalesce(splitBlock);
block_set_size_and_allocated(myBlock, requestedSize, 1);
block_set_size_and_allocated(
splitBlock, (availableSpace - requestedSize), 0);
// set surrounding block size
block_set_size(block_prev(myBlock), block_prev_size(myBlock));
block_set_size(block_next(myBlock), block_next_size(myBlock));
return &myBlock->payload[0];
}
// if minimblock size is not met but we have the room, then
// reallocate all of it
else if (((int)availableSpace - (int)requestedSize) <
(int)MINBLOCKSIZE &&
((int)availableSpace - (int)requestedSize) >= 0) {
pull_free_block(block_next(myBlock));
block_set_size_and_allocated(myBlock, availableSpace, 1);
// set surrounding block size
block_set_size(block_prev(myBlock), block_prev_size(myBlock));
block_set_size(block_next(myBlock), block_next_size(myBlock));
return &myBlock->payload[0];
}
// if no space then loop through and find free block
else {
void *newPtr = mm_malloc(size);
block_t *newMallocBlock = payload_to_block(newPtr);
// preserve memory
memmove(newPtr, ptr, originalSize - TAGS_SIZE);
mm_free(ptr);
// set surrounding block size
block_set_size(block_prev(newMallocBlock),
block_prev_size(newMallocBlock));
block_set_size_and_allocated(newMallocBlock,
block_size(newMallocBlock), 1);
block_set_size(block_next(newMallocBlock),
block_next_size(newMallocBlock));
return &newMallocBlock->payload[0];
}
}
// loop through free list
else {
void *newPtr = mm_malloc(size);
block_t *newMallocBlock = payload_to_block(newPtr);
// preserve memory
memmove(newPtr, ptr, originalSize - TAGS_SIZE);
mm_free(ptr);
// set surrounding block size
block_set_size(block_prev(newMallocBlock),
block_prev_size(newMallocBlock));
block_set_size_and_allocated(newMallocBlock,
block_size(newMallocBlock), 1);
block_set_size(block_next(newMallocBlock),
block_next_size(newMallocBlock));
return &newMallocBlock->payload[0];
}
}
// if equal
else {
block_set_size_and_allocated(myBlock, requestedSize, 1);
block_set_size_and_allocated(epilogue, TAGS_SIZE, 1);
return &myBlock->payload[0];
}
}