-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHistograms.cpp
393 lines (375 loc) · 14.4 KB
/
Histograms.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/*
* This code is provided as part of "A Practical Introduction to Computer Vision with OpenCV"
* by Kenneth Dawson-Howe © Wiley & Sons Inc. 2014. All rights reserved.
*/
#include "Utilities.h"
class Histogram
{
protected:
Mat mImage;
int mNumberChannels;
int* mChannelNumbers;
int* mNumberBins;
float mChannelRange[2];
public:
Histogram(Mat image, int number_of_bins)
{
mImage = image;
mNumberChannels = mImage.channels();
mChannelNumbers = new int[mNumberChannels];
mNumberBins = new int[mNumberChannels];
mChannelRange[0] = 0.0;
mChannelRange[1] = 255.0;
for (int count = 0; count < mNumberChannels; count++)
{
mChannelNumbers[count] = count;
mNumberBins[count] = number_of_bins;
}
//ComputeHistogram();
}
virtual void ComputeHistogram() = 0;
virtual void NormaliseHistogram() = 0;
static void Draw1DHistogram(MatND histograms[], int number_of_histograms, Mat& display_image)
{
int number_of_bins = histograms[0].size[0];
double max_value = 0, min_value = 0;
double channel_max_value = 0, channel_min_value = 0;
for (int channel = 0; (channel < number_of_histograms); channel++)
{
minMaxLoc(histograms[channel], &channel_min_value, &channel_max_value, 0, 0);
max_value = ((max_value > channel_max_value) && (channel > 0)) ? max_value : channel_max_value;
min_value = ((min_value < channel_min_value) && (channel > 0)) ? min_value : channel_min_value;
}
float scaling_factor = ((float)256.0) / ((float)number_of_bins);
Mat histogram_image((int)(((float)number_of_bins)*scaling_factor) + 1, (int)(((float)number_of_bins)*scaling_factor) + 1, CV_8UC3, Scalar(255, 255, 255));
display_image = histogram_image;
line(histogram_image, Point(0, 0), Point(0, histogram_image.rows - 1), Scalar(0, 0, 0));
line(histogram_image, Point(histogram_image.cols - 1, histogram_image.rows - 1), Point(0, histogram_image.rows - 1), Scalar(0, 0, 0));
int highest_point = static_cast<int>(0.9*((float)number_of_bins)*scaling_factor);
for (int channel = 0; (channel < number_of_histograms); channel++)
{
int last_height;
for (int h = 0; h < number_of_bins; h++)
{
float value = histograms[channel].at<float>(h);
int height = static_cast<int>(value*highest_point / max_value);
int where = (int)(((float)h)*scaling_factor);
if (h > 0)
line(histogram_image, Point((int)(((float)(h - 1))*scaling_factor) + 1, (int)(((float)number_of_bins)*scaling_factor) - last_height),
Point((int)(((float)h)*scaling_factor) + 1, (int)(((float)number_of_bins)*scaling_factor) - height),
Scalar(channel == 0 ? 255 : 0, channel == 1 ? 255 : 0, channel == 2 ? 255 : 0));
last_height = height;
}
}
}
};
class OneDHistogram : public Histogram
{
private:
MatND mHistogram[3];
public:
OneDHistogram(Mat image, int number_of_bins) :
Histogram(image, number_of_bins)
{
ComputeHistogram();
}
void ComputeHistogram()
{
vector<Mat> image_planes(mNumberChannels);
split(mImage, image_planes);
for (int channel = 0; (channel < mNumberChannels); channel++)
{
const float* channel_ranges = mChannelRange;
int *mch = { 0 };
calcHist(&(image_planes[channel]), 1, mChannelNumbers, Mat(), mHistogram[channel], 1, mNumberBins, &channel_ranges);
}
}
void SmoothHistogram()
{
for (int channel = 0; (channel < mNumberChannels); channel++)
{
MatND temp_histogram = mHistogram[channel].clone();
for (int i = 1; i < mHistogram[channel].rows - 1; ++i)
{
mHistogram[channel].at<float>(i) = (temp_histogram.at<float>(i - 1) + temp_histogram.at<float>(i) + temp_histogram.at<float>(i + 1)) / 3;
}
}
}
MatND getHistogram(int index)
{
return mHistogram[index];
}
void NormaliseHistogram()
{
for (int channel = 0; (channel < mNumberChannels); channel++)
{
normalize(mHistogram[channel], mHistogram[channel], 1.0);
}
}
Mat BackProject(Mat& image)
{
Mat& result = image.clone();
if (mNumberChannels == 1)
{
const float* channel_ranges[] = { mChannelRange, mChannelRange, mChannelRange };
for (int channel = 0; (channel < mNumberChannels); channel++)
{
calcBackProject(&image, 1, mChannelNumbers, *mHistogram, result, channel_ranges, 255.0);
}
}
else
{
}
return result;
}
void Draw(Mat& display_image)
{
Draw1DHistogram(mHistogram, mNumberChannels, display_image);
}
};
class ColourHistogram : public Histogram
{
private:
MatND mHistogram;
public:
ColourHistogram(Mat image, int number_of_bins) :
Histogram(image, number_of_bins)
{
ComputeHistogram();
}
void ComputeHistogram()
{
const float* channel_ranges[] = { mChannelRange, mChannelRange, mChannelRange };
calcHist(&mImage, 1, mChannelNumbers, Mat(), mHistogram, mNumberChannels, mNumberBins, channel_ranges);
}
void NormaliseHistogram()
{
normalize(mHistogram, mHistogram, 1.0);
}
Mat BackProject(Mat& image)
{
Mat& result = image.clone();
const float* channel_ranges[] = { mChannelRange, mChannelRange, mChannelRange };
calcBackProject(&image, 1, mChannelNumbers, mHistogram, result, channel_ranges, 255.0);
return result;
}
MatND getHistogram()
{
return mHistogram;
}
};
class HueHistogram : public Histogram
{
private:
MatND mHistogram;
int mMinimumSaturation, mMinimumValue, mMaximumValue;
#define DEFAULT_MIN_SATURATION 25
#define DEFAULT_MIN_VALUE 25
#define DEFAULT_MAX_VALUE 230
public:
HueHistogram(Mat image, int number_of_bins, int min_saturation = DEFAULT_MIN_SATURATION, int min_value = DEFAULT_MIN_VALUE, int max_value = DEFAULT_MAX_VALUE) :
Histogram(image, number_of_bins)
{
mMinimumSaturation = min_saturation;
mMinimumValue = min_value;
mMaximumValue = max_value;
mChannelRange[1] = 180.0;
ComputeHistogram();
}
void ComputeHistogram()
{
Mat hsv_image, hue_image, mask_image;
cvtColor(mImage, hsv_image, CV_BGR2HSV);
inRange(hsv_image, Scalar(0, mMinimumSaturation, mMinimumValue), Scalar(180, 256, mMaximumValue), mask_image);
int channels[] = { 0,0 };
hue_image.create(mImage.size(), mImage.depth());
mixChannels(&hsv_image, 1, &hue_image, 1, channels, 1);
const float* channel_ranges = mChannelRange;
calcHist(&hue_image, 1, 0, mask_image, mHistogram, 1, mNumberBins, &channel_ranges);
}
void NormaliseHistogram()
{
normalize(mHistogram, mHistogram, 0, 255, CV_MINMAX);
}
Mat BackProject(Mat& image)
{
Mat& result = image.clone();
const float* channel_ranges = mChannelRange;
calcBackProject(&image, 1, mChannelNumbers, mHistogram, result, &channel_ranges, 255.0);
return result;
}
MatND getHistogram()
{
return mHistogram;
}
void Draw(Mat& display_image)
{
Draw1DHistogram(&mHistogram, 1, display_image);
}
};
Mat kmeans_clustering(Mat& image, int k, int iterations)
{
CV_Assert(image.type() == CV_8UC3);
// Populate an n*3 array of float for each of the n pixels in the image
Mat samples(image.rows*image.cols, image.channels(), CV_32F);
float* sample = samples.ptr<float>(0);
for (int row = 0; row < image.rows; row++)
for (int col = 0; col < image.cols; col++)
for (int channel = 0; channel < image.channels(); channel++)
samples.at<float>(row*image.cols + col, channel) =
(uchar)image.at<Vec3b>(row, col)[channel];
// Apply k-means clustering to cluster all the samples so that each sample
// is given a label and each label corresponds to a cluster with a particular
// centre.
Mat labels;
Mat centres;
kmeans(samples, k, labels, TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 1, 0.0001),
iterations, KMEANS_PP_CENTERS, centres);
// Put the relevant cluster centre values into a result image
Mat& result_image = Mat(image.size(), image.type());
for (int row = 0; row < image.rows; row++)
for (int col = 0; col < image.cols; col++)
for (int channel = 0; channel < image.channels(); channel++)
result_image.at<Vec3b>(row, col)[channel] = (uchar)centres.at<float>(*(labels.ptr<int>(row*image.cols + col)), channel);
return result_image;
}
void HistogramsDemos(Mat& dark_image, Mat& fruit_image, Mat& people_image, Mat& skin_image, Mat all_images[], int number_of_images)
{
// Just so that tests can be done using a grayscale image...
Mat gray_fruit_image;
cvtColor(fruit_image, gray_fruit_image, CV_BGR2GRAY);
Timestamper* timer = new Timestamper();
// Greyscale and Colour (RGB) histograms
Mat gray_histogram_display_image;
MatND gray_histogram;
const int* channel_numbers = { 0 };
float channel_range[] = { 0.0, 255.0 };
const float* channel_ranges = channel_range;
int number_bins = 64;
calcHist(&gray_fruit_image, 1, channel_numbers, Mat(), gray_histogram, 1, &number_bins, &channel_ranges);
OneDHistogram::Draw1DHistogram(&gray_histogram, 1, gray_histogram_display_image);
Mat colour_display_image;
MatND* colour_histogram = new MatND[fruit_image.channels()];
vector<Mat> colour_channels(fruit_image.channels());
split(fruit_image, colour_channels);
for (int chan = 0; chan < fruit_image.channels(); chan++)
calcHist(&(colour_channels[chan]), 1, channel_numbers, Mat(),
colour_histogram[chan], 1, &number_bins, &channel_ranges);
OneDHistogram::Draw1DHistogram(colour_histogram, fruit_image.channels(), colour_display_image);
Mat gray_fruit_image_display;
cvtColor(gray_fruit_image, gray_fruit_image_display, CV_GRAY2BGR);
Mat output1 = JoinImagesHorizontally(gray_fruit_image_display, "Grey scale image", gray_histogram_display_image, "Greyscale histogram", 4);
Mat output2 = JoinImagesHorizontally(fruit_image, "Colour image", colour_display_image, "RGB Histograms", 4);
Mat output3 = JoinImagesHorizontally(output1, "", output2, "", 4);
imshow("Histograms", output3);
// This can also be done using the provided OneDHistogram class:
//Mat histogram_image;
//OneDHistogram histogram(fruit_image,64);
//histogram.Draw(histogram_image);
//imshow("Histogram", histogram_image);
char c = cvWaitKey();
cvDestroyAllWindows();
// Equalisation
timer->reset();
std::vector<cv::Mat> input_planes(3);
Mat processed_image, original_image;
resize(dark_image, original_image, Size(dark_image.cols / 2, dark_image.rows / 2));
Mat hls_image;
cvtColor(original_image, hls_image, CV_BGR2HLS);
split(hls_image, input_planes);
timer->recordTime("Split planes");
Mat input_luminance_histogram_image;
OneDHistogram input_luminance_histogram(input_planes[1], 256);
input_luminance_histogram.Draw(input_luminance_histogram_image);
timer->ignoreTimeSinceLastRecorded();
equalizeHist(input_planes[1], input_planes[1]);
timer->recordTime("Equalise");
Mat output_luminance_histogram_image;
OneDHistogram output_luminance_histogram(input_planes[1], 256);
output_luminance_histogram.Draw(output_luminance_histogram_image);
merge(input_planes, hls_image);
cvtColor(hls_image, processed_image, CV_HLS2BGR);
timer->recordTime("Merge output");
output1 = JoinImagesHorizontally(original_image, "Original image", input_luminance_histogram_image, "Original Luminance Histogram", 4);
output2 = JoinImagesHorizontally(processed_image, "Equalised image", output_luminance_histogram_image, "Equalised Luminance Histogram", 4);
output3 = JoinImagesHorizontally(output1, "", output2, "", 4);
imshow("Image (luminance) Equalisation", output3);
c = cvWaitKey();
cvDestroyAllWindows();
// Image selection based on histogram comparison
timer->reset();
int index_of_reference_image = 0;
Mat& reference_image = all_images[index_of_reference_image];
cvtColor(all_images[index_of_reference_image], hls_image, CV_BGR2HLS);
ColourHistogram reference_histogram(hls_image, 4);
reference_histogram.NormaliseHistogram();
double best_matching_score = 0.0;
Mat* best_match = NULL;
int display_image_count = 0;
for (int image_index = 0; (image_index < number_of_images); image_index++)
{
if (image_index != index_of_reference_image)
{
cvtColor(all_images[image_index], hls_image, CV_BGR2HLS);
ColourHistogram comparison_histogram(hls_image, 4);
comparison_histogram.NormaliseHistogram();
double matching_score = compareHist(reference_histogram.getHistogram(), comparison_histogram.getHistogram(), CV_COMP_CORREL);//CV_COMP_CHISQR);//CV_COMP_INTERSECT);//CV_COMP_BHATTACHARYYA);//
char output[100];
sprintf(output, "%.4f", matching_score);
//sprintf(output,"H%.2f L%.2f S%.2f",matching_score,matching_score2,matching_score3);
//matching_score = (matching_score+matching_score3)/2;
char image_name[50];
sprintf(image_name, "Image %d", image_index);
Scalar colour(0, 0, 255);
Point location(7, 13);
Mat temp_image = all_images[image_index].clone();
resize(all_images[image_index].clone(), temp_image, Size(all_images[image_index].cols * (200) / all_images[image_index].rows, 200));
putText(temp_image, output, location, FONT_HERSHEY_SIMPLEX, 0.4, colour);
if ((matching_score > best_matching_score) || (matching_score > 0.78))
{
if (display_image_count++ == 0)
output1 = temp_image.clone();
else
{
output1 = JoinImagesHorizontally(output1, "", temp_image, "", 4);
}
}
if (matching_score > best_matching_score)
{
best_matching_score = matching_score;
best_match = &(all_images[image_index]);
}
}
}
Mat temp_image, temp_image2;
resize(reference_image.clone(), temp_image, Size(reference_image.cols * (200) / reference_image.rows, 200));
if (best_match != NULL)
resize(best_match->clone(), temp_image2, Size(best_match->cols * (200) / best_match->rows, 200));
output2 = JoinImagesHorizontally(temp_image, "Reference image", temp_image2, "Best match", 4);
output3 = JoinImagesVertically(output1, "", output2, "", 4);
imshow("Image Selection", output3);
c = cvWaitKey();
cvDestroyAllWindows();
// Colour selection - back-projection
timer->reset();
cvtColor(skin_image, hls_image, CV_BGR2HLS);
ColourHistogram histogram3D(hls_image, 8);
histogram3D.NormaliseHistogram();
cvtColor(people_image, hls_image, CV_BGR2HLS);
Mat back_projection_probabilities = histogram3D.BackProject(hls_image);
back_projection_probabilities = StretchImage(back_projection_probabilities);
Mat back_projection_probabilities_display;
cvtColor(back_projection_probabilities, back_projection_probabilities_display, CV_GRAY2BGR);
output1 = JoinImagesHorizontally(people_image, "Original Image", skin_image, "Skin Samples", 4);
output2 = JoinImagesHorizontally(output1, "", back_projection_probabilities_display, "Skin Back Projection", 4);
imshow("Back Projection", output2);
c = cvWaitKey();
cvDestroyAllWindows();
// K-means clustering
timer->reset();
Mat clustered_image = kmeans_clustering(fruit_image, 15, 5);
output1 = JoinImagesHorizontally(fruit_image, "Original Image", clustered_image, "k-Means Clustered Image", 4);
imshow("k-Means Clustering", output1);
c = cvWaitKey();
cvDestroyAllWindows();
}