forked from NVlabs/ocropus3-ocrorot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathocroskew-train
executable file
·198 lines (172 loc) · 5.9 KB
/
ocroskew-train
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/python
import argparse
import torch
import scipy.ndimage as ndi
import ocrorot.layers as orlayers
from pylab import *
from torch import nn, optim
from dlinputs import gopen, paths, utils, filters
from dltrainers import layers, helpers
from torch.autograd import Variable
rc("image", cmap="gray")
ion()
parser = argparse.ArgumentParser("train a page segmenter")
parser.add_argument("-l", "--lr", default="0,0.1:1e6,0.03:1e7,0.01",
help="learning rate or learning rate sequence 'n,lr:n,lr:n,:r'")
parser.add_argument("-b", "--batchsize", type=int, default=32)
parser.add_argument("-o", "--output", default="skew", help="prefix for output")
parser.add_argument("-m", "--model", default=None, help="load model")
parser.add_argument("--arange", type=float, default=5.0)
parser.add_argument("--abuckets", type=int, default=50)
parser.add_argument("--prefilter", type=float, default=0.0)
parser.add_argument("-i", "--invert", action="store_true")
parser.add_argument("-N", "--normalize", action="store_true")
parser.add_argument("--save_every", default=1000,
type=int, help="how often to save")
parser.add_argument("--loss_horizon", default=1000, type=int,
help="horizon over which to calculate the loss")
parser.add_argument("--ntrain", type=int, default=-
1, help="ntrain starting value")
parser.add_argument("--random_invert", type=float, default=0.0)
parser.add_argument("--min_range", type=float, default=0.4)
parser.add_argument("-D", "--makesource", default=None)
parser.add_argument("-P", "--makepipeline", default=None)
parser.add_argument("-M", "--makemodel", default=None)
parser.add_argument("--exec", dest="execute", nargs="*", default=[])
parser.add_argument(
"--input", default="/home/tmb/lpr-ocr/uw3-patches/uw3-patches-@010.tgz")
args = parser.parse_args()
ARGS = {k: v for k, v in args.__dict__.items()}
def make_source():
return gopen.open_source(args.input)
def make_pipeline():
def transformer(sample):
image = sample["input"]
assert amin(image) >= 0
assert amax(image) <= 1.0
if args.prefilter > 0:
image -= ndi.gaussian_filter(image, args.prefilter)
if args.invert:
image = 1.0 - image
if args.normalize:
image -= amin(image)
image /= amax(image)
params = sample["params"]
arange = args.arange * pi / 180.0
alpha = clip(float(params["alpha"]), -arange, arange-0.0001)
bucket = int(args.abuckets * (alpha+arange) / (2*arange))
assert bucket >= 0 and bucket <= args.abuckets, (bucket, args.abuckets)
image = np.expand_dims(image, 2)
return dict(input=image, cls=bucket)
return filters.compose(
filters.shuffle(100, 10),
filters.rename(input="patch.png", params="params.json"),
filters.transform(transformer),
filters.batched(args.batchsize))
def make_model():
r = 5
nf = 8
r2 = 5
nf2 = 4
B, D, H, W = (1, 128), (1, 512), 256, 256
model = nn.Sequential(
layers.CheckSizes(B, D, H, W),
nn.Conv2d(1, nf, r, padding=r//2),
nn.BatchNorm2d(nf),
nn.ReLU(),
orlayers.Spectrum(),
nn.Conv2d(nf, nf2, r2, padding=r2//2),
nn.BatchNorm2d(nf2),
nn.ReLU(),
# layers.Info(),
layers.Reshape(0, [1, 2, 3]),
# layers.Info(),
nn.Linear(nf2 * W * H, 128),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.Linear(128, args.abuckets),
nn.Sigmoid(),
layers.CheckSizes(B, args.abuckets)
)
return model
if args.makepipeline:
execfile(args.makepipeline)
if args.makesource:
execfile(args.makesource)
if args.makemodel:
execfile(args.makemodel)
for e in args.execute:
exec args.execute
source = make_source()
sample = source.next()
utils.print_sample(sample)
pipeline = make_pipeline()
source = pipeline(source)
sample = source.next()
utils.print_sample(sample)
if args.model:
model = torch.load(args.model)
ntrain, _ = paths.parse_save_path(args.model)
else:
model = make_model()
ntrain = 0
model.cuda()
if args.ntrain >= 0:
ntrain = args.ntrain
print "ntrain", ntrain
print model
start_count = 0
criterion = nn.MSELoss()
criterion.cuda()
losses = [1.0]
def train_batch(model, image, cls, nclasses=4, lr=1e-3):
cuinput = torch.FloatTensor(image.transpose(0, 3, 1, 2)).cuda()
optimizer = optim.SGD(model.parameters(), lr=lr,
momentum=0.9, weight_decay=0.0)
optimizer.zero_grad()
cuoutput = model(Variable(cuinput))
b, d = cuoutput.size()
target = torch.zeros(len(cls), args.abuckets)
for i, c in enumerate(cls):
target[i, c] = 1
cutarget = Variable(target.cuda())
loss = criterion(cuoutput, cutarget)
loss.backward()
optimizer.step()
return loss.data.cpu().numpy()[0], helpers.asnd(cuoutput)
losses = []
rates = helpers.LearningRateSchedule(args.lr)
nbatches = 0
for sample in source:
image = sample["input"]
cls = sample["cls"]
lr = rates(ntrain)
loss, output = train_batch(model, image, cls, nclasses=4, lr=lr)
try:
pass
except Exception, e:
utils.print_sample(sample)
print e
continue
losses.append(loss)
if nbatches % 10 == 0:
print nbatches, ntrain, loss, np.amin(
output), np.amax(output), "lr", lr,
print argmax(output[0]), cls[0]
if nbatches > 0 and nbatches % args.save_every == 0:
err = float(np.mean(losses[-args.save_every:]))
fname = paths.make_save_path(args.output, ntrain, err)
model.ARGS = ARGS
torch.save(model, fname)
print "saved", fname
if nbatches % 100 == 0:
clf()
subplot(121)
imshow(image[0, :, :, 0], vmin=0, vmax=1)
subplot(122)
plot(output[0])
draw()
ginput(1, 1e-3)
waitforbuttonpress(0.0001)
nbatches += 1
ntrain += len(image)