forked from Hannah-Zhou/Optimization_Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrcg.m
42 lines (41 loc) · 897 Bytes
/
frcg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [x,val,k]=frcg(fun,gfun,x0)
% 功能: 用FR共轭梯度法求解无约束问题: min f(x)
%输入: x0是初始点, fun, gfun分别是目标函数和梯度
%输出: x, val分别是近似最优点和最优值, k是迭代次数.
maxk=5000; %最大迭代次数
rho=0.6;sigma=0.4;
k=0; epsilon=1e-4;
n=length(x0);
while(k<maxk)
g=feval(gfun,x0); %计算梯度
itern=k-(n+1)*floor(k/(n+1));
itern=itern+1;
%计算搜索方向
if(itern==1)
d=-g;
else
beta=(g'*g)/(g0'*g0);
d=-g+beta*d0;
gd=g'*d;
if(gd>=0.0)
d=-g;
end
end
if(norm(g)<epsilon)
break;
end %检验终止条件
m=0; mk=0;
while(m<20) %Armijo搜索
if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d)
mk=m; break;
end
m=m+1;
end
x0=x0+rho^mk*d;
val=feval(fun,x0);
g0=g;
d0=d;
k=k+1;
end
x=x0;
val=feval(fun,x);