forked from Hannah-Zhou/Optimization_Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdfp.m
33 lines (32 loc) · 821 Bytes
/
dfp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function [x,val,k]=dfp(fun,gfun,x0)
%功能: 用DFP算法求解无约束问题: min f(x)
%输入: x0是初始点, fun, gfun分别是目标函数及其梯度
%输出: x, val分别是近似最优点和最优值, k是迭代次数.
maxk=1e5; %给出最大迭代次数
rho=0.55;
sigma=0.4;
epsilon=1e-5;
k=0;
n=length(x0);
Hk=inv(feval('Hess',x0)); %Hk=eye(n);
while(k<maxk)
gk=feval(gfun,x0); %计算梯度
if(norm(gk)<epsilon), break; end %检验终止准则
dk=-Hk*gk; %解方程组, 计算搜索方向
m=0; mk=0;
while(m<20) % 用Armijo搜索求步长
if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk'*dk)
mk=m; break;
end
m=m+1;
end
%DFP校正
x=x0+rho^mk*dk;
sk=x-x0; yk=feval(gfun,x)-gk;
if(sk'*yk>0)
Hk=Hk-(Hk*yk*yk'*Hk)/(yk'*Hk*yk)+(sk*sk')/(sk'*yk);
end
k=k+1;
x0=x;
end
val=feval(fun,x0);