-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfullBrain.py
34 lines (26 loc) · 1.15 KB
/
fullBrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import *
from keras.layers import Dense, Flatten, LeakyReLU, Input, concatenate, Reshape, Lambda, BatchNormalization, Dropout
from keras import regularizers
from keras.models import Model
from keras import backend as K
class FullDqnBrain:
def __init__(self, stateCount, actionCount):
self.stateCount = stateCount
self.actionCount = actionCount
self.model = self.buildModel()
def buildModel(self):
model = Sequential()
model.add(Dense(256, activation='relu', input_dim=self.stateCount))
model.add(Dense(128, activation='relu'))
model.add(Dense(self.actionCount, activation='linear'))
opt = RMSprop(learning_rate=0.000001)
model.compile(loss='mse', optimizer=opt)
return model
def train(self, x, y, epoch=1, verbose=0, batchSize=64):
self.model.fit(x, y, epoch, verbose)
def predict(self, s, target=False):
return self.model.predict(s)
def predicFlatten(self, s, target=False):
return self.predict(s.reshape(1, self.stateCount), target=target).flatten()