-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vae.py
462 lines (403 loc) · 14.3 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import argparse
import multiprocessing as mp
import os
import random
import time
from pathlib import Path
from typing import Tuple
import numpy as np
import numpy.typing as npt
import pystk
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
from pystk_gym.common.race import RaceConfig
from torch.utils.data import DataLoader, Dataset
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
INPUT_WIDTH, INPUT_HEIGHT = (960, 540)
CLASS_COLOR = (
(
# https://pystk.readthedocs.io/en/latest/data.html#pystk.ObjectType
np.array(
[
0x000000, # None
0x4E9A06, # Kart
0x2E3436, # Track
0xEEEEEC, # Background
0x204A87, # Pickup
0x204A87, # Nitro
0xA40000, # Bomb
0xCE5C00, # Object
0x5C3566, # Projectile
0x000000, # Unknown
0x000000, # N
],
dtype=">u4",
)
.view(np.uint8)
.reshape((-1, 4))[:, 1:]
)
.flatten()
.tolist()
)
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
residual = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += residual
out = F.relu(out)
return out
class VQVAE(nn.Module):
def __init__(self, num_embeddings=512, embedding_dim=2048):
super(VQVAE, self).__init__()
self.embedding_dim = embedding_dim
self.num_embeddings = num_embeddings
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=5, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(128, embedding_dim, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
ResidualBlock(embedding_dim, embedding_dim),
# ResidualBlock(embedding_dim, embedding_dim),
)
self.decoder = nn.Sequential(
# ResidualBlock(embedding_dim, embedding_dim),
ResidualBlock(embedding_dim, embedding_dim),
nn.ConvTranspose2d(embedding_dim, 128, kernel_size=5, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 1, kernel_size=3, stride=2, padding=1),
nn.Sigmoid(),
)
self.embeddings = nn.Embedding(num_embeddings, embedding_dim)
self.embeddings.weight.data.uniform_(-1 / num_embeddings, 1 / num_embeddings)
def forward(self, x):
z_e = self.encoder(x)
z_e_flattened = (
z_e.permute(0, 2, 3, 1).contiguous().view(-1, self.embedding_dim)
)
distances = (
torch.sum(z_e_flattened**2, dim=1, keepdim=True)
+ torch.sum(self.embeddings.weight**2, dim=1)
- 2 * (z_e_flattened @ self.embeddings.weight.t())
)
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
z_q = self.embeddings(encoding_indices).view(z_e.size())
return self.decoder(z_q), z_e, z_q
class CustomImageDataset(Dataset):
def __init__(self, image_datas, transform=None):
self.image_datas = image_datas
self.transform = transform
def __len__(self):
return len(self.image_datas)
def __getitem__(self, idx):
image = self.image_datas[idx]
if self.transform:
image = self.transform(image)
return image
def cmap_semantic_image(img: Image.Image) -> np.ndarray:
img.putpalette(CLASS_COLOR)
return np.array(img.convert("L"))
def get_pystk_configs(
num_players: int,
) -> Tuple[pystk.GraphicsConfig, pystk.RaceConfig]:
graphic_config = pystk.GraphicsConfig.hd()
graphic_config.screen_width = INPUT_WIDTH
graphic_config.screen_height = INPUT_HEIGHT
race_config = pystk.RaceConfig()
race_config.laps = 1
race_config.num_kart = num_players
race_config.players[0].kart = np.random.choice(RaceConfig.KARTS)
race_config.players[0].controller = pystk.PlayerConfig.Controller.AI_CONTROL
for _ in range(1, num_players):
race_config.players.append(
pystk.PlayerConfig(
np.random.choice(RaceConfig.KARTS),
pystk.PlayerConfig.Controller.AI_CONTROL,
0,
)
)
race_config.track = np.random.choice(RaceConfig.TRACKS)
race_config.step_size = 0.345
return (graphic_config, race_config)
def generate_data(
graphic_config: pystk.GraphicsConfig,
race_config: pystk.RaceConfig,
result_queue: mp.Queue,
sample_rate: float,
max_samples: int = 64,
):
datas, samples = [], 0
race, state, steps, t0 = None, None, 0, 0
while samples < max_samples:
if (race is None or state is None) or any(
kart.finish_time > 0 for kart in state.karts
):
if race is not None:
race.stop()
del race
pystk.clean()
pystk.init(graphic_config)
race = pystk.Race(race_config)
race.start()
race.step()
state = pystk.WorldState()
state.update()
t0 = time.time()
steps = 0
race.step()
state.update()
if random.random() < sample_rate:
samples += race_config.num_kart
for kart_render_data in race.render_data:
img = np.array(
Image.fromarray(kart_render_data.image).convert("L")
) / np.float32(255.0)
depth = kart_render_data.depth.astype(np.float32)
semantic = (kart_render_data.instance >> 24) & 0xFF
semantic = cmap_semantic_image(
Image.fromarray(semantic.astype(np.uint8))
) / np.float32(255.0)
data = np.stack((img, depth, semantic))
datas.append(data)
steps += 1
delta_d = steps * race_config.step_size - (time.time() - t0)
if delta_d > 0:
time.sleep(delta_d)
if race is not None:
race.stop()
del race
pystk.clean()
result_queue.put(np.array(datas))
def log_train_verbose(
logger: SummaryWriter,
epoch: int,
orig_imgs: npt.NDArray[np.float32],
):
logger.add_images(
"train_vae/grayscale_imgs",
orig_imgs[:, :1, :, :],
epoch,
dataformats="NCHW",
)
logger.add_images(
"train_vae/depth_imgs",
orig_imgs[:, 1:2, :, :],
epoch,
dataformats="NCHW",
)
logger.add_images(
"train_vae/semantic_imgs",
orig_imgs[:, 2:, :, :],
epoch,
dataformats="NCHW",
)
def log_train_tensorboard(
logger: SummaryWriter,
epoch: int,
recon_loss: float = 0.0,
commitment_loss: float = 0.0,
vq_loss: float = 0.0,
batch_loss: float = 0.0,
):
logger.add_scalar(
"train_vae/recon_loss",
recon_loss,
epoch,
)
logger.add_scalar(
"train_vae/commitment_loss",
commitment_loss,
epoch,
)
logger.add_scalar(
"train_vae/vq_loss",
vq_loss,
epoch,
)
logger.add_scalar("train_vae/batch_loss", batch_loss, epoch)
def log_eval_tensorboard(
logger: SummaryWriter,
epoch: int,
orig_imgs: npt.NDArray[np.float32],
recon_imgs: npt.NDArray[np.float32],
):
logger.add_images(
"eval_vae/images", orig_imgs[:, :1, :, :], epoch, dataformats="NCHW"
)
logger.add_images(
"eval_vae/recon_images",
recon_imgs,
epoch,
dataformats="NCHW",
)
def save_model(
epoch: int, model: nn.Module, optimizer: optim.Optimizer, save_path: Path
):
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
save_path,
)
def main(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
criterion = nn.MSELoss()
model = VQVAE().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
tensorboard_file_name = args.log_dir.joinpath("vae")
logger = SummaryWriter(tensorboard_file_name, flush_secs=30)
gamma = 0.5
start_epoch = 0
if args.model_path and args.model_path.exists():
checkpoint = torch.load(args.model_path)
start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
elif args.model_path and not args.model_path.exists():
print(f"{args.model_path} does not exist")
lr_scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=args.beta_anneal_interval,
gamma=gamma,
last_epoch=-1 if start_epoch == 0 else start_epoch,
)
epochs = 1000
result_queue = mp.Queue()
epoch_progress_bar = tqdm(range(start_epoch, epochs), position=0, desc="Loss: inf")
for epoch in epoch_progress_bar:
if epoch != start_epoch and epoch % args.eval_interval == 0:
model.eval()
graphic_config, race_config = get_pystk_configs(args.num_players)
process = mp.Process(
target=generate_data,
args=(graphic_config, race_config, result_queue, random.random(), 16),
)
process.start()
orig_imgs = result_queue.get()
orig_imgs = torch.from_numpy(orig_imgs)
with torch.no_grad():
recon_imgs = (
torch.cat(
[
F.interpolate(
model(batch_imgs.cuda())[0],
(INPUT_HEIGHT, INPUT_WIDTH),
mode="nearest",
).squeeze(dim=1)
for batch_imgs in orig_imgs.split(args.batch_size)
]
)
.unsqueeze(1)
.cpu()
).numpy()
log_eval_tensorboard(logger, epoch, orig_imgs.numpy(), recon_imgs)
if epoch != start_epoch and epoch % args.save_interval == 0:
save_model(
epoch, model, optimizer, args.save_dir.joinpath(f"vae_{epoch}.pth")
)
# collect data
graphic_config, race_config = get_pystk_configs(args.num_players)
process = mp.Process(
target=generate_data,
args=(
graphic_config,
race_config,
result_queue,
random.random(),
args.max_samples,
),
)
process.start()
orig_imgs = result_queue.get()
if args.verbose:
log_train_verbose(logger, epoch, orig_imgs)
orig_imgs = torch.from_numpy(orig_imgs)
dataset = CustomImageDataset(orig_imgs, transform=None)
dataloader = DataLoader(
dataset, batch_size=args.batch_size, shuffle=True, num_workers=1
)
dataloader_len = len(dataloader)
# setup training
model.train()
train_loss = 0.0
dataloader_progress_bar = tqdm(
dataloader, position=1, leave=False, desc="Loss: inf"
)
# train
for batch_idx, images in enumerate(dataloader_progress_bar):
images = images.to(device)
grayscale_images = images[:, 0, :, :]
optimizer.zero_grad()
outputs, z_e, z_q = model(images)
recon_imgs = F.interpolate(
outputs, (INPUT_HEIGHT, INPUT_WIDTH), mode="nearest"
).squeeze(dim=1)
recon_loss = criterion(recon_imgs, grayscale_images)
commitment_loss = torch.mean((z_e - z_q.detach()) ** 2)
vq_loss = torch.mean((z_q - z_e.detach()) ** 2)
loss = recon_loss + commitment_loss + vq_loss
loss.backward()
optimizer.step()
lr_scheduler.step()
# torch.cuda.empty_cache()
batch_loss = loss.item()
train_loss += batch_loss
log_train_tensorboard(
logger,
epoch * dataloader_len + batch_idx,
recon_loss.item(),
commitment_loss.item(),
vq_loss.item(),
batch_loss,
)
dataloader_progress_bar.set_description(f"Loss: {batch_loss:.6f}")
train_loss /= dataloader_len
logger.add_scalar("train_vae/epoch_loss", train_loss, epoch)
epoch_progress_bar.set_description(f"Loss: {train_loss:.6f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num_players", type=int, default=4)
parser.add_argument("-v", "--verbose", action="store_true", default=False)
# model args
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument(
"--model_path", type=Path, default=None, help="Load model from path."
)
# train args
parser.add_argument("--batch_size", type=int, default=2)
parser.add_argument("--max_samples", type=int, default=256)
parser.add_argument("--eval_interval", type=int, default=25)
parser.add_argument("--save_interval", type=int, default=50)
parser.add_argument("--beta_anneal_interval", type=int, default=200)
parser.add_argument(
"--log_dir",
type=Path,
default=os.path.join(Path(__file__).absolute().parent, "tensorboard"),
help="Path to the directory in which the tensorboard logs are saved.",
)
parser.add_argument(
"--save_dir",
type=Path,
default=os.path.join(Path(__file__).absolute().parent, "models"),
help="Path to the directory in which the trained models are saved.",
)
args = parser.parse_args()
main(args)