-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
164 lines (141 loc) · 5.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import os
from pathlib import Path
import numpy as np
import torch
from stable_baselines3.common.vec_env import SubprocVecEnv
from torch import optim
from torch.utils.tensorboard import SummaryWriter
from tqdm import trange
from src.model import Net
from src.ppo import PPO
from src.utils import STK, Logger, make_env
from src.vae.model import ConvVAE, Decoder, Encoder
def eval(vae, lstm, logger, args):
from eval import eval
try:
env = SubprocVecEnv([make_env(id) for id in range(1)], start_method="spawn")
tot_reward = (
np.sum(eval(env, vae, lstm, logger, args, log=True)) / args.num_envs
)
env.close()
except EOFError as e:
print(e)
print("EOFError while evaluvating the model")
return tot_reward
def main(args):
args.seed = np.random.rand()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
env = make_env(id)()
obs_shape, act_shape = env.observation_space.shape, env.action_space.nvec
buf_args = {
"buf_size": args.buffer_size,
"num_envs": args.num_envs,
"zdim": args.zdim + 4,
"act_dim": env.action_space.nvec,
"num_frames": args.num_frames,
}
env.close()
vae = ConvVAE(obs_shape, Encoder, Decoder, args.zdim)
vae.to(args.device)
lstm = Net(vae.zdim + 4, act_shape, args.num_envs)
lstm.to(args.device)
if args.vae_model_path is not None:
print(f"loading VAE model from {args.vae_model_path}")
vae.load_state_dict(torch.load(args.vae_model_path), strict=False)
if args.lstm_model_path is not None:
print(f"loading LSTM model from {args.lstm_model_path}")
lstm.load_state_dict(torch.load(args.lstm_model_path))
prev_reward, curr_reward = -float("inf"), 0
optimizer = optim.Adam(lstm.parameters(), lr=args.lr, eps=1e-5)
writer = SummaryWriter(log_dir=args.log_dir)
logger = Logger(writer)
for i in trange(args.num_global_steps):
torch.cuda.empty_cache()
race_config_args = {
"track": args.track,
"kart": args.kart,
"reverse": np.random.choice([True, False]),
}
env = SubprocVecEnv(
[
make_env(id, args.graphic, race_config_args)
for id in range(args.num_envs)
],
start_method="spawn",
)
ppo = PPO(env, vae, lstm, optimizer, logger, args.device, **buf_args)
try:
ppo.rollout()
env.close()
ppo.train()
torch.save(lstm.state_dict(), f"{args.save_dir}/stacked-temp.pth")
except EOFError as e:
print(e)
print(f"EOFError at timestep {i+1}")
except KeyboardInterrupt:
env.close()
print("Exiting...")
if i % args.eval_interval == 0 and i != 0:
curr_reward = eval(vae, lstm, logger, args)
print(curr_reward)
if curr_reward > prev_reward:
print(
f"{curr_reward} is better than {prev_reward}, \
saving model to path model/stacked-{i}.pth"
)
prev_reward = curr_reward
torch.save(
lstm.state_dict(),
f"{args.save_dir}/stacked-{i}-{curr_reward:.2f}.pth",
)
if __name__ == "__main__":
from os.path import join
parser = argparse.ArgumentParser(
"Implementation of the PPO algorithm for the SuperTuxKart game"
)
# env arguments
parser.add_argument("--kart", type=str, choices=STK.KARTS, default=None)
parser.add_argument("--track", type=str, choices=STK.TRACKS, default=None)
parser.add_argument("--graphic", type=str, choices=["hd", "ld", "sd"], default="hd")
# model args
parser.add_argument(
"--vae_model_path",
type=Path,
default=None,
help="Load VAE model from path.",
)
parser.add_argument(
"--lstm_model_path",
type=Path,
default=None,
help="Load LSTM model from path.",
)
parser.add_argument("--zdim", type=int, default=256)
parser.add_argument("--lr", type=float, default=5e-3)
parser.add_argument("--seed", type=int, default=1337)
parser.add_argument("--num_frames", type=int, default=5)
parser.add_argument("--buffer_size", type=int, default=512)
# train args
parser.add_argument("--num_envs", type=int, default=7)
parser.add_argument("--eval_steps", type=int, default=512)
parser.add_argument("--eval_interval", type=int, default=20)
parser.add_argument("--num_global_steps", type=int, default=5000)
parser.add_argument("--device", type=str, choices=["cpu", "cuda"], default="cuda")
parser.add_argument(
"--log_dir",
type=Path,
default=join(Path(__file__).absolute().parent, "tensorboard"),
help="Path to the directory in which the tensorboard logs are saved.",
)
parser.add_argument(
"--save_dir",
type=Path,
default=join(Path(__file__).absolute().parent, "models"),
help="Path to the directory in which the trained models are saved.",
)
args = parser.parse_args()
main(args)