-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
159 lines (131 loc) · 4.82 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
from collections import deque
from pathlib import Path
import numpy as np
import torch
from matplotlib import pyplot as plt
from stable_baselines3.common.vec_env import SubprocVecEnv
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from src.model import Net
from src.utils import Logger, get_encoder, make_env
from src.vae.model import ConvVAE, Decoder, Encoder
@torch.no_grad()
def eval(env, vae, lstm, logger, args, self_control=False, log=False, render=False):
assert env.num_envs == 1, "eval is only supported for num_envs = 1"
vae.eval()
lstm.eval()
obs = torch.from_numpy(np.array(env.reset())).unsqueeze(dim=1).to(args.device)
info_encoder = get_encoder()
prev_info = info_encoder(env.env_method("get_info"))
latent_repr = deque(
np.zeros((args.num_frames, env.num_envs, vae.zdim + 4), dtype=np.float32),
maxlen=args.num_frames,
)
latent_repr.append(np.column_stack((vae.encode(obs)[0].cpu().numpy(), prev_info)))
act = np.array([None])
tot_reward = 0
def to_numpy(x):
return x.to(device="cpu").numpy()
t = tqdm(range(args.eval_steps))
for i in t:
if self_control:
obs, reward, done, info = env.step(act)
else:
dist, value = lstm(torch.from_numpy(np.array(latent_repr)).to(args.device))
action = to_numpy(dist.mode())
obs, reward, done, info = env.step(action)
obs = torch.from_numpy(np.array(obs)).unsqueeze(dim=1).to(args.device)
prev_info = info_encoder(info)
latent_repr.append(
np.column_stack((vae.encode(obs)[0].cpu().numpy(), prev_info))
)
sum_reward = reward.sum()
tot_reward += sum_reward
t.set_description(f"rewards: {sum_reward}")
image = np.array(env.env_method("render")).squeeze().astype(np.uint8)
if log:
logger.log_eval(sum_reward, value.item(), tot_reward, image)
if render:
plt.imshow(image)
plt.pause(0.1)
if done.any():
break
return tot_reward
def main(args):
writer = SummaryWriter(log_dir=args.log_dir)
logger = Logger(writer)
race_config_args = {
"track": args.track,
"kart": args.kart,
"numKarts": args.num_karts,
"laps": args.laps,
"reverse": args.reverse,
"vae": args.self_control,
"difficulty": args.difficulty,
}
env = make_env(id)()
obs_shape, act_shape = env.observation_space.shape, env.action_space.nvec
env.close()
vae = ConvVAE(obs_shape, Encoder, Decoder, args.zdim)
vae.to(args.device)
lstm = Net(vae.zdim + 4, act_shape, 1)
lstm.to(args.device)
if args.vae_model_path is not None:
vae.load_state_dict(torch.load(args.vae_model_path), strict=False)
if args.lstm_model_path is not None:
lstm.load_state_dict(torch.load(args.lstm_model_path))
env = SubprocVecEnv(
[make_env(id, args.graphic, race_config_args) for id in range(1)],
start_method="spawn",
)
reward = eval(
env,
vae,
lstm,
logger,
args,
self_control=args.self_control,
log=False,
render=True,
)
print(f"Total rewards: {reward}")
env.close()
if __name__ == "__main__":
from os.path import join
from src.utils import STK
parser = argparse.ArgumentParser(
"Implementation of the PPO algorithm for the SuperTuxKart game"
)
parser.add_argument("--laps", type=int, default=1)
parser.add_argument("--num_karts", type=int, default=5)
parser.add_argument("--difficulty", type=int, default=1)
parser.add_argument("--reverse", type=bool, default=False)
parser.add_argument("--self_control", type=bool, default=False)
parser.add_argument("--kart", type=str, choices=STK.KARTS, default=None)
parser.add_argument("--track", type=str, choices=STK.TRACKS, default=None)
parser.add_argument("--graphic", type=str, choices=["hd", "ld", "sd"], default="hd")
parser.add_argument("--zdim", type=int, default=256)
parser.add_argument("--num_frames", type=int, default=5)
parser.add_argument("--eval_steps", type=int, default=2500)
parser.add_argument("--device", type=str, choices=["cpu", "cuda"], default="cuda")
parser.add_argument(
"--vae_model_path",
type=Path,
default=None,
help="Load VAE model from path.",
)
parser.add_argument(
"--lstm_model_path",
type=Path,
default=None,
help="Load LSTM model from path.",
)
parser.add_argument(
"--log_dir",
type=Path,
default=join(Path(__file__).absolute().parent, "tensorboard"),
help="Path to the directory in which the trained models are saved.",
)
args = parser.parse_args()
main(args)