diff --git a/.gitignore b/.gitignore index c9a7a5183..5343563bc 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,4 @@ +models/ tmp/ *.bak *.pkl diff --git a/09_tabular.ipynb b/09_tabular.ipynb index 18512daaf..e3fce47bd 100644 --- a/09_tabular.ipynb +++ b/09_tabular.ipynb @@ -286,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -302,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -322,16 +322,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Path('/home/sgugger/.fastai/archive/bluebook')" + "Path('/home/jhoward/.fastai/archive/bluebook')" ] }, - "execution_count": null, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -343,7 +343,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -360,16 +360,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(#7) [Path('Valid.csv'),Path('Machine_Appendix.csv'),Path('ValidSolution.csv'),Path('TrainAndValid.csv'),Path('random_forest_benchmark_test.csv'),Path('Test.csv'),Path('median_benchmark.csv')]" + "(#7) [Path('TrainAndValid.csv'),Path('Machine_Appendix.csv'),Path('random_forest_benchmark_test.csv'),Path('Test.csv'),Path('median_benchmark.csv'),Path('ValidSolution.csv'),Path('Valid.csv')]" ] }, - "execution_count": null, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -415,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -424,7 +424,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -446,7 +446,7 @@ " dtype='object')" ] }, - "execution_count": null, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -466,7 +466,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -475,7 +475,7 @@ "array([nan, 'Medium', 'Small', 'Large / Medium', 'Mini', 'Large', 'Compact'], dtype=object)" ] }, - "execution_count": null, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -493,7 +493,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -502,7 +502,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -521,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -530,7 +530,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -615,7 +615,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -631,7 +631,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -648,16 +648,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'saleYear saleMonth saleWeek saleDay saleDayofweek saleDayofyear saleIs_month_end saleIs_month_start saleIs_quarter_end saleIs_quarter_start saleIs_year_end saleIs_year_start saleElapsed'" + "'saleWeek saleYear saleMonth saleDay saleDayofweek saleDayofyear saleIs_month_end saleIs_month_start saleIs_quarter_end saleIs_quarter_start saleIs_year_end saleIs_year_start saleElapsed'" ] }, - "execution_count": null, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -694,7 +694,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -720,7 +720,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -740,7 +740,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -749,7 +749,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -765,7 +765,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -774,7 +774,7 @@ "(404710, 7988)" ] }, - "execution_count": null, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -792,7 +792,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -802,6 +802,7 @@ " \n", " \n", " \n", + " saleWeek\n", " UsageBand\n", " fiModelDesc\n", " fiBaseModel\n", @@ -852,6 +853,7 @@ " saleIs_quarter_start\n", " saleIs_year_end\n", " saleIs_year_start\n", + " saleElapsed\n", " auctioneerID_na\n", " MachineHoursCurrentMeter_na\n", " SalesID\n", @@ -863,17 +865,16 @@ " MachineHoursCurrentMeter\n", " saleYear\n", " saleMonth\n", - " saleWeek\n", " saleDay\n", " saleDayofweek\n", " saleDayofyear\n", - " saleElapsed\n", " SalePrice\n", " \n", " \n", " \n", " \n", " 0\n", + " 46\n", " Low\n", " 521D\n", " 521\n", @@ -924,26 +925,26 @@ " False\n", " False\n", " False\n", + " 1163635200\n", " False\n", " False\n", - " 1139246.0\n", - " 999089.0\n", - " 3157.0\n", - " 121.0\n", + " 1139246\n", + " 999089\n", + " 3157\n", + " 121\n", " 3.0\n", - " 2004.0\n", + " 2004\n", " 68.0\n", - " 2006.0\n", - " 11.0\n", - " 46.0\n", - " 16.0\n", - " 3.0\n", - " 320.0\n", - " 1.163635e+09\n", + " 2006\n", + " 11\n", + " 16\n", + " 3\n", + " 320\n", " 11.097410\n", " \n", " \n", " 1\n", + " 13\n", " Low\n", " 950FII\n", " 950\n", @@ -994,26 +995,26 @@ " False\n", " False\n", " False\n", + " 1080259200\n", " False\n", " False\n", - " 1139248.0\n", - " 117657.0\n", - " 77.0\n", - " 121.0\n", + " 1139248\n", + " 117657\n", + " 77\n", + " 121\n", " 3.0\n", - " 1996.0\n", + " 1996\n", " 4640.0\n", - " 2004.0\n", - " 3.0\n", - " 13.0\n", - " 26.0\n", - " 4.0\n", - " 86.0\n", - " 1.080259e+09\n", + " 2004\n", + " 3\n", + " 26\n", + " 4\n", + " 86\n", " 10.950807\n", " \n", " \n", " 2\n", + " 9\n", " High\n", " 226\n", " 226\n", @@ -1064,22 +1065,21 @@ " False\n", " False\n", " False\n", + " 1077753600\n", " False\n", " False\n", - " 1139249.0\n", - " 434808.0\n", - " 7009.0\n", - " 121.0\n", + " 1139249\n", + " 434808\n", + " 7009\n", + " 121\n", " 3.0\n", - " 2001.0\n", + " 2001\n", " 2838.0\n", - " 2004.0\n", - " 2.0\n", - " 9.0\n", - " 26.0\n", - " 3.0\n", - " 57.0\n", - " 1.077754e+09\n", + " 2004\n", + " 2\n", + " 26\n", + " 3\n", + " 57\n", " 9.210340\n", " \n", " \n", @@ -1100,7 +1100,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1168,7 +1168,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -1195,12 +1195,12 @@ " SalesID\n", " SalePrice\n", " MachineID\n", - " ModelID\n", + " saleWeek\n", " ...\n", - " saleDay_na\n", - " saleDayofweek_na\n", - " saleDayofyear_na\n", - " saleElapsed_na\n", + " saleIs_year_start\n", + " saleElapsed\n", + " auctioneerID_na\n", + " MachineHoursCurrentMeter_na\n", " \n", " \n", " \n", @@ -1209,10 +1209,10 @@ " 1139246\n", " 11.097410\n", " 999089\n", - " 3157\n", + " 46\n", " ...\n", " 1\n", - " 1\n", + " 2647\n", " 1\n", " 1\n", " \n", @@ -1221,10 +1221,10 @@ " 1139248\n", " 10.950807\n", " 117657\n", - " 77\n", + " 13\n", " ...\n", " 1\n", - " 1\n", + " 2148\n", " 1\n", " 1\n", " \n", @@ -1233,33 +1233,33 @@ " 1139249\n", " 9.210340\n", " 434808\n", - " 7009\n", + " 9\n", " ...\n", " 1\n", - " 1\n", + " 2131\n", " 1\n", " 1\n", " \n", " \n", "\n", - "

3 rows × 79 columns

\n", + "

3 rows × 67 columns

\n", "" ], "text/plain": [ - " SalesID SalePrice MachineID ModelID ... saleDay_na saleDayofweek_na \\\n", - "0 1139246 11.097410 999089 3157 ... 1 1 \n", - "1 1139248 10.950807 117657 77 ... 1 1 \n", - "2 1139249 9.210340 434808 7009 ... 1 1 \n", + " SalesID SalePrice MachineID saleWeek ... saleIs_year_start \\\n", + "0 1139246 11.097410 999089 46 ... 1 \n", + "1 1139248 10.950807 117657 13 ... 1 \n", + "2 1139249 9.210340 434808 9 ... 1 \n", "\n", - " saleDayofyear_na saleElapsed_na \n", - "0 1 1 \n", - "1 1 1 \n", - "2 1 1 \n", + " saleElapsed auctioneerID_na MachineHoursCurrentMeter_na \n", + "0 2647 1 1 \n", + "1 2148 1 1 \n", + "2 2131 1 1 \n", "\n", - "[3 rows x 79 columns]" + "[3 rows x 67 columns]" ] }, - "execution_count": null, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1271,7 +1271,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -1334,7 +1334,7 @@ "2 32 3 0 6" ] }, - "execution_count": null, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1353,16 +1353,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(#7) ['#na#','Large','Large / Medium','Medium','Small','Mini','Compact']" + "['#na#', 'Large', 'Large / Medium', 'Medium', 'Small', 'Mini', 'Compact']" ] }, - "execution_count": null, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -1380,7 +1380,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -1421,7 +1421,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -1431,7 +1431,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -1448,7 +1448,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -1465,7 +1465,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -1474,125 +1474,125 @@ "\n", "\n", - "\n", "\n", - "\n", - "\n", + "\n", + "\n", "Tree\n", - "\n", + "\n", "\n", "\n", "0\n", - "\n", - "Coupler_System ≤ 0.5\n", - "mse = 0.48\n", - "samples = 404710\n", - "value = 10.1\n", + "\n", + "Coupler_System ≤ 0.5\n", + "mse = 0.48\n", + "samples = 404710\n", + "value = 10.1\n", "\n", "\n", "\n", "1\n", - "\n", - "YearMade ≤ 1991.5\n", - "mse = 0.42\n", - "samples = 360847\n", - "value = 10.21\n", + "\n", + "YearMade ≤ 1991.5\n", + "mse = 0.42\n", + "samples = 360847\n", + "value = 10.21\n", "\n", "\n", "\n", "0->1\n", - "\n", - "\n", - "True\n", + "\n", + "\n", + "True\n", "\n", "\n", "\n", "2\n", - "\n", - "mse = 0.12\n", - "samples = 43863\n", - "value = 9.21\n", + "\n", + "mse = 0.12\n", + "samples = 43863\n", + "value = 9.21\n", "\n", "\n", "\n", "0->2\n", - "\n", - "\n", - "False\n", + "\n", + "\n", + "False\n", "\n", "\n", "\n", "3\n", - "\n", - "mse = 0.37\n", - "samples = 155724\n", - "value = 9.97\n", + "\n", + "mse = 0.37\n", + "samples = 155724\n", + "value = 9.97\n", "\n", "\n", "\n", "1->3\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "4\n", - "\n", - "ProductSize ≤ 4.5\n", - "mse = 0.37\n", - "samples = 205123\n", - "value = 10.4\n", + "\n", + "ProductSize ≤ 4.5\n", + "mse = 0.37\n", + "samples = 205123\n", + "value = 10.4\n", "\n", "\n", "\n", "1->4\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "5\n", - "\n", - "mse = 0.31\n", - "samples = 182403\n", - "value = 10.5\n", + "\n", + "mse = 0.31\n", + "samples = 182403\n", + "value = 10.5\n", "\n", "\n", "\n", "4->5\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "6\n", - "\n", - "mse = 0.17\n", - "samples = 22720\n", - "value = 9.62\n", + "\n", + "mse = 0.17\n", + "samples = 22720\n", + "value = 9.62\n", "\n", "\n", "\n", "4->6\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": null, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "draw_tree(m, xs, size=7, leaves_parallel=True, precision=2)" + "draw_tree(m, xs, size=10, leaves_parallel=True, precision=2)" ] }, { @@ -1619,302 +1619,314 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ - "\n", + "\n", "\n", "G\n", - "\n", + "\n", "\n", "\n", "node4\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:53.699571\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1924,15 +1936,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1942,16 +1954,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1960,31 +1972,31 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1992,18 +2004,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2012,15 +2024,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2028,25 +2040,25 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", @@ -2054,237 +2066,249 @@ "\n", "leaf5\n", "\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:54.310206\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2292,19 +2316,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2313,15 +2337,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2329,49 +2353,49 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2382,70 +2406,82 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf5\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "leaf6\n", "\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:54.432563\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2453,19 +2489,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2474,15 +2510,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2490,50 +2526,50 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2543,505 +2579,517 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf6\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "node1\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:53.856628\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3052,16 +3100,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3071,23 +3119,23 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3095,15 +3143,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3112,7 +3160,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3125,259 +3173,271 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node1->node4\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "leaf3\n", "\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:54.186657\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3385,19 +3445,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3406,15 +3466,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3422,48 +3482,48 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3474,96 +3534,108 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node1->leaf3\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "leaf2\n", "\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:54.543761\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3571,19 +3643,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3592,15 +3664,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3608,50 +3680,50 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3661,8 +3733,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", @@ -3670,547 +3742,559 @@ "\n", "\n", "node0\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:54.025401\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4220,15 +4304,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4238,15 +4322,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4255,22 +4339,22 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4292,18 +4376,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4312,7 +4396,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4325,61 +4409,61 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", - "\n", - "\n", - "<\n", + "\n", + "\n", + "<\n", "\n", "\n", "\n", "node0->leaf2\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4387,10 +4471,10 @@ "" ], "text/plain": [ - "" + "" ] }, - "execution_count": null, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -4411,7 +4495,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -4428,302 +4512,314 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ - "\n", + "\n", "\n", "G\n", - "\n", + "\n", "\n", "\n", "node4\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:57.319038\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4733,15 +4829,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4751,16 +4847,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4769,31 +4865,31 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4801,18 +4897,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4821,15 +4917,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4837,25 +4933,25 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", @@ -4863,237 +4959,249 @@ "\n", "leaf5\n", "\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:57.938839\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5101,19 +5209,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5122,15 +5230,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5138,49 +5246,49 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5191,70 +5299,82 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf5\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "leaf6\n", "\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:58.061366\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5262,19 +5382,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5283,15 +5403,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5299,50 +5419,50 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5352,508 +5472,520 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node4->leaf6\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "node1\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:57.481070\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5866,16 +5998,16 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5888,12 +6020,12 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5905,23 +6037,23 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5929,15 +6061,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5946,7 +6078,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5959,259 +6091,271 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node1->node4\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "leaf3\n", "\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:57.817648\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6219,19 +6363,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6240,15 +6384,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6256,48 +6400,48 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6308,96 +6452,108 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node1->leaf3\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "leaf2\n", "\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:58.171854\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6405,19 +6561,19 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6426,15 +6582,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6442,50 +6598,50 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -6495,8 +6651,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", @@ -6504,547 +6660,559 @@ "\n", "\n", "node0\n", - "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-11-29T10:27:57.657715\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.1, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7054,15 +7222,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7072,15 +7240,15 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7089,22 +7257,22 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7126,18 +7294,18 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7146,7 +7314,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7159,61 +7327,61 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "\n", "\n", "\n", "node0->node1\n", - "\n", - "\n", - "<\n", + "\n", + "\n", + "<\n", "\n", "\n", "\n", "node0->leaf2\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -7221,10 +7389,10 @@ "" ], "text/plain": [ - "" + "" ] }, - "execution_count": null, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -7246,7 +7414,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -7263,7 +7431,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -7273,7 +7441,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -7282,7 +7450,7 @@ "0.0" ] }, - "execution_count": null, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -7300,16 +7468,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.337727" + "0.331466" ] }, - "execution_count": null, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -7327,16 +7495,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(340909, 404710)" + "(324544, 404710)" ] }, - "execution_count": null, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -7354,16 +7522,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.248562, 0.32368)" + "(0.248562, 0.323396)" ] }, - "execution_count": null, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -7383,7 +7551,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -7392,7 +7560,7 @@ "12397" ] }, - "execution_count": null, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -7489,7 +7657,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ @@ -7515,7 +7683,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ @@ -7528,7 +7696,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -7544,16 +7712,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.170896, 0.233502)" + "(0.170917, 0.233975)" ] }, - "execution_count": null, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -7589,7 +7757,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -7605,16 +7773,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.233502" + "0.233975" ] }, - "execution_count": null, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -7632,12 +7800,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD7CAYAAABt0P8jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAfiUlEQVR4nO3de3xdZZ3v8c9v35LsnXuatNDSBkovXBQGihwuHaRcVNTBI44Hy0s9Kl7gxRnH4+DgnOHIOBxnhnMcHWfwwvGGoOIgMAg6HkVRuQ8tUqDQFmib0nubJmnuyd77d/7YK2E3Jk2aplm7Wd/367VfyX7W2ju/PE2/+9nPWvtZ5u6IiEh0xMIuQEREppeCX0QkYhT8IiIRo+AXEYkYBb+ISMQkwi5gImbNmuXNzc1hlyEiclRZvXr1XndvHNl+VAR/c3Mzq1atCrsMEZGjipm1jNauqR4RkYhR8IuIRIyCX0QkYhT8IiIRo+AXEYkYBb+ISMQo+EVEImZGB/99v9/KnU+OehqriEhkzejg/+lzO/n+U1vCLkNEpKTM6OCvzyTZ190fdhkiIiVlRgd/XSZFW/cgusqYiMjrZnTwN2RSDOTydPVnwy5FRKRkzOjgr0unAGjrHgy5EhGR0jGjg7+hshD8+3oGQq5ERKR0zOjgHxrx6wCviMjrZnTw12eGgl9TPSIiQyIS/Brxi4gMmdHBX1mWIBk3jfhFRIrM6OA3M+ozKdq6dXBXRGTIjA5+KBzgbVXwi4gMm/HBX59J0abTOUVEhkUi+PdpxC8iMkzBLyISMZEI/o7eQbK5fNiliIiUhEgEP0Bbj07pFBGBCAT/8EJtOsArIgJEIPgbghF/a5eCX0QEIhD8dRmN+EVEis344G8YXq9HwS8iAhEI/tq0gl9EpNiMD/5UIkZVeULBLyISmPHBD/oQl4hIsUgEf11a6/WIiAyJRPA3aMQvIjIsEsFfp+AXERkWieAfGvG7e9iliIiELhLBX5dJ0Z/N0zOQC7sUEZHQRSL463Uuv4jIsGgEv5ZtEBEZFongH1qvR9feFRGJSPAPrdfTpuAXEYlG8NdpoTYRkWETCn4zqzez+8ys28xazGzlGPv9uZltNLP9ZrbdzL5kZomi7c1m9rCZ9ZjZOjO7eKp+kYOpLk+QiJmCX0SEiY/4bwUGgNnAVcDXzOyUUfZ7ADjD3auBU4HTgD8r2v5D4PdAA/A/gB+bWeMka58wM6Muo2UbRERgAsFvZhngCuBGd+9y90eBnwDvH7mvu7/q7u1DDwXywInB8ywGzgA+5+697n4P8Hzw3EdcfTqlq3CJiDCxEf9iIOfuG4ra1gCjjfgxs5Vmth/YS2HE/41g0ynARnfvnODzfMzMVpnZqj179kygzIOr14hfRASYWPBXAh0j2jqAqtF2dvcfBFM9i4GvA7sm+Ty3ufsyd1/W2Hj4s0H1mZRO5xQRYWLB3wVUj2irBjpH2XeYu78MrAW+ejjPM1XqMkmdzikiwsSCfwOQMLNFRW2nUQj18SSAhcH3a4ETzKx4hD/R5zls9Zky2nsHyeW1UJuIRNu4we/u3cC9wOfNLGNm5wGXA3eM3NfMrjazpuD7k4HPAr8KnmcD8CzwOTMrN7P/DLwRuGeqfpmDqU8ncYd2zfOLSMRN9HTOa4EKYDeFUzKvcfe1ZrbczLqK9jsPeN7MuoGfBbe/Ktp+JbAMaAP+HniPux/+kdsJqK8sA7Rej4hIYvxdwN33Ae8apf0RCgdth+5/aJzn2Qy8+ZAqnCJDK3S2dg1wYlMYFYiIlIZILNkAhYO7oBG/iEhkgr8hU5jq2dc9GHIlIiLhikzwD43493X3h1yJiEi4IhP8ZYk4lWUJjfhFJPIiE/xQGPVrxC8iURep4K9Pp9jXoxG/iERbtII/k9KyDSISeZEK/rpMShdjEZHIi1TwNyj4RUSiFfx1mRS9gzl6B3JhlyIiEppIBf/Qsg379OldEYmwaAV/phD8OsArIlEWyeDXlbhEJMoiGfwa8YtIlEUy+DXiF5Eoi1TwV5cnicdMI34RibRIBX8sZtSlkzqrR0QiLVLBD1CXTrGvS8EvItEVueCvz6Q04heRSItm8GuOX0QiLJLBr4O7IhJl0Qz+ngHyeQ+7FBGRUEQu+OvSKfIOHb26IIuIRFPkgr+hUgu1iUi0RS7464ZW6NQ8v4hEVOSCf2jZBgW/iERVZINfZ/aISFRFNvi1UJuIRFXkgr88GSedimvELyKRFbngh2C9HgW/iERUJIO/oVLr9YhIdEUy+OvSWrZBRKIrksFfn0np4K6IRFZkg18jfhGJqsgGf/dAjr7BXNiliIhMu8gGP0CbDvCKSARFMvi1Xo+IRFkkg1/r9YhIlE0o+M2s3szuM7NuM2sxs5Vj7He9mb1gZp1mtsnMrh+x/XQze8TMOsxsq5n9z6n4JQ6Vgl9EomyiI/5bgQFgNnAV8DUzO2WU/Qz4AFAHvBW4zsyuLNr+A+B3QD1wAXCNmf3JJGufNAW/iETZuMFvZhngCuBGd+9y90eBnwDvH7mvu9/i7s+4e9bd1wP3A+cV7dIMfN/dc+7+KvAoMNoLyBFVU5EkZlqhU0SiaSIj/sVAzt03FLWtYZzANjMDlgNri5q/DHzAzJJmtgQ4B3hojMd/zMxWmdmqPXv2TKDMiYvHjNq0lm0QkWiaSPBXAh0j2jqAqnEed1Pw/N8pansQeA/QC6wDvuXuT4/2YHe/zd2XufuyxsbGCZR5aOrSSU31iEgkTST4u4DqEW3VQOdYDzCz6yjM9b/d3fuDtnrg58DngXLgOOAtZnbtJOo+bA2ZMgW/iETSRIJ/A5Aws0VFbadx4BTOMDP7MHADcJG7by3adAKFKaPvBccAtgJ3AZdNrvTDU5fRiF9Eomnc4Hf3buBe4PNmljGz84DLgTtG7mtmVwFfAC5x940jNm8o7GIrzSxmZnOA/0LheMG0q8+Usa97MIwfLSISqomeznktUAHsBn4IXOPua81suZl1Fe13M9AAPG1mXcHt6wDuvh94N/ApoA14FngB+F9T86scmvpMkraeAdw9jB8vIhKaxER2cvd9wLtGaX+EwsHfofvHj/M8vwbOOsQaj4i6dIpc3tnfm6UmnQy7HBGRaRPJJRugcBUuQKd0ikjkRDb4X1+orT/kSkREpldkg78hUwagA7wiEjmRDf66TGFeXyN+EYmayAa/RvwiElWRDf6KVJzyZExX4RKRyIls8APMq0uzbueYK0+IiMxIkQ7+CxY38uTGVnoGsmGXIiIybSId/CuWNjGQzfPYK61hlyIiMm0iHfxnNddTWZbg4fW7wy5FRGTaRDr4U4kY5584i4fX7daaPSISGZEOfoALlzayo6NPB3lFJDIU/EuaAPj1Ok33iEg0RD74m6rLOXVuNQ8r+EUkIiIf/AArljTxzJY22nRFLhGJAAU/cOHSJvIOv3t5T9iliIgccQp+4LR5tTRkUpruEZFIUPADsZhxwZJGfrthD7m8TusUkZlNwR9YsbSJtp5Bnn2tLexSRESOKAV/YPmiRuIx02mdIjLjKfgDNRVJzlxQx6/X6QCviMxsCv4iK5Y28dKO/ezo6A27FBGRI0bBX2TF0sKneH+zXqN+EZm5FPxFFjVVMre2QvP8IjKjKfiLmBkrljbx2Ct76c/mwi5HROSIUPCPsGJpEz0DOZ7auC/sUkREjggF/wjnLGygPBnTdI+IzFgK/hHKk3HOXTiLh9fr4iwiMjMp+Edx4ZJGWlp72LS3O+xSRESmnIJ/FBcu1cVZRGTmUvCPYl5dmsWzK3URdhGZkRT8Y7hwaRP/sWkfXf3ZsEsREZlSCv4xrFjSxGDO+a0+xSsiM4yCfwxnLqhjbm0F33tic9iliIhMKQX/GBLxGB86r5mnNu3j+a0dYZcjIjJlFPwH8d6zjqOyLME3H90YdikiIlNGwX8Q1eVJrjzrOB58bgfb27VUs4jMDAr+cXzo/OMB+O7jm8MtRERkikwo+M2s3szuM7NuM2sxs5Vj7He9mb1gZp1mtsnMrh9ln08G27rN7CUzW3y4v8SRNLe2gsvecAw/fGoLnX2DYZcjInLYJjrivxUYAGYDVwFfM7NTRtnPgA8AdcBbgevM7MrhjWZXAx8B3g5UAu8A9k66+mly9fnH09mf5V9XbQ27FBGRwzZu8JtZBrgCuNHdu9z9UeAnwPtH7uvut7j7M+6edff1wP3AecHzxIDPAZ9y9xe94FV3L/n1j087rpY3Ndfz7Uc3kc3lwy5HROSwTGTEvxjIufuGorY1wGgj/mFmZsByYG3QNC+4nWpmrwXTPX8TvCCUvKuXH8+29l5+vnZn2KWIiByWiYRuJTDyRPYOoGqcx90UPP93gvvzgq+XAm8ALgTeR2Hq5w+Y2cfMbJWZrdqzJ/xPz1500myaG9L830c2ablmETmqTST4u4DqEW3VQOdYDzCz6yjM9b/d3fuD5qHzIW9x93Z33wx8A7hstOdw99vcfZm7L2tsbJxAmUdWPGZ85PzjWfNaO6ta2sIuR0Rk0iYS/BuAhJktKmo7jdencA5gZh8GbgAucvfio6HrKRwgPmqHy1ecOY/adJJvPqIPdInI0Wvc4Hf3buBe4PNmljGz84DLgTtG7mtmVwFfAC5x940jnqcH+BHwGTOrMrN5wEeBBw//15ge6VSCq86ezy9e3MVmXaRFRI5SEz2wei1QAewGfghc4+5rzWy5mXUV7Xcz0AA8bWZdwe3rRduvozB1tB14AvgB8O3D/SWm0wfPaSYZi/HtxzaFXYqIyKQkJrJTcMrlu0Zpf4TCwd+h+8eP8zz7gSsPtk+pa6ou509OP5a7V23lv1+ymNp0KuySREQOyVFxKmWpuXr58fQO5vj+U1vCLkVE5JAp+Cdh6Zxqli+axe2Pb6Y/mwu7HBGRQ6Lgn6RPXLCQ3Z39/P2/rwu7FBGRQ6Lgn6TzTpzFh887nu88tpkH1mwPuxwRkQlT8B+Gz162lDMX1HHDPc/xyu4xP88mIlJSFPyHIRmPcevKMyhPxvnEnc/Q3Z8NuyQRkXEp+A/TnJpy/vl9f8TGPV3ccO/zWsdHREqegn8KnHviLD596RIeWLOd7z3REnY5IiIHpeCfItdcsJCLT2ri5p++yGot4iYiJUzBP0ViMeOLf3o6c2rKue4Hz9Da1T/+g0REQqDgn0I16SRfu+pMWrsH+ORdz5LLa75fREqPgn+KnTq3hpsvP5VHX9nLlx/aMP4DRESmmYL/CHjvWcfx3mXz+JeHX+E/NpX8JYVFJGIU/EfI5955CvPqKrj+x2voGdD5/SJSOhT8R0imLMEtV5xGS2sPt/x8fdjliIgMU/AfQecsbOCD5yzgu49v5qmNrWGXIyICKPiPuL9821Lm16e5/sfPacpHREqCgv8IS6cS3PKeN7Jln6Z8RKQ0KPinwX86oYH/em4z3318M09qykdEQqbgnyafeesSFjSk+YymfEQkZAr+aZJOJbjlisKUzz/oql0iEiIF/zQ6O5jyuf2JFp54VVM+IhIOBf80G57yuWeNLtwiIqFQ8E+zoSmf1/b18lf3Pa/5fhGZdgr+EJx9QgOfvGgR9z+7nUv+8Xf8v7U7deUuEZk2Cv6QfOqSxdz9iXOoLEvw8TtW85HbV7GltSfsskQkAhT8ITqruZ4H/+x8/vrtJ/HUxlYu+dJv+edfvUx/Nhd2aSIygyn4Q5aMx7h6+Qk89OkLuPik2Xzxlxt425cf4dGX9475GHcnr4u8iMgk2dEwt7xs2TJftWpV2GVMi99u2MPn7n+Bza091KaT5PKFkM+5k89DNp8n72AGl548m7+4dAmLZleFXbaIlCAzW+3uy/6gXcFfevoGc9z5ZAtb9vUQMyMeK7qZEYsZnX2D3L1qKz0DWd59xjz+/OJFzKtLh126iJQQBf8MtK97gK8+/Arfe7IFHFaePZ/rVpzIrMqysEsTkRKg4J/Btrf38pVfvczdq7dSlojxkfOP56N/fALV5cmwSxORECn4I2Djni7+8ZcbePC5HVSXJ7j0lDlcfNJsli+aRaYsEXZ5IjLNFPwR8sK2Dr75yEZ+vW43+/uypBIxzl3YwMUnzeaik5o4pqYi7BJFZBoo+CNoMJdn1eY2HnppFw+9tIuW4ANip86t5i0nz+G9Zx3H7OrykKsUkSNFwR9x7s6re7r45Yu7eeilXTyzpY24GW89dQ4fPLeZZQvqMLOwyxSRKaTglwNs3tvNnU+28K+rXmN/X5aTjqnmg+cs4PLT51KRioddnohMAQW/jKpnIMv9z27n9sc3s25nJzUVSd67bB5Xnb2A5lmZsMsTkcOg4JeDcnee3tzG7U9s5ucv7CSXd04/rpbLTz+Wd7zxWBqr9NkAkaPNWME/obV6zKzezO4zs24zazGzlWPsd72ZvWBmnWa2ycyuH2O/C8zMzezmQ/s15EgxM950fD23rjyDx29YwWfftpSBbJ6/eeBFzv7CQ7z/W09xz+qtdPYNhl2qiBymiZ7cfSswAMwGTgd+amZr3H3tiP0M+ADwHLAQ+IWZvebudw3vYJYE/gl46nCLlyNjdnU5H79gIR+/YCEv7+rk/me3c/+abXz67jWU3Rfj4pNnc9mpx3D+olnUVOhDYiJHm3GneswsA7QBp7r7hqDtDmCbu98wzmO/EvyM/1bUdgNQDzQBW939r8crUlM94XN3ntnSzk+e3caDz+2gtXuAeMxYtqCOC5c2sWJpE4uaKnVmkEgJmfQcv5n9EfC4u1cUtf0FcIG7v/MgjzPgGeAb7v71oG0B8EvgDOBfOEjwm9nHgI8BzJ8//8yWlpaD/4YybbK5PM++1s7D63fz8Lo9vLhjPwBzayt485JGVixtYtmCemrSejcgEqaxgn8iUz2VQMeItg5gvLWAb6JwDOE7RW1fAW50967xRobufhtwGxRG/BOoU6ZJIh5jWXM9y5rruf4tS9nZ0cdv1u/m1+t2c9/vt/H9p7YAML8+zRvm1nDq3BreENz0YiASvokEfxdQPaKtGugc6wFmdh2Fuf7l7t4ftL0TqHL3H02yVilRc2rKufJN87nyTfPpz+ZY3dLGmtc6eH5bO89ta+enz+8Y3nfoxWDpnCqWzKnipGOqmVtbQSymKSKR6TKR4N8AJMxskbu/HLSdBow8sAuAmX0YuAH4Y3ffWrTpImCZme0M7tcAOTN7g7tfPrnypdSUJeKcu3AW5y6cNdzW3jPAC9v289y2dl7Y1sHz2zoOeDHIpOIsnlPF0jlVLJ1TTfOsDMmYYWbEDGKxwtfCfaOyLM68ujTlSX3QTGQyJnQev5ndBThwNYWzen4GnDvyrB4zuwr4InChu780YlsVUPyJoH8CtgN/6+77DvbzdXB35unqz7JhVyfrd3aybsd+1u3sZP2uTtp7Jna6qBkcU13O/IY0zQ0Z5jekWVCfYUFDmhObKvWiIMLhzfEDXAt8G9gNtALXuPtaM1sO/Lu7Vwb73Qw0AE8XzeHf6e6fcPdOiqaHzKwX6B4v9GVmqixLcMb8Os6YXzfc5u7s2t/P1raewiUnPbi+sEPenbw7DnT0DNLS2kNLazct+3p46KVd7O0aGH6eRMw4ZW4NZ86v48wFdSxrrtNidCJF9MldmRG6+rOFF4LWHp7f1hEcZ2inP5sHCmccnbmgjjPm17KwqZJjays4tqZC6xLJjKYlGyRyBrJ5Xtqxn9Utbaze0sbqzW3s3N93wD516STH1lZwTE0Fc2vLmVtXwcLGShbPrtJBZznqHe5Uj8hRJ5WIcdpxtZx2XC0f5ngAdnb00dLazY6OPra197K9vZcdHX1sbevhqU2tdPZlhx+fTsU5samSRU1VLJ5deDE4oTFDbTpFVVlCLwpy1FLwS6TMqSlnTs3Y8/0dvYO8sruTDbu62LCrk5d3dfHIy3u455mtB+wXM6gqT1JTceAtlYjR3Z+ldzBHd3+WnoFc0S1LWSJGU1U5TdVlNFaW0Rh8baoup7GyjIpUnETMiMds+OvQLRmPUZ6Iky6Lk4xPaJktkVEp+EWK1FQkOXNBPWcuqD+gvaNnkA27O9m8t5uO3sFRb9s7ehnM5cmkElSk4mRSCWZVlpFOxUmXJUgn4/Rlc+ze38+ern427ulmT1c/A8FxiEORjBsVyTjpVIJ0Kk5FKk5VeYJ5dWnm1xduxwVfZ1WmtJSGHEDBLzIBNekkZzXXc1Zz/fg7HwJ3Z39vlj1dfezu7Kd/ME827+TyQ1+dbM7JuTOYy9M7kKN3IEfPYPB1oPCuoncgR3vvII+8vIdd+/sP+BkVyTjz69McW1tOfaaMhsoUdekUDZkU9ZkU9ZWF7zNliaJ3G7HgXYbpRWMGUvCLhMjMqEknqUknObFpvFVQJqZvMMfWth627OthS2sPr7X1smVfDzs6elm/s5PW7oHhs50mImaQiMVIl8WpLEtQVZ6kqjxBVVmi8DW4P6emnGNqKji2tpxjayqoTSf1olGiFPwiM0x5Ms6JTVUHfSHpGcjS2jXAvu7CrbV7gN7BHNlcvvAuI+9kc6+/6xjMOT0DWTr7hm6D7OjoY8PuQbr6suzvy5LLH3iGYEUyzjHBi0BTdWHKqywRpzxZOFZRloxRnoxTnohTWZ5gdnU5x9SU01RVRkLHMI4oBb9IBKVTCdL1CY6rT0/J8+Xzzt7ufra397GjvZftHX3BGVO9bG/vY9PGbvoGc4VbNv8HLxLFzKCxsqxwIL66cDA+nUowmMsP3wayfsD9mBUOfifjwddEjGTs9e/jZsSKDpjHrPB9LGak4kZ1RZK6dGEKrDadpC6TIpOKH/F3LO7++pRe8LXwfZ58HrL5PLOry6f8YL6CX0QOWyxmhbOVqso5/bjacffP5vL0ZfP0Deboz+bp6Blk1/4+dnT0sXN/Hzs7etm5v5/Nrd08sbGV/myeVHGwx2OkEoX7iViMfHAMJJt3BrN5BnLB/VyegeBdzEFea0aVjBu16RSVZYWYLP7M02hPZRSm7iy4M3S/8I5p6EXqwO8P9gI45FefvoCFjZXj7ncoFPwiMu0S8RiV8dhwqM6treDkY0cuAjy13IMRtfvwaDqfh/5cjo6eQdp7B2nrHqC9Z5C2ngHaegbp6B2gqz/H0Li/+A1A8XsBB9yHvhaWFsHBceKx4AUrFiOZeP2Fa+hFKxkvfjcSG34nMvTuZFbl1F/vWsEvIpFgZiTiVhR6Q8t1JGmqitZaTjqCIiISMQp+EZGIUfCLiESMgl9EJGIU/CIiEaPgFxGJGAW/iEjEKPhFRCLmqLj0opntAVom+fBZwN4pLGcqqbbJUW2To9om52iubYG7N45sPCqC/3CY2arRrjlZClTb5Ki2yVFtkzMTa9NUj4hIxCj4RUQiJgrBf1vYBRyEapsc1TY5qm1yZlxtM36OX0REDhSFEb+IiBRR8IuIRIyCX0QkYmZs8JtZvZndZ2bdZtZiZivDrmmImf3GzPrMrCu4rQ+xluvMbJWZ9ZvZd0dsu8jM1plZj5k9bGYLSqE2M2s2My/qvy4zu3Ea6yozs28Ff1edZvZ7M3tb0fbQ+u1gtYXdb0ENd5rZDjPbb2YbzOzqom1h/72NWlsp9FtRjYuC7LizqG1l8O/dbWb/Zmb14z6Ru8/IG/BD4EdAJXA+0AGcEnZdQW2/Aa4Ou46glncD7wK+Bny3qH1W0Gd/CpQD/xt4skRqa6ZwedNESH2WAW4K6ogB7wA6g/uh9ts4tYXab0F9pwBlwfdLgZ3AmWH32zi1hd5vRTX+AngEuLOo5k7gj4Os+wFw13jPMyOvuWtmGeAK4FR37wIeNbOfAO8Hbgi1uBLj7vcCmNkyYF7RpncDa9397mD7TcBeM1vq7utCri1U7t5NIVyHPGhmmyiERAMh9ts4ta0+0j9/PO6+tvhucFtIob6w/97Gqq11On7+eMzsSqAdeBw4MWi+CnjA3X8X7HMj8JKZVbl751jPNVOnehYDOXffUNS2hsKrY6n4OzPba2aPmdmbwy5mFKdQ6DNgOFBepbT6sMXMtprZd8xsVlhFmNlsCn9zaymxfhtR25BQ+83MvmpmPcA6YAfwM0qk38aobUho/WZm1cDngU+P2DSy314FBij8m49ppgZ/JYW3jcU6gKoQahnNXwInAHMpfADjATNbGG5Jf6CU+3AvcBawgMJIsQr4fhiFmFky+Nm3ByPTkum3UWoriX5z92uDn70cuBfop0T6bYzaSqHf/hb4lru/NqJ9Uv02U4O/C6ge0VZNYS4sdO7+lLt3unu/u98OPAZcFnZdI5RsH7p7l7uvcvesu+8CrgMuDUZF08bMYsAdFEZY1wXNJdFvo9VWKv0W1JJz90cpTOFdQ4n022i1hd1vZnY6cDHwpVE2T6rfZuQcP7ABSJjZInd/OWg7jQPf7pYSByzsIkZYC3xw6E5w3GQhpdmHQx8/n7Y+NDMDvgXMBi5z98FgU+j9dpDaRpr2fhtFgtf7p9T+3oZqG2m6++3NFA4wbyn801IJxM3sZODnFLKtUJDZCUAZhQwcW9hHqY/g0e+7KJzZkwHOo0TO6gFqgbdQOHMhQeHgTDewJKR6EkEtf0dhhDhUV2PQZ1cEbf/A9J9lMVZtZwNLKLxjbaBw9tbD01zb14EngcoR7aXQb2PVFmq/AU3AlUPBFfw/6AYuD7vfxqkt7H5LA3OKbv8H+HHQZ6cA+ylMTWWAO5nAWT3T9sc43TegHvi34B9vC7Ay7JqCuhqBpym8FWsP/oNeEmI9N/H6GQxDt5uCbRdTOMjVS+EU1OZSqA14H7Ap+LfdAXwPmDONdS0Iaumj8FZ76HZV2P12sNpKoN8agd8Gf/f7geeBjxZtD7Pfxqwt7H4bpdabCE7nDO6vDDKuG7gfqB/vObRIm4hIxMzUg7siIjIGBb+ISMQo+EVEIkbBLyISMQp+EZGIUfCLiESMgl9EJGIU/CIiEfP/AfUVFNIxYB8qAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD7CAYAAACCEpQdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAldElEQVR4nO3df3xcdZ3v8ddnZpKZ/G7TTNJCSQOlBSmKSASlCiiKoMvStXoXQZZlr6KwuuveRdddl8eDRfcuKo/dvVfZevGyyoLgigt7WcVfD3/s0oJCKhasQOVHf0KbpD+STNL8mnzuH+ckTIdJM03TTDLn/Xw85pHke86c+eQ0fc+Z7znn+zV3R0REoiVW6gJERGT2KfxFRCJI4S8iEkEKfxGRCFL4i4hEUKLUBRSjqanJ29raSl2GiMi8snHjxm53TxdaNi/Cv62tjY6OjlKXISIyr5jZtsmWqdtHRCSCFP4iIhGk8BcRiSCFv4hIBBUV/mbWaGYPmFm/mW0zsysmWe9yM3vWzHrMrNPM7jSz+pzlHzOzDjMbMrOvz9DvICIiR6jYI//bgGGgBbgSWGdmqwqstwFY7e4NwEkEVxN9Lmf5S+HP/zztikVE5KhNeamnmdUAa4HT3T0DrDezB4GrgE/nruvuO/KengVOzll+f7jNdmDp0ZUuIiLTVcyR/0og6+5bcto2AYWO/DGzt5hZD9BH8Kbxj9MpzMyuDbuIOrq6uqazCR54Yid3/3zSy1xFRCKrmPCvBXry2nqAukIru/v6sNtnKfBFYOt0CnP329293d3b0+mCN6hN6aGndiv8RUQKKCb8M0B9Xls9wZH9pNx9F/B94JvTK+3opeuSdPUNlerlRUTmrGLCfwuQMLMVOW1nAJuLeG4CWD6dwmZCujbJvoFhRrJjpSpBRGROmjL83b0fuB+42cxqzGw1cBlwV/66ZnalmbVaYBnwt8CPc5YnzCwFxIG4maXM7JiNL9Rcn8Qd9vUPH6uXEBGZl4q91PN6oAroBO4FrnP3zWHQZ8ysNVzvNOARgq6iDcCzwIdztvPXwEGCq4Q+GH7/10f9W0wiXZsEUNePiEieoo663X0fsKZA+3aCE8LjP38G+MxhtnMTcNMR1jht6bog/Dv7BoGG2XpZEZE5r6yHdxgPfx35i4gcqqzDv0ndPiIiBZV1+Kcq4tSnEgp/EZE8ZR3+AM31KboyCn8RkVxlH/7pWt3oJSKSr/zDvy5Jp8JfROQQkQh/HfmLiBwqEuE/MJylf2i01KWIiMwZZR/+zbrWX0TkVco+/Cdu9NIVPyIiEyIT/p29Cn8RkXHlH/4Td/kOlrgSEZG5o+zDf2F1JfGYqdtHRCRH2Yd/LGY01VbqhK+ISI6yD3+A5rqUwl9EJEckwj9dl1S3j4hIjqLC38wazewBM+s3s21mdsUk611uZs+aWY+ZdZrZnWZWf6TbmWnp2qSu9hERyVHskf9twDDQAlwJrDOzVQXW2wCsdvcG4CSCmcI+N43tzKh0XZK9/cNkx/xYv5SIyLwwZfibWQ2wFrjR3TPuvh54ELgqf1133+Hu3TlNWeDkI93OTEvXJcmOOfsHNJG7iAgUd+S/Esi6+5actk1AwSN2M3uLmfUAfQRh/4/T3M61ZtZhZh1dXV1FlDk5DfEgInKoYsK/FujJa+sB6gqt7O7rw26fpcAXga3T3M7t7t7u7u3pdLqIMienuXxFRA5VTPhngPq8tnqCI/tJufsu4PvAN49mOzNhYogHhb+ICFBc+G8BEma2IqftDGBzEc9NAMtnYDtHRRO5i4gcasrwd/d+4H7gZjOrMbPVwGXAXfnrmtmVZtZqgWXA3wI/PtLtzLSaZIKayrjCX0QkVOylntcDVUAncC9wnbtvDoM+Y2at4XqnAY8QdPFsAJ4FPjzVdo7+15iabvQSEXlFopiV3H0fsKZA+3aCE7njP38G+MyRbmc2BEM8aGRPERGIyPAOoIncRURyRSr81ecvIhKIVPj3DY4yOJItdSkiIiUXnfDX5Z4iIhOiE/71mshdRGRcdMJfR/4iIhMiE/7NGuJBRGRCZMK/saYSMx35i4hAhMI/EY+xqEYTuYuIQITCHyCtidxFRIDIhb/G9xERgaiFf22Srl6N7yMiEq3wD4/83TWRu4hEW+TCfyTr9BwcKXUpIiIlFbnwB13uKSISqfBvVviLiABFhr+ZNZrZA2bWb2bbzOyKSda72sw2mlmvme00sy+YWSJn+WvM7Cdm1mNmz5nZ783UL1IMTeQuIhIo9sj/NmAYaAGuBNaZ2aoC61UDnwCagHOAC4EbAMI3gf8HfAdoBK4F7jazlUdR/xFRt4+ISGDK8DezGmAtcKO7Z9x9PfAgcFX+uu6+zt0fdvdhd98FfANYHS4+FTgO+Ad3z7r7Twjm+X3Vdo6VumSCZCKma/1FJPKKOfJfCWTdfUtO2yag0JF/vvOA8QnarcByA04vYjszwsw0o5eICMWFfy3Qk9fWA9Qd7klmdg3QDtwaNj0DdAKfNLMKM7sIOJ+gq6jQ8681sw4z6+jq6iqizOI0K/xFRIoK/wxQn9dWD/RN9gQzWwPcAlzi7t0A7j4CrAHeA+wG/hz4FrCz0Dbc/XZ3b3f39nQ6XUSZxdGRv4hIceG/BUiY2YqctjN4pTvnEGZ2MfBV4FJ3fyp3mbs/6e7nu/sid38XcBLw2PRKn550XZLOPg3xICLRNmX4u3s/cD9ws5nVmNlq4DLgrvx1zeztBCd517r7q0LdzF5nZikzqzazG4AlwNeP8nc4IunaFPsHRhgeHZvNlxURmVOKvdTzeqCKoM/+XuA6d99sZq1mljGz1nC9G4EG4KGwPWNm38vZzlXAy+F2LgTe6e6z2gczfrnn3n51/YhIdCWmXgXcfR9Bf31++3aCE8LjP79tiu18EvjkkZU4s3Kv9V/SUFXKUkRESiZSwzuAhngQEYEIhr+GeBARiWD4L6qtBHTkLyLRFrnwTybiLKiuUPiLSKRFLvwhnM5R4S8iERbJ8G+u10TuIhJtkQx/HfmLSNRFM/zDIR40kbuIRFVkw39wZIzM0GipSxERKYnIhj/ock8Ria5ohn9tClD4i0h0RTL8m+vDI39d8SMiERXJ8E/XhkM89Cr8RSSaIhn+DVUVVMRNR/4iElmRDP9YzGjStf4iEmGRDH/QXL4iEm2RDf9mhb+IRFhR4W9mjWb2gJn1m9k2M7tikvWuNrONZtZrZjvN7AtmlshZ3mZmD5nZfjPbbWZfzl0+m4K7fBX+IhJNxR753wYMAy3AlcA6M1tVYL1q4BNAE3AOwTy9N+Qs/yeC+XuXAK8HzieYH3jWpWuT7OsfIjumIR5EJHqmDH8zqwHWAje6e8bd1wMPEkzGfgh3X+fuD7v7sLvvAr4BrM5Z5UTgW+4+6O67ge8Dhd5Ejrl0XZIx10TuIhJNxRz5rwSy7r4lp20TxYX2ecDmnJ//F3C5mVWb2fHAJQRvAK9iZteaWYeZdXR1dRXxUkdGQzyISJQVE/61QE9eWw9Qd7gnmdk1QDtwa07zfxK8afQCO4EO4N8LPd/db3f3dndvT6fTRZR5ZBT+IhJlxYR/BqjPa6sH+iZ7gpmtAW4BLnH37rAtBvwAuB+oITgvsBD4/BFXPQOa6zS+j4hEVzHhvwVImNmKnLYzOLQ7Z4KZXQx8FbjU3Z/KWdQInAB82d2H3H0v8DXg3dOq/Cg1jQ/xoPAXkQiaMvzdvZ/gaP1mM6sxs9XAZcBd+eua2dsJTvKudffH8rbTDbwIXGdmCTNbAFxNcP5g1lVVxqlLJujsHSzFy4uIlFSxl3peD1QRXKZ5L3Cdu282s1Yzy5hZa7jejUAD8FDYnjGz7+Vs573AxUAX8BwwCvzZTPwi07GipZZfv9RbqpcXESmZom6wcvd9wJoC7dsJTgiP//y2KbbzK+CCIynwWHpjWyP/vOFFBkeypCripS5HRGTWRHZ4B4D2tkZGss6TO/MvZhIRKW/RDv9lCwF4fOu+ElciIjK7Ih3+C2sqWdFcq/AXkciJdPhD0PWzcdt+jfEjIpES+fB/Y9tC+gZH2bJn0nvWRETKjsK/rRFQv7+IREvkw3/pwioW16d4fOv+UpciIjJrIh/+ZkZ720Ief3Ef7ur3F5FoiHz4A5x9YiO7ewfZuf9gqUsREZkVCn+gfVnQ79+xTf3+IhINCn/glMV11CUT6vcXkchQ+APxmHFW2O8vIhIFCv/QG9sa+W1nhv39w6UuRUTkmFP4h8bH+dm4TV0/IlL+FP6hM05YQGU8ppu9RCQSFP6hVEWc1y5tUPiLSCQUFf5m1mhmD5hZv5ltM7MrJlnvajPbaGa9ZrbTzL5gZomc5Zm8R9bMvjRTv8zRam9byFO7ehgcyZa6FBGRY6rYI//bgGGgBbgSWGdmqwqsVw18AmgCzgEuBG4YX+juteOPcFsHgfumXf0MOzuc3OVXOw6UuhQRkWNqyvA3sxpgLXCju2fcfT3wIHBV/rruvs7dH3b3YXffRTCZ++pJNv0+gjmBH5529TPsrPCkb4e6fkSkzBVz5L8SyLr7lpy2TUChI/985wGbJ1l2NfAvPsmAOmZ2rZl1mFlHV1dXES919BZUV7KypVY3e4lI2Ssm/GuB/Elue4C6wz3JzK4B2oFbCyxrBc4H7pzs+e5+u7u3u3t7Op0uosyZ0d7WyC81uYuIlLliwj8D1Oe11QOTzn5iZmuAW4BL3L27wCp/AKx39xeLrHPWnN3WSN/QKM/s7i11KSIix0wx4b8FSJjZipy2M5ikO8fMLga+Clzq7k9Nss0/4DBH/aXU3jbe76+uHxEpX1OGv7v3A/cDN5tZjZmtBi4D7spf18zeTnCSd627P1Zoe2Z2LnA8c+gqn1zHL6hiSUNK1/uLSFkr9lLP64Eqgqtz7gWuc/fNZtYaXq/fGq53I9AAPJRzLf/38rZ1NXC/u8/JSXPNjDe2NfL4Vk3uIiLlKzH1KuDu+4A1Bdq3E5wQHv/5bUVs6yNHUF9JvLFtIQ9ueomd+w9yQmN1qcsREZlxGt6hgHZN6i4iZU7hX8ApLXXUpRIKfxEpWwr/AmIxo33ZQt3sJSJlS+E/ifa2Rp7rzLBPk7uISBlS+E/i7BPV7y8i5UvhP4nXLW2gpjLOz56dnXGFRERmk8J/EslEnAtOaeZHv9nDmMb5EZEyo/A/jItWtdCdGeIJje8vImVG4X8YF5zSTCJm/Og3e0pdiojIjFL4H0ZDVQVvOmkRP/zN7lKXIiIyoxT+U7hoVQsvdPXzXGem1KWIiMwYhf8U3vGaFgAd/YtIWVH4T+G4BVW8bmkDP9ysfn8RKR8K/yJcdFoLv9pxgM7ewVKXIiIyIxT+RXjnaYsB+NHTOvoXkfKg8C/CypZali2qVtePiJSNosLfzBrN7AEz6zezbWZ2xSTrXW1mG82s18x2mtkXzCyRt87lZvZ0uK3nzeytM/GLHEtmxkWntfDI8930DY6UuhwRkaNW7JH/bcAw0AJcCawzs1UF1qsGPgE0AecAFwI3jC80s3cCnweuAeqA84AXpln7rLpo1WJGsq6xfkSkLEwZ/mZWA6wFbnT3jLuvBx4Erspf193XufvD7j7s7rsIJnNfnbPK3wA3u/vP3X3M3XeF6815b2hdyKKaSn6ou31FpAwUc+S/Esi6+5actk1AoSP/fOcBmwHMLA60A2kzey7sFvqymVUVeqKZXWtmHWbW0dVV+qPteMy48DXN/OyZToZHx0pdjojIUSkm/GuBnry2HoJum0mZ2TUEYX9r2NQCVADvA94KvB44E/jrQs9399vdvd3d29PpdBFlHnsXnbaYvqFRfv7C3lKXIiJyVIoJ/wxQn9dWD/RN9gQzWwPcAlzi7t1h88Hw65fc/eWw/e+Bdx9RxSX0lhVNVFXEdbeviMx7xYT/FiBhZity2s4g7M7JZ2YXA18FLnX3p8bb3X0/sBOYt4PjpyrinL8yrTH+RWTemzL83b0fuB+42cxqzGw1cBlwV/66ZvZ2gpO8a939sQKb+xrwcTNrNrOFBFcGfeco6p91F61qYU/vEE/uyu8JExGZP4q91PN6oAroBO4FrnP3zWbWamYZM2sN17sRaAAeCtszZva9nO18Fnic4NPE08ATwN/OxC8yW95+ajPxmPEjdf2IyDyWmHoVcPd9wJoC7dsJTgiP//y2KbYzQvBGcv0RVTmHLKiu5Oy2Rn64eQ+ffNeppS5HRGRaNLzDNFy0qoXfdmZ4oUtj/IvI/KTwn4Z3nhaM8a/pHUVkvlL4T8PShdWsOq5ed/uKyLyl8J+md57Wwi+372fXgYNTrywiMsco/KfpvWcuJZWI86f3PsFIVsM9iMj8ovCfptZF1Xz+fa+jY9t+/udDT5e6HBGRI6LwPwq/e8Zx/OG5bXxtw1Ye3PRSqcsRESmawv8o/dW7X8NZyxby6X97kt/umXS4IxGROUXhf5QqEzFuu+INVFfG+cjdGzXTl4jMCwr/GbC4IcWXPvAGtu0d4FPffhJ3DfomInObwn+GvHn5Iv7i4lP43q93838ffrHU5YiIHJbCfwZ9+K0nccnpi7nl+89owhcRmdMU/jPIzPjC+17HskXVfOyeJ9jTO1jqkkREClL4z7C6VAVf+eBZ9A+N8tG7N9IzoBPAIjL3KPyPgZUtdfz9fzuDX+/q4XdvW88WXQIqInOMwv8YueS1S/jmtW9iYDjLmts28P1fv1zqkkREJhQV/mbWaGYPmFm/mW0zsysmWe9qM9toZr1mttPMvmBmiZzlPzOzwZxZvp6dqV9kLjprWSPf+fhbWNlSx0fv/iW3/uBZzf0rInNCsUf+twHDQAtwJbDOzFYVWK+aYF7eJuAc4ELghrx1PubuteHjlGlVPY+01Kf414+8id9vP4Ev//Q5PvQvHfTqRjARKbEpw9/MaoC1wI3unnH39cCDwFX567r7Ond/2N2H3X0XwWTuq2e66PkmmYhzy9rX8tk1p/NfW7pY8+UNPNep8wAiUjrFHPmvBLLuviWnbRNQ6Mg/33nA5ry2vzOzbjPbYGYXTPZEM7vWzDrMrKOrq6uIl5rbzIyr3rSMez78JnoHR1hz2yP8YLMmgReR0igm/GuBnry2HqDucE8ys2uAduDWnOa/AE4CjgduB/7DzJYXer673+7u7e7enk6niyhzfjj7xEb+4+NvYXm6ho/ctZHPfuc3DI9qPgARmV3FhH8GqM9rqwcm7bcwszXALcAl7t493u7uv3D3Pncfcvc7gQ3Au4+46nluSUMV3/rom/nDc9u4Y/2LvP//PMqOfQOlLktEIqSY8N8CJMxsRU7bGby6OwcAM7sY+Cpwqbs/NcW2HbBiCi03yUScm353FV/54Bt4oSvDu//3w3z/1+oGEpHZMWX4u3s/cD9ws5nVmNlq4DLgrvx1zeztBCd517r7Y3nLFpjZu8wsZWYJM7uS4JzAD2biF5mvLj59Cd/9+Fs5qamGj969kZse3MzQaLbUZYlImSv2Us/rgSqgE7gXuM7dN5tZa3i9fmu43o1AA/BQzrX83wuXVQCfA7qAbuDjwBp3L+tr/YvRuqia+z56Ln+0+kS+/shW3rfuUbbt7S91WSJSxmw+jD3f3t7uHR0dpS5jVvxg824+ed8m3OHGS0/jfW9YSiwWyZ4xETlKZrbR3dsLLdPwDnPMu1Yt5rt/8lZWLq7jU99+kjX/tIHHt+4rdVkiUmYU/nPQCY3V3PeRN/MPv38Gnb1DvP8rj/LH9/xSVwSJyIxR+M9RsZjxe2cu5Sc3nM+fXriCHz+9hwv//j/54g+eITM0WuryRGSeU/jPcdWVCf7snSv5yZ9fwLtPX8xtP32et936M771+A4NEici06bwnyeOW1DFP15+Jg9cfy5LF1bxqX97kmu+/jgHBoZLXZqIzEMK/3nmzNaF3H/duXxuzek8+vxefudL6/n1rvzRN0REDk/hPw+ZGR980zLu++ibGRtz3rvuEb71+I5SlyUi84jCfx4744QFfOdP3srZbY186t+e5C/vf5LBEd0dLCJTU/jPc401ldz5R2fzx29bzr2P7eD9X3mUnft1SaiIHJ7CvwzEY8Yn33Uqt191Flu7+/mdL63nv7bM/zkQROTY0fAOZebF7n6uu3sjz+zu46R0DecuX8S5y5t400mLaKypLHV5IjKLDje8g8K/DA0Mj3LPL7az4bluHntxH/3DwXmAUxfXce7yJt68fBFnn9hIQ1VFiSsVkWNJ4R9hI9kxntzZw6PPd/PoC3vp2LqfodExzOCUljrOWraQs5YtpH1ZIyc0VmGmQeREyoXCXyYMjmR5YvsBfvHiXjZu288T2w9MDBfRVJukPXwzOLN1AacdV091ZaLEFYvIdB0u/PU/O2JSFXHevHwRb16+CIDsmLNlTx8bt+2feHw/nFg+ZrA8Xctrj2/g9OMbeO3SBk5bUk9NUn82IvOdjvzlVTp7B9m0s4endvXw613B166+IQAsfEM4f2WaD5zdysnNtSWuVkQmc9TdPmbWCNwBXEQwC9dfuvs9Bda7GvgTYAXQC9wD/JW7j+attwJ4Cvi2u39wqtdX+Jfent7BiTeCTTsOsP65bkayzjknNnLFOa1cfPpikol4qcsUkRwz0e1zGzAMtACvB75rZpvcPX8S92rgE8AvgDTwIHADcEuB7T1e5GvLHNBSn6KlPsWFr2kBoDszxH0dO7nnsW386Td/RWNNJe8/aykfOLuVtqaaElcrIlOZ8sjfzGqA/cDp7r4lbLsL2OXun57iuf8DeJu7X5rTdjnwXuA3wMk68p/fxsac9c91c88vtvOjp/eQHXNWn7yI15+wgHRtknRdiub6JOnaJM31SZ1AFplFR3vkvxLIjgd/aBNwfhHPPQ+Y+HRgZvXAzcCFwH8/3BPN7FrgWoDW1tbDrSolFIsZ561Mc97KNHt6B/nW4zu4/4ld/OKFFxgtMN9ATWWcxQ0pzluZ5j2vXcIbWhdqjmKREigm/GuB/DGDe4C6wz3JzK4B2oEP5TR/FrjD3XdMdT25u98O3A7BkX8RdUqJtdSn+PiFK/j4hSsYG3P2DwzTlRmis3eIrr4hOvuCry92Z/jGz7fztQ1bWVyf4uLTF/Oe1y3hLL0RiMyaYsI/A9TntdUDfZM9wczWEPTzv8Pdu8O21wPvAM6cTqEyv8RixqLaJItqk5y6+NXL+wZH+PHTnXz3qZe557HtfP2RrTTXJbnk9MVctGoxq46rZ0G1hqMQOVaKCf8tQMLMVrj7b8O2M8jpzsllZhcDXwXe4+5P5Sy6AGgDtodH/bVA3MxOc/c3TK98ma/qUhWsOfN41px5PH2DI/zkmU4eeuplvvn4Du58dBsALfVJVrbUceriuvBrPSc311JVqauKRI5WsZd6fhNwgi6c1wMPAefmX+1jZm8H7gN+z93/K29ZNYd+griB4M3gOnc/7BCUOuEbHZmhUTq27uPZ3X08u6ePLXv6+O2eDEOjY0Bwn8EJC6s5samGE5tqaFtUTVtTDSc11XL8wiri6jYSmTATl3peD/wz0AnsJQjszWbWSnDVzmnuvh24EWgAHsrp03/Y3S9x9wFgYqB5M8sAg1MFv0RLbTLBBac0c8EpzRNt2TFn295+nt3dxzO7+3i+K8PWvf1s3LZ/YmgKgIq4cUJjNcsaqzmhsZoTFlZzQmMVSxcGP2sgO5FX6A5fmbfcna7MEFu7B9ja3c+Le/t5sauf7fsG2LF/gL7BQ+4tpD6VYOnCairixkjWGcmOhY/g+9ExZ8ydptokSxpSHNdQxeKGFMctSLGkoYrjFqRork9RW5nQiWmZFzS2j5QlM6O5LkVzXYqzT2x81fKegRF27B9gR/hmsGPfQXYdOEh2zKmIGxXxGBXxGIm4URl+D9DVN8TLPQd5Zncf3Zkh8o+PzKC2MkFtKkFt8pWv9akKGqorWFKfoqUhxZKGFIvrUyxuSFGX0qcOmVsU/lK2GqoraKgOBqWbruHRMfb0DvJyzyAv9xyks3eIvqFRMoOj9A2OkBkaJTM0St/gKC8dOMj+gRH29Q+/aju1yQQt9UmWNFSxJHxjWLIg+GQR/FxFfSqhIbVl1ij8RQ6jMhELzh80Vhf9nMGRLJ29Q+zuDd4wxt88dvcMsrt3kId/201n3yD598BVV8ZZXB/cET0+nEZzXZLm+hQtdUnSdUlqkglSiTjJihjJRExvFjJtCn+RGZaqiNO6qJrWRZO/YYxmx+gMu5de7hnk5QODvNRzkM6+ITp7B3li+wH29A5OXOVUiBkkEzFSFXFSiTi1qQQnLKxi2aLgKqhlTTUsa6xm6cJqKhOarlsOpfAXKYFEPMZxC6o4bkHVpOu4O70HR+nsG2RP7xBdmUEGhrMMjowxOJJlaCTL4Gjw/eBIlt6Do2zfN3DI1J0QzMtw/MIqFtenqKpMUFURo6oiHrxpVMSpqoxTVRGnIh4jZhCPGTGz4GvMiJsRs+ATTf9wNujqGhylP+zy6h8e5eBwlgXVlTSHn1DSda+M55SuDT7NpCp0f8ZcovAXmaPMLDxvUcGKlsOOpnIId6c7M8y2vf1s3TvA9vDrnt5Beg6OsKcny8HwDWP860i2+Kv+KuJGTTJBTWVworsmGbyJ7O4Z5KldPezNDL2qSwvg+AVVrGip5eR0LSc3v/LQndylofAXKTNmNnH03d726qugChkNL3XNjjlZd8ZyvncP7rVIVcSpScannLchO+bs7T90PKeXDhzk+a5+nuvM8Ojzew/pzmqqTbJsUTULqytoqKpkQXUFDVUVOV8rqU0mqA4/oVRXxknlfFqR6VH4iwiJeIyZmosnHnvlEtxVBZZnx5yd+wd4rjMz8di5/yAvHRjk6Zf7ODAwfEi31eFUxC14U6pMUJ0MvtYkx39OUJuMU12ZOOTNZPwNZUHYVpeqKPrO8JHsGP3h1V2ZoaDrq384O9H1NjiS5eBw0B0XfM2SiNlEN9t4F1tVxStvYOM1B5+igje52TiRr/AXkVkVjxnLFtWwbFHNxORA+YZHx+gdHOHAwAgHBobJDI0yOJJlYDjoqjo4HDwGwu8HhoMQHgjDeHdvcH6kPyegp6qpIm5UxGJUJGIkYsF9IJWJGGPuE4F/uBPwhVTGY4yOjRXsBpuMGVRXxKlJBt1qd/zhGznxGEyQpPAXkTmnMhGjqTZJU21yRrY3kh2j9+AIBw4Gbyg9B4fDryP0HhyduNt7ODvGaHjH93B49zcE92nUjd/Ul3Nj33h3VO7J81QiRlVl0D0WjxnuzkjWXznPMv4GFn7fH540zwwF3w8MvfJ9ZniUmuSxOVGu8BeRslcRj00MMT7bzIzKhFGZiM2p8aV0tkREJIIU/iIiEaTwFxGJIIW/iEgEKfxFRCJI4S8iEkEKfxGRCFL4i4hE0LyYw9fMuoBt03x6E9A9g+XMJNU2PaptelTb9Mzn2pa5e7rQgnkR/kfDzDomm8C41FTb9Ki26VFt01OutanbR0QkghT+IiIRFIXwv73UBRyGapse1TY9qm16yrK2su/zFxGRV4vCkb+IiORR+IuIRJDCX0Qkgso2/M2s0cweMLN+M9tmZleUuqZxZvYzMxs0s0z4eLaEtXzMzDrMbMjMvp637EIze8bMBszsp2a2bC7UZmZtZuY5+y9jZjfOYl1JM7sj/LvqM7MnzOySnOUl22+Hq63U+y2s4W4ze9nMes1si5l9KGdZqf/eCtY2F/ZbTo0rwuy4O6dtevvN3cvyAdwL/CtQC7wF6AFWlbqusLafAR8qdR1hLe8F1gDrgK/ntDeF++z9QAr4IvDzOVJbG+BAokT7rAa4KawjBvwO0Bf+XNL9NkVtJd1vYX2rgGT4/anAbuCsUu+3KWor+X7LqfGHwMPA3eHP095vZTmHr5nVAGuB0909A6w3sweBq4BPl7S4Ocbd7wcws3Zgac6i9wKb3f2+cPlNQLeZneruz5S4tpJy936CgB33HTN7kSAoFlHC/TZFbRuP9etPxd035/4YPpYT1Ffqv7fJats7G68/FTO7HDgAPAKcHDZP+/9puXb7rASy7r4lp20TwTv7XPF3ZtZtZhvM7IJSF1PAKoJ9BkyEyvPMrX24zcx2mtnXzKypVEWYWQvB39xm5th+y6ttXEn3m5n9k5kNAM8ALwMPMUf22yS1jSvZfjOzeuBm4M/zFk17v5Vr+NcSfBTK1QPUlaCWQv4COAk4nuAmjf8ws+WlLelV5vI+7AbeCCwjOGKsA75RikLMrCJ87TvDI605s98K1DYn9pu7Xx++9luB+4Eh5sh+m6S2ubDfPgvc4e478tqnvd/KNfwzQH1eWz1B32fJufsv3L3P3Yfc/U5gA/DuUteVZ87uQ3fPuHuHu4+6+x7gY8BF4dHRrDGzGHAXMBzWAHNkvxWqba7st7CWrLuvJ+jOu445st8K1Vbq/WZmrwfeAfxDgcXT3m/lGv5bgISZrchpO4NDP/rOJQ5YqYvIs5lgnwET51GWMzf34fht6rO2D83MgDuAFmCtu4+Ei0q+3w5TW75Z328FJHhl/8y1v7fx2vLN9n67gOCk83Yz2w3cAKw1s19yNPut1Gevj+FZ8W8SXPFTA6xmjlztAywA3kVwZj4BXAn0A6eUqJ5EWMvfERwpjteVDvfZ2rDt88z+1ReT1XYOcArBwcsigqu6fjrLtX0F+DlQm9c+F/bbZLWVdL8BzcDlBF0V8fD/QT9wWan32xS1lXq/VQOLcx63At8O99m099us/UHO9gNoBP49/AfcDlxR6prCutLA4wQfyw6E/0nfWcJ6buKVKxvGHzeFy95BcOLrIMHlqW1zoTbgA8CL4b/ty8C/AItnsa5lYS2DBB+7xx9Xlnq/Ha62ObDf0sB/hn/3vcBTwIdzlpdyv01aW6n3W4FabyK81PNo9psGdhMRiaBy7fMXEZHDUPiLiESQwl9EJIIU/iIiEaTwFxGJIIW/iEgEKfxFRCJI4S8iEkH/Hx1hTjSC3REiAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -7679,16 +7847,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.210686" + "0.210681" ] }, - "execution_count": null, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -7751,7 +7919,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -7760,7 +7928,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -7769,7 +7937,7 @@ "(40, 7988)" ] }, - "execution_count": null, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -7789,7 +7957,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": {}, "outputs": [], "source": [ @@ -7805,16 +7973,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.21529149, 0.10351274, 0.08901878, 0.28374773, 0.11977206])" + "array([0.25065395, 0.11043862, 0.08242067, 0.26988508, 0.15730173])" ] }, - "execution_count": null, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -7846,7 +8014,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, "outputs": [], "source": [ @@ -7864,7 +8032,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -7894,54 +8062,54 @@ " \n", " \n", "
\n", - " 69\n", + " 59\n", " YearMade\n", - " 0.182890\n", + " 0.180070\n", "
\n", "
\n", - " 6\n", + " 7\n", " ProductSize\n", - " 0.127268\n", + " 0.113915\n", "
\n", "
\n", - " 30\n", + " 31\n", " Coupler_System\n", - " 0.117698\n", + " 0.104699\n", "
\n", "
\n", - " 7\n", + " 8\n", " fiProductClassDesc\n", - " 0.069939\n", + " 0.064118\n", "
\n", "
\n", - " 66\n", - " ModelID\n", - " 0.057263\n", + " 33\n", + " Hydraulics_Flow\n", + " 0.059110\n", "
\n", "
\n", - " 77\n", - " saleElapsed\n", - " 0.050113\n", + " 56\n", + " ModelID\n", + " 0.059087\n", "
\n", "
\n", - " 32\n", - " Hydraulics_Flow\n", - " 0.047091\n", + " 51\n", + " saleElapsed\n", + " 0.051231\n", "
\n", "
\n", - " 3\n", + " 4\n", " fiSecondaryDesc\n", - " 0.041225\n", + " 0.041778\n", "
\n", "
\n", - " 31\n", + " 32\n", " Grouser_Tracks\n", - " 0.031988\n", + " 0.037560\n", "
\n", "
\n", - " 1\n", + " 2\n", " fiModelDesc\n", - " 0.031838\n", + " 0.030933\n", "
\n", "
\n", "\n", @@ -7949,19 +8117,19 @@ ], "text/plain": [ " cols imp\n", - "69 YearMade 0.182890\n", - "6 ProductSize 0.127268\n", - "30 Coupler_System 0.117698\n", - "7 fiProductClassDesc 0.069939\n", - "66 ModelID 0.057263\n", - "77 saleElapsed 0.050113\n", - "32 Hydraulics_Flow 0.047091\n", - "3 fiSecondaryDesc 0.041225\n", - "31 Grouser_Tracks 0.031988\n", - "1 fiModelDesc 0.031838" + "59 YearMade 0.180070\n", + "7 ProductSize 0.113915\n", + "31 Coupler_System 0.104699\n", + "8 fiProductClassDesc 0.064118\n", + "33 Hydraulics_Flow 0.059110\n", + "56 ModelID 0.059087\n", + "51 saleElapsed 0.051231\n", + "4 fiSecondaryDesc 0.041778\n", + "32 Grouser_Tracks 0.037560\n", + "2 fiModelDesc 0.030933" ] }, - "execution_count": null, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -7980,12 +8148,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzcAAAGeCAYAAACpXf/VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdaZSdVZn28f9FgDCHeUgYgjIKKGIBSkODoo1MgrYyI9gCDk3bONAgrRhsQLEVFdFGoJUhBnECxcCL0MgMygmiiIIyFIQkICFkDlNyvR/2LjkUpypVSQ1J5fqtVYtznj0+Rz/kXnvve8s2ERERERERS7vlBnsCERERERERfSHBTUREREREDAkJbiIiIiIiYkhIcBMREREREUNCgpuIiIiIiBgSlh/sCcTQsO6663r06NGDPY2IiIiIGOImTJgw1fZ6rcoS3ESfGD16NI1GY7CnERERERFDnKTHuyrLtrSIiIiIiBgSsnKzjJFkYEvbD/dlv/dPmsHoU8d3Wd7+5f37criIiIiIiNfIys0gknSEpIak2ZKmSLpO0u6DPa+IiIiIiKVRgptBIulTwDeAs4ENgE2B7wAHDea8uiIpq3wRERERsURLcDMIJI0Avgj8q+2f2Z5j+yXb19g+WdJwSd+QNLn+fUPS8Nr2WEm3d+rPkraony+RdIGkGyTNknSLpM26mMdwSV+V9ISkp2u7lWvZXpKelHSKpKeA7/frjxIRERERsZgS3AyOtwErAVd1Uf6fwFuBHYE3AbsAn+tF/0cC/wWsC9wH/KCLeucAW9VxtgBGAac3lW8IrA1sBpzQubGkE+q2usb8uTN6Mb2IiIiIiL6X4GZwrANMtf1yF+VHAl+0/TfbzwBnAEf3ov/xtm+1/QIlUHqbpE2aK0gScDzwSdvTbM+ibJE7rKnaAuALtl+wPa/zILYvtN1mu23YKiN6Mb2IiIiIiL6XcxSD41lgXUnLdxHgjASa83c/Xp/11MSOD7ZnS5pW209sqrMesAowocQ5AAgY1lTnGdvP92LciIiIiIhBk+BmcNwFPA8cDPykRflkylawB+r3TeszgDmUoAQASRu2aL9JU/lqlK1lkzvVmQrMA7azPamLebrbt2iyw6gRNJLuOSIiIiIGUbalDQLbMyhnW74t6WBJq0haQdK+kr4CXAF8TtJ6ktatdcfW5r8HtpO0o6SVgDEththP0u6SVqScvfmN7eZVG2wvAC4Cvi5pfQBJoyTt0w+vHBERERHR7xLcDBLb5wKfoiQKeIayZexE4GrgTKAB/AG4H7i3PsP2XyiZ1m4E/grc3rlvYBzwBWAa8BbKGZ5WTgEeBu6WNLP2ufXiv11ERERExMCT3eOdR7EUkHQJ8KTt3mRXW2xtbW1uNBoDOWRERERELIMkTbDd1qosKzcRERERETEkJLgZAJJOk3TxYM8jIiIiImIoy7a0PiZpL2Cs7Y0Hey4LI2kMsIXto+p3A3MpWdJeoFwAeqHtKxfW1/CNtvRGx3xjoWO2J6NaRERERCyGbEuL15DUVRrwN9lejZJY4BLgfElfGLCJRUREREQsomU+uJF0qqRHJM2S9CdJ763Px0ga21RvtCR3BAWS1pb0fUmTJT0n6WpJqwLXASMlza5/I1v09R5JD0iaLulmSds2lbVL+oykP0iaIenKmvK5o/wASffVtndKemNT2UhJP5X0jKTHJH2iqWyMpJ9IGlszox3b3e9ie6rty4GPAZ+VtM6i/8oREREREf1vmQ9ugEeAPYARwBnAWEkb9aDd5ZTLNLcD1ge+bnsOsC8w2fZq9e9Vl2dK2opyj81JwHrAtcA19U6aDocA7wY2B95IDUQk7QR8D/gIsA7wXeAXkoZLWg64hnIPzihgb+CkTvfWHES5NHRN4Ac9eEeAn1Mue92lc4GkEyQ1JDXmz53Rw+4iIiIiIvrHMh/c2P6x7cm2F9SzJX+lxT/km9XgZ1/go7afs/2S7Vt6OOShwHjbN9h+CfgqsDKwW1Od8+qcplEClh3r8+OB79r+je35ti+lnI15K7AzsJ7tL9p+0fajlEs6D2vq9y7bV9d3ndeTydY5TgXWblF2oe02223DVhnRw9ePiIiIiOgfXZ27WGZI+iDlMs3R9dFqwLoLabYJMM32c4sw5Ejg8Y4vthdImkhZbenwVNPnubUNwGbAMZL+ral8xVo+n7IdbnpT2TDgtqbvE3s7WUkrUFaYpvW2bURERETEQFqmgxtJm1FWN/amrGrMl3QfIGAOZdtZhw2bPk8E1pa0pu3mYAJKprHuTAZ2aJqDKMHSpB5MeSJwlu2zWrzL24DHbG/ZTftFSY13EPAy8NvuKu0wagSNZEKLiIiIiEG0rG9LW5XyD/5nACR9CNi+lt0H/KOkTSWNAD7b0cj2FErigO9IWkvSCpL+sRY/DaxT27TyI2B/SXvXVZFPU7aW3dmD+V4EfFTSripWlbS/pNUpwcdMSadIWlnSMEnbS9q5F7/H39WECUcC3wbOsf3sovQTERERETFQlungxvafgK8Bd1GCkh2AO2rZDcCVwB+ACcAvOzU/GngJeBD4GyVBALYfpCQMeLRmNBvZ3Mj2Q8BRwLcoZ1kOBA60/WIP5tugnLs5H3gOeJiabMD2/NrXjsBjte+LKYkSeuP3kmbXvo8DPmn79F72EREREREx4HKJZ/SJtrY2NxqNwZ5GRERERAxxucQzIiIiIiKGvAQ3ERERERExJCS4GWIkHSnpV03f/0HSXyXNlnSwpOskHTOYc4yIiIiI6A85czOAJO0OfAXYjnIvzZ+Bk2zf049j/h/wC9vf7K8xAIZvtKU3OuYbC63XnnTREREREbEYujtzs0zfczOQJK1Bybj2MUo66BWBPShpoPtqjOVtv9zp8WbAA/3Ud0RERETEEiPb0gbOVgC2r7A93/Y827+y/QcAScdL+rOkWZL+JGmn+vxUSY80PX9vR4eSjpV0h6SvS5oGjKnPbq/ljwCvA66p29KGS7pZ0nFNffxLHfc5SdfXi007yizpXyX9FfjrQPxIERERERGLKsHNwPkLMF/SpZL2lbRWR4GkDwBjgA8CawDvATouzXyEssIzAjgDGCtpo6Z+dwUeBdYHzmoe0PbrgSco9+isZvtVq0SSDgZOA94HrAfcRrmjp9nBdYw3dH4hSSdIakhqzJ87o6e/Q0REREREv0hwM0BszwR2BwxcBDwj6ReSNqBclvkV2/e4eNj247Xdj21Ptr3A9pWUFZRdmrqebPtbtl+2Pa+X0/oI8CXbf65bzs4Gdmxevanl01r1bftC222224at0tu7QiMiIiIi+laCmwFUg4hjbW8MbA+MBL4BbEJZoXkNSR+UdJ+k6ZKm13brNlWZuBhT2gz4ZlPf0wABo/qo/4iIiIiIAZOEAoPE9oOSLqGsnkwEXt+5Tl1BuQjYG7jL9nxJ91ECkL93tRjTmAicZfsH3U21Jx3tMGoEjWRCi4iIiIhBlJWbASJpG0mflrRx/b4JcDhwN3Ax8BlJb1GxRQ1sVqUEF8/UNh+irNz0lQuAz0rarvY/op7/iYiIiIhY6mTlZuDMohzM/5SkNYHplNTQJ9ueKWkdYBxlS1g7cLTt30n6GnAXsAC4DLijryZk+ypJqwE/rMHUDOAG4Md9NUZERERExEDJJZ7RJ9ra2txoNAZ7GhERERExxHV3iWe2pUVERERExJCQ4CYiIiIiIoaEBDeDTJIlbTHY82gm6RJJZw72PCIiIiIieiMJBZYSkh4CPm/7R/X7PwC3A4d2enY9sGa9lHPA3D9pBqNPHd/j+u1JGx0RERERfSwrN0uPW4E9m77/I/Bgi2d3DnRgExERERGxJEhw04cknSJpkqRZkh6StLekXSTdJWm6pCmSzpe0Yhfth0v6qqQnJD0t6QJJK9fiWynBS4c9gHNaPLu1qb9/kfRnSc9Jur6me+4o20bSDZKm1bke0sWcVpf0a0nnSVKrOhERERERS4IEN31E0tbAicDOtlcH9qHcVzMf+CSwLvA2YG/g4110cw6wFbAjsAXlzpvTa9ktwHaS1pa0HNAGXAms2fRsN2pwI+lg4DTgfcB6wG3AFbVsVcp9NuOA9SmXiX6n4zLPpndaB/g/4A7bn3CnvOGSTpDUkNSYP3dG736wiIiIiIg+luCm78wHhgNvkLSC7Xbbj9ieYPtu2y/bbge+y6u3kgFQV0WOBz5pe5rtWcDZwGEAtp8AnqCszrwJ+KvteZRLPTuerQT8pnb5EeBLtv9ct6mdDexYV28OANptf7/O617gp8D7m6Y0khJQ/dj251q9sO0LbbfZbhu2yohF/NkiIiIiIvpGEgr0EdsPSzoJGENZYbke+BSwGnAuZaVlFcpvPqFFF+vV8glNu78EDGuq07E17QnKSgyUpAIdz35j+4X6fDPgm5K+1tRelNWgzYBdJU1vKlseuLzp+/7AbOCCHrx+RERERMSgS3DTh2yPA8ZJWoOyQnMOZQXkd8DhtmfVAOj9LZpPBeYB29me1MUQt1JWZB4Hvl+f3QYcU5/d2lR3InCW7R907qSu3txi+13dvM5FwFrAtZLebXtON3XZYdQIGsmAFhERERGDKNvS+oikrSW9Q9Jw4HlKoDIfWB2YCcyWtA3wsVbtbS+gBBRfl7R+7XOUpH2aqt0KvJmyre2O+ux+YHPg7bw6uLkA+GzHORpJIyR9oJb9EthK0tGSVqh/O0vattO0TgQeAn7ZlNggIiIiImKJlOCm7wwHvkxZgXmKclD/NOAzwBHALErwcmU3fZwCPAzcLWkmcCOwdUeh7b8AfwOm2J5eny0AfgusAdzZVPcqysrRD2tffwT2rWWzgH+inOeZXOd7Tn0HmvowcAJlFejnklbq5W8SERERETFg1CkBVsQiaWtrc6PRGOxpRERERMQQJ2mC7bZWZVm5iYiIiIiIISHBTUREREREDAnJlraYJJ0JbGz72MGey+KQ9CRwlO2bF6X9/ZNmMPrU8b1u154MaxERERHRR5bKlRtJs5v+Fkia1/T9yMGeXyuShkv6oqSHJc2R1C7pYkmb9kHfT0raqw+mGRERERGx1Foqgxvbq3X8US6vPLDpWat7XQZ1hUrlVs6fUbKVHQqMAHYE/gC8YwDGzwpdRERERAx5S2VwszCSzpR0paQrJM0CjpL0Nkl3S5ouaYqk8yStUOtfLOnLnfoYL+kT9fPGkq6S9IykxyT9ay+ntA/lHpqDbU+w/bLt6bbPs31J0xi/lDRN0l8l/Uun97lC0lhJsyT9UdJOtewKykWh19WVq09J2kKSJX1I0hPAr2rdgyU9UH+DmyRt3Xmitd5bJd0raaakpyX9dxf1TpDUkNSYP3dGL3+SiIiIiIi+NSSDm+q9wDjKKsmVwMvAvwPrAv8AvBv4SK07DjisrrAgaR3KisqVkoZRLr28BxgFvAs4WdLevZjLO4G7bE/qps6VwGOUQOVQ4CuS9mwqPxi4HFgTuA44D8D24ZS7avatK1fnNrX5R2AbYP96QedY4N+A9Sh36FzTEeB18i3gv22vAWwB/KTVhG1faLvNdtuwVUZ0+wNERERERPS3oRzc3G77GtsLbM+zfY/t39RVk0eBC4GO4OFmYAXgbfX7IcBttp8G3gqsYfts2y/afhj4X8oFmD21DjClq0JJmwO7AKfaft72vcD3gaObqt1i+3rb8ylBzo49GPcLtufanlfn+wvbN9l+iXLh6BrAri3avQRsKWkd27Ns/6YnLxkRERERMZiGcnAzsfmLpG3qVrOnJM0EvkhZxcH2AsrKyeG1+hFAx9mdzYBN61au6ZKmA/8BbNiLuTwLbNRN+Uhgqu05Tc8ep6wUdXiq6fNcYNUejNv8G4ysfQJ/f+cnO43R4UPAG4CHJP1W0n49GCsiIiIiYlAN5YPm7vT9u8DdwKG2Z0v6DHBAU/kVwC8lnQvsBFxVn08E/mp728WYy43AxyWNtD25RflkYF1JqzYFOJsC3W1ja9b5XctDu/n5ZGDLji+SlgM2bjWG7Yco2/SWAz4A/FTSWraf72oCO4waQSNpnSMiIiJiEA3llZvOVgdmAHPq+ZOPNBfavqeWXwhca3tmLboLeFHSpyWtJGmYpB0kvaUXY18P/Bq4StKbax9rSPq4pGNsPwY0gLNryugdKasnr8n81oWngdctpM6PgPdI2queszkZmAW8ZsuZpKMlrVtXd2ZQgqcFPZxLRERERMSgWJaCm08Dx1D+Qf9dyja0zq6gHP4f1/HA9svAfpQzMe3A1Np+jZ4OXFdQ3kfJWvYTYCZwP+XczE212qGUlZWnap3TbP+6h0OcDZxRt82d1MUcHqC8//8Az1ASKrynnr/pbD/gzzXT3Fcpq10v9nAuERERERGDQq/euRSxaNra2txoNAZ7GhERERExxEmaYLutVdmytHITERERERFD2DIX3EjaWtLv6mWYCyR9vo/6PaZeotn57ylJY3vYx82SjuuL+bTo+zRJF/dH3xERERERS4KhnC2tK/8B3Gz7zc0PJe1FPfRv+31Nz98E3Ee5Z2avrjq1fSlwaefnksZQLsLsFUkrAl+inMVZk3JO5mrbn+xtX3V+Zy9Ku566f9IMRp86fpHatifLWkRERET0gWVu5YZyb80DXZQ9A+wmaZ2mZ8cAf+n3Wb3WZ4E2SiKD1YG3A79blI4kLYtBbEREREQsY5ap4EbSTZQg4fy6ZWycpDObqrwIXA0cVusPAw6hU0pmSbtJukfSjPrf3ZrKNpd0S932dgP1otCm8rdKurNmNvt9XTFqZWfKKtJkF+22L2vqZ6Skn0p6RtJjkj7RVDZG0k8kja0Xlh5bn41tqtPlPCQdK+nR+g6PSTqyRz9wRERERMQgWqaCG9vvAG4DTrS9GiWY6ewy4IP18z6UVZ6/X7wpaW1gPHAesA5wLjC+abVnHDCBEtT8F2Xlp6PtqNr2TGBt4DOUCzLXazGPu4FP1btwdpCkpn6WA64Bfg+MAvYGTpK0T1P7gygppdfktcFZl/OQtGp9t31trw7sRtmW9xqSTpDUkNSYP3dGqyoREREREQNmmQpuesL2ncDakramBDmXdaqyP/BX25fbftn2FcCDwIGSNqWsuHze9gu2b6UEIR2OolwQeq3tBbZvoFzeuV+LqXwJOAc4staZJKkjUNoZWM/2F22/aPtR4CLqilN1l+2r6zjzOvW9sHksALaXtLLtKfWOnFa/1YW222y3DVtlRKsqEREREREDJsFNa5cDJ1K2sF3VqWwk8HinZ49TVlBGAs/ZntOprMNmwAfqVrDpkqYDuwMbdZ6A7fm2v237HyirL2cB35O0be1nZKd+TgM2aOpiYjfv1+U86twPBT4KTJE0XtI23fQVEREREbFEyEHz1i4HHgYusz23aUcYlC1qm3Wqvynw/4ApwFqSVm0KcDYFOm5KnQhcbvv43kymrrx8W9IZwBtqP4/Z3rK7Zt2UdTsP29cD10tambJ17SJgj+7muMOoETSS9SwiIiIiBlFWblqw/RiwJ/CfLYqvBbaSdISk5SUdSgk4fmn7ccr2rjMkrShpd+DAprZjKdvX9pE0TNJKkvaStHHnQSSdVMtWruMcQ8ma9jvgt8BMSafU8mGStpe0cw9fsct5SNpA0nvq2ZsXgNnA/B72GxERERExaBLcdMH27bYnt3j+LHAA8GngWcq9OQfYnlqrHAHsCkwDvkDTmR3bEykH/U+jpJ2eCJxM6/8d5gFfA54CpgL/Cvyz7Udtz6cETTsCj9Xyi4EeHXxZyDyWq+82ub7DnsDHe9JvRERERMRgkt3d7qWInmlra3Oj0RjsaURERETEECdpgu22VmVZuYmIiIiIiCEhwU1ERERERAwJCW6WApIsaYvBnkdERERExJIsqaCHEEl7ATcBc+uj6cCdwH/bvqc/x75/0gxGnzp+kdu3J410RERERCymrNwMPZNtr0ZJG/1W4EHgNkl7D+60IiIiIiL6V4KbAVbvppkkaZakhyTtLWkXSXdJmi5piqTzJa3YRfvhkr4q6QlJT0u6oF62+SounrR9OiVN9DlNfXxT0kRJMyVNkLRHfb6hpLmS1mmq+xZJz0haoe9/jYiIiIiIvpPgZgBJ2ho4EdjZ9urAPkA75ZLMTwLrAm8D9qbru2XOAbai3HGzBTAKOH0hQ/8M2KlezAlwT22/NjAO+LGklWw/BdwMHNLU9ijgh7ZfavE+J0hqSGrMnztjIVOIiIiIiOhfCW4G1nxgOPAGSSvYbrf9iO0Jtu+2/bLtduC7lMszX0WSgOOBT9qeZnsWcDZw2ELGnQwIWBPA9ljbz9bxvlbntHWteykloEHSMOBw4PJWndq+0Hab7bZhq/To/tCIiIiIiH6ThAIDyPbDkk4CxgDbSboe+BSwGnAu0AasQvnfZUKLLtar5RNKnAOUoGXYQoYeBZiSYABJnwaOA0bW52tQVo0Afg5cIOl1lBWiGbZ/29t3jYiIiIgYaAluBpjtccA4SWtQVmjOoQQZvwMOtz2rBkDvb9F8KjAP2M72pF4M+17gXttz6vmaUyhb3x6wvUDSc5QgCdvPS/oRcCSwDV2s2nS2w6gRNJLxLCIiIiIGUbalDSBJW0t6h6ThwPOUQGU+JbPZTGC2pG2Aj7Vqb3sBcBHwdUnr1z5HSdqnxViqZV+grNKcVotWB14GngGWl3Q6ZeWm2WXAscB7gLGL8coREREREQMmwc3AGg58mbIC8xSwPiXo+AxwBDCLErxc2U0fpwAPA3dLmgncyCvnZQBGSpoNzKYkDtgB2Mv2r2r59cB1wF+AxylB1sTmAWzfASygrPa0L+K7RkREREQMKNke7DnEEkjSTcA42xf3pH5bW5sbjUY/zyoiIiIilnWSJthua1WWMzfxGpJ2BnYCDhrsuURERERE9FS2pcWrSLqUstXtpJpqOiIiIiJiqZCVmyFE0hhgC9tH9bD+XsBY2xt3PLN9zKKMff+kGYw+dfyiNP279mRbi4iIiIjFkJWbiIiIiIgYEhLcLKUknSJpkqRZkh6StD8l89qhkmZL+n2t9yFJf671HpX0kfp8VUrWtJG1/mxJIyUtJ+lUSY9IelbSjyStPXhvGhERERHRMwlulkKStgZOBHa2vTqwD/AgcDZwpe3VbL+pVv8bcADlLpsPUe7I2cn2HGBfYHKtv5rtycAngIOBPSmXiz4HfLuLeZwgqSGpMX/ujH5734iIiIiInkhws3SaT7kz5w2SVrDdbvuRVhVtj7f9iItbgF8Be3TT90eA/7T9pO0XgDHA+yW95nyW7Qttt9luG7bKiMV+qYiIiIiIxZHgZilk+2HgJErg8TdJP5Q0slVdSftKulvSNEnTgf2AdbvpfjPgKknTa/0/U4KpDfr0JSIiIiIi+liCm6WU7XG2d6cEIwbOqf/9O0nDgZ8CXwU2sL0mcC2gjm5adD0R2Nf2mk1/K9me1F/vEhERERHRF5IKeilUz9yMAu4AngfmUQLVp4F3SVrO9gJgRcr2tWeAlyXtC/wT8Mfa1dPAOpJG2O44NHMBcJakY2w/Lmk9YDfbP+9uTjuMGkEjqZwjIiIiYhBl5WbpNBz4MjAVeApYn5Ip7ce1/FlJ99ZLOD8B/IiSGOAI4Bcdndh+ELgCeLRuQxsJfLPW+ZWkWcDdwK4D8lYREREREYtBdqudSRG909bW5kajMdjTiIiIiIghTtIE222tyrJyExERERERQ0KCm4iIiIiIGBIS3DSRZElbDPY8FkbSeyVNlDRb0psHez4REREREUuCZEtbBJL2Am4C5tZH04E7gf+2fc8ATOGrwIkLy2A2kO6fNIPRp45frD7ak20tIiIiIhZDVm4W3WTbqwGrA28FHgRuk7T3AIy9GfDAAIzzd5ISCEdERETEEm3IBjeSTpE0SdIsSQ9J2lvSLpLuqmmPp0g6X9KKXbQfLumrkp6Q9LSkCySt3Lmeiydtnw5cTLlMs6OPb9btYzMlTZC0R32+oaS5ktZpqvsWSc9IWkHScpI+J+lxSX+TdJmkEXVOs4FhwO8lPSLpZEk/7TT3b0n6Rv08QtL/1vedJOlMScNq2esl3STpWUlTJf1A0ppN/bTX3/EPwJwEOBERERGxJBuSwU295PJEYGfbqwP7AO3AfOCTwLrA24C9gY930c05wFbAjsAWlEszT1/I0D8DdpK0av1+T22/NjAO+LGklWw/BdwMHNLU9ijgh7ZfAo6tf28HXgesBpxv+4W6WgTwJtuvB8YC7+4ISmoAcihwea13KfByfYc3Uy7xPK7jpwK+BIwEtgU2AcZ0eqfDgf2BNW2/3Fwg6QRJDUmN+XNnEBERERExmIZkcEMJYoYDb5C0gu1224/YnmD7btsv224Hvgvs2bmxJAHHA5+0Pa1ehnk2cNhCxp1MCRjWBLA91vazdbyv1TltXeteSgloqCsph/NKQHIkcK7tR23PBj4LHNZq5cT2FOBW4AP10buBqbYnSNoA2Bc4yfYc238Dvt7xHrYftn1DDZqeAc5t8XucZ3ui7Xktxr7QdpvttmGrjFjITxMRERER0b+G5DYj2w9LOomyCrGdpOuBT1FWQM4F2oBVKO8/oUUX69XyCSXOAUrQMmwhQ48CTEkwgKRPU1ZJRtbna1BWjQB+Dlwg6XWUFaIZtn9by0YCjzf1+3id6wbApBbjXgp8DLiIEjB1BEmbASsAU5reYzlgYp3f+sB5wB6Us0PLAc916nviQt45IiIiImKJMCSDGwDb44BxktagrNCcQwkafgccbntWDYDe36L5VGAesJ3tVsFEV94L3Gt7Tj1fcwpl69sDthdIeo4SJGH7eUk/oqzSbMMrAQmUFaDNmr5vStla9nQX414N/I+k7YEDgP+ozycCLwDrdt5SVn2JEnS90fazkg4Gzu9Uxz14b3YYNYJGsp1FRERExCAaktvSJG0t6R2ShgPPUwKV+ZTViZnAbEnbUFY7XsP2AsoqyNfr6gaSRknap8VYqmVfoKzSnFaLVqcEJM8Ay0s6nbJy0+wyytma91DOznS4AvikpM0lrUbZEndlFwEKtp8HfkI51/Nb20/U51OAXwFfk7RGTVTwekkdW89WB2YD0yWNAk5u1X9ERERExNJgSAY3lLMtX6aswLPHTaUAACAASURBVDwFrE8JOj4DHAHMogQvV3bTxynAw8DdkmYCN/LKeRmAkTVz2WxK4oAdgL1s/6qWXw9cB/yFsq3seTpt8bJ9B7CAstrT3lT0PcpKzq3AY7Xtvy3knS+tc7i80/MPAisCf6JsOfsJsFEtOwPYCZgBjKckRIiIiIiIWCrJ7tGuo+gnkm4Cxtm+eDH72ZRy186Gtmf2yeR6oa2tzY1GY6CHjYiIiIhljKQJtttalQ3ZMzdLA0k7U1ZODlrMfpajJEz44WAENhERERERS4IEN4NE0qXAwcC/11TTi9rPqpREA49T0kBHRERERCyTEtwMEtvH9FE/cygpriMiIiIilmkJbgaJpNOA19k+bgDH3AO42PbWC63cS/dPmsHoU8f3WX/tSSsdEREREb00VLOlDTpJs5v+Fkia1/T9SNtn90dgI2k7Sb+S9Jyk6ZImSNoPwPZt/RHYREREREQsCbJy009s/32rmKR24DjbN/akraTlu7rTpgeuAf6HcpknwM7Ui0MjIiIiIoayrNwMEkljJI2tn0dLsqQPS3oCuKk+f6ukO+sKzO8l7bWQPtcFNgcusv1i/bvD9u21fC9JT9bPh3ZaXXpB0s21bLikr0p6QtLTki6QtHKL8U6Q1JDUmD93Rh/+OhERERERvZfgZsmyJ7AtsI+kUZSLNc8E1qZcQPpTSet10/5ZysWjYyUdLGmDriravtL2anWFaSTwKHBFLT4H2ArYEdgCGAWc3qKPC2232W4btsqIXr5qRERERETfSnCzZBlje47tecBRwLW2r7W9wPYNQAPYr6vGLjeyvh1oB74GTJF0q6Qtu2pT78gZB9xs+7uSBBwPfNL2tJqm+mzgsD56x4iIiIiIfpEzN0uWiU2fNwM+IOnApmcrAL/urgPbTwInAkjaBLgQuAx4WxdNzgJWBz5Rv68HrAJMKHEOUM7sDOtu3B1GjaCRDGcRERERMYgS3CxZ3PR5InC57eMXuTN7oqRv88p2s1eRdBhwOLCz7Zfq46nAPGA725MWdeyIiIiIiIGWbWlLrrHAgZL2kTRM0ko1IcDGXTWQtJakMyRtIWm5mmDgX4C7W9R9M/At4GDbz3Q8t70AuAj4uqT1a91Rkvbp4/eLiIiIiOhTCW6WULYnAgcBpwHPUFZyTqb7/81eBEYDNwIzgT8CLwDHtqh7ELAWcHtTxrTratkplMQEd0uaWfvL/TgRERERsURTOYMesXja2trcaDQGexoRERERMcRJmmC7rVVZVm4GWfN9N/3UvyVtUT9fIOnz/TVWRERERMRgSkKBRSCpHTjO9o1Nz46tz3YfgPFnd1G0r+3bumpn+6P9NCXunzSD0aeO76/u/649GdkiIiIiogsJbpZgkpa3/XLn5/XizYiIiIiIaJJtaX1M0smSftrp2bckfaN+3lzSLZJmSboBWLep3ui6jezDkp4AbqrPfyzpKUkz6qWc2zW1uVnScU3fj5V0exdzu0TSmU3fD5J0n6SZkh6R9O6mPh6tc3xM0pF98+tERERERPSfBDd9byzwbklrQll9AQ4FLq/l44AJlKDmv4BjWvSxJ7At0JF++TpgS2B94F7gB4s7SUm7UC73PBlYE/hHoF3SqsB5lC1uqwO7Afd10ccJkhqSGvPnzljcKUVERERELJZsS1t0V0tq3jK2InCv7SmSbgU+QLkv5t3AVNsTJG0K7Ay80/YLwK2SrmnR9xjbczq+2P5ex2dJY4DnJI2wvTgRxYeB79m+oX6fVPtfFVgAbC/pCdtTgCmtOrB9IXAhwPCNtkzavYiIiIgYVFm5WXQH216z4w/4eFPZpcBR9fNRvLJqMxJ4rjlwAR5v0ffEjg/1As8v121jM4H2WrRui3a9sQnwSOeHdW6HAh8FpkgaL2mbxRwrIiIiIqLfJbjpH1cDb5S0PXAAr2wjmwKsVVdHOmzaon3zKsgRlAs33wmMoFzSCaD63znAKk31N+zhHCcCr29VYPt62+8CNgIepKxARUREREQs0bItrR/Yfl7STyjna35r+4n6/HFJDeAMSacBuwAHAr/oprvVgReAZylBzNmdyu8D3ifpYsrK0IeBp3swzf8FfiXpl8CvKYHM6sBzwK7A/wHzgNnA/IV1tsOoETSSpjkiIiIiBlFWbvrPpcAOvLIlrcMRlOBhGvAFyqH+7lxG2bo2CfgTcHen8q8DL1ICmkvpYbIB278FPlTbzwBuATaj/H/i08DkOsc9efWWu4iIiIiIJZLsnAPvDzV5wIPAhrZnDvZ8+ltbW5sbjcZgTyMiIiIihjhJE2y3tSrLyk0/kLQc8Cngh8tCYBMRERERsSTImZs+VpMFPE3ZSvbuQZ5ORERERMQyI8FNFyRdAEyy/V+9aVdTKa/WP7OKiIiIiIiuLBNnbiS1AxsAL1Myf/2JclD/QtsLBmlO21EO8+9MSev8CPB529cuRp83A2NtX9wnk+yF4Rtt6Y2O+cZAD/sq7cnWFhERETHk5cxNcaDt1SkZwb4MnEJJh/wakoYNwHyuAW6gBF3rA58Acj4nIiIiImIRLUvBDQC2Z9j+BXAocIyk7SVdIul/JF0raQ7w9vrsTABJf5Z0QEcfkpaXNFXSTvX7WyXdKWm6pN9L2qu7OUhaF9gcuMj2i/XvDtu31/I/Sjqwqf4KdbwdJa0kaaykZ+t490jaQNJZwB7A+ZJmSzq/tt1G0g2Spkl6SNIhTf1eIuk7kq6rbe6QtKGkb0h6TtKDkt7cN798RERERET/WuaCmw71npcnKQEBlPtnzqJcZHl7p+pXAIc3fd8HmGr7XkmjgPHAmcDawGeAn0par5vhnwUeBsZKOljSBp3KLwOOavq+HzDF9n3AMcAIYBNgHeCjwDzb/wncBpxoezXbJ9bkBjdQLhNdv77Dd+qWuA6HAJ8D1qVcFnoXcG/9/hPg3K5eQtIJkhqSGvPnzujmdSMiIiIi+t8yG9xUkykBCcDP6+rJAtvPd6o3DniPpFXq9yPqMyhByLW2r61tbwAalICkJZeDTm8H2oGvAVMk3Sppy1plLLCfpDXq96N55TLQlyhBzRa259ue0E266QOAdtvft/2y7XuBnwLvb6pzVe3jeeAq4Hnbl9meD1wJdLlyY/tC222224atMqKrahERERERA2JZD25GAdPq54ldVbL9MPBn4MAa4LyHV4KbzYAP1C1i0yVNB3YHNupuYNtP2j7R9utrH3MoKzbYngzcAfyzpDWBfYEf1KaXA9cDP5Q0WdJXJK3QxTCbAbt2mtuRwIZNdZ5u+jyvxfdkfouIiIiIpcIymwpa0s6U4OZ2YFdgYWnjOramLQf8qQY8UIKiy20fv6hzsT1R0rfrGB0uBY6j/G90l+1Jte5LwBnAGZJGA9cCD1GSI3R+h4nALbbftahz66kdRo2gkWxlERERETGIlrmVG0lr1OQAP6SkTb6/h01/CPwT8DFeWbWBsoXsQEn7SBpWD/zvJWnjbuawlqQzJG0habmaYOBfgLubql0N7AT8O3VFp7Z9u6Qdaka3mZRtavNr8dPA65r6+CWwlaSja1KCFSTtLGnbHr5zRERERMRSY1kKbq6RNIuymvGflIPyH+ppY9tTKIftd6OcRel4PhE4CDgNeKb2fzLd/7YvAqOBGykByh8ph/mPbep3HuV8zObAz5rabkg56D+TslXuFkqABfBN4P0109l5tmdRArLDKOeLngLOAYb39L0jIiIiIpYWy8QlnksrSacDW9k+aqGVB1lbW5sbjcZgTyMiIiIihrjuLvFcZs/cLOkkrQ18mJIpLSIiIiIiFmJZ2pY24OrFmK3+9lhIu+Mp29uus33rwMw2IiIiImLplpWbfmS712mUJV0CPGl71S7KZwNvtP3oYk4vIiIiImJISXCzCCS1AyOBkbanNj2/D3gTsLnt9v4Ye1ECplaagqjP1ZTSj1Hu2qH+9x7gm/VS0oW6f9IMRp86vi+mNuDak8I6IiIiYkjItrRF9xjl3hsAJO0ArDx40+kTa9bg6U3ADcBVko4d3ClFRERERPRMgptFdznwwabvx/Dq+2j2l/Q7STMlTZQ0prmxpN0l3Slpei0/tql4LUnjJc2S9BtJr29qZ0lb1M+XSPp2N3W3kXSDpGmSHpJ0SE9ezPZTtr8JjAHOkZT/n0RERETEEi//aF10dwNrSNq2Xqh5KK/cNwNla9cHgTWB/YGPSToYQNKmwHXAt4D1gB2B+5raHg6cAawFPAyc1c08WtaVtCpl9WUcsH6t9x1J2/XiHX9W227dqlDSCZIakhrz587oRbcREREREX0vwc3i6Vi9eRfwIDCpo8D2zbbvt73A9h+AK4A9a/GRwI22r7D9ku1nbTcHNz+z/VvbLwM/oAQ/Xemq7gFAu+3v237Z9r2US0Hf34v3m1z/u3arQtsX2m6z3TZslRG96DYiIiIiou8locDiuRy4Fdicpi1pAJJ2Bb4MbA+sCAwHflyLNwEe6abfp5o+zwW6SyLQVd3NgF0lTW8qX77OuadG1f9O60WbiIiIiIhBkeBmMdh+XNJjwH6UCzebjQPOB/a1/bykbwDr1rKJwC79PL2JwC2237UYfbwX+Bvw0MIq7jBqBI1kHYuIiIiIQZRtaYvvw8A7bM/p9Hx1YFoNbHYBjmgq+wHwTkmHSFpe0jqSutt6tih+CWwl6WhJK9S/nSVtu7CGkjaQdCLwBeCzthf08dwiIiIiIvpcgpvFZPsR240WRR8HvihpFnA68KOmNk9QVns+Tdny1XE/Tl/OaxbwT8BhlLMzTwHnULbHdWW6pDnA/XV+H7D9vb6cV0REREREf5HtwZ5DDAFtbW1uNFrFeBERERERfUfSBNttrcqychMREREREUPCEhPcSNq6Xno5S9ICSZ/v5/HGSBq78Jog6WZJx/XnfBaFpAck7TXY84iIiIiIWBIsSdnS/gO42fabmx/Wf7z/GrjK9vuanr+JclblFtt7DdQkJR0L/C8wrz56BrgZ+JLtvwzUPABs9/hCTkntwHG2b+yPudw/aQajTx3fH10vkdqTGS4iIiJiibPErNxQ7mV5oIuyZ4DdJK3T9OwYYECDiSZ32V4NGAG8kxLoTJC0/UAMLmlAg9KBHi8iIiIiYlEsEcGNpJuAtwPnS5otaZykM5uqvAhcTcn8haRhwCGUlMrN/ewm6R5JM+p/d2sq21zSLXXb2w28cudMR/lbJd0pabqk3/dku5ft+TVb2seBW4AxPelP0rGSHq1zeUzSkU1lx0v6cy37k6Sd6vN2SadI+gMwp6aQbpf0zlo+RtJPJF1Z295bV7eQdDmwKXBN/X3/oz5/T93aNr1uvdu2aR6vGW9hv0dERERExGBaIoIb2+8AbgNOrCsiL7aodhnwwfp5H8oqz+SOQklrA+OB84B1gHOB8U2rPeOACZSg5r8oKz8dbUfVtmcCawOfAX4qab1evMbPgD0W1p+kVesc97W9OrAbZXsdkj5ACZA+CKwBvAd4tmmMw4H9gTVtv9xiDgcBP65jjgOulrSC7aOBJ4ADba9m+yuStgKuAE4C1gOupQQ/K/ZivIiIiIiIJcYSEdz0hO07gbUlbU35x/9lnarsD/zV9uW2X7Z9BfAgcKCkTYGdgc/bfsH2rcA1TW2PAq61fa3tBbZvABqUu156ajIlqOhJfwuA7SWtbHuK7Y7teMcBX7F9j4uHbT/eNMZ5tifankdrE2z/xPZLlOBuJeCtXdQ9FBhv+4Za/6vAypRgq0fjSTpBUkNSY/7cGV39LhERERERA2KpCW6qy4ETKVvYrupUNhJ4vNOzx4FRtew523M6lXXYDPhA3Z41XdJ0YHdgo17MbRTlQs5u+6tzOBT4KDBF0nhJ29R2mwCPdDPGxIXM4e/lthcAT1LevZVX/V61/sT6Hj0az/aFtttstw1bZcRCphYRERER0b+WtnMUlwMPA5fZniupuWwyJahotinw/4ApwFqSVm0KcDYFOm4wnQhcbvv4xZjbeylb6xban+3rgeslrUzZunYRZUvbROD13YyxsBtXN+n4IGk5YGNe2brXue1kYIem+qrtJ/VivIiIiIiIJcZSFdzYfkzSnsCjLYqvBb4l6QjgR8A/A28Afml7qqQGcIak04BdgAOBX9S2Y4F7JO0D3AisQNnO9bDtJ7uaT01ssCnwKWAv4G0L6w94CdgV+D9KlrXZwPza7mLgXEm3A/dSAp2XOm1N685bJL2vvtcngBeAu2vZ08Drmur+CDhV0t7ArcC/1/p39nCsV9lh1AgaSY8cEREREYNoaduWhu3bbU9u8fxZ4ADg05RD+P8BHGB7aq1yBCWomAZ8gaYzO7YnUg7jn0ZJOz0ROJmuf5+3SZoNzKTccbMGsLPt+3vQ33J1jpPrXPYEPl7b/Rg4i5IMYBYlQ1zHOZ6e+Dlly9tzwNHA++p5GoAvAZ+r2+Q+Y/shytmgbwFTKcHegbZbJXOIiIiIiFjiyc7Oo6FA0hhgC9tHDcb4bW1tbjQagzF0RERERCxDJE2w3daqbKlbuYmIiIiIiGglwU1ERERERAwJS1VCge5I2gsYa3vjwZ7LYLA9ZrDnEBERERExmAY8uJHUDmxAyRA2h5Ll7N9szx7oubQi6WZKkHRx0zMB/wqcAGxBSSTwIHCB7R8Owhz3Am4C5tZH0ylZzv7b9j0DPR+A+yfNYPSp4wdj6CVKezLGRURERAyaHm9Lk3S4pG3r560l3SrppqYLKHvjQNurATsBOwOf6zSW6j0tS4rzgJMoWc7WoVx0+Tng3a0qD9D8J9ffcHVKmukHgdtqaueIiIiIiGVOb/4BfiYldTHAV4HfUu5H+c6iDm57EnAdsL2kmyWdJekOyorE6ySNlPQLSdMkPSzp75diSlpZ0iWSnpP0J0qQRFO5JW3R9P0SSWc2fT9I0n2SZkp6RNK7JZ1FuUzzfEmzJZ0vaStKqubDbN9ge57t+TUl9bFN/fV2/p3ns5ekJ5u+t0v6rKQ/1Xf8vqSVWvyGtv2k7dMp9+Sc09THNpJuqOM/JOmQprL9at+zJE2S9JnufpuF/W8ZERERETHYerMtbT3bT9d/YO8OvJ9yIeXU7pt1TdImwH7AzyhBxdHAvsBDgCgXYD4AjAS2AW6Q9Kjt/6PcVfP6+rcqJUjq6bi7UO65eT/lMs2NgNVt/z9J/0DTtjRJHwUm2u5JnuPezL8njgT2oWzfu4ayWvS5bur/DPi4pFXr9xuA0+uc3gj8StIDth8A/hc4xPZtktYCNq/v2/K3aTWYpBMoW/UYtsZ6PXyliIiIiIj+0ZuVm2f+P3v3GaZXVbZ9/H8S6QkJMQgkhEQBUYqiDio2UOGhKIKPBamiFBG7qCA2UBD1saCiL1KULiAClqCAYhCkyARBpKiUhCGJQAip9OR8P6w1sLmdycykzUw4f8dxH9z3Xnuvfe2dL3Ox1rpWHQnZGbjB9uPAapQ/4vvqYkmzgKuBK4Gv1+On2b7V9lPAepQk6nDbj9m+iTIysW89973AsbZn1k0zf9CH+x8A/LSOxCy0PdX2Hd2cOwr4T/OApPvqZpiPSRrXaOpL/L1xgu0O2zMpm3vu2cP50yj/HiMoG5pOtv0z20/ZvhH4JSVpgZKYbiZpLdsP13bow7uxfZLtNtttQ9YY3ofHioiIiIhY+vqS3HwNmET5P/7/V4+9Fbh5Me67u+0RtsfZPtT2o/V4R+Oc0cBM23Mbx6ZQ1rt0tne0tPXWWOCuXp77EGX04mm1ItsoYFWendz1Jf7eaH2+0T2cPwYwpcDAOOA1NQmbVZPJvSlJF8C7KKNmUyRdKWmberwv7yYiIiIiYsDo9bQ026dJOr9+76zSdT3wvqUYjxvfpwEjJQ1rJAgbAlPr9+mUP8RvbbQ1PQKs0fi9HtC5pqWDMp2tpxigVCU7QVJbL6am9SX++V3E12ps4/uGtc9FeSdwo+35kjqAK23v0GWgparabpJWBj4KnF/vt6h3060txwynPZXCIiIiIqIfLXLkRtJKzQ/wGPBY4/cM4IFlEVidanYNcJyk1SS9jDJl6ux6yvnA5yWtLWkD4GMtXdwE7CVpSF0Qv22j7VTgA5LeWp9lTKPq2/3Aixpx/BP4CXCupB1qIYMhwOuWMP6bgF0kjZS0HqUaW6uPSNpA0kjgSOC81hNqZbYxkr4CHFjPA/gt8GJJ+0pauX62lvRSSatI2lvScNtPUkpbL+jFu4mIiIiIGLB6mpb2FGVtRnefzvZlZU9gPGXE4iLgK7Yvr21HU6Zq3QNcBpzZcu0ngF0pU7T2Bi7ubLD9V+ADwPeA2ZR1P51rZ74PvLtWKOtcx/MRypqe71Iqxt1Hmaa3B3DvYsZ/JmVK3+Qa/38lLsA5te3u+jmm0TZa0jxgHnADsCWwne3L6jPOBf6HMrI2jbJu6JuUqXRQ1v5MljQHOATYpxfvJiIiIiJiwJLdOgur0fjsxfLdst2X9S7RCyqbnR5o+w/9HUtvtLW1ub29NwXlIiIiIiIWn6RJttu6alvkmpuukpY6HW1d4H7bC5dOiBEREREREUum19XSJK0l6QzKupupwKOSTpeUGsAREREREdHv+lIK+geUzTK3AFanrPFYg77tLxO9tz9wWj/HEBERERExaPS6FDSwE/CiRhnof0n6ANkTBXh6jcy6PFN1DMqmnh/tn4iWr1umzmb8ERP6O4wBY3LKYkdEREQsd31Jbh4D1uHZm2WOAh5fqhENbrsOlgIAXZE0xPaCns+MiIiIiBh4+jIt7RTgckmHSNpZ0iHApcDJyya0FYOk/SVdLenbtbz0PZJ2brSPlPQzSdNq+8Xd9PNSSRMlzZJ0q6R3NNp2kXSbpLmSpkr6TPPeLf1Y0sb1+2mS/p+kSyTNB94sadUa672S7pd0oqTVl8nLiYiIiIhYivoycnMspZDA3sBoyt4p37J96rIIbAXzGuB0ykjXwcCpksa41OE+k7JXzeb1v/+1OaiklYHfAD+l7F3zBuBXktrqJqOnAu+1fZWktYEX9iG2vYBdgLcDq1D2wnkRsBVlD6NzgC8Dn+8iroPr8zBkrXX6cMuIiIiIiKWvLyM33wf+aXt725vZ3h64XdLxyyi2wejiOrLS+TmoHp9i++Q65et0YH1gXUnrAzsDh9h+2PaTtq/sot/XAkOBb9h+wvYVwG8pm4RCSUI2k7RW7efGPsT8K9t/qWW9HwcOAj5le2bdCPTrlI1A/4vtk2y32W4bskaK5kVERERE/+pLcrMn0LpL4yTK//mPYnfbIxqfzil7/+k8oVGQYSgwFphp++Ee+h0NdLTsKzQFGFO/v4sy+jJF0pWStulDzB2N7+tQKuBN6kzQgN/X4xERERERA1pfpqUZGNJybAh9S5Di2TqAkZJG2J61iPOmAWMlrdRIcDYE/gVg+wZgtzp97aPA+ZTEaT4lWQFA0npd9O3G9xnAo8Dmtqf25UG2HDOc9lQIi4iIiIh+1JfE5Crga5JWAqj/Paoej8VgezrwO+DHktaWtLKkN3Vx6vWUROVz9ZztgF2BcyWtImlvScNtPwnM4Zly1DcDm0vaStJqlH+vRcWzkFIg4nuSXgAgaYykHZf8aSMiIiIilq2+JDefALYHpkv6K2U0YQfgY8sisEHqN5LmNT4X9eKafSlrZu4AHgA+2XqC7SeAd1DW58wAfgzsZ/uORh+TJc0BDgH2qdf9C/gq8Afg38DV9Oxw4E7gutrfH4BNe3FdRERERES/UinY1cuTy2jNqylTnjqAv7asA4nnqLa2Nre3ty7JioiIiIhYuiRNst3WVVtf1tx0Tlu6rn4iIiIiIiIGjBQDGKCam21GRERERETP+jRyEwOLpHWBW4F3257YOP4zYDXbe3Z37dJ2y9TZjD9iwvK63aA0OdXkIiIiIpapJDeDmO37JX0KOFnSy2w/KumtwNuAzZfmvSQ9z/ZTS7PPiIiIiIilKdPSlgNJh0uaKmmupH9KequkV0u6tm6WOV3SCZJW6eb6VSV9W9K9ku6XdKKk1QFsnwn8E/hqPfYT4OO2H6zXbiDpIkkPSrpH0kca/W4j6bpGDD+oe+Ug6Xl1atyhku6kVHOLiIiIiBiwktwsY5I2pWysubXtYcCOwGTKXjSfAkYB2wBvBQ7tpptvAi8GtgI2BsYAX260HwJ8EDgX+Iftc+u9hwC/BW6o1+wAfLaO7gA8RSnxPQp4PbAT8KGWe78D2BrYss8PHxERERGxHCW5WfYWAKsCm0la2fZk23fZnmT7OttP2Z5MGXHZtvViSQIOAj5le6btucDXgfd1nmP7Pkqysz3w4cblrwXWsv1120/YvhM4tfNa2zfYvr7GcDdwUhcxfN32w7Yf7SK2gyW1S2pf8MjsxXw9ERERERFLR9bcLGO275T0SeAoYHNJlwKfBoYC3wXagDUo/xaTuuhindo+qeQ5AAgY0nLercDDtqc3jo0DNpQ0q3FsCDARQNJLgO8Ar2rEcH1Lvx2LeLaTKAkRq66/Se83TIqIiIiIWAYycrMc2D7H9hsoyYYp08z+H2Udyya21wKOpCQtrWYAjwKb2x5RP8NtD+3FrTuAfzeuG2F7mO1da/tPgH8AG9cYvtxFDElaIiIiImJQyMjNMlbX3IwB/gI8RklUVgKGAXOAeXUE5cPAg63X214o6WTge5I+avsBSWOALWxf2sPtrwWekHQY8CPgSWAzYBXbk2oMs4H5kl5KWW8zdXGec8sxw2lPqeOIiIiI6EcZuVn2VgW+QRmB+Q/wAsoozWeAvYC5wMnAeYvo43DgTuA6SXOAPwCb9nTjWrp5F+DVlCIGMyijNWvVUw4D3l9j+EkPMUREREREDGiyM+sollxbW5vb29v7O4yIiIiIWMFJmmS7rau2jNxERERERMQKIclNRERERESsEJLcNEjaVNLfJM2VtFDSl/o7pmVBkiVt3IvztpN03/KIKSIiIiJiSaVa2rN9Dpho+xXNg5K2u6DUFQAAIABJREFUA64AHqmHZgOn2P7KsgxG0kTKpppb2b65cfxiYDfgzbYnLssYeuuWqbMZf8SE/g5jUJqcKnMRERERS0VGbp5tHGUzzK5Msz207i/zBuAASbsvh5j+BezX+UPS84HX0kXZ6IiIiIiI57IkN5WkK4A3AydImifpHEnHdHWu7XuAayh7xnRe/31JHZLmSJok6Y2NtldLaq9t90v6bqPttZKukTRL0s11lKjpbGAPSUPq7z2Bi4AnGn2sKul4SdPq53hJqzbaPytpem37YMtzryrp25LurbGdKGn1vr29iIiIiIj+l+Smsv0W4Crgo3V05onuzpW0CfB64LrG4RuArYCRwDnALyStVtu+D3zf9lrARsD5tZ8xwATgmHrdZ4BfSlqn0e804Dbgf+rv/YAzWkL6AmU0Zyvg5ZR9bb5Y77FT7XcHYBNg+5Zrvwm8uF67MWXD0S939+wt7+HgmrS1L3hkdm8uiYiIiIhYZpLc9N7oOroyhzJV7Hrg6s5G22fZfsj2U7a/Q9m8s3OjzSeBjSWNsj3PdmdStA9wie1LbC+0fTnQTtl4s+kMYD9JmwIjbF/b0r438FXbD9h+EDga2Le2vRf4me1/2J4PHNV5kSQBBwGfsj3T9lzg68D7evNCbJ9ku81225A1hvfmkoiIiIiIZSbJTe9Nsz2ijr6MAB4FTu9slHSYpNslzZY0CxgOjKrNB1BGR+6QdIOkt9fj44D31KRpVr3uDcD6Lfe+EHgL8DHgzC5iGw1MafyeUo91tnW0tHVaB1gDmNS4/+/r8YiIiIiIQSXV0haD7dmSzgHOA6jraw4H3grcanuhpIcB1fP/DewpaSXgf4ELamGADuBM2wf1cL9HJP0O+DBlWluraTy7GMKG9RjAdGBs49wNG99nUJK0zW1P7dXDd2PLMcNpT9WviIiIiOhHGblZDJKGUqZudSYTw4CnKBXMnifpy8BajfP3kbSO7YXArHp4AXAWsKukHSUNkbRa3Vtmgy5ueySwre3JXbT9HPiipHUkjaKsmTmrtp0P7C9pM0lrAE+Xr67xnAx8T9ILaqxjJO3Y55cSEREREdHPktz03uhaRW0eZWrXSMpaF4BLgd9R1uJMAR7j2VPBdgJurdd+H3if7cdsd1D2qzmSkhh1AJ+li38X29NsX916vDqGslbn78AtwI31GLZ/BxxP2afnzvrfpsPr8evqeqI/8MxaoYiIiIiIQUO2+zuGWAG0tbW5vb29v8OIiIiIiBWcpEm227pqy8hNRERERESsEJLcRERERETECiHJzRKqBQDu6+84IiIiIiKe654zpaAlTQbWpVQpmw9cAnzM9rz+jKuTpInAWbZPaRwT8BHgYGBjYA5wB3Ci7XP7I87u3DJ1NuOPmNDfYQxak1NGOyIiImKJPddGbna1PRR4JbA18MVmo4qB9E5+AHwSOAx4PjCGEvNOXZ08AOOPiIiIiFhunpN/CNcNK38HbCFpoqRjJf0FeAR4kaTRkn4taaakOyU9vcmmpNUlnSbpYUm3UZIkGu2WtHHj92mSjmn83k3STZLmSLpL0k6SjgXeCJxQy02fIOnFwKGUstGX237U9gLbV9vev9FfX+NvjedZ0+okTZb0eUm31Wf8maTVlvytR0REREQsW8+ZaWlNksYCuwAXUpKKfYGdgX8Couz1ciswGngJcLmku23/kbIJ5kb1syYlSertfV8NnAG8G/gjsD4wzPbvJb2exrQ0SYcAHbZ7U1+5L/H3xt7AjpTpe7+hjBZ9sfUkSQdTpswxZK11etl1RERERMSy8VwbublY0izgauBK4Ov1+Gm2b7X9FLAe8Abg8LrR5k3AKZQEAuC9wLG2Z9ZNOH/Qh/sfAPy0jsQstD3V9h3dnDsK+E/zgKT7JM2S9JikcY2mvsTfGyfY7rA9EzgW2LOrk2yfZLvNdtuQNYb3ofuIiIiIiKXvuTZys7vtPzQPlDX7dDQOjQZm2p7bODYFaGu0d7S09dZYSiGD3niIMrLzNNsbSHoe8CRlhKZTX+LvjdbnG92HayMiIiIi+sVzLbnpjhvfpwEjJQ1rJAgbAlPr9+mUJOXWRlvTI8Aajd/rAZ1rWjoo09l6igHgCsoanLZeTE3rS/zzu4iv1djG9w1rn4u05ZjhtKfiV0RERET0o+fatLQe1alm1wDHSVpN0sso08nOrqecD3xe0tqSNgA+1tLFTcBekoZI2gnYttF2KvABSW+VtJKkMZJeUtvuB17UiOOfwE+AcyXtUAsZDAFet4Tx3wTsImmkpPUo1dhafUTSBpJGAkcC5y3qnhERERERA0GSm67tCYynjFhcBHzF9uW17WjKVK17gMuAM1uu/QSwKzCLsjD/4s4G238FPgB8D5hNWffTuXbm+8C7a4WyznU8H6Gs6fkuMJMyAvQ1YA/g3sWM/0zgZmByjb+rxOWc2nZ3/RzTxTkREREREQOK7NbZUPFcVjc7PbB1bVJP2tra3N7em8JuERERERGLT9Ik212uJ8/ITURERERErBCS3ERERERExAoh1dIGqcWdPtYT2+MX57pbps5m/BETlmYo0TA5legiIiIiepSRm34m6Q2SrpE0W9JMSX+RtPVyuvdESQfW79tJWihpXv3cJ+n85RVLRERERMSSSnLTjyStBfwW+CEwEhhDqcb2eD+FNM32UGAY8FrgDuAqSW/tp3giIiIiInotyU3/ejGA7Z/bXmD7UduX2f67pI0kXSHpIUkzJJ0taURXndQ9c46QdFc9//y6Rw11r5uz6vFZkm6QtO6ignJxn+0vA6cA31zaDx4RERERsbQluelf/wIWSDpd0s6S1m60CTgOGA28FBgLHNVNPx8HdqdsGDoaeBj4UW17PzC8Xv984BDg0T7EeCHwSklrtjZIOlhSu6T2BY/M7kOXERERERFLX5KbfmR7DvAGwMDJwIOSfi1pXdt32r7c9uO2H6Rs5LltN119CPhCHW15nJIEvVvS84AnKUnNxnV0aFK9b29NoyRa/zVqZPsk222224asMbwPXUZERERELH1JbvqZ7dtt7297A2ALysjL8ZJeIOlcSVMlzQHOAkZ108044KI67WwWcDuwAFgXOBO4FDhX0jRJ35K0ch9CHENJvmYt3hNGRERERCwfKQU9gNi+Q9JplJGY4yhJxctsPyRpd+CEbi7tAD5o+y/dtB8NHC1pPHAJ8E/g1F6G9U7gRtvzF3XSlmOG055yxRERERHRjzJy048kvUTSYZI2qL/HAnsC11Eqls0DZkkaA3x2EV2dCBwraVztZx1Ju9Xvb5a0paQhwBzKNLUFPcQlSWMkfQU4EDhyiR40IiIiImI5SHLTv+YCrwGulzSfktT8AziMMtrySmA2MIGysL873wd+DVwmaW7t5zW1bT3gAkpicztwJWWKW1dGS5pHSapuALYEtrN92eI+YERERETE8iLb/R1DrADa2trc3t7e32FERERExApO0iTbbV21ZeQmIiIiIiJWCEluGiRtKulvkuZKWijpS8v4fkdJ6m6KWOu5EyUduCzjiYiIiIgYzFIt7dk+B0y0/YrmQUnbAX8CLrL9v43jLwduAq60vd3yClLS/pRqZ52bcT4ITASOs/2v5RVH0y1TZzP+iAn9cetYQpNT5S4iIiJWEBm5ebZxwK3dtD0IvE7S8xvH3g/0SzIBXGt7KDAc2J6S6EyStEU/xRMRERER0a+S3FSSrgDeDJwgaZ6kcyQd0zjlCeBi4H31/CHAe4GzW/p5naQbJM2u/31do+2Fkq6s094up2VTTkmvlXRN3Yzz5jpitEi2F9i+y/ahlEpoR/WmP0n7S7q7xnKPpL0bbQdJur223SbplT2+wIiIiIiIfpbkprL9FuAq4KN1ROSJLk47A9ivft+RMsozrbNR0khK2eYfAM8HvgtMaIz2nANMoiQ1X6OM/HReO6ZeewwwEvgM8EtJ6/ThMS4E3thTf5LWrDHubHsY8DrK9DokvYeSIO0HrAW8A3ioq5tJOlhSu6T2BY/M7kOYERERERFLX5KbPrB9DTBS0qaUP/7PaDnlbcC/bZ9p+ynbPwfuAHaVtCGwNfAl24/b/jPwm8a1+wCX2L7E9kLblwPtwC59CHEaJZHpTX8LgS0krW57uu3O6XgHAt+yfYOLO21P6eZ9nGS7zXbbkDWG9yHMiIiIiIilL8lN350JfJQyhe2ilrbRQGsiMAUYU9setj2/pa3TOOA9dQrZLEmzgDcA6/chtjHAzJ76qzHsARwCTJc0QdJL6nVjgbv6cM+IiIiIiAEh1dL67kzgTuAM249IarZNoyQVTRsCvwemA2tLWrOR4GwIdO6i2gGcafugJYjtnZSpdT32Z/tS4FJJq1Omrp1MmdLWAWzU1xtvOWY47am6FRERERH9KCM3fWT7HmBb4AtdNF8CvFjSXpKeJ2kPYDPgt3VqVztwtKRVJL0B2LVx7VmU6Ws7ShoiaTVJ20naYFHx1HNfKOmHwHbA0T31J2ldSe+oa28eB+YBC+p1pwCfkfQqFRtLak3YIiIiIiIGnCQ3i8H21bandXH8IeDtwGGURfifA95ue0Y9ZS/gNZSpY1+hsWbHdgewG3Akpex0B/BZuv832kbSPGAOZY+btYCtbd/Si/5WqjFOq7FsCxxar/sFcCyl+MFcSoW4znU8EREREREDlmz3fFZED9ra2tze3t7fYURERETECk7SJNttXbVl5CYiIiIiIlYISW4iIiIiImKFkOQmIiIiIiJWCCkF/Rwl6SzgTttHLY3+bpk6m/FHTFgaXUU/mJwy3hEREbECGPQjN5LeJ+l6SfMlPVC/H6qWDWgGOkkbSprX+Lg+U+fvN/Z3jBERERERA9mgTm4kHQZ8H/g/YD1gXeAQ4PXAKl2cP2S5BtgFSV2Oltm+1/bQzk89/PLGsatarxkIzxMRERERMVAM2uRG0nDgq8Chti+wPdfF32zvbftxSadJ+n+SLpE0H3izpOGSzpD0oKQpkr4oaaXa51F1ulbnPcbXEZTn1d/7S7pb0lxJ90jau3HuByXdLulhSZc2N76sfXxE0r+Bfy/BM58l6UeSfl+f5411M86bakz3SvpSyzVvknSdpNmSOiTt20W/a0n6s6Tv1Y07316fZa6k+yR9qpt4DpbULql9wSOzF/exIiIiIiKWisG85mYbYFXgVz2ctxewC2VzzVWAk4DhwIuA5wOXAdOBUxfViaQ1gR9QNsr8p6T1qZtbStqdslnmrpTk5Qjg58DrGl3sTtnA89FeP+Gin+d6YGXKKNU+wG3AlsAfJf3N9m8lvRCYABwAXAiMADZoea5RwO+B33auv5H0M2A329dIGgmM7yoQ2ydR3ierrr9JNkyKiIiIiH41aEdugFHADNtPdR6QdI2kWZIelfSmevhXtv9ieyHwJLAH8Pk60jMZ+A7wX6MZ3VgIbCFpddvTbd9aj38IOM727TWerwNbNUdvavtM20ua3Fxk+1rbC20/bvsK2/+ov28GzgW2refuA/ze9vm2n7I9w/ZNjb7GAFcCZ7cUFngS2EzSsBrzjUsYc0RERETEMjeYR24eAkZJel5ngmP7dQCS7uOZxK2jcc0oyujNlMaxKZQ/8hfJ9nxJewCfAU6V9BfgMNt3AOOA70v6TuMS1X4779XB0vGsfiRtAxwHbE55tlUpo0YAY4G7FtHXO4DZwMktx98JfAH4P0k3A4fbvn5RQW05ZjjtqbgVEREREf1oMI/cXAs8DuzWw3nN6VIzKKMSzRGVDYGp9ft8YI1G23rP6si+1PYOwPrAHTyTFHQAH7I9ovFZ3fY13cSxJFr7ORf4JTDW9nDgFEpi1RnXRovo60TgT8AESU8/t+3rbb8DeAHw23qPiIiIiIgBbdAmN7ZnAUcDP5b0bklDJa0kaStgzW6uWQCcDxwraVidNvZpoLOIwE3Am2pZ5uHA5zuvlbRuXby/JiWpmgcsqM0nAp+XtHk9d7ik9yz1h+7aMGCm7cckvRZ4X6PtLGAnSe+S9DxJoyS9vNFuSnW5u4FfS1pN0uqS9pK0lu0ngbk885wREREREQPWoE1uAGx/i5KcfA54ALgf+AlwOHBNN5d9jDJCczdwNXAO8NPa3+XAecDfgUmUUYtOKwGHAdOAmZR1LYfW6y4CvgmcK2kO8A9g56X0mD35MHCcpLmUogbndzbYvodS5ODwGvONlKIDNM4xpeDAA8BFlKlt7wem1Gc5gN6vSYqIiIiI6Dcqf9tGLJm2tja3t7f3dxgRERERsYKTNMl2W1dtg3rkJiIiIiIiotOAr5YmaVPKgvaNKWtpvmL7a/0bVe9ImgicZfuUxrE3Ar/r6nzbQ5dTaEvdLVNnM/6ICf0dRgxSk1NpLyIiIpaCwTBy8zlgou1htldqJjaSjpR0j6R5ku6TdF4/xtkrtq+yPbSrT1/6kTRR0mOS5kqaI2mSpCMkrbqsYo+IiIiIGMgGQ3IzDri19aCk91MWum9fE4M24I/LObZlQlJvR9Q+ansYpTT1YZRKaZdI0qIvi4iIiIhY8Qzo5EbSFcCbgRPq6Mw5ko6pzVsDl9q+C8D2f2yf1Lh2uKRTJU2XNFXSMZKGNNoPknR7Hfm4TdIr6/GX1lGRWZJulfSOxjWnSfqRpAn1uuslbdRo30HSHZJmSzqBZ/abQdJGkq6Q9JCkGZLOljSi0T5Z0uGS/g7Ml/RZSb9seR8/lHR863uyPd/2RMqmnNsAb6vnr1RHc+6q9z1f0sjatpqks+rxWZJukLRubRsp6WeSpkl6WNLFffuXi4iIiIhY/gZ0cmP7LcBVlBGKocATjebrgP1qEtDWTFyq04GnKGt1XgH8D3AgQN2D5ihgP2AtSlLwkKSVgd8Al1E2sPwYcHZd99NpT8r+OmsDdwLH1j5HUTbT/CIwCrgLeH3jOgHHAaOBlwJjawxNe1ISkxE8s0fNiNr/84A9gDMX8b7uBdqBN9ZDHwd2p5StHg08DPyotr0fGF7jeD5lv5tHa9uZlM1MN6/v4Xtd3U/SwZLaJbUveGR2d2FFRERERCwXAzq5WRTbZ1GSjx2BK4EHJB0BZcNNyj4zn6yjGg9Q/kDv3ODyQOBbtm9wcaftKcBrgaHAN2w/YfsKyl43ezZufaHtv9p+Cjgb2Koe3wW4zfYFdfPL44H/NOK90/blth+3/SDwXUrS0fQD2x22H7U9Hfgz0LkZ6E7ADNuTeng104CR9fuHgC/Yvs/245Rk6t01UXqSktRsbHuB7Um250hav767Q2w/bPtJ21d2dSPbJ9lus902ZI3hPYQVEREREbFsDfhqaYti+2zKyMrKlBGKsyX9jTJCsTIwvbH8ZCWgo34fSxlZaTUa6LC9sHFsCjCm8fs/je+PUJKhp69txGZJT/+W9ALgB5RRlWE1nodb7t/R8vt0yiadJwP7sIhRm4YxPLOB6TjgIknN51kArFv7GkvZeLRzpOgL9dhM262xRUREREQMaIM6uelUR0p+IelwYAvgHOBxYFQdYWnVAWzUxfFpwFhJKzUSnA2Bf/UijOmUxACAuqh/bKP9OMDAy2w/JGl34ITWR2n5fTHw/yRtAbydUjmuW5LGAq8CvlkPdQAftP2Xbi45Gjha0njgEuCf9b8jJY2wPWtR92vacsxw2lPONyIiIiL60aCdliZpf0lvkzSsLpzfmbJG5Po6pesy4DuS1qrtG0nqnAZ2CvAZSa9SsbGkccD1wHzgc5JWlrQdsCtln52eTAA2l/S/ddrXx4H1Gu3DgHnALEljgM/21KHtx4ALKMnaX+uamq7exRr12X4F/JWSoACcCBxbnw1J60jarX5/s6Qt61qlOZRpagvqu/sd8GNJa9f38KZePH9ERERERL8atMkN5Q/yI4F7gVnAt4AP2766tu8HrALcRpn+dQGlZDK2f0EpBHAOMJcyQjLS9hOU4gI7AzOAHwP72b6jp2Bsz6Csj/kG8BCwCdAcMTkaeCUwm5IIXdjL5zwd2JKup6SdIGkucD9ljc8vgZ0ao07fB34NXFbPuw54TW1bj/JO5gC3U9YtnVXb9qUkO3cADwCf7GWsERERERH9RnbrTKgYSCRtSEky1rM9p7/j6U5bW5vb29v7O4yIiIiIWMFJmmS7rau2wTxys8KTtBLwaeDcgZzYREREREQMBM/p5EbSUZLO6vnMxe7fkjau30+U9KU+XLsmZcrYDsBXFvP+p+mZTU8jIiIiIlZog65amqTJwIG2/9A4tn899ob+iqsntg/p4/nzeabMdLfqs5/KMxtwApxm+6N9CnAJ3TJ1NuOPmLA8bxnRrcmp3BcREfGcNOiSm+VF0vO6KSM9EF07kBO7iIiIiIjlYYWalibps5J+2XLsh5KOr99fKOlKSXMlXQ6Mapw3vk4jO0DSvcAV9fgvJP1H0mxJf5a0eeOaiZIObPzeX9LVdKF1ipik3STdJGmOpLsk7dTo4+4a4z2S9l46bwckHSTpTkkzJf1a0uh6/GhJP6zfV5Y0X9K36u/VJT0mae2lFUdERERExLKwQiU3lFLGO0kaAWX0BdiDZ8oonwNMoiQ1XwPe30Uf2wIvBXasv39HKev8AuBG4OwlDVLSq4EzKHvdjADeBEyu62x+AOxsexjwOuCmJb1fvedbKBuJvpdSEnsKz+zfcyWwXf2+NfAfynsA2Ab4p+2Hu+jzYEntktoXPDJ7aYQZEREREbHYBuu0tIslNaeMrQLcaHu6pD9T9ps5GdgJmGF7Ui2pvDWwve3HgT9L+k0XfR9V17sAYPunnd8lHQU8LGm47SX5a/4A4Ke2L6+/p9b+1wQWAltIurduqDm9F/29VtKsxu+dbF/Xcs7e9Z431nt9vj7LeOBaYBNJz6ckWqcCh0oaSklyruzqprZPAk4CWHX9TVJTPCIiIiL61WAdudnd9ojOD3Boo+10YJ/6fR+eGbUZDTzcTFwooxetOjq/SBoi6Rt12tgcYHJtGtXFdX0xFrir9WCNbQ/gEGC6pAmSXtKL/q5rvo8uEhsoz//089qeR9lsdIztR4F2SiLzJkoycw3wehaR3EREREREDCSDNblZlIuBl0naAng7z0wjmw6sXUdHOm3YxfXNEYi9gN2A7YHhwPh6XPW/84E1Guev18sYO4CNumqwfantHShTx+6gjEAtDdOAcZ0/6nt4PnXUiJLAvAV4BXBD/b0j8Grgz0sphoiIiIiIZWawTkvrlu3HJF1AWV/zV9v31uNTJLUDR0s6kvJH+67ArxfR3TDgccoIxxrA11vabwL+V9IplJGRA4D7exHmqcBlkn4L/ImSyAwDHgZeA/yRUtp5HrCgF/31xjnAuZLOAW6nPMv1tifX9iuBC4AbbD8haSJljc49th/sqfMtxwynPeV3IyIiIqIfrYgjN1Cmpm3JM1PSOu1FSR5mUjbGPKOHfs6gTOWaCtwGtE73+h7wBCWhOZ1eFhuw/VfgA/X62ZTEYhzl3+MwyijLTMqUsEO76aZPbP8R+BLwS8oo1kbA+xqnXAOszjOjNLcBj5FRm4iIiIgYJGSveOvAa/GAO4D1bM/p73ieC9ra2tze3t7fYURERETECk7SJNttXbWtcCM3klYCPg2cm8QmIiIiIuK5Y4VKbuoi+TnADpRpZysESSdKmtfF58T+ji0iIiIiYqBYoZIb2/NtD7W9ue2Onq9YeiRZ0sZLoZ+Jkg5sHrN9SH2u1s8hS3q/XsSznaT7lvV9IiIiIiKW1ApXLW2gk7QdcAXwSEvTDravXf4RLR23TJ3N+CMm9HcYEX02OVX+IiIiVhhJbvrHNNsb9HcQERERERErkhVqWtrSIulwSVMlzZX0T0lvlfRqSddKmiVpuqQTJK3SzfWrSvq2pHsl3V/XzKy+GHFsJOkKSQ9JmiHpbEkjGu2TJX1e0m2SHpb0M0mr1bZRkn5b450p6apabAFJoyX9UtKDku6R9PFGn6tLOq32dxuwdZ9fYEREREREP0hy00LSpsBHga1tDwN2BCZTNtP8FDAK2AZ4K93vQfNN4MXAVsDGwBjgy4sTDmUjzdHAS4GxwFEt5+xdY9yo3vOL9fhhwH3AOsC6wJGAa4LzG+DmGtdbgU9K2rFe95Xa10a13/d3G5x0sKR2Se0LHpm9GI8XEREREbH0JLn5bwuAVYHNJK1se7Ltu2xPsn2d7adsTwZ+Qtlk81kkCTgI+JTtmbbnAl/n2Rtmjq4jKs3Pmq192b7T9uW2H7f9IPDdLu55gu0O2zOBY4E96/EngfWBcbaftH2Vy6ZGWwPr2P6q7Sds3w2c3IjvvcCxNfYO4AfdvSjbJ9lus902ZI3hi3ilERERERHLXtbctLB9p6RPUkZINpd0KWXfnKGU5KINWIPy7iZ10cU6tX1SyXOAMgIzpHFOr9bcSHoBJbl4IzCMkow+3HJasyrcFMooD8D/1We4rMZxku1vAOOoyVXjuiHAVfX76C76jIiIiIgY8JLcdMH2OcA5ktaijNB8k/JH/9+APW3PrQnQu7u4fAbwKLC57alLGMpxgIGX2X5I0u7ACS3njG183xCYVp9hLmVq2mGSNgf+JOkGSuJyj+1Nurnn9NrnrY0+e7TlmOG0p+pURERERPSjTEtrIWlTSW+RtCrwGCVRWUAZOZkDzJP0EuDDXV1veyFlmtf36sgLksY01rT0xTBgHjBL0hjgs12c8xFJG0gaSVlXc16959slbVynyc2pz7AA+CswpxZNWF3SEElbSOosHHA+8HlJa0vaAPjYYsQdEREREbHcJbn5b6sC36CMwPwHeAElafgMsBcwl5K8nLeIPg4H7gSukzQH+AOwaaN9tKR5LZ93ddHP0cArgdnABODCLs45B7gMuLt+jqnHN6n3nQdcC/zY9kTbC4BdKcUO7qnPeQrQuWjmaMpUtHtqv2cu4jkjIiIiIgYMlTXmMRhJmgwcaPsP/R1LW1ub29vb+zuMiIiIiFjBSZpku62rtozcREQtxUEbAAAcLElEQVRERETECiHJTURERERErBCS3AxitscDd0qypB4r30naX9LVyz6yiIiIiIjlL6Wgl7O6TmY0MNr2jMbxm4CXAy+sm4Quj1gMbFL39jkK+AKlQhyUktCXUTb0nN5TX7dMnc34IyYss1gjBrPJKZMeERGxXGTkpn/cA+zZ+UPSlsDq/RfO086zPQwYCbwTWI+yGen6/RtWRERERETPktz0jzOB/Rq/3w+c0flD0nBJZ0h6UNIUSV+UtFJtGyLp25JmSLobeNb/Eq7XnippuqSpko6RNKQvwdl+0vatwB7Ag5TNQCMiIiIiBrQkN/3jOmAtSS+ticcewFmN9h9S9p15EbAtJRH6QG07CHg78AqgDXh3S9+nA08BG9dz/gc4cHGCrHvi/Ap4Y1ftkg6W1C6pfcEjsxfnFhERERERS02Sm/7TOXqzA3AHMLUe70x2Pm97bl1/8x1g39r+XuB42x22ZwLHdXYoaV1gZ+CTtufbfgD4HvC+JYhzGmWa2n+xfZLtNtttQ9YY3tUpERERERHLTQoK9J8zgT8DL6QxJQ0YBawCTGkcmwKMqd9HAx0tbZ3GASsD0yV1Hlup5fy+GgPMXILrIyIiIiKWiyQ3/cT2FEn3ALsABzSaZgBPUhKV2+qxDXlmZGc6MLZx/oaN7x3A48Ao208taYx1nc+uwB96OnfLMcNpT0WoiIiIiOhHmZbWvw4A3mJ7fuPYAuB84FhJwySNAz7NM2tyzgc+LmkDSWsDR3ReWEs2XwZ8R9JaklaStJGkbfsSlKSVJb0U+DmlYtp3F/cBIyIiIiKWlyQ3/cj2Xbbbu2j6GDAfuBu4GjgH+GltOxm4FLgZuBG4sOXa/SjT2m4DHgYuAHpbynkPSfOAWcCvgYeAV9me1ttnioiIiIjoL7Ld3zHECqCtrc3t7V3laRERERERS4+kSbbbumrLyE1ERERERKwQlktyI2lTSX+TNFfSQklfWk73PU3SMcvjXl3c25I27o97R0REREQ8Fy2vammfAybafkXzoKTtgCuARwBT9lT5hu2fLae4eiRpPHAPsHKzApmk9YFjKNXOhlKqmZ0HfKulQMCyiGl/4FTg0XroQWAicJztfy3Le3fnlqmzGX/EhP64dUQsZZNT+TAiIgap5TUtbRxwazdt02wPBdYCDgdOlrRZ60mSBkzZakkjgWuB1YFtbA+jbMY5AthoOYVxbX1vw4HtKYnOJElbLKf7R0REREQMKMs8uZF0BfBm4ARJ8ySd09VUMRcXUyp8bSZpfJ3adYCkeykjPEh6h6RbJc2SNLGWLO681ysk3Vinv50HrNZo21/S1S2xPT11TNLqkr4jaYqk2ZKulrQ6ZaNNgFk1/m0opZnnAvvYnlzj77D9Cdt/7+IdvK1Oy5sjqUPSUY221SSdJemh+kw3SFq3EfPd9XnukbR3F+9tQa26dihwJdDs+7WSrqn93lxHyuipb0kHSbq9tt0m6ZWt942IiIiIGGiWeXJj+y3AVcBH60jDE12dV/dkeSdl9OOWRtO2wEuBHSW9mLL3yieBdYBLgN9IWkXSKsDFwJnASOAXwLv6EOq3gVcBr6vXfw5YCLypto+wPdT2tZSRkgttL+xl3/MpJZpHAG8DPixp99r2fsroy1jg+cAhwKOS1gR+AOxcR4ZeB9zUw30uBN4IIGkMMIEydW4k8Bngl5LWWVTfkt5DSZD2o4ymvYNSEvq/SDpYUruk9gWPzO7lq4iIiIiIWDYGQrW00ZJmATOArwD72v5no/0o2/NtPwrsAUywfbntJykJyeqUP85fC6wMHG/7SdsXADf0JgBJKwEfBD5he2odDbnG9uPdXPJ8YHpvH9D2RNu32F5YR3Z+TknaAJ6s/W1c7zvJ9pzathDYQtLqtqfb7m5qX6dplEQGYB/gEtuX1PteDrRT1ggtqu8DKeuGbqijaXfantLNc51ku81225A1hvf2dURERERELBMDIbmZZnuE7ZG2t7J9bkt7R+P7aODpP7TryEkHMKa2TfWzN+7p8o/yLoyiTGG7q5fnP0TvN8ZE0msk/UnSg5JmU0ZnRtXmMymbcp4raZqkb0lauRYl2KOeO13SBEkv6eFWY4CZ9fs44D11StqsmkC+AVi/h77H0vv3EBERERExYAyE5KYnzWRlGuWPdgAkifLH+FTKSMqYeqzTho3v84E1Gteu12ibATxG18UAutrl9A/AO+uIT2+cA/waGGt7OHAiIIA6ynS07c0oI1Bvp0wJw/altnegJFJ3ACf3cJ93UqYAQkn6zqyJY+dnTdvf6KHvDpZfUYSIiIiIiKVmwFQg66XzgSMkvZWy0P8TwOPANbX9KeDjkn5EWSvyauBPte1mYHNJW1H+mD+qs1PbCyX9FPiupH2B++u1N1LKLC8EXgR0lln+LmXa1+mSvmh7Sl3jchhwWhdFBYYBM20/JunVwF7AZQCS3kxJrm4D5lCmqS2oRQVeA/yRUgltHrCg9YVIGkJJ4j4NbAdsU5vOAm6QtCMlGVuZMnXvznqP7vo+pb6Hq+vzbwQ82d3UtE5bjhlOe8rHRkREREQ/GgwjN0+ra3H2AX5ISQh2BXa1/YTtJ4D/BfanVFzbg7LAvvPafwFfpfyh/2/gWZXTKAvub6Gs05kJfBNYyfYjwLHAX+r0rtfankkZZXkSuF7SXEqiMJuSPLQ6FPhqPe/LlCSt03rABZTE5nZKxbOzKP82h1FGq2ZS1ugc2rhuG0nz6nUTKYv/t7Z9S33eDmA34EhKgtYBfLb2223ftn9Rn/ccSkW4i3lmHU9ERERExIClZy9RiVg8bW1tbm9v7+8wIiIiImIFJ2mS7bau2gbVyE1ERERERER3ktxERERERMQKIclNL0iypI37O46IiIiIiOjeYKuWhqS9KJXBXkJZ8H4TcKzt1gIBA56kI4GDgHWAWcBfbO+xBP1tB5xle4OlE2Hv3TJ1NuOPmLC8bxsREc8hk1OVMyJ6MKhGbiR9Gjge+DqwLqUE8o8pVcEGHEndJo+S3g/sC2xveyjQRqm4FhERERERi2HQJDeShlNKOX/E9oW259cNMH9j+7OSVpV0vKRp9XO8pFXrtfvXfVua/T091UzSaZJOlHS5pLmSrpQ07r+jgHqfb0u6V9L99brVa9t2ku6TdLik/wA/W8QjbQ1cavsuANv/sX1S7ec9kia13PcwSRfX77tIuq3GOlXSZyStCfwOGC1pXv2MlrSSpCMk3SXpIUnnSxpZ+xlf38MHJHVIeljSIZK2lvT3Wvr6hD7+U0VERERE9ItBk9xQNqdcDbiom/YvUDap3Ap4OWUTzi/2of+9ga8BoyhT3c7u5rxvAi+u99kYGEPZu6bTepR9YcYBBy/iftcB+0n6rKS2uhlnp18DL5T00saxfYAz6/dTgQ/ZHgZsAVxhez6wMzDN9tD6mQZ8HNidspfNaMoeQD9qieU1wCaUvYGOp7zL7YHNgfdK2rarB5B0sKR2Se0LHpm9iEeNiIiIiFj2BlNy83xghu2numnfG/iq7QdsPwgcTZn21VsTbP/Z9uOUP+63kTS2eYIkUdbIfMr2TNtzKVPk3tc4bSHwFduP2360u5vZPgv4GLAjZePOByQdUdseB86jJDRI2hwYD/y2Xv4ksJmktWw/bPvGRTzXh4Av2L6v9nsU8O6WKXNfs/2Y7cuA+cDP63ucClwFvKKbZzjJdpvttiFrDF9ECBERERERy95gSm4eAkYtYh3LaGBK4/eUeqy3Ojq/2J4HzOzi+nWANYBJdcrWLOD39XinB20/1psb2j7b9vbACOAQ4KuSdqzNpwN71YRqX+D8mpwAvAvYBZhSp9Bts4jbjAMuasR7O7CAsmap0/2N74928Xtob54nIiIiIqI/DaZqadcCj1GmWF3QRfs0yh/y/7+9Ow+WsrrTOP59RFARxBUNKBKjxgQ1LjdmahSDSyYuFTWjY01w3GJEraCOOo4JSQo1LgmV0onbpNRRRnGJ+xITNXHf9Rq34ChRRBFXUFkNRvjNH+c0vLTdlwu327735flUvUX3Wd7ld89t+txz3vNOzO+H5DRIoxF9KwUlbVCj/kaF/H6kqWVvVZWZTvqyPyyPatQSHV5FrQoRfweul3QKaZrZXRHxuKRPgOHAyLxVyj8F7CupNzAauC6ff61jTwW+HxGPVGdIGrqs51rPVoMH0O5VbMzMzMyshXrMyE1EzCTd23KhpP0k9ZXUW9KeksYB1wA/lbSepHVz2Qm5+nPAMEnbSFqVNDWr2l6SdpLUh3TvzRMRMbVYICIWApcA50oaCCBpcGG0pdPyIgd7S+qfb/rfk3SPyxOFYlcAFwCfVpa6ltRH0kGSBuRO0SzSSAykEZd18uILFb8BzqwskJDj0y1XlzMzMzMz64oe07kBiIhzSM+4+SnwPmlUYjRwC3AG0A48D7wA/DmnERGTSCut/Qn4K1DrmThXA2NJ09G2J93DU8spwCvA45Jm5X1+eTkuZxYwBniD9IybccAxVc/ruZI0knNlVd2DgSn5+EeT782JiJdInbzJeRraIODXpAUK7pY0m7SQwTeW43zNzMzMzLo1RSzzLKrSkTQeeDMilmV1tabLS0y/B2wXEX9t9fl0pK2tLdrb21t9GmZmZmZWcpKejoi2Wnk9auRmBXQM8FR379iYmZmZmXUHPWlBgR5H0hjS1LNqD0XEnkupOwUQaQEFMzMzMzNbCndugIg4rEn7PYv0HJxFJI1g8UIHHdUd2shzyR2tTSLiB43cr5mZmZlZd+HOTR155GR90kpkc4HfA8fmZ+C0nKT7gQkRcWkhbV/Sw0s3AT4hrRJ3RERMyR2tpnlh2kyG/uiOZh7CzMys5ab4sQdm3ZrvuenYdyKiH7Ad8HXSKm2LKOkWMZS0KWnp6JOAAcAXgYuAha08LzMzMzOzz0u3+GLe3eUHdv4B2FLS/ZLOlPQIMA/YRNIgSbdJ+kDSK5KOrNSVtJqk8ZI+lPQiqZNEIT9yx6TyfrykMwrv95X0rKRZkl6VtIekM0kP97xA0hxJFwDbAK9FxD2RzI6IGyPijbyfUyVNyK8r9Srbp5JOzXmDJN0o6X1Jr0k6rjlRNTMzMzNrLHduOkHSRsBewDM56WBgFNAfeJ30bJk3gUHAAcBZknbLZccCX8rbt4FDl+G4O5BGY04G1gR2BqZExE+Ah4DREdEvIkaTnuuzhaRzJe0iqV+9/UZEpV4/YCfgQ+DWPAp1O2k622BgN+Df6z2kVNIoSe2S2hfMm9nZyzIzMzMzawp3bjp2i6SPSA/9fIDFiwOMj4iJEfEpsAGpg3BKRPwtIp4FLiV1gAAOBM6MiA8iYipw3jIc/wjgsoj4Y0QsjIhp+UGdnxERk4ERpE7JdcD0PApUt5MjaT3SA1CPjYhnSKNK60XE6RHxSd7nJcC/1jnmxRHRFhFtvfoOWIbLMjMzMzNrPC8o0LH9IuJPxQRJAFMLSYOADyJidiHtdaCtkD+1Kq+zNiItZNApEfE4qTOFpK8DvwV+Avy4uqyk3sANwNURcW1O3hgYlDt0Fb1Io0RmZmZmZt2aOzfLJwqv3wLWltS/0MEZAkzLr98mdVImFvKK5gF9C+83IE1xg9Qp+lInzuGzmRFPSboJ2LJOkfOB2Sy5SMJU0n07m3W071q2GjyAdq8gY2ZmZmYt5GlpXZSnmj0KnC1pVUlbk6aTXZWLXAf8WNJakjYEjq3axbPASEm9JO0BfLOQ9z/A4ZJ2k7SSpMGStsh575KWfAZA0k6SjpQ0ML/fAtgHeLz6nCUdlY8zMiKKq6k9CcySdEpeCKGXpC3zKJCZmZmZWbfmzk1jfA8YShrFuRkYGxF/zHmnkaaivQbcDVxZVfd44DvAR8BBpHtgAIiIJ4HDgXOBmaT7fjbO2b8GDsirsJ2X6+8DvCBpDnBnPpdxdc53E+CtwoppYyJiQT6XbfL5TifdP+QbaszMzMys21NEh7ObzDqlra0t2tvbW30aZmZmZlZykp6OiLZaeR65MTMzMzOzUnDnZgUnaULlAZ5mZmZmZj2ZV0vrAklXAfMj4vuFtG8CNwFbRsTbDTzWBNI9OXtHxO8L6RcAPwQOjogJjTresnph2kyG/uiOVh3ezMzMzD4nU7rxCrkeuema44C9JH0LQNKqpIdentTgjk2v/HIScGghvTewPzC5UccyMzMzM+up3LnpgoiYQVra+WJJqwNjgVcjYnxeunmMpFclTZd0raS1AHLeDZLekfSRpPslfaWy3zxV7EJJd0qaCwzPWbcAIyRVVi/bG2gH3i/U3UzSfZJm5ONeWSiPpO0lPStptqRrgFWK1yRpH0nP5fN6WFK95+SYmZmZmXUr7tx0UURcDzwNXAOMAo7KWSeSOh87AxsCc4HzClV/B2xGemjnX/jsEtEjSctI9wcey2kfA3cAB+b3hwBXVNUTcAbwBeCrpCWffwYgaRXgVuAyYO38er9FFdPzbC4BfgCsk8vdKqlPrWuXNEpSu6T2BfNm1ipiZmZmZva5ceemMX4I7AqcHhFv5LSjgDERMS0i/gacChwoaaWIWBgR4yNidiFv+zz6U3FzRDyWy84vpF8BHCJpbeAfgduKJxIRkyLinoj4JCLeIz0jp/Jg0B2BAM6PiL9HxLXAM4Xqo4CLIuKpiFgQEZfl9JoP8YyIiyOiLSLaevX1o3DMzMzMrLW8oEADRMS7kqYDEwvJQ4DbJS0sFgUGSnofOBs4AFgXqJRZlzTCAzC1zuEeII0EjQFujYj5khZlStqANEK0I2nUZyUWT1sbBLwZSz7c6PXC642BgySdUEjrAwyucy5mZmZmZt2GR26a503gWxGxZmFbNSLeIU0n24s02jMA2DTXUaF+zaer5o7JVaRpb9VT0gB+CcwHtoqINYDDCvt9m9QxKhpSeD0VOK3qnPtGxHWdu2QzMzMzs9bxyE3z/AY4S9LhEfGGpIHAP0TEbaQRlfnADKAvcOYy7vtc4L6IeKRGXn/gPWCmpI2A/yjkPQysJGl0Pr/vAtsBf8j5FwPXS7qXtFDB6sAuwL0RMZcObDV4AO3deFlAMzMzMys/j9w0zznAncA9kmYDj7L43pXLgbfyNjHndVpEzIiIe+pkjwV2AGaS7se5sVBvPqlDcyTwIfDPpBXYKvlPAMcA/53zJwH/tiznZmZmZmbWKlry9guz5dPW1hbt7e2tPg0zMzMzKzlJT0dEW808d26sEfLo1MutPo+SWheY3uqTKDHHt3kc2+ZxbJvHsW0ex7Z5VrTYbhwR69XK8D031igv1+tBW9dIandsm8fxbR7Htnkc2+ZxbJvHsW0ex3Yx33NjZmZmZmal4M6NmZmZmZmVgjs31igXt/oESsyxbS7Ht3kc2+ZxbJvHsW0ex7Z5HNvMCwqYmZmZmVkpeOTGzMzMzMxKwZ0bMzMzMzMrBXduzMzMzMysFNy5sUUkrS3pZklzJb0uaWSdcpL0S0kz8jZOkgr520h6WtK8/O82na1bVo2IraTNJd0q6X1JH0i6S9KXC3UPk7RA0pzCNuJzusSWaWC7jbyPSuwu7WzdMmtQ2x1e1S7n5Hjvn/PddjuO7S6S7pM0U9KUGvlDc/48SS9J2r0q/wRJ7+T6l0lapUmX1G00IraSBkq6RtJbOf8RSd8o5I+QtLCq3R7a5EtruQa22ymSPi7E7u6qfLfb5Wu3Q+p83p6U88vfbiPCmzciAuAa4LdAP2AnYCYwrEa5o4CXgQ2BwcCLwNE5rw/wOnACsApwXH7fZ2l1y7w1KLY7AEcAawO9gZ8DLxXqHgY83Opr7YmxzfkBbFrnGCtku21kfKvKjgBmA6vn9267Hcd2B+BgYBQwpUb+Y8A5wGrA/sBHwHo579vAu8AwYC3gfuAXrb72nhBbYBPgROALQK9cZjrQL+ePAN5s9bX2xNjm/CnA7nWO4XbbhdhWlf0isAAYmt+Xvt22/AS8dY8NWB34BNi8kHZlrQ8T4FFgVOH9EcDj+fU/AdPIK/HltDeAPZZWt6xbo2Jbo+zapC/k6+T3h7GCfUFsZGzpuHOzwrXbRse3quzlwOWF9267HcS2kL979RcZYHNgPtC/kPYQi/8ocjVwViFvN+CdVl9/T4htnXKzgO3z6xGU/EtiM2NLx50bt9suxLaqzFjgvsL70rdbT0uzis2BBRExqZD2HOmvJtWG5bxa5YYBz0f+Dcqer8qvV7esGhXbajuTPuxnFNK2lTRd0iRJP5O0cldOvAdodGwfzNMgbpI0dBnrllHD266kvsABwP9WZbntLl+7GgZMjojZdfZT6+eyvqR1lvE4PUmjYrsEpSnWfYBXCskDJb0r6TVJ50pavSvH6AEaHdurlKZa3y3pa4V0t9ukEf/XHMJnP29L3W7dubGKfqThz6KZQP9OlJ0J9JOkTuyno7pl1ajYLiJpQ+BC0pSJigeBLYGBpKkp3wNO7tKZd3+NjO03gaHAFsBbwO8KX7BXxHYLTWi7pLY5HXigkOa2m9SLbVf2U+vnwnIcpydpVGwXkbQG6a/op0VEZd8vAduQpq3tCmxPmh5YZo2M7UGkz9yNgfuAuyStWec4brfLQdJwYH3ghkJy6dutOzdWMQdYoyptDdK8+KWVXQOYk0drlrafjuqWVaNiC4Ck9YC7gYsi4ppKekRMjojXImJhRLwAnE76C3mZNSy2EfFgRHwSER8Bx5PmKX+lM3VLrKFtNzsUuKKY7ra7SL3YdmU/tX4uLMdxepJGxRYASasBt5OmWZ5dSY+IdyLixdxuXwP+E7fbTouIRyLi44iYl+P6ETC8znHcbpfPocCNETGnkrAitFt3bqxiErCypM0KaV8DJtYoOzHn1So3Edi66q+1W1fl16tbVo2KLZLWInVsbouIM5dy3ADKPrLQsNjWUIzfithuocHxlbQRab73FUs5rttu500ENpFU/Otu9Wdy9c/l3arprGXTqNiSV+i6hXQv6VFLKe522zVL+8x1u10GuVP+L3x2Slq18rXbVt/04637bMC1pJU6Vgd2pP4qHUcD/0daEWkQ6ReverW040mrpY1mydXS6tYt89ag2K4BPAlcUOcYewLr59dbAH8Bxrb62ntIbIeRhul7kaYG/Bdp5a/eS6tb9q0R8S2UGQM8WKOu227HsV0JWDXH6fX8uk8h/3HgVzn9uyy5WtoewDvAV0mrTt3LirHqVJdjS1qV8nZS52blGnVHAENIXww3Ik2turzV195DYjsk1+2T008G3mfxAjlut134TMhlRuY8VaWXvt22/AS8dZ+NtPrWLcBc0gpnI3P6cNL0kko5AeOAD/I2jiVXR9sWeBr4GPgzsG1n65Z1a0RsScPLkfcxp7ANyfm/Ii2dOReYTJra07vV195DYrsrqTMzF3gv72+zFb3dNiq+hTIvAUfUOIbbbsexHZF/94vb/YX8oaSlcj/O7Xj3quOcmOM7i7RS3SqtvvaeEFvSfXgBzKv6zB1eiOu0nD8VOJ/CqnVl3RoU22GkxYbmAjOAe4A2t9vGfCbkMncBP69xjNK328p/7GZmZmZmZj2a77kxMzMzM7NScOfGzMzMzMxKwZ0bMzMzMzMrBXduzMzMzMysFNy5MTMzMzOzUnDnxszMzMzMSsGdGzMzMzMzKwV3bszMzMzMrBT+H4tSZ8IJvrrgAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGeCAYAAABGn5TrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAB7sklEQVR4nOzde7zmY73/8dfb5DRmzMQ4zcRMIYSdaqHailKJiNrlfGqH1FY/pSIdUBTtikptUTlPiFIMOWQjx6wR2UQ5zBgz4zDmPOM48/79cV2L27KOM+s43s/H4364v9/r9Pne0x/r03V9r0u2iYiIiIiIGMyW6+8AIiIiIiIillYSm4iIiIiIGPSS2ERERERExKCXxCYiIiIiIga9JDYRERERETHova6/A4hlw6hRozxu3Lj+DiMiIiIilmETJ06cYXuNtsqS2ESPGDduHM3Nzf0dRkREREQswyRNbq8sS9EiIiIiImLQy4xNL5N0NPAm2wf1dyy96Z6pcxh31IQO60w68SN9FE1EREREvNZkxqYHSdpO0mON92x/dyAmNZKOlXRew7UlLZA0X9LTkv4saY/+jDEiIiIioquS2LwGSWpvpu6ttocBGwFnAadKOqbPAouIiIiIWEKv6cRG0lGSHpI0T9J9kj5W77eezRhXZzReV69Xk3SmpGmSZkm6VNIqwJXA6DrrMV/S6Db6+qikeyXNlnS9pE0ayiZJ+rKkv0uaI+lCSSs1lO8s6a7a9hZJ/9ZQNlrSJZKekvSIpC80lB0r6WJJ50maCxzY0e9ie4btc4HPAl+TtPqS/8oREREREb3vNZ3YAA8B7wFGAMcB50lapwvtzgWGApsCawIn214A7AhMsz2sfqY1NpL0ZuA3wOHAGsAVwGWSVmiotjvwYeCNwL9RkxBJbwd+DXwGWB34BfBHSStKWg64DLgbGANsDxwuaYeGfncFLgZGAud34RkB/kB5D2urtgolHSKpWVLzooVzuthlRERERETPe00nNrZ/a3ua7cW2LwT+RTt/xLeoic+OwKG2Z9l+wfYNXRxyD2CC7WtsvwD8AFgZeHdDnZ/UmGZSkpUt6v2DgV/Yvt32IttnA88B7wS2BNaw/W3bz9t+GDgD2LOh31ttX1qf9ZmuBFtjnAGs1k756babbDcNGTqiiz9BRERERETPe03viiZpf+BLwLh6axgwqpNm6wIzbc9agiFHAy/tvW17saQplFmWFo83fF9Y2wCMBQ6Q9PmG8hVq+SLKErjZDWVDgL80XE/pbrCSlqfMLM3sbtuIiIiIiL70mk1sJI2lzGpsT5nNWCTpLkDAAspSsxZrN3yfAqwmaaTt2a26dSfDTgM2b4hBlERpahdCngKcYPuENp7lXcAjtjfsoH1nsbVlV+BF4K+dVdx8zAias51zRERERPST1/JStFUof+w/BSDpU8Bmtewu4L2S1pM0AvhaSyPb0ymbBPxc0uslLS/pvbX4CWD12qYtFwEfkbR9nQ05grKc7JYuxHsGcKikrVWsIukjkoZTEo+5ko6UtLKkIZI2k7Rl13+Ol9XNEfYBfgacZPvpJeknIiIiIqKvvGYTG9v3AT8EbqUkJJsDN9eya4ALgb8DE4HLWzXfD3gBuB94krIZALbvp2wO8HDduWx0YyPbDwD7Aj+lvLuyC7CL7ee7EG8z5T2bU4FZwIPUjQVsL6p9bQE8Uvv+JWVThO64W9L82vdBwBdtf6ubfURERERE9DnZS7JCKeKVmpqa3Nzc3N9hRERERMQyTNJE201tlb1mZ2wiIiIiImLZkcRmKUg6S9LxS9j2FQd3RkRERETEknvN7orWVZImAWtRtlR+gfKi/6G2u719cg/HdS9lC2goZ+G8QNnBDOC7tr/bl/HcM3UO446a0GGdSdk1LSIiIiJ6SWZsumYX28OAdSgbDfy0n+PB9qa2h9W4/gIc1nLd10lNRERERER/S2LTDbafBS4G3tK6rG79fLmkpyTNqt/f0FD+Rkk3SJon6RpaHQQq6Z2Sbqm7qd0tabsliVHS/0napeF6eUkzJG0haZwkSzpE0jRJ0yUd0VB3OUlHSXpI0tOSLpK02pLEERERERHRl5LYdIOkocAewG1tFC8HnElZHrYe8Axla+YW4ylbR48CvgMc0NDvGGACcDywGvBl4BJJayxBmOdQtpRusRMw3fZdDffeB2wIfAg4StIH6v0vALsB2wKjKdtK/6y9gWqC1CypedHCOUsQakREREREz0hi0zWXSpoNzAU+CPx36wq2n7Z9ie2FtucBJ1ASBCStB2wJfNP2c7ZvBC5raL4vcIXtK2wvrufoNFOSku46D9hJ0qr1ej/g3FZ1jrO9wPY9lGRsr3r/M8DXbT9m+zngWOATktp8F8v26babbDcNGdrdI3MiIiIiInpOEpuu2c32SGBF4DDgBklrN1aQNFTSLyRNljQXuBEYKWkIdfbD9oKGJpMbvo8FPlmXoc2uSdQ2lHd6usX2NMpBo/8haSSwI3B+q2qNGx9MrvG1xPH7hhj+Qdk0Ya3uxhERERER0ZeyK1o32F4E/E7SLyiJR6MjgI2ArW0/LmkL4G+AgOnA6yWt0pDcrAe0nI46BTjX9sE9FOrZwEGUf99bbU9tVb4ucH9DHNMa4vhP2zd3d8DNx4ygObueRUREREQ/yYxNN6jYFXg9ZTaj0XDKezWz6wv3x7QU2J5MWVp2nKQVJG0D7NLQ9jxgF0k7SBoiaSVJ2zVuPtBNlwJvB/4f5Z2b1r5ZZ5g2BT4FXFjvnwacIGlsfd416vNGRERERAxoSWy65jJJ8ynv2JwAHGD73lZ1TqGcJzODsrnAn1qV7w1sDcykJD0vJRz1TJxdgaOBpygzJ19hCf99bD8DXAK8EfhdG1VuAB4E/gz8wPbV9f6PgT8CV0uaV59j6yWJISIiIiKiL8l257Vi0JH0LeDNtvdtuDcOeARY3vaL7bVdEk1NTW5ubu7JLiMiIiIiXkHSRNtNbZXlHZtlUF0K92nKjmgREREREcu8LEUb4CTNb+fznnbqH0xZynZl3VY6IiIiImKZlxmbAc72sMZrSacBU23/pZ36ZwBntFM2ibJLW0RERETEMiXv2AxAkiZRzo5ZBMynbERwmO35/RlXR1ZcZ0Ovc8ApXao7KdtCR0RERMQS6OgdmyxFG7h2qbM1WwBvA77Wn8HUg0YjIiIiIgakJDYDnO3HgasoCQ6SzpJ0fP2+naTHJB0taYakSZL2aWlb654m6RpJ8yTd0HJGTS3fuJbNlPSApN1btf0fSVdIWgC8r6+eOSIiIiKiu5LYDHD1kM4dKefOtGVtYBQwBjgAOF3SRg3l+wDfqXXuAs6v/a4CXAOMB9YE9gJ+Xg/tbLE35dye4cBNbcR2iKRmSc2LFs5Z0keMiIiIiFhqSWwGrkvrIZlTgCcph3q255u2n7N9AzAB2L2hbILtG20/B3wdeJekdYGdgUm2z7T9ou07KYd6fqKh7R9s32x7se1nWw9q+3TbTbabhgwdsXRPGxERERGxFJLYDFy72R4ObAdsTJlxacss2wsaricDoxuup7R8qZsPzKzlY4GtJc1u+VBmd9Zuq21ERERExECW7Z4HONs3SDoL+AGwWxtVXi9plYbkZj3g/xrK1235ImkYsBowjZK03GD7gx0N39U4Nx8zgubsdhYRERER/SQzNoPDKcAHJW3RTvlxklaoh3buDPy2oWwnSdtIWoHyrs3ttqcAlwNvlrSfpOXrZ0tJm/Tic0RERERE9IokNoOA7aeAc4BvtlH8ODCLMgtzPnCo7fsbysdT3s+ZCbyDstwM2/OADwF71raPAycBK/bOU0RERERE9J4sRRuAbI9r495nO6h/AmX3srbMsH1oO+0eANpcP2b7wE4DjYiIiIgYIDJjExERERERg14Sm4iIiIiIGPSS2PQzSZa0wZK0tX297Td0UH6g7W90M54DJb3qMM6IiIiIiIEs79gMEpIeoBzEeVG9/nfgJmCPVveuAkbafrEv47tn6hzGHTWhy/UnZWvoiIiIiOhBmbEZPG4Etm24fi9wfxv3bunrpCYiIiIior8lselBko6UNFXSPEkPSNpe0laSbpU0W9J0SafWM2Xaar+ipB9IelTSE5JOk7RyLb6Rkri0eA9le+bW926sfb1T0i113LslbdcwzghJv6rxTJV0vKQh7cT035JukjRiiX+YiIiIiIhelsSmh0jaCDgM2NL2cGAHYBKwCPgiMAp4F7A98Ll2ujkJeDOwBbABMAb4Vi27AdhU0mqSlgOagAuBkQ333g3cKGkMMAE4HlgN+DJwiaQ1al9nAy/WMd5GOc/moFbPs5ykM4B/Az5ke04bz3yIpGZJzYsWvqo4IiIiIqLPJLHpOYsoh1u+RdLytifZfsj2RNu32X7R9iTgF7xy+RgAkgQcDHzR9sx6gOZ3KQdoYvtR4FHKrMxbgX/Zfga4ueHeSsDtwL7AFbavsL3Y9jVAM7CTpLWAHYHDbS+w/SRwcss41fLAbyhJ0S62F7b1wLZPt91ku2nI0EzoRERERET/yeYBPcT2g5IOB46lzKxcBXwJGAb8iDLDMpTym09so4s1avnEkuMAIKBxiVjLcrRHgb/Uezc13Lvd9nOSxgKflLRLQ9vlgf8Fxtbv0xvGWQ6Y0lB3A0qitJXt57v8I0RERERE9JMkNj3I9nhgvKRVKTMzJwGjgb8Be9meV5OfT7TRfAbwDLCp7antDHEj8BlgMnBmvfcX4IB678Z6bwpwru2DW3cgaR3gOWBUB5sM/AP4GXClpPfbfqD9py42HzOC5ux0FhERERH9JEvReoikjSS9X9KKwLOUJGURMByYC8yXtDHw2bba214MnAGcLGnN2ucYSTs0VLuR8k7MtpQlaAD3AG8E3sfLic15wC6SdpA0RNJKkraT9Abb04GrgR9KWrW+S7O+pFcsj7P9G+Bo4FpJ6y/VjxMRERER0cuS2PScFYETKTMvjwNrUhKDLwN7A/MoicuFHfRxJPAgcJukucC1wEYthbb/CTwJTLc9u95bDPwVWBW4pd6bAuxax3+KMoPzFV7+994fWAG4D5gFXAys0zoY22cD3waukzSu6z9FRERERETfku3+jiGWAU1NTW5ubu7vMCIiIiJiGSZpou2mtsoyYxMREREREYNeEpuIiIiIiBj0sivaUpK0HXCe7Tf0cyhLRdIk4CDb1y5J+3umzmHcURO61WZSdlGLiIiIiB4yqGdsJM1v+CyW9EzD9T79HV9rkvaW1Fzjmy7pSknb9EC/Z0k6vidijIiIiIgYjAb1jI3tYS3fO5pxkPS6Ds5s6ROSvgQcBRwKXAU8D3yYsnvZTb08dr8/f0REREREbxrUMzbtqWe2PCbpSEmPA2dKer2kyyU9JWlW/f6GWn9PSc2t+viipD/W7ytK+oGkRyU9Iek0SSt3I54RlG2T/8v272wvsP2C7ctsf6VhjFMkTaufU+qZOI3Pc4SkJ+tsz6dq2SHAPsBX60zQZfX+pPr8fwcWSHqdpI9KulfSbEnXS9qknXi3qjNLc+vz/qideofUes2LFs7p6s8REREREdHjlsnEplobWA0YCxxCedYz6/V6lAM0T611/whsJGnDhvZ7A+Pr95OANwNbABsAY4BvdSOWdwErAb/voM7XgXfWMd4KbAV8o9XzjKhjfxr4maTX2z4dOB/4vu1htndpaLMX8BFgJPAm4DfA4cAawBXAZZJWaCOWHwM/tr0qsD5wUVsB2z7ddpPtpiFDR3TwaBERERERvWtZTmwWA8fYfs72M7aftn2J7YW25wEnANsC2F4I/IGSCFATnI2BP0oScDDwRdsza9vvAnt2I5bVgRmdLAfbB/i27SdtPwUcB+zXUP5CLX/B9hXAfBoO72zHT2xPsf0MsAcwwfY1tl8AfgCsDLy7jXYvABtIGmV7vu3buvSUERERERH9ZFlObJ6y/WzLhaShkn4habKkucCNwEhJQ2qV8dTEhjJbc2lNeNYAhgIT6xKu2cCf6v2uehoYJamjd5pGA5MbrifXey/10SoxWggMo2NT2uvf9uJaPqaNdp+mzFDdL+kOSTt3Mk5ERERERL8a1JsHdMKtro+gzHBsbftxSVsAfwNUy6+mJB9bUBKcL9b7MyjL1ja1PXUJY7kVeBbYDbi4nTrTKMvk7q3X69V7XdH6Wdu6Pw3YvOWizkStC7zqmWz/C9hL0nLAx4GLJa1ue0F7AWw+ZgTN2b45IiIiIvrJsjxj09pwSoIyW9JqwDGNhXU25GLgvynv5lxT7y8GzgBOlrQmgKQxknbo6sC251DeyfmZpN3q7NHyknaU9P1a7TfANyStIWlUrX9eF4d4gvIOTUcuAj4iaXtJy1MSveeAW1pXlLSvpDXqs8+utxd1MZaIiIiIiD73WkpsTqG8UzIDuI2ynKy18cAHgN+2WvZ1JPAgcFtdxnYtnb/f8gq2fwR8ibIhwFOUZWCHAZfWKscDzcDfgXuAO+u9rvgV8Ja6VO7StirYfgDYF/gp5TfYBdjF9vNtVP8wcK+k+ZSNBPZsXNYXERERETHQyG5vFVNE1zU1Nbm5ubnzihERERERS0jSRNtNbZW9lmZsIiIiIiJiGfWaSmwkbSTpb5LmSVos6Zs92Pd69YDMxs/zkl6QtF4X2l8v6aCeiqdV30dL+mVv9B0RERERMRAsy7uiteWrwPW239Z4U9J2wP8Cv7f98Yb7bwXuAm6wvV1HHdt+lFbbL0s6FtiglnVZPTTze5SzZ0ZS3sm51PYXO2rXQWzfXZJ23XHP1DmMO2pCt9pMyi5qEREREdFDXlMzNrxyO+XWngLeLWn1hnsHAP/s9ahe7WtAE7AVZTe391G2pu62Ts7OiYiIiIhYJrxmEhtJ11EShFPrMrHxkhp3HXueskPZnrX+EGB34PxW/by7Hlo5p/733Q1lb5R0Q13qdg0wqlXbd0q6pe5ednedKWrLlpTZo2kuJtk+p6Gf0ZIukfSUpEckfaGh7FhJF0s6r+7gdmC9d15DnXbjkHSgpIfrMzwiaZ/Of92IiIiIiP71mklsbL8f+AtwmO1hlESmtXOA/ev3HSizOy8dklnPv5kA/ARYHfgRMKFhlmc8MJGS0HyHMuPT0nZMbXs85ZycLwOXSFqjjThuA74k6XOSNq+Habb0sxxwGXA3MAbYHji81bk6u1LO5BnJqxOzduOQtEp9th1tDwfeTVmK1yZJh0hqltS8aOGc9qpFRERERPS610xi0xW2bwFWk7QRJcE5p1WVjwD/sn2u7Rdt/wa4H9ilbhCwJfBN28/ZvpGSgLTYF7jC9hW2F9u+hnJuzU5thPI94CRgn1pnqqSWJGlLYA3b37b9vO2HKQeI7tnQ/lbbl9ZxnmnVd2dxLAY2k7Sy7em221u6h+3TbTfZbhoydER71SIiIiIiel0Sm1c7l3Jw5vuA37cqGw1MbnVvMmXmZDQwy/aCVmUtxgKfrMu/ZkuaDWwDrNM6ANuLbP/M9r9TZl1OAH4taZPaz+hW/RwNrNXQxZQOnq/dOGrsewCHAtMlTZC0cQd9RUREREQMCHmx/NXOBR4EzrG9sGEVGJRlaWNb1V8P+BMwHXi9pFUakpv1gJYTUKcA59o+uDvB1BmXn0k6DnhL7ecR2xt21KyDsg7jsH0VcJWklSnL1c4A3tNZnJuPGUFzdjmLiIiIiH6SGZtWbD8CbAt8vY3iK4A3S9pb0usk7UFJNi63PZmypOs4SStI2gbYpaHteZQlaztIGiJpJUnbSXpD60EkHV7LVq7jHEDZHe1vwF+BuZKOrOVDJG0macsuPmK7cUhaS9JH67s2zwHzgUVd7DciIiIiot8ksWmD7ZtsT2vj/tPAzsARwNOUc3F2tj2jVtkb2BqYCRxDwzs6tqdQXuo/mrK19BTgK7T9b/AM8EPgcWAG8F/Af9h+2PYiSsK0BfBILf8l0KWXXDqJY7n6bNPqM2wLfK4r/UZERERE9CfZHa1aiuiapqYmNzc393cYEREREbEMkzTRdlNbZZmxiYiIiIiIQS+JTUREREREDHpJbAYBSZa0QX/HERERERExUGW752WIpO2A64CF9dZs4Bbgv23f0Ztj3zN1DuOOmrBEbSdlm+iIiIiIWEqZsVn2TLM9jLI99DuB+4G/SNq+f8OKiIiIiOg9SWz6WD1/ZqqkeZIekLS9pK0k3SpptqTpkk6VtEI77VeU9ANJj0p6QtJp9TDNV3DxmO1vUbaDPqmhjx9LmiJprqSJkt5T768taaGk1RvqvkPSU5KW7/lfIyIiIiKiZySx6UOSNgIOA7a0PRzYAZhEOQTzi8Ao4F3A9rR/fsxJwJsp59hsAIwBvtXJ0L8D3l4P3gS4o7ZfDRgP/FbSSrYfB64Hdm9ouy9wge0X2nieQyQ1S2petHBOJyFERERERPSeJDZ9axGwIvAWScvbnmT7IdsTbd9m+0Xbk4BfUA7HfAVJAg4Gvmh7pu15wHeBPTsZdxogYCSA7fNsP13H+2GNaaNa92xKMoOkIcBewLltdWr7dNtNtpuGDO3S+aAREREREb0imwf0IdsPSjocOBbYVNJVwJeAYcCPgCZgKOXfZWIbXaxRyyeWHAcoCcuQToYeA5iymQCSjgAOAkbX+6tSZosA/gCcJulNlJmhObb/2r0njYiIiIjoW0ls+pjt8cB4SatSZmZOoiQYfwP2sj2vJj+faKP5DOAZYFPbU7sx7MeAO20vqO/THElZ7nav7cWSZlESJGw/K+kiYB9gY9qZrWlt8zEjaM7uZhERERHRT7IUrQ9J2kjS+yWtCDxLSVIWUXYwmwvMl7Qx8Nm22tteDJwBnCxpzdrnGEk7tDGWatkxlNmZo2vRcOBF4CngdZK+RZmxaXQOcCDwUeC8pXjkiIiIiIg+kcSmb60InEiZeXkcWJOScHwZ2BuYR0lcLuygjyOBB4HbJM0FruXl92MARkuaD8ynbBKwObCd7atr+VXAlcA/gcmUBGtK4wC2bwYWU2Z5Ji3hs0ZERERE9BnZ7u8YYgCSdB0w3vYvu1K/qanJzc3NvRxVRERERLyWSZpou6mtsrxjE68iaUvg7cCu/R1LRERERERXZClavIKksynL2w6v20lHRERERAx4mbFZhkg6FtjA9r5drL8dcJ7tN7Tcs33Akox9z9Q5jDtqwpI0BWBSdlSLiIiIiKWQGZuIiIiIiBj0ktgMUpKOlDRV0jxJD0j6CGWHtT0kzZd0d633KUn/qPUelvSZen8Vyu5oo2v9+ZJGS1pO0lGSHpL0tKSLJK3Wf08aEREREdG5JDaDkKSNgMOALW0PB3YA7ge+C1xoe5jtt9bqTwI7U86q+RTlDJy3214A7AhMq/WH2Z4GfAHYDdiWcnDoLOBn7cRxiKRmSc2LFs7prceNiIiIiOhUEpvBaRHlTJy3SFre9iTbD7VV0fYE2w+5uAG4GnhPB31/Bvi67cdsPwccC3xC0qvex7J9uu0m201Dho5Y6oeKiIiIiFhSSWwGIdsPAodTko4nJV0gaXRbdSXtKOk2STMlzQZ2AkZ10P1Y4PeSZtf6/6AkUmv13BNERERERPSsJDaDlO3xtrehJCIGTqr/fYmkFYFLgB8Aa9keCVwBqKWbNrqeAuxoe2TDZyXbU3vpUSIiIiIillq2ex6E6js2Y4CbgWeBZyhJ6hPAByUtZ3sxsAJlydpTwIuSdgQ+BPxf7eoJYHVJI2y3vCRzGnCCpANsT5a0BvBu23/oKKbNx4ygOVs2R0REREQ/yYzN4LQicCIwA3gcWJOyI9pva/nTku6sB2x+AbiIsgnA3sAfWzqxfT/wG+DhuvRsNPDjWudqSfOA24Ct++SpIiIiIiKWkOy2ViNFdE9TU5Obm5v7O4yIiIiIWIZJmmi7qa2yzNhERERERMSgl8QmIiIiIiIGvSQ2DSRZ0gb9HUdnJH1M0hRJ8yW9rb/jiYiIiIjob9kVbQlI2g64DlhYb80GbgH+2/YdfRDCD4DDOtuprC/dM3UO446asFR9TMquahERERGxhDJjs+Sm2R4GDAfeCdwP/EXS9n0w9ljg3j4Y5yWSkgRHRERExIC1zCY2ko6UNFXSPEkPSNpe0laSbq1bG0+XdKqkFdppv6KkH0h6VNITkk6TtHLrei4es/0t4JeUgzJb+vhxXTI2V9JESe+p99eWtFDS6g113yHpKUnLS1pO0jckTZb0pKRzJI2oMc0HhgB3S3pI0gRJn28V+98l7Va/byzpGkkz6++we0O9j0j6W41viqRjG8rG1aV5n5b0KGWGKiIiIiJiQFomE5t6gOVhwJa2hwM7AJOARcAXgVHAu4Dtgc+1081JwJuBLYANKAdifquToX8HvF3SKvX6jtp+NWA88FtJK9l+HLge2L2h7b7ABbZfAA6sn/cBbwKGAafafq7OEgG81fb6wNm1bcuzv7XGekWN45o69prAXsDPJW1aqy8A9gdGAh8BPtuSEDXYFtiE8hu+gqRDJDVLal60cE7r4oiIiIiIPrNMJjaUBGZF4C2Slrc9yfZDtifavs32i7YnAb+g/OH+CpIEHAx80fbMetDld4E9Oxl3GiBKooDt82w/Xcf7YY1po1r3pYRE0hBK0nFuLdsH+JHth23PB74G7NnOcrA/ABtK2rBe7wdcaPt5YGdgku0zawx3ApcAn6jxXW/7HtuLbf+dclhn69/jWNsLbD/TemDbp9tust00ZOiITn6aiIiIiIjes0wmNrYfBA4HjgWelHSBpNGS3izpckmPS5pLSVZGtdHFGsBQYGJdtjYb+FO935ExgCmbCSDpCEn/kDSn9jGiYbw/UBKvNwEfBObY/mstGw1Mbuh3MmWjh7XaeNbngIuAfSUtxysTpLHA1i3PUGPYB1i7xre1pP+tS+DmAIe28XtM6eSZIyIiIiL63TL7Qrjt8cB4SatSZmZOoiQMfwP2sj1P0uHU2YtWZgDPAJvantqNYT8G3Gl7QX2f5kjKcrd7bS+WNIsyo4PtZyVdREk0NublZATKzM/Yhuv1gBeBJ9oZ9+za/iZgoe1b6/0pwA22P9hOu/HAqcCONZ5TeHVi406eGYDNx4ygObuaRUREREQ/WSZnbCRtJOn9klYEnqUkKYsoO5jNBeZL2hj4bFvtbS8GzgBOlrRm7XOMpLbeM1EtOwY4CDi6Fg2nJCNPAa+T9C1g1VbNz6G8S/NR4LyG+78BvijpjZKGUWaWLrT9Yjvx3gosBn7IKxOky4E3S9qvbkqwvKQtJW3SEOPMmtRsBezdVv8REREREQPdMpnYUN5lOZEy8/I45cX5o4EvU/54n0dJXC7soI8jgQeB2+qytWt5+f0YgNF1h7L5lE0CNge2s311Lb8KuBL4J2Up2bO0WtZl+2ZKQnJnfeenxa8pCcqNwCO17St2PmvDOTWGlxKk+m7QhyjvBk2rv8VJlN8HysYJ35Y0j7IxwkWdjBERERERMSDJ7tJKo+glkq4Dxtv+5VL2sz9wiO1teiay7mlqanJzc3N/DB0RERERrxGSJtpuaqtsmX3HZjCQtCXwdmDXpexnKGX25ec9EVdERERExGCzrC5FG/AknU1Z3nZ4XTK2pP3sQHmP5wnKZgAREREREa85mbHpJ7YP6KF+rgJW6bRiRERERMQyLIlNP5F0L/Bftq9fFsa8Z+ocxh01ocf6m5StoyMiIiKiG5LY9JK6Y1qLocBzlC2nAT5je9NeGHMF4HvAHsBIyhK1S21/EaA3xoyIiIiIGAiS2PQS28NavkuaBBxk+9qutJX0uvbOrOnE14AmYCtgOuWQz/cuQT8REREREYNKNg/oJ5ImSfpA/X6spIslnVfPzDlQ0ghJv5I0XdJUScdLGtJJt1sCv7c9zcUk2+e0M+ZsSfPrZ4EkSxpXy3aWdFetc4ukf2vnGQ6R1CypedHCOT3xs0RERERELJEkNgPHrsDFlCVk5wNnAy8CGwBvoxy0eVAnfdwGfEnS5yRtLkntVbQ90vawOrP0Y+AvwFRJb6ccEPoZYHXgF8AfJa3YRh+n226y3TRk6IjuPW1ERERERA9KYjNw3Gr7UtuLgVWBHSlbQS+w/SRwMrBnJ318DzgJ2AdopiQqHe6+JmkPYG/gP2y/ABwM/ML27bYX2T6b8n7QO5fm4SIiIiIielPesRk4pjR8HwssD0xvmHRZrlWdV7G9CPgZ8DNJKwP/Cfxa0l9t/6N1fUlvA04FPmT7qYaxD5D0+YaqKwCjOxp78zEjaM5OZhERERHRTzJjM3C44fsUyizJqLpkbKTtVbuzq5ntZ2z/DJgFvKV1uaQ1gN8Dh9n+W6uxT2gYd6TtobZ/s0RPFRERERHRB5LYDEC2pwNXAz+UtKqk5SStL2nbjtpJOlzSdpJWlvS6ugxtOPC3VvVeB1wCnG/7wlbdnAEcKmlrFatI+oik4T33hBERERERPSuJzcC1P2UJ2H2UWZeLgXU6afMM8EPgcWAG8F+Ud2ceblXvDcB7gMMbdkabL2k9282U92xOreM+CBzYM48UEREREdE7ZLvzWhGdaGpqcnNzc3+HERERERHLMEkTbTe1VZYZm3ZIOk3SN/s7joiIiIiI6NxrYsZG0iRgLcq5MIsoy7vOAU6v2yv3R0ybUrZw3hIQ8BDwTdtXdNLuNGDfNorOAzYGzrP9yx4Ot1MrrrOh1znglL4e9iWTsiNbRERExDIvMzbFLraHU7YzPhE4EvhVWxUlDemDeC4DrqEkXGsCXwDmdtbI9qEtB2u2+hzay/FGRERERAxYr6XEBgDbc2z/EdiDcl7LZpLOkvQ/kq6QtAB4X713PICkf0jauaWPuuPYDElvr9fvlHSLpNmS7pa0XUcxSBoFvBE4w/bz9XOz7Ztq+f9J2qWh/vJ1vC0krSTpPElP1/HukLSWpBMoGwKcWjcCOLW23VjSNZJmSnpA0u4N/Z4l6eeSrqxtbpa0tqRTJM2SdH896yYiIiIiYkB7zSU2LWz/FXiMkgwA7A2cQNke+aZW1X8D7NVwvQMww/adksYAE4DjgdWALwOX1HNi2vM0Zbex8yTtJmmtVuXn8MrlZjsB023fBRwAjADWBVYHDgWesf114C+Uc2mG2T5M0iqUWaHxlFmhvYCf12VwLXYHvgGMopydcytwZ72+GPhRew8h6RBJzZKaFy2c08HjRkRERET0rtdsYlNNoyQjAH+osyaLbT/bqt544KOShtbrves9KAnIFbavqG2vAZopyUibXF5seh8wibI983RJN0rasFY5D9hJ0qr1ej/g3Pr9BUpCs4HtRbYn2m5vCdvOwCTbZ9p+0fadlPNrPtFQ5/e1j2cpB3Y+a/sc24uAC4F2Z2xsn267yXbTkKEj2qsWEREREdHrXuuJzRhgZv0+pb1Kth8E/gHsUpObj/JyYjMW+GRdFjZb0mxgGzo5c8b2Y7YPs71+7WMBZaYG29OAm4H/kDQS2BE4vzY9F7gKuEDSNEnfl7R8O8OMBbZuFds+wNoNdZ5o+P5MG9fDOnqOiIiIiIiB4HX9HUB/kbQlJbG5Cdga6Gx7uJblaMsB99VkB0pCdK7tg5c0FttTJP2sjtHibOAgyr/Rrban1rovAMcBx0kaB1wBPEDZCKH1M0wBbrD9wSWNLSIiIiJiMHjNJTZ1edd7gR9Ttka+R1JXml5AeQdnNV6erYGybOwOSTsA1wLLA+8EHrT9WDsxvB44nDL78nDt8z+B2xqqXQr8nLJr2vcb2r4PmEHZsnouZWnaolr8BPCmhj4uB06UtF+NH2ALYL7tf3Tlobtq8zEjaM6WyxERERHRT15LS9EukzSPMovxdcpL8Z/qamPb0ykv1r+b8u5Jy/0pwK7A0cBTtf+v0PFv+zwwjpIIzQX+j/Li/oEN/T5DeR/mjcDvGtquTXmpfy5ledwNlOQKSrL2ibqj2U9szwM+BOxJeZ/oceAkYMWuPndERERExGDwmjigc7CS9C3gzbbbOpBzQGlqanJzc3N/hxERERERy7CODuh8zS1FGywkrQZ8mrIjWkREREREdOC1tBStz9VDL9v6vKeTdgdTlrRdafvGvok2IiIiImLwyoxNL7Ld7a2SJZ0FPGZ7lXbK5wP/ZvvhpQwvIiIiImKZkcRmCUiaBIwGRtue0XD/LuCtwBttT+qNsZckWWpLQwL1jbpt9COUs3So/70D+HE9cLRT90ydw7ijJvREaAPGpOzyFhERETFoZCnaknuEcq4NAJI2B1buv3B6xMiaOL0VuAb4vaQD+zekiIiIiIjOJbFZcucC+zdcHwCc03Ih6SOS/iZprqQpko5tbCxpG0m3SJpdyw9sKH69pAmS5km6XdL6De0saYP6/SxJP+ug7saSrpE0U9IDknbvyoPZftz2j4FjgZMk5X8nERERETGg5Q/WJXcbsKqkTSQNAfbg5fNkoCzn2h8YCXwE+Kyk3QAkrQdcCfwUWINyaOZdDW33Ao4DXg88SDkYtD1t1pW0CmXWZTywZq33c0mbduMZf1fbbtRWoaRDJDVLal60cE43uo2IiIiI6FlJbJZOy6zNB4H7gaktBbavt32P7cW2/w78Bti2Fu8DXGv7N7ZfsP207bsa+v2d7b/afhE4n5L4tKe9ujsDk2yfaftF23dSDvz8RDeeb1r972ptFdo+3XaT7aYhQ0d0o9uIiIiIiJ6VzQOWzrnAjcAbaViGBiBpa+BEYDNgBWBF4Le1eF3goQ76fbzh+0Kgow0D2qs7Ftha0uyG8tfVmLtqTP3vzG60iYiIiIjoc0lsloLtyZIeAXaiHKbZaDxwKrCj7WclnQKMqmVTgK16ObwpwA22P7gUfXwMeBJ4oLOKm48ZQXN2EYuIiIiIfpKlaEvv08D7bS9odX84MLMmNVsBezeUnQ98QNLukl4naXVJW/RwXJcDb5a0n6Tl62dLSZt01lDSWpIOA44BvmZ7cQ/HFhERERHRo5LYLCXbD9lubqPoc8C3Jc0DvgVc1NDmUcoszxGUZV53UbZY7sm45gEfAvakvCvzOHASZUlce2ZLWgDcU+P7pO1f92RcERERERG9Qbb7O4ZYBjQ1Nbm5ua38LiIiIiKiZ0iaaLuprbLM2ERERERExKCXxCYiIiIiIga9ZSaxkXS9pIP6O46IiIiIiOh7fb7ds6RJwFrAImABcAXwedvz+zqW1iRtB5xn+w2t7m8IfAfYnvLy/RPAn4CTbD/Wx2EiyZQzaww8R9l84HTbF/Z1LC3umTqHcUdN6K/h+8WkbG8dERERMWD014zNLraHAW8HtgS+0VgoacCcryNpA+B2ys5ib7O9KvDvlAM2t2mnTV/E/9b6G24EnAWcKumYPhg3IiIiImLA6delaLanAlcCm0mypP+S9C/gXwCSDpb0oKSZkv4oaXRLW0kflHS/pDmSTgXUUHaspPMarsfV/l9Xr1eTdKakaZJmSbpU0io1ltGS5tfPaOBY4GbbX2qZnbH9pO1TbF9Q+9tO0mOSjpT0OHCmpBUlnVLHmFa/r1jrHyjppsbfosa3Qf1+lqTTJF0jaZ6kGySNbec3nGH7XOCzwNckrV77GCHpV5KmS5oq6XhJQ2rZBrXPOZJmSLqwIY5N67gzJT0h6eju/8tGRERERPStfk1sJK1LOS/lb/XWbsDWwFskvR/4HrA7sA4wGWhJJEYBl1BmekZRZk/+vRtDnwsMBTYF1gROrgds7ghMsz2sfqYBH6hjdWZtYDVgLHAI8HXgncAWlDNqtqLVzFQn9qEsfxtFWWp2fif1/0BZWrhVvT4beBHYAHgb5UyblneQvgNcDbweeAPwUwBJw4FrKcvsRte2f25vQEmHSGqW1Lxo4ZxuPFpERERERM/qr8TmUkmzgZuAG4Dv1vvfsz3T9jOUP+x/bftO288BXwPeJWkcJRm6z/bFtl8ATqEcQNkpSetQEphDbc+y/YLtGzpoMqqxb0mHSZpdZ3TOaKi3GDjG9nMN8X+7zu48BRwH7NeVGKsJtm+sz/51yrOv217l+jvMAFaTtFZ9xsNtL7D9JHAy5bBOgBcoCdho28/abpk92hl43PYP6/15tm/vYMzTbTfZbhoydEQ3Hi0iIiIiomf1V2Kzm+2Rtsfa/lxNBACmNNQZTZmlAaBuLvA0MKaWTWkoc6u2HVkXmGl7VhfrP02ZMWoZ61TbIynJ1PIN9Z6y/Wx78dfvo+m6xuebD8zsqL2k5YE1ar2xNbbpNQmbDfyCMjsF8FXK0r2/SrpX0n/W++tSZr8iIiIiIgaVAfOSfuWG79Mof6ADUN+BWR2YCkyn/BHeUqbGa8pua0Mbrtdu+D6FMqsx0vbsDsZv8Wfg48CZ3Yi9Mf576/V69d6r4pO0Nq/W+HzDKMvcprVRr8WulKVnfwVWoOyWNsr2i68K1H4cOLj2vQ1wraQbKb/NXh2M0a7Nx4ygObuERUREREQ/Gcjn2IwHPiVpi/rS/XeB221PAiYAm0r6eN0Q4Au8Mnm5C3ivpPUkjaAsYwPA9nTKJgE/l/R6SctLem8tfgJYvbZpcSzwHkk/kjQGXnrHZ5NO4v8N8A1Ja9T63wJaNjS4u8a/haSV6hit7SRpG0krUN6Jud32q2al6kYI+wA/o2w//XR9xquBH0paVdJyktaXtG1t80lJLVtaz6IkZYuAy4G1JR1eNz8YLmnrTp4zIiIiIqLfDdjExvafgW9SXtyfDqxPfUfE9gzgk8CJlKViGwI3N7S9BrgQ+DswkfIHe6P9KO+Z3A88CRxe291PSUgerku4Rtv+J2UTgDcAd0uaV8eaVuNrz/FAc43hHuDOeo/a57cpL+r/i/KuUWvjgWMoS8veQXlnp9HdkuYDD1I2Bfii7W81lO9Pmbm5j5K8XMzLS+q2BG6v7f8I/D/bj9ieB3wQ2IXyXtG/gPd18IwREREREQOCyuspMZBIOgt4zHZ3dlHrV01NTW5ubu7vMCIiIiJiGSZpou2mtsoG7IxNREREREREVw2YxEbSRpL+Vg+kXCypo2VePTHeKw7x7KTu9ZIO6rxm36o7mm3X33FERERERPS3gbQr2leB622/rfFm/cP9f4Hf2/54w/23UjYJuMH2dn0VpKQDgV8BLVtUPwVcTzmD5589MYbtA7tYb9Ou9ilpEnCQ7WuXMKwO3TN1DuOOmtAbXQ9Yk7ILXERERMSAMWBmbHjl1sitPQW8W9LqDfcOAHokkVgCt9oeBowAPkBJciZK2qwvBq87wfWZvh4vIiIiIqK7BkRiI+k6yu5bp0qaL2m8pOMbqjwPXErdFU3SEGB34PxW/bxb0h2S5tT/vruh7I2SbqhL3a4BRrVq+05Jt9Td0O7uyhIv24tsP2T7c8ANNGzb3FF/kg6U9HCN5ZG6XXNL2cGS/lHL7pP09np/kqQjJf0dWCDpdfXeB2r5sZIulnRhbXtnndVC0rmUc3Quq7/vV+v9j9blbLPrcrtNGuJ41Xid/R4REREREf1lQCQ2tt8P/AU4rM6EPN9GtXMoWxgD7ECZ3XnpwEpJq1HOt/kJ5SDPHwETGmZ5xlO2fh5FORfmgIa2Y2rb4ykHYX4ZuETSGt14jN8B7+msP5WDRn8C7Gh7OPBuypI6JH2SkhztD6wKfJSynXWLvYCPACPbOniTckjnb+uY44FLJS1vez/gUWAX28Nsf1/SmylbWx8OrAFcQUl8VujGeBERERERA8KASGy6wvYtwGqSNqL84X9OqyofAf5l+1zbL9r+DeWcml0krUc5u+Wbtp+zfSNwWUPbfYErbF9he3E9B6cZ2KkbIU6jJBRd6W8xsJmklW1Pt92yBO8g4Pu273DxoO3JDWP8xPYU28/Qtom2L7b9AiWxW4lyBk9b9gAm2L6m1v8BsDIl0erSeJIOkdQsqXnRwjnt/S4REREREb1u0CQ21bnAYZRla79vVTYamNzq3mRgTC2bZXtBq7IWY4FP1iVZsyXNBrbh5QMtu2IM5TDNDvurMewBHApMlzRB0sa13brAQx2MMaWTGF4qt70YeIzy7G15xe9V60+pz9Gl8WyfbrvJdtOQoSM6CS0iIiIiovcMtvcmzgUeBM6xvVBSY9k0SkLRaD3gT8B04PWSVmlIbtYDWk4nnQKca/vgpYjtY5TldJ32Z/sq4CpJK1OWq51BWcY2BVi/gzE6O0113ZYvkpYD3sDLy/Vat50GbN5QX7X91G6MFxERERExIAyqxMb2I5K2BR5uo/gK4KeS9gYuAv4DeAtwue0ZkpqB4yQdDWwF7AL8sbY9D7hD0g7AtcDylCVcD9p+rL146iYG6wFfArYD3tVZf8ALwNbAnym7qc0HFtV2vwR+JOkm4E5KkvNCq+VoHXmHpI/X5/oC8BxwWy17AnhTQ92LgKMkbQ/cCPy/Wv+WLo71CpuPGUFztj+OiIiIiH4y2JaiYfsm29PauP80sDNwBOWF+68CO9ueUavsTUkoZgLH0PCOju0plBfvj6ZsLT0F+Art/z7vkjQfmEs5w2ZVYEvb93Shv+VqjNNqLNsCn6vtfgucQHnxfx5lJ7iW93a64g+UZW6zgP2Aj9f3ZwC+B3yjLo37su0HKO8C/RSYQUn0drHd1sYNEREREREDmuysNloWSDoW2MD2vv0xflNTk5ubm/tj6IiIiIh4jZA00XZTW2WDbsYmIiIiIiKitSQ2EREREREx6A2qzQMGIknXA+fZ/mV/xmH72P4cPyIiIiKiP71mEhtJk4C1KDuQLaDsovZ52/P7My4ASdtRkqM3tLq/IfAdYHtgRcrOZn8CTupot7b+cM/UOYw7akJ/h9GvJmVXuIiIiIh+0+WlaJL2krRJ/b6RpBslXddwuORgsIvtYcDbgS2BbzQWShowiZ6kDYDbKbunvc32qsC/Uw7w3KadNgMm/oiIiIiIvtSdd2yOp2xPDPAD4K+U809+3tNB9TbbU4Ergc0kWdJ/SfoX8C8ASQdLelDSTEl/lDS6pa2kD0q6X9IcSacCaig7VtJ5Ddfjav+vq9erSTpT0jRJsyRdKmmVGstoSfPrZzRwLHCz7S+1zM7YftL2KbYvqP1tJ+kxSUdKehw4U9KKkk6pY0yr31es9Q+sZ+TQEKNrEoWksySdJukaSfMk3SCp9aGnEREREREDTncSmzVsPyFpJcqMwdeBbwNb9EZgvUnSusBOwN/qrd0oZ9y8RdL7KWe+7A6sA0wGWhKJUcAllJmeUZTZk3/vxtDnAkOBTYE1gZNtLwB2BKbZHlY/04AP1LE6szblrJuxwCGUf5d3Uv5d3ko5jPQb7TVuwz6U5W+jgLuA89urKOkQSc2SmhctnNONISIiIiIielZ3Epun6v+zvyNwh+3ngJVomLEYBC6VNBu4CbgB+G69/z3bM20/Q/nD/te276zP+DXKgZzjKMnQfbYvrgdfngI83pWBJa1D+e0OtT3L9gu2b+igyajGviUdVg/XnC/pjIZ6i4FjbD/XEP+36+zOU8BxlMM6u2qC7Rvrs3+d8uzrtlXR9um2m2w3DRk6ohtDRERERET0rO68k/EdYCLl5fs96r3tgbt7OqhetJvtaxtvSAKY0nBrNHBny4Xt+ZKeBsbUsikNZZbU2LYj6wIzbc/qYv2nKTNGLWOdCpwq6XigcZOBp2w/2yr+yQ3Xk+u9rmp8vvmSZtLquSMiIiIiBpouJza2z5J0Uf2+sN6+HdizNwLrY274Po2yrAuA+g7M6sBUYDolQWkpU+M1Zbe1oQ3Xazd8nwKsJmmk7dkdjN/iz8DHgTO7EXtj/PfW6/XqvVfFJ2ltXq3x+YZRlrlNa6PeK2w+ZgTN2RUsIiIiIvpJh0vRJC3X+AGeBZ5tuJ4BPNkXgfah8cCnJG1RX7r/LnC77UnABGBTSR+vGwJ8gVcmL3cB75W0nqQRlGVsANieTtkk4OeSXi9peUnvrcVPAKvXNi2OBd4j6UeSxsBL7/hs0kn8vwG+IWmNWv9bQMuGBnfX+Leo70od20b7nSRtI2kFyizd7bYzWxMRERERA1pn79i8CLzQwaelfJlh+8/ANykv7k8H1qfOStmeAXwSOJGyVGxD4OaGttcAFwJ/pyzbu7xV9/tRfq/7KQnh4bXd/ZSE5OH6Hs1o2/+kbALwBuBuSfPqWNNqfO05HmiuMdxDWVZ3fB3nn5QNH66l7AB3UxvtxwPHUHbAewflnZ2IiIiIiAFNdluroGphF7f6tT2581ox0Ek6C3jMdnd2UQOgqanJzc3NPR9UREREREQlaaLtprbKOnzHpq2EpS5BWwt4wvbingkxIiIiIiJiyXV5u2dJq0o6h/KezVTgGUlnt3ovJCIiIiIios915xybnwCrAJsBKwObU3bY+kkvxBWAJNezg/qE7QOXZBlaRERERER/6845Nh8G3tSw1fM/JX0KeKjnw4qukrQWZWvnT9i+vuH+mcBKtvfqizjumTqHcUdN6IuhBpVJ2QI7IiIiok90Z8bmWWCNVvdGAc/1XDjRXbafAL4InCFpZQBJ2wMfoWxH3SMkDempviIiIiIielp3EptfAtdIOlTSjpIOBa4Czuid0JYtko6UNFXSPEkPSNpe0laSbq1bPE+XdGo9P6at9itK+oGkRyU9Iem0lkTG9rnAA8C3671fUJKapyUdJekhSU9LukjSag19/lbS45LmSLpR0qYNZWdJ+h9JV0haALyvN3+fiIiIiIil0Z3E5gTge8AngB/W/37f9nd6I7BliaSNgMOALW0PB3YAJgGLKLMto4B3AdsDn2unm5OANwNbABsAYyiHb7Y4FPhP4ALg/2xfQEludgO2BUYDs4CfNbS5knIWz5qU827ObzXm3pR/9+G0ceaNpEMkNUtqXrRwTsc/QkREREREL+rwHJtXVJR+Alxg+5aGe+8Gdrd9eO+Et2yoGwDcQkkUbrDd5qGmkg4HtrX9sXptSuLxEDAf+DfbD9WydwHjbb+xof1/Ad8HNrA9XdI/gMPqoaNIWgd4FFjZ9outxh5JSXxG2p5Tz7RZzvb+XXnGFdfZ0OsccEpXqr6m5B2biIiIiJ7T0Tk23Zmx2Ytyon2jiZQ/1qMDth8EDgeOBZ6UdIGk0ZLeLOnyuhxsLvBdyuxNa2tQdqCbWJetzQb+xKvfeboXmGV7er0eC/y+oc0/KLNEa0kaIunEukxtLmUGiVbjT1mqB4+IiIiI6CPd2RXNQOsXyIfQveToNcv2eGC8pFUp78CcRFke9jdgL9vz6ozNJ9poPgN4BtjU9tRuDDsF+E/bN7cukLQfsCvwAUpSM4IyY6PGsLs60OZjRtCc2YmIiIiI6CfdSUr+AnxH0nIA9b/H1vvRAUkbSXq/pBUpu8s9Q5k5GQ7MBeZL2hj4bFvtbS+mbNJwsqQ1a59jJO3QydCnASdIGlvbrCFp11o2nLKj3dOU2aDvLs0zRkRERET0p+4kNv+P8v/uT5f0V2Aa8EHg870R2DJmReBEyszL45SX9Y8GvkxZyjePkrhc2EEfRwIPArfVpWPXAht1Mu6PgT8CV0uaB9wGbF3LzgEmA1OB+2pZRERERMSg1OXNA+ClWZqtgHUpy5z+WmcT4jWuqanJzc2tX8GKiIiIiOg5HW0e0J13bFqWRN1G/t/9iIiIiIgYQPLifz+SdKyk83qxf9etpqkHen6zt8aKiIiIiOhP3ZqxCZA0CTjI9rUN9w6s97bpr7g6Y/vQ3uz/nqlzGHfUhN4cYpmUc24iIiIiekZmbAYoSUk6IyIiIiK6KIlND5L0FUmXtLr3U0mn1O9vlHSDpHmSrqHhMExJ4+rSsU9LehS4rt7/bT3Ac46kGyVt2tDmekkHNVwfKOmmdmI7S9LxDde7SrpL0tx6SOeHG/p4uMb4iKR9euTHiYiIiIjoRUlsetZ5wIcljYSXZl32AM6t5eOBiZSE5jvAAW30sS2wCdByRs2VwIaULaLvBM5f2iAlbUXZ7vkrwEjgvcAkSasAPwF2tD0ceDdw19KOFxERERHR27LcaclcKunFhusVgDttT5d0I/BJyrk0HwZm2J4oaT1gS+ADtp8DbpR0WRt9H2t7QcuF7V+3fJd0LDBL0gjbc5Yi/k8Dv7Z9Tb2eWvtfBVgMbCbpUdvTgentdSLpEOAQgCGrrrEU4URERERELJ3M2CyZ3WyPbPkAn2soOxvYt37fl5dna0YDsxqTFsoBma1NafkiaYikE+tSsbnApFo0qo123bEu8FDrmzW2PYBDKQexTpC0cXud2D7ddpPtpiFDRyxlSBERERERSy6JTc+7FPg3SZsBO/Py0rHpwOvrrEiL9dpo33hi6t7ArsAHgBHAuHpf9b8LgKEN9dfuYoxTgPXbKrB9le0PAusA91NmniIiIiIiBrQsRethtp+VdDHlfZq/2n603p8sqRk4TtLRwFbALsAfO+huOPAc8DQlgfluq/K7gI9L+iVlRujTwBNdCPNXwNWSLgf+l5LEDAdmAVsDfwaeAeYDi7rQH5uPGUFzti6OiIiIiH6SGZvecTawOS8vQ2uxNyVxmAkcQ3mBvyPnUJarTQXuA25rVX4y8DwlmTmbLm4sYPuvwKdq+znADcBYyv8ejgCm1Ri35ZXL7CIiIiIiBiTZ7rxWdEvdKOB+YG3bc/s7nr7Q1NTk5ubm/g4jIiIiIpZhkibabmqrLDM2PUzScsCXgAteK0lNRERERER/yzs2PahuDPAEZfnYh/s5nIiIiIiI14zM2DSQtJGkv0maJ2mxpG92p73tBbaH2d7U9pTOW/QPSZa0QRfqbSfpsb6IKSIiIiJiaWTG5pW+Clxv+22NNyVtB1wHLKy35gC/tH1MbwYj6XrKC/xb2L674f6llG2g32f7+t6MoavumTqHcUdN6O8wBrVJ2VUuIiIiYollxuaVxgL3tlM2rc7GDAO2AT4tabc+iOmfwP4tF5JWB94JPNUHY0dEREREDApJbCpJ1wHvA06VNF/SeEnHt1XX9iPALcBbGtr/WNIUSXMlTZT0noayrSQ117InJP2ooeydkm6RNFvS3XV2qNH5wB6ShtTrvYDfU7Z5buljRUmnSJpWP6dIWrGh/CuSptey/2z13CtK+oGkR2tsp0lauVs/XkREREREP0tiU9l+P/AX4LA6K/N8e3UlbQj8O688V+YOYAtgNcrhnL+VtFIt+zHwY9urAusDF9V+xgATgONruy8Dl0hao6HfaZQzbD5Ur/fn1efffJ0yi7MF8FbK4Z/fqGN8uPb7QWBD4AOt2p4EvLm23QAYA3yrvWdv9TscUhO25kUL53SlSUREREREr0hi03Wj66zKXMrysNuBm1oKbZ9n+2nbL9r+IbAisFEtfgHYQNIo2/NttyRE+wJX2L7C9mLb1wDNwE6txj4H2F/SRsBI27e2Kt8H+LbtJ20/BRwH7FfLdgfOtP1/thcAx7Y0kiTgYOCLtmfangd8F9izKz+I7dNtN9luGjJ0RFeaRERERET0iiQ2XTfN9sg66zISeAY4u6VQ0hGS/iFpjqTZwAhgVC3+NGVW5H5Jd0jaud4fC3yyJkyza7ttgHVajf074P3A54Fz24htNGWL6RaT672WsimtylqsAQwFJjaM/6d6PyIiIiJi0MiuaEvA9hxJ44ELAer7NEcC2wP32l4saRagWv9fwF718M6PAxfXTQCmAOfaPriT8RZKuhL4LGUpW2vTeOXGB+vVewDTgXUb6q7X8H0GJUHb1PbULj18OzYfM4Lm7OoVEREREf0kMzZLQNIwynKtlkRiOPAiZaey10n6FrBqQ/19Ja1hezEwu95eBJwH7CJpB0lDJK1Uz455QxvDHg1sa3tSG2W/Ab4haQ1JoyjvyJxXyy4CDpT0FklDgZe2qK7xnAGcLGnNGusYSTt09zeJiIiIiOhPSWy6bnTdLW0+ZTnXapR3WwCuAq6kvHszGXiWVy7/+jBwb237Y2BP28/WQzx3pSQtT9U2X6GNfxfb02zf1Pp+dTzl3Zy/A/cAd9Z72L4SOIVyDs+D9b+Njqz3b6vvD13Ly+8GRUREREQMCrLd3zHEMqCpqcnNzc39HUZERERELMMkTbTd1FZZZmwiIiIiImLQS2ITERERERGDXhKbAahuIPBYf8cRERERETFYZLvnHiBpErAWZaezFmfZPqx/Iup790ydw7ijJvR3GMuMSdk6OyIiIqJbktj0nF1sX9vfQSwpSUNsL+q8ZkRERETEwJOlaL1I0oGSbpL0A0mzJD0iaceG8tUknSlpWi2/tJ1+NpF0vaTZku6V9NGGsp0k3SdpnqSpkr7cOHarfixpg/r9LEn/I+kKSQuA90kaLekSSU/VWL/QG79LRERERERPS2LT+7YGHgBGAd8HfiVJtexcYCiwKbAmcHLrxpKWBy4Drq51Pg+cL6nlrJlfAZ+xPRzYjFefU9ORvYETKAeM3lLHuRsYA2wPHN7RYZ2SDpHULKl50cI53Rg2IiIiIqJnJbHpOZfWGZWWz8H1/mTbZ9RlXmcD6wBrSVoH2BE41PYs2y/YvqGNft8JDANOtP287euAy4G9avkLwFskrVr7ubMbMf/B9s22FwObA2vY/nYd52HgDGDP9hrbPt12k+2mIUNHdGPYiIiIiIielcSm5+xme2TD54x6//GWCrYX1q/DgHWBmbZnddLvaGBKTT5aTKbMqgD8B7ATMFnSDZLe1Y2YpzR8HwuMbkzOgKMpmyJERERERAxo2Tyg/0wBVpM00vbsDupNA9aVtFxDcrMe8E8A23cAu9Yla4cBF1GSpgWUZW4ASFq7jb7dKp5HbG+4JA+z+ZgRNGcnr4iIiIjoJ5mx6Se2pwNXAj+X9HpJy0t6bxtVb6ckKV+tdbYDdgEukLSCpH0kjbD9AjCXl7ecvhvYVNIWklYCju0kpL8CcyUdKWllSUMkbSZpy6V+2IiIiIiIXpbEpudcJml+w+f3XWizH+UdmfuBJ4HDW1ew/TzwUcr7ODOAnwP7276/oY9JkuYChwL71nb/BL4NXAv8C7iJDtR3gHYBtgAeqWP9EsjLMxEREREx4Ml257UiOtHU1OTm5ub+DiMiIiIilmGSJtpuaqssMzYRERERETHoJbGJiIiIiIhBL7uiDVKSJgEH2b62v2MBuGfqHMYdNaG/w1jmTcrOcxERERFtyoxNP5O0jaRbJM2RNFPSzX21E5mk6yUdVL9vJ2lxw+YHj0m6KLuiRURERMRgkMSmH0laFbgc+CmwGuXQzeOA5/oppGm2hwHDgXdSdmv7i6Tt+ymeiIiIiIguSWLTv94MYPs3thfZfsb21bb/Lml9SddJelrSDEnnSxrZVieSlpN0lKSHav2LJK1Wy1aSdF69P1vSHZLW6igoF4/Z/hZly+eTevi5IyIiIiJ6VBKb/vVPYJGksyXtKOn1DWUCvgeMBjYB1qX9Qza/AOwGbFvrzwJ+VssOoJxFsy6wOuWsm2e6EePvgLdLWqV1gaRDJDVLal60cE43uoyIiIiI6FlJbPqR7bnANoCBM4CnJP1R0lq2H7R9je3nbD8F/IiSuLTlM8DX6yzLc5QE6BOSXkc5AHR1YIM6KzSxjttV0yhJ1sg24j/ddpPtpiFDc45nRERERPSfJDb9zPY/bB9o+w3AZpQZl1MkrSnpAklTJc0FzgNGtdPNWOD3danZbOAfwCJgLeBc4CrgAknTJH1f0vLdCHEMJfGavSTPFxERERHRF7Ld8wBi+35JZ1FmYL5HSSj+zfbTknYDTm2n6RTgP23f3E75ccBxksYBVwAPAL/qYlgfA+60vaCjSpuPGUFztiKOiIiIiH6SGZt+JGljSUdIekO9XhfYC7iNsjPZfGC2pDHAVzro6jTgBEljaz9rSNq1fn+fpM0lDQHmUpamLeokLkkaI+kY4CDg6KV60IiIiIiIXpbEpn/NA7YGbpe0gJLQ/B9wBGWW5e3AHGAC5SX+9vwY+CNwtaR5tZ+ta9nawMWUpOYfwA2UZW1tGS1pPiWhugPYHNjO9tVL+oAREREREX1Btvs7hlgGNDU1ubm5ub/DiIiIiIhlmKSJtpvaKsuMTUREREREDHpJbBpI2kjS3yTNk7RY0jd7ebxjJbW3LKx13eslHdSb8UREREREDFbZFe2Vvgpcb/ttjTclbQf8L/B72x9vuP9W4C7gBtvb9VWQkg6k7GrWctDmU8D1wPds/7Ov4mh0z9Q5jDtqQn8MHUtoUnaxi4iIiGVIZmxeaSxwbztlTwHvlrR6w70DgH5JJIBbbQ8DRgAfoCQ5EyVt1k/xRERERET0myQ2laTrgPcBp0qaL2m8pOMbqjwPXArsWesPAXYHzm/Vz7sl3SFpTv3vuxvK3ijphrrU7RpaHbgp6Z2SbqkHbd5dZ4o6ZHuR7Ydsf46y49mxXelP0oGSHq6xPCJpn4aygyX9o5bdJ+ntncUREREREdGfkthUtt8P/AU4rM6EPN9GtXOA/ev3HSizO9NaCiWtRtma+SfA6sCPgAkNszzjgYmUhOY7lBmflrZjatvjgdWALwOXSFqjG4/xO+A9nfUnaZUa4462hwPvpiypQ9InKcnR/sCqwEeBp9saTNIhkpolNS9aOKcbYUZERERE9KwkNt1g+xZgNUkbUf7wP6dVlY8A/7J9ru0Xbf8GuB/YRdJ6wJbAN20/Z/tG4LKGtvsCV9i+wvZi29cAzcBO3QhxGiWJ6Up/i4HNJK1se7rtliV4BwHft32HiwdtT27n9zjddpPtpiFDR3QjzIiIiIiInpXEpvvOBQ6jLFv7fauy0UDrJGAyMKaWzbK9oFVZi7HAJ+uysdmSZgPbAOt0I7YxwMzO+qsx7AEcCkyXNEHSxrXdusBD3RgzIiIiIqLfZVe07jsXeBA4x/ZCSY1l0ygJRaP1gD8B04HXS1qlIblZD2g5IXUKcK7tg5cito9RltN12p/tq4CrJK1MWa52BmUZ2xRg/e4OvPmYETRnl62IiIiI6CeZsekm248A2wJfb6P4CuDNkvaW9DpJewBvAS6vy7mageMkrSBpG2CXhrbnUZas7SBpiKSVJG0n6Q0dxVPrvlHST4HtgOM660/SWpI+Wt+1eQ6YDyyq7X4JfFnSO1RsIKl1shYRERERMaAksVkCtm+yPa2N+08DOwNHUF64/yqws+0ZtcrewNaU5WLH0PCOju0pwK7A0ZStpacAX6H9f6N3SZoPzKWcYbMqsKXte7rQ33I1xmk1lm2Bz9V2vwVOoGx0MI+yE1zLezsREREREQOSbHdeK6ITTU1Nbm5u7u8wIiIiImIZJmmi7aa2yjJjExERERERg14Sm4iIiIiIGPSS2ERERERExKCX7Z5foySdBTxm+xs90d89U+cw7qgJPdFVLCMmZfvviIiI6EPLzIyNpD0l3S5pgaQn6/fPqdVBMwOdpH0kza+fZyQtbrie39/xRUREREQMRMtEYiPpCODHwH8DawNrAYcC/w6s0Eb9IX0aYBsktTlbZvt828NsDwN2BKa1XNd7jX30+3NERERERAwEgz6xkTQC+DbwOdsX257n4m+297H9nKSzJP2PpCskLQDeJ2kTSddLmi3pXkkfbejzekkHNVwfKOmm+l2STq6zQnMk/V3SZrVsRUk/kPSopCcknSZp5Vq2naTHJB0p6XHgzCV41rae4yOS/iZprqQpko5t1WYbSbfU55wi6cA2+h0u6X8l/aQ+306S7pM0T9JUSV9uJ55DJDVLal60cE53HyciIiIioscM+sQGeBewIvCHTurtTTl4cjhwO3AZcDWwJvB54HxJG3VhvA8B7wXeDIwE9qAcxglwUr2/BbABMAb4VkPbtSmHXY4FDunCWJ09x03AAmD/GstHgM9K2g1A0nrAlcBPgTVqXHc1diZpdeDPwM22v+BysNGvgM/YHg5sBlzXViC2T7fdZLtpyNARS/g4ERERERFLb1lIbEYBM2y/2HKjYYbiGUnvrbf/YPtm24spf+APA060/bzt64DLgb26MN4LlKRiY8oBp/+wPb2+y3Mw8EXbM23PA74L7NnQdjFwjO3nbD+zhM/70nPYftb29bbvqdd/B34DbFvr7gNca/s3tl+w/bTtuxr6Gg3cAPy21SYCLwBvkbSq7Vm271zCWCMiIiIi+sSysCva08AoSa9rSW5svxtA0mO8nLxNaWgzGphSk5wWkykzLB2yfZ2kU4GfAetJ+j3wZWAlYCgwsWG/AgGN78E8ZfvZbj5fa43PgaStgRMpMysrUGavfluL1wUe6qCvjwDzgdNa3f8P4BvAiZL+Dhxl+9aOgtp8zAiaswtWRERERPSTZWHG5lbgOWDXTuq54fs0YF1Jjc+/HjC1fl9ASVJarP2Kjuyf2H4HsCll6dlXgBnAM8CmtkfWz4hWL/w3xrCkWvcxHvgjsK7tEZQkpSWzmgKs30FfZwB/Aq6QtMpLA9h32N6VskzvUuCiHog7IiIiIqLXDPrExvZs4Djg55I+IWmYpOUkbQGs0k6z2ynJy1clLS9pO2AX4IJafhfwcUlDJW0AfLqloaQtJW0tafnax7PAojr7cwZwsqQ1a90xknbo0Qd+teHATNvPStqK8g5Oi/OBD0jaXdLrJK1ef5dGhwEPAJdLWlnSCnXL6RG2XwDmAot6+RkiIiIiIpbKoE9sAGx/H/gS8FXgSeAJ4BfAkcAtbdR/HvgoZTvlGcDPgf1t31+rnAw8X/s5m5IgtFiVksDMoixfexr4QS07EngQuE3SXOBaoCsbEiyNzwHfljSPslHBS7Mrth8FdgKOAGZSEra3NjaumwUcQpnd+QNlSd1+wKT6DIcC+/byM0RERERELBWVv2sjlk5TU5Obm5v7O4yIiIiIWIZJmmi7qa2yZWLGJiIiIiIiXtsG9K5o9VyZCyhnwqxC2Sr5O/0bVddIuh44z/Yv2yk/Gji6jaK/2N6xN2PrDfdMncO4oyb0dxixjJiUHfYiIiKimwb6jM1XgettD7e9XGNSI+loSY9Imi/pMUkX9mOc3Wb7u7aHtfHpNKmRdL2kZyXNkzRX0kRJR0lasS9ij4iIiIgYaAZ6YjMWuLf1TUkHUF5w/0DdTrkJ+HMfx9YrJHV1Fu0w28OBdSibA+xJ2bZZHTeLiIiIiFj2DNjERtJ1wPuAU+uszHhJx9fiLYGrbD8EYPtx26c3tB0h6VeSpkuaKul4SUMayg+W9I8643GfpLfX+5vU2ZDZku6V9NGGNmdJ+pmkCbXd7ZLWbyj/oKT7Jc2pB3iqoWx9SddJelrSDEnnSxrZUD5J0pH1MMwFkr4i6ZJWv8dPJZ3S+neyvcD29ZRd3t5FOXSTuuX1UZIequNeJGm1WraSpPPq/dmS7pC0Vi1bTdKZkqZJmiXp0m78s0VERERE9IsBm9jYfj/wF8rMxDDK9sstbgP2rwlAU2PSUp0NvEh5N+dtwIeAgwAkfRI4FtifsnXzR4Gn67k0lwFXUw6m/Dxwfn3Pp8VelDNzXk/Z1vmE2uco4BLgG8Ao4CHg3xvaCfgeMBrYBFi3xtBoL0pSMhI4D/hwS/JTZ3H2AM7t4Pd6FGgG3lNvfQHYDdi2jjsL+FktOwAYUeNYnbKl8zO17FzK4aSb1t/h5PbGlHSIpGZJzYsWzmmvWkRERERErxuwiU1HbJ9HSTx2AG4AnpR0FECdedgROLzOZjxJ+eN8z9r8IOD7tu9w8aDtycA7gWHAibaft30dcDkl4WjxO9t/tf0i5WybLer9nYD7bF9cD7U8BXi8Id4HbV9j+znbTwE/oiQcjX5ie4rtZ2xPB24EPlnLPgzMsD2xk59mGrBa/f4Z4Ou2H7P9HCWR+kRNkl6gJDQb2F5ke6LtuZLWqb/dobZn2X7B9g3tDWb7dNtNtpuGDB3RSWgREREREb1nQO+K1hHb51NmVJanzEycL+lvlJmJ5YHpDa+bLEc5gBLKLMVDbXQ5Gphie3HDvcnAmIbrxxu+L6QkQi+1bYjNkl66lrQm8BPKbMrwGs+sVuNPaXV9NvBZymGg+9LBbE2DMbx8IOlY4PeSGp9nEbBW7Wtd4II6K3Qe8PV6b6bt1rFFRERERAxogzaxaVFnSH4r6UhgM2A88Bwwqs6stDYFWL+N+9OAdSUt15DcrAf8swthTKckBQDUF/jXbSj/HmDg32w/LWk34NTWj9Lq+lLgfyRtBuxM2SGuXZLWBd4BnFRvTQH+0/bN7TQ5DjhO0jjgCuCB+t/VJI20Pbuj8VrbfMwImrNFb0RERET0k0G5FE3SgZI+Iml4fUl+R8o7IbfXZVxXAz+UtGotX19Sy9KvXwJflvQOFRtIGgvcDiwAvippeUnbAbtQztHpzARgU0kfr0u9vgCs3VA+HJgPzJY0BvhKZx3afha4mJKo/bW+Q9PWbzG0PtsfgL9SkhOA04AT6rMhaQ1Ju9bv75O0eX03aS5ladqi+ttdCfxc0uvr7/DeLjx/RERERES/GpSJDeWP8aOBR4HZwPeBz9q+qZbvD6wA3EdZ8nUxZVtkbP+W8tL/eGAeZWZkNdvPUzYS2BGYAfwc2N/2/Z0FY3sG5X2YE4GngQ2BxpmS44C3A3MoSdDvuvicZwOb0/YytFMlzQOeoLzTcwnw4YbZph8DfwSurvVuA7auZWtTfpO5wD8o7ymdV8v2oyQ69wNPAod3MdaIiIiIiH4ju/UKqBgoJK1HSTDWtj23v+PpSFNTk5ubm/s7jIiIiIhYhkmaaLuprbLBOmOzzJO0HPAl4IKBntRERERERPS3JDY9QJIlbdAD/Vwv6SBJq1CWiX0QOGapA1zyeLaT9Fh/jR8RERER0VWDfle0waRuSHAdZavoRh+0fWvLhe0FvLyV9KBwz9Q5jDtqQn+HEdFjJmWXv4iIiEEliU3fm2b7Df0dRERERETEsiRL0VqRdKSkqZLmSXpA0vaStpJ0q6TZkqZLOlXSCu20X1HSDyQ9KukJSadJWnkJ4lhf0nWSnpY0Q9L59TDNlvJJkr4m6T5JsySdKWmlWjZK0uU13pmS/lLf2UHSaEmXSHpK0iOSvtDQ58qSzqr93Qds2d24IyIiIiL6QxKbBpI2Ag4DtrQ9HNgBmAQsAr4IjALeBWwPfK6dbk4C3gxsAWwAjAG+tSThUA72HA1sQjnw89hWdfapMa5fx/xGvX8E8BiwBrAWZWts1+TmMuDuGtf2wOGSdqjtjql9rV/7PaDDAKVDJDVLal60cM4SPGJERERERM9IYvNKi4AVgbdIWt72JNsP2Z5o+zbbL9qeBPwC2LZ1Y0kCDga+aHum7XnAd4E9G6qNrjMpjZ9VWvdl+0Hb19h+zvZTwI/aGPNU21Nsz6SczbNXvf8C5dyesbZfsP0Xl329twTWsP1t28/bfhg4oyG+3YETauxTgJ909GPZPt12k+2mIUNHdFQ1IiIiIqJX5R2bBrYflHQ4ZWZkU0lXUbZcHkZJLJqAoZTfbWIbXaxRyyeWHAcoMy9DGup06R0bSWtSEov3AMMpSeisVtWmNHyfTJndAfjv+gxX1zhOt30iMJaaWDW0GwL8pX4f3UafEREREREDXmZsWrE93vY2lCTAlKVl/0M5KHND26tSlnapjeYzgGeATW2PrJ8Rtpdkh7Pv1fH/rY65bxtjrtvwfT1gWn2GebaPsP0mYBfgS5K2pyQtjzTENtL2cNs71T6mt9FnRERERMSAlxmbBvUdmzHAzcCzlCRlOcqMyVxgvqSNgc8CT7Vub3uxpDOAkyUdZvtJSWOAzWxf1c1whgNzgNm1j6+0Uee/JF1O2T76aODC+hw7UxKxh2rci+rnr8BcSUdSZoOep7y/s7LtO4CLgK9Juh1YBfh8V4PdfMwImrM9bkRERET0k8zYvNKKwImUmZfHgTUpCcOXgb2BeZR3Ui7soI8jgQeB2yTNBa4FNmooHy1pfqvPf7TRz3HA2ynJzQTgd23UGQ9cDTxcP8fX+xvWcecDtwI/t3297UWUGZwtgEfqc/4SaHlB5jjK8rNHar/ndvCcEREREREDhso75THYSJoEHGT72v6OBaCpqcnNzc39HUZERERELMMkTbTd1FZZZmwiIiIiImLQS2ITERERERGDXhKbQcr2OOBBSZbU6SYQkg6UdFPvRxYRERER0feyK1ofqu/FjAZG257RcP8u4K3AG+sBoH0RiynbVz8o6Vjg65Sd4KBs+3w15bDO6V3p756pcxh31IReiTXitWBSdhWMiIhYKpmx6XuPAHu1XEjaHFi5/8J5yYW2hwOrAR8D1qYcNLpO/4YVEREREdG5JDZ971xg/4brA4BzWi4kjZB0jqSnJE2W9A1Jy9WyIZJ+IGmGpIeBV/xfvLXtryRNlzRV0vGShnQnONsv2L4X2INyVs8RS/icERERERF9JolN37sNWFXSJjXp2AM4r6H8p5RzZd4EbEtJgj5Vyw4GdgbeBjQBn2jV99nAi8AGtc6HgIOWJMh65s0fgPe0V0fSIZKaJTUvWjhnSYaJiIiIiOgRSWz6R8uszQeB+4Gp9X5LovM12/Pq+zY/BPar5bsDp9ieYnsm8L2WDiWtBewIHG57ge0ngZOBPZcizmmUpWltsn267SbbTUOGjmivWkREREREr8vmAf3jXOBG4I00LEMDRgErAJMb7k0GxtTvo4EprcpajAWWB6ZLarm3XKv63TUGmLkU7SMiIiIi+kQSm35ge7KkR4CdgE83FM0AXqAkKffVe+vx8ozOdGDdhvrrNXyfAjwHjLL94tLGWN/r2QW4tiv1Nx8zgubs6hQRERER/SRL0frPp4H3217QcG8RcBFwgqThksYCX+Lld3AuAr4g6Q2SXg8c1dKwbst8NfBDSatKWk7S+pK27U5QkpaXtAnwG8rOaD9a0geMiIiIiOgrSWz6ie2HbDe3UfR5YAHwMHATMB74dS07A7gKuBu4E/hdq7b7U5ay3QfMAi4Gurpd8x6S5gOzgT8CTwPvsD2ti+0jIiIiIvqNbPd3DLEMaGpqcnNzW3laRERERETPkDTRdlNbZZmxiYiIiIiIQS+JTUREREREDHqv2cRG0rGSzuu85hL3b0kb1O+nSfpmb43VzvhnSTq+L8eMiIiIiOgvg2q7Z0mTgINsX9tw78B6b5v+iqsztg/tjX7rs/8KeKbh9lm2D+uN8Tpyz9Q5jDtqQl8PG7HMmJTt0iMiIpbKoEps+oqk1/XEWTB95NaBnNRFRERERPSFZWYpmqSvSLqk1b2fSjqlfn+jpBskzZN0DTCqod64unTs05IeBa6r938r6XFJcyTdKGnThjbXSzqo4fpASTe1E9srloVJ2lXSXZLmSnpI0ocb+ni4xviIpH165McpfR8s6UFJMyX9UdLoev84ST+t35eXtEDS9+v1ypKerWfmREREREQMWMtMYkM5xPLDkkZCmXUB9gDOreXjgYmUhOY7wAFt9LEtsAmwQ72+EtgQWJNybsz5SxukpK2Ac4CvACOB9wKTJK0C/ATY0fZw4N3AXUs7Xh3z/cD3gN0p59pMBi6oxTcA29XvWwKPU34HgHcBD9ie1U6/h0hqltS8aOGcngg1IiIiImKJDMalaJdKalwmtgJwp+3pkm4EPkk5yPLDwAzbEyWtR/mj/QO2nwNulHRZG30fa3tBy4XtloMxkXQsMEvSCNtL81f8p4Ff276mXk+t/a8CLAY2k/So7enA9C70905JsxuuP2z7tlZ19qlj3lnH+lp9lnHArcCGklanJFm/Aj4naRglwbmhvYFtnw6cDrDiOhvmQKSIiIiI6DeDccZmN9sjWz7A5xrKzgb2rd/35eXZmtHArMakhTJr0dqUli+Shkg6sS4VmwtMqkWj2mjXHesCD7W+WWPbAzgUmC5pgqSNu9DfbY2/RxtJDZTnf+l5bc8HngbG2H4GaKYkMe+lJDK3AP9OJ4lNRERERMRAMRhnbDpyKfA/kjYDdga+Wu9PB14vaZWG5GY9oPUsQ+P13sCuwAcoSc0IYBagWr4AGNpQf+0uxjgFWL+tAttXAVdJWhk4njLz9J4u9tuRacDYlos6O7Q6dbaIkry8H3gbcEe93gHYCrixKwNsPmYEzdnVKSIiIiL6yWCcsWmX7WeBiynv0/zV9qP1/mTKrMRxklaQtA2wSyfdDQeeo8xsDAW+26r8LuDjkobW82o+3cUwfwV8StL2kpaTNEbSxpLWkvTRmnQ8B8wHFnWxz86Mr2NuIWnF+iy3255Uy28A9gfus/08cD1wEPCI7ad6KIaIiIiIiF6zTCU21dnA5ry8DK3F3sDWwEzgGMoL/B05h7J8aypwH9B6idfJwPPAE3XMLm0sYPuvwKdq+zmUpGIs5d/iCMrsykzKMrDPtdNNt9j+M/BN4BLK7NX6wJ4NVW4BVubl2Zn7gGfp4mxNRERERER/k71svfNdNwq4H1jb9tz+jue1oqmpyc3Nzf0dRkREREQswyRNtN3UVtkyNWMjaTngS8AFSWoiIiIiIl47+iSxkbSRpL/VgycXS/pmL4yxCjAX+CBwTMOhm32+QYKkYyWd10N9nSZpfhuf03qi/4iIiIiIZUFf/dH/VeB6229rvClpO+A6YCFlR7JpwIm2z+zuAHW3s2ENfY9b8nBfEeNZwGO2v9Hq/t6U2aGNgXmUzQROsH1TT4zbwvahlC2gG8eeBBwgaR/KBgP3Ud4JOt324p4cv6vumTqHcUdN6I+hI6LBpOxOGBERr1F9tRRtLHBvO2XTbA8DVgWOBM6Q9JbWlfpj5qU9kr4EnELZXWwtytbRP6dsD91XdrE9nPLbnkj57X7Vh+NHRERERAwYvZ7YSLoOeB9wal1CNV7S8a3rubiUclbMWyQdKOlmSSdLmgkcK2mEpHMkPSVpsqRv1PdqWg7U/IGkGZIeBl7xf1tKmiTpAw3Xr1guJmkbSbdImi1pSh3/EGAf4Ks19sskjQC+DfyX7d/ZXmD7BduX2f5KO7/BbyU9LmmOpBslbdpQtpOk++oyvamSvlzvj5J0eY1npqS/tDxrq99tju0/Ug73PKCe4YOkFevv8aikJ+qStpU761vSupJ+V3/jpyWd2uk/ckREREREP+v1xMb2+4G/AIfVmZnn26pXz3T5GDASuKfe3hp4GFgTOAH4KeWgzDdRtkPen7J1MsDBlEM53wY0AZ/oaox1J7Ura/9rAFsAd9k+nbKN8/dtD7O9C/AuYCXg913tv/a9YX2OO3nl1tC/Aj5TZ182oyzNg7L182M1nrWAo3n1gaIvqdtIP8bLB3qeBLy5PssGwBjgWx31LWkIcDllm+txtc0F7Y0p6RBJzZKaFy2c08lPEBERERHRewbCrmijJc0GZlDOl9nP9gO1bJrtn9p+kZIQ7QF8zfa8erjkD4H9at3dgVNsT7E9E/heN2LYB7jW9m/q7MvTtu9qp+7qwIwaU5fY/nWN+TngWOCtdeYH4AXKDNWqtmfZvrPh/jrA2BrTX9z53tzTgNUkiZLofdH2TNvzKMvmWs6uaa/vrYDRwFfqTNSzHb0zZPt02022m4YMHdFetYiIiIiIXjcQEptptkfaXs32FrYbZwimNHwfBaxAmU1oMZkyqwDlD/Iprcq6al3goS7WfRoY1dV3fuoSuRMlPSRpLjCpFo2q//0PYCdgsqQbJL2r3v9v4EHgakkPSzqqC8ONoRzuuQYwFJhYl5vNBv5U73fU97rA5O4kbRERERERA8FASGw60jhDMYMy0zC24d56wNT6fTrlD/PGskYLKH/st1i74fsUYP0uxABwK/AssFt7QbeyN2VTgQ9QltGNq/cFYPsO27tSlqldClxU78+zfYTtNwG7AF+StH17g0jakpLY3ET5rZ4BNq1J40jbI+pSwI76ngKsN5A2aoiIiIiI6IpB8wes7UWSLgJOkLQ/sBplu+Uf1CoXAV+QdDkliWk9w3EXsKekK4G3Ut7B+VMtOx84WtLuwO8oCci6dTnaE5R3elrimCPpW8DPJL0IXE1JuD4AvM/2V1uNOxx4jjLTM5SyJAwASSsAnwQur/3OpWzfjKSdgfspM0kt9xe1/l0krQq8F/gxcJ7te+r9M4CTJR1m+0lJY4DNbF/VQd9/pSSIJ0o6pt57h+2bW4/b2uZjRtCcbWYjIiIiop8M9Bmb1j5PSVoepsxMjAd+XcvOAK4C7qa8oP+7Vm2/SZmVmQUcV9sCYPtRynKwIyhLue6iJD9QXu5/S13SdWmt/yNKUvUN4CnKTMdhlBmX1s6hLIubSjlv5rZW5fsBk2pScyiwb72/IXAtMJ8yS/Rz29c3tLtM0rw69teBH/HyRgpQtn9+ELit9n0tsFFHfdteRJnB2QB4lLLBwB5tPFNERERExICizt9Hj+hcU1OTm5ub+zuMiIiIiFiGSZpou6mtssE2YxMREREREfEqSWwiIiIiImLQS2LTBZIsaYP+jiMiIiIiIto2aHZFayFpb8qL+xsD8ygv+p/Q0UGSA5WkoykHaa4BzAZutr3EL+tL2o6yM9obeiK+7rhn6hzGHTWhr4eNiIgeMik7W0bEIDeoZmwkfQk4hbJl8lqUs2p+TjknZsDp6DwYSQdQdkT7QD1fpgn4c1/FFhERERGxLBk0iY2kEcC3gf+y/TvbC2y/YPsy21+RtKKkUyRNq59TJK1Y2x4o6aZW/b20vEzSWZJOk3SNpHmSbpA09tVRQB3nB5IelfREbbdyLdtO0mOSjpT0OHBmB4+0JXCV7YcAbD9u+/TazyclTWw17hEt201L2knSfTXWqZK+LGkV4EpgtKT59TNa0nKSjpL0kKSnJV0kabXaz7j6O3xK0hRJsyQdKmlLSX+vW1yf2r1/qYiIiIiIvjdoEhvgXcBKwO/bKf868E5gC8oZNFtRzpnpqn2A7wCjKMvbzm+n3knAm+s4GwBjgG81lK9NOTx0LHBIB+PdBuwv6SuSmiQNaSj7I/BGSZs03NsXOLd+/xXwGdvDgc2A62wvAHYEptkeVj/TgC8AuwHbAqMp5/j8rFUsW1POttmDMiP2dcqBo5sCu0v6/+3deZCcxX3G8e/DJSwJhHUYkKIjwVg2gkBgKQcbsGyMFcl2oCC4CBQ4kBhwDMSOkxIQKAgxYJwKhMRJERyM0cFNJB/gQJwA4QhEKxzAgLh0WCAQEpJWErqlX/7oHvTuMLMaaWeYndHzqXqrZt5+337f91ddvdPb/XZ/ptIDSDpHUqekzs1runp4VDMzMzOzxmqlhs0QYGlEbKqSfjpwZUS8HRFLSItwnrEd+d8XEf8dEetJP+yPkjSyeIAkkd6J+VZELIuIVaRhcacWDtsCXB4R6yNibbWLRcQ00oKjE4BHgLclXZTT1gN3khfrlDQOGAP8LJ++kbRo6N4RsTwinu7huc4F/ioiXs/5XgH8Qdkwub+JiHUR8SBpAdTbcxzfAB4FfqfKM9wUER0R0bFr/0E93IKZmZmZWWO1UsPmHWBoD++tDAcWFL4vyPtqtbD0ISJWA8sqnD8M6A/MzsO0VgD/nveXLImIdbVcMCKmR8TngX2A84ArJU3IybcCp+XG1BnAXblhAnAyMAlYkIfNHdXDZUYDMwr3+yKwmfSOUsniwue1Fb4PrOV5zMzMzMyapZVmRfsfYB1pWNU9FdIXkX7EP5+/j8r7IPVC9C8dKGm/CuePLKQPJA0nW1R2zFLSD/1xuTejkujpISqeELERuFvSZNLQsgci4klJG4BjgNPyVjp+FnCCpN2B84G78v1XuvZC4OyIeLw8QdKY7b3Xag4ZMYhOz6hjZmZmZk3SMj02EdFFepflnySdKKm/pN0lTZT0PeB24FJJwyQNzcdOy6c/A4yTdJikPUnDscpNknS0pD1I79o8FRELiwdExBbgB8D1kj4CIGlEoZelZnlCgy9K2iu/4D+R9E7LU4XDpgDfBzaVprOWtIek0yUNyg2ilaQeGEg9LUPyRAslNwJXlSZDyPHpk7PImZmZmZntqJZp2ABExHWkNWwuBZaQeiPOB2YC3wE6gWeB54Cn8z4i4mXSjGq/AF4BKq15cxtwOWkI2hGkd3YqmQy8CjwpaWXOc+wOPM5K4BLg16Q1bL4HfL1sPZ6ppB6cqWXnngHMz9c/j/wuTkTMITXw5uahZ8OBG0iTETwoaRVp0oJP7sD9mpmZmZn1WYrY7pFTbUfSj4DXI2J7ZlFruDyN9NvA4RHxSrPvpycdHR3R2dnZ7NswMzMzszYmaXZEdFRKa6kem53Q14FZfb1RY2ZmZmbWbK00eUDLkXQJabhZuUcjYuI2zp0PiDRZgpmZmZmZ9cANGyAi/qhB+V5NWufmPZIeBu6t4dwx9bwXSauB346IufXM18zMzMysL3DDporcY7Ivacaxd4H7gQvyGjdNJWk8MC0ifqOwbx/gOtL6NgOAN4GbI+JagIho6Fo0z73RxZiL7mvkJczMrM3N97IBZtYLfsemZ1/ODYLDgSNJs7G9p4fFQpvhetJCmp8ABgG/D7zW1DsyMzMzM/uAuGFTg7wY58+BgyWFpG9IeoU0dTSSvibpVUnLJP0kT7NMTjte0hxJXZK+T3pvppR2haRphe9jcv675e+DJd0iaZGk5ZJmShqQ72W4pNV5G05qeN0WEcsjYktEzImIewp5h6SPSiqet1rSGklROO5sSS/m6z1QWv/GzMzMzKwvc8OmBpJGkoZ4/TLvOpG0FsxBkj4HXAN8BdgfWADckc8bSnqf5lJgKKkH5dPbcempQH/Swp0fAa6PiHeBicCiiBiYt0Wk9WmuknSWpAOrZRgRxfMGAjMK93siabKDk4BhwKOkdXGqxeUcSZ2SOjev6dqOxzIzMzMzqy83bHo2U9IK0oKej7B1IoBrImJZRKwlLeT5w4h4OiLWAxcDR0kaQ2oMvRAR90TERuDvgbdqubCk/UkNmPNyL8zGiHikh1MuAKaTFix9IfcgbWvmtcnAx4Gz865z87O9GBGb8vMeVq3XJiJuioiOiOjYtf+gWh7LzMzMzKwh3LDp2YkRsU9EjI6IP80NGYCFhWOGk3ppAMiTC7wDjMhpCwtpUXZuT0YCyyJieS0HR8TaiLg6Io4AhgB3AXdLGlzp+Nzo+bP8jKXnGg3cIGlFbtAtIw2dG1HjPZuZmZmZNUVfevm9lUTh8yJSgwCA/A7MEOAN0sxkIwtpKn4nzbbWv/B9v8LnhcBgSftExIoerv/+m4tYKelqUu/Rb5IaKO+RNBa4FTgpIooNrYXAVRExvaf8KzlkxCA6PZuNmZmZmTWJe2x67zbgLEmHSepHGr71VETMB+4Dxkk6KU8IcCHdGy//BxwraZSkQaSGCAAR8SZpkoB/lvRhSbtLOjYnLwaG5HMAkHSZpCMl7SFpT1JvzArgpeLNStob+DFwaUQ8VvYsNwIXSxqXjx0k6ZQdD42ZmZmZ2QfDDZteioj/BC4jTRLwJnAAcGpOWwqcAnyXNDztQODxwrn/AdwJPAvMBn5Wlv0ZwEZgDvA28M183hzSS/1z87Cx4aRenFuApaRepOOBL1ZYd+dwYCxwXXF2tJzvDOBa4A5JK4Ffkd7zMTMzMzPr05Re+zDrnY6Ojujs7Gz2bZiZmZlZG5M0OyI6KqW5x8bMzMzMzFqeGzY7MUnjJb3e7PswMzMzM+stz4rWS5KmA+sj4uzCvs8A/wYcnCcB6O01xgMPATMi4qTC/kNJExA8EhHje3ud3njujS7GXHRfM2/BzMzMzBpsfh+eBdc9Nr13ITBJ0vEAeUayHwDfrlOjptT4XAJ8StKQQvJXgZd7ew0zMzMzs1bnhk0vRcQ7wAXATXkNm8uB14A5kp7Is5Y9k3tdAJB0lqQXJa2SNFfSuYW08ZJelzRZ0lukmc4ANgAzyTOuSdoV+ArQbc0ZSTdIWihppaTZko4ppH1I0o8kLZf0AnBk2bnDJd0raYmkeZIurFOYzMzMzMwayg2bOoiIu0nTNd8OnAOcR1rD5jvAYOAvgHslDcunvA18CdgbOAu4XtLhhSz3y+eNzvmVTAHOzJ8nAM+TpnYumgUcls+/Dbg79yJBanQdkLcJpB4fACTtAvwUeAYYARwHfFPShGrPLekcSZ2SOjev6ap2mJmZmZlZw7lhUz/fAD4HXEnqVbk/Iu6PiC15vZpOYBJARNwXEa9F8gjwIHBMIa8twOURsT4i1pZ2RsQTwGBJY0kNnCnlNxER0yLinYjYFBF/B/QjrVsDqYfnqohYFhELgX8onHokMCwiroyIDRExlzSk7tRqDxwRN0VER0R07Np/ULXDzMzMzMwazg2bOomIxaTFMZ8n9bSckoehrZC0Ajga2B9A0kRJT0paltMmAUML2S2JiHVVLjUVOB/4LDCjPFHSt/Mwt66c96BC3sOBhYXDFxQ+jwaGl93zJcC+tcbAzMzMzKxZPCtaYywEpkbE18oTJPUD7iX1uPw4IjZKmgmocFhPq6ZOBV4FpkTEGmnrafl9msmkYWTPR8QWScsLeb8JjCQ1vgBGld3zvIg4sOanNDMzMzPrI9ywaYxpwKz8fsovgN2B3yU1SLpIw8OWAJskTQS+APyqlowjYl6eTnpuheS9gE05790kXUR6j6fkLuBiSU8BA0iTHpT8L7BS0mTSELUNwCeAD0XErG3d1yEjBtHZh6f/MzMzM7P25qFoDZDfXzmBNJRrCak35C+BXSJiFWmK6LuA5cBpwE+2M//HIqJ80gCAB4Cfk6aAXgCso/vQs7/O++eR3uuZWshzM/Bl0sQD80jD6v6VNJTNzMzMzKxPU0RPo57MatPR0RGdnZ3Nvg0zMzMza2OSZkdER8U0N2ysHiStAl5q9n20saGkXjRrHMe4sRzfxnOMG8vxbTzHuLHaJb6jI2JYpQS/Y2P18lK11rP1nqROx7exHOPGcnwbzzFuLMe38RzjxtoZ4ut3bMzMzMzMrOW5YWNmZmZmZi3PDRurl5uafQNtzvFtPMe4sRzfxnOMG8vxbTzHuLHaPr6ePMDMzMzMzFqee2zMzMzMzKzluWFjZmZmZmYtzw0bMzMzMzNreW7YGACSBkuaIeldSQskndbDsd+S9JakLkk/lNSv1nwkHSdpjqQ1kh6SNLqRz9WX1CPGkvpJujmfv0rSLyVNLJw3RlJIWl3YLvsgnq/Z6liGH5a0rhC/l8rOdRnufYxXl22bJf1jTnMZ3kZ8JR0s6QFJSyW970VZ18PV1SPGrod7Vsdy7Lq4gjrGtz3r4Yjw5g3gduBOYCBwNNAFjKtw3ARgMTAO+DDwMPDdWvIhrXjbBZwC7An8LfBks5+9lWIMDACuAMaQ/jHxJWAVMCanjwEC2K3Zz9uK8c3pDwN/UuUaLsN1iHHZsQOA1cCx+bvL8LbjOxb4Y+CE9Ge89nxchnsfY9fDH1g5dl3cwPiWHds29XDTb8Bb87dcoDcAHyvsm1rphwhwG3B14ftxwFu15AOcAzxRdt21wMebHYNWiXGVvJ8FTs6fW7Yy6ivx3cYfU5fhOpdh4KvAXLbO0ukyvI34FtI/Wv6DxfVw42Nc5bidvh6ud4xdFzc2vmXHtE097KFoBvAxYHNEvFzY9wzpv63lxuW04nH7ShpSQz7dzo2Id4HXqlyn3dQrxt1I2jfn/XxZ0gJJr0u6RdLQ3t16S6h3fK/J3fePSxpf7VyX4d6XYdIf1CmR/5oWuAxXj29v8nEZ7n2Mu3E93E29Y+y6uLuGlGHaqB52w8YgdWd2le3rAvaq4djS571qyGd7rtNu6hXj90jaHZgO3BoRc/LupcCRwGjgiHzO9F7deWuoZ3wnA78FjCAtZvZTSQfswHXaTSPK8CjgM8Cthd0uw1vtSNlyPVxd3Z/d9fD71DPGrovfrxFluK3qYTdsDNK4yr3L9u1NGjO8rWNLn1fVkM/2XKfd1CvGAEjahdT9vAE4v7Q/IlZHRGdEbIqIxTntC5LKr91u6hbfiHgqIlZFxPqIuBV4HJi0A9dpN3Utw9mZwGMRMa+0w2W4mx0pW66Hq6vrs7serqhuMXZdXFEjnrut6mE3bAzgZWA3SQcW9h3K+7vVyfsOLTtucUS8U0M+3c6VNAA4oMp12k29YowkATcD+5LGdG/s4bqlbmXt6I23iLrFt4Jga/xchusb4zPp/l/CSlyG65uPy3DvY+x6uLq6xbgC18WNiW971cPNfsnHW9/YgDtIM20MAD5N9Vk2fg94CziINNvRf9F9Rqmq+QDD8veTSbOYXMtOMotJnWN8I/AkMLDCuZ8kzYSyCzCENHPKQ81+9laJL7APaUavPYHdgNOBd4GxOd1luA5lOB/zqRzbvcr2uwxvO77K5e8g0g+OPYF+teTjMly3GLsebmCMXRc3vgznY9quHm76DXjrGxswGJiZC/ivgdPy/lGkrs9RhWP/nDSV60rglrLKvmI+hfTPA3NIs5c8TJ4ec2fY6hFj0njXANblc0rb6Tn9D4F5+RpvAlOA/Zr97C0U32HALFK3/grSD5fjXYbrF+NC+r8AUytcw2V4G/Fl64xFxW3+tvIppLsM9yLGroc/kBi7Lm5gfAt5tV09XJrWzczMzMzMrGX5HRszMzMzM2t5btiYmZmZmVnLc8PGzMzMzMxanhs2ZmZmZmbW8tywMTMzMzOzlueGjZmZmZmZtTw3bMzMzMzMrOW5YWNmZmZmZi3v/wFY1GQ2bZUaFAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -8026,7 +8194,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -8035,7 +8203,7 @@ "21" ] }, - "execution_count": null, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -8054,7 +8222,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": {}, "outputs": [], "source": [ @@ -8064,7 +8232,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ @@ -8080,16 +8248,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.181208, 0.232323)" + "(0.181204, 0.230329)" ] }, - "execution_count": null, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -8107,16 +8275,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(78, 21)" + "(66, 21)" ] }, - "execution_count": null, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -8136,12 +8304,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGeCAYAAABGn5TrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZRdVZ3+//dDRCAkJMQgQxiChElAbbtQRPwRFWWQqbtFZtQWaEAcUaHVVmjBadk4odKgzZAwKohisDXINyAiQoVGaSYbJFAkAYEMkIEpeX5/nF16uFalbiVVdesmz2utu3LOns7nnOSPfNbeZx/ZJiIiIiIiop2t1eoAIiIiIiIiVlUSm4iIiIiIaHtJbCIiIiIiou0lsYmIiIiIiLaXxCYiIiIiItrey1odQKwexo8f74kTJ7Y6jIiIiIhYzc2cOfNJ2xs1liexiQExceJEOjs7Wx1GRERERKzmJD3cU3mWokVERERERNtLYhMREREREW0viU1ERERERLS9vGPTC0nnArNtf6HVsbSDu2YvZOJp04bkWrO+/K4huU5EREREtI81YsZG0ixJSyU9I2mBpFsknSCp1/u3fcJgJjWSdpL0S0nzS0wzJe23imPOkHTsQMUYEREREdEu1ojEpjjA9mhgK+DLwKnAD3pqKGnEEMRzLTAd2Bh4JfBh4OkhuG5ERERExGpnTUpsALC90PZPgUOB90raWdKFkr4n6TpJi4G3lrIzASTdK2n/7jEkvUzSk5JeX853K7NACyT9XtLkFcUgaTywNXC+7efL7ze2by71/yvpgFr7tcv1XidpXUlTJT1Vrne7pI0lnQW8BThH0iJJ55S+O0iaLmmepPslvac27oWSvivp56XPbyRtIukbZSbpPkl/NzBPPiIiIiJi8KxxiU0327cBj1IlAwBHAGcBo4GbG5pfBhxeO98beNL2HZImANOAM4FxwCeAqyT9zUeDap4CHgCmSjpY0sYN9RcDR9XO9wPm2r4TeC8wBtgCeAVwArDU9meAXwMn2x5l+2RJ61PNCl1KNSt0OPBdSTvVxn4P8FlgPPAc8FvgjnL+I+Ds3m5C0vGSOiV1LluycAW3GxERERExuNbYxKaYQ5WMAPykzJost/1sQ7tLgQMljSznR5QyqBKQ62xfV/pOBzqpkpEe2TbwVmAW8B/AXEk3Sdq2NJkK7Cdpg3J+NDClHL9AldBMsr3M9kzbvS1h2x+YZfsC2y/avgO4Cnh3rc2PyxjPAj8GnrV9se1lwBVArzM2ts+z3WG7Y8TIMb01i4iIiIgYdGt6YjMBmFeOu3prZPsB4F7ggJLcHMhfE5utgEPKsrAFkhYAewCbrujCth+1fbLtbcoYi6lmarA9B/gN8E+SxgL7ApeUrlOAXwCXS5oj6auS1u7lMlsBb2yI7Uhgk1qbx2vHS3s4H7Wi+4iIiIiIGA7W2O2eJe1KldjcDLwRcB9dupejrQXcU5IdqBKiKbaPW9lYbHdJ+k65RreLgGOp/o5+a3t2afsCcAZwhqSJwHXA/VQbITTeQxdwo+13rGxsERERERHtYI2bsZG0QdkI4HJgqu27mux6OfBO4ET+OlsD1bKxAyTtLWlEebl/sqTNVxDDhpLOkDRJ0lplM4F/Bm6tNbsGeD3wEcpMTun7Vkm7lJ3bnqZamrasVD8OvKo2xs+A7SQdXTYgWFvSrpJ2bPKeIyIiIiLawpo0Y3OtpBeB5cA9VC/Fn9tsZ9tzJf0W2JPqhfvu8i5JBwFfpZpxWQbcRpUA9eZ5YCJwPdVL+ouA/wd8qDbuUklXUc0SXV3ru0mJe/PS7wqq5Argm8BFkk6kmkX6sKR3lns9myqR/T3w8Wbvu1m7TBhDZz6cGREREREtouo99hiOJH0O2M72UX02brGOjg53dna2OoyIiIiIWM1Jmmm7o7F8TZqxaSuSxgEfoNoRLSIiIiIiVmCNe8dmKJWPXvb0e0sf/Y6jevH/57ZvGppoIyIiIiLaV2ZsBpHtldoq2fb5wPkDHE5ERERExGorMzYREREREdH2kthERERERETbS2ITERERERFtL4lNRERERES0vWwesIokTQam2t681bG00l2zFzLxtGmtDmOlzcrHRSMiIiLa2hozYyNplqSlZbvlxyVdIGmldi0bDJJmSDq2oUySTpb0B0lLJD1W2h3WqjgjIiIiIoajNSaxKQ4oWzC/HtgV+Gy9siQSw+mZfAv4KHAK8ApgAlXM+/TUeBjGHxERERExJNbI/wTbng38HNi5zICcJek3wBLgVZI2k/RTSfMkPVA+mAmApPUkXShpvqR7qBIkavWWNKl2fqGkM2vnB0m6U9LTkh6UtI+ks4C3AOeUGaVzJG0HnAQcZnu67aW2l9m+2fb7auP1N/7GeCZLerR2PkvSv0q6p9zjBZLWXfWnHhERERExeNbId2wkbQHsB1xNlVAcDewL3A8IuB64G9gM2AGYLulPtn8FfB7YpvzWp0qQmr3uG4CLgXcDvwI2BUbb/m9Jb6Z6V+f7pe0JQJftziaG7k/8zTgS2BtYDFxLNUv02cZGko4HjgcYscFGTQ4dERERETHw1rQZm2skLQBuBm4EvljKL7R9t+0XgU2APYBTbT9r+07g+1TJA8B7gLNsz7PdRbVcrFkfAP6rzMAstz3b9n29tB0PPFYvkPSopAWSnpW0Va2qP/E34xzbXbbnAWcBh/fUyPZ5tjtsd4wYOaYfw0dEREREDKw1bcbmYNvX1wskAXTVijYD5tl+plb2MNBRq+9qqGvWFsB1TbZ9impG5y9sby7pZcALVDMz3foTfzMa72+zfvSNiIiIiBhya9qMTW9cO54DjJM0ula2JTC7HM+lSlDqdXVLgJG1801qx11US9j6igHgBmBzSc0kJP2Jf/EK4uvWeH9zmoghIiIiIqJlktg0KMvLbgG+JGldSa+hWkJ2SWlyJfCvkjaUtDnwoYYh7gSOkDRC0j7AnrW6HwDvl/R2SWtJmiBph1L3OPCqWhz3A/8JXC7pHWXTghHA7qsY/53AfpLGSdqEate1Rh+UtLmkccCngStWdM2IiIiIiFZb05aiNetw4FyqmYr5wOdtTy91Z5S6h0r9BcBHan0/AlwEfBC4pvwAsH2bpPcDXwe2pkpmPgjcB3wTuEjSicAU2x8udR8CzgYmAQuAPwKHAo+sZPxTgL2AWeV3AdV20nWXAr+kWoL2E+BM+rDLhDF05iOXEREREdEishtXQMWaTNIs4NjGd5H60tHR4c7OZjZwi4iIiIhYeZJm2v6b1zWyFC0iIiIiItpeEpuIiIiIiGh7eccmXsL2xFbHEBERERHRX5mxiYiIiIiItpfEJiIiIiIi2l4Sm4iIiIiIaHtJbCIiIiIiou2tNpsHSJoMTLW9eatjWRPdNXshE0+b1uowVsmsfGA0IiIiom0N+YyNpFmSlkpaJOlxSRdIGjXUcfRG0gxJxzaUSdLJkv4gaYmkx0q7w1oU42RJy8szXCTpUUlXStq1FfFERERERLRaq5aiHWB7FPB6YFfgs/XKkkgMp2Vy3wI+CpwCvAKYQBXzPj01HqL455RnOBrYDbgP+LWktw/ydSMiIiIihp2WJg+2ZwM/B3YuMyBnSfoNsAR4laTNJP1U0jxJD0g6rruvpPUkXShpvqR7qBIkavWWNKl2fqGkM2vnB0m6U9LTkh6UtI+ks4C3AOeUmZBzJG0HnAQcZnu67aW2l9m+2fb7auP1N/7GeCZLerR2PkvSv0q6p9zjBZLW7eEZ2vajtj8HfB/4Sm2MHSRNL9e/X9J7anX7lbGfkTRb0idW9Gz6+ruMiIiIiGillr5jI2kLYD/gaqqE4mhgX+B+QMD1wN3AZsAOwHRJf7L9K+DzwDbltz5VgtTsdd8AXAy8G/gVsCkw2vZ/S3oz1bs63y9tTwC6bHc2MXR/4m/GkcDewGLgWqpZos+uoP3VwEmS1i/n04HPlZheA/xS0t227wZ+ALzH9q8lbQhsXe63x2fTZLwRERERES3RqhmbayQtAG4GbgS+WMovtH237ReBTYA9gFNtP2v7TqoZiaNL2/cAZ9meZ7uLarlYsz4A/FeZgVlue7bt+3ppOx54rF5Q3mlZIOlZSVvVqvoTfzPOsd1lex5wFnB4H+3nUCVUY4H9gVm2L7D9ou07gKuoEhaAF4BXS9rA9vxSD/14NpKOl9QpqXPZkoX9uK2IiIiIiIHVqsTmYNtjbW9l+yTbS0t5V63NZsA828/Uyh6mer+lu76roa5ZWwAPNtn2KapZi78oO6+NB9ahSiS69Sf+ZjTe32Z9tJ8AGFgAbAW8sSRgC0oieSRVwgXwT1SzZQ9LulHSm0p508/G9nm2O2x3jBg5prk7ioiIiIgYBMPpBX2o/lPebQ4wTlJ9GdSWwOxyPJfqP+H1urolwMja+Sa14y6qJWx9xQBwA7C5pI4VxN1T377iX7yC+Lo13t+cPq7/D8AdthdT3eONJYHs/o2yfSKA7dttHwS8ErgGuLKMsaJnExERERExLA23xOYvyvKyW4AvSVpX0muolkldUppcCfyrpA0lbQ58qGGIO4EjJI0oL7/vWav7AfB+SW+XtJakCZJ2KHWPA6+qxXE/8J/A5ZLeUTYtGAHsvorx3wnsJ2mcpE2odl1r9EFJm0saB3wauKKxQdmBbYKkzwPHlnYAPwO2k3S0pLXLb1dJO0p6uaQjJY2x/QLwNLCsiWcTERERETEsDfcPdB4OnEs1UzEf+Lzt6aXujFL3UKm/APhIre9HgIuAD1LNSFzTXWH7NknvB75O9dL846XdfcA3gYsknQhMsf3hUvch4GxgEtVSrz8ChwKPrGT8U4C9gFnldwHVdtJ1lwK/pFqC9hPgzFrdZpIWUS2FW0iVRE22fWu5x2ckvbPEfDZVEvt74OOl/9FUu7+NoNrs4Kgmnk2vdpkwhs584DIiIiIiWkR248qrGA4kzQKOtX19q2NpRkdHhzs7m9k4LiIiIiJi5UmaaftvXhMZtkvRIiIiIiIimpXEJiIiIiIi2t5wf8dmjWV7YqtjiIiIiIhoF5mxiYiIiIiItpfEJiIiIiIi2l4Sm4iIiIiIaHtJbCIiIiIiou1l84AYEHfNXsjE06a1OowhMSsfIo2IiIgYdjJjExERERERbS+JTYtI+rSk7w/xNd8i6f6hvGZERERExFBIYjNIJC2q/ZZLWlo7P9L2F20fOwjX3UnSLyXNl7RA0kxJ+wHY/rXt7Qf6mhERERERrZZ3bAaJ7VHdx5JmAcfavr6ZvpJeZvvFlbz0tcD3gP3L+a6AVnKsiIiIiIi2kBmbFpF0uqSp5XiiJEv6gKRHgBtK+W6SbikzL7+XNLmPMccDWwPn236+/H5j++ZSP1nSo+X40IZZpeckzSh160j6mqRHJD0u6VxJ6/VwveMldUrqXLZk4QA+nYiIiIiI/kliM7zsCewI7C1pAjANOBMYB3wCuErSRivo/xTwADBV0sGSNu6toe0rbI8qM0ubAX8CLivVXwG2A14HTAImAJ/rYYzzbHfY7hgxckw/bzUiIiIiYuAksRleTre92PZS4CjgOtvX2V5uezrQCezXW2fbBt4KzAL+A5gr6SZJ2/bWR9JawKXADNv/KUnAccDHbM+z/QzwReCwAbrHiIiIiIgBl3dshpeu2vFWwCGSDqiVrQ38vxUNYPtR4GQASVsA5wEXA2/qpctZwGjgw+V8I2AkMLPKcYDqHZ0RTd9FRERERMQQS2IzvLh23AVMsX3cSg9md0n6Dn9dYvYSkg4DDgd2tf1CKX4SWArsZHt2s9faZcIYOvPhyoiIiIhokSxFG76mAgdI2lvSCEnrlpf/N++tg6QNJZ0haZKktcpmAv8M3NpD278Dvg0cbPuJ7nLby4Hzga9LemVpO0HS3gN8fxERERERAyaJzTBluws4CPg08ATVDM4nWfHf2fPAROB64Gngf4HngPf10PYgYEPg5trOaD8vdadSbUJwq6Sny3j5/k1EREREDFuq3jePWDUdHR3u7OxsdRgRERERsZqTNNN2R2N5ZmwiIiIiIqLtZfOANiRpUS9V+9r+9ZAGExERERExDCSxaUPlo5oREREREVFkKVpERERERLS9JDYREREREdH2shQtBsRdsxcy8bRprQ5jyMzKx0gjIiIihpXM2Awzki6UdOYK6hdJetVQxhQRERERMdwlsVkJkmZJel7S+IbyOyVZ0sTBurbtUbb/tKrj1BMoSRNL3N0f6nxc0s8kvWPVI46IiIiIGHxJbFbeQ8Dh3SeSdgHWa104A2Js2XHttcB04MeS3tfakCIiIiIi+pbEZuVNAY6pnb8XuLj7RNK7JP2PpKcldUk6vd5Z0h6SbpG0oNS/r1a9oaRpkp6R9DtJ29T6WdKkcnyhpO+soO0OkqZLmifpfknvaebGbD9m+5vA6cBXJOXfSUREREQMa/kP68q7FdhA0o6SRgCHAlNr9YupEp+xwLuAEyUdDCBpS+DnwLeBjYDXAXfW+h4OnAFsCDwAnLWCOHpsK2l9qlmXS4FXlnbflbRTP+7x6tJ3+54qJR0vqVNS57IlC/sxbERERETEwEpis2q6Z23eAdwHzO6usD3D9l22l9v+A3AZsGepPhK43vZltl+w/ZTtemJzte3bbL8IXEKV+PSmt7b7A7NsX2D7Rdt3AFcB7+7H/c0pf47rqdL2ebY7bHeMGDmmH8NGRERERAysbPe8aqYANwFbU1uGBiDpjcCXgZ2BlwPrAD8s1VsAD65g3Mdqx0uAUSvRdivgjZIW1OpfVmJu1oTy57x+9ImIiIiIGHKZsVkFth+m2kRgP6plW3WXAj8FtrA9BjgXUKnrArZhcHUBN9oeW/uNsn1iP8b4B+DPwP2DE2JERERExMDIjM2q+wCwoe3FkurPczQwz/azkt4AHAH8stRdAny6vMx/NTCGKgGqL0dbVT8DvizpaODyUvY6YJHte1fUUdLGwCHA54GP2F7e18V2mTCGzny0MiIiIiJaJDM2q8j2g7Y7e6g6Cfh3Sc8AnwOurPV5hGqW5xSqZV53Um2xPJBxPQO8EziM6l2Zx4CvUC2J680CSYuBu0p8h9j+r4GMKyIiIiJiMMh2q2OI1UBHR4c7O3vK7yIiIiIiBo6kmbY7GsszYxMREREREW0viU1ERERERLS9JDYREREREdH2kthERERERETbS2ITERERERFtL4lNRERERES0vXygMwbEXbMXMvG0aa0OY1iZlQ+WRkRERAyZYTNjI2l7Sf8j6RlJyyX92yBf73RJU5tsO0PSsYMZz8qQdLekya2OIyIiIiKi1YZNYgN8Cphhe7TttWx/AUDSZEmWdHW9saTXlvIZQxmkpPdJWiZpUfk9JOkCSdsNZRwAtneyPaOZtpJmSdprkEOKiIiIiGiJ4ZTYbAXc3UvdE8Dukl5RK3sv8MdBj6pnv7U9ChgD7AUsBWZK2nkoLi5pSJcQDvX1IiIiIiL6a1gkNpJuAN4KnFNmQS6VdGatyfPANcBhpf0I4D3AJQ3j7C7pdkkLy5+71+q2lnRjWeo2HRjf0Hc3SbdIWiDp980s8bK9zPaDtk8CbgROb2a8MuvzpxLLQ5KOrNUdJ+neUnePpNeX8lmSTpX0B2CxpJfVZ2HK0rofSbqi9L1D0mtL3RRgS+Da8nw/VcoPLMvZFpTldjvW4vib6/X1PCIiIiIiWmVYJDa23wb8Gji5zIQ830Ozi4FjyvHeVLM7c7orJY0DpgHfAl4BnA1Mq83yXArMpEpovkA149Pdd0LpeyYwDvgEcJWkjfpxG1cDb+lrPEnrlxj3tT0a2B24s/Q7hCo5OgbYADgQeKp2jcOBdwFjbb/YQwwHAT8s17wUuEbS2raPBh4BDrA9yvZXy9K5y4CPAhsB11ElPi9v9nqSjpfUKalz2ZKF/XhUEREREREDa1gkNs2wfQswTtL2VP/xv7ihybuA/7M9xfaLti8D7gMOkLQlsCvwb7afs30TcG2t71HAdbavs73c9nSgE9ivHyHOoUoomhlvObCzpPVsz7XdvQTvWOCrtm935QHbD9eu8S3bXbaX9hLDTNs/sv0CVWK3LrBbL20PBabZnl7afw1YjyrRaup6ts+z3WG7Y8TIMb09l4iIiIiIQdc2iU0xBTiZatnajxvqNgMebih7GJhQ6ubbXtxQ120r4JCyJGuBpAXAHsCm/YhtAjCvr/FKDIcCJwBzJU2TtEPptwXw4Aqu0dVHDH+pt70ceJTq3nvykudV2neV+2j2ehERERERw0K7vTcxBXgAuNj2Ekn1ujlUCUXdlsB/A3OBDSWtX0tutgRcjruAKbaPW4XY/oFqOV2f49n+BfALSetRLVc7n2oZWxewzQqu4RXUQZUYASBpLWBz/rpcr7HvHGCXWnuV/rP7cb2IiIiIiGGhrRIb2w9J2hP4Uw/V1wHflnQEcCXwT8CrgZ/ZflJSJ3CGpE8DbwAOAH5a+k4Fbpe0N3A9sDbVEq4HbD/aWzxlE4MtgY8Dk4E39TUe8ALwRuBXVLupLQKWlX7fB86WdDNwB1WS80LDcrQV+XtJ/1ju68PAc8Ctpe5x4FW1tlcCp0l6O3AT8JHS/pYmr/USu0wYQ2c+SBkRERERLdJuS9GwfbPtOT2UPwXsD5xC9cL9p4D9bT9ZmhxBlVDMAz5P7R0d211UL95/mmpr6S7gk/T+fN4kaRHwNDCD6kX/XW3f1cR4a5UY55RY9gROKv1+CJxF9eL/M1Q7wXW/t9OMn1Atc5sPHA38Y3l/BuBLwGfL0rhP2L6f6l2gbwNPUiV6B9juaeOGiIiIiIhhTXZWG60OJJ0OTLJ9VCuu39HR4c7OzlZcOiIiIiLWIJJm2u5oLG+7GZuIiIiIiIhGSWwiIiIiIqLttdXmAdE726e3OoaIiIiIiFbJjE1ERERERLS9JDYREREREdH2kthERERERETbS2ITERERERFtL5sHtNhgf39GkoFtbT8g6Vxgtu0vDPR17pq9kImnTRvoYVdrs778rlaHEBEREbHayIzNSpA0S9JeDWXvk3Rzq2Jqhu0TBiOpiYiIiIhotSQ2w5ikzKhFRERERDQhic0Ak/RJSVc1lH1b0jfK8daSbpT0jKTpwPhau4mSLOkDkh4BbijlP5T0mKSFkm6StFOtzwxJx9bOe505knShpDNr5wdJulPS05IelLRPbYw/lRgfknTkwDydiIiIiIjBkcRm4E0F9pE0Fv4y63IoMKXUXwrMpEpovgC8t4cx9gR2BPYu5z8HtgVeCdwBXLKqQUp6A3Ax8ElgLPD/AbMkrQ98C9jX9mhgd+DOXsY4XlKnpM5lSxauakgRERERESstS51W3jWSXqydvxy4w/ZcSTcBhwDnA/sAT9qeKWlLYFdgL9vPATdJuraHsU+3vbj7xPZ/dR+XzQbmSxpje1WyiQ8A/2V7ejmfXcZfH1gO7CzpEdtzgbk9DWD7POA8gHU23darEEtERERExCrJjM3KO9j22O4fcFKt7iKge5ezo/jrbM1mwPx60gI83MPYXd0HkkZI+nJZKvY0MKtUje+hX39sATzYWFhiOxQ4AZgraZqkHVbxWhERERERgyqJzeC4BniNpJ2B/fnr0rG5wIZlVqTblj30r89+HAEcBOwFjAEmlnKVPxcDI2vtN2kyxi5gm54qbP/C9juATYH7qGaeIiIiIiKGrSQ2g8D2s8CPqN6nuc32I6X8YaATOEPSyyXtARzQx3CjgeeAp6gSmC821N8J/KOkkZImUS0xa8YPgPdLeruktSRNkLSDpI0lHViSr+eARcCyJseMiIiIiGiJvGMzeC4CjgX+uaH8iFI3D/gt1Qv8Y1cwzsVUmwjMLn3+DTixVv91qvd2Hgf+QDU7tBd9sH2bpPeX/luX/h8EFgKnUC2fM1XidFJv43TbZcIYOvPByYiIiIhoEdl553swlI0C7gM2sf10q+MZbB0dHe7s7Gx1GBERERGxmpM003ZHY3mWog0CSWsBHwcuXxOSmoiIiIiIVstStAFW3k15nGq3s31aHE5ERERExBohic0AK9slj2p1HBERERERa5IsRYuIiIiIiLaXxCYiIiIiItpeEpuIiIiIiGh7SWwiIiIiIqLtZfOAYUqSgW1tP9DqWJpx1+yFTDxtWqvDWK3MygdPIyIiIpqWGZs2JmljSU9KmtxQfoGky1oUVkRERETEkMuMTRuz/bikjwHnS3qN7aWS3g68C9hpIK8l6WW2XxzIMSMiIiIiBkpmbIaApFMlzZb0jKT7Jb1d0hsk/VbSAklzJZ0j6eW99F9H0tckPSLpcUnnSloPwPYU4H7g30vZfwIftv1E6bu5pB9LekLSQ5I+WBv3TZJurcXwLUlrl7qXSbKkkyQ9ANw3yI8pIiIiImKlJbEZZJK2B04GdrU9GtgbmAUsAz4GjAfeBLwdOKmXYb4CbAe8DpgETAA+V6s/Afhn4HLgf21fXq49AvgZcHvp8w7gk2VWB+BF4CMlhjcD+wD/0nDtA4FdgV16uLfjJXVK6ly2ZGETTyMiIiIiYnAksRl8y4B1gFdLWtv2LNsP2p5p+1bbL9qeRTXTsmdjZ0kCjgM+Znue7WeALwKHdbex/ShVorMXcGKt+27ABra/aPv5shHBD7r72r7d9u9KDH8Czushhi/anm97aWNsts+z3WG7Y8TIMSv5eCIiIiIiVl3esRlkth+Q9FHgdGAnSb8APg6MAs4GOoCRVH8XM3sYYqNSP7PKcQAQMKKh3d3AfNtza2VbAVtKWlArGwHMAJC0A/AfwN/XYvhdw7hdTd5qRERERETLZMZmCNi+1PYeVImGqZaWfY/qvZVtbW8AfJoqYWn0JLAU2Mn22PIbY3tUE5fuAv6v1m+s7dG2Dyj1/wn8LzCpxPC5HmJwP283IiIiImLIJbEZZJK2l/Q2SesAz1IlKcuA0cDTwKIyc3JiT/1tLwfOB74u6ZVlzAmS9m7i8r8Fnpd0iqR1JY2QtIukvy/1o4GFwGJJO/K379dERERERLSFLEUbfOsAXwZ2BF4AbgGOp9oE4DzgU8D/AFcAb+tljFOpZlNulTQemE014/OLFV3Y9ouS9qNa8vbJEsu9wGdKk1OAc6lmi+4oMVETrAQAACAASURBVOyxMje5y4QxdOaDkhERERHRIrKz0ihWXUdHhzs7O1sdRkRERESs5iTNtN3RWJ6laBERERER0faS2ERERERERNtLYhMREREREW0viU1ERERERLS9JDYREREREdH2kthERERERETbS2ITERERERFtLx/orJG0PXA51ccz1wc+b/sLrY1q4EkysK3tB/poNxmYanvzvsa8a/ZCJp42bYAijEaz8vHTiIiIiBXKjM1LfQqYYXu07bW6kxpJkyUtl7So/GZLOmOwg5E0Q5Ilvbah/JpSPnmwY4iIiIiIaAdJbF5qK+DuXurm2B5lexSwB/ABSQcPQUx/BI7pPpH0CmA34IkhuHZERERERFtIYlNIugF4K3BOmZW5VNKZPbW1/RBwC/DqWv9vSuqS9LSkmZLeUqt7g6TOUve4pLNrdbtJukXSAkm/72EW5hLgUEkjyvnhwI+B52tjrCPpG5LmlN83JK1Tq/+kpLml7p8b7nsdSV+T9EiJ7VxJ6/Xv6UVEREREtFYSm8L224BfAyeXWZnne2sraVvgzcCtteLbgdcB44BLgR9KWrfUfRP4pu0NgG2AK8s4E4BpwJml3yeAqyRtVBt3DnAP8M5yfgxwcUNIn6GaxXkd8FrgDcBnyzX2KeO+A9gW2Kuh71eA7UrfScAE4HO93XvDczi+JGydy5YsbKZLRERERMSgSGLTvM3KrMrTVMvDfgfc3F1pe6rtp2y/aPs/gHWA7Uv1C8AkSeNtL7LdnRAdBVxn+zrby21PBzqB/RqufTFwTNncYKzt3zbUHwn8u+0/234COAM4utS9B7jA9v/aXgyc3t1JkoDjgI/Znmf7GeCLwGHNPBDb59nusN0xYuSYZrpERERERAyKJDbNm2N7bJl1GQssBS7qrpR0iqR7JS2UtAAYA4wv1R+gmhW5T9LtkvYv5VsBh5SEaUHptwewacO1rwbeBnwImNJDbJsBD9fOHy5l3XVdDXXdNgJGAjNr1//vUh4RERER0Tay3fNKsL1Q0qXAFQDlfZpTgbcDd9teLmk+oNL+/4DDJa0F/CPwo7IJQBcwxfZxfVxviaSfAydSLWVrNIeXbnywZSkDmAtsUWu7Ze34SaoEbSfbs5u6+YiIiIiIYSgzNitB0iiq5VrdicRo4EWqncpeJulzwAa19kdJ2sj2cmBBKV4GTAUOkLS3pBGS1i1bS/f03ZhPA3vantVD3WXAZyVtJGk81TsyU0vdlcD7JL1a0kjg892dSjznA1+X9MoS6wRJe/f7oUREREREtFBmbJq3maRF5fg5qo0DjiznvwB+TvXuzWLg67x0+dc+wNklsXgYOMz2s0CXpIOAr1IlJ8uA26hmZl7C9hz+OgvT6EyqROoP5fyHpQzbP5f0DeAGYDnVpgJH1vqeSpUI3VqSotnA98o9NW2XCWPozEckIyIiIqJFZLvVMcRqoKOjw52dna0OIyIiIiJWc5Jm2u5oLM9StIiIiIiIaHtJbCIiIiIiou0lsYmIiIiIiLaXxCYiIiIiItpeEpuIiIiIiGh7SWwiIiIiIqLtJbGJiIiIiIi2lw90tilJs4BjbV/f6lgA7pq9kImnTWt1GLECs/IB1YiIiFiNZcamxSTtIekWSQslzZP0G0m7DtG1Z0g6thxPlrRc0qLye1TSlUMVS0RERETEqkhi00KSNgB+BnwbGAdMAM4AnmtRSHNsjwJGA7sB9wG/lvT2FsUTEREREdGUJDattR2A7ctsL7O91PYvbf9B0jaSbpD0lKQnJV0iaWxPg0haS9Jpkh4s7a+UNK7UrStpailfIOl2SRuvKChXHrX9OeD7wFcG+sYjIiIiIgZSEpvW+iOwTNJFkvaVtGGtTsCXgM2AHYEtgNN7GefDwMHAnqX9fOA7pe69wJjS/xXACcDSfsR4NfB6Ses3Vkg6XlKnpM5lSxb2Y8iIiIiIiIGVxKaFbD8N7AEYOB94QtJPJW1s+wHb020/Z/sJ4GyqxKUn/wJ8psyyPEeVAL1b0suAF6gSmkllVmhmuW6z5lAlWX8zW2T7PNsdtjtGjBzTjyEjIiIiIgZWEpsWs32v7ffZ3hzYmWrG5RuSXinpckmzJT0NTAXG9zLMVsCPy1KzBcC9wDJgY2AK8AvgcklzJH1V0tr9CHECVeK1YOXuMCIiIiJi8CWxGUZs3wdcSJXgfIkqoXiN7Q2Ao6hmTnrSBexre2ztt67t2bZfsH2G7VcDuwP7A8f0I6x/AO6wvXglbysiIiIiYtAlsWkhSTtIOkXS5uV8C+Bw4FaqnckWAQskTQA+uYKhzgXOkrRVGWcjSQeV47dK2kXSCOBpqqVpy/qIS5ImSPo8cCzw6VW60YiIiIiIQZYPdLbWM8AbgY+XHc8WUG3//Emql/0vBhYCD1AtKftYL+N8k2o255eSNgP+DFwB/ATYhCrx2ZwqUbqCallbTzaTtKiMtRC4BZhs+9a+bmSXCWPozAcgIyIiIqJFZLvVMcRqoKOjw52dna0OIyIiIiJWc5Jm2u5oLM9StIiIiIiIaHtJbCIiIiIiou0lsYmIiIiIiLbXdGIj6XBJO5bj7SXdJOkGSTsMXngRERERERF968+MzZnAvHL8NeA24CbguwMdVERERERERH/0Z7vnjWw/LmldYA/g3VTfRHlyUCKLiIiIiIhoUn8SmyckTQJ2AW63/ZykkVTfPImIiIiIiGiZ/iQ2XwBmUn21/tBS9nbg9wMdVKtI2h64HJgErA983vYXBvF6pwOTbB/VRNsZwFTb3x+seFbFXbMXMvG0aa0OI4aRWflga0RERAyhpt+xsX0hsCmwue3ppfh3wGGDEFerfAqYYXu07bW6kxpJkyVZ0tX1xpJeW8pnDGWQkt4naZmkReX3kKQLJG03lHFERERERAwXK0xsJK1V/wHPAs/Wzp8E/jwUgQ6RrYC7e6l7Athd0itqZe8F/jjoUfXst7ZHAWOAvYClwExJO7conoiIiIiIlulrxuZFqg0Cevt117c9STcAbwXOKbMgl0o6s9bkeeAaygyVpBHAe4BLGsbZXdLtkhaWP3ev1W0t6UZJz0iaDoxv6LubpFskLZD0e0mT+4rb9jLbD9o+CbgROL2Z8cqsz59KLA9JOrJWd5yke0vdPZJe3+cDjIiIiIhoob4Sm62BV63g113f9my/Dfg1cHKZCXm+h2YXA8eU472pZnfmdFdKGgdMA74FvAI4G5hWm+W5lOo9pfFU7yy9t9Z3Qul7JjAO+ARwlaSN+nEbVwNv6Ws8SeuXGPe1PRrYHbiz9DuEKjk6BtgAOBB4qh8xREREREQMuRVuHmD74caysgRtY+Bx28sHK7DhyPYtksaVTQaOoUp01qs1eRfwf7anlPPLJH0YOKDMCO0K7GX7OeAmSdfW+h4FXGf7unI+XVInsB9wUZMhzqFKYvoa70fAcmBnSY/YngvMLe2OBb5q+/Zy/kBvF5N0PHA8wIgN+pN/RUREREQMrKY3D5C0gaSLqd6zmQ0slXSRpDGDFt3wNAU4mWrZ2o8b6jYDGpPBh4EJpW6+7cUNdd22Ag4py8YWSFpA9b2gTfsR2wT++hHVXscrMRwKnADMlTRN0g6l3xbAg81czPZ5tjtsd4wYuab9M4iIiIiI4aTpxIZq6dL6wM5UsxS7ACNL+ZpkCnAS1WzIkoa6OVQJRd2WVIngXGDDsgysXtetC5hie2ztt77tL/cjtn+gWk7X53i2f2H7HVSJ033A+bV+2/TjmhERERERLdefxGYf4Gjbf7T9nO0/Au8v5WsM2w8BewKf6aH6OmA7SUdIepmkQ4FXAz8ry/o6gTMkvVzSHsABtb5TqZas7S1phKR1yzbTm68ontJ2a0nfBiYDZ/Q1nqSNJR1YkqzngEVU3ycC+D7wCUl/r8okSY3JWkRERETEsNKfD3Q+C2zES5dPjaf6j/EaxfbNvZQ/JWl/4JvA96jeT9nf9pOlyRFU78vMA35L9Y7O2NK3S9JBwFeBy6gSjduAE3sJ402SFgGi2nZ7BrCr7XubGG8t4BSq2SdTbRxwUun3w7LZwaVUS9tmAUfzt0vsXmKXCWPozAcZIyIiIqJFZLu5htJnqV6YP5vqP7lbAR8DpnZ/yDLWXB0dHe7s7Gx1GBERERGxmpM003ZHY3l/ZmzOonpX5EiqF+HnUO2e9YOBCTEiIiIiImLl9Ocdm28C99vey/arbe8F3CvpG4MUW0RERERERFP6k9gcTvXye91MqvdGIiIiIiIiWqY/iY2BEQ1lI/o5RkRERERExIDrT1Lya+ALktYCKH+ezl+/mxIREREREdES/dk84CPAz6i+VP8w1ccl5/LSb7FEREREREQMuaYTG9uPSno98AZgC6ov1N9me/lgBRcREREREdGMpr9jE7Ei62y6rTd9bzbIi8E1Kx+BjYiIWOP19h2bvPg/TEmaLOnRVscREREREdEOktgMEEmzJC2VtKj2O6fVcUVERERErAn6s3lA9O0A29e3OoiVJWmE7WWtjiMiIiIior8yYzPIJL1P0s2SviZpvqSHJO1bqx8n6QJJc0r9Nb2Ms6OkGZIWSLpb0oG1uv0k3SPpGUmzJX2ifu2GcSxpUjm+UNL3JF0naTHwVknrlFgfkfS4pHMlrTcoDyciIiIiYoAksRkabwTuB8YDXwV+IEmlbgowEtgJeCXw9cbOktYGrgV+Wdp8CLhE0valyQ+Af7E9GtgZuKEfsR0BnAWMBm4GvgJsB7wOmARMAD7XU0dJx0vqlNS5bMnCflwyIiIiImJgJbEZWNeUGZXu33Gl/GHb55dlXhcBmwIbS9oU2Bc4wfZ82y/YvrGHcXcDRgFftv287Ruovil0eKl/AXi1pA3KOHf0I+af2P5N2bb7OeA44GO259l+BvgicFhPHW2fZ7vDdseIkWP6ccmIiIiIiIGVxGZgHWx7bO13fil/rLuB7SXlcBTV94Dm2Z7fx7ibAV0N3wx6mGo2BeCfgP2AhyXdKOlN/Yi5q3a8EdXs0czu5Az471IeERERETFsJbFprS5gnKSxfbSbA2whqf73tSUwG8D27bYPolqmdg1wZWmzmCpRAUDSJj2MXf+Q0ZPAUmCnWnI2xvao/txURERERMRQy65oLWR7rqSfA9+V9EFgEfAm2zc1NP0dVZLyKUn/AbwZOADYVdLLgUOAn9leKOlpoHtns98DO0l6HXAfcHof8SyXdD7wdUkn2/6zpAnAzrZ/saK+u0wYQ2c+nhgRERERLZIZm4F1bcN3bH7cRJ+jqd6RuQ/4M/DRxga2nwcOpHof50ngu8Axtu+rjTGrJDUnAEeVfn8E/h24Hvg/qs0B+nIq8ABwaxnvemD7FXeJiIiIiGgt2e67VUQfOjo63NnZ2eowIiIiImI1J2mm7Y7G8szYRERERERE20tiExERERERbS+JTUREREREtL0kNhERERER0faS2ERERERERNtLYhMREREREW0vH+iMAXHX7IVMPG1aq8OI6LdZ+bBsRETEamHYz9hI2l7S/0h6RtJySf/W6piaJWmGpGNbHUdERERExOpu2Cc2wKeAGbZH217L9he6KyR9WtJDkhZJelTSFS2Mc0iVpOnZkvA9LWmmpNMkrdPq2CIiIiIihlo7JDZbAXc3Fkp6L3A0sJftUUAH8Kshjm1QSGp2ieDJtkcDmwKnAIcB10nSoAUXERERETEMDevERtINwFuBc8qszKWSzizVuwK/sP0ggO3HbJ9X6ztG0g8kzZU0W9KZkkbU6o+TdG+Z8bhH0utL+Y5lNmSBpLslHVjrc6Gk70iaVvr9TtI2tfp3SLpP0kJJ5wCq1W0j6QZJT0l6UtIlksbW6mdJOlXSH4DFkj4p6aqG5/FtSd9ofE62F9ueARwIvAl4V2m/VpnFebBc90pJ40rdupKmlvIFkm6XtHGpGyfpAklzJM2XdE3//uYiIiIiIobWsE5sbL8N+DXVzMQo4Pla9a3AMSUB6KgnLcVFwIvAJODvgHcCxwJIOgQ4HTgG2IAqIXhK0trAtcAvgVcCHwIukbR9bdzDgTOADYEHgLPKmOOBq4DPAuOBB4E31/oJ+BKwGbAjsEWJoe5wqqRkLDAV2Kc7+SmzOIcCU1bwvB4BOoG3lKIPAwcDe5brzge+U+reC4wpcbwCOAFYWuqmACOBncpz+HpP15N0vKROSZ3LlizsLayIiIiIiEE3rBObFbE9lSrx2Bu4EfizpNMAyszDvsBHy2zGn6n+c35Y6X4s8FXbt7vygO2Hgd2AUcCXbT9v+wbgZ1QJR7erbd9m+0XgEuB1pXw/4B7bP7L9AvAN4LFavA/Ynm77OdtPAGdTJRx137LdZXup7bnATcAhpW4f4EnbM/t4NHOAceX4X4DP2H7U9nNUidS7S5L0AlVCM8n2MtszbT8tadPy7E6wPd/2C7Zv7OlCts+z3WG7Y8TIMX2EFRERERExeNp6u2fbl1DNqKxNNTNxiaT/oZqZWBuYW3vdZC2gqxxvQTWj0mgzoMv28lrZw8CE2vljteMlVInQX/rWYrOkv5xLeiXwLarZlNElnvkN1+9qOL8IOBE4HziKFczW1EwAbinHWwE/llS/n2XAxmWsLYDLy6zQVOAzpWye7cbYIiIiIiKGrbadsakrswo/BP4A7EyVIDwHjLc9tvw2sL1T6dIFbNPDUHOALSTVn8uWwOwmwphLlRQA/P/t3XmcXFWd/vHPQ2QLCYkQtkRCRGBkc1AbFBVBxWFxw3EddgcE3BVUFvXHooAyCi7oMKCC7KAoqFEBUTZZpIMoA4IDJCEkYQkhKxAgeX5/3NNwKas7naTS1ZU879frvrx1zj3nnnu401PfnKUoC/g3ruWfDBh4le21qQKVxkX+bvh8OfAqSdsA76QaIeqVpI2B11JN34PqOfeo9cFI22vYnlr67HjbWwFvKPXvX8qsU1//ExEREREx2HXsiI2kA4HHqKZrzaeakrY1cKvt6ZKuAr5VfvdmHvBy4GVlWtUPgVMl3QjcThXkPAvcWur6oqRvUa2ReRfVRgWLM55qk4N/B34JfALYsJY/HJgNzJI0BvjC4iq0/bSknwEXAn8ua2ia9cXQ0sbTgD8DvylZZwAnSjrA9mRJ6wFvsH2FpLcAM4C7gTnl+ReWvvst8ANJn6Dqux1tX99XW7cdM4Lu/NBhRERERLRJJ4/YzAGOAR4EZgGnAB+zfWPJ3x9YjeqL+xPAz6i2RaaM7pxIFTDMpRoZWcf2M1QbCexB9aX/B8D+tu9ZXGNsz6BaD/N14HFgc+BPtUuOB15DFdyMB37ez+f8CbAtzaehnS5pLvAI1Zqey4Dda1PpvkMVZF1VrrsFeF3J25CqT+YAf6dap3R+yduPKtC5B3gU+Gw/2xoRERER0RayG2c/xWAiaSxVgLGh7Tntbk9vurq63N3d3e5mRERERMQKTtIE212N6Z08YrPCK2t9DgcuHsxBTUREREREu3XsGpsVnaS1qKaYTaba6jkiIiIiInqRwGaQsj2fF7aSjoiIiIiIPmQqWkREREREdLwENhERERER0fES2ERERERERMfLGptoiTunzmbcUePb3YyItpuUH6qNiIhoi4zYtIgkS9qsBfVcK+ngVrSpFSTtIumhdrcjIiIiIqIvCWwGWAkUFkma13Ds2O62RURERER0qkxFa49ptl/W7kZERERERKwoMmLThKQjJU2VNFfSvZLeJmkHSTdLmiVpuqTTJa3WS/nVJX1T0oOSHpF0hqQ1l6Idr5D0B0mPS5oh6QJJI2v5kyQdLeluSU9IOlvSGiVvlKRfl/bOlHSDpFVK3mhJl0l6TNJESZ+u1bmmpHNKfXcD2y9xB0ZEREREDLAENg0k/QvwSWB728OB3YBJwELgc8AoYEfgbcDHe6nmG8AWwHbAZsAY4P8tTXOAk4HRwJbAxsBxDdfsU9r4inLPL5f0I4CHgPWADYBjAJfg5lfAX0u73gZ8VtJupdyxpa5XlHoP6LVx0iGSuiV1L3xy9lI8XkREREREaySw+WcLgdWBrSStanuS7fttT7B9i+3nbE8C/gfYubGwJAEfBT5ne6btucBJwIdrl40uIyn1Y63GumzfZ/tq2wtsPwac2uSep9ueYnsmcCLwHyX9WWAjYBPbz9q+wbapRmDWs32C7WdsPwCcVWvfB4ETS9unAN/traNsn2m7y3bXkKEj+ujSiIiIiIjlK2tsGti+T9JnqUZGtpZ0JXA4MIwqsOgChlL13YQmVaxX8idUMQ5QjbwMqV3TrzU2ktanCix2AoZTBaJPNFw2pXY+mWp0B+C/yjNcVdpxpu2vA5tQAqtauSHADeV8dJM6IyIiIiIGtYzYNGH7QttvogoCTDW17L+Be4DNba9NNbVLTYrPAJ4CtrY9shwjbA9biqacXO7/qnLPfZvcc+Pa+VhgWnmGubaPsL0p8C7gcElvowpaJtbaNtL2cNt7ljqmN6kzIiIiImJQy4hNg7LGZgzwJ+BpqiBlFaoRkznAPEmvBD4GPNZY3vYiSWcBp0n6pO1HJY0BtrF95RI2ZzgwG5hV6vhCk2s+IenXwJNUwdYl5TneSRWI3V/avbAcfwbmSDqSajToGar1O2vavg24FDha0q3AWsCn+tPQbceMoDs/TBgRERERbZIRm3+2OvB1qpGXh4H1qQKGzwN7A3Op1qRc0kcdRwL3AbdImgP8HviXWv7oJr9j874m9RwPvIYquBkP/LzJNRcCVwEPlONrJX3zct95wM3AD2xfa3sh1QjOdsDE8pw/BHoWyRxPNf1sYqn3vD6eMyIiIiJiUFC1njw6kaRJwMG2f9/utnR1dbm7u7vdzYiIiIiIFZykCba7GtMzYhMRERERER0vgU1ERERERHS8bB7QwWyPa3cbIiIiIiIGg4zYREREREREx0tgExERERERHS+BTUREREREdLyssYmWuHPqbMYdNb7dzYgY1CblR2wjIiKWm4zYdDhJ4yRZ0mKDVEkHSrpxINoVERERETGQEtgMMEmTJD0jaVRD+h0lQBk3gG2xpM3K+XGSnpU0txz/kHS6pI0Gqj0REREREUsrgU17TAT+o+eDpG2BNdvXnOddYns4sA7wXmBDYEKCm4iIiIgY7BLYtMd5wP61zwcA5/Z8kDRC0rmSHpM0WdKXJa1S8oZI+qakGZIeAF40ab+U/ZGk6ZKmSvqapCFL0jjbz9q+C/gQ8BhwxFI+Z0RERETEgEhg0x63AGtL2rIEHR8Czq/lfw8YAWwK7EwVBH2k5H0UeCfwaqALeH9D3T8BngM2K9f8G3Dw0jTS9kLgCmCnZvmSDpHULal74ZOzl+YWEREREREtkcCmfXpGbd4O3ANMLek9gc7RtufangR8C9iv5H8Q+LbtKbZnAif3VChpA2AP4LO259t+FDgN+PAytHMa1dS0f2L7TNtdtruGDB2xDLeIiIiIiFg22e65fc4DrgdeTm0aGjAKWA2YXEubDIwp56OBKQ15PTYBVgWmS+pJW6Xh+iU1Bpi5DOUjIiIiIpa7BDZtYnuypInAnsBBtawZwLNUQcrdJW0sL4zoTAc2rl0/tnY+BVgAjLL93LK2sazreRfw+2WtKyIiIiJiecpUtPY6CHir7fm1tIXApcCJkoZL2gQ4nBfW4FwKfFrSyyS9FDiqp6Dt6cBVwLckrS1pFUmvkLTzkjRK0qqStgQuotoZ7dSlfcCIiIiIiIGQEZs2sn1/L1mfotpA4AHgaeAs4Mcl7yxgC+CvwBzgm8Bba2X3B75ONdozvNTxjX426UOS9gJEtbbmauC1tqctruC2Y0bQnV9Vj4iIiIg2ke12tyFWAF1dXe7u7m53MyIiIiJiBSdpgu2uxvRMRYuIiIiIiI6XwCYiIiIiIjpeApuIiIiIiOh4CWwiIiIiIqLjJbCJiIiIiIiOl8AmIiIiIiI6XgKbiIiIiIjoeCv1D3RKOg7YzPa+y6l+A5vbvk/SGcBU219dHvfq5f7nAA/Z/vLyvtedU2cz7qjxy/s2ESutSfkB3IiIiD513IiNpEmSdm1IO1DSje1qU3/YPmx5BDXl2RdKmlc7Tm/1fSIiIiIiBrOVesSmL5JeYvu5drejn262/aZ2NyIiIiIiol06bsSmL5K+IOmyhrTvSfp2OX+5pOskzZV0NTCqdt04SZZ0kKQHgT+U9J9KeljSbEnXS9q6VuZaSQfXPvc6ciTpHElfq31+j6Q7JM2RdL+k3Wt1PFDaOFHSPq3pHZD0UUn3SZop6ZeSRpf04yV9r5yvKmm+pFPK5zUlPS3ppa1qR0REREREq61QgQ1wPrC7pJFQjboAHwLOK/kXAhOoApqvAgc0qWNnYEtgt/L5t8DmwPrA7cAFy9pISTsA5wJfAEYCbwYmSVoL+C6wh+3hwBuAO5b1fuWebwVOBj4IbARMBi4u2dcBu5Tz7YGHqfoBYEfgXttPNKnzEEndkroXPjm7Fc2MiIiIiFgqnToV7XJJ9WliqwG3254u6XrgA8BZwO7ADNsTJI2l+tK+q+0FwPWSftWk7uNsz+/5YPvHPedls4EnJI2wvSzf5A8Cfmz76vJ5aql/LWARsI2kB21PB6b3o77XS5pV+7y77Vsartmn3PP2cq+jy7OMA24GNpe0LlWQ9SPg45KGUQU41zW7qe0zgTMBVt9oc/ejnRERERERy0WnjtjsZXtkzwF8vJb3E6Bnl7N9eWG0ZjTwRD1ooRq1aDSl50TSEElfL1PF5gCTStaoJuWWxMbA/Y2JpW0fAg4DpksaL+mV/ajvlnp/NAlqoHr+55/X9jzgcWCM7aeAbqog5s1UgcxNwBvpI7CJiIiIiBgsOjWw6cvlwKskbQO8kxemjk0HXlpGRXqMbVK+PvKwN/AeYFdgBDCupKv873xgaO36DfvZxinAK5pl2L7S9tuppovdQzXy1ArTgE16PpR+WJcyWkQVvLwVeDVwW/m8G7ADcH2L2hARERERsVyshP7fNAAAIABJREFUcIGN7aeBn1Gtp/mz7QdL+mSqUYnjJa0m6U3AuxZT3XBgAdXIxlDgpIb8O4B/lzRU0mZUU8z640fARyS9TdIqksZIeqWkDSS9uwQdC4B5wMJ+1rk4F5Z7bidp9fIst9qeVPKvA/YH7rb9DHAtcDAw0fZjLWpDRERERMRy0alrbBbnJ1Rfyv+zIX3vkjeTal3JuVSL93tzLtWoxdRS5ivAx2r5p1Gt23kE+BvV6NCuLIbtP0v6SCn/8lL+E8Bs4Aiq6XOmCpw+3ls9S8L2NZK+AlwGvJRqqtmHa5fcBKzJC6MzdwNP08/Rmm3HjKA7PyAYEREREW0ie8Vb8102CrgH2ND2nHa3Z2XQ1dXl7u7udjcjIiIiIlZwkibY7mpMX+GmoklaBTgcuDhBTURERETEymGFCmzK2pQ5wNuBY9vcnJaRdIakeU2OM9rdtoiIiIiIwWCFWmNTtkse1u52tJrtw6i2gI6IiIiIiCZWqBGbiIiIiIhYOSWwiYiIiIiIjpfAJiIiIiIiOl4Cm4iIiIiI6Hgr1OYBy4skA5vbvq/dbRms7pw6m3FHjW93MyKinyblB3UjImIF03EjNpL2ltRdtjueLum3kt7U7nYtDUnHSJpYnuUhSZcsY327SHqoVe2LiIiIiOgUHRXYSDoc+DZwErABMBb4AfCedrarN5J6HRGTdACwH7Cr7WFAF3DNQLUtIiIiImJF0jGBjaQRwAnAJ2z/3PZ828/a/pXtL0haXdK3JU0rx7clrV7KHijpxob6LGmzcn5O+RHMqyXNlXSdpE16acfqkr4p6UFJj5Rya5a8XcrIy5GSHgbO7uORtgeutH0/gO2HbZ9Z6vmApAkN9z1C0uXlfE9Jd5e2TpX0+fLjpL8FRtd+wHO0pFUkHSXpfkmPS7pU0jqlnnGlHz4iaYqkJyQdJml7SX+TNEvS6Uv4nyoiIiIiYsB1TGAD7AisAfyil/wvAa8HtgP+FdgB+PIS1L8P8FVgFHAHcEEv130D2KLcZzNgDPD/avkbAusAmwCH9HG/W4D9JX1BUpekIbW8XwIvl7RlLW1f4Lxy/iPgUNvDgW2AP5QfJ90DmGZ7WDmmAZ8G9gJ2BkYDTwDfb2jL64DNgQ9RjYh9CdgV2Br4oKSdmz2ApEPKtMDuhU/O7uNRIyIiIiKWr04KbNYFZth+rpf8fYATbD9q+zHgeKqpXv013vb1thdQfbHfUdLG9QskCfgo8DnbM23PpZoW9+HaZYuAY20vsP1UbzezfT7wKWA34DrgUUlHlbwFwCVUwQyStgbGAb8uxZ8FtpK0tu0nbN/ex3MdCnzJ9kOl3uOA9zdMk/uq7adtXwXMBy4q/TgVuAF4dS/PcKbtLttdQ4aO6KMJERERERHLVycFNo8Do/pYtzIamFz7PLmk9deUnhPb84CZTcqvBwwFJpRpWrOA35X0Ho/Zfro/N7R9ge1dgZHAYcAJknYr2T8B9i7B1H7ApSUwAXgfsCcwuUyb27GP22wC/KLW3r8DC6nWKPV4pHb+VJPPw/rzPBERERER7dJJgc3NwNNU06qamUb1Jb7H2JIG1SjE0J4MSRs2Kb9xLX8Y1XSyaQ3XzKD6or+17ZHlGFEW//dwP57lRcpaoZ8Cf6OaWobtW4BngJ2AvXlhGhq2b7P9HmB94HLg0j7uPQXYo9bekbbXKKMxERERERErhI4JbGzPplrL8n1Je0kaKmlVSXtIOgW4CPiypPUkjSrXnl+K/xXYWtJ2ktagmo7VaE9Jb5K0GtVam1ttT6lfYHsRcBZwmqT1ASSNqY2y9FvZ0OAdkoaXBf57UK1pubV22bnA6cBztm8s5VaTtI+kEbafBeZQjcBANdKybtlooccZwIk9myGU/hmUu8hFRERERCytjvqBTtunSnqEalOAC4C5wATgROB2YG2qUQ+AnwJfK+X+IekE4PdUIy5HU609qbsQOJZqk4LbqdbsNHMkVdB0SwmgpgL/DVy5hI8zBziGKvgaQjV17mM9AUxxHlWQ9dWGsvsBp5cNB+6lrMWxfY+ki4AHSt5WwHcAAVdJGg08SrV+54olbG+fth0zgu784F9EREREtInsJZ45tcKRdA7wkO0l2UVtuSvbSD8KvMb2/7W7PX3p6upyd3d3u5sRERERESs4SRNsdzWmd8xUtJXUx4DbBntQExERERHRbh01Fa3TSDqGarpZoxts77GYspOoppD1tllCREREREQUCWwA2wcup3pPovqdm6UpO661rYmIiIiIWHFlKlpERERERHS8BDYREREREdHxEthERERERETHS2ATEREREREdL5sHREvcOXU2444a3+5mRMQgNik/4hsREctRRmxWUpLOl3Rcu9sREREREdEKHR/YSPqwpFslzZf0aDn/uCS1u21LQtJYSfNqh8sz9Xzeqd1tjIiIiIgYrDo6sJF0BPAd4L+ADYENgMOANwKrNbl+yIA2sAlJTaf/2X7Q9rCeoyT/ay3thiZ1tf15IiIiIiIGg44NbCSNAE4APm77Z7bnuvIX2/vYXiDpHEn/Lek3kuYDb5E0QtK5kh6TNFnSlyWtUuo8TtL5tXuMKyMnLymfD5T0gKS5kiZK2qd27X9K+rukJyRdKWmTWp4lfULS/wH/twzPfL6k70v6XXmenSS9W9IdpU0PSvpKQ5k3S7pF0mxJUyTt16TetSVdL+k0Vd5ZnmWupIckfa6X9hwiqVtS98InZy/tY0VERERELLNO3jxgR2B14IrFXLc3sCfwTqpRnDOBEcCmwLrAVcB04Ed9VSJpLeC7wPa275W0EbBOydsLOAZ4F1XgchRwEfCGWhV7Aa8Dnur3E/b9PLcCq1KNTu0L3A1sC1wj6S+2fy3p5cB44CDg58BI4GUNzzUK+B3wa9vHlbSzgffYvknSOsC4Zg2xfSZVf7L6Rpt7GZ8rIiIiImKpdeyIDTAKmGH7uZ4ESTdJmiXpKUlvLslX2P6T7UXAs8CHgKPLCM8k4FvAP41i9GIRsI2kNW1Pt31XST8UONn230t7TgK2q4/alPyZtpc1sPmF7ZttL7K9wPYfbP9v+fxX4GJg53LtvsDvbF9q+znbM2zfUatrDHAdcEFPUFM8C2wlaXhp8+3L2OaIiIiIiOWqkwObx4FR9TUrtt9ge2TJ63m2KbUyo6hGbSbX0iZTfcHvk+35VEHRYcB0SeMlvbJkbwJ8pwRVs4CZgBrqnUJrvKgeSTtKurZMrZsNHEz1nAAbA/f3Ude7qUZ9zmpIf2/Je7DU/brWND0iIiIiYvno5MDmZmAB8J7FXFefIjWDajSiPpIyFphazucDQ2t5G76oIvtK228HNgLu4YWAYApwqO2RtWNN2zf10o5l0VjPxcBlwMa2RwA/pAqqetr1ij7qOgP4IzBe0vPPbftW2+8G1gd+Xe4RERERETFodewaG9uzJB0P/KBs7fw74EngVcBavZRZKOlS4ERJ+1OtkTkc+Ga55A7gSEljgdnA0T1lJW1AtUbmGqp1MvOAhSX7DOCrku6wfVfZ2ODfbP+0pQ/d3HBgpu2nJb0e+DBVMAJwPvA3Se+jWos0EhhTpqxBFSQdBvwY+KWkd1IFRe+lWnMzR9Lc2nP2atsxI+jOj+9FRERERJt08ogNtk+hCky+CDwKPAL8D3AkcFMvxT5FNTLzAHAjcCHVF3tsXw1cAvwNmMALAQJUfXUEMI1qqtnOwMdLuV8A3wAuljQH+F9gjxY95uJ8DDi5BCDHAJf2ZNieSLWhwZGlzbdTbTBA7RpTbS7wKPALqql6BwCTy7McRP/XIEVEREREtIWq77URy6arq8vd3d3tbkZERERErOAkTbDd1Zje0SM2ERERERER0MFrbDqVpJ2A3zbLsz1sgJsTEREREbFCSGAzwGzfACSAiYiIiIhooUxFi4iIiIiIjpfAJiIiIiIiOl4Cm4iIiIiI6HgDssZG0r9Q/Xr9ZlQ/nnms7a8OwH3PAR6y/eXlfa8m9zawue37Bvre7XDn1NmMO2p8u5sRER1uUn7oNyIiltJAjdh8EbjW9nDbq/QENZJ2kbRI0jxJcyXdK+kjA9SmfpE0TpIlvaQhfSNJP5I0vbT9HknHS1prANp0oKSFpd/mSZoo6WxJWyzve0dEREREDEYDFdhsAtzVS960ss3x2sCRwFmStmq8qDGwaCdJ6wA3A2sCO9oeDrwdGAm8YoCacXPptxHArsBTwARJ2wzQ/SMiIiIiBo3lHthI+gPwFuD0MrpwoaSvNV7nyuXAE8BWtZGSgyQ9CPyh1PduSXdJmiXpWklb1u71akm3lxGUS4A1ankHSrqxoW2WtFk5X1PStyRNljRb0o2S1gSuL5fPKu3fETgcmAvsa3tSaf8U25+x/bcmffAOSX+RNEfSFEnH1fLWkHS+pMfLM90maYNamx8ozzNR0j5N+m2h7fttfxy4DqjX/XpJN5V6/yppl4b+aFq3pI9K+nvJu1vSaxrvGxERERExmCz3wMb2W4EbgE+WEYZnml0naRVJ76Ua9bizlrUzsCWwW5lqdRHwWWA94DfAryStJmk14HLgPGAd4KfA+5agqd8EXgu8oZT/IrAIeHPJH2l7mO2bqUZIfm57UT/rng/sX57tHcDHJO1V8g6gGnXZGFgXOAx4qkxp+y6wRxkRegNwx2Lu83NgJwBJY4DxwNfK83weuEzSen3VLekDVMHR/lSjaO8GHu/nc0ZEREREtMVg2BVttKRZwAzgWGA/2/fW8o+zPd/2U8CHgPG2r7b9LFUwsibVF/PXA6sC37b9rO2fAbf1pwGSVgH+E/iM7allFOQm2wt6KbIuML2/D2j7Wtt32l5URnQuogrYAJ4t9W1W7jvB9pyStwjYRtKatqfb7m06X49pVEEMwL7Ab2z/ptz3aqAb2HMxdR8MnGL7tjKKdp/tyc1uJukQSd2Suhc+Obu/3RERERER0XKDIbCZZnuk7XVsb2f74ob8KbXz0cDzX7LLiMkUYEzJm2rbteubfiFvYhTVtLX7+3n948BG/bwWSa+T9EdJj0maTTUqM6pknwdcCVwsaZqkUyStans+VSB3GDBd0nhJr1zMrcYAM8v5JsAHyjS0WSV4fBOw0WLq3ph+9oPtM2132e4aMnREv/oiIiIiImJ5GAyBzeLUA5VpVF/YAZAkqi/iU6lGUMaUtB5ja+fzgaG1shvW8mYAT9N84b+bpP0eeG8Z6emPC4FfAhvbHgGcAQigjC4db3srqpGnd1JNA8P2lbbfThVE3QOctZj7vJdq2h9UAd95JWjsOday/fXF1D2FgdsAISIiIiKiJTohsKm7FHiHpLdJWhU4AlgA3ES1S9lzwKclvUTSvwM71Mr+Fdha0naS1qC2yL6M/PwYOFXSaElDJO0oaXXgMappW5vW6jqVav3JTyRtAtWaFkmnSnpVk3YPB2baflrSDsDePRmS3iJpW0lDgDlUU9MWStqgbJSwVnnGecDCxopLW18u6XvALsDxJet84F2SdivXrKFqe+2XLabuHwKfl/RaVTbrecaIiIiIiMFq0Gyh3B+275W0L/A9qmlXdwDvsv0MQAlmzqJaMP8bqsX0PWX/IekEqtGWp4CjgUNr1X8eOJlqXc4wqkBoN9tPSjoR+FMJpna3fYukN5T73FoChKlUa2ea/SDnx4FvSTqdaueyS6k2EgDYkGoE52VUAcYlVEHJelSB23lUo0Z3lHp67ChpHtXIzwzgWmB7238vzztF0nuAU0q7FgJ/Bj5GFdA2rdv2TyWtSzXKNAaYBOzHYqb1bTtmBN35Yb2IiIiIaBO9eElKxNLp6upyd3d3u5sRERERESs4SRNsdzWmd9pUtIiIiIiIiH+SwCYiIiIiIjpeApuIiIiIiOh4CWwiIiIiIqLjJbCJiIiIiIiOl8AmIiIiIiI6XgKbiIiIiIjoeB31A50xeN05dTbjjhrf7mZEREQMqEn5ceqIQSMjNgNM0i6SHmrDfY+R9MOBvm9ERERExEBIYNMLSZMkPSVpnqRHJJ0taVi729VD0rWSDm5Ie4+kOyTNkTRD0jWSxgHYPsn2wc3qioiIiIjodAls+vYu28OA1wDbA1+uZ6oyKPpQ0mbAucARwAjg5cAPgEXtbFdERERExEAYFF/KBzvbU4HfAtuUkZITJf0JeBLYVNJoSb+UNFPSfZI+2lNW0pqSzpH0hKS7qQIkavkuQUnP53Mkfa32uT4Kc7+k3SWdCOwEnF5GlE4HtgMm2r7Glbm2L7P9YKnnOEnnl/Oecj3Hc5KOK3mjJV0m6TFJEyV9evn0akRERERE6ySw6QdJGwN7An8pSfsBhwDDgcnARcBDwGjg/cBJkt5Wrj0WeEU5dgMOWIL77kA1CvMFYCTwZmCS7S8BNwCftD3M9ieB24FXSjpN0lv6mjZnu6fcMOBNwBPAFWX06VfAX4ExwNuAz0rarZf2HSKpW1L3widn9/exIiIiIiJaLoFN3y6XNAu4EbgOOKmkn2P7LtvPARtSBQdH2n7a9h3AD6mCH4APAifanml7CvDdJbj/QcCPbV9te5HtqbbvaXah7QeAXagCkkuBGWX0p9cAR9J6wOXAp2z/hWo0aT3bJ9h+ptR5FvDhXu55pu0u211Dho5YgseKiIiIiGitbPfct71s/76eIAlgSi1pNDDT9txa2mSgq5Y/pSGvvzYGftPfi23fQhVIIWl74BLgS8DRjddKWhX4GXCh7YtL8ibA6BLM9RhCNToUERERETFoJbBZOq6dTwPWkTS8FtyMBaaW8+lUAcpdtby6J4Ghtc8bUk1rgyogekU/2vDPmfZtkn4ObNPLJd8D5vLiDRGmUK3T2byvuiMiIiIiBpsENsvI9hRJNwEnS/o8sAXVFLJ9yyWXAkdLuhVYC/hUQxV3AHtLugt4O7Az0F3yfgRcJenXwB+BjYDhZTraI8CmPZVIehOwJXCF7UclvRJ4N/CTxjZLOrTc53W267um/RmYI+lIqilzz5Q617R9W1/9sO2YEXTnR8oiIiIiok2yxqY1/gMYRzV68wvgWNtXl7zjqaafTQSuAs5rKPsZ4F3ALGAfqjUvANj+M/AR4DRgNtU6n01K9neA95fd1r5byr8buFPSPOB3pS2n9NLeTYFptZ3RjrG9sLRlu9LeGVTrhbKAJiIiIiIGNdl9zmiK6Jeuri53d3cv/sKIiIiIiGUgaYLtrsb0jNhERERERETHS2ATEREREREdL4FNRERERER0vAQ2ERERERHR8RLYREREREREx0tgExERERERHS8/0BktcefU2Yw7any7mxERERERy9mkQfqj7BmxWclJOl/Sce1uR0RERETEskhgswwkXSDpxw1pO0t6XNJGLb7X+ZIsac+G9NNL+r6tvF9ERERERCdJYLNsPg3sKentAJLWAM4CjrA9vVU3kTSknP4DOKCWvirwPuCBVt0rIiIiIqITJbBZBrYfBz4FnClpLeBY4H7b50haRdIxku6XNEPSxZJeClDyfibpYUmzJF0racueesvozPcl/U7SfGCnknU5sIukEeXzO4Bu4LFa2c0l/bGMGs2QdF7teiS9VtIdkuZKughYvf5Mkt4t6a+lXTdK2qblHRcRERER0WIJbJaR7Z8CE4CLgEOAQ0vW4VSBx5uBlwHzge/Wiv4a2BzYEPhf4LyGqvcGjgeGAzeXtKeA8cAHy+f9gXMbygn4GrARsBWwKfAVAEmrA1cAPwbWKed7PV9Q2p5qxOlgYN1y3RWSVmv27JIOkdQtqXvhk7ObXRIRERERMSAS2LTGJ4C3AifYfrCkHQocY3uq7aeB44APSlrF9iLb59ieW8t7bRn16fEL2zeXaxfU0s8F9pe0DvAG4Jf1htj+h+1rbD9j+1HgNGDnkv1GwMD3bD9r+2LgL7XihwA/sH2b7YW2e9YPbd/soW2fabvLdteQoSOaXRIRERERMSCy3XML2H5E0gzgrlryWOBXkhbVLwXWl/QYcDLwfmAU0HPNKKqRHYApvdzuOqoRoGOAK2wvkPR8pqQNqUaG3kg12rMKL0xVGw08ZNu1+ibXzjcB9pH0uVraasCYXtoSERERETEoZMRm+XkIeLvtkbVjDdsPU00h25NqlGcEsFkpo1p500QJSi6gmurWOA0N4BvAAmBb22sDB9bqnU4VFNWNrZ1PAY5vaPNQ25f275EjIiIiItojIzbLzxnASZI+YvtBSesDr7f9S6qRlAXA48BQ4MQlrPs04I+2/9QkbzjwKDBb0sbA52t5NwKrSPpkad97gdcAvy35ZwI/lfQHqk0J1gLeAvzB9nz6sO2YEXQP0h9rioiIiIgVX0Zslp9Tgd8B10iaC9zEC2tVzgamleOuktdvth+3fU0v2ccCOwCzqdbfXFYrt4AqmPko8ATw71Q7rfXk3wp8DPjvkv8PIL+PExERERGDnl683CJi6XR1dbm7u7vdzYiIiIiIFZykCba7GtMzYhMRERERER0vgU1ERERERHS8TEWLlijriO5tdztWAqOAGe1uxEog/Tww0s8DI/08cNLXAyP9PDAGcz9vYnu9xsTsihatcm+zuY7RWpK608/LX/p5YKSfB0b6eeCkrwdG+nlgdGI/ZypaRERERER0vAQ2ERERERHR8RLYRKuc2e4GrCTSzwMj/Tww0s8DI/08cNLXAyP9PDA6rp+zeUBERERERHS8jNhERERERETHS2ATEREREREdL4FNRERERER0vAQ28TxJ60j6haT5kiZL2ruX6yTpG5IeL8cpklTL307SBElPlv/drr9lVwat6GdJW0i6QtJjkmZKulLSv9TKHihpoaR5tWOXAXrEQaGF77NLHT39+MP+ll0ZtOh93qnhXZ1X+v19JT/vc//7+S2S/ihptqRJTfLHlfwnJd0jadeG/M9JeriU/7Gk1ZfTIw1KrehnSetLukjStJL/J0mvq+XvImlRw/t8wHJ+tEGlhe/zJElP1frxqob8vM/L/j6P7eXv8xElf3C9z7Zz5MA2wEXAJcAw4E3AbGDrJtcdCtwLvAwYA9wNHFbyVgMmA58DVgc+XT6vtriyK8vRon7eATgIWAdYFfgqcE+t7IHAje1+1k7v55JvYLNe7pH3uUX93HDtLsBcYK3yOe9z//t5B2A/4BBgUpP8m4FTgTWB9wGzgPVK3m7AI8DWwEuBa4Gvt/vZO62fgU2Bw4GNgCHlmhnAsJK/C/BQu5+10/u55E8Cdu3lHnmfW9TPDde+HFgIjCufB9X73PYG5BgcB7AW8AywRS3tvGZ/BICbgENqnw8Cbinn/wZMpey4V9IeBHZfXNmV4WhVPze5dh2qL+Drls8HshJ/EWxlP9N3YJP3efm8z2cDZ9c+533uZz/X8ndt/IICbAEsAIbX0m7ghX8wuRA4qZb3NuDhdj9/p/VzL9fNAV5bzndhEH0R7OR+pu/AJu/zcnifgWOBP9Y+D6r3OVPRoscWwELb/6il/ZXqXzoabV3yml23NfA3l7e9+FtDfm9lVwat6udGb6b6g/14Le3VkmZI+oekr0h6ybI0vMO0up+vL9MZfi5p3BKWXZG1/H2WNBR4P/CThqy8z/3r575sDTxge24v9TT7b7SBpHWX8D6dqlX9/CKqpmOvBtxXS15f0iOSJko6TdJay3KPDtPqfr5A1bTsqyT9ay097/NyeJ+B/fnnv8+D5n1OYBM9hlENUdbNBob349rZwDBJ6kc9fZVdGbSqn58n6WXA96mmPvS4HtgGWJ9qusl/AF9YppZ3llb2887AOOCVwDTg17Uv1XmfW/w+U72vM4Draml5n/vfz8tST7P/RizFfTpVq/r5eZLWpvpX8uNt99R9D7Ad1VS1twKvpZoeuLJoZT/vQ/X3eRPgj8CVkkb2cp+8z8v+Pu8EbAD8rJY8qN7nBDbRYx6wdkPa2lTz3Bd37drAvDJKs7h6+iq7MmhVPwMgaT3gKuAHti/qSbf9gO2JthfZvhM4gepfwVcWLetn29fbfsb2LOAzVPOLt+xP2ZVAS9/n4gDg3Hp63ucl6udlqafZfyOW4j6dqlX9DICkNYFfUU25PLkn3fbDtu8u7/NE4IvkfV6qfrb9J9tP2X6y9PEsYKde7pP3eRne5+IA4DLb83oSBtv7nMAmevwDeImkzWtp/wrc1eTau0pes+vuAl7V8K+wr2rI763syqBV/Yykl1IFNb+0feJi7mtgZRlFgBb2cxP1vsz73MJ+lrQx1Xztcxdz37zPS/eu3QVsKqn+L7aNf78b/xs90jDFdUXWqn6m7L51OdWa00MXc3ne59b97Vzc3+e8z0vZzyVQ/wD/PA2tUXvf53Yv8skxeA7gYqodNNYC3kjvu2ccBvydamej0VT/R9K4K9pnqHZF+yQv3hWt17Iry9Gifl4b+DNwei/32APYoJy/Evhf4Nh2P3sH9vPWVEPsQ6iG9b9NtbPXqosru7Icrejn2jXHANc3KZv3uf/9vAqwRumzyeV8tVr+LcA3S/p7efGuaLsDDwNbUe0i9QdWvl2klrmfqXaq/BVVYPOSJmV3AcZSffnbmGoK1dntfvYO7OexpexqJf0LwGO8sIlO3ucW/d0o1+xd8tSQPqje57Z3eo7Bc1DtrHU5MJ9qJ7O9S/pOVFNGeq4TcAowsxyn8OJd0F4NTACeAm4HXt3fsivD0Yp+phoOdqljXu0YW/K/SbXN5XzgAaqpO6u2+9k7sJ/fShXIzAceLfVt3p+yK8vRqr8b5Zp7gIOa3CPvc//7eZfyt6F+XFvLH0e17e1T5d3eteE+h5e+nkO1O93q7X72TutnqnV5Bp5s+Pu8U62Pp5b8KcD3qO1UtzIcLernrak2J5oPPA5cA3Q13Cfvcwv+bpRrrgS+2uQeg+p97vl/3hERERERER0ra2wiIiIiIqLjJbCJiIiIiIiOl8AmIiIiIiI6XgKbiIiIiIjoeAlsIiIiIiKi4yWwiYiIiIiIjpfAJiIiIiLsXnLIAAAAEklEQVQiOl4Cm4iIiIiI6Hj/H3Cm8MC9SmE1AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGeCAYAAABGn5TrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABfHUlEQVR4nO3dd7xdVZ3+8c9DpIWEhBBaYooCIm1E56KiKKgogiCMDoIgxREQFR3FAiIqVdGfCio6DKiU0AQRLIGhyAAiUm4QZERQSkJIQglJbgotJM/vj72ubK63Jvfm3JM879frvDhnr73W+u7N8XC/rrJlm4iIiIiIiGa2WqMDiIiIiIiIWF5JbCIiIiIiouklsYmIiIiIiKaXxCYiIiIiIppeEpuIiIiIiGh6r2h0ALFyGD16tCdOnNjoMCIiIiJiJTZlypTZtjforCyJTfSLiRMn0tra2ugwIiIiImIlJmlaV2WZihYREREREU0viU1ERERERDS9JDYREREREdH0ssamC5LOBGbYPqnRsTSDe2e0MfGYyY0Og6mnvq/RIUREREREA6wSIzaSpkp6VtICSfMk3SrpCEldXr/tIwYyqZG0taRrJc0tMU2RtPtytnmjpEP7K8aIiIiIiGaxSiQ2xZ62hwMTgFOBo4GfdnaipCErIJ7fANcBGwEbAp8B5q+AfiMiIiIiVjqrUmIDgO02278G9gUOlrSNpHMl/ZekqyQtAt5Rjp0MIOmvkvZob0PSKyTNlvSG8vnNZRRonqR7JO3cXQySRgOvAs62/UJ5/cH2LaX8/yTtWTt/9dLfdpLWknSBpKdLf3dK2kjSKcDbgDMkLZR0Rqn7WknXSZoj6QFJH6q1e66kH0u6utT5g6SNJZ1eRpLul/T6frnxEREREREDaJVLbNrZvgN4jCoZANgfOAUYDtzS4fSLgQ/XPu8KzLZ9l6SxwGTgZGAU8AXgckmdPjioeBp4ELhA0t6SNupQfj7wkdrn3YFZtu8GDgZGAOOA9YEjgGdtfwX4PXCk7WG2j5S0DtWo0EVUo0IfBn4saeta2x8CjgNGA88DfwTuKp9/AXyvq4uQdLikVkmtS55p6+ZyIyIiIiIG1iqb2BQzqZIRgF+VUZOltp/rcN5FwPslDS2f9y/HoEpArrJ9Val7HdBKlYx0yraBdwBTge8CsyTdLGnzcsoFwO6S1i2fDwQmlfeLqRKazWwvsT3FdldT2PYApto+x/aLtu8CLgf+vXbOFaWN54ArgOdsn297CfBzoMsRG9tn2W6x3TJk6IiuTouIiIiIGHCremIzFphT3k/v6iTbDwJ/BfYsyc37eSmxmQDsU6aFzZM0D9gR2KS7jm0/ZvtI25uWNhZRjdRgeybwB+CDkkYCuwEXlqqTgGuASyTNlPRtSat30c0E4E0dYjsA2Lh2zhO198928nlYd9cRERERETEYrLLbPUvaniqxuQV4E+AeqrRPR1sNuK8kO1AlRJNsH7assdieLulHpY925wGHUv07+qPtGeXcxcAJwAmSJgJXAQ9QbYTQ8RqmAzfZfveyxhYRERER0QxWuREbSeuWjQAuAS6wfW8vq14CvAf4BC+N1kA1bWxPSbtKGlIW9+8s6ZXdxLCepBMkbSZptbKZwH8At9VOuxJ4A/CflJGcUvcdkrYtO7fNp5qatqQUPwG8utbGb4HXSDqwbECwuqTtJW3Zy2uOiIiIiGgKq9KIzW8kvQgsBe6jWhR/Zm8r254l6Y/ATlQL7tuPT5e0F/BtqhGXJcAdVAlQV14AJgLXUy3SXwj8L/DpWrvPSrqcapTol7W6G5e4X1nq/ZwquQL4PnCepE9QjSJ9RtJ7yrV+jyqRvQc4qrfX3Vvbjh1Bax6OGRERERENomodewxGkr4GvMb2R3o8ucFaWlrc2tra6DAiIiIiYiUmaYrtls7KVqURm6YiaRTwMaod0SIiIiIiohur3BqbFak89LKz19t6qHcY1cL/q23fvGKijYiIiIhoXhmxGUC2l2mrZNtnA2f3czgRERERESutjNhERERERETTS2ITERERERFNL4lNREREREQ0vSQ2ERERERHR9LJ5QPSLe2e0MfGYyY0Oo0+m5oGiERERESuNjNg0iKS/SNp5Ze8zIiIiImJFyIjNAJG0sPZxKPA8sKR8/rjtrQegzzWAbwL7AiOBp4ArbX8OYCD6jIiIiIgYDJLYDJD6M2wkTQUOtX19b+pKeoXtF5eh2y8DLcAbgVnABODty9BORERERERTyVS0BpE0VdIu5f3xkn4h6QJJ84FDJI2Q9FNJsyTNkHSypCE9NLs9cIXtma5MtX1+F33Ok7SwvBZJsqSJpWwPSXeXc26V9C9dXMPhkloltS55pq0/bktERERExDJJYjN47AX8gmoK2YXAecCLwGbA64H3AIf20MZtwFGSPilpW0nq6kTbI20PKyNL3wd+D8yQ9AbgZ8DHgfWB/wZ+LWnNTto4y3aL7ZYhQ0f07WojIiIiIvpREpvB44+2r7S9FFgX2A34rO1Ftp8ETgP266GNbwLfAg4AWqkSlYO7qyBpX2B/4IO2FwOHAf9t+3bbS2yfR7U+6M3Lc3EREREREQMpa2wGj+m19xOA1YFZtUGX1Tqc809sLwF+BPxI0trAfwA/k3SH7b92PF/S64EzgPfYfqrW98GSPl07dQ1gTN8vKSIiIiJixciIzeDh2vvpVKMko8uUsZG21+3Lrma2n7X9I2AusFXHckkbAFcAR9r+U4e+T6n1O9L2UNsXL9NVRURERESsABmxGYRsz5J0LfBdSV8FFgKvAl5p+6au6kn6LHA3cDuwmGpK2nDgTx3OewVwOXCh7Z93aOZs4ApJ1wN3UG1VvTNws+0FXfW97dgRtOaBlxERERHRIBmxGbwOopoCdh/VqMsvgE16qPMs8F3gcWA28CmqtTMPdzjvlcDbgM/WdkZbKGm87VaqdTZnlH4fBA7pn0uKiIiIiBgYst3zWRE9aGlpcWtra6PDiIiIiIiVmKQptls6K8uITURERERENL0kNk1G0pkdpo+1v85sdGwREREREY2SzQOajO0jgCMaHUdERERExGCSEZuIiIiIiGh6SWwiIiIiIqLpJbGJiIiIiIimlzU2y0nSjcAFtn/S6Fga6d4ZbUw8ZnKjw1ghpuZBpBERERGDziozYiNpqqRnyw5iT0g6R9KwRscFIGlnSY91cnxzSZdIekrSfEl/l/RDSa9sRJwREREREYPVKpPYFHvaHga8AdgeOK5eKGnQjGBJ2gy4HZgJvN72usBbgYeAHbuoM2jij4iIiIhYkVa1xAYA2zOAq4FtJFnSpyT9Hfg7gKTDJD0oaY6kX0sa015X0rsl3S+pTdIZgGplx0u6oPZ5Ymn/FeXzqDJSNFPSXElXSlqnxDKm9kyaMcDxwB9sH2X7sRL3k7ZPt31JaW9nSY9JOlrS48A5ktaUdHrpY2Z5v2Y5/xBJt9TvRYlvs/L+3PKcnOskLZB0k6QJ/X3/IyIiIiL62yqZ2EgaB+wO/Kkc2ht4E7CVpHcC3wQ+BGwCTAPaE4nRwOVUIz2jqUZP3tqHricBQ4GtgQ2B02wvAnYDZtoeVl4zgV1KXz3ZGBgFTAAOB74CvBnYDngd8EY6jEz14ADgJKrruxu4sA91IyIiIiIaYlVLbK6UNA+4BbgJ+EY5/k3bc2w/S/WH/c9s32X7eeDLwA6SJlIlQ/fZ/oXtxcDpwOO96VjSJlQJzBG259pebPumbqqMrrct6UhJ88qIztm185YCX7f9fC3+E8vozlPACcCBvYmxmGz75nLtX6G69nFdXNPhkloltS55pq0PXURERERE9K9VLbHZ2/ZI2xNsf7IkAgDTa+eMoRqlAcD2QuBpYGwpm14rc4e63RkHzLE9t5fnP001YtTe1xm2R1IlU6vXznvK9nNdxV/ej6H36te3EJjTVX3bZ9lusd0yZOiIPnQREREREdG/VrXEpiuuvZ9JNa0LgLIGZn1gBjCLKkFpL1P9M7CIaqpZu41r76cDoySN7KH/dr8DPtDH2KFD/MD4cuyf4pNUj69d/fqGUU1zm9nJeRERERERg0YSm392EfBRSduVRfffAG63PRWYDGwt6QNlQ4DP8PLk5W7g7ZLGSxpBNY0NANuzqDYJ+LGk9SStLuntpfgJYP1Sp93xwNskfU/SWPjHGp8te4j/YuA4SRuU878GtG9ocE+JfztJa5U+Otpd0o6S1qBaa3O77d6OSkVERERENES2B+7A9u8kfZVq4f56wK3AfqVstqR9gB8A51BtBvCHWt3rJP0c+DMwG/gW8P5a8wcCpwH3A2sA/wvcbPt+SRcDD0saAmxl+2+S3gycCNxTkqyZwLXAt7u5hJOBdUsMAJeVY5Q2TwSuB56lSrw+3qH+RcDXgR2Au6jW7PRo27EjaM2DKyMiIiKiQVQtE4motnsGHrPdl13UAGhpaXFra2v/BxURERERUUiaYruls7JMRYuIiIiIiKaXxCYiIiIiIppe1tjEP9g+pNExREREREQsi4zYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fSyeUD0i3tntDHxmMmNDmNQmZoHlkZERESsMBmxGWQknSvp5G7KF0p69YqMKSIiIiJisEtiswwkTZX0gqTRHY7fLcmSJg5U37aH2X54edupJ1CSJpa4F5bXE5J+K+ndyx9xRERERMTAS2Kz7B4BPtz+QdK2wNqNC6dfjLQ9DHgdcB1whaRDGhtSRERERETPktgsu0nAQbXPBwPnt3+Q9D5Jf5I0X9J0ScfXK0vaUdKtkuaV8kNqxetJmixpgaTbJW1aq2dJm5X350r6UTfnvlbSdZLmSHpA0od6c2G2H7f9feB44FuS8j2JiIiIiEEtf7Auu9uAdSVtKWkIsC9wQa18EVXiMxJ4H/AJSXsDSBoPXA38ENgA2A64u1b3w8AJwHrAg8Ap3cTR6bmS1qEadbkI2LCc92NJW/fhGn9Z6m7RWaGkwyW1Smpd8kxbH5qNiIiIiOhfSWyWT/uozbuB+4EZ7QW2b7R9r+2ltv8MXAzsVIoPAK63fbHtxbaftn13rd1f2r7D9ovAhVSJT1e6OncPYKrtc2y/aPsu4HLg3/twfTPLP0d1Vmj7LNsttluGDB3Rh2YjIiIiIvpXtntePpOAm4FXUZuGBiDpTcCpwDbAGsCawGWleBzwUDftPl57/wwwbBnOnQC8SdK8WvkrSsy9Nbb8c04f6kRERERErHAZsVkOtqdRbSKwO9W0rbqLgF8D42yPAM4EVMqmA5sysKYDN9keWXsNs/2JPrTxb8CTwAMDE2JERERERP/IiM3y+xiwnu1Fkur3czgwx/Zzkt4I7A9cW8ouBI4ti/l/CYygSoDu7se4fgucKulA4JJybDtgoe2/dldR0kbAPsDXgf+0vbSnzrYdO4LWPJAyIiIiIhokIzbLyfZDtls7KfokcKKkBcDXgEtrdR6lGuX5PNU0r7uptljuz7gWAO8B9qNaK/M48C2qKXFdmSdpEXBviW8f2z/rz7giIiIiIgaCbDc6hlgJtLS0uLW1s/wuIiIiIqJ/SJpiu6WzsozYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fSS2ERERERERNNLYhMREREREU0vD+iMfnHvjDYmHjO50WEMalPzANOIiIiIATNoRmwkbSHpT5IWSFoq6asD3N/xki7o5bk3Sjp0IONZFpL+ImnnRscREREREdFogyaxAb4E3Gh7uO3VbJ8EIGlnSZb0y/rJkl5Xjt+4IoOUdIikJZIWltcjks6R9JoVGQeA7a1t39ibcyVNlbTLAIcUEREREdEQgymxmQD8pYuyp4C3SFq/duxg4G8DHlXn/mh7GDAC2AV4FpgiaZsV0bmkFTqFcEX3FxERERHRV4MisZF0A/AO4IwyCnKRpJNrp7wAXAnsV84fAnwIuLBDO2+RdKektvLPt9TKXiXppjLV7TpgdIe6b5Z0q6R5ku7pzRQv20tsP2T7k8BNwPG9aa+M+jxcYnlE0gG1ssMk/bWU3SfpDeX4VElHS/ozsEjSK+qjMGVq3S8k/bzUvUvS60rZJGA88Jtyf79Ujr+/TGebV6bbbVmL45/66+l+REREREQ0yqBIbGy/E/g9cGQZCXmhk9POBw4q73elGt2Z2V4oaRQwGfgBsD7wPWBybZTnImAKVUJzEtWIT3vdsaXuycAo4AvA5ZI26MNl/BJ4W0/tSVqnxLib7eHAW4C7S719qJKjg4B1gfcDT9f6+DDwPmCk7Rc7iWEv4LLS50XAlZJWt30g8Ciwp+1htr9dps5dDHwW2AC4iirxWaO3/Uk6XFKrpNYlz7T14VZFRERERPSvQZHY9IbtW4FRkrag+sP//A6nvA/4u+1Jtl+0fTFwP7CnpPHA9sBXbT9v+2bgN7W6HwGusn2V7aW2rwNagd37EOJMqoSiN+0tBbaRtLbtWbbbp+AdCnzb9p2uPGh7Wq2PH9iebvvZLmKYYvsXthdTJXZrAW/u4tx9gcm2ryvnfwdYmyrR6lV/ts+y3WK7ZcjQEV3dl4iIiIiIAdc0iU0xCTiSatraFR3KxgDTOhybBowtZXNtL+pQ1m4CsE+ZkjVP0jxgR2CTPsQ2FpjTU3slhn2BI4BZkiZLem2pNw54qJs+pvcQwz/KbS8FHqO69s687H6V86eX6+htfxERERERg0KzrZuYBDwInG/7GUn1splUCUXdeOB/gFnAepLWqSU34wGX99OBSbYPW47Y/o1qOl2P7dm+BrhG0tpU09XOpprGNh3YtJs+3E0ZVIkRAJJWA17JS9P1OtadCWxbO1+l/ow+9BcRERERMSg0VWJj+xFJOwEPd1J8FfBDSfsDlwIfBLYCfmt7tqRW4ARJxwJvBPYEfl3qXgDcKWlX4HpgdaopXA/afqyreMomBuOBo4CdgR16ag9YDLwJ+B3VbmoLgSWl3k+A70m6BbiLKslZ3GE6Wnf+VdIHynV9BngeuK2UPQG8unbupcAxkt4F3Az8Zzn/1l729TLbjh1Bax5AGREREREN0mxT0bB9i+2ZnRx/GtgD+DzVgvsvAXvYnl1O2Z8qoZgDfJ3aGh3b06kW3h9LtbX0dOCLdH1/dpC0EJgP3Ei10H972/f2or3VSowzSyw7AZ8s9S4DTqFa+L+Aaie49nU7vfErqmluc4EDgQ+U9TMA3wSOK1PjvmD7Aaq1QD8EZlMlenva7mzjhoiIiIiIQU12ZhutDCQdD2xm+yON6L+lpcWtra2N6DoiIiIiVhGSpthu6ays6UZsIiIiIiIiOkpiExERERERTa+pNg+Irtk+vtExREREREQ0SkZsIiIiIiKi6SWxiYiIiIiIppfEJiIiIiIiml7W2ES/uHdGGxOPmdzoMAa1qXmAaURERMSAyYhNjaQtJP1J0gJJSyV9tdExDQRJlrRZL87bWdJjKyKmiIiIiIjlkcTm5b4E3Gh7uO3VbJ8E//gDf6mkheU1Q9IJAx2MpBtLEvK6DsevLMd3HugYIiIiIiKaQRKbl5sA/KWLspm2h9keBuwIfEzS3isgpr8BB7V/kLQ+8GbgqRXQd0REREREU0hiU0i6AXgHcEYZlblI0smdnWv7EeBWYKta/e9Lmi5pvqQpkt5WK3ujpNZS9oSk79XK3izpVknzJN3TySjMhcC+koaUzx8GrgBeqLWxpqTTJc0sr9MlrVkr/6KkWaXsPzpc95qSviPp0RLbmZLW7tPNi4iIiIhosCQ2he13Ar8HjiyjMi90da6kzYG3ArfVDt8JbAeMAi4CLpO0Vin7PvB92+sCmwKXlnbGApOBk0u9LwCXS9qg1u5M4D7gPeXzQcD5HUL6CtUoznbA64A3AseVPt5b2n03sDmwS4e63wJeU+puBowFvtbVtXe4D4eXhK11yTNtvakSERERETEgktj03pgyqjKfanrY7cAt7YW2L7D9tO0XbX8XWBPYohQvBjaTNNr2QtvtCdFHgKtsX2V7qe3rgFZg9w59nw8cJGkLYKTtP3YoPwA40faTtp8CTgAOLGUfAs6x/X+2FwHHt1eSJOAw4HO259heAHwD2K83N8T2WbZbbLcMGTqiN1UiIiIiIgZEEpvem2l7ZBl1GQk8C5zXXijp85L+KqlN0jxgBDC6FH+MalTkfkl3StqjHJ8A7FMSpnml3o7AJh36/iXwTuDTwKROYhsDTKt9nlaOtZdN71DWbgNgKDCl1v//lOMREREREU0jz7FZBrbbJF0E/BygrKc5GngX8BfbSyXNBVTO/zvwYUmrAR8AflE2AZgOTLJ9WA/9PSPpauATVFPZOprJyzc+GF+OAcwCxtXOHV97P5sqQdva9oxeXXxERERExCCUxGYZSBpGNV2rPZEYDrxItVPZKyQdA6xbO/8jwDW2nyqjIgBLgAuAOyXtClwPrE61VuZB2x2fH3Ms8BPbUzsJ6WLgOEl3AqZaI3NBKbsUOEfS+cBU4OvtlUoCdjZwmqQjbT9Z1v1sY/uavtyTbceOoDUPoIyIiIiIBslUtN4b0/4cG6rpXKOo1rYAXANcTbX2ZhrwHC+f/vVe4C+l7veB/Ww/Z3s6sBdV0vJUqfNFOvn3Ynum7Vs6Hi9Oplqb82fgXuCucgzbVwOnAzcAD5Z/1h1djt9W1g9dz0trgyIiIiIimoJsNzqGWAm0tLS4tbW10WFERERExEpM0hTbLZ2VZcQmIiIiIiKaXhKbiIiIiIhoeklsIiIiIiKi6SWxiYiIiIiIppfEJiIiIiIiml4Sm4iIiIiIaHpJbCIiIiIioum9otEBRNckGdjc9oONjqUn985oY+IxkxsdRlOYeur7Gh1CRERExEonIzZNTtJGkmZL2rnD8XMkXdyYqCIiIiIiVqyM2DQ5209I+hxwtqR/sf2spHcB7wO27q9+JA2xvaS/2ouIiIiI6E8ZsVlBJB0taYakBZIekPQuSW+U9EdJ8yTNknSGpDW6qL+mpO9IelTSE5LOlLQ2gO1JwAPAieXYfwOfAZ6WdIykhyQ9LelSSaNqbV4m6XFJbZJulrR1rexcSf8l6SpJi4B3DOT9iYiIiIhYHklsVgBJWwBHAtvbHg7sCkwFlgCfA0YDOwDvAj7ZRTPfAl4DbAdsBowFvlYrPwL4D+AS4P9sX0KV3OwN7ASMAeYCP6rVuRrYHNgQuAu4sEOf+wOnAMOBWzq5rsMltUpqXfJMW/c3ISIiIiJiAMl2o2NY6UnaDLiVKlG4yfbiLs77LLCT7X8rn02VeDwELAT+xfZDpWwH4CLbr6rV/xTwbWAz27Mk/RU40vbvSvkmwKPA2rZf7ND3SKrEZ6TtNknnAqvZPqg317jmJpt7k4NP782pq7xsHhARERGxbCRNsd3SWVnW2KwAth8sScvxwNaSrgGOAoYB3wNagKFU/z6mdNLEBqV8iqT2YwKGdDjvL8Bc27PK5wnAFZKW1s5ZAmwk6XGq0Zh9Svvt54wG2odfpvf1WiMiIiIiGiFT0VYQ2xfZ3pEq2TDV1LL/Au6n2tJ5XeBYqoSlo9nAs8DWtkeW1wjbw3rodjqwW63OSNtr2Z5BNXq0F7ALMAKYWOrU+89wXkREREQ0hSQ2K4CkLSS9U9KawHNUScoSqrUr84GFkl4LfKKz+raXAmcDp0nasLQ5VtKuPXR9JnCKpAmlzgaS9iplw4HngaepRoO+sTzXGBERERHRSJmKtmKsCZwKbAksplpvczjVJgBnAV8C/gT8HHhnF20cTbVZwG2SRgMzqEZ8rumm3+9TjcBcK2kM8GTp41fA+VSbGMwA5gBfpYvEqje2HTuC1qwdiYiIiIgGyeYB0S9aWlrc2tra6DAiIiIiYiXW3eYBmYoWERERERFNL4lNREREREQ0vSQ2ERERERHR9JLYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fTygM4GknQ8sJntjwxQ+wY2t/2gpDOBGbZPGoi+7p3RxsRjJg9E0yu1qXmoaURERES/yIhNH0maKmmXDscOkXRLo2LqDdtHDFRSExERERHRaElsBilJGU2LiIiIiOilJDb9SNIXJV3e4dgPJZ1e3r9K0k2SFki6DhhdO2+iJEv6mKRHgRvK8cskPS6pTdLNkrau1blR0qG1z12OHEk6V9LJtc97Sbpb0nxJD0l6b62Nh0uMj0g6oF9uTkRERETEAEpi078uAN4raST8Y9RlX2BSKb8ImEKV0JwEHNxJGzsBWwK7ls9XA5sDGwJ3ARcub5CS3gicD3wRGAm8HZgqaR3gB8ButocDbwHu7qadwyW1Smpd8kzb8oYVEREREbHMMt1p2Vwp6cXa5zWAu2zPknQzsA9wNvBeYLbtKZLGA9sDu9h+HrhZ0m86aft424vaP9j+Wfv7stnAXEkjbC9PJvEx4Ge2ryufZ5T21wGWAttIetT2LGBWV43YPgs4C2DNTTb3csQTEREREbFcMmKzbPa2PbL9BXyyVnYe0L7L2Ud4abRmDDC3nrQA0zppe3r7G0lDJJ1aporNB6aWotGd1OuLccBDHQ+W2PYFjgBmSZos6bXL2VdERERExIBLYtP/rgT+RdI2wB68NHVsFrBeGRVpN76T+vWRj/2BvYBdgBHAxHJc5Z+LgKG18zfuZYzTgU07K7B9je13A5sA91ONPEVEREREDGpJbPqZ7eeAX1Ctp7nD9qPl+DSgFThB0hqSdgT27KG54cDzwNNUCcw3OpTfDXxA0lBJm1FNMeuNnwIflfQuSatJGivptZI2kvT+knw9DywElvSyzYiIiIiIhskam4FxHnAo8B8dju9fyuYAf6RawD+ym3bOp9pEYEap81XgE7Xy06jW7TwB/JlqdGgXemD7DkkfLfVfVep/CmgDPk81fc5UidMnu2jmZbYdO4LWPGwyIiIiIhpEdtZ897eyUcD9wMa25zc6nhWhpaXFra2tjQ4jIiIiIlZikqbYbumsLFPR+pmk1YCjgEtWlaQmIiIiIqLRMhWtH5W1KU9Q7Xb23gaHExERERGxykhi04/KdsnDGh1HRERERMSqJlPRIiIiIiKi6SWxiYiIiIiIppfEJiIiIiIiml4Sm4iIiIiIaHrZPKBJSZoKHGr7+kbHAnDvjDYmHjO50WFEJ6bmwakRERGxCsiITYNJ2lHSrZLaJM2R9AdJ26+gvm+UdGh5v7OkpZIWltdjki5dUbFERERERCyPJDYNJGld4LfAD4FRwFjgBOD5BoU00/YwYDjwZuB+4PeS3tWgeCIiIiIieiWJTWO9BsD2xbaX2H7W9rW2/yxpU0k3SHpa0mxJF0oa2VkjklaTdIykh8r5l0oaVcrWknRBOT5P0p2SNuouKFces/014CfAt/r5uiMiIiIi+lUSm8b6G7BE0nmSdpO0Xq1MwDeBMcCWwDjg+C7a+QywN7BTOX8u8KNSdjAwotRfHzgCeLYPMf4SeIOkdToWSDpcUquk1iXPtPWhyYiIiIiI/pXEpoFszwd2BAycDTwl6deSNrL9oO3rbD9v+ynge1SJS2c+DnyljLI8T5UA/bukVwCLqRKazcqo0JTSb2/NpEqyRnYS/1m2W2y3DBk6og9NRkRERET0ryQ2DWb7r7YPsf1KYBuqEZfTJW0o6RJJMyTNBy4ARnfRzATgijLVbB7wV2AJsBEwCbgGuETSTEnflrR6H0IcS5V4zVuW64uIiIiIWBGS2Awitu8HzqVKcL5JlVD8i+11gY9QjZx0Zjqwm+2RtddatmfYXmz7BNtbAW8B9gAO6kNY/wbcZXvRMl5WRERERMSAS2LTQJJeK+nzkl5ZPo8DPgzcRrUz2UJgnqSxwBe7aepM4BRJE0o7G0jaq7x/h6RtJQ0B5lNNTVvSQ1ySNFbS14FDgWOX60IjIiIiIgZYHtDZWAuANwFHlR3P5lFt//xFqsX+5wNtwINUU8o+10U736cazblW0hjgSeDnwK+AjakSn1dSJUo/p5rW1pkxkhaWttqAW4Gdbd/W04VsO3YErXkQZEREREQ0iGw3OoZYCbS0tLi1tbXRYURERETESkzSFNstnZVlKlpERERERDS9JDYREREREdH0kthERERERETTS2ITERERERFNL4lNREREREQ0vSQ2ERERERHR9JLYRERERERE01tlH9Ap6XhgM9sfGaD2DWxu+0FJZwIzbJ80EH110f+5wGO2j1sR/d07o42Jx0xeEV3FAJqah6xGREREk2qqERtJUyXt0uHYIZJuaVRMvWH7iIFIasq1L5G0sPY6o7/7iYiIiIgY7FbZEZvuSHqF7RcbHUcv/dH2jo0OIiIiIiKikZpqxKY7kr4o6fIOx34o6fTy/lWSbpK0QNJ1wOjaeRMlWdLHJD0K3FCOXybpcUltkm6WtHWtzo2SDq197nLkSNK5kk6ufd5L0t2S5kt6SNJ7a208XGJ8RNIB/XJzqrYPk/SgpDmSfi1pTDl+gqQflverS1ok6dvl89qSnpO0Xn/FERERERExEFaaxAa4AHivpJFQjboA+wKTSvlFwBSqhOYk4OBO2tgJ2BLYtXy+Gtgc2BC4C7hweYOU9EbgfOCLwEjg7cBUSesAPwB2sz0ceAtw9/L2V/p8J/BN4EPAJsA04JJSfBOwc3m/PfA41X0A2AF4wPbcLto9XFKrpNYlz7T1R6gREREREcukGaeiXSmpPk1sDeAu27Mk3QzsA5wNvBeYbXuKpPFUf7TvYvt54GZJv+mk7eNtL2r/YPtn7e/LZgNzJY2wvTx/xX8M+Jnt68rnGaX9dYClwDaSHrU9C5jVi/beLGle7fN7bd/W4ZwDSp93lb6+XK5lIvBHYHNJ61MlWT8FPilpGFWCc1NXHds+CzgLYM1NNncvYo2IiIiIGBDNOGKzt+2R7S/gk7Wy84D2Xc4+wkujNWOAufWkhWrUoqPp7W8kDZF0apkqNh+YWopGd1KvL8YBD3U8WGLbFzgCmCVpsqTX9qK92+r3o5OkBqrr/8f12l4IPA2Mtf0s0EqVxLydKpG5FXgrPSQ2ERERERGDRTMmNt25EvgXSdsAe/DS1LFZwHplVKTd+E7q10cd9gf2AnYBRgATy3GVfy4ChtbO37iXMU4HNu2swPY1tt9NNV3sfqqRp/4wE5jQ/qHch/Upo0VUycs7gdcDd5bPuwJvBG7upxgiIiIiIgbMSpXY2H4O+AXVepo7bD9ajk+jGpU4QdIaknYE9uyhueHA81QjG0OBb3Qovxv4gKShkjajmmLWGz8FPirpXZJWkzRW0mslbSTp/SXpeB5YCCzpZZs9uaj0uZ2kNcu13G57aim/CTgIuM/2C8CNwKHAI7af6qcYIiIiIiIGTDOusenJeVR/lP9Hh+P7l7I5VOtKzqdavN+V86lGLWaUOl8FPlErP41q3c4TwJ+pRod2oQe275D00VL/VaX+p4A24PNU0+dMlTh9sotm+sT27yR9FbgcWI9qqtl+tVNuBdbmpdGZ+4Dn6MNozbZjR9CahztGRERERIPIXrnWfJeNAu4HNrY9v9HxrCpaWlrc2tra6DAiIiIiYiUmaYrtls7KVqqpaJJWA44CLklSExERERGx6lhpEpuyNmU+8G7g6w0Op99IOlPSwk5eZzY6toiIiIiIwWKlWWNTtkse1ug4+pvtI6i2gI6IiIiIiC70esRG0oclbVnebyHpZkk39PJZKxEREREREQOmL1PRTqbaHQzgO8AdVLtm/bi/g4qIiIiIiOiLvkxF28D2E5LWAnYE/h1YDMwekMgiIiIiIiJ6qS+JzVPlQZTbAnfafl7SUEADE1pERERERETv9CWxOQmYAiwB9i3H3gXc099BLQtJNwIX2P5Jo2NZFd07o42Jx0xudBixAk3NA1kjIiJiEOn1Ghvb5wKbAK+0fV05fDsvf4J9jyRNlfRs2bL4CUnnSBoUu5lJ2lnSY50c31zSJZKekjRf0t8l/VDSKxsUpyUtKvfwaUm/k7RvzzUjIiIiIlZO3SY2klarv4DngOdqn2cDTy5Dv3vaHga8AdgeOK5Dv4NmG+oy/e52YCbwetvrAm8FHqJaa9RZnRUR/+vKPdwCOBc4Q9JK8/yeiIiIiIi+6GnE5kWqDQK6erWXLxPbM4CrgW3KKMSnJP0d+DuApMMkPShpjqRfSxrTXlfSuyXdL6lN0hnU1vpIOl7SBbXPE0v7ryifR5WRopmS5kq6sjzg82pgTO0hmGOA44E/2D7K9mMl7idtn277ktLezpIek3S0pMeBcyStKen00sfM8n7Ncv4hkm6p34sS32bl/bnlwZzXSVog6SZJE7q4h7NtTwI+AXxZ0vqljRGSfipplqQZkk6WNKSUbVbabJM0W9LPa3FsXfqdU0bUju37v9mIiIiIiBWrp8TmVcCru3m1ly8TSeOA3YE/lUN7A28CtpL0TuCbwIeopsBNA9oTidHA5VQjPaOpRk/e2oeuJwFDga2BDYHTygM+dwNm2h5WXjOBXUpfPdkYGAVMAA4HvgK8GdgOeB3wRjqMTPXgAKp1TaOBu4ELezj/V1Rrpt5YPp9HlXhuBrweeA9waCk7CbgWWA94JfBDAEnDgeuB/wHGlLq/60PMEREREREN0W1iY3taxxcwHXgBmF471ldXSpoH3ALcBHyjHP+m7Tm2n6X6w/5ntu+y/TzwZWAHSROpkqH7bP/C9mLgdODx3nQsaROqBOYI23NtL7Z9UzdVRtfblnSkpHllROfs2nlLga/bfr4W/4lldOcp4ATgwN7EWEy2fXO59q9QXfu4rk4u92E2MErSRuUaP2t7ke0ngdN4aT3UYqoEbIzt52y3jx7tATxu+7vl+ALbt3fVp6TDJbVKal3yTFsfLi0iIiIion/1evMASetKOp9qnc0M4FlJ50kasQz97m17pO0Jtj9ZEgGokqZ2Y6hGaQCwvRB4GhhbyqbXytyhbnfGAXNsz+3l+U9TjRi193WG7ZFUydTqtfOesv1cV/GX92Povfr1LaR6OGqX9SWtDmxQzptQYptVkrB5wH9TjU4BfIlq6t4dkv4i6T/K8XFUo1+9Yvss2y22W4YMXZavQURERERE/+h1YgP8AFgH2AZYm+p5NkPL8f7i2vuZVH+gA1DWwKxPlVTNovojvL1M9c/AohJbu41r76dTjWqM7KH/dr8DPtDH2KFD/MD4cuyf4pNUj69d/fqGUU1zm9nJee32opp6dgfVNT4PjC4J5Ejb69reGsD247YPsz0G+Djw47K+ZzqwaY9XGhERERExyPQlsXkvcKDtv5XpVn8DPlqOD4SLgI9K2q4suv8GcLvtqcBkYGtJHygbAnyGlycvdwNvlzS+jCh9ub3A9iyqTQJ+LGk9SatLenspfgJYv8Mo1PHA2yR9T9JY+Mcany17iP9i4DhJG5Tzvwa0b2hwT4l/O0lrlT462l3SjpLWoFoTc7vtfxqVKhshHAD8CPiW7afLNV4LfLeMtK0maVNJO5U6++ilrarnUiVlS4DfAhtL+mzZ/GC4pDf1cJ0REREREQ3Xl22Jn6Oa6lSfXjWaamSg39n+naSvUi3cXw+4lbJGxPZsSftQjRadQ7UZwB9qda8rO339mWrdybeA99eaP5Bqzcn9wBrA/wI3275f0sXAw2UHsa1s/03Sm4ETgXtKkjWTKnH4djeXcDKwbokB4LJyjNLmiVQL9Z+lSrw+3qH+RcDXgR2Au6jW7NTdI8lU653uAT5n+6Ja+UHAqcB9wHDg4XIfoNpi+/SSwD0B/KftR6DabQ74fun7eaopd12us2m37dgRtOaBjRERERHRIKqWp/TiROk4qj+Wv0eV3EwAPgdcYPukAYtwFSTpXOAx233ZRa2hWlpa3Nra2ugwIiIiImIlJmmK7ZbOyvoyYnMK1fqWA6gWsc8Evm37p8sfYkRERERExLLryxqb7wMP2N7F9la2dwH+Kun0gQktIiIiIiKid/qS2HwY6DjXaAqwf/+FEwC2D2mmaWgREREREY3Wl8TGwJAOx4b0sY2IiIiIiIh+15ek5PfASZJWAyj/PL4cj4iIiIiIaJi+bB7wn1TPOZklaRrVAydnAXsORGARERERERG91evExvZjkt4AvBEYR/WU+jtsLx2o4CIiIiIiInqj18+xiejOmpts7k0OPr3RYcQgNTUPb42IiIh+0N1zbLLwPyIiIiIiml4Sm1WUpHMlndzoOCIiIiIi+sNKk9hI2k/S7ZIWSXqyvP+kJDU6tr6QdICkheX1rKSltc8LGx1fRERERMRgtFIkNpI+D3wf+H/AxsBGwBHAW4E1Ojm/4/N4VjhJnW7cYPtC28NsDwN2A2a2fy7H6m00/DoiIiIiIgaDpk9sJI0ATgQ+afsXthe48ifbB9h+vky7+i9JV0laBLxD0paSbpQ0T9JfJL2/1uaNkg6tfT5E0i3lvSSdVkaF2iT9WdI2pWxNSd+R9KikJySdKWntUrazpMckHS3pceCcZbjWzq7jfZL+JGm+pOmSju9QZ0dJt5brnC7pkE7aHS7pfyX9oFzf7pLuk7RA0gxJX+ginsMltUpqXfJMW18vJyIiIiKi3zR9YgPsAKwJ/KqH8/YHTgGGA7cDvwGuBTYEPg1cKGmLXvT3HuDtwGuAkcC+wNOl7Fvl+HbAZsBY4Gu1uhsDo4AJwOG96Kun67gFWAQcVGJ5H/AJSXsDSBoPXA38ENigxHV3vTFJ6wO/A/5g+zOutsn7KfBx28OBbYAbOgvE9lm2W2y3DBk6YhkvJyIiIiJi+a0Mic1oYLbtF9sP1EYonpX09nL4V7b/UJ67sx0wDDjV9gu2b6B6+OiHe9HfYqqk4rVU22X/1fasspbnMOBztufYXgB8A9ivVncp8HXbz9t+dhmv9x/XYfs52zfavrd8/jNwMbBTOfcA4HrbF9tebPtp23fX2hoD3ARcZvu4Dte4laR1bc+1fdcyxhoRERERsUKsDInN08Do+poV22+xPbKUtV/j9FqdMcD0Dg8XnUY1wtKtkgSdAfwIeELSWZLWpRoRGQpMKUnVPOB/yvF2T9l+ro/X11H9OpD0pjKN7ClJbVRri0aX4nHAQ9209T5gbeDMDsc/COwOTJN0k6QdljPmiIiIiIgB1ekC9ibzR+B5YC/g8m7Oqz+JdCYwTtJqteRmPPC38n4RVZLSbuOXNWT/APiBpA2BS4EvAl8HngW2tj2jFzEsq45tXESVaO1m+zlJp/NSYjMdeGM3bZ0NrAdcJem9thcB2L4T2EvS6sCRVNc4rrugth07gtY8hDEiIiIiGqTpR2xszwNOAH4s6d8lDZO0mqTtgHW6qHY7VfLyJUmrS9oZ2BO4pJTfDXxA0lBJmwEfa68oafsySrJ6aeM5YElJkM4GTisJD5LGStq1Xy/4nw0H5pSk5o1Ua3DaXQjsIulDkl4haf1yX+qOBB4AfitpbUlrqNpyeoTtxcB8YMkAX0NERERExHJp+sQGwPa3gaOALwFPAk8A/w0cDdzayfkvAO+n2k55NvBj4CDb95dTTgNeKO2cR5UgtFuXKoGZSzV97WngO6XsaOBB4DZJ84Hrgd5sSLA8PgmcKGkB1UYFl7YX2H6UakrZ54E5VAnb6+qVy2YBh1ON7vwKWAs4EJharuEI4CMDfA0REREREctF1d+1EcunpaXFra2tjQ4jIiIiIlZikqbYbumsbKUYsYmIiIiIiFVbEpsGkXSspIWdvK5udGwREREREc1mZdgVrSnZ/gbVc24iIiIiImI5ZcQmIiIiIiKaXhKbiIiIiIhoepmKFv3i3hltTDxmcqPDiEFuah7iGhEREQMkIzY1kraQ9CdJCyQtlfTVAe7veEkX9PLcGyUdOpDxREREREQ0qyQ2L/cl4Ebbw22vZvskAEk7S7KkX9ZPlvS6cvzGFRmkpEMkLantpPaIpHMkvWZFxhERERERMVgksXm5CcBfuih7CniLpPVrxw4G/jbgUXXuj7aHASOAXYBngSmStmlQPBERERERDZPEppB0A/AO4IwyCnKRpJNrp7wAXAnsV84fAnwIuLBDO2+RdKektvLPt9TKXiXppjLV7TpgdIe6b5Z0q6R5ku6RtHNPcdteYvsh258EbgKO7017ZdTn4RLLI5IOqJUdJumvpew+SW/oKY6IiIiIiEZKYlPYfifwe+DIMhLyQiennQ8cVN7vSjW6M7O9UNIoYDLwA2B94HvA5Nooz0XAFKqE5iSqEZ/2umNL3ZOBUcAXgMslbdCHy/gl8Lae2pO0TolxN9vDgbcAd5d6+1AlRwcB6wLvB57urDNJh0tqldS65Jm2PoQZEREREdG/ktj0ge1bgVGStqD6w//8Dqe8D/i77Um2X7R9MXA/sKek8cD2wFdtP2/7ZuA3tbofAa6yfZXtpbavA1qB3fsQ4kyqJKY37S0FtpG0tu1Zttun4B0KfNv2na48aHtaF/fjLNsttluGDB3RhzAjIiIiIvpXEpu+mwQcSTVt7YoOZWOAjknANGBsKZtre1GHsnYTgH3KtLF5kuYBOwKb9CG2scCcntorMewLHAHMkjRZ0mtLvXHAQ33oMyIiIiKi4fIcm76bBDwInG/7GUn1splUCUXdeOB/gFnAepLWqSU34wGX99OBSbYPW47Y/o1qOl2P7dm+BrhG0tpU09XOpprGNh3YdDliiIiIiIhY4ZLY9JHtRyTtBDzcSfFVwA8l7Q9cCnwQ2Ar4re3ZklqBEyQdC7wR2BP4dal7AXCnpF2B64HVgTcDD9p+rKt4yiYG44GjgJ2BHXpqD1gMvAn4HdVuaguBJaXeT4DvSboFuIsqyVnc1XS0dtuOHUFrHr4YEREREQ2SqWjLwPYttmd2cvxpYA/g81QL7r8E7GF7djllf6qEYg7wdWprdGxPB/YCjqXaWno68EW6/ne0g6SFwHzgRqqF/tvbvrcX7a1WYpxZYtkJ+GSpdxlwCtVGBwuodoJrX7cTERERETEoyXbPZ0X0oKWlxa2trY0OIyIiIiJWYpKm2G7prCwjNhERERER0fSS2ERERERERNNLYhMREREREU0viU1ERERERDS9JDYREREREdH0kthERERERETTywM6o1/cO6ONicdMbnQYsQqYmgfBRkRERCcyYjMISdpZ0mONjiMiIiIiolkksekHkqZKelbSwtrrjEbHFRERERGxqshUtP6zp+3rGx3EspI0xPaSRscREREREbEsMmIzgCQdIukWSd+RNFfSI5J2q5WPknSOpJml/Mou2tlS0o2S5kn6i6T318p2l3SfpAWSZkj6Qr3vDu1Y0mbl/bmS/kvSVZIWAe+QNEbS5ZKeKrF+ZiDuS0REREREf0tiM/DeBDwAjAa+DfxUkkrZJGAosDWwIXBax8qSVgd+A1xbzvk0cKGkLcopPwU+bns4sA1wQx9i2x84BRgO3Fr6uQcYC7wL+KykXbuqLOlwSa2SWpc809aHbiMiIiIi+lcSm/5zZRlRaX8dVo5Ps312meZ1HrAJsJGkTYDdgCNsz7W92PZNnbT7ZmAYcKrtF2zfAPwW+HApXwxsJWnd0s5dfYj5V7b/YHspsC2wge0TSz8PA2cD+3VV2fZZtltstwwZOqIP3UZERERE9K8kNv1nb9sja6+zy/HH20+w/Ux5OwwYB8yxPbeHdscA00vy0W4a1agKwAeB3YFpkm6StEMfYp5eez8BGFNPzoBjgY360F5ERERERENk84DGmQ6MkjTS9rxuzpsJjJO0Wi25GQ/8DcD2ncBeZcrakcClVEnTIqppbgBI2riTtt0hnkdsb76M1xMRERER0TBJbBrE9ixJVwM/lvQpYCGwg+2bO5x6O1WS8iVJ3wXeCuwJbC9pDWAf4Le22yTNB9p3NrsH2FrSdsD9wPE9hHQHMF/S0cAPgBeALYG1S/LUrW3HjqA1D06MiIiIiAbJVLT+85sOz7G5ohd1DqRaI3M/8CTw2Y4n2H4BeD/VepzZwI+Bg2zfX2tjaklqjgA+Uur9DTgRuB74O3AL3ShrgPYEtgMeKX39BMjimYiIiIgY9GS757MietDS0uLW1tZGhxERERERKzFJU2y3dFaWEZuIiIiIiGh6SWwiIiIiIqLpJbGJiIiIiIiml8QmIiIiIiKaXhKbiIiIiIhoeklsIiIiIiKi6eUBndEv7p3RxsRjJjc6jIhem5oHykZERKxUBvWIjaQtJP1J0gJJSyV9tdEx9ZakGyUd2ug4IiIiIiJWBYM6sQG+BNxoe7jt1Wyf1F4g6VhJj0haKOkxST9vYJwrVEmanisJ33xJUyQdI2nNRscWEREREdEIgz2xmQD8peNBSQcDBwK72B4GtAC/W8GxDQhJvZ0eeKTt4cAmwOeB/YCrJGnAgouIiIiIGKQGbWIj6QbgHcAZZVTmIkknl+LtgWtsPwRg+3HbZ9XqjpD0U0mzJM2QdLKkIbXywyT9tYx43CfpDeX4lmU0ZJ6kv0h6f63OuZJ+JGlyqXe7pE1r5e+WdL+kNklnAKqVbSrpBklPS5ot6UJJI2vlUyUdLenPwCJJX5R0eYf78UNJp3e8T7YX2b4ReD+wA/C+cv5qZRTnodLvpZJGlbK1JF1Qjs+TdKekjUrZKEnnSJopaa6kK/vwry0iIiIioiEGbWJj+53A76lGJoYBL9SKbwMOKglASz1pKc4DXgQ2A14PvAc4FEDSPsDxwEHAulQJwdOSVgd+A1wLbAh8GrhQ0ha1dj8MnACsBzwInFLaHA1cDhwHjAYeAt5aqyfgm8AYYEtgXImh7sNUSclI4ALgve3JTxnF2ReY1M39ehRoBd5WDn0G2BvYqfQ7F/hRKTsYGFHiWB84Ani2lE0ChgJbl/twWld9SjpcUquk1iXPtHV1WkRERETEgBu0iU13bF9AlXjsCtwEPCnpGIAy8rAb8NkymvEk1R/n+5XqhwLftn2nKw/anga8GRgGnGr7Bds3AL+lSjja/dL2HbZfBC4EtivHdwfus/0L24uB04HHa/E+aPs628/bfgr4HlXCUfcD29NtP2t7FnAzsE8pey8w2/aUHm7NTGBUef9x4Cu2H7P9PFUi9e8lSVpMldBsZnuJ7Sm250vapNy7I2zPtb3Y9k1ddWb7LNsttluGDB3RQ2gREREREQOnabd7tn0h1YjK6lQjExdK+hPVyMTqwKzacpPVgOnl/TiqEZWOxgDTbS+tHZsGjK19frz2/hmqROgfdWuxWdI/PkvaEPgB1WjK8BLP3A79T+/w+TzgE8DZwEfoZrSmZixwa3k/AbhCUv16lgAblbbGAZeUUaELgK+UY3Nsd4wtIiIiImJQa8oRm7oyqnAZ8GdgG6oE4XlgtO2R5bWu7a1LlenApp00NRMYJ6l+T8YDM3oRxiyqpACAsoB/XK38m4CBf7G9LlWi0nGRvzt8vhL4F0nbAHtQjRB1SdI44F+ppu9BdZ271e7BSNtr2Z5R7tkJtrcC3lLaP6jUGVVf/xMRERER0QyaMrGRdIik90kaXhbJ70a1JuT2Mo3rWuC7ktYt5ZtKap/69RPgC5L+VZXNJE0AbgcWAV+StLqknYE9gUt6EdJkYGtJHyhTvT4DbFwrHw4sBOZJGgt8sacGbT8H/AK4CLijrKHp7F4MLdf2K+AO4KpSdCZwSrk2JG0gaa/y/h2Sti1rk+ZTTU1bUu7d1cCPJa1X7sPbe3H9EREREREN1axT0eYDx1JNoRpCNWXsE7ZvKeUHAacC91ElFQ8D3wKwfZmk9akShrHAVOBA29PKLmg/Br5MNVJzkO37ewrG9uyyKcEPgHOopnr9oXbKCcD5QBvVpgOTgM/14jrPo1oT9B+dlJ0hqX1h/4NUSdB3a1Ppvk81KnStpDHAk8DPqRKgjakSn1dSJVw/p7qXUG2jfRpwP7AG8L9U6326te3YEbTmSe4RERER0SCyO86AisFC0niqBGNj2/MbHU93Wlpa3Nra2ugwIiIiImIlJmmK7ZbOyppyKtqqoKz1OQq4ZLAnNRERERERjdasU9FWapLWAZ6gmmL33gaHExEREREx6CWxGYRsL+KlraQjIiIiIqIHmYoWERERERFNL4lNREREREQ0vSQ2ERERERHR9JLYRERERERE08vmAU1M0kTgEWB12y/2cO4hwKG2dxyIWO6d0cbEYyYPRNMRA25qHi4bERHR9DJiswJJmirpBUmjOxy/W5JLorKiYrGkzcr74yUtlrSgvP4m6QxJm6yoeCIiIiIilkcSmxXvEeDD7R8kbQus3bhw/uHntocDo4B/AzYGpiS5iYiIiIhmkMRmxZsEHFT7fDBwfvsHSSMknS/pKUnTJB0nabVSNkTSdyTNlvQw8LL5M6XuTyXNkjRD0smShvQlONuLbf8F2Bd4Cvj8Ml5nRERERMQKk8RmxbsNWFfSliXp2Be4oFb+Q2AE8GpgJ6ok6KOl7DBgD+D1QAvw7x3aPg94EdisnPMe4NBlCdL2EuBXwNu6OkfS4ZJaJbUueaZtWbqJiIiIiOgXSWwao33U5t3A/cCMcrw90fmy7QW2pwLfBQ4s5R8CTrc93fYc4JvtDUraCNgN+KztRbafBE4D9luOOGdSTU3rlO2zbLfYbhkydMRydBMRERERsXyyK1pjTAJuBl5FbRoaMBpYA5hWOzYNGFvejwGmdyhrNwFYHZglqf3Yah3O76uxwJzlqB8RERERsUIksWkA29MkPQLsDnysVjQbWEyVpNxXjo3npRGdWcC42vnja++nA88Do3va+rk3yrqePYHrl7etiIiIiIiBlqlojfMx4J22F9WOLQEuBU6RNFzSBOAoXlqDcynwGUmvlLQecEx7RduzgGuB70paV9JqkjaVtFNfgpK0uqQtgYupdkb73rJeYERERETEipIRmwax/VAXRZ+m2kDgYeA54GzgZ6XsbOA1wD3AfOA7wDtrdQ8CTqUa7Rle2vhWL0PaV9LegKjW1lwH/Kvtmb2pvO3YEbTmIYcRERER0SCy3egYYiXQ0tLi1tbWRocRERERESsxSVNst3RWlqloERERERHR9JLYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fSS2ERERERERNNLYhMREREREU0vD+jsB5IMbG77weVs50bgAts/6ZfAlpOknanieWVP5947o42Jx0we8JgiBrupeVBtREREQ2TEZgWStLOkpZIWdnjt0OjYIiIiIiKaWUZsVryZvRkBiYiIiIiI3suITQeSjpY0Q9ICSQ9IepekN0r6o6R5kmZJOkPSGl3UX1PSdyQ9KukJSWdKWnsZ4thU0g2SnpY0W9KFkkbWyqdK+rKk+yTNlXSOpLVK2WhJvy3xzpH0e0mrlbIxki6X9JSkRyR9ptbm2pLOLe3dB2zf17gjIiIiIhohiU2NpC2AI4HtbQ8HdgWmAkuAzwGjgR2AdwGf7KKZbwGvAbYDNgPGAl9blnCAbwJjgC2BccDxHc45oMS4aenzuHL888BjwAbARsCxgEty8xvgnhLXu4DPStq11Pt6aWvT0u7B3QYoHS6pVVLrkmfaluESIyIiIiL6RxKbl1sCrAlsJWl121NtP2R7iu3bbL9oeyrw38BOHStLEnAY8Dnbc2wvAL4B7Fc7bUwZSam/1unYlu0HbV9n+3nbTwHf66TPM2xPtz0HOAX4cDm+GNgEmGB7se3f2zbVCMwGtk+0/YLth4Gza/F9CDilxD4d+EF3N8v2WbZbbLcMGTqiu1MjIiIiIgZU1tjU2H5Q0mepRka2lnQNcBQwjCqxaAGGUt23KZ00sUEpn1LlOEA18jKkdk6v1thI2pAqsXgbMJwqCZ3b4bTptffTqEZ3AP5fuYZrSxxn2T4VmEBJrGr1hgC/L+/HdNJmRERERMSglxGbDmxfZHtHqiTAVFPL/gu4n2pL53Wppnapk+qzgWeBrW2PLK8RtoctQyjfLP3/S+nzI530Oa72fjwws1zDAtuft/1qYE/gKEnvokpaHqnFNtL2cNu7lzZmddJmRERERMSgl8SmRtIWkt4paU3gOaokZQnViMl8YKGk1wKf6Ky+7aVUU7tOKyMuSBpbW8PSF8OBhcA8SWOBL3ZyzqckvVLSKKpk6+elzz0kbVamxs0v17AEuAOYXzZIWFvSEEnbSGrfJOBS4MuS1pP0SuDTyxB3RERERMQKl6loL7cmcCrVYv3FwK3A4VSbAJwFfAn4E1UC8c4u2jiaarOA2ySNBmZQjfhcU8rHSFrYoc7Bti/vcOwE4HygDXgQmES1gUHdRcC1VFPIfgWcXI5vDpxBNTVuLvBj2zcCSNoT+C7wSLneB3hp04ETgDNL2UzgHOA/u7jOl9l27Aha82DCiIiIiGgQVWvKo9lImgocavv6RscC0NLS4tbW1kaHERERERErMUlTbLd0VpapaBERERER0fSS2ERERERERNPLGpsmZXtio2OIiIiIiBgsMmITERERERFNL4lNREREREQ0vSQ2ERERERHR9JLYRERERERE01shmwdI2gK4hOpBl+sAX7d90gD3OZHqQZOr235xIPvqpO/jgc1sf2RF9ttI985oY+IxkxsdRsQqY2oeiBsREfEyK2rE5kvAjbaH216tPamRtLOkpZIWSlog6QFJH11BMfWKpHMlndzJ8f0ltZbYZ0m6WtKOKyimqZKeLfdsnqRbJR0hKSNwEREREbFKWlF/CE8A/tJF2Uzbw4B1gaOBsyVt1fEkSYNma2pJRwGnA98ANgLGAz8G9lqBYexpezjVvT2V6t79dAX2HxERERExaAx4YiPpBuAdwBlldOOizkZAXLkSmAtsJekQSX+QdJqkOcDxkkZIOl/SU5KmSTqufZRC0hBJ35E0W9LDwMvmaZRRjl1qn4+XdEHt845l5GOepOml/8OBA4Avldh/I2kEcCLwKdu/tL3I9mLbv7H9xS7uwWWSHpfUJulmSVvXynaXdF8ZfZkh6Qvl+GhJvy3xzJH0+85GZGy32f41sC9wsKRtSv01y/14VNITks6UtHZPbUsaJ+mX5R4/LemMHv8lR0REREQ02IAnNrbfCfweOLKMzLzQ2XmSVpP0b8BI4N5y+E3Aw8CGwCnAD4ERwKuBnYCDgPapa4cBewCvB1qAf+9tjJLGA1eX9jcAtgPutn0WcCHwbdvDbO8J7ACsBVzR2/ZL25uX67irtNnup8DHy+jLNsAN5fjngcdKPBsBxwLuqgPbd5Tz31YOfQt4TbmWzYCxwNe6a1vSEOC3wDRgYqlzSVd9Sjq8TMdrXfJMWw+3ICIiIiJi4AyGNRljJM0DZgNfBw60/UApm2n7h2Xx/wtUoxJftr3A9lTgu8CB5dwPAafbnm57DvDNPsRwAHC97YvL6MvTtu/u4tz1gdl92ZDA9s9KzM8DxwOvKyM/AIupRqjWtT3X9l2145sAE0pMv7fdZWJTzARGSRJVovc523NsL6CaNrdfD22/ERgDfLGMRD1n+5Zuruss2y22W4YMHdHVaRERERERA24wJDYzbY+0Pcr2drbrIwTTa+9HA2tQjSa0m0Y1qgDVH+TTO5T11jjgoV6e+zQwurdrfsoUuVMlPSRpPjC1FI0u//wgsDswTdJNknYox/8f8CBwraSHJR3Ti+7GAnOoRmKGAlPKdLN5wP+U4921PQ6YtqJ3kYuIiIiIWF6DIbHpTn2EYjbVSMOE2rHxwIzyfhbVH+b1srpFVH/st9u49n46sGkvYgD4I/AcsHdXQXewP9WmArtQTaObWI4LwPadtveimqZ2JXBpOb7A9udtvxrYEzhK0ru66kTS9lSJzS1U9+pZYOuSNI60PaJMBeyu7enA+MG0UUNERERERG8M9sTmH2wvofqj/xRJwyVNAI4C2jcAuBT4jKRXSloP6DjCcTewn6TVJXVcg3MhsIukD0l6haT1JW1Xyp6gWtPTHkcb1VqVH0naW9LQ0uZukr7dSejDgeepRnqGUk0JA0DSGpIOkDTC9mJgPrCklO0habMyraz9+JKOjUtaV9IeVGthLrB9r+2lwNnAaZI2LOeNlbRrD23fQZUgnippHUlrSXprJ9cUERERETGoNNv/M/9pqgX+D1ONmpwN/KyUnU21WP4eqj/WvwO8s1b3q8DFVLuu3QRcBIwCsP2opN1LnZ8AbcBxVMnQT4HLynSuG23vbft7kp4o51wILACmUG1w0NH5wK5UI0tzShyfqJUfSLVj3BDgAaD9oZ6bA2dQTR+bC/zY9o21er+R9CKwFLgP+B5wZq38aKoE7DZJo0v//wVc013bkvYEfgA8SjVadRHwh06u62W2HTuC1jwwMCIiIiIaRD2vR4/oWUtLi1tbWxsdRkRERESsxCRNsd3SWVnTTEWLiIiIiIjoShKbiIiIiIhoeklsIiIiIiKi6SWxiYiIiIiIppfEJiIiIiIiml4Sm4iIiIiIaHpJbCIiIiIiouk12wM6G0KSgc1tP9joWAare2e0MfGYyY0OIyIilsPUPGg5IppY043YSNpfUqukhZJmSbpa0o6NjmtZSDpW0iPlWh6T9PPlbG9nSY/1V3wREREREc2iqRIbSUcBpwPfADYCxgM/BvZqYFhdktTliJikg4EDgV1sDwNagN+tqNgiIiIiIlYmTZPYSBoBnAh8yvYvbS+yvdj2b2x/UdKakk6XNLO8Tpe0Zql7iKRbOrRnSZuV9+dKOlPSdZIWSLpJ0oQu4lhT0nckPSrpiVJv7VK2cxl5OVrS48A53VzS9sA1th8CsP247bNKO/tImtKh389LurK8313SfSXWGZK+IGkd4GpgTBkBWihpjKTVJB0j6SFJT0u6VNKo0s7Ech8+Kmm6pLmSjpC0vaQ/S5on6Yy+/ZuKiIiIiFjxmiaxAXYA1gKu6KL8K8Cbge2A1wFvBI7rQ/sHACcBo4G7gQu7OO9bwGtKP5sBY4Gv1co3BkYBE4DDu+nvNuAgSV+U1CJpSK3s18CrJG1ZO/YRYFJ5/1Pg47aHA9sAN9heBOwGzLQ9rLxmAp8B9gZ2AsYAc4EfdYjlTcDmwL5UI2JfAXYBtgY+JGmnbq4jIiIiIqLhmimxWR+YbfvFLsoPAE60/aTtp4ATqKZ69dZk2zfbfp7qD/sdJI2rnyBJwGHA52zPsb2AalrcfrXTlgJft/287We76sz2BcCngV2Bm4AnJR1Typ4Hfk6VzCBpa2Ai8NtSfTGwlaR1bc+1fVc31/Vx4Cu2HyvtHg/8e4dpcifZfs72tcAi4OJyH2cAvwde31nDkg4v651alzzT1k0IEREREREDq5kSm6eB0d2sWxkDTKt9nlaO9db09je2FwJzOqm/ATAUmFKmac0D/qccb/eU7ed606HtC23vAowEjgBOlLRrKT4P2L8kUwcCl5bEBOCDwO7AtDJtboduupkAXFGL96/AEqo1Su2eqL1/tpPPw7qI/yzbLbZbhgwd0fMFR0REREQMkGZKbP4IPEc1raozM6n+iG83vhyDahRiaHuBpI07qT+uVj6MajrZzA7nzKb6Q39r2yPLa0RZ/N/OPV/Ky5W1QpcBf6aaWobt24AXgLcB+/PSNDRs32l7L2BD4Erg0m76ng7sVot3pO21ymhMRERERMRKoWkSG9ttVGtZfiRpb0lDJa0uaTdJ3wYuBo6TtIGk0eXcC0r1e4CtJW0naS2q6Vgd7S5pR0lrUK21ud329PoJtpcCZwOnSdoQQNLY2ihLr5UNDd4naXhZ4L8b1ZqW22unnQ+cAbxo+5ZSbw1JB0gaYXsxMJ9qBAaqkZb1y0YL7c4ETmnfDKHcn0G5i1xERERExLJqqgd02v6epCeoNgW4EFgATAFOAe4C1qUa9QC4DDi51PubpBOB66lGXL5Mtfak7iLg61SbFNxFtWanM0dTJU23lQRqBvBfwDV9vJz5wLFUydcQqqlzn2hPYIpJVEnWSR3qHgicUTYceICyFsf2/ZIuBh4uZVsB3wcEXCtpDPAk1fqdX/Ux3m5tO3YErXmwW0REREQ0iOw+z5xa6Ug6F3jMdl92URtwZRvpJ4E32P57o+PpTktLi1tbWxsdRkRERESsxCRNsd3SWVnTTEVbRX0CuHOwJzUREREREY3WVFPRmo2kY6mmm3X0e9u79VB3KtUUsr37P7KIiIiIiJVLEhvA9iED1O43qJ5zsyx1J/ZvNBERERERK69MRYuIiIiIiKaXxCYiIiIiIppeEpuIiIiIiGh6SWwiIiIiIqLpZfOA6Bf3zmhj4jGTGx1GREREl6bmQdIRK7WM2Kxgkm6UdGgD+l0o6dUrut+IiIiIiBUhiU0XJE2V9GxJCJ6QdI6kYY2OC0DSzpIe63BspKSfSXpc0gJJf5N0dHu57WG2H17x0UZEREREDLwkNt3b0/Yw4A3A9sBx9UJJg2kq32nAMGBLYATwfuChhkYUEREREbGCJLHpBdszgKuBbSRZ0qck/R34O4CkwyQ9KGmOpF9LGtNeV9K7Jd0vqU3SGYBqZcdLuqD2eWJp/xXl86gyUjRT0lxJV0pap8QypowmLSz9bQ9cZHuu7aW277f9i1rblrSZpHq9hZKekeTaef8h6a+lv2skTRio+xoRERER0V+S2PSCpHHA7sCfyqG9gTcBW0l6J/BN4EPAJsA04JJSbzRwOdVIz2iqEZS39qHrScBQYGtgQ+A024uA3YCZZXrZMNszgduAUyR9VNLmXTVou15vGHBFLd69gWOBDwAbAL8HLu7mvhwuqVVS65Jn2vpwWRERERER/SuJTfeulDQPuAW4CfhGOf5N23NsPwscAPzM9l22nwe+DOwgaSJVMnSf7V/YXgycDjzem44lbUKVwBxRRmEW276pmyqfBi4EjgTuKyNIu/XQx9HAa4H/KIc+Xq7tr7ZfLNe7XVejNrbPst1iu2XI0BG9uayIiIiIiAGRxKZ7e9seaXuC7U+WRAZgeu2cMVSjNADYXgg8DYwtZdNrZe5QtzvjgDm25/bmZNvP2v6G7X8F1gcuBS6TNKqz80vS85/lGtuvawLwfUnzSkI3h2rq3NhexhwRERER0RBJbJaNa+9nUiUEAJQ1MOsDM4BZVAlKe5nqn4FFVFPN2m1cez8dGCVpZA/9/3OhPZ9qtGUd4FUdyyVtAZwHfMh2PdGaDny8JHPtr7Vt39pdfxERERERjTaYdvVqVhcBl0i6CPgrVUJxu+2pkhYCZ0j6APBr4FO8PHm5Gzha0nigjWoaGwC2Z0m6GvixpE8BC4EdbN8MPAGsL2mE7TYASV8F/ge4hyph/U9gHvBAPVhJ6wK/Ao6zfUuHazkTOEnS3bb/ImkE8B7bl/V0E7YdO4LWPPgsIiIiIhokIzbLyfbvgK9SbRIwC9gU2K+UzQb2AU6lmp62OfCHWt3rgJ8DfwamAL/t0PyBwGLgfuBJ4LOl3v1Ui/ofLtPGxlCN4pwDzKYaRXo38L4yNa7uDcAWwPfqu6OVdq8AvkWVqM0H/o9qnU9ERERExKCmatlHxPJpaWlxa2tro8OIiIiIiJWYpCm2Wzory4hNREREREQ0vSQ2ERERERHR9JLYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fTygM7oF/fOaGPiMZMbHUZEREREDKCpg/iB7BmxWYVJ2lnSY42OIyIiIiJieSWxWU6SLpT0sw7HdpL0tKRN+qmPnSVZ0i87HH9dOX5jf/QTEREREdGsktgsv88Au0t6N4CktYCzgc/bnrW8jUtqny74FPAWSevXig8G/ra8fURERERENLskNsvJ9tPAp4GzJK0DfB14CLhf0q2S5km6R9LO7XUkfVTSXyUtkPSwpI/XynaW9JikoyU9DpxTil4ArgT2K+cNAT4EXFiPR9L3JU2XNF/SFElvq5WtLelcSXMl3Qds36HuGEmXS3pK0iOSPtNPtykiIiIiYkAlsekHti8DpgAXA4cDRwCTgZOBUcAXgMslbVCqPAnsAawLfBQ4TdIbak1uXOpNKO21Ox84qLzfFfgLMLNDOHcC25X6FwGXlVEkqJKuTctrV6oRHwAkrQb8BrgHGAu8C/ispF27um5Jh0tqldS65Jm2rk6LiIiIiBhwSWz6z6eAdwInUo2qXGX7KttLbV8HtAK7A9iebPshV24CrgXeVmtrKfB128/bfrb9oO1bgVGStqBKcM7vGITtC2w/bftF298F1gS2KMUfAk6xPcf2dOAHtarbAxvYPtH2C7YfpppSt19XF2z7LNsttluGDB3Rl3sVEREREdGvktj0E9tPALOpRlEmAPuUaWjzJM0DdgQ2AZC0m6TbJM0pZbsDo2vNPWX7uS66mgQcCbwDuKJjoaTPl2lubaXtEbW2xwDTa6dPq72fAIzpEPOxwEa9vQcREREREY2S59gMjOnAJNuHdSyQtCZwOdWIy69sL5Z0JaDaae6m7UnAg8D5tp+RXqpW1tMcTTWN7C+2l0qaW2t7FjCOKvkCGN8h5kdsb97rq4yIiIiIGCSS2AyMC4A7y/qU64HVgTdTJSRtVNPDngJelLQb8B7g/3rTsO1HJO0EPNxJ8XDgxdL2KyQdQ7WOp92lwJcl3Q6sQ7XpQbs7gPmSjqaaovYCsCWwtu07e4pr27EjaB3ED2yKiIiIiJVbpqINgLJ+ZS+qqVxPUY2GfBFYzfYCqi2iLwXmAvsDv+5j+7fY7rhpAMA1wNVUW0BPA57j5VPPTijHH6Fa1zOp1uYSYE+qjQceoZpW9xOqqWwREREREYOa7O5mPUX0TktLi1tbWxsdRkRERESsxCRNsd3SWVlGbCIiIiIiouklsYmIiIiIiKaXqWjRLyQtAB5odBwrqdFUa56i/+XeDpzc24GTeztwcm8HTu7twFnV7u0E2xt0VpBd0aK/PNDVfMdYPpJac28HRu7twMm9HTi5twMn93bg5N4OnNzbl2QqWkRERERENL0kNhERERER0fSS2ER/OavRAazEcm8HTu7twMm9HTi5twMn93bg5N4OnNzbIpsHRERERERE08uITURERERENL0kNhERERER0fSS2ERERERERNNLYhMASBol6QpJiyRNk7R/N+d+TtLjktok/UzSmr1tR9K7JN0v6RlJ/ytpwkBe12DQH/dW0pqSflrqL5D0J0m71epNlGRJC2uvr66I62ukfvze3ijpudq9e6BD3VXuewv9en8XdngtkfTDUpbvbjf3VtI2kq6RNFvSPy2KzW/uP+uPe5vf3M714/c2v7kd9OO9XbV/b23nlRfAxcDPgWHAjkAbsHUn5+0KPAFsDawH3Aic2pt2qJ6M2wbsA6wF/D/gtkZfezPcW2Ad4HhgItX/IbEHsACYWMonAgZe0ejrbbZ7W8pvBA7too9V8nvbn/e3w7nrAAuBt5fP+e52f2+3AD4G7FX9J7v37ayq393+uLf5zR3w721+cwfo3nY4d5X7vW14AHk1/lW++C8Ar6kdm9TZHybARcA3ap/fBTzem3aAw4FbO/T7LPDaRt+DwX5vu2j7z8AHy/uV/sdqIO9tD/+RXeW+t/19fzucezDwMC/typnvbjf3tla+Wcc/YvKbO3D3tovz8pvbT/c2v7kDd287nLPK/d5mKloAvAZYYvtvtWP3UP2/rx1tXcrq520kaf1etPOyurYXAQ910c/Kor/u7ctI2qi0/ZcORdMkPSbpHEmjly/0Qa+/7+03y9D+HyTt3FXdVeR7CwP03aX6D+35Lv+Vrcl3t+/fqfzm/rP+urcvk99coP/vbX5zXzIg31tWwd/bJDYB1bBnW4djbcDwXpzb/n54L9rpSz8ri/66t/8gaXXgQuA82/eXw7OB7YEJwL+WOhcuV+SDX3/e26OBVwNjqR509htJmy5DPyuTgfjujgd2As6rHc53t7Is36n85v6zfr/m/Ob+Q3/e2/zmvtxAfG9Xyd/bJDYB1fzLdTscW5dqPnFP57a/X9CLdvrSz8qiv+4tAJJWoxqefgE4sv247YW2W22/aPuJUvYeSR37Xpn02721fbvtBbaft30e8Adg92XoZ2XSr9/d4iDgFtuPtB/Id/cfluU7ld/cf9av15zf3Jfpt3ub39x/MhDXvEr+3iaxCYC/Aa+QtHnt2Ov45yF3yrHXdTjvCdtP96Kdl9WVtA6waRf9rCz6694iScBPgY2o5nkv7qbf9mFnLWvgTaDf7m0nzEv3blX83sLA3N+DePn/e9iZfHf7r51V8bvbX/c2v7n/rN/ubSdW9d/cgbi3q+bvbaMX+eQ1OF7AJVQ7cqwDvJWud+N4L/A4sBXV7kc38PLdpbpsB9igfP4g1U4n32LV2Omkv+7tmcBtwLBO6r6JaqeU1YD1qXZW+d9GX3sz3FtgJNWuXmsBrwAOABYBW3gV/t721/2tnfOWcl+Hdzie727391ble7cV1R8hawFr9qadVfW724/3Nr+5A3Bv85s7sN/bcs4q+3vb8ADyGhwvYBRwZfkfwqPA/uX4eKoh0vG1c4+i2tp1PnBOh/8QdNpOrXwX4H6qHU5upGyduTK/+uPeUs2HNfBcqdP+OqCUfxh4pPQxCzgf2LjR194k93YD4E6qIf95VH/IvHtV/9721/2tlf83MKmTPvLd7ebe8tIuRvXX1J7aqZWvct/d/ri3+c0d0Hub39wBure1tlbZ39v27d8iIiIiIiKaVtbYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fSS2ERERERERNNLYhMREREREU0viU1ERERERDS9JDYREREREdH0/j9TwflaepGNTwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -8179,12 +8347,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAFoCAYAAABT1OOjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde7hVVb3/8fcH8g6CiqIbEUw0UysqvJXKPmnHMk07p7RQ01JJzTqVlWmmWF6yU1lqZZiXvGyN8q6ZlzwbLS8JsvOXpoUKbtiIINeNiArf3x9jbJmt9mVt2JsFa31ez7Me5xpjzDG/c/k89fW7x5xDEYGZmZmZWTXpU+kAzMzMzMx6mpNcMzMzM6s6TnLNzMzMrOo4yTUzMzOzquMk18zMzMyqjpNcMzMzM6s6byt34KBBg2L48OG9GIqZmZlZz5g8efLciNiy0nFY5ZSd5A4fPpxJkyb1ZixmZmZmPULS9ErHYJXl5QpmZmZmVnWc5JqZmZn1IElXSzq3k/5WSW9fkzHVIie5ZmZmVnMkTZP0uqRBJe1NkkLS8N66dkT0i4jnV3eeYjItaXiOuzV/Zku6U9KHVz/idZOTXDMzM6tVLwCfafsi6V3ARpULp0cMjIh+wHuA+4BbJB1b2ZAqo+wHz8xqQUvLeGbPbqh0GGZmtmZcC3wWuCR/Pwa4Bmirjn4sH+8ALASuiIhxbSdL2gf4AbALsBj4TkRcnbs3k3QXsB/wNDAmIp7L5wWwY0RMlXQ1sAQY3sHYnXN87wfm5GtM6OrGIuIl4KeS1gMulHRNRKzo5u+zTnMl16xg9uwGWlubKh2GmZmtGY8Cm0p6p6S+wBHAdYX+JaQkeCDwMeAkSYcBSNoOuJuUgG4JjASK/wfyGeAcYDNgKnBeJ3G0O1bSJqRqbAOwVR73c0m7duMeb87nvqMb51QFV3LNSvTrN5L3vrex0mGYmdlqUbkD26q5E4FngJltHRHRWBj3pKQbgNHArcCRwP0RcUPufyV/2twcEX8BkHQ98ONOYuho7MHAtIi4Kn9/QtJNwCeBp8q8v5b8z83LHF81nOSamZlZLbsWeBDYnrRU4S2S9gS+D+wGrA9sAPw2dw8Fnutk3pcKx68C/VZh7DBgT0kLCv1vyzGXa0j+57xunFMVvFzBzMzMalZETCc9gHYQ6U/7RQ3A7cDQiBgAXMbKEnEzaa1ub2oGJkbEwMKnX0Sc1I05PgG8DDzbOyGuvZzkmpmZWa07DvhQRCwpae8PzIuI1yTtAYwp9F0PHCDpcElvk7SFpJE9HNedwE6Sjpa0Xv7sLumdXZ0oabCkU4CzgdNr7aEzcJJrZmZmNS4inouISe10nQx8V9Ji4CxgQuGcF0nV31NJSwGaSK/t6sm4FgP/CXyatLb2JeBC0rKJjiyQtAT4fzm+T0XElT0Z17pCEVHWwFGjRsWkSe39+zerHlOm1AP4wTMzs3WcpMkRMarScVjl+MEzW2uMHw8NFX5FbWvrT7j88q9UNggzMzNbbV6uYGuNhgZo8itqzczMrAe4kmtrlZEjobGxctefMsVVXDMzs2rgSq6ZmZmZVR0nuWZmZmarSdJwSSGpy7+SSzpW0p/WRFy1zEmumZmZ1RxJ0yS9LmlQSXtTTlaHr8FYQtKIfDxO0huSFufPPyRdKmmbNRVPtXCSa2ZmZrXqBeAzbV8kvQvYqHLhvOU3EdEf2Jy0Y9nWwGQnut3jJNfMzMxq1bXAZwvfjwGuafsiaYCkayTNkTRd0pmS+uS+vpJ+KGmupOeBjxUnzudeIWmWpJmSzpXUtzvBRcQbEfEUcAQwh7TxhJXJb1cwK9Ha2vTWphBmZlbVHgWOztvk/oOUTO4DnJv7LwEGAG8HtgDuBWYBVwAnAAcD7wWWADeVzP1rYDYwAtiEtEVvM/DL7gYZEcsl3QYc2N1za5mTXLOCwYPHdD3IzMyqSVs1dyLwDDAzt/clJb3vzdvrLpb0I+BoUpJ7OPCTiGgGkHQBUJ+PBwMfBQZGxFJgiaSLgLGsQpKbtZCWL1iZnOSaFdTVjaWubmylwzAzs9WmcgdeCzwIbE9hqQIwCFgfmF5omw4Mycd1pMpssa/NMGA9YJb0Vhx9SsZ31xBg3mqcX3Oc5JqZmVnNiojpkl4ADgKOK3TNBd4gJaxP57btWFnpnQUMLYzfrnDcDCwDBkXEm6sbY14HfAhw/+rOVUv84JmZmZnVuuOAD0XEkkLbcmACcJ6k/pKGAV8Drsv9E4AvS9pW0mbAt9pOjIhZpPW7P5K0qaQ+knaQNLo7QUlaL68XvoH0hoUfr+oN1iInuWZmZlbTIuK5iJjUTteXSA+VPQ/8CWgArsx9lwP3AH8FngBuLjn3s6TlDk8D84HfAeW+AuwISa3AAuB24BXg/RHRUu49GSgiyho4atSomDSpvX//Zj2jvj79s7GxklGYmVk1kDQ5IkZVOg6rHFdyzczMzKzqOMk1MzMzs6rjJNfMzMzMqo6TXDMzMzOrOk5yzczMzKzqOMk1MzMzK5OkkDSi0nFY15zkmpmZmfUgSYMlzZVUX9J+laQbKhRWzfG2vmZmZmY9KCJmS/oqcLmkd0fEUkn7Ax8Ddu3Ja0l6W09sHVyNXMk1MzOzqtEyvoUp9VPKGivpNEkzJS2W9Kyk/SXtIekRSQskzZJ0qaT1Ozh/A0k/lPSipNmSLpO0EUBEXAs8C3w3t/0S+HJEzMnnbivpFklzJL0g6YuFefeW9GghhoslrZf73paXTJwsaSrwzOr8XtXMSa6ZmZlVjdkNs1k4cWGX4yS9AzgF2D0i+gMHAtOA5cBXgUHA3sD+wMkdTHMhsBMwEhgBDAHOKvSfCHweuBH4W0TcmK/dF7gTeDyf82HgG7naC/Am8D85hg8CHwG+UHLtjwO7A+/q8mZrlJNcMzMzqyoDRg8oZ9hyYANgF0nrRcS0iHguIiZHxKMR8WZETCNVYEeXnixJwAnAVyNiXkQsBs4HPt02JiJmkJLeA4CTCqfvBWwaEedHxOsRMRW4ou3ciHg8Ih7LMTwPjG8nhvMjYn5ELC3nZmuR1+SamZlZzYmIqZK+AowDdpV0D/A1oB/wY2AUsDEpV5rczhRb5v7JKd8FQEDfknFPAfMjYlahbRiwnaQFhba+QCOApJ2BHwHvL8TwWMm8zWXeas1yJdfMzMxqUkQ0RMQ+pKQzSMsPfkFa57pjRGwKnEFKXkvNBZYCu0bEwPwZEBH9yrh0M/DPwnkDI6J/RByS+38J/A0YkWM4q50Yopu3W3NcybVeN348NDR0Pa6pCUaO7P14zMzM8prcIcCfgddICWsfoD+wCGjNFdWTgDml50fECkmXAxdJOiUiXpY0BNgtIu7p4vKPAK9LOhX4GfAGsAuwfkRMzjEsBJZIeidpPe7M1b7pGuNKrvW6hoaUwJqZma1FNgC+T6rIvgRsRarafh0YAywGLgd+08kcpwFTgUclLQLuB97R1YXzK78OAvYgPew2l1S93TQPORU4Jsfwyy5isA64kmtrxMiR0NjY+Zj6+jURiZmZGUTEk6Qks1QLsHNJ21tvTIgIFY5fIyXGZ3RynUZg23baZwJHdHDO/9FBspwT5PaWT1gJJ7lmZr2gZXwLsxtmVzoMs5rT2tRKv5HlLIu1auflCmZmvWB2w2xam1orHYaZWc1yJdfMrJf0G9mP9za+t9JhmNWUcnc7s+rnSq6ZmZmZVR0nuWZmZmZWdZzkmpmZmZVJUkga0QPzNEo6vidi6gmS6iXNqHQcPclJrpmZmVkPy0njCkmtJZ+9Kx1brfCDZ2ZmZma9oyUi/u0dubZmuJJrZmZmVWXhxIVljZN0mqSZkhZLelbS/pL2kPSIpAWSZkm6VNL6HZy/gaQfSnpR0mxJl0naqLvxStpB0gOSXpE0V9L1kgYW+qdJOl3S05LmS7pK0oa5b5CkO3O88yQ9JKlP7quTdJOkOZJekPTlwpwbSbo6z/c0sHt3417bOck1MzOzqjF4zGAGjB7Q5ThJ7wBOAXaPiP7AgaQtdpcDXwUGAXsD+wMndzDNhcBOwEhgBDCEwu5o3SDgAqAOeCcwFBhXMubIHOMO+Zpn5vZTgRnAlsBg0u5rkRPdO4C/5rj2B74i6cB83tl5rh3yvMesQtxrNSe5ZmZmVjXqxtaV+37q5cAGwC6S1ouIaRHxXERMjohHI+LNiJgG/BIYXXqyJAEnAF+NiHkRsRg4H/h0MZxcYS1+NimdKyKmRsR9EbEsIuYAP27nmpdGRHNEzAPOAz6T298AtgGGRcQbEfFQRASpMrtlRHw3Il6PiOeBywvxHQ6cl2NvBi4u50dbl3hNrpmZmdWciJgq6Sukiumuku4Bvgb0IyWZo4CNSbnS5Ham2DL3T075LpAqsn0LY8pakytpK1KSuS/Qn1SEnF8yrLlwPJ1U9QX433wP9+Y4xkfE94Fh5CS7cF5f4KF8XNfOnFXFSa6ZrRNaxrcwu2F2pcMoW2tTK/1G9qt0GGbWiYhoABokbUqq2F5ISv6mAJ+JiMU5Ef5kO6fPBZYCu0bEzNUM5QIggHdHxCuSDgMuLRkztHC8HdCS72ExacnCqZJ2Bf5P0uOkBPaFiNixg2vOynM+VZizqni5gpmtE2Y3zKa1qbXSYZhZlZD0DkkfkrQB8BopYV1OqqQuAlol7Qyc1N75EbGC9Of/i3IlFklDCmteu6M/0AoskDQE+EY7Y74oaVtJm5PW3f4mX/NgSSPy8olF+R6WA38BFuWH6zaS1FfSbpLaHjCbAJwuaTNJ2wJfWoW412qu5JrZOqPfyH7lrrWruCn1Uyodgpl1bgPg+6QHvd4AHgbGkh4gGw98k1TR/Q3woQ7mOI30oNmjkgYBM4FfAPfk/jpJpf91fkxE3FTSdg5wDbAQmApcS3r4ragBuJdUab4NODe370iq+m5JWuLw84hoBJB0CPAj4IV8v8+y8oG1c4DLcl8LcBXwPx3c5zrJSa6ZmZnVnIh4Etijna4WYOeStrfemBARKhy/RqqqntHO/I108hfziKgvHD8FvL9kyI9Kvj8eERe0M89FwEUdXKOFlQ+olfa9Cny2pPl/O4p3XeTlCmZmZmZWdZzkmpmZmVnV8XIFMzMzs7VYRAyvdAzrIldyzczMzKzqOMk1MzMz6wZJ0yQdUOk4rHNOcs3MzKwmSdpH0sOSFkqaJ+nPhffI9va1GyUdn4/rJa2Q1Jo/MyRNWFOxVCsnuWZmZlZz8i5ndwKXAJsDQ0jvjl1WoZBaIqIfaWOIvYBngIck7V+heNZ5TnLNzMysFu0EEBE3RMTyiFgaEfdGxJOSdpD0gKRXJM2VdL2kge1NIqmPpG9Jei6Pn5B3JUPShpKuy+0LJD0uaXBnQUUyIyLOAn5F2mrYVoHfrmBm1ktam1q985nZ2usfwHJJvwZuBB6NiPm5T8AFwIPApsBNwDjgK+3M82XgMGA0MAe4GPgZaROGY4ABwFBShXgkafvgct0MnCxpk4hY0p2bMye5tpZpaoL6+kpHYWuj1qYRXD5yaqXDKNvgMZ0Wa8yswiJikaR9SFvzXg5sLen3wAkRMZW0vS7AHEk/Bs7uYKovAKdExAwASeOAFyUdTdoueAtgRN5hbXI3w2whJdwDASe53eQk19YaY8ZUOgKznlM3to66sXWVDsOsdqnrIRHxd+BYAEk7A9cBP5H0P6SK7L6kNbJ9gPkdTDMMuEXSikLbcmAwcC2pintjXu5wHfDtiHijzLsYAgSwoMzxVuAk19YaY8emj1l7ptSvO1VcM1v3RMQzkq4mVWYvICWX746IVyQdBlzawanNwOcj4s8d9J8DnCNpOPB74FngijLD+gTwhJcqrBo/eGZmZmY1R9LOkk6VtG3+PpS0jvZRUvW2FVggaQjwjU6mugw4T9KwPM+Wkg7Nx/8h6V2S+gKLSMsXlncRlyQNkXQ2cDxwxmrdaA1zkmtmZma1aDGwJ/CYpCWk5PZvwKmk6uv7gIXAXaQHwDryU+B24F5Ji/M8e+a+rYHfkRLcvwMTSUsW2lMnqZWUXD8OvAuoj4h7V/UGa52XK5iZmVnNiYiZwOEddD8FvL+k7UeFc4cXjlcAP86f0mvcANzQwfXrC8eNuPDY4/yDmpmZmVnVcZJrZmZmZlXHSa6ZmZmZVR0nuWZmZmZWdZzkmpmZmVnVcZJrZmZmto6RdF3eQtg64CTXzMzMaoqk6yVdWdI2WtIrkrbp4WtdJykkHVTSfmluP6onr2crOck1MzOzWvNl4CBJHwaQtCFwOXBqRMzqqYvknc4A/gEcU2hfD/hv4Pmeupb9O28GYWbrjNamVqbUT6l0GGa2jouIVyR9CRgvaTfgTOC5iLhaUh/gW8BxwADgfuCkiJif+yYA+wAbAk257++QqrakXdJ2APYFPpYveStwrKQBEbEwt08CtmyLSdKOwHjg3UAAdwOn5PFIej9wRZ77TkpyOEkfB74HDCPt3HZiRPyth36ydZIruWa2Thg8ZjD9RvardBhmViUi4rfAZNKOZGOBL+Sur5GS0P2AbYElwMWFU+8EdiRt2fs34NqSqceQtgXuDzyS25aStgdu22Hts8A1JecJOBfYBtgFeDvwHQBJGwC3AVcCm+fjw946UdqdVIk+Htgij7tN0vrl/RrVyZVcM1sn1I2to25sXaXDMLN1hcoa9UXgOeDbEfFibvsCcHze9pf8cNdUScfkLXyvfusSqW+OpE0iYkluviUi2pLbZdJbgVwDfE/STcAHgM8Ap7Z1RsQ/SMsaAF6WdBFwWv7+QVJ195KICOBGSV8r3MdY4OcR8Xj+fqWkbwO7A38u65eoQk5y15Dx46GhodJRVEZTE4wcWekozMzM/lVEzJY0F3iq0LwdcIekFcWhwFaS5gAXAJ8EBgFtYwaRKr4AzR1cbiKpMnwGcFtEFBNgJG1Nqhh/kFQF7gPMyd11wIyc4LaZXjgeBhwp6auFtvWBIR3EUhO8XGENaWhIyZ6ZmZmt1WYAH46IgYXPhhHxEmmZwUHAh0jrdUfkc4p146AdOUG9nrQconSpAsCFwDLgXRGxKXBsYd5ZpAS5aLvCcTNwTknMG0fEhPJuuTq5krsGjRwJjY2VjmLNq6+vdARmZmZluww4X9LnIuJFSVsBe0XE7aQK6zLgFWBj4Lxuzn0R8H8R0d4Sgv7Ay8BCSUOBrxf6/gT0kXRKju8TwPtID6dBemDtt5IeID3QtgnwH8ADhWUUNceVXDMzM7OVfgz8AfijpMXAw6S1rQBXAS3581TuK1tEvBIRf+yg+2xgD9LbGW4Hbiqct4yU2J4AzAf+i/TGhrb+x4CTgF/k/n8ANf/+Xf3r8o6OjRo1KiZNmtTL4VSvtmpmLVdya/HezcysMiRNjohRlY7DKseVXDMzMzOrOk5yzczMzKzqOMk1MzMzs6rjJNfMzMzMqo6TXDMzMzOrOk5yzczMzKxbJF2XtzVeaznJNTMzs5ol6dOSHpO0RNLL+fhkFffcXQdI2k5Sa+ET+Z7avu9b6RjXNCe5ZmZmVpMknQr8FPhfYGtgMHAi8EFg/XbG912jAbZDUru71UbEixHRr+2Tm99TaHuonbkqfj+9yUmumZmZ1RxJA4DvAidHxO8iYnEkUyLiyIhYJulqSb+Q9HtJS4D/kDRA0jWS5kiaLulMSX3ynOMkXVe4xvBcUX1b/n6spOclLZb0gqQjC2M/L+nvkuZLukfSsEJfSPqipH8C/1yNe75O0s8k/SHfz76SPi6pKcf0oqTvlJyzn6RHJS2U1Czp6Hbm3VTSg5IuUnJwvpfFkmZI+uqqxrw62v2vATMzM7N1Vf2UKeUM2xvYALiti3FjgIOAg0nV3fHAAODtwBbAvcAs4IrOJpG0CXAxsHtEPCtpG2Dz3HcYcAZwCCmJ/RZwA/CBwhSHAXsCS8u5uTLu5zFgPVLV+ijgaeBdpO2Mp0TEnZK2B+4CjgNuBgYC25bc1yDSNsh3RsS43HYVcGhEPCxpc2D4asa8SlzJNTMzs1o0CJgbEW+2NUh6WNICSUsl7Zebb4uIP0fECuAN4Ajg9Fz5nQb8CPi36mYHVgC7SdooImZFxFO5/QvABRHx9xzP+cDIYjU398+LiNVNcm+JiEciYkVELIuIByLib/n7X4EbgdF57FHAHyJiQkS8GRFzI6KpMNcQYCJwfVuCm70B7CKpf475idWMeZU4yTUzM7Na9AowqLjGNSI+EBEDc19bjtRcOGcQqZo7vdA2nZTsdSoilpAS5BOBWZLukrRz7h4G/DQn2AuAeYBK5m2mZ/zLPJL2ltSYl18sBI4n3SfAUOC5Tub6OKkafHlJ+ydy34t57j17JvTucZJrZmZmtegRYBlwaBfjonA8l1SlLFZYtwNm5uMlwMaFvq3/ZaKIeyLiw8A2wDOsTA6bgS9ExMDCZ6OIeLiDOFZH6Tw3AjcBQyNiAPArUoLdFtcOncx1GfB/wF2S3rrviHgsIj4ObAXcma+xxjnJNTMzs5oTEQuAc4CfS/qkpH6S+kgaCWzSwTnLgQnAeZL65+UEXwPaHjZrAvbLr/MaAJzedq6kwfkhr01IyXUrsDx3XwacLmnXPHaApE/1+E23rz8wLyJek7QX8OlC33XARyT9t6S3SRok6T2F/iBVpp8Hbpe0oaSNJI2RtGlEvAEsZuV9rlFOcs3MzKwmRcQPSEnqN4GXgdnAL4HTgIc7OO1LpIrt88CfgAbgyjzffcBvgCeByaQqZps+wKlAC2k5wmjg5HzeLcCFwI2SFgF/Az7aQ7fZlZOACyQtJj38NqGtIyJeID0Md1qO+QnSw2kUxgTpwbSXgVtIyzmOAabnezmO8tcs9yil2Lo2atSomDRpUi+HU73q69M/GxsrGUVl1PK9m5nZmjW+pYVvPvccC/fbb3JEjKp0PFY5ruSamZlZ1WiYPZuFyyvy13FbyzjJNTMzs6oyoG/1buQlad+S7Xvf+lQ6trWNN4MwMzMzW0fk7Xn7dTnQXMk1MzMzs+rjJNfMzMxsNUgaJ+m6rkeu8vwhaUQ+vkzSd3rrWh1c/2pJ567Ja/YEJ7lmZmZWcyRNk3RASduxkv5UqZjKEREnRsT3enrefO/LS9b5XtrT11mTvCbXzMzMrJdIeltEvFnpOMr0SETsU+kgeooruWZmZmYFkr4h6aaStksk/SQfby9poqTFku4DBhXGDc/LC46T9CLwQG7/raSXJC2U9GDb7ma5r1HS8YXvHVaUS5cOSDpUUpOkRZKek/SRwhzP5xhfkHRkz/w6IOkESVMlzZN0u6S63H6OpEvy8XqSlkj6Qf6+kaTXJG3WU3F0xUmumZmZVZWR/Vb75QNt29kOhFSNBY4Ars39DaQdzQYB3yPt8FVqNPBO4MD8/W5gR2Ar0s5h169ukJL2AK4BvgEMBPYDpuWtgy8GPhoR/YEPkLYcXm2SPgRcABwObANMB27M3ROB+ny8O/AS6XcA2Bt4NiLm90Qc5fByBTMzM6tVt0oqLiVYH3giImZJehD4FHA58BFgbkRMlrQdKYE7ICKWAQ9KuqOducdFxJK2LxFxZduxpHHAfEkDImLhasR/HHBl3k4YYGaefxNgBbCbpBcjYhYwq4z59pK0oPD9IxHxaMmYI/M1n8jXOj3fy3DgEWBHSVuQEu4rgJMl9SMluxNX4R5XmSu5ZmZmVqsOi4iBbR/g5ELfr4Gj8vFRrKzi1gHziwksqZpZqrntQFJfSd/PywkWAdNy16B2zuuOocBzpY05tiOAE4FZku6StHMZ8z1a/D3aSXAh3f9b9xsRrcArwJCIWApMIiW0+5GS2oeBD1KBJNeVXLMaMr6lhYbZsysdhplZr2lqbe2J5QoAtwK/kLQbcDDwzdw+C9hM0iaFRHc7IErOL34fAxwKHEBKcAcA8wHl/iXAxoXxW5cZYzOwQ3sdEXEPcI+kjYBzSRXpfcuctzMtwLC2L7lqvAW5ikxKZD8EvBd4PH8/ENgDeLAHrl82V3LNakjD7Nk0tXrnRzOzrkTEa8DvSOtv/xIRL+b26aRq5TmS1pe0D3BIF9P1B5aRKp4bA+eX9DcB/yVp4/w+3OPKDPMK4HOS9pfUR9IQSTtLGizp4zkBXQa0AsvLnLMrDfmaIyVtkO/lsYiYlvsnAp8Fno6I14FG4HjghYiY00MxlMWVXLMaM7JfPxrf+95Kh2Fm1ivqp0zpyel+TUrQPl/SPib3zSOtQ72G9OBXR64hVTNn5nO+A5xU6L+ItM53NvAk6aG0A+hCRPxF0ufy+dvn878ILAROJS2xCFISfXJH83RHRPwxb0ZxE7AZaTnCpwtDHgY2YmXV9mngNdZwFRdAEaXV9faNGjUqJk2a1MvhVK/6+vTPxsZKRlEZtXzva5u2//F3kmtm1artf+cmvu99kyNi1OrMlR8yewbYOiIW9UB4tgZ5uYKZmZlZCUl9gK8BNzrBXTc5yTUzMzMryGtZFwEfBs6ucDg9RtJlJdv2tn0uq3RsvcFrcs3MzMwK8lsTeuQVDWuTiDiR9FqxmuBKrpmZmZlVHSe5ZmZmZmuQpMivCrNe5CTXzMzMapakMZIm5bWpsyTdnd99u86RdIakF/K9zJD0m9Wcr17SjJ6Kb01zkmtmZmY1SdLXgJ+QNjQYTNq57Oek3cnWOpI6fJZK0jHA0cABEdEPGAX8cU3FtjZykmtmZmY1R9IA4LvAFyPi5ohYEhFvRMQdEfENSRtI+omklvz5Sd7hC0nHSvpTyXxvLUGQdHV+k8F9khZLmihp2L9HAfk6P5T0oqTZ+byNcl99rsieJukl4KpObml34J6IeA4gIl6KiPF5nk9Jmlxy3VMl3ZqPD5L0dI51pqSv5zdM3A3UFd7CUJd3VvuWpOckvSJpgqTN8zzD8+/wOUnNkuZLOlHS7pKelLRA0qXd/Fe1ypzkmpmZWVWZuHBhOcP2BjYEbumg/9vAXsBI4D3AHsCZ3QjjSOB7wCDSjmPXdzDuQmCnfJ0RwBDgrEL/1sDmwDBgbCfXexT4rKRvSBolqW+h73Zge0nvLLQdRdoRDdL2wF+IiP7AbsAD+Q0THwVaIqJf/rQAXwYOA0YDdcB84GclsewJ7AgcQaqUf5u0g9uuwOGSRndyHz3GSa6ZmZlVjTGDBxBFB8EAACAASURBVDN6wIByhm4BzI2INzvoPxL4bkS8HBFzgHNIywHKdVdEPBgRy0hJ3t6ShhYHSBJwAvDViJgXEYtJSyeK2+SuAM6OiGURsbSji0XEdcCXSNsHTwRelvSt3LcM+A0psUXSrsBw4M58+hvALpI2jYj5EfFEJ/f1BeDbETEjzzsO+GTJUorvRcRrEXEvsAS4If+OM4GHgDWy7abfk2trRFPTyu19rXKaWkcw8vKplQ7DzKzXjK2rY2xdHep66CvAIElv6yDRrQOmF75Pz23lam47iIhWSfPy+c2FMVsCGwOTU74LgIBiFXZORLxWzgUj4nrgeknrkaqt10uaEhH3AL8GbpB0JilZn5CTVID/JlWpvy/pSeBbEfFIB5cZBtwiaUWhbTlpTXOb2YXjpe18XyPvIHYl13rdmDEwcmSlozAzM/sXjwCvkZLB9rSQEro22+U2SNXJjds6JG3dzvlDC/39SEsOWkrGzCUlfbtGxMD8GZAfHGsTZdzLv8hri38LPElafkBEPAq8DuwLjGHlUgUi4vGIOBTYCrgVmNDJtZuBjxbiHRgRG+Yq7VrFlVzrdWPHpo9VXv0UV3HNzAAiYqGks4CfSXoTuJf0Z/sDgP8AbgDOlPQ4Kdk7C7gun/5XYFdJI4FnSH+yL3VQfhXZX0hrcx+LiGIVl4hYIely4CJJp0TEy5KGALvl6mvZJB0LzAEeJCXhB5LWwD5WGHYNcCnwZkT8KZ+3PvAp4M78mywiVWYhVWC3kDQgItoWOl8GnCfpmIiYLmlL4AMRcVt34l0TXMk1MzOzmhQRPwa+RvpT/RxSlfIUUjXzXGASqRr6/4AnchsR8Q/SmxnuB/4J/Kl0bqABOBuYB7yftMa3PacBU4FHc4J5P/COVbidRcAZwIvAAuAHwEltyWx2Lamye23JuUcD0/L1TySv3Y2IZ0jJ/vP5zQh1wE9JD7LdK2kx6YG3PVch3l6niPKq4KNGjYpJkyb1cjjVq209amNjJaOwWlc/ZQoAje9dI2v+zcwqRtLkiBhVoWtfDcyIiO68jaHX5VeTvQy8LyL+Wel4epsruWZmZma14STg8VpIcMFrcs3MzMzWCZLOIC1JKPVQRHy0i3Onkd7c0NGDdlXHSa6ZmZlZD4qIY3tp3vNJ79FdlXOH92w0az8vVzAzMzOzquMk18zMzMyqjpNcMzMzs9UkqV7SjErHYSs5yTUzM7OaI2mapKWSWgufSysdl/UcP3hmZmZmteqQiLi/0kGsKkl9I2J51yNrk5NcsxrT1Nr61qYQZmb2r/L2uMeTdvI6jrR72MkRcXfu3xz4EWnb3I2AiRHxb6/lkvRO4BfASGAmcHpE3J77DgJ+CAwl7VR2UUT8sO3aEbFPYZ4AdoyIqXmTiaXAMGA0cKikh4DzgMOBDYBbgK9GxNIe/FnWSV6uYFZDxgwezMh+/SodhpnZ2m5P4FlgEGl73CskKfddC2wM7ApsBVxUerKk9YA7gHvzmC8B10tq2673CuALEdGftM3uA92IbQwpqe1P2k74QmAnUjI9AhgCnNWN+aqWK7lmNWRsXR1j6+oqHYaZWa9T10MAbpX0ZuH7N4A3gOkRcTmApF8DPwcG50T3o8AWETE/nzOxnXn3AvoB34+IFcADku4EPgOMy9fYRdJf8zzz25mjI7dFxJ9zbMuAE4B3R8S83HY+0ACc3o05q5IruWZmZlarDouIgYXP5bn9pbYBEfFqPuxHWl4wr5DgdqQOaM4JbpvppCorwH8DBwHTJU2UtHc3Ym4uHG9JqipPlrRA0gLgD7m95jnJNTMzMytPM7C5pIFdjGsBhkoq5lnbkdbmEhGPR8ShpKUMtwIT8pglpKQVAElbtzN3FI7nktbo7lpI1AdEhNel4STXzMzMrCwRMQu4G/i5pM0krSdpv3aGPkZKWL+Zx9QDhwA3Slpf0pGSBkTEG6QHz9rekPBXYFdJIyVtSFra0Fk8K4DLgYskbQUgaYikA1f/btd9TnLNzMysVt1R8p7cW8o452jSmtpngJeBr5QOiIjXgY+T1u/OJa3p/WxEPFOYY5qkRcCJwFH5vH8A3wXuB/5JerCsK6cBU4FH83z3A+/o/JTaoIjoehQwatSomDRpUi+HU73q69M/GxsrGYWZmVltkDQ5IkZVOg6rnLXu7Qrjx0NDQ6Wj6HlNTTByZKWjMDMzM6sNa91yhYaGlBCamZmZma2qta6SC6niWW1/1m9brmBmZmZmvW+tq+SamZmZma0uJ7lmZmZmq0HSOEnX9eL8IWlEPr5M0nd661rVxEmumZmZ1RxJ0yQdUNJ2rKRyXttVMRFxYkR8r9JxrAuc5JqZmZn1Eklr5fNPtcBJrpmZmVmBpG9Iuqmk7RJJP8nH20uaKGmxpPuAQYVxw/PyguMkvQg8kNt/K+klSQslPShp18I5jZKOL3zvsKIs6WpJ5xa+HyqpSdIiSc9J+khhjudzjC9IOrJnfp11h//rwsx6VrW+7NrMasl1wDhJAyNiQa7GHkHawQygAXgE+E9gT+Au4LaSOUYD7wRW5O93A58HXgcuBK4HVusN+pL2AK4BPgn8EdgG6C9pE+BiYPeIeFbSNsDmq3OtdZGTXDPrWW0vu/buJ2a29rtV0puF7+sDT0TELEkPAp8CLgc+AsyNiMmStgN2Bw6IiGXAg5LuaGfucRGxpO1LRFzZdixpHDBf0oCIWLga8R8HXBkR9+XvM/P8m5CS690kvRgRs4BZq3GddZKTXDPredX4smszW7dI5Yw6LCLuX3mKjgXalg38GjiJlOQeBVyb2+uA+cUEFpgODC2Zu7kwb1/gPFLSvCUrq7uDgNVJcocCvy9tjIglko4Avg5cIenPwKkR8cxqXGud4zW5ZmZmZv/uVuDdknYDDiYtL4BUEd0sV0vbbNfO+VE4HgMcChwADACG5/a2THwJsHFh/NZlxtgM7NBeR0TcExEfJi1heIaUrNcUJ7lmZmZmJSLiNeB3pPW3f4mIF3P7dGAScI6k9SXtAxzSxXT9gWXAK6Rk9vyS/ibgvyRtnN+He1yZYV4BfE7S/pL6SBoiaWdJgyV9PCfiy4BWYHmZc1YNJ7lmZmZm7fs18C5WLlVoM4b0wNk84GzSw1+duYa0pGEm8DTwaEn/RaQH0mbna15PGSLiL8Dn8vkLgYnAMFJ+dyrQkmMcDZxczpzVxGtyzczMrOZExPB22q4Gri40vQgsBW4qGfc8sG8H805j5TKEtrZW0nKFomsK/XNJb2ooGlfoV+H42JK5bwFuaSeU0e3FV0uc5Jp1xK/CWjV+s4KZVQFJfYCvATdGxKJKx2Pd5+UKZh1pexWWmZnVlLyWdRHwYdJyBFsHuZJr1hm/Cqv76usrHYGZ2WrJrwfrV+k4bPW4kmtmZmZmVcdJrpmZmZlVHSe5ZmZmZj1EUr2kGRW47hmSfrWmr7s2c5JrZmZmNUfSNElLJbVKmi3pKklrzTpcSY2Sji9pO1RSk6RFkuZK+qOk4QARcX5EHN/eXLXKSa6ZmZnVqkMioh/wPmB34Mxip5K1IlfKO6FdQ9rkYQCwPfBzYEUl41qb+e0KZtbzmpr8lgUzW2dExExJdwO7SWoE/gzUk5Lfd0l6FbgM2Ie0g9iFEXE5gKSNgF+QNnuYBVxVnFtSADtGxNT8/WpgRkScmb8fCpwDvB2YA3yRtNHEvsBekn5C2qCiEXghIv6Yp15MYZMKSeOAERFxlKRLgWMLYWwInBsR4yTVAZcA+5G2+70oIi5etV9u7eYk18x61pgxlY7AzKxbJA0FDgJuJiWXRwMfBZ4l7V52P/AUUAfsDNwn6fmccJ4N7JA/mwB3d+O6e5Cqs58E/ghsA/SPiD9I+iBwXUT8Ko99O7CzpIuA24HH805q/yYiTgFOyeeNBO4DbstV6TuA24DPANsC90t6NiLuKTfudYWTXDPrWWPHpo+ZWSVJXY+BWyW9CSwE7gLOJyWpV0fEU2kaDSVVcA+OiNeApvyA19GkxPRw4OSImAfMk3QxcFaZUR4HXBkR9+XvMzsaGBHPS6on7cI2Aegv6UbglI6SXUlbArcCX4qIKZL2BLaMiO/mIc9Luhz4NOAk18zMzKxKHBYR9xcblJLj5kJTHTAvIhYX2qYDowr9zSV95RoK/L7cwRHxKCmpRtLuwG+AbwOnl46VtB7wO6AhIm7MzcOAOkkLCkP7Ag91I+Z1hpNcWyuNH5921a2opp/QOPIrFQ7CzMwqIArHLcDmkvoXEt3tWFl1nUVKVp8q9BW9Cmxc+L410PaKsWbSMoeuYvj3zojHJd0M7NbBkEtI63aLD9M1k9b17tjZ3NVirXhi0KxUQ0N6dsnMzKySIqIZeBi4QNKGkt5NWmZwfR4yAThd0maStgW+VDJFEzBGUl9JHwFGF/quAD4naX9JfSQNkbRz7ptNehgNAEn7SDpB0lb5+87Ax4FHS2OW9IV8nTERUXz7wl+ARZJOk7RRjmm3XBWuOq7k2lpr5EhobKxgAPWu4pqZGZAe0rqMVNWdD5xdWEd7Tu57IfdfBfxP4dz/AX5NemvCrfkDQET8RdLngItIrwSbncc9A/wU+LWkk4BrgfGkpPZcSZsAc0nLFX7QQbxvB1q0cm3y+RFxvqRDgB/leDcgPVx3ZjtzrPOc5JqZmVnNiYjhHbTXt9M2Azi4g/GvAp8taf7fQv8kYNdO4rgFuKWd9keAnUqaD+lknnGF4/pOxrWQkuCq5+UKZmZmZlZ1nOSamZmZWdVxkmtmZmZmVcdJrpmZmZlVHSe5ZmZmVnMkvUPSFEmLJa2Q9J1evt44SdeVObZR0vG9Gc+qkPRU3nVtneAk18zMzGrRN4HGiOgfEX0i4nsAkuolRd5o4S2S3pPbG9dkkJKOlbRcUmv+vCDpKkmlb17odRGxa0Q0ljNW0jRJB/RySJ1ykmtmZma1aBgrdykrNQf4gKQtCm3HAP/o9aja90hE9AMGAAcAS4HJkjra7axHSVqjr5ztqes5yTUzM7OaIukB4D+AS3N1tEHSuYUhr5M2bfh0Ht8XOJyVu5y1zfMBSY9LWpj/+YFC3/aSJublEPcBg0rO3UvSw5IWSPprOcsAImJ5RDwXEScDE4Fx5cyXq8HP51hekHRkoe8ESX/PfU9Lel9un5Z3RnsSWCLpbcXqbF5+8TtJv8nnPiHpPbnvWtL2xnfk3/ebuf3jecnDgrwk452FOP7tel39Hl3xZhBmnWlqgvr6SkdhZmY9KCI+lJcdXBcRv5J0dTvDriHtRPYz4EBS1belrVPS5sBdwJeBG4BPAXdJGhERrwANwCPAfwJ75rG35XOH5O9HA38A9gdukrRzRMwp8zZuBi7oaj7gVeBiYPeIeFbSNsDm+bxPkRLlw4BJwA7AG4VrfAb4GDA3It4s7J7W5tA85ijSzm63StopIo6WtC9wfETcn6+1U/6dDgMaga+SkuBdIuL19q5X5u/QIVdyzToyZkzaW9jMzGpORDwMbC7pHaQdza4pGfIx4J8RcW1EvBkRN5C24z1E0nbA7sB3ImJZRDwI3FE49yjg9xHx+4hYkbcIngQc1I0QW8jJahnzrQB2k7RRRMyKiLZlGscDP4iIxyOZGhHTC9e4OCKaI2JpBzFMjojfRcQbwI+BDYG9Ohh7BHBXRNyXx/8Q2Aj4QGFMV9frFldyzToydmz6mJnZuuffq46r4lrgFNLShs8DYwp9dcD0kvHTgSG5b35ELCnpG5qPhwGfklTcpnc94P+6EdsQYF5X80XEEklHAF8HrpD0Z+DUiHgmx/NcJ9do7iKGt/ojYoWkGaR7b8+//F55fHO+j3Kv1y1Ocs3MzMzady0wFbgmIl4t+XN9Cym5LNqOtFxgFrCZpE0Kie52QOTjZuDaiDhhNWL7BPBQOfNFxD3APZI2As4FLgf2zeft0Mk1opM+WJm0I6kPsC0rl3SUntsCvKswXvn8md24Xrd4uYKZmZlZOyLiBWA08O12un8P7CRpTH4o6whgF+DO/Cf/ScA5ktaXtA9QrLJeR1rWcKCkvpI2zK8u27azePLY7SVdAtQD53Q1n6TB+YGvTYBlQCuwPJ/3K+Drkt6vZISk0sS9M++X9F/5IbGv5PkfzX2zgbcXxk4APiZpf0nrAafm8Q9343rd4iTXzMzMrAMR8aeIaGmn/RXgYFKy9grpvbsHR8TcPGQM6YGzecDZFNb0RkQz6aGtM0ivK2sGvkHHedneklqBRaSHtjYlPUj2/8qYr0+OsSXHMho4OZ/3W+A80kNyi0lvlGhb51uO20hrbeeTHnr7r7zeFtJDcWfmNyl8PSKeJa0dvgSYS0r6Dyk8dNbjFFFeZXjUqFExadKk3orjLW0Psjc29vql1qhqva/e4t/LzMxWh6TJETGq0nFUK0njgBERcVSlY+mIK7lmZmZmVnWc5JqZmZlZ1fHbFczMzMysWyJiXKVj6IoruWZmZmZWdZzkmpmZmVnVcZJrZmZm1kPy+2lnVDoOc5JrZmZmNUjSNElLJbVKmi3pKkn9Kh1XG0mNko4vaZOkUyQ9KelVSS/lcZ+uUIz1klbk37BV0gxJEyTtXol4SjnJNTMzs1p1SET0A94H7A6cWezMSeXalCtdTNpZ7FRgC2AIKeaPtDd4DcXfkn/D/sBewDPAQ5L27+Xrdmlt+hdnZmZmtsZFxEzgbmC3XBk9T9KfgVeBt0uqk3S7pHmSpko6oe1cSRtJulrSfElPk5JlCv0haUTh+9WSzi18P1RSk6RFkp6T9BFJ5wH7ApfmCumlknYi7VT26Yi4LyKWRsTyvCPbsYX5uht/aTz/stwiV7xPl/R0vserJG3Yzm8YETEjIs4ibRd8YWGOnSXdl6//rKTDC30H5bkXS5op6eud/TZd/bss8ivEzMzMrKrUX13frfGShgIHATeTksujgY8CzwIC7geeAuqAnYH7JD0fEX8kbdm7Q/5sQkqWy73uHqTtfj8J/BHYBugfEX+Q9EHguoj4VR57ItAcEeVsP9ud+MtxJHAgsAS4g1Q9PrOT8TcDJ0vaJH+/Dzgrx/Ru4F5JT0XEU8AVwOER8ZCkzYDt8/22+9uUGS/gSq6ZmZnVrlslLQD+BEwEzs/tV0fEUxHxJrA1sA9wWkS8FhFNpErl0Xns4cB5ETEvIppJSwrKdRxwZa7MroiImRHxTAdjBwEvFRvyGtgFkl6TNKzQ1Z34y3FpRDRHxDzgPOAzXYxvISXXA4GDgWkRcVVEvBkRTwA3kZJXgDeAXSRtGhHzcz9077dpl5NcMzMzq1WHRcTAiBgWESdHxNLc3lwYUwfMi4jFhbbppPWwbf3NJX3lGgo8V+bYV0jVzLdExLak5HcDUlLZpjvxl6P0/uq6GD8ECGABMAzYMyfjC/J/VBxJSr4B/ptURZ8uaaKkvXN7d36bdjnJNTMzM/tXUThuATaXVPxT+XbAzHw8i5SQFfuKXgU2LnzfunDcTFrm0FUMAA8A20oa1Unc7Z3bVfxLOomvTen9tXRx/U8AT0TEEtI9Tsz/MdH26RcRJwFExOMRcSiwFXArMCHP0dlvUxYnuWZmZmYdyEsQHgYukLShpHeT/pR+fR4yAThd0maStgW+VDJFEzBGUt/84NToQt8VwOck7S+pj6QhknbOfbOBtxfieBb4JXCjpA/nB976Ah9YzfibgIMkbS5pa9LbG0p9UdK2kjYHzgB+Uzogv8lhiKSz+f/t3XmYXFW1/vHvmzAJCUMIEhLCIAGUQaI0CAjSODEGcEAgQAAJuaAoXiYVURIBB36KTF4VUAIJDU7AFQgyiB2ZFDragEzKEGhIgkAIGQhTsn5/7F2kqFudrkrSVd3V7+d56knV2fucs85OP+mVXeucDWNzP4AbgS0kHSFp5fzaQdIHJK0i6TBJa0XEW8BcYFEFY1MRJ7lmZmZmS3cosAlpBvM64MyIuC23TSB9hf80cCswqWTfE4FRpK/uDyPNVgIQEfcBRwM/AV4l1QUXamsvAD6fn2hQqPP9Mqnm9zxgNvAccBZwMPDsMsY/CXgAmJ7j/z8JLNCS257Kr7OL2oZKmg/MB+4HtgWaI+LWfI3zgE8Dh+TzzyI9eWHVvP8RwHRJc4HjgMMrGJuKKKJ0Nry8pqamaGur5Ia+5dPcnP5sbe32U9VUo15Xd/F4mZnZsmqe2MzUo6dOi4hKvtq3pZA0HRgbEbfXO5Zq+RFiZmZmDe6SaZfQ8lBLvcOomfZZ7fUOwXoAlyuYmZk1uJaHWpz4WZ/jmVwzM7M+YOSQkbQe1VrvMGqieWIzU5la7zAaQkRsUu8YlpVncs3MzMys4Xgmt4ba25fcUGVL194OI0fWOwozM7PqSGomLce7Yb1j6es8k1sjo0c7aTMzM+spJE2XtFDSfEkvSLpc0oB6x1UgqVXS2JJtknSCpAclvSZpVu53SL3i7Mk8k1sj48all1XGM95mZlYDoyLidknDgFuAM4BvFBolifS41cX1CrDEhcDewPHAXcCbwM6kxReuKe3cA+OvKc/kmpmZWZ8WEc8DNwPb5JnRcyTdTVqS932Shkr6g6TZkp6QdGxh37zy2MS8aMMjwA7Fx5YUkkYUfZ4o6eyizwdIapc0V9KTkvaSdA6wG3Bxnmm+WNIWwJeAQyLitohYGBGLIuKuiDiq6HjVxl8aT7Ok54o+T5f0TUmP5Gu8XNJqyz/q3c8zuWZmZtanSRoO7ANcS0oujyDNmD4OCLgdeBgYCrwfuE3SUxHxJ+BMYLP8WoOULFd63h2BK4HPA38CNgAGRsQfJX2UVNt7We57HNAREZWszFVN/JU4DNgTWADcQJrxPqPCfevGM7lmZmbWUKp4VNr1kuaQvvqfCnwvb58YEQ9HxNvAEGBX4OsR8XpEtAOXkRJJgC8A50TE7IjoIJUUVOoY4Fd5ZnZxRDwfEY910ncwaUncd0h6TtIcSa9LKl7ytpr4K3FxRHRExGzgHNIywT2eZ3LNzMysrzqwdLnaVMZKR9GmocDsiJhXtO0ZoKmovaOkrVLDgSkV9n2ZNNP7jojYUNJKwFukGduCauKvROn1Da1i37rxTK6ZmZnZu0XR+xnAIEkDi7ZtBDyf388kJavFbcVeA1Yv+jyk6H0HqcyhqxgA7gA2lFRJclpN/AuWEl9B6fXNqCCGuvNMrpnZcrhk2iW0PNRS7zDMlqp9Vjsjh/g5lssiIjok3QN8X9IpwBakMoPDc5ffAN+U9DdSTe5XSg7RDoyW9DDwKWB3oFBX+0vgVkk3An9mSU3uY8ALwPuK4nhc0i+AayQVP11hl+WMvx04Od98tgrwtTKH+XKO8TXgdODXSztnT+GZXDOz5dDyUAvts9rrHYaZda9DgU1IM5jXAWdGxG25bQLpK/yngVuBSSX7ngiMAuaQbuC6vtAQEfcBRwM/AV4l1QUXamsvAD6fn2hQqPP9Mqnm9zxgNvAccBZwMPDsMsY/CXgAmJ7jL5fAtuS2p/Lr7DJ9ehxFlM6Gl9fU1BRtbZXc0Ld8Cs9HbW3t9lNZD+afA+stmic2A1Xd6GJWc33x51TStIiopu7UypA0HRhbWrvcG3gm18zMzMwajpNcMzMzM2s4vvHMzMzMzMqKiE3qHcOy8kyumZmZmTUcJ7lmZmZm1nCc5JqZmVmfI2lLSf+QNE/SYknfrtF5J+Zn0tacpJA0oh7nrgcnuWZmZtYXnQa0RsTAiOgXEWcBSGrOSe/8nAA/LunoOsf6LpI2yQnrSiXbN5D0S0kzc+yPSZogaY0axHSUpEV53OZLelrS5ZK26O5zd8ZJrpmZmfVFGwMPd9I2IyIGAGsCXwculbRVaafSJLOeJA0C7gXeA+wcEQNJK6ytTedLB69o9+ZxWwv4JLAQmCZpmxqd/116zF+OmZmZdZ/2We3vLArR10m6g7S87q6Szgf+ADwVEWcU94u0Ytb1kl4BtpL0Gmlls7HAmaRVwj4maX/g+8Aw0jK5x0fEo/lcHyIt37s5MAV4ZxUuSUeRFlrYtWhbAJtHxBOS3kNaXezzpGT1IVLi+pfcfY4k8rZ9gXnA4RGxOMffQVpxrdwY7JuPvRlptbVfRsT43LYacBmwN9Af+DewX0S8kGP+DrAe8BJwRkRcVTJui4AngS9J2ggYn68BSTuRVmzbirRS3IkR0Vo0HmWPLelY4CRgQ6AjX+ffy11bgWdyzczMGtzobUczcsjIeofRY0TEx4E7gRPyzOOb5fpJ6ifpMyxJMAt2Bz4A7Jm/jr8a+BopOZsC3CBpFUmrkJbxnQQMAn4LfK6KUH8EbA/skvc/DVgMfCy3rx0RAyLiXtLM6bWFBLcCC4Ax+dr2BY6XdGBuO5I0GzscWBc4DliYyx4uBPbOM8W7kJL6pbkW2A1A0jDgJlJyPQg4Bfi9pPWWdmxJB5ES5TGk2fX9gZe7ukDP5Jr1UpdMu4SWh1rqHUaf1z6r3cmD9Xjjth/HuO3H1TuMmtLRWp7dh0qaQ0oonwWOiIjHJW2S28dHxAIASQcDN0XEbfnzj0izp7vk/VcGzs+zwr+TdFJF8Uv9gC8CO0XE83nzPbmt3C7rAjMrvcDC7Gn2oKSrScn79cBb+XgjIuJBYFo+7xr5mraR9GxEzKzgnDNICS3A4cCUiJiSP98mqQ3YB/jdUo49Fjg3Iu7Pn5+o5Bo9k2vWS7U81EL7rK7+A21mZstgRkSsHRGDImJkRFxT0t5R9H4o6Wt3APJMagepdGEo8HxOcAueoTKDgdVIX/tX4mVggwr7Iukjkv4s6UVJr5Jmawfn5knALcA1kmZIOlfSyjmxPzj3nSnpJknv7+JUw4DZ+f3GwEGS5hRewK7ABl0ceziVj8M7PJNr1ouNHDKS1qNa6x1Gn+YaR7M+qThpnQFsW/igNM06HHg+9xsmSUWJ7kYsSdgWAKsX7Tuk6LgvAa+TamYfWMr5C24HPiNpQoUlCy3AxaTygNdzbfJggIh4C5gATMizmeJVFgAAG/JJREFU11OAx0l1u7cAtxTVC19KLkfoxGdIpSGQkv9JEXFsuY5LOXYHy3DznGdyzczMzJbdb4B9JX1C0srAycAbpNKCe4G3ga9KWknSZ4Edi/Z9ANha0sh8s9f4QkNOVH8FnCdpqKT+knaWtCrwIumr/fcVHes8Ur3qFZI2hlQDK+k8SR8sE/dAYHZOcHcERhcaJO0haVtJ/YG5pPKFRZLWl7R/Llt4A5gPLCo9cI51U0kXAc2khBlgMjBK0p65z2r5kW0bdnHsy4BTJG2vZEThGpfGSa6ZmZnZMoqIx0m1pheRZl9HAaMi4s2IeBP4LHAU8Arp6/hri/b9F/Bd0izsv4G7Sg5/CumGt/tJX/n/EOgXEa8B5wB356/9d4qI2aQ64LeAv0maB/yJ9OSEcjWsXwK+m/t9h5SsFwwh1cjOBR4FppIS1H6kJH5Gjmf3fJyCnSXNz/u1kpLuHSLioXy9HcABwOmkRL0DODUft9NjR8Rv8/W2kJ4gcT1L6nw7pXeXiXSuqakp2traKuq7PJqb05+trd1+KuvB/HPQtcLX5C5XqC//PZj1TJKmRURTveOw+vFMrpmZmZk1HCe5ZmZmZtZwnOSamZmZWcNxkmtmZmZmDcdJrpmZmZk1HCe5ZmZmZkUknS7pshqfczdJj9fynI3OSa6ZmZn1KZLmF70WS1pY9PmwiPheRIzthvNuLelWSa/k59tOk7QPQETcGRFbruhz9mVe1tfMzMz6lIgYUHgvaTowNiJur2RfSStFxNvLeOobgJ8B++XPOwBaxmNZF5zkmpktp/ZZ7e8sCmFmvZ+k8cCIiDhc0ibA08BY4ExgOvAxSTuRltLdCngGODEiWpdyzMHApsCleSU0gLuL2puByRGxoaSDgV8W7b4ycG9ENOdlfc8BvgCsClwH/HdELFy+q248LlcwM1sOo7cdzcghI+sdhpl1v92BDwB7ShoG3AScTVpe9hTg95LWW8r+L5OW150s6UBJ63fWMSJ+HRED8ozzUOAp4Orc/ENgC2AkMAIYRlqW10p4JtfMbDmM234c47YfV+8wzKyEjl7hVQDjI2IBgKTDgSkRMSW33SapDdgHuKLczhERkvYAvgH8GNhU0l3AMRHx77LXIPUDWoDWiPiFJAHHAh+MiNm5z/dyn2+uqAttFE5yzczMzLrWUfR+Y+AgSaOKtq0M/HlpB4iI54ATACQNBy4BrgR27mSXc4CBwFfz5/WA1YFpKd8FUk1v/4qvog9xkmtmZmbWtSh63wFMiohjl/lgER2SfsqSMoR3kXQIcCiwQ0S8lTe/BCwEto6I55f13H2Fk1zrsdrbobm53lH0XO2zzmfkN75W7zDMzPqiycD9kvYEbifN4u4EPJFna/8PSesAXwMmkWpsBwFfBP5apu+HgIuAT0XEi4XtEbFY0qXATySdEBH/yfXB20TELSv0ChuAbzyzHmn0aBjpe3nMzKwHiogO4ADgdOBF0szuqSw9r3oT2ISUFM8F/gm8ARxVpu8BwDrAXUXP7705t32ddAPbXyXNzcfz83XLUER03QtoamqKtra2bg5nycxda2u3n8qsVys8sqr1qNa6xmFm1hNJmhYRTfWOw+rHM7lmZmZm1nBck2tmZma2gkia30nT3hFxZ02D6eOc5JqZmZmtIMVLBlt9uVzBzMzMzBqOk1wzMzPrcyRtKekfkuZJWizp2/WOqTtICkkjKujXLKns4896Kye5ZmZm1hedRloud2BE9IuIs+CdZG9x0aO7npc0obuDkdSaE9LtSrZfn7c3d3cMjcZJrpmZmfVFGwMPd9I2IyIG5PraXYFjJB1Yg5j+BYwpfJC0LmmRiRc73cM65STXzMzM+hRJdwB7ABfn2doWSWeX6xsRTwP3AFsV7X+BpA5JcyVNk7RbUduOktpy2wuSzitq20nSPZLmSHqgzOzsVcDBkvrnz4cC15EWkigcY1VJ50uakV/nS1q1qP1USTNz2xdLrntVST+S9GyO7eeS3lPd6PUeTnLNzMysoRQWy+lMRHwcuBM4Ic/WvtlZX0mbAx/l3cvv3g+MJC3N2wL8VtJque0C4IKIWBPYDPhNPs4w4Cbg7LzfKcDvJa1XdNwZwCPAp/PnMcCVJSF9izS7OxLYDtgROCOfY6983E8BmwOfLNn3h8AWed8RwDDgO51de2/nJNfMzMzs3Ybm2da5pBKCvwF3FRojYnJEvBwRb0fEj4FVWbK07lvACEmDI2J+RBSS48OBKRExJSIWR8RtQBuwT8m5rwTGSNoSWDsi7i1pPwz4bkT8JyJeBCYAR+S2LwCXR8Q/I2IBML6wkyQBxwL/HRGzI2Ie8D3gkGUdpJ7OSa6ZmZnZu82IiLXzbOzawELgikKjpJMlPSrpVUlzgLWAwbn5GNJs6WOS7pe0X96+MXBQTp7n5P12BTYoOfe1wMeBrwCTysQ2FHim6PMzeVuhraOkrWA9YHVgWtH5/5i3NyQvBmFmZmbWiYh4VVIL8GuAXH/7deATwMMRsVjSK4By/38Dh0rqB3wW+F2+gawDmBQRx3Zxvtck3QwcTyp3KDWDd980t1HeBjATGF7Ud6Oi9y+RkvWtI+L5ii6+l/NMrpmZmVknJA0gfaVfSCoHAm+TnniwkqTvAGsW9T9c0noRsRiYkzcvAiYDoyTtKam/pNXy48o2LHPa04HdI2J6mbargTMkrSdpMKmmdnJu+w1wlKStJK0OnFnYKcdzKfATSe/NsQ6TtGfVg9JLOMk1MzMze7ehhefkkr7yH0SqhQW4BbiZVKv7DPA67y4R2At4OO97AXBIRLweER3AAaQE9sW8z6mUycUiYkZE3FW6PTubVMv7IPAQ8Pe8jYi4GTgfuAN4Iv9Z7Ot5+19zvfHtLKklbjiKiIo6NjU1RVtbWzeHA83N6c/W1m4/lVmvVrh7uPWo1rrGYWbW0zRPbGbq0VOnRURTvWOx+nFNrlkv1j6rvctH5ZiZ9TXts9rrHYL1AE5yzXqp0duOrncIZmZmPZaTXLNeatz24xi3/bh6h2Fm1uM0T2xmKlPrHYbVmW88MzMzM7OG4yTXzMzMzBqOk1wzMzPrcyRtKekfkuZJWizp2918vvGSJnfdEyS1ShrbnfH0BU5yzczMrC86DWiNiIER0S8izgLICzSEpGuLO0vaLm9vrWWQko6StKjw3F5JT0u6XNIWtYyjN3KSa2ZmZn1R8dK4pV4EdsnL8RYcSVoAoh7ujYgBwFrAJ0nL806TtE2d4ukVnOSamZlZnyLpDmAP4OI8O9oi6eyiLm8C15OW80VSf+ALwFUlx9lF0v2SXs1/7lLUtqmkqbkc4jZgcMm+O0m6R9IcSQ9Iau4q7ohYFBFPRsSXgKnA+EqOl2eDn8qxPC3psKK2YyU9mtsekfThLgewl3CSa2ZmZg2lq5UgI+LjwJ3ACXmG9M0y3a4ExuT3e5JmfWcUGiUNAm4CLgTWBc4Dbiqa/W0BppGS27NIM8GFfYflfc8mLRl8CvB7SetVcZnXArt1dTxJa+QY946IgcAuQHve7yBSojwGWBPYH3i5ihh6NCe5ZmZmZiUi4h5gkKQtSUnglSVd9gX+HRGTIuLtiLgaeAwYJWkjYAfg2xHxRkT8BbihaN/DgSkRMSUiFkfEbUAbsE8VIc4gJbSVHG8xsI2k90TEzIgolGmMBc6NiPsjeSIinqkihh7NSa6ZmZlZeZOAE0ilDdeVtA0FShPCZ4Bhue2ViFhQ0lawMXBQLi2YI2kOsCuwQRWxDQNmd3W8HMPBwHHATEk3SXp/3m848GQV5+xVvOKZmZmZWXmTgCeAKyPiNUnFbTNIyWWxjYA/AjOBdSStUZTobgREft8BTIqIY5cjts+QSi66PF5E3ALcIuk9pJKGS0mlDh3AZssRQ4/mmVwzMzOzMiLiaWB34FtlmqcAW0gaLWklSQcDWwE35q/824AJklaRtCswqmjfyaSyhj0l9Ze0Wn502YZLiyf33VTSRUAzMKGr40laX9L+uTb3DWA+sCjvdxlwiqTtlYyQVJq491pOcs3MzMw6ERF3RcSMMttfBvYDTibdrHUasF9EvJS7jAY+QiopOJOimt6I6AAOAE4nPa6sAziVzvOynSXNB+YCraSbxHaIiIcqOF6/HOOMHMvuwJfyfr8FziHdJDeP9ESJQp1vr6eI6LoX0NTUFG1tbd0cDjQ3pz9bW7v9VGZmZtagJE2LiKZ6x2H145lcMzMzM2s4TnLNzMzMrOE4yTUzMzOzhuMk18zMzMwajpNcMzMzswpI+rmkb9c7DquMk1wzMzPrcyRNl7RQ0ry8Stg9ko6T1GluFBHHRcRZ3RjT1pJulfRKjmmapGqW+i13zFZJY1dUjL2Jk1wzMzPrq0ZFxEDSymU/AL4O/LJcR0n9axDPDcBtwPrAe4Gvkp6Na8vASa6ZmZn1aRHxakT8ATgYOFLSNpImSvqZpCmSFgB75G1nA0h6VNJ+hWPkVc9ekvTh/HmnPDs8R9IDkpqXFoOkwcCmwKUR8WZ+3R0Rd+X2f0oaVdR/5Xy+kXmFs8mSXs7nuz+vdHYOafneiyXNl3Rx3vf9km6TNFvS45K+UHTciZL+R9LNeZ+7JQ2RdH6eYX5M0odWzMh3r5XqHYBZrV1yCbS01DsKMzPraSLiPknPkRJDSKuW7UNa2WwV4PCi7lcDhwI35s97Ai9FxN8lDQNuAo4A/gh8Avi9pPdHxIudnP5l4AlgsqTLgHsj4oWi9ivz+W/In/cBZkZEu6T/AtYChpOW7h0JLIyIb0n6KDA5Ii4DyMv73gZ8B9gb+CBwq6SHI+LhfOwv5Ot5mLR88b2kVdtOJi0lfB6wx9JHs/48k2t9TksLtLfXOwozM+uhZrBkadv/zbOpiyPi9ZJ+LcD+klbPn0fnbZCS0SkRMSXvexvQRkpMy4q0BO0ewHTgx8BMSX+RtHnuMhnYR9Ka+fMRwKT8/i1gXWBERCyKiGkR0VmZw37A9Ii4PCLejoi/A78HPl/U57p8jNeB64DXI+LKiFgE/BrwTK5ZTzVypJeONjNrZNIy7zoMmJ3fd3TWKSKekPQoMErSDcD+LEn+NgYOKi4vAFYG/ry0E0fEc8AJAJKGA5eQZnB3jogZku4GPifpOtIs7Il510mkWdxrJK1NSoi/FRFvlTnNxsBHJM0p2rYSSxJmgOIZ5IVlPg9Y2nX0FE5yzczMzABJO5CS3LuAjwDRxS6FkoV+wCMR8UTe3gFMiohjlzWWiOiQ9NN8joIrgLGk/O3eiHg+932LVEYwQdImpBKDx0k30ZVeQwcwNSI+tayx9RYuVzAzM7M+TdKa+Saya0j1qw9VuOs1wKeB41lSqgBpJnWUpD0l9c83hjVL2nApMawjaYKkEZL65RvRvgj8tajb9cCHSTO4Vxbtu4ekbfMTIOaSyhcW5eYXgPcVHeNGYAtJR+Sb11aWtIOkD1R4zb2Gk1wzMzPrq26QNI80u/kt0g1VR1e6c0TMJN2UtQupVrWwvQM4ADgdeDEf/1SWnne9CWwC3E5KVP9JuonsqKLjLiTVz24KXFu07xDgd3m/R4GppEQb4ALg8/nJCBdGxDxSYn4Iqf54FvBDYNVKr7u3UKpz7lpTU1O0tbV1czjQ3Jz+dL2kdRf/jJmZNT5J0yKiqd5xrGiSvgNsERGHd9m5j+uRNbnt7UsSEbMVrb093XhmZmbWm0gaBBxDerKCdaHHlSuMHu0ExMzMzBpTXmCh3Gu3LvY7llT2cHNE/KU20fZuPa5cway7uVzBzKzxNWq5glWux83kmpmZmZktLye5ZmZmZtZwnOSamZlZnyNpS0n/kDRP0mJJ3653TJWS1CppbL3j6Omc5JqZmVlfdBrQGhEDI6JfRJxVaJB0uqSn8w1hz0n69VKO01ByAv16Tv7nSpom6RuSet1zdJ3kmpmZWV+0MfBw6UZJR5Ie0fXJiBgANAF/qnFs3UJSpY+OPSEiBgIbACeTFo6YIkndFlw36JHPyTXrbn4Ws5lZ3yXpDmB3YFdJ5wN/AJ6KiDOAHYBbIuJJgIiYBVxStO9apJXR9gEWA5cDZ0bEotx+LHASsCHpkV+HR8Tf87K5PwNGAs8D34yIP+R9JgILSCuefQx4BBhdiEHSp4CLSEnnJOCdZFPSZsClwHZAALcAX46IObl9ej7vYcCWks4AdoqIzxUd4yJgUUR8rXicImIB0Cppf+AxYF/gRkn9SDPhxwJrk/4TcFxEzJa0GnAZsDfQH/g3sF9EvJCf8/tjYE/gPcDUiDiwq7+vZeWZXOtz/CxmM7O+LSI+DtxJmrEcQFpSt+CvwBhJp0pqktS/ZPcrgLeBEcCHSEvkjgWQdBAwHhgDrAnsD7wsaWXgBuBW4L3AV4CrJG1ZdNxDgQnAOsATwDn5mINJS/meAQwGngQ+WrSfgO8DQ4EPAMNzDMUOJSWoa5OW+91L0tr5+CsBB5OS587G61mgDSg8y/erwIGk/ygMBV4BfprbjgTWynGsCxwHLMxtk4DVga3zOPyks3OuCJ7JtT5n3Lj0MjOzxrWsX6xHxGRJARxNShZfl/T/IuIHktYnzVCuHRELgQWSfgKMA35BSnbPjYj78+GeSLFoN2AA8IOIWAzcIelGUvI5Pve9NiLuy/2vIs0WQ5oxfiQifpfbzieVEBTifaJwHuBFSecBZ5Zc1oUR0ZHfL5T0F+Ag0gzwXsBLETGti6GZAQzK7/+L9B+E53JM44FnJR0BvEVKbkdExIPAtNxngzx260bEK/k4U7s453JxkmtmZmZWJCKuIs20rkyasbxK0j9IM5YrAzOLylP7kcoSIM1ePlnmkEOBjpzgFjwDDCv6PKvo/WukpPidfYtiC0nvfJb0XuBC0izrwBzPK7xbR8nnK4DjSUnu4SxlFrfIMOCe/H5j4DpJxdezCFg/H2s4cE2eLZ4MfCtvm12U4HY7lyuYmZmZlRERb0XEb4EHgW1IyeIbwOCIWDu/1oyIrfMuHcBmZQ41Axiea1kLNiLV5nZlJilBBCDf/DW8qP37pFrcD0bEmqSktXQeu3R52+uBD0raBtgPuGppAUgaDmxPKvGAdJ17F43B2hGxWkQ8n8dsQkRsBeySjz8m7zOoUCZRC05yzczMzDJJR0naV9JASf0k7U2qIf1bRMwk1dX+WNKauX0zSbvn3S8DTpG0vZIRkjYG/ka6sew0SStLagZGAddUENJNwNaSPpvrZ78KDClqHwjMB+ZIGgac2tUBI+J14HdAC3BfrrktNxar52v7X+A+YEpu+jlwTr42JK0n6YD8fg9J2+Za5rmk8oVFeexuBv5H0jp5HD5WwfUvMye5ZmZmZkvMBU4HngXmAOcCx0fEXbl9DLAK6QkIr5CSxQ0A8qzvOaTkcR5pxnRQRLxJugltb+Al4H+AMRHxWFfBRMRLpPrZHwAvA5sDdxd1mQB8GHiVlBBfW+F1XgFsS/lShYslzQNeAM4n3fi2V1G5xQWkJ1Lcmvv9FfhIbhtCGpO5wKOkutvJua1Qs/sY8B/gXU9zWNEUUTqDXV5TU1O0tbV1ZyxmZmZmK4SkaRHRVO84eipJG5GSzSERMbfe8XQHz+SamZmZ9SG5Nvgk4JpGTXChiplcSS+S7gQsZzBp+t1qw+NdOx7r2vJ415bHu7Y83rW1ZV61y4pIWoNUhvAMqQSh9MkLDaPiR4hFxHqdtUlq81cCtePxrh2PdW15vGvL411bHu/akuQayzLyKmYDuuzYAFyuYGZmZmYNx0mumZmZmTWcFZXkXrKCjmOV8XjXjse6tjzeteXxri2Pd215vPu4im88MzMzMzPrLVyuYGZmZmYNx0mumZmZmTWcipJcSSdIapP0hqSJS+l3pKRpkuZKek7SuXmdZatQpWOd+/63pFmSXpX0K0mr1ijMhiJpkKTrJC2Q9Iyk0Z30W1XSzyW9IGm2pBvyOuFWhUrHO/f9sKS/SJqfx/3EWsbaCKoZ79x/FUmPSXquVjE2kir+PTlV0j8lzZP0tKRTax1rb1fFWEvSDyW9nF/nSlKt47Xaq3QmdwZwNvCrLvqtTlqHeDBpDeNPAKcsc3R9U0VjLWlP4BukMd4EeB9p/Wqr3k+BN4H1gcOAn0nauky/E4GdgQ8CQ0lrml9UqyAbSEXjLWkw8EfgF8C6wAjg1hrG2Sgq/fkuOJW0prwtm0rHW8AYYB1gL+AESYfULMrGUOlYjwMOBLYj/fu9H/BftQrS6qeqG88knQ1sGBFHVdj/JGCPiBi1bOH1XV2NtaQWYHpEnJ4/fwK4KiKG1C7K3i+v/PIKsE1E/CtvmwQ8HxHfKOn7M2BeRJyWP+8LnBcRW9Y47F6ryvH+HjA8Io6ofaSNoZrxzm2bAlNIy31eGhEb1jLe3q7a8S7Z90LS7+SvdH+kvV+V/5bcA0yMiEvy52OAYyNipxqHbTXW3TW5HwMe7uZz9FVbAw8UfX4AWF/SunWKp7faAlhU+Ecye4A0vqV+CXxU0lBJq5NmDm6uQYyNpJrx3gmYLekeSf/J5SEb1STKxlHNeEP6ZuJ0YGF3B9agqh1vIH2dDuyGf19Wo5qxLvf7cql/J9YYui3JlXQ00AT8qLvO0ccNAF4t+lx473W6q1M6juTP5cbxX8CzwPPAXOADwHe7NbrGU814bwgcSSoT2Qh4Gri6W6NrPBWPt6TPACtFxHW1CKxBVfPzXWw86ffx5d0QU6OqZqzL/b4c4LrcxtctSa6kA4EfAHtHxEvdcQ5jPrBm0efC+3l1iKU3Kx1H8udy4/gzYDVSfegawLV4Jrda1Yz3QuC6iLg/Il4n1ZzvImmtbo6xkVQ03vmr33MBf1W+fKr5+QbSzcak2tx9I+KNboyt0VQz1uV+X84PLxTQ8FZ4kitpL+BSYFREPLSij2/veJhURF+wHfBCRLxcp3h6q38BK0navGjbdpT/2nA7Ul3X7PzL6CJgx3yDlFWmmvF+ECj+JVR479mXylU63puTbmC9U9Is0n/gNshPb9mkBnE2imp+vpH0RfINxBHhp1lUp5qxLvf70qUhfUCljxBbSdJqQH+gv6TVVObRYJI+DlwFfC4i7luxofYNlY41cCVwjKStJK0DnAFMrGGoDSEiFpB+oX9X0hqSPgocAEwq0/1+YIyktSStDHwJmOFvKypX5XhfDnxG0sg83t8G7oqIObWLuHerYrz/CQwHRubXWOCF/L6jdhH3btX8fEs6DPge8KmIeKq2kfZ+Vf5bciVwkqRhkoYCJ+Pfl31DRHT5ItULRclrPKlObj6wUe73Z+DtvK3wurmSc/hV3VjnvieRfhHNJSUEq9Y7/t74AgYB1wMLSDW3o/P23UhfaRX6rUv6T9x/SI8PuwvYsd7x97ZXpeOdtx1PqoF+BbiB9LSFul9Db3pVM95F+zQDz9U79t74quLfk6eBt0p+X/683vH3plcVYy1SOc7s/DqX/HQpvxr7VdUjxMzMzMzMegMv62tmZmZmDcdJrpmZmZk1HCe5ZmZmZtZwnOSamZmZWcNxkmtmZmZmDcdJrpmZmZk1HCe5ZmZmZtZwnOSamZmZWcNxkmtmZmZmDef/AyKjej63sgf1AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAFoCAYAAAC8FoidAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABdrElEQVR4nO3dd5hdVdn+8e8dOqQRQktIQaoEBDWAKEgEFGnCz1eI0kEQRPRFEVFECUrTV4qCCiJSEkKXDlLE0FuCFIkBKQmTBqmkGFry/P5Y68DmMOVMMjNn5pz7c13nYp+92rM3uTJP1qy9lyICMzMzM7Na0a3aAZiZmZmZtSUnuGZmZmZWU5zgmpmZmVlNcYJrZmZmZjXFCa6ZmZmZ1RQnuGZmZmZWU5avtGLfvn1j8ODB7RiKmZmZWdsYN27czIhYs9pxWHVUnOAOHjyYsWPHtmcsZmZmZm1C0qRqx2DV4yUKZmZmZlZTnOCamZmZtSFJl0k6rZnyBZI+1pEx1RsnuGZmZlZ3JE2U9I6kvmXnn5YUkga319gR0T0iXlnWfoqJtKTBOe4F+fO6pNskfXHZI+56nOCamZlZvXoV+Ebpi6QtgFWqF06b6B0R3YEtgXuAGyUdWt2QOl7FD5mZ1YNn7/0b/354TLXDMDOzjjESOBg4P38/BLgCKM2K7pGPNwDeBC6JiBGlxpK2B34NbAbMB34WEZfl4tUl3Q58HhgP7B8RL+d2AWwUES9JugxYCAxuou6mOb5PAzPyGNe2dGERMR34raQVgF9JuiIilrTy/nRZnsE1K/j3w2OYMfHVaodhZmYd4zGgp6SPS1oOGA6MKpQvJCXAvYE9gG9L2gdA0kDgTlLyuSawFfB0oe03gFOB1YGXgNObiaPRupJWI83CjgbWyvX+IGlIK67xr7ntJq1o0+V5BteszJqD12f4KWdVOwwzM1sGXx/xq0qrlmZx7wcmAFNKBRExplDvWUlXATsCNwEHAPdGxFW5fFb+lPw1Ip4AkHQlcE4zMTRVd09gYkRcmr8/JekG4GvA8xVe39T83z4V1q8JTnDNzMysno0EHgDWJy1PeJ+kbYGzgM2BFYGVgOty8QDg5Wb6nV44/i/QfSnqDgK2lTS3UL58jrlS/fN/Z7eiTZfnJQpmZmZWtyJiEulhs91Jv84vGg3cAgyIiF7AhYByWQNpbW57agDuj4jehU/3iPh2K/r4f8AbwAvtE2Ln5ATXzMzM6t03gZ0iYmHZ+R7A7Ih4S9I2wP6FsiuBXSTtJ2l5SWtI2qqN47oN2FjSQZJWyJ+tJX28pYaS1pZ0LHAK8JN6esAMnOCamZlZnYuIlyNibCNFxwC/kDQf+DlwbaHNa6RZ3+NJv/5/mvRqrraMaz7wJeDrpLW004FfkZZKNGWupIXAczm+fSPiL20ZV1fgNbhmZmZWdyJicBPn3+ODZQgTgeub6eNBYNtGzh9a9n0MsF7hu1pR9wXSGxwaG//QwvHEQtx1zwmudRqjH3+Nm5+e0nLFdjTj7S04aqXnqhqDmZmZLRsvUbBO4+anpzB+2rxqh2FmZmZdnGdwrVPZbN2eXHPUdlUb/5pTb67a2GZmZtY2PINrZmZmZjXFCa6ZmZnZMpI0WFJIavG345IOlfRQR8RVr5zgmpmZWd2RNFHSO5L6lp1/OieqgzswlpC0YT4eIeldSfPz50VJF0hat6PiqQVOcM3MzKxevQp8o/RF0hbAKtUL533XREQPoA9pJ7J1gHFOcivnBNfMzMzq1Ujg4ML3Q4ArSl8k9ZJ0haQZkiZJOllSt1y2nKTfSJop6RXK3lWb214iaZqkKZJOk7Rca4KLiHcj4nlgODCDtKmEVcBvUTArM2Piq1xz6o+rHYaZmbW/x4CD8ta3L5ISye2B03L5+UAv4GPAGsDdwDTgEuBIYE/gk8BC4Iayvi8HXgc2BFYjbbvbAFzU2iAjYrGkm4FdW9u2XjnBNSv4+OeGVTsEMzPrWKVZ3PuBCUBpx6HlSAnvJ/OWufMlnQ0cREpw9wPOi4gGAElnAsPy8drAbkDviFgELJR0LvAtliLBzaaSlixYBZzgmhV8Ypcv84ldvlztMMzMbBl9fcSvKq06EngAWJ/C8gSgL7AiMKlwbhLQPx/3I83IFstKBgErANOk93fP7VZWv7X6A7OXoX1dcYJrZmZmdSsiJkl6Fdgd+GahaCbwLilZHZ/PDeSDGd5pwIBC/YGF4wbgbaBvRLy3rDHmdb97Afcua1/1wg+ZmZmZWb37JrBTRCwsnFsMXAucLqmHpEHAD4BRufxa4HuS1pO0OvD+wxsRMY20XvdsST0ldZO0gaQdWxOUpBXy+uCrSG9SOGdpL7DeOME1MzOzuhYRL0fE2EaKvkt6gOwV4CFgNPCXXHYxcBfwDPAU8NeytgeTljiMB+YA1wOVvuZruKQFwFzgFmAW8OmImFph+7qniKio4tChQ2Ps2Mb+35u1jeEXPQrANUdtV+VIzMysq5M0LiKGVjsOqw7P4JqZmZlZTXGCa2ZmZmY1xQmumZmZmdUUJ7hmZmZmVlOc4JqZmZlZTXGCa2ZmZlYhSSFpw2rHYc1zgmtmZmbWhiStLWmmpGFl5y+VdFV1oqov3qrXzMzMrA1FxOuSvg9cLOkTEbFI0s7AHsCQthpH0nIRsbit+qslnsE1MzOzmvH8g1O48eynKqor6URJUyTNl/SCpJ0lbSPpUUlzJU2TdIGkFZtov5Kk30h6TdLrki6UtApARIwEXgB+kc9dBHwPmCXpx5JeljRL0rWS+hT6vE7SdElvSnpA0pBC2WWS/ijpDkkLgS8s9Y2qcU5wzczMrGa8+MTrTP3P3BbrSdoEOBbYOiJ6ALsCE4HFwPeBvsB2wM7AMU108ytgY2ArYEOgP/DzQvnRwOHA1cC/IuJqUpK7D7Aj0I+0je/vC23uBDYC1iJtAXxl2Zj7A6cDPUjbB1sjvETBzMzMakq/jXpXUm0xsBKwmaQZETGxkToTJV1ESkbPKxZIEnAk8ImImJ3PnQGMBn4CEBGTJf0c+DUpAQY4Cjg2IibnNiOA1yQdFBHvRcRfCmOMAOZI6hURb+bTN0fEw/n4rUoutB45wTUzM7O6ExEvSToOGAEMkXQX8AOgO3AOMBRYlZQrjWukizVz+biU6wIgYLmyes8DcyJiWv4+CLhR0pJCncXA2pKmk2Zn9839l+r0BUoJbkNrr7UeeYmCmZmZ1aWIGB0R25OSziAtOfgjMAHYKCJ6AieREtdyM4FFwJCI6J0/vSKiewvDNgC7Fdr0joiVI2IKafnB3sAuQC9gcG5THD+W6mLrjGdwrd2Nfvw1bn56Sov1xk+bx2br9uyAiMzMrN7lNbj9gYdJv+pfRJr46wHMAxZI2hT4NjCjvH1ELJF0MXCupGMj4g1J/YHNI+KuZoa+EDhd0iERMUnSmsBnI+LmPPbbwCzS7PAZbXW99cYzuNbubn56CuOnzat2GGZmZkUrAWeRZmKnkx7qOgn4IWkmdT5wMXBNM32cCLwEPCZpHnAvsEkL4/4WuAW4W9J84DFg21x2BTAJmAKMz2W2FDyDax1is3V7cs1R2zVbZ/hFj3ZQNGZmVu8i4llgm0aKpgKblp17/80IEaHC8VukpPikZsYZA6xX+L6EtMb3nEbqLiAtUSi6olB+aFPj2Ic5wTUzawfPPziFF594vdphmNWdmZPn03e9HtUOw6rMSxTMzNrBi0+8zszJC6odhplZXfIMrplZO+m7Xnf+3/GfqnYYZnWl0l3MrLZ5BtfMzMzMaooTXDMzMzOrKU5wzczMzCokKSRt2HLNFvsZI+mItoipLUgaJmlyteNoK05wzczMzNpYThiXSFpQ9mn+nZnWJvyQmZmZmVn7mBoR67VczdqaZ3DNzMyspkz9z9yK6kk6UdIUSfMlvSBpZ0nbSHpU0lxJ0yRdIGnFJtqvJOk3kl6T9LqkCyWt0tp4JW0g6T5JsyTNlHSlpN6F8omSfiJpvKQ5ki6VtHIu6yvpthzvbEkPSuqWy/pJukHSDEmvSvpeoc9VJF2W+xsPbN3auDszJ7hmZmZWMzbeZm36bdS7xXqSNgGOBbaOiB7ArsBEYDHwfaAvsB2wM3BME938CtgY2ArYEOhPYdezVhBwJtAP+DgwABhRVueAHOMGecyT8/njgcnAmsDapF3VIie5twLP5Lh2Bo6TtGtud0rua4Pc7yFLEXen5QTXzMzMasaQHfpX+v7pxcBKwGaSVoiIiRHxckSMi4jHIuK9iJgIXATsWN5YkoAjge9HxOyImA+cAXy9UK1fnlktflYr7ysiXoqIeyLi7YiYQdrGt3zMCyKiISJmA6cD38jn3wXWBQZFxLsR8WBEBGlGds2I+EVEvBMRrwAXF+LbDzg9x94A/K6Sm9ZVeA2umZmZ1Z2IeEnScaSZ0iGS7gJ+AHQnJZhDgVVJudK4RrpYM5ePS7kukGZilyvUqWgNrqS1SAnmDkAP0gTknLJqDYXjSaTZXoD/y9dwd47jTxFxFjCInGAX2i0HPJiP+zXSZ81wgmtmXcLzD07hxSder3YYFZs5eT591+tR7TDMrBkRMRoYLaknaab2V6TE75/ANyJifk6Cv9ZI85nAImBIRExZxlDOBAL4RETMkrQPcEFZnQGF44HA1HwN80nLFI6XNAT4h6QnScnrqxGxURNjTst9Pl/os2Z4iYKZdQkvPvE6MycvqHYYZlYjJG0iaSdJKwFvkZLVxaQZ1HnAAkmbAt9urH1ELCH9yv/cPAOLpP6FNa6t0QNYAMyV1B84oZE635G0nqQ+pHW21+Qx95S0YV4yMS9fw2LgCWBefpBuFUnLSdpcUulhsmuBn0haXdJ6wHeXIu5OyzO4ZtZl9F2ve6Vr66ruxrOfqnYIZta8lYCzSA91vQs8AnyL9LDYn4AfkWZyrwF2aqKPE0kPlT0mqS8wBfgjcFcu7yep/F/mh0TEDWXnTgWuAN4EXgJGkh50KxoN3E2aYb4ZOC2f34g027smaVnDHyJiDICkvYCzgVfz9b7ABw+nnQpcmMumApcC/9vEdXY5TnDNzMys7kTEs8A2jRRNBTYtO/f+mxEiQoXjt0izqSc10v8YmvlNeUQMKxw/D3y6rMrZZd+fjIgzG+nnXODcJsaYygcPo5WX/Rc4uOz0/zUVb1fjJQpmZmZmVlOc4JqZmZlZTfESBTMzM7NOLCIGVzuGrsYzuGZmZmZWU5zgmpmZmbWCpImSdql2HNY0J7hmZmZWlyRtL+kRSW9Kmi3p4cJ7Ytt77DGSjsjHwyQtkbQgfyZLurajYqlFTnDNzMys7uTdy24Dzgf6AP1J74Z9u0ohTY2I7qRNHz4DTAAelLRzleLp0pzgmpmZWT3aGCAiroqIxRGxKCLujohnJW0g6T5JsyTNlHSlpN6NdSKpm6QfS3o517827zaGpJUljcrn50p6UtLazQUVyeSI+DnwZ9L2wdZKfouCmVk7mTl5gXc0M+u8XgQWS7ocuBp4LCLm5DIBZwIPAD2BG4ARwHGN9PM9YB9gR2AG8Dvg96QNFg4BegEDSDPDW5G2BK7UX4FjJK0WEQtb0a7uOcG1TmX8tHkMv+jRaodhndDMuQs4tvca1Q6jYhtv0+wkjZlVWUTMk7Q9abvdi4F1JN0BHBkRL5G2zAWYIekc4JQmujoKODYiJgNIGgG8Jukg0hbAawAb5p3TxrUyzKmkZLs34AS3FZzgWqex91b9qx2CWZsZskN/huzgP9NmVfPDlqtExL+BQwEkbQqMAs6T9L+kmdgdSGtiuwFzmuhmEHCjpCWFc4uBtYGRpNnbq/MSh1HATyPi3Qqvoj8QwNwK61vmBNc6jf23Hcj+2w6sdhjWSflX/WbWniJigqTLSDOyZ5ISy09ExCxJ+wAXNNG0ATg8Ih5uovxU4FRJg4E7gBeASyoM6/8BT3l5Quv5ITMzMzOrO5I2lXS8pPXy9wGkdbOPkWZtFwBzJfUHTmimqwuB0yUNyv2sKWnvfPwFSVtIWg6YR1qysLiFuCSpv6RTgCOAk5bpQuuUE1wzMzOrR/OBbYHHJS0kJbb/Ao4nzbp+CngTuJ30sFdTfgvcAtwtaX7uZ9tctg5wPSm5/TdwP2mZQmP6SVpASqyfBLYAhkXE3Ut7gfXMSxTMzMys7kTEFGC/JoqfBz5ddu7sQtvBheMlwDn5Uz7GVcBVTYw/rHA8Bk86tinfTDMzMzOrKU5wzczMzKymOME1MzMzs5riBNfMzMzMaooTXDMzMzOrKU5wzczMzLoIScMkTa52HJ2dE1wzMzOrK5KulPSXsnM7Spolad02GmOYpJD017LzW+bzY9piHGucE1wzMzOrN98Ddpf0RQBJKwMXA8dHxLRl7VxSaZ+BGcBnJa1RKD4EeHFZx7DmeaMHM+syZk5ewI1nP1XtMMysi4uIWZK+C/xJ0ubAycDLwARJjwCbAZOA/82bMCDpMOBHwHqkxPVXEXFRLhtG2qHsfOD7wD3AJcA7wG3A14Hf5y179wP+BOxUikfSb4GvAr2A/wDHRcSDuWwV4I/A3sA04NLitUjql8f9PGkXtHMj4ndtc6e6Ls/gmlmXsPE2a9N3ve7VDsPMakREXAeMI+009i3gaNK2vKcBfYAfAjdIWjM3eQPYE+gJHAacK+lThS7Xye0G5f5KrgAOzse7knZJm1oWzpPAVrn9aOC6PKsMcAqwQf7sSpoBBkBSN+BW4BmgP7AzcJykXVt1M2qQZ3DNrEsYskN/huzQv9phmFlX8cOKan2HNHP7U9Is6x0RcUcuu0fSWGB34PKIuL3Q7n5JdwM7AKVfKy0BTomItwEkARARj0jqI2kTUqJ7BbBKMYiIGFX4erakk4FNSInrfsAxETEbmC3pd8DPc92tgTUj4hf5+yuSLs7XcldFd6BGOcHtIKMff42bn55S7TCqYvy0eWy2bs9qh2FmZvYhEfG6pJmkWdWvAvtK2qtQZQXgHwCSdiPNpm5M+g34qsBzhbozIuKtJoYaCRwLfAE4HNi/WCjpeOAIoB8QpFnivrm4H9BQqD6pcDwI6CdpbuHccsCDTV50nXCC20FufnqKEz0zM7POqwEYGRFHlhdIWgm4gTQDe3NEvCvpJkCFatFM3yOBl4ArIuK/pdnd3PcOwImk5QXPR8QSSXMKfU8DBpCScICBZTG/GhEbVXyVdcIJbgfabN2eXHPUdtUOo8MNv+jRaodgZmbWklHAk3n96r2k2dvPkBLTN4GVSA+XvZdnc78E/KuSjiPiVUk7Aq80UtwDeC/3vbykH5NmcEuuBX4i6XFgNeC7hbIngHmSTgR+R3qo7ePAKhHxZEVXXaP8kJmZmZnVvYhoIL2p4CRSstkAnAB0i4j5pFeLXQvMIS0xuKWV/T8UEeUPl0FaK3sn6dVhk4C3+PCShFPz+VeBu0mzwaU+FwN7kR5QexWYCfyZ9DaGuqaI5mbUPzB06NAYO3ZsO4dTu0qzmPU8g1uP125mZtUhaVxEDK12HFYdnsE1MzMzs5riBNfMzMzMaooTXDMzMzOrKU5wzczMzKymOME1MzMzs5riBNfMzMzMKiLpMkmnVTuOljjBNTMzs7ol6euSHpe0UNIb+fgYFbcb6wIkHSBpQf4skrSk8H1BtePraE5wzczMrC5JOh74LfB/wDrA2sDRwOeAFRupv1yHBtgISY3uQhsRV0ZE94joDuwGTC19z+eKfVT9OtqbE1wzMzOrO5J6Ab8AjomI6yNifiT/jIgDIuLt/Ov4P0q6Q9JC4AuSPi5pjKS5kp6X9JVCn2MkHVH4fqikh/KxJJ2bZ4nflPSspM1z2UqSfiPpNUmvS7pQ0iq5bJikyZJOlDQduHQprrWx69hD0j8lzZPUIGlEWZvtJT2Sr7NB0qGN9NtD0j8k/S5f3+6SxkuaL2mKpB+2Nta24gTXzMzMasqkgw6upNp2wErAzS3U2x84HegBPA7cStoydy3gu8CVkjapYLwvAZ8HNgZ6A8OBWbnsV/n8VsCGQH/g54W26wB9gEHAtyoYq6XreAhYCBycY9kD+LakfQAkDSRtH3w+sGaO6+liZ5LWAP4OPBwR34u0Ne4lwFER0QPYHLhvKWNdZk5wzczMrB71BWZGxHulE4UZy0WSPp9P3xwRD0fEElKi1x04KyLeiYj7gNuAb1Qw3ruk5HJTQBHx74iYltf6Hgl8PyJmR8R84Azg64W2S4BTIuLtiFi0lNf7/nVExFsRMSYinsvfnwWuAnbMdQ8A7o2IqyLi3YiYFRFPF/rqB9wPXBcRJ5dd42aSekbEnIh4ailjXWZOcM3MzKwezQL6Fte0RsRnI6J3LivlSA2FNv2Ahpzslkwizbg2KyfDFwC/B16X9CdJPUkzpKsC43JyPRf4Wz5fMiMi3mrl9ZUrXgeSts3LC2ZIepO09rhvLh4AvNxMX3sAqwAXlp3/H2B3YJKk+yVtt4wxLzUnuGZmZlaPHgXeBvZuoV4UjqcCAyQV86eBwJR8vJCUrJas86GOIn4XEZ8GhpCWJJwAzAQWAUMionf+9Cp7MKwYw9Iq72M0cAswICJ6kZLV0psjGoANmunrYlISfoek1d4fIOLJiNibtHzjJuDaNoh7qTjBNTMzs7oTEXOBU4E/SPqapO6SuknaClitiWaPk5LYH0laQdIwYC/g6lz+NPBVSatK2hD4ZqmhpK3zrOkKuY+3gMV5Nvhi4FxJa+W6/SXt2qYX/FE9gNkR8ZakbUhrdEuuBHaRtJ+k5SWtke9L0bHAC8BtklaRtGJ+VVmviHgXmAcsbudraJITXDMzM6tLEfFr4AfAj4A3gNeBi4ATgUcaqf8O8BXSa7hmAn8ADo6ICbnKucA7uZ/LSYliSU9SIjuHtKxhFvCbXHYi8BLwmKR5wL1AJQ+uLYtjgF9Imk96oO392daIeI201OB4YDYpcd+y2Dg/VPYt0mzvzcDKwEHAxHwNRwMHtvM1NEkpvpYNHTo0xo4d287h1K7hFz0KwDVHVW05StXU87WbmVnHmnPNtbzxm9+w6dgnx0XE0GrHY9XhGVwzMzOrGfNuu40l8+dXOwyrMie4ZmZmVlO69ehR7RDajaSTilvwFj53Vju2zqTR7d7MzMzMrPOJiDNI78m1ZngG18zMzMxqihNcMzMzs2UgaYSkUe3Yf+TXjiHpQkk/a6+xmhj/MkmndeSYy8oJrpmZmdUdSRMl7VJ27lBJD1UrpkpExNER8cu27jdf++Kydb0XtPU4HcVrcM3MzMzaiaTlI+K9asdRoUcjYvtqB9EWPINrZmZmViDpBEk3lJ07X9J5+Xh9SfdLmi/pHqBvod7gvKTgm5JeA+7L56+TNF3Sm5IekDSk0GaMpCMK35ucSS5fLiBpb0lPS5on6WVJXy708UqO8VVJB7TJzUl9HynpJUmzJd0iqV8+f6qk8/PxCpIWSvp1/r6KpLckrd5WcTTHCa6ZmZnVlJU33XRZuxgFfFlSb0izsMBwYGQuHw2MIyW2vwQOaaSPHYGPA6Utd+8ENgLWAp7iw7ucLZW8xe4VwAlAb+DzpJ3EVgN+B+wWET2Az5J2I1tmknYCzgT2A9Yl7cpW2qr4fmBYPt4amE66DwDbAS9ExJy2iKMlXqJgZmZm9eomScXlAysCT0XENEkPAPuSttf9MjAzIsZJGkhK3naJiLeBByTd2kjfIyJiYelLRPyldCxpBDBHUq+IeHMZ4v8m8JeIuCd/n5L7Xw1YAmwu6bWImAZMq6C/z0iaW/j+5Yh4rKzOAXnMp/JYP8nXMhh4FNhI0hqkZPsS4BhJ3UmJ7v1LcY1LxTO4ZmZmVq/2iYjepQ9wTKHscuDAfHwgH8ze9gPmFJNX0ixmuYbSgaTlJJ2VlxDMAybmor6NtGuNAcDL5SdzbMOBo4Fpkm6XVMm09mPF+9FIcgvp+t+/3ohYAMwC+kfEImAsKZn9PCmhfQT4HB2c4HoG16yOzLnmWubddlu1wzAzazdvTZjQFksUAG4C/ihpc2BP4Ef5/DRgdUmrFZLcgUCUtS9+3x/YG9iFlNz2AuYAyuULgVUL9depMMYGYIPGCiLiLuAuSasAp5FmoneosN/mTAUGlb7k2eI1yLPHpCR2J+CTwJP5+67ANsADbTB+RTyDa1ZH5t12G29NmFDtMMzMOr2IeAu4nrTe9omIeC2fn0SapTxV0oqStgf2aqG7HsDbpJnOVfnoTmRPA1+VtGp+3+03KwzzEuAwSTtL6iapv6RNJa0t6Ss5+XwbWAAsrrDPlozOY24laaV8LY9HxMRcfj9wMDA+It4BxgBHAK9GxIw2iqFFnsE1qzMrb7opg0ZeUe0wzMzaxaSDDm7L7i4nJWeHl53fP5fNJq07vYL0kFdTriDNYk7JbX4GfLtQfi5pXe/rwLOkB9B2oQUR8YSkw3L79XP77wBvAseTllUEKYE+poluWiUi/p43mrgBWJ20BOHrhSqPAKvwwWzteOAtOnD2FpzgmpmZWR2KiMGNnLsMuKxw6jVgESmZK9Z7hSZ+3Z9nMlV2bgFpiULRFYXymcCXyspHFMpVOD60rO8bgRsbCWXHRs41qZFrL5aVj3khcGETdRcAKxS+B+nNER3KSxTMzMzMykjqBvwAuDoi5lU7HmsdJ7hmZmZmBXnt6jzgi8ApVQ6nzUi6sGwr3tKn0dnYrsxLFMzMzMwK8tsRulc7jrYWEUeTXh1W8zyDa2ZmZmY1xQmumZmZWQeSFPl1YNZOnOCamZlZ3ZK0v6SxeS3qNEl35nfbdjmSTpL0ar6WyZKuWcb+hkma3FbxdSQnuGZmZlaXJP0AOI+0WcHapB3J/sBHX+nVKUhq8tkpSYcABwG7RER3YCjw946KrbNxgmtmZmZ1R1Iv4BfAdyLirxGxMCLejYhbI+IESStJOk/S1Pw5L+/chaRDJT1U1t/7yw4kXZbfWHCPpPmS7pc06KNRQB7nN5Jek/R6brdKLhuWZ2JPlDQduLSZS9oauCsiXgaIiOkR8afcz76SxpWNe7ykm/Lx7pLG51inSPphfpPEnUC/wtsW+uUd034s6WVJsyRdK6lP7mdwvg+HSWqQNEfS0ZK2lvSspLmSLmjd/6ml4wTXzMzMasp/n3yykmrbASvT+CYJAD8FPgNsBWwJbAOc3IowDgB+CfQl7SR2ZRP1fgVsnMfZEOgP/LxQvg7QBxgEfKuZ8R4DDpZ0gqShkpYrlN0CrC/p44VzB5J2OoO05e9REdED2By4L79JYjdgakR0z5+pwPeAfUgbSfQD5gC/L4tlW2AjYDhphvynpJ3ZhgD7SWrVJhRLwwmumZmZ1Yyee+7JqltvXUnVNYCZEfFeE+UHAL+IiDciYgZwKmkJQKVuj4gHIuJtUoK3naQBxQqSBBwJfD8iZkfEfNJyieLWt0uAUyLi7YhY1NRgETEK+C5pS+D7gTck/TiXvQ1cQ0pqkTQEGAzclpu/C2wmqWdEzImIp5q5rqOAn0bE5NzvCOBrZcsnfhkRb0XE3cBC4Kp8H6cADwKfbKb/NuH34FqHGD9tHsMverTaYdS9t/t+gd/O/Ee1wzAzazerD9+P1YfvB6NGtlR1FtBX0vJNJLn9gEmF75PyuUo1lA4iYoGk2bl9Q6HOmsCqwLiU6wJpm9/i7OuMiHirkgEj4krgSkkrkGZZr5T0z4i4C7gcuErSyaRE/dqcoAL8D2l2+ixJzwI/joimfmgPAm6UtKRwbjFpDXPJ64XjRY18b/d3DHsG19rd3lv1Z7N1e1Y7DDMzs6JHgbdIiWBjppKSuZKB+RykWclVSwWS1mmk/YBCeXfSMoOpZXVmkhK+IRHRO3965YfESqLlS/mwvJb4OuBZ0pIDIuIx4B1gB2B/PlieQEQ8GRF7A2sBNwHXNjN2A7BbId7eEbFynp3tNDyDa+1u/20Hsv+2A6sdhgGTDvpjtUMwM+sUIuJNST8Hfi/pPeBu0q/qdwG+AFwFnCzpSVKi93NgVG7+DDBE0lbABNKv6cvtnl839gRpLe7jEVGcvSUilki6GDhX0rER8Yak/sDmeda1YpIOBWYAD5AS8F1Ja14fL1S7ArgAeC8iHsrtVgT2BW7L92QeaUYW0szrGpJ6RcSb+dyFwOmSDomISZLWBD4bETe3Jt725hlcMzMzq0sRcQ7wA9Kv52eQZiePJc1ingaMJc2CPgc8lc8RES+S3sBwL/Af4CE+ajRwCjAb+DRpTW9jTgReAh7LyeW9wCZLcTnzgJOA14C5wK+Bb5cS2WwkaUa3fP3GQcDEPP7R5LW6ETGBlOi/kt+A0A/4LemhtbslzSc93LbtUsTbrhRR2cz30KFDY+zYse0cTu0qrT+95qjtqhyJ1bNJBx0MwKCRV1Q5EjOz9iVpXEQMrdLYlwGTI6I1b11od/n1Y28An4qI/1Q7nvbkGVwzMzOz+vBt4MlaT27Ba3DNzMzMugRJJ5GWIZR7MCJ2a6HtRNIbGvZp+8g6Hye4ZmZmZm0oIg5tp37PIL0nd2naDm7baDo3L1EwMzMzs5riBNfMzMzMaooTXDMzM7NlJGmYpMnVjsMSJ7hmZmZWdyRNlLRI0oLC54Jqx2Vtww+ZmZmZWb3aKyLurXYQS0vSchGxuOWa9ccJrlmdeWvChPc3fDAzsw/LW94eQdqh65ukXcGOiYg7c3kf4GzSVrirAPdHxD6N9PNx4I/AVsAU4CcRcUsu2x34DTCAtAPZuRHxm9LYEbF9oZ8ANoqIl/IGEouAQcCOwN6SxgPnA58HFuS+ftdmN6SLcoJrVkd67rlntUMwM+sKtgUuB/oC3wIukdQ/0vavI0mJ5JD838+WN5a0AnAr8BfgS8D2wM2ShkbEC8AlwH4R8aCk1YH1WxHb/sDuwJ7AysCDwM3AN4D1gHslvRARd7X+smuHE1yzOrL68P1Yffh+1Q7DzKz9jRpZSa2bJL1X+H4C8C4wKSIuBpB0OfAHYG1JAnYD1oiIObnN/Y30+xmgO3BWRCwB7pN0GykJHZHH2EzSM7mfOY300ZSbI+LhHNsWwJoR8Ytc9oqki4GvA3Wd4PohMzMzM6tX+0RE78Ln4nx+eqlCRPw3H3YnLSmYXUhum9IPaMjJbckkoH8+/h/SLOwkSfdL2q4VMTcUjgcB/STNLX1IO52t3Yr+apJncM3MzMwq0wD0kdQ7IuY2U28qMEBSt0KSOxB4ESAiniStn10BOBa4lpQ8LwRWLXUiaZ1G+o6yeF6NiI2W8npqlmdwzczMzCoQEdOAO4E/SFpd0gqSPt9I1cdJyeqPcp1hwF7A1ZJWlHSApF4R8S7pIbPSmxCeAYZI2krSyqTlDM15Apgn6URJq0haTtLmkrZe5ovt4pzgmpmZWb26tew9uDdW0OYg0hraCcAbwHHlFSLiHeArpPW6M0lreA+OiAmFPiZKmgccDRyY270I/AK4F/gP8FBzgeRXhO1FelPDq3msPwO9KriOmqb0QGDLhg4dGmPHjm3ncGrX8IseBeCao1qzzMbMzMyWhqRxETG02nFYdXS6NbijH3+Nm5+eUu0w2tz4afPYbN2e1Q7DzMzMrOZ1uiUKNz89hfHT5lU7DDMzMzProjrdDC7AZuv2rLlf5ZeWKJiZmZlZ++p0M7hmZmZmZsvCCa6ZmZnZMpA0QtKoduw/JG2Yjy+U9LP2GqtWOME1MzOzuiNpoqRdys4dKqnZV3NVW0QcHRG/rHYcnZ0TXDMzM7N2IqlTPu9U65zgmpmZmRVIOkHSDWXnzpd0Xj5eX9L9kuZLugfoW6g3OC8p+Kak14D78vnrJE2X9KakByQNKbQZI+mIwvcmZ5IlXSbptML3vSU9LWmepJclfbnQxys5xlclHdAmN6eL8L8qzKxNXffiddzxyh3VDsPMbFmMAkZI6h0Rc/Ms7HDSzmQAo4FHgS8B2wK3AzeX9bEj8HFgSf5+J3A48A7wK+BK0g5kS03SNsAVwNeAvwPrAj0krQb8Dtg6Il6QtC7QZ1nG6mqc4JpZm7rjlTt4YfYLbNJnk2qHYmbWkpskvVf4viLwVERMk/QAsC9wMfBlYGZEjJM0ENga2CUi3gYekHRrI32PiIiFpS8R8ZfSsaQRwBxJvSLizWWI/5vAXyLinvx9Su5/NVJivbmk1yJiGjBtGcbpcpzgmlmb26TPJlz65UurHYaZ1bHLuKySavtExL2lL5IOBUpLBS4Hvk1KcA8ERubz/YA5xeQVmAQMKOu7odDvcsDppIR5TT6Y1e0LLEuCOwD4yK/MImKhpOHAD4FLJD0MHB8RE5ZhrC7Fa3DNzMzMPuom4BOSNgf2JC0pgDQTunqeJS0Z2Ej7KBzvD+wN7AL0Agbn88r/XQisWqi/ToUxNgAbNFYQEXdFxBdJyxYmkBL1uuEE18zMzKxMRLwFXE9ab/tERLyWz08CxgKnSlpR0vbAXi101wN4G5hFSmTPKCt/GviqpFXz+26/WWGYlwCHSdpZUjdJ/SVtKmltSV/JSfjbwAJgcYV91gQnuGZmZmaNuxzYgg+WJ5TsT3q4bDZwCulBr+ZcQVrGMAUYDzxWVn4u6eGz1/OYV1KBiHgCOCy3fxO4HxhEyu+OB6bmGHcEjqmkz1rhNbhmZmZWdyJicCPnLoMPLd59DVgE3FBW7xVghyb6ncgHSw9K5xaQligUXVEon0l6I0PRiEK5CseHlvV9I3BjI6Hs2Fh89cIJrlkT/LqrpTNh9gQ27bNptcMwM1smkroBPwCujoh51Y7HWsdLFMyaUHrdlZmZ1Ze8dnUe8EXSEgTrYjyDa9YMv+6q9Q7722HVDsHMbJnkV4B1r3YctvQ8g2tmZmZmNcUJrpmZmZnVFCe4ZmZmZm1E0hhJR7Rcs83HXSDpYx09bmflBNfMzMzqjqSJkhblxPB1SZdK6hTrbiUNkzS57FxvSX+RNF3SfEkvSjqxVB4R3fPrywwnuGZmZla/9oqI7sCngK2Bk4uFkjrTw/jnkh58+zhpu9+vAC9XNaJOrDP9jzOzGvHC7Bf8NgUz6zIiYoqkO4HNJQVwLHAcKU9aX9KRwIlAH+Ah4OiImAog6YvA+cC6pB3P3t+UQdIIYMOIODB/Hwy8CqwQEe9J6gOcDewKrELaiewA4E5gJUkLclcbkxPwiJiTz03In9JYAWwE/Bd4sXB53YBVSptFSDocOAFYB3gC+FbefrimeAbXzNrU7h/bnU36bFLtMMzMKiZpALA78M98ah/SVrybSdoJOBPYj5TETgKuzu36knY5OxnoS5pR/Vwrhh4JrAoMAdYCzs2vKNsNmJqXHXTPyfRjwOmSDpO0UVMdRkSxXXfSLmelePcBTgK+CqwJPAhc1Yp4uwzP4JpZm9p3433Zd+N9qx2GmdW5yz60426TbpL0HvAmcDtwBilZPTMiZgNIOgD4S0Q8lb//BJiTZ2M/D4yPiOtz2XnA8ZUMLGldUiK7RmFW9v5mmnwX+D5pdvlPkiYB342IO5sZ40RgU2D7fOqofG3/zuVnACdJGlRrs7iewTUzM7N6tU9E9I6IQRFxTEQsyucbCnX6kWZtAYiIBcAsoH8uayiURVnb5gwAZheS22ZFxKKIOCMiPg2sAVwLXJeXOXyEpN2A/83XWLquQcBvJc2VNBeYTVpS0b/CmLsMz+BapzT68de4+ekpVY3hhdk78slPNvePaTMzq1FROJ5KSgyB97fxXQOYAkwjJaqlMhW/AwtJSxBK1ikcNwB9JPWOiLnNjP/R4CLm5dnXnwDrkxLV90naBLgc+GpEFBPuBuD0iLiyuf5rgWdwrVO6+ekpjJ82r9phmJmZjQYOk7SVpJVIyxgej4iJpGUNQyR9Nb9x4Xt8OIl9Gvi8pIGSepESUgAiYhrpYbI/SFpd0gqSPp+LXwfWyG0AkPQzSVtLWlHSyqTZ2bnAC8VgJfUEbiY9kPZQ2bVcCPxE0pBct5ekmlxT5hlc67Q2W7cn1xy1XdXGP+xvf6ra2GZm1jlExN8l/Yz0MNnqwCPA13PZzJwg/g64lPTQ2MOFtvdIugZ4FpgJ/Ir0eq+Sg0iv/5oArAj8A3ggIiZIugp4RdJywGakWd1LgYHAe7nPPfKSiaJPAZsA50g6pxBL94i4Mb/r92pJg0hrj+8BrlvG29TpOME1MzOzuhMRg5s4r0bOXUia/Wys/t9Ir/FqapzvAN8pnLq4UDYbOKSJdoeXnTotf5oapxT3SxReVdZIvZGkRLymeYmCmZmZmdUUJ7hmZmZmVlOc4JqZmZlZTXGCa2ZmZmY1xQmumZmZ1R1Jm0j6p6T5kpbkNyW053gjJI2qsO4YSUe0ZzxLQ9LzkoZVO45KOME1MzOzevQjYExE9IiIbhHxSwBJwySFpL8WK0vaMp8f05FBSjpU0mJJC/LnVUmXSmryzQ3tJSKGRMSYSupKmihpl3YOqUlOcM3MzKweDQKeb6JsBvBZSWsUzh0CvNjuUTXu0YjoDvQCdgEWAeMkbd4Rg+dNLDpMW4znBNfMzMzqiqT7gC8AF+RZ0dGSiu+YfQe4ibyhQ95sYT/gyrJ+PivpSUlv5v9+tlC2vqT78xKIe4C+ZW0/I+kRSXMlPVPJr/4jYnFEvBwRxwD3AyMq6S/PAr+SY3lV0gGFsiMl/TuXjZf0qXx+oqQTJT0LLJS0fHFWNi+5uF7SNbntU5K2zGUjSRtS3Jrv74/y+a/kZQ5z8zKMjxfi+Mh4Ld2P5nijB7NmvDD7BQ7722HVDsPMzNpQROyUlxqMiog/S7qskWpXkHYZ+z2wK2m2d2qpUFIf0la93wOuAvYFbpe0YUTMIm3x+yjwJWDbXPfm3LZ//n4Q8DdgZ+AGSZtGxIwKL+OvwJkt9Qf8l7TT2tYR8YKkdYE+ud2+pCR5H2AssAHwbmGMbwB7ADMj4j3pI/tH7J3rHEjaOvgmSRtHxEGSdgCOiIh781gb5/u0DzAG+D4pAd4sIt5pbLwK70OjPINr1oTdP7Y7m/TZpNphmJlZFUTEI0AfSZsAB5MS3qI9gP9ExMiIeC8iriJtubuXpIHA1sDPIuLtiHgAuLXQ9kDgjoi4IyKWRMQ9pARz91aEOJWcqFbQ3xJgc0mrRMS0iCgtzTgC+HVEPBnJSxExqTDG7yKiISIWNRHDuIi4PiLeBc4BVgY+00Td4cDtEXFPrv8bYBXgs4U6LY1XMc/gmjVh3433Zd+N9612GGZmthQu47K26GYkcCxpOcPhwP6Fsn7ApLL6k4D+uWxORCwsKxuQjwcB+0raq1C+AvCPVsTWH5jdUn8RsVDScOCHwCWSHgaOj4gJOZ6XmxmjoYUY3i+PiCWSJpOuvTEful+5fkO+jkrHq5gTXDMzM7PGjQReAq6IiP+W/Yp+KimxLBpIWiIwDVhd0mqFJHcgEPm4ARgZEUcuQ2z/D3iwkv4i4i7gLkmrAKcBFwM75HYbNDNGNFMGHyTsSOoGrMcHyzjK204FtijUV24/pRXjVcxLFMzMzMwaERGvAjsCP22k+A5gY0n75wewhgObAbflX/OPBU6VtKKk7YHi7Ooo0lKGXSUtJ2nl/Hqy9ZqLJ9ddX9L5wDDg1Jb6k7R2frhrNeBtYAGwOLf7M/BDSZ9WsqGk8qS9OZ+W9NX8QNhxuf/HctnrwMcKda8F9pC0s6QVgONz/UdaMV7FnOCamZmZNSEiHoqIqY2cnwXsSUrUZpHeq7tnRMzMVfYnPVw2GziFwhreiGggPaB1EumVZA3ACTSdl20naQEwj/SAVk/SQ2PPVdBftxzj1BzLjsAxud11wOmkB+Lmk94cUVrXW4mbSWtr55AecPtqXl8L6QG4k/MbE34YES+Q1gqfD8wkJfx7FR4wa1NeomBmZmZ1JyKGFY4PLRyPIf2qvbE2fybNepa+PwR8uom6r5CWATQ1/uOkZLOl2C6DlhcUN9dfM+eJiAuBCxs5P7iCc29FxIFN9Hsz+a0RhXM3Ajc2Uf8j4y0Lz+CamZmZWU1xgmtmZmZmNcVLFMzMzMysVSJiRLVjaI5ncM3MzMyspjjBNTMzM7Oa4gTXzMzMrI1IGiPpiGrHUe+c4JqZmVndkTRR0iJJCyS9LulSSd2rHRdA3qRhciPnN5J0taQZkuZJ+o+k81vaIKId4wxJC/M9nCXp73nDi6pzgmtmZmb1aq+I6A58CtgaOLlYmHfo6hQkbQg8Ttqw4ZMR0RP4HPAysH0TbToi/i3zPdyE9L7eCySd0gHjNssJrpmZmdW1iJgC3AlsnmclvyPpP8B/ACQdKeklSbMl3SKpX6mtpC9KmiDpTUkXACqUjZA0qvB9cO5/+fy9T545nippjqSb8pa6dwL98szogjzeCODhiPhBREzOcb8REedFxNW5v2GSJks6UdJ04FJJK0k6L48xNR+vlOsfKumh4r3I8W2Yjy+TdKGkeyTNl3R/U1v5RsTMiBgJfBv4iaQ1ch+9JF0iaZqkKZJOk7RcLtsw9/mmpJmSrinEMSSPOzvPsJ/Umv+nTnDNzMystly6R6uqSxoA7A78M5/ah7TN7maSdiJtO7sfsC4wCSgllH2BG0gzv31Js6mfa8XQI4FVgSHAWsC5EbEQ2A2YGhHd82cqsEseqyXrkLbbHQR8C/gp8BlgK2BLYBvKZqpbcADwS9L1PQ1c2UL9m0mvod0mf78ceA/YEPgk8CWgtEb5l8DdwOqk3ePOB5DUA7gX+BvQL7f9eytidoJrZmZmdesmSXOBh4D7gTPy+TMjYnZELCIleH+JiKci4m3gJ8B2kgaTkuLxEXF9RLwLnAdMr2RgSeuSEtmjI2JORLwbEfc306RvsW9Jx0qam2d4Ly7UWwKcEhFvF+L/RZ7tnQGcChxUSYzZ7RHxQL72n5KufUBTlfN9mAn0kbR2vsbjImJhRLwBnAt8PVd/l5SI94uIt/LWxwB7AtMj4ux8fn7eirhiTnDNzMysXu0TEb0jYlBEHJMTQoCGQp1+pFlbACJiATAL6J/LGgplUda2OQOA2RExp8L6s0gzyKWxLoiI3qSkeoVCvRkR8VZT8efjflSueH0LgNnNtZe0ArBmrjcoxzYtJ+NzgYtIs9UAPyIt6XhC0vOSDs/nB5Bmw5eaE1wzMzOzD4vC8VRSogZAXiO7BjAFmEZKxkplKn4HFpKWIJSsUzhuIM1y9m5h/JK/A19tZexQFj8wMJ/7SHySivGVFK+vO2n5w9RG6pXsTVqS8ATpGt8G+uZ/SPSOiJ4RMQQgIqZHxJER0Q84CvhDXv/bAGzQ4pU2wwmumZmZWdNGA4dJ2io/nHUG8HhETARuB4ZI+mp+cOx7fDiJfRr4vKSBknqRljcAEBHTSA+T/UHS6pJWkPT5XPw6sEZuUzIC2EHSOZL6w/trgD/eQvxXASdLWjPX/zlQevDtmRz/VpJWzmOU213S9pJWJK2ZfTwiPjJLnR+YOwD4PfCriJiVr/Fu4GxJPSV1k7SBpB1zm331wSvO5pCS88XAbcA6ko7LD8n1kLRtC9f5IU5wzczMzJoQEX8HfkZ6wGsaaWbx67lsJrAvcBZpCcFGwMOFtvcA1wDPAuNIiVvRQaR1qBOAN4DjcrsJpMT0lfyr/X4R8SLpYbH1gGckzc9jTc3xNeU0YGyO4TngqXyO3OcvSA90/Ye0FrncaOAU0pKDT5PW9BY9I2kB8BLp4bHvR8TPC+UHAysC40lJ7PV8sNRia+Dx3P4W4H8j4tWImA98EdiLtO74P8AXmrnGj+g073czMzMz6ygRMbiJ82rk3IXAhU3U/xuwcTPjfAf4TuHUxYWy2cAhTbQ7vJFzE0hvc2hqrDGkBLh47i3SzPL3mmhzOnB64dSosiozI+LoJtp+5F41UudN0qvDvt1I2Y9I63Aba/cvYOeW+m+KE1wzM7NaN/ZSeO76akfRcaY/W+0IrMq8RMHMzKzWPXc9TH+u2lGYdRjP4JqZmdWDdbaAw26vdhQd49I9gMnVjqLLi4hDqx3D0vIMrpmZmZnVFM/gdqDx0+Yx/KJHqx1GlzB+2jw2W7dntcMwMzNrFUljgFER8edqx1LPPIPbQfbeqr8TNjMzs05C0kRJi/JWt69LujRvZFB1koZJ+sgaC0kbSbpa0gxJ8yT9R9L5hXfJWuYZ3A6y/7YD2X/bgdUOo8vwTLeZmXWAvSLi3rxxwl3AycCPS4WSlo+I96oWXUHe4etx4DLgkxExWdJawP7A9sDVjbTpNPF3NM/gmpmZWV2LiCmkXcU2lxSSviPpP6QNBpB0pKSXJM2WdIukfqW2kr4oaYKkNyVdAKhQNkLSqML3wbn/5fP3PnnmeKqkOZJuylsB3wn0y7PLC/J4I4CHI+IHETE5x/1GRJwXEVfn/oZJmizpREnTgUvzTmDn5TGm5uOVcv1DJX1oc4cc34b5+DJJF0q6R9J8SfdLKm7722k5wTUzM7O6JmkAsDvwz3xqH2BbYDNJOwFnkjZYWBeYRJ4tzVvf3kCa+e0LvAx8rhVDjwRWBYYAawHnRsRCYDdgakR0z5+pwC55rJasA/QBBgHfAn5K2gFtK2BLYJscb6UOIG3R25e09fCVrWhbNU5wzczMrLZU/jq0myTNJW1Rez9wRj5/ZkTMjohFpATvLxHxVES8DfwE2E7SYFJSPD4iro+Id4HzSFvLtkjSuqRE9uiImBMR70bE/c006VvsW9KxeRvfBZIuLtRbApwSEW8X4v9Fnu2dAZxK2iK4UrdHxAP52n9KuvYBrWhfFU5wzczMrF7tExG9I2JQRByTE0KAhkKdfqRZWwAiYgEwC+ifyxoKZVHWtjkDgNkRMafC+rNIM8ilsS6IiN6kpHqFQr0ZeXveRuPPx/2oXPH6FgCzW9m+KpzgmpmZmX1YFI6nkn7dD0BeI7sGMAWYRkpUS2UqfgcWkpYglKxTOG4A+kjq3cL4JX8HvtrK2KEsfmBgPveR+CQV4yspXl930vKHqY3U61T8FgUzs2Ux9tK0DapZZzb9WVjnE9WOoqsaDVwtaTTwb9IyhscjYqKkBcAFkr4K3AJ8hw8nsU8DJ0oaCLxJWt4AQERMk3Qn8AdJ3wEWANtFxAPA68AaknpFxJu5yQjgCUnnAGdHxJS8BvjjwPxm4r8KOFnSk6Tk9+dA6cG3Z4AhkrYCJuQxyu0uaXvgCdJa3McjotJZ6qrxDK6Z2bJ47nqY/ly1ozCzdhIRfwd+RnrAaxqwAfD1XDYT2Bc4i7SEYCPg4ULbe4BrgGeBccBtZd0fBLxLSi7fAI7L7SaQEtNX8jrbfhHxIulhsfWAZyTNz2NNzfE15TRgbI7hOeCpfI7c5y+Ae0lvjHiokfajgVNISxM+TVrT2+l5BtfMbFmts0VrHmox63iX7lHtCDqdiBjcxHk1cu5C4MIm6v8N2LiZcb5DmtktubhQNhs4pIl2hzdybgLpbQ5NjTWGlAAXz70FfC9/GmtzOnB64dSosiozI+LopsbsrDyDa2ZmZmY1xQmumZmZmdUUL1EwMzMzs4+IiEOrHcPS8gyumZmZmdUUJ7hmZmZmVlOc4JqZmVndkbSJpH9Kmi9piaTmXrXVVmMOlhSSOnyJqKQRksrfkFCznOCamZlZPfoRMCYiekREt4j4JYCkYTnhXZCT3xckHVblWD9E0mWSTmvk/P6SxubYp0m6M2/S0BExTZS0KN+zuZIekXS0pKrkmk5wzczMrB4NAp5vomxqRHQHegInAhdL2qy8UjVmYpsi6QfAeaSd1tYmbcn7B2DvDgxjr4joQbq3Z5Hu3SUdOP77Os3/GDMzM2tH05/zhg+ZpPuAHYHtJZ1H2mb3lYg4uVgvIgK4SdIcYDNJ2wBHkratPYS0ze7/AecDuwH/JW3kcEZELJG0HPAr4FBgHnB2WRwTgSMi4t78fQSwYUQcmL9vD/wa2Iy0He/PgBVJu4mFpOOAfwAHknYkOywi/loY4tb8aeweXAfsAKxC2rL32xHxfC7bHfgNMCDHfW5E/CZvDXwZsD2whPQPhB0jYknZfXsTuEXSdOAxSWdHxL8krUTaVGI/YCXgRuD7EbGoub4lDQB+m+PtBlwVEcc2dl0lnsE1MzOrdVt8Le24ZwBExE7Ag8Cxeab2ncbqSeom6f8BvUnb3AJsC7wCrEVK1s4HegEfIyXNBwOlJQ1HAnsCnwSGAl+rNEZJA4E7c/9rAlsBT0fEn4ArgV9HRPeI2AvYDliZlDBW6k7S1sJrkbbvvbJQdglwVJ6N3Ry4L58/Hpic41kbOAmIpgaIiCdy/R3yqV+Rdn3bCtgQ6A/8vLm+8z8SbgMmAYNzm6tbujjP4Jp1VWMvheeur3YUNv1ZWOcT1Y7CrHlDD0ufenL4R3bcbY1+kuaSZhJfAw6KiBckbUdavnA+gKQAhgOfjIj5wHxJZwMHkZLE/YDzIqIh1z8TGFZhDAcA90bEVfn7rPxpzBqkLXXfq/QCI+IvpeM8czxHUq88+/ouacb6mYiYA8zJVd8F1gUGRcRLpH8ktGQq0EeSSAn/J/IWxUg6AxgN/KSpvvOseT/ghML1PdTSoJ7BNeuqnrs+/crRzMza2tSI6B0RfSJiq4gozhg2FI77kpYMTCqcm0SaZYSUmDWUlVVqAPByhXVnAX0rXRMsaTlJZ0l6WdI8YGIu6pv/+z/A7sAkSffnxB7g/4CXgLslvSLpxxUM1x+YTZqZXRUYlx9Cmwv8LZ9vru8BwKTWJO/gGVyzrm2dLeCw26sdRX3zmkazelP8lfxM0szjIGB8PjcQmJKPp5ESNAplRQtJSV/JOoXjBmCbCmIAeBR4C9gHqORXe/uTHj7bhZTc9iLN0gogIp4E9pa0AnAscC0wIM9SHw8cL2kI8A9JT0bE3xsbRNLWpAT3IdK9WgQMiYgp5XWb6pt0HwZKWr41Sa5ncM3MzMyWQkQsJiV/p0vqIWkQ8AOg9L7Za4HvSVpP0upA+Yzn08DXJa0gqXyN7pXALpL2k7S8pDUkbZXLXiet+S3F8SZpLevvJe0jadXc526Sft1I6D2At0kzv6uS3rwAgKQVJR2Qlyu8S3rIbHEu21PShnm5Qen84vLOJfWUtCdpreyoiHguP4h2MXCupLVyvf6Sdm2h7ydI/1A4S9JqklaW9LlGrulDnOCamZmZLb3vkmZiXyHNVI4GSutbLwbuIr2l4Cngr2VtfwZsQJo9PTW3BSAiXiMtEzie9Cv+p4Etc/ElpDWycyXdlOufQ0quTwZmkGY+jwVuaiTmK0jLJaaQZp4fKys/CJiYly8cTXpLA6SH0u4FFpBmjf8QEWMK7W6VND+P/VPgHD544A7Sa8NeIr1ZYV7ua5Pm+s7/iNiL9FDaa6QH0YY3ck0fovQGjJYNHTo0xo4dW1HdZTH8okcBuOao7VqoabXMfw4qUPrVuJcoVJf/P5h1SpLGRcTQasdh1eEZXDMzMzOrKU5wzczMzKymOME1MzMzs5riBNfMzMzMaooTXDMzMzOrKU5wzczMzAokPS9pWK2PWcu8k5mZmZnVFUkLCl9XJW16UNqw4KiIGNIOY64InEl6h2tv0rtqb4qI7wO0x5j1zAmumZmZ1ZWI6F46ljQROCIi7q2kbWu3jC34CTCUtP3uNNL2vp9fin6sAk5wzcyW1fTnPtjwwcy6vGLSK2kEsDnwFvAV4AeSriPt0rU7sAS4FDgl77rVlK2BGyNiav4+MX8aG3MuH+RoIs0yrx8RE/MWuKcBg0m7kB0dEc8u2xXXHie4ZmbLYouvtVzHzLq6vYF9gYOBlYCrgNdJ28euBtxG2p72omb6eIyUHL8DPAj8K5rYTjYiepeOJZ0BbA9MkfQp0jbAewFjSVvo3iJpk4h4e1kusNY4wTUzWxZDD0sfM+tcDldb9vZoRNwEIKknsBvQOyIWAQslnQt8i+YT3DOBOcABwLnALEk/iYjLm2ogaTiwP7B1RLwr6Ujgooh4PFe5XNJJwGeA+5fpCmuME1wzMzOz5jUUjgcBKwDTpPeT6G5ldT4iL1/4PfB7SasAhwN/kfRERPy7vL6kTwIXAF+KiBmFsQ+R9N1C1RWBfq2/pNrm14SZmZmZNa+4lKCB9NaFvhHRO396tuYtCBGxKCJ+T5rR3ay8XNKawI3AsRHxz7KxTy+M2zsiVo2Iq5bqqmqYZ3Ct0xo/bR7DL3q02mF0XtP35pqBN1c7CjOzuhIR0yTdDZwt6WfAAmB9YL2IaHKZgKTjgKeBx4F3SUsVegD/LKu3PHADcGVEXFPWzcXAjZLuBZ4gPXw2DHggIuYv88XVEM/gWqe091b92WzdntUOw8zMrDEHk5YGjCfNwl4PrNtCm0XA2cB0YCbwHeB/IuKVsnrrATsAx0laUPgMjIixwJGkpQtzgJeAQ9vmkmqLmniA7yOGDh0aY8eObedweH/G7pqjtmv3scy6tNJrqQ67vbpxmJl1QpLGRcTQasdh1eEZXDMzMzOrKU5wzczMzNqApAvLlhWUPhdWO7Z644fMzMzMzNpARBwNHF3tOMwzuGZmZmZWY5zgmpmZWd2RtImkf0qaL2lJfuVXzZEUkjasoN4wSZM7IqaO4ATXzMzM6tGPgDER0SMiukXEL+H9RG9JYf3sFEmntncwksbkZHTLsvM35fPD2juGWuIE18zMzOrRIOD5JsqmRkT3iOgObA98U9I+HRDTi6R37AIgaQ3gM8CMJltYo5zgmpmZWV2RdB/wBeCCPEs7WtJpjdWNiFeBRyhsqSvpt5IaJM2TNE7SDoWybSSNzWWvSzqnUPYZSY9ImivpmUZmZa8EhktaLn//BmnL3ncKfawk6TxJU/PnPEkrFcpPkDQtlx1edt0rSfqNpNdybBdKWqVVN6+LcIJrZmZmtaW0EU4TImIn4EHg2DxL+05TdSVtBHwOeKxw+klgK6APMBq4TtLKuey3wG8joiewAXBt7qc/cDtwWm73Q+AGSWsW+p1K2h3tS/n7wcAVZSH9lDSruxWwJbANcHIe48u53y8CGwG7lLX9FbBxbrsh0B/4eVPX3pU5wTUzMzP7sH55lnUeadnA48BDpcKIGBURsyLivYg4G1gJ2CQXvwtsKKlvRCyIiFJifCBwR0TcERFLIuIeYCywe9nYVwAHS9oE6B0Rj5aVHwD8IiLeiIgZwKnAQblsP+DSiPhXRCwERpQaSRJpm9/vR8TsiJgPnAF8fWlvUmfmBNfMzMzsw6ZGRO88C9sbWARcXiqUdLykf0t6U9JcoBfQNxd/kzRLOkHSk5L2zOcHAfvmxHlubrc9sG7Z2H8FdgK+C4xsJLZ+wKTC90n5XKmsoaysZE1gVWBcYfy/5fM1xxs9mJmZmTUhIt6UNBq4BiCvtz0R2Bl4PiKWSJoDKNf/D/ANSd2ArwLX54fFGoCREXFkC+P9V9KdwLdJSxzKTeXDD8gNzOcApgEDCnUHFo5nkhL1IRExpaKL78I8g2tmZmbWBEndSb/GLyWUPYD3SG82WF7Sz4GehfoHSlozIpYAc/PpxcAoYC9Ju0paTtLK+ZVk6zUy7EnAjhExsZGyq4CTJa0pqS9pDe2oXHYtcKikzSStCpxSapTjuRg4V9JaOdb+knZt7T3pCpzgmpmZmX1Yv9J7cEm/5u9DWvsKcBdwJ2lt7iTgLT68LODLwPO57W+Br0fEWxHRAOxNSl5n5DYn0EguFhFTI+Kh8vPZaaS1u88CzwFP5XNExJ3AecB9wEv5v0Un5vOP5fXF9/LB2uGaooioqOLQoUNj7Nix7RwODL8oraW+5qjt2n0ssy6t9JTwYbdXNw4zs87m0j3Q4XeMi4ih1Q7FqsNrcM26sunPtfg6HDOzujP92WpHYFXmBNesq9ria9WOwMzMrFNygmvWVQ09LH3MzOzDLt0DmFztKKyK/JCZmZmZmdUUJ7hmZmZmVlOc4JqZmVndkbSJpH9Kmi9piaSftfN4IySNarkmSBoj6Yj2jKfWOcE1MzOzevQjYExE9IiIbhHxS4C8+UJI+muxsqQt8/kxHRmkpEMlLS69l1fSq5IulbRxR8bR1TjBNTMzs3pU3O623Azgs3mL3ZJDSJs7VMOjEdEd6AXsQtpyd5ykzasUT6fnBNfMzMzqiqT7gC8AF+RZ0dGSTitUeQe4ibRFL5KWA/YDrizr57OSnpT0Zv7vZwtl60u6Py+BuAfoW9b2M5IekTRX0jOShrUUd0QsjoiXI+IY4H5gRCX95VngV3Isr0o6oFB2pKR/57Lxkj7VUhxdgRNcMzMzqy0t7PAYETsBDwLH5pnRdxqpdgVwcD7elTTbO7VUKKkPcDvwO2AN4Bzg9sKs72hgHCmx/SVpBrjUtn9uexppG+AfAjdIWrMVV/lXYIeW+pO0Wo5xt4joAXwWeDq325eUJB8M9AS+AsxqRQydlhNcMzMzszIR8QjQR9ImpATwirIqewD/iYiREfFeRFwFTAD2kjQQ2Br4WUS8HREPALcW2h4I3BERd0TEkoi4BxgL7N6KEKeSktlK+lsCbC5plYiYFhGlpRlHAL+OiCcjeSkiJrUihk7LCa6ZmZlZ40YCx5KWM9xYVtYPKE8GJwH9c9mciFhYVlYyCNg3LyeYK2kusD2wbiti6w/Mbqm/HMNw4GhgmqTbJW2a2w0AXm7FmF2GdzIzMzMza9xI4CXgioj4r6Ri2VRSYlk0EPgbMA1YXdJqhSR3IBD5uAEYGRFHLkNs/4+0zKLF/iLiLuAuSauQljFcTFre0ABssAwxdFqewTUzMzNrRES8CuwI/LSR4juAjSXtL2l5ScOBzYDb8q/5xwKnSlpR0vbAXoW2o0hLGXaVtJyklfPrydZrLp5cd31J5wPDgFNb6k/S2pK+ktfivg0sABbndn8Gfijp00o2lFSetHdJTnDNzMzMmhARD0XE1EbOzwL2BI4nPZj1I2DPiJiZq+wPbEtaRnAKhTW8EdEA7A2cRHolWQNwAk3nZdtJWgDMA8aQHgjbOiKeq6C/bjnGqTmWHYFjcrvrgNNJD8TNJ705orSut0tTRLRcCxg6dGiMHTu2ncOB4Rc9CsA1R23X7mOZmZlZbZI0LiKGVjsOqw7P4JqZmZlZTXGCa2ZmZmY1xQmumZmZmdUUJ7hmZmZmVlOc4JqZmZlVQNKFkn5W7TisZU5wzczMrO5ImihpkaT5efevRyQdLanJ3Cgijo6IX7ZjTEMk3S1pTo5pnKTWbN/bWJ9jJB3RVjF2FU5wzczMrF7tFRE9SDuSnQWcCFzSWEVJy3VAPLcC9wBrA2sB3yO9+9ZayQmumZmZ1bWIeDMibgGGA4dI2lzSZZL+KOkOSQuBL+RzpwFI+rekPUt95N3MZkr6VP7+mTwrPFfSM5KGNReDpL7A+sDFEfFO/jwcEQ/l8n9J2qtQf4U83lZ557JRkmbl8Z7MO5idTtqS9wJJCyRdkNtuKukeSbMlvSBpv0K/l0n6g6Q7c5uHJa0j6bw8szxB0ifb5Ma3o+WrHYBZRxv9+Gvc/PSUaodhZmadTEQ8IWkyKSmEtBvZ7qQdy1YEDixUvwr4BnBb/r4rMDMinpLUH7gdOAj4G7AzcIOkTSNiRhPDzwJeAkZJ+jPwaES8Xii/Io9/a/6+OzAtIp6WdBTQCxhA2o53K2BRRPxU0ueAURHxZ4C8Ze89wM+B3YBPAHdLej4ins9975ev53nSlsSPknZjO560PfA5wBeavZlV5hlcqzs3Pz2F8dP8Gx8zM2vUVD7YrvbmPIu6JCLeKqs3GviKpFXz9/3zOUiJ6B0RcUduew8wlpSUNirS1rJfACYCZwPTJD0gaaNcZRSwu6Se+ftBwMh8/C6wBrBhRCyOiHER0dQPuj2BiRFxaUS8FxFPATcAXyvUuTH38RZwI/BWRFwREYuBawDP4Jp1Rput29PbQZuZ1bBrj17qpv2B2fm4oalKEfGSpH8De0m6FfgKHyR+g4B9i0sKgBWAfzQ3cERMBo4FkDQA+BNp5na7iJgq6WHgfyTdSJp9/d/cdCRp9vZqSb1JyfBPI+LdRoYZBGwraW7h3PJ8kCwDFGeOFzXyvXtz19EZOME1MzMzAyRtTUpwHwK2BaKFJqVlCt2A8RHxUj7fAIyMiCOXNpaIaJD0+zxGyeXAEaT87dGImJLrvktaOnCqpMGkZQUvkB6YK7+GBuD+iPji0sbWFXiJgpmZmdU1ST3zA2NXk9arPldh06uBLwHf5oPlCZBmUPeStKuk5fJDYMMkrddMDKtLOlXShpK65YfODgceK1S7CfgUaeb2ikLbL0jaIr/pYR5pycLiXPw68LFCH7cBG0s6KD+otoKkrSV9vMJr7hKc4JqZmVm9ulXSfNKs5k9JD08dVmnjiJhGegDrs6S1qaXzDcDewEnAjNz/CTSfd70DDAbuJSWp/yI9MHZood9FpPWy6wN/LbRdB7g+t/s3cD8pyQb4LfC1/AaE30XEfFJS/nXSeuPpwK+AlSq97q7ASxTMzMys7kTE4BbKD63w3M5NtH8c2LEV8SwEDqmg6mukh8AWFNpexYeXMhT7fRTYuOzcC8AeTdQ/tOz7n4E/F76/RBfIHztlgOOnzWP4RY9WOwyrUeOnzWOzdXu2XNHMzKwTkdQH+CbpDQrWjE63RGHvrfo7+TAzM7OalDdPaOyzQwvtjiQtdbgzIh7omGi7rk43g7v/tgPZf9uB1Q7Daph/O2BmZtUSEUv1iq2IuBi4uI3DqVmdbgbXzMzMzGxZOME1MzMzs5riBNfMzMzqjqRNJP1T0nxJSyT9rNoxVUrSGElHVDuOzswJrpmZmdWjHwFjIqJHRHSLiF+WCiSdJOnV/PDXZEnXNNNPTcnJ81s58Z8naZykH0vqUu/JdYJrZmZm9WgQ8Hz5SUmHkF7DtUt+IGwo8PcOjq1dSKr05QLHRkQPYF3geNKmEHdIUrsF18Y63VsUzDqC37VsZla/JN1H2oRhe0nnAbcAr0TEycDWwF0R8TJAREwH/lRo24u049nuwBLgUuCUiFicy48EfgCsR3qt14ER8VTeCvePwFbAFOAnEXFLbnMZsJC0k9nngfHA/qUYJH0ROJ+UcI4E3k80JW1AervClkAAdwHfiYi5uXxiHvcAYBNJJwOfiYj/KfRxPrA4Io4r3qe8+cQYSV8BJpA2h7hNUjfSDPiRQG/SPwCOjojZklYmbQyxG7Ac8B9gz4h4Pb/H92xgV2AV4P6I2Kfp/1NLzzO4Vnf8rmUzs/oWETsBD5JmKruTtskteQw4WNIJkoZKWq6s+eXAe8CGwCdJ294eASBpX2AEcDDQE/gKMEvSCsCtwN3AWsB3gSslbVLo9xvAqcDqwEvA6bnPvqTteU8G+gIvA58rtBNwJtAP+DgwIMdQ9A1SctqbtIXvlyX1zv0vDwwnJc5N3a/XgLFA6V293wP2If0joR8wB/h9LjsE6JXjWAM4GliUy0YCqwJD8n04t6kxl5VncK3u+F3LZma179qjl65dRIySFMBhpETxLUn/FxFnSVqbNDPZOyIWAQslnQt8C7iIlOj+OiKezN29BJA3cegOnBURS4D7JN1GSjxH5Lp/jYgncv0rSbPEkGaKx0fE9bnsPNKygVK8L5XGAWZIOgc4peyyfhcRDfl4kaQHgH1JM79fBmZGxLgWbs1UoE8+Por0j4PJOaYRwGuSDgLeJSW2G0bEs8C4XGfdfO/WiIg5uZ/7WxhzqTnBNTMzMyuIiCtJM6wrkGYqr5T0T9JM5QrAtMJy1G6kpQiQZi1fbqTLfkBDTm5LJgH9C9+nF47/S0qI329biC0kvf9d0lrA70izqz1yPHP4sIay75cD3yYluAfSzOxtQX/gkXw8CLhRUvF6FgNr574GAFfnWeJRwE/zudmF5LZdeYmCmZmZWSMi4t2IuA54FticlCi+DfSNiN750zMihuQmDcAGjXQ1FRiQ166WDCStxW3JNFJyCEB+0GtAofxM0trbT0RET1LCWv4wWJR9vwn4hKTNgT2BK5sLQNIA4NOkZR2QrnO3wj3oHRErR8SUfM9OjYjNgM/m/g/ObfqUlka0Nye4ZmZmZpmkQyXtIamHpG6SdiOtGX08IqaR1tGeLalnLt9A0o65+Z+BH0r6tJINJQ0CHic9RPYjSStIGgbsBVxdQUi3A0MkfTWvl/0esE6hvAewAJgrqT9wQksdRsRbwPXAaOCJvMa2sXuxar62m4EngDty0YXA6fnakLSmpL3z8RckbZHXLs8jLVlYnO/dncAfJK2e78PnK7j+peIE18zMzOwD84CTgNeAucCvgW9HxEO5/GBgRdKbDuaQEsV1AfJs7+mkxHE+aaa0T0S8Q3rgbDdgJvAH4OCImNBSMBExk7Re9ixgFrAR8HChyqnAp4A3ScnwXyu8zsuBLWh8ecIFkuYDrwPnkR5y+3JhicVvSW+euDvXewzYNpetQ7on84B/k9bZjsplpTW6E4A3gOMqjLXVFFE+a924oUOHxtixY9srDjMzM7M2I2lcRAytdhydlaSBpERznYiYV+142ppncM3MzMzqSF4L/APg6lpMbqEVM7iSZpCe+GtMX9KUu3UM3++O43vdsXy/O5bvd8fy/e5Ym+TduKxA0mqkpQeTSMsOyt+wUBMqfk1YRKzZVJmksf41QMfx/e44vtcdy/e7Y/l+dyzf744lyesqG5F3J+veYsUuzksUzMzMzKymOME1MzMzs5rSVgnun9qoH6uM73fH8b3uWL7fHcv3u2P5fncs3+86VvFDZmZmZmZmXYGXKJiZmZlZTXGCa2ZmZmY1paIEV9KxksZKelvSZc3UO0TSOEnzJE2W9Ou8b7JVqNJ7net+X9J0SW9K+ouklToozJoiqY+kGyUtlDRJ0v5N1JOk0yRNyfd8jKQhHR1vV1fp/c51PybpNknzJc2U9OuOjLUWtOZ+F9rcJyn893frtOLvEv+sbAOt/LvEPy/rTKUzuFOB04C/tFBvVdK+wn1JexLvDPxwaYOrUxXda0m7Aj8m3ePBwMdI+1Fb6/0eeAdYGzgA+GMTieu+wOHADkAf4FEa38PbmlfR/Za0InAPcB9pb/P1+GA/c6tcpX++AZB0AK14R7p9SKX32j8r20alf5f452UdatVDZpJOA9aLiEMrrP8D4AsRsdfShVe/WrrXkkYDEyPipPx9Z+DKiFin46Ls+vKOLnOAzSPixXxuJDAlIn5cVvdE4NMRsV/+PgQYFxErd3DYXVYr7/e3gIMiYoeOj7Q2tOZ+57JewJPAwaR/wK0QEe91YMhdVmvvdVlb/6xspVb+XeKfl3Wovdfgfh54vp3HqFdDgGcK358B1pa0RpXi6ao2BhaX/oLMniHd33JXAxtK2ljSCsAhwN86IMZa0pr7/RlgoqQ78/KEMZK26JAoa0dr7jfAGcAfgentHVgNau29LvLPytZrzf32z8s61G6/hpJ0GDAUOKK9xqhz3YE3C99Lxz2AWR0fTpdVfh/J3xvbv3wa8CDwArAYaAB2atfoak9r7vd6wBeArwB/B/4XuFnSphHxTrtGWTsqvt+ShgKfI93n9do/tJrTmj/b7/PPyqXWmvvtn5d1qF1mcCXtA5wF7BYRM9tjDGMB0LPwvXQ8vwqxdGXl95H8vbH7eAqwNTAAWJm0hus+Sau2a4S1pTX3exHwUETcmRPa3wBrAB9v3xBrSkX3W1I34A/A/3pJwlJrzZ9twD8rl1Fr7rd/XtahNk9wJX0ZuBjYKyKea+v+7X3PA1sWvm8JvB4R/tdo67wILC9po8K5LWn814VbAtdExOSIeC8iLgNWBzZr/zBrRmvu97OAd6JZNpXe756kWcRrJE0nrcMFmCzJa6Ar05o/2/5Zuexac7/987IOVfqasOUlrQwsBywnaeXGXmkiaSfgSuB/IuKJtg21PlR6r4ErgG9K2kzS6sDJwGUdGGpNiIiFwF+BX0haTdLngL1p/O0ITwL7SlpbUjdJBwErAC91XMRdWyvv9yjgM5J2kbQc6anzmcC/Oyrerq4V9/tNoB+wVf7sns9/Gni8Q4Lt4lrzZ9s/K5ddK/8u8c/LehQRLX6AEaSZlOJnBDCQNPU/MNf7B/BePlf63FnJGP607l7nuj8AXgfmAZcCK1U7/q74Ib3y6yZgIfAasH8+X/7ne2XSa2mm5Xv+FPDlasff1T6V3u987qukf0DMA8YAQ6odf1f7tOZ+F9oMzn/3LF/t+LvSpxV/l/hnZQfe73zOPy/r7NOq14SZmZmZmXV23qrXzMzMzGqKE1wzMzMzqylOcM3MzMyspjjBNTMzM7Oa4gTXzMzMzGqKE1wzMzMzqylOcM3MzMyspjjBNTMzM7Oa4gTXzMzMzGrK/wczqoXzhNfM7gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -8212,7 +8380,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -8232,16 +8400,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.8771039618198545" + "0.8768243241012634" ] }, - "execution_count": null, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -8259,24 +8427,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'saleYear': 0.8759666979317242,\n", - " 'saleElapsed': 0.8728423449081594,\n", - " 'ProductGroupDesc': 0.877877012281002,\n", - " 'ProductGroup': 0.8772503407182847,\n", - " 'fiModelDesc': 0.8756415073829513,\n", - " 'fiBaseModel': 0.8765165299438019,\n", - " 'Hydraulics_Flow': 0.8778545895742573,\n", - " 'Grouser_Tracks': 0.8773718142788077,\n", - " 'Coupler_System': 0.8778016988955392}" + "{'saleYear': 0.8766429216799364,\n", + " 'saleElapsed': 0.8725120463477113,\n", + " 'ProductGroupDesc': 0.8773289113713139,\n", + " 'ProductGroup': 0.8768277447901079,\n", + " 'fiModelDesc': 0.8760365396140016,\n", + " 'fiBaseModel': 0.8769194097714894,\n", + " 'Hydraulics_Flow': 0.8775975083138958,\n", + " 'Grouser_Tracks': 0.8780246481379101,\n", + " 'Coupler_System': 0.8780158691125818}" ] }, - "execution_count": null, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -8297,16 +8465,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.8739605718147015" + "0.8747772191306009" ] }, - "execution_count": null, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -8325,7 +8493,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ @@ -8335,12 +8503,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ - "(path/'xs_final.pkl').save(xs_final)\n", - "(path/'valid_xs_final.pkl').save(valid_xs_final)" + "save_pickle(path/'xs_final.pkl', xs_final)\n", + "save_pickle(path/'valid_xs_final.pkl', valid_xs_final)" ] }, { @@ -8352,12 +8520,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 73, "metadata": {}, "outputs": [], "source": [ - "xs_final = (path/'xs_final.pkl').load()\n", - "valid_xs_final = (path/'valid_xs_final.pkl').load()" + "xs_final = load_pickle(path/'xs_final.pkl')\n", + "valid_xs_final = load_pickle(path/'valid_xs_final.pkl')" ] }, { @@ -8369,16 +8537,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.183263, 0.233846)" + "(0.183426, 0.231894)" ] }, - "execution_count": null, + "execution_count": 74, "metadata": {}, "output_type": "execute_result" } @@ -8411,12 +8579,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAD7CAYAAADw8TTuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAaG0lEQVR4nO3dfbRddX3n8feHgMEIhASoQHgIImqHUmgNVWd8YLVaFWu1ddT6BLRVprauWR3Blum0mqFQW6et6SztWKwFJUXxkYpgR51KrVjaXlBBLLWlEgNE5CkhJIASv/PH3rf9ebxPuU/n3PB+rXVWzt6/3/7t79n33vPJb599705VIUmSOnsNuwBJkkaJwShJUsNglCSpYTBKktQwGCVJauw97AK0ew4++OBau3btsMuQpCXl2muvvauqDplJX4NxiVm7di1jY2PDLkOSlpQkm2ba11OpkiQ1DEZJkhoGoyRJDYNRkqSGwShJUsNglCSp4a9rLDE33LaNtedcMewyNEO3/O4Lhl2CpN3kjFGSpIbBKElSw2CUJKlhMEqS1NhjgjHJK5OMJbk/yZYkn0zy9GHXNRNJbkny7GHXIUnaQ4IxyRuBDcDvAI8FjgL+GHjRMOuSJC09Sz4Yk6wEzgV+pao+WlU7quo7VXV5Vb0pyfIkG5Lc3j82JFneb3tKkluT/FqSb/UzzRcnOTXJ15Lck+Q3mn2tT/LhJJcm2Z7kuiQnNu3nJLm5b/tqkp8ZqPV1Sf6xaf/RJBfTBfnl/Wz31xbnyEmSJrLkgxF4GrAv8LFJ2v8H8FTgJOBE4MeA32zaD+23XwO8GXg38GrgycAzgDcneVzT/0XAh4DVwCXAZUn26dtu7rdZCfxPYGOSwwCSvBRYD5wGHAD8NHB3Vb0G+Abwwqrar6reNvgCkpzZnyYe27Vz2wwPiyRpNvaEYDwIuKuqHp6k/VXAuVX1raq6ky6wXtO0fwc4v6q+A3wAOBj4o6raXlU3AjcCP9z0v7aqPtz3/0O6UH0qQFV9qKpur6rvVtWlwD/TBTHAa4G3VdU/VOdfqmpG9werqguqal1VrVu2YuVMNpEkzdKeEIx3Awcnmeyv+BwOtAG0qV/3b9tX1a7++QP9v3c07Q8A+zXLm8efVNV3gVvHx0tyWpIvJdmaZCvwQ3RBC3Ak3YxSkjTC9oRg/FvgQeDFk7TfDhzdLB/Vr5utI8efJNkLOAK4PcnRdKdh3wAcVFUHAl8B0nffDBw7yZg1h3okSfNoyQdjVW2j+2zwnf2FMyuS7JPk+UneBrwf+M0khyQ5uO+7cQ67fHKSn+1nqL8KPARcAzyGLuDuBEjy83QzxnF/Cpyd5MnpPL4PU+hmqO3nmJKkIVnywQhQVX8IvJHuopo76WZnbwAuA84DxoDrgRuA6/p1s/UXwMuBe+k+q/zZ/irYrwJ/QDeDvQM4Abi6qfFDwPl0F+xs72tb3Te/lS68tyY5ew61SZLmKFWexZupJOuBx1fVq4dVw/LDjqvDTt8wrN1rN3l3DWk0JLm2qtbNpO8eMWOUJGm+eD/GJeaENSsZcxYiSQvGYNwNVbV+2DVIkhaWp1IlSWoYjJIkNQxGSZIaBqMkSQ2DUZKkhsEoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSQ2DUZKkhnfXWGJuuG0ba8+5Yso+3hxXkmbPGaMkSQ2DUZKkhsEoSVLDYFxASd6V5Lfmu68kaeF48c0sJbkFOBw4vKruatZ/CTgROKaqfmmm4+1OX0nSwnHGODdfB14xvpDkBODRwytHkjRXBuPcXAyc1iyfDrxvfCHJRUnO65+fkuTWJGcl+VaSLUl+fqK+kqThMRjn5hrggCQ/mGQZ8HJg4xT9DwVWAmuAXwTemWTVdDtJcmaSsSRju3Zum4+6JUmTMBjnbnzW+BzgJuC2Kfp+Bzi3qr5TVVcC9wNPnG4HVXVBVa2rqnXLVqycj5olSZPw4pu5uxj4HHAMzWnUSdxdVQ83yzuB/RaqMEnS7nPGOEdVtYnuIpxTgY8OuRxJ0hw5Y5wfvwisqqodSTymkrSE+SY+D6rq5mHXIEmaHwbjLFXV2knWPwykXzyjWX8VcMRkY1TVGUiShs7PGCVJajhjXGJOWLOSMe+3KEkLxhmjJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqeNupJeaG27ax9pwrhl2GgFu8/Ze0R3LGKElSw2CUJKlhMEqS1DAYhyTJ2iSVZO9++aokrx12XZL0SGcwTiDJ05N8Icm2JPckuTrJycOuS5K08LwqdUCSA4BPAK8HPgg8CngG8NAw65IkLQ5njN/vCQBV9f6q2lVVD1TVp6rq+iRn9LPHtyfZmuRfk/zHfv3mJN9Kcvr4QElekOSLSe7r29cP7VVJkmbEYPx+XwN2JXlvkucnWTXQ/hTgeuAg4BLgA8DJwOOBVwPvSLJf33cHcBpwIPAC4PVJXry7BSU5M8lYkrFdO7fN6kVJkmbGYBxQVfcBTwcKeDdwZ5KPJ3ls3+XrVXVhVe0CLgWOBM6tqoeq6lPAt+lCkqq6qqpuqKrvVtX1wPuBZ82ipguqal1VrVu2YuXcX6QkaVIG4wSq6h+r6oyqOgL4IeBwYEPffEfT9YG+/+C6/QCSPCXJZ5PcmWQb8EvAwQv+AiRJs2YwTqOqbgIuogvI3XUJ8HHgyKpaCbwLyPxVJ0mabwbjgCRPSnJWkiP65SOBVwDXzGK4/YF7qurBJD8GvHIeS5UkLQCD8fttp7vA5u+S7KALxK8AZ81irF8Gzk2yHXgz3a9/SJJGWKpq2DVoNyw/7Lg67PQN03fUgvPuGtLSkeTaqlo3k77OGCVJaviXb5aYE9asZMyZiiQtGGeMkiQ1DEZJkhoGoyRJDYNRkqSGwShJUsNglCSpYTBKktQwGCVJahiMkiQ1DEZJkhoGoyRJDYNRkqSGwShJUsNglCSp4W2nlpgbbtvG2nOuGHYZ88Ib/UoaRc4YJUlqGIySJDUMRkmSGgbjbkhSSR7fP39Xkt8adk2SpPm1x158k+QW4HDg8Kq6q1n/JeBE4JiqumW241fVL821RknS6NnTZ4xfB14xvpDkBODRwytHkjTq9vRgvBg4rVk+HXjf+EKS5Ul+P8k3ktzRnx59dNP+piRbktye5BfagZNclOS8/vkZST4/0N6edr0oyR8n+WSS+5NcneTQJBuS3JvkpiQ/sgCvX5K0m/b0YLwGOCDJDyZZBrwc2Ni0/x7wBOAk4PHAGuDNAEmeB5wNPAc4Dnj2HGt5GfCbwMHAQ8DfAtf1yx8G/nCyDZOcmWQsydiundvmWIYkaSp7ejDCv88anwPcBNzWrw/wOuC/VdU9VbUd+B3g5/r2lwEXVtVXqmoHsH6OdXysqq6tqgeBjwEPVtX7qmoXcCkw6Yyxqi6oqnVVtW7ZipVzLEOSNJU99uKbxsXA54BjaE6jAocAK4Brk4yvC7Csf344cG3Tf9Mc67ijef7ABMv7zXF8SdI82OODsao2Jfk6cCrwi03TXXSBdHxV3TbBpluAI5vlo6bYzQ66kAUgyaGzr1iSNEyPhFOp0AXij/enRMd9F3g38PYkPwCQZE2S5/btHwTOSPIfkqwA3jLF+F8Gjk9yUpJ9mftpV0nSkDwigrGqbq6qsQmafh34F+CaJPcBnwGe2G/zSWAD8Fd9n7+aYvyvAef22/8z8PnJ+kqSRluqatg1aDcsP+y4Ouz0DcMuY154dw1JiyXJtVW1biZ9HxEzRkmSZmqPv/hmT3PCmpWMOdOSpAXjjFGSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDW87dQSc8Nt21h7zhULMrY3DpYkZ4ySJH0Pg1GSpIbBKElSw2DcDUnWJqkke/fLn0xy+rDrkiTNn2mDMcktSZ69GMXsriSHJ7l1krZKcsd4iPXr9k7yrSQ1H/uvqudX1XvnYyxJ0mhYlBljOguxr1OBv5yifSvw/IH+9y5AHZKkPcSswyrJqiSfSHJnknv750c07VclOT/J1cBO4HFJjknyuSTbk3wmyTuTbGy2eWqSLyTZmuTLSU6ZpoxTgSunaL8YOK1ZPg1438DrWJnkPUm2JLktyXlJlvVty5L8fpK7kvwr8IKBba9K8tr++fqB1zJ42vWqfuwvJLk/yeVJDkry50nuS/IPSdZO83olSQtsLrO4vYALgaOBo4AHgHcM9HkNcCawP7AJuAT4e+AgYH3fDkCSNcAVwHnAauBs4CNJDplo50n2AZ4JfHqKGi8DnpnkwCQHAs8A/mKgz3uBh4HHAz8C/CTw2r7tdcBP9evXAf95in3NxM/RveY1wLHA39Idw9XAPwJvmWijJGcmGUsytmvntjmWIEmayqyDsarurqqPVNXOqtoOnA88a6DbRVV1Y1U9DBwGnAy8uaq+XVWfBz7e9H01cGVVXVlV362qTwNjdLPCiTwT+HK/78k8CFwOvJwulD7erwMgyWPpTrX+alXtqKpvAW/v+wK8DNhQVZur6h7grVMflWldWFU3V9U24JPAzVX1mf74fIgugL9PVV1QVeuqat2yFSvnWIIkaSqz/ss3SVbQhcjzgFX96v2TLKuqXf3y5maTw4F7qmpns24zcGT//GjgpUle2LTvA3x2khKmO4067n10gRbg1wfaju73sSXJ+Lq9mroPH3gNm2awv6nc0Tx/YILl/eY4viRpjubyJ+HOAp4IPKWqvpnkJOCLdAE0rr36cwuwOsmKJhyPbNo3AxdX1etmuP9TgZ+ZQb+/oZutFvB5ulOY7T4fAg7uZ22DtgzUeNQU+9kBrGiWD51BbZKkETPTU6n7JNm3eexN97nhA8DWJKuZ5POxcVW1ie7U6Pokj0ryNKCdHW4EXpjkuf1FL/smOaW9oGdckmOA5VV103SFV1X1+/np/nnbtgX4FPAHSQ5IsleSY5OMnxL+IPBfkxyRZBVwzhS7+hLd55lHJVkJ/PfpapMkjZ6ZBuOVdCE4/lgPbAAeDdwFXMPUvzYx7lXA04C76S6yuZRuxkZVbQZeBPwGcCfdbO5Nk9T4AmZ2GpV+7Bur6sZJmk8DHgV8le5XOT5MN8MEeDfwf4EvA9cBH51iH5/uX8/1wLXAJ2ZanyRpdGRgErW4O08uBW6qqilnmxNsdyXwjqqacTjuKZYfdlwddvqGBRnbu2tI2lMlubaq1s2k76L+SbgkJ/enKvdK8jy6GeJlsxjqKia/KEeSpFlb7PsxHkp3OvIg4Fbg9VX1xd0dpKreNt+FLRUnrFnJmDM7SVowixqMVXU53e8VSpI0kry7hiRJDYNRkqSGwShJUsNglCSpYTBKktQwGCVJahiMkiQ1DEZJkhoGoyRJDYNRkqSGwShJUsNglCSpYTBKktRY7NtOaY5uuG0ba8+5YthlTMgbHUvaEzhjlCSpYTBKktQwGCVJahiMkiQ1DMYBSW5J8uxh1yFJGg6DcZ6l43GVpCXKN/AZSLIqySeS3Jnk3v75EU37VUnOT3I1sBN4XJJjknwuyfYkn0nyziQbm22emuQLSbYm+XKSU4bw0iRJAwzGmdkLuBA4GjgKeAB4x0Cf1wBnAvsDm4BLgL8HDgLW9+0AJFkDXAGcB6wGzgY+kuSQiXae5MwkY0nGdu3cNn+vSpL0fQzGGaiqu6vqI1W1s6q2A+cDzxrodlFV3VhVDwOHAScDb66qb1fV54GPN31fDVxZVVdW1Xer6tPAGHDqJPu/oKrWVdW6ZStWzvvrkyT9O4NxBpKsSPInSTYluQ/4HHBgkmVNt83N88OBe6pq5yTtRwMv7U+jbk2yFXg6XaBKkobIPwk3M2cBTwSeUlXfTHIS8EUgTZ9qnm8BVidZ0YTjkU37ZuDiqnrdQhYtSdp9zhgntk+SfccfwCq6zxW3JlkNvGWqjatqE92p0fVJHpXkacALmy4bgRcmeW6SZf1+Tmkv6JEkDYfBOLEr6YJw/HEg8GjgLuAa4C9nMMargKcBd9NdZHMp8BBAVW0GXgT8BnAn3QzyTfj1kKSh81TqgKpaO8Ouf9Jsc8oE49wMPGN8OcmlwE1N+9/x/RfwSJKGzBnKAklycpJjk+yV5Hl0M8TLhl2XJGlqzhgXzqHAR+l+j/FW4PVV9cW5DnrCmpWMed9DSVowBuMCqarLgcuHXYckafd4KlWSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDW87dQSc8Nt21h7zhXDLkOSFtUti3gfWmeMkiQ1DEZJkhoGoyRJDYNxCkn+PslxSR6X5LoFGP+DSZ6TZHmSb873+JKk3WcwTiLJPsDRwL8ATwbmPRibcX8Y+MoCjC9J2k0G4+R+CPhqVRWwjiYYk9yS5Owk1yfZluTSJPv2bauSfCLJnUnu7Z8fMTh4klVAquruwfElScNjMA5I8vNJtgJXA0/rn58F/F6SrUmO6bu+DHgecAzdjO+Mfv1ewIV0s82jgAeAdzTj/0Q/5mbgiP75HwG/0o//rAlqOjPJWJKxXTu3zf+LliT9G4NxQFVdWFUHAtcCT+XfT3MeUFUHVtXX+67/u6pur6p7gMuBk/rt766qj1TVzqraDpwPPKsZ///1418GvBRYA9wCHNKP/9cT1HRBVa2rqnXLVqxcqJcuScJf8P8eSVYD/woE2A+4CljeN9+bZH1VbeiX24tldgKH92OsAN5ON5tc1bfvn2RZVe1Kcms/9v7ATwH70H0dbk/yZ1X1xoV6fZKk6TljbFTVPf1s7r8Af9o//0vghf1sbsPUIwDdadcnAk+pqgOAZ/br0+/jCLrQ/Ew//gXAr/TjG4qSNGQG48Taq1B/hO606kztT/e54tZ+BvqWacb/UWBslnVKkuaZwTixJwPXJTkI2FVV9+7GthuARwN3AdfQzTgnGz/Ak4Ab51ivJGme+BnjBKrqx5vFYydoXzuwvL55fjtwysAmfzLQ/xeaxcfOskxJ0gJwxihJUsMZ4xJzwpqVjC3i7Vck6ZHGGaMkSQ2DUZKkhsEoSVLDYJQkqWEwSpLUMBglSWoYjJIkNdLdh1dLRZLtwD8Nu45pHEz3J/FG1ajXB6Nf46jXB6Nf46jXB3tWjUdX1SEzGdBf8F96/qmq1g27iKkkGRvlGke9Phj9Gke9Phj9Gke9Pnjk1uipVEmSGgajJEkNg3HpuWDYBczAqNc46vXB6Nc46vXB6Nc46vXBI7RGL76RJKnhjFGSpIbBKElSw2CUJKlhMC4RSVYn+ViSHUk2JXnlEGq4KsmDSe7vH//UtL2yr2tHksuSrF7o2pO8IclYkoeSXDTQ9hNJbkqyM8lnkxzdtC1P8mdJ7kvyzSRvnOm281VjkrVJqjmW9yf5rcWusd/Pe/qvy/YkX0zy/JnsZxRqHKHjuDHJln4/X0vy2pnsY5G/FyescVSOYTPeceneZzY262b9/jLVtpOqKh9L4AG8H7gU2A94OrANOH6Ra7gKeO0E648HtgPP7Ou7BPjAQtcO/CzwYuD/ABc16w/u9/FSYF/gfwHXNO1vBf4GWAX8IPBN4Hkz2XYea1wLFLD3JNstSo3AY4D1fT17AT/Vfy3XjspxnKbGUTmOxwPL++dP6vfz5FE5htPUOBLHsNnfp/r9bWzqntX7y3TbTlrDXF6Aj8V59G8M3wae0Ky7GPjdRa7jKiYOxt8BLmmWj+3r3X8xagfO43tD50zgCwPH7wHgSf3ybcBPNu2/Pf7DMt2281jjdG9Gi15jM971wEtG8ThOUOPIHUfgicAW4GWjegwHahyZYwj8HPBBuv8IjQfjrN9fptp2qjo8lbo0PAHYVVVfa9Z9me5/Q4vtrUnuSnJ1klP6dcf39QBQVTfTf7MynNoH69kB3Awcn2QVcHjbPlDPpNsuUK2bktya5MIkBwMMs8Ykj6X7mt041X5GqMZxQz+OSf44yU7gJrrQuXKqfQzjGE5S47ihHsMkBwDnAmcNNM3l/WWqbSdlMC4N+9GdHmhto/sf02L6deBxwBq6X6q9PMmxTF3fMGqfrh4G2tt6Fqveu4CTgaPpTmftD/x5U8Oi15hkn76G91bVTdPsZ1RqHJnjWFW/3G/7DOCjwEPT7GPRj+EkNY7KMfxt4D1VtXlg/VzeX2ZVn8G4NNwPHDCw7gC6c+eLpqr+rqq2V9VDVfVe4Grg1GnqG0bt09XDQHtbz6LUW1X3V9VYVT1cVXcAbwB+sv9f86LXmGQvulNQ3+5rmW4/I1HjqB3HqtpVVZ8HjgBeP80+hvK9OFjjKBzDJCcBzwbePkHzXN5fZlWfwbg0fA3YO8lxzboT+d5TScNQQPo6ThxfmeRxwHK6uodR+2A9j6H7bOHGqrqX7hTSiU3/tp5Jt13AeqE7ltD9NapFrTFJgPcAjwVeUlXfmW4/I1TjoKEdxwF7N2ONxDGcosZBwziGp9B91vmNJN8EzgZekuS6CfaxO+8vU207ubl+iOtjcR7AB+iuvnoM8J9Y5KtSgQOB59JdebY38CpgB92H+McD99GdnnkMsJHvvWpsQWrv69iX7qq5i5vaDun38ZJ+3e/xvVcC/i7w13RX2T2J7gd//Cq7Kbedxxqf0h+7vYCD6K6q++yQanwXcA2w38D6UTqOk9U49OMI/ADdRSP7Acv6n5MdwItG5RhOU+MoHMMVwKHN4/eBD/fjz/r9ZbptJ61ntt+oPhb3AawGLuu/mb8BvHKR938I8A90pyC29m9Sz2naX9nXtQP4C2D1QtdOd+VaDTzW923PprvA4AG6q2nXNtstB/6s/4G5A3jjwLiTbjtfNQKvAL7eH5MtwPuAQxe7RrrPlQp4kO600/jjVaNyHKeqcRSOI93Pxl/T/VzcB9wAvG4m+1jEYzhpjaNwDCf5udnYLM/6/WWqbSd7+EfEJUlq+BmjJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGv8fgG3NpoQZaYMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAD7CAYAAADw8TTuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ5UlEQVR4nO3da5gmZX3n8e+PAUfGgeEYgQFm5KgiAcMo6prIJqDxkJXoolGjEDVooi92xRg0UWeJaGCzOuYyRkmyIBDPgquixmQjHlCSNGgE5BAVkLOcphmYAWX874uqXm7a7p6e6cPz9PD9XNdz8VTdVXf9n5ue/vVdVd2VqkKSJHW2GXQBkiQNE4NRkqSGwShJUsNglCSpYTBKktTYdtAFaPPstttutXLlykGXIUkLyiWXXHJHVe0+nW0NxgVm5cqVjIyMDLoMSVpQklw/3W09lSpJUsNglCSpYTBKktQwGCVJahiMkiQ1DEZJkhr+usYCc9lNo6w8+YJBl6Fpuu7Pnz/oEiRtJmeMkiQ1DEZJkhoGoyRJDYNRkqTGVhOMSV6eZCTJvUluSfKlJM8cdF3TkeS6JEcPug5J0lYSjEneBKwB3g08FtgX+CDwwgGWJUlagBZ8MCZZBpwCvKGqzquq+6rqZ1X1+ar6oySLk6xJcnP/WpNkcb/vUUluTPKWJD/pZ5rHJnlekmuS3JXkbc2xVif5dJJPJFmX5NIkhzXtJyf5Yd/2/SS/Pa7W309yZdP+K0nOoQvyz/ez3bfMz8hJkiay4IMReDrwaOD8Sdr/BHgacDhwGPBU4E+b9j36/ZcD7wD+Bvhd4AjgV4F3JNmv2f6FwKeAXYCPAp9Nsl3f9sN+n2XA/wDOTbInQJLjgNXAq4Adgf8C3FlVrwR+DPxWVS2tqtPHf4AkJ/aniUc2rh+d3qhIkrbI1hCMuwJ3VNWDk7S/Ajilqn5SVbfTBdYrm/afAadW1c+AjwO7Ae+vqnVVdQVwBfDLzfaXVNWn++3fSxeqTwOoqk9V1c1V9fOq+gTwH3RBDPBa4PSq+rfq/KCqpvV8sKo6o6pWVdWqRUuWTWcXSdIW2hqC8U5gtyST/RWfvYA2gK7v1/3//atqY/9+Q//f25r2DcDSZvmGsTdV9XPgxrH+krwqyXeTrE2yFngSXdAC7EM3o5QkDbGtIRi/DdwPHDtJ+83AimZ5337dltpn7E2SbYC9gZuTrKA7DftGYNeq2gm4HEi/+Q3A/pP0WTOoR5I0ixZ8MFbVKN21wb/qb5xZkmS7JM9NcjrwMeBPk+yeZLd+23NncMgjkryon6H+N+AB4GLgMXQBdztAkt+jmzGO+VvgzUmOSOeAPkyhm6G21zElSQOy4IMRoKreC7yJ7qaa2+lmZ28EPgu8CxgBvgdcBlzar9tS/wd4KXA33bXKF/V3wX4f+F90M9jbgEOBi5oaPwWcSnfDzrq+tl365vfQhffaJG+eQW2SpBlKlWfxpivJauCAqvrdQdWweM8Da8/j1wzq8NpMPl1DGg5JLqmqVdPZdquYMUqSNFt8HuMCc+jyZYw4C5GkOWMwboaqWj3oGiRJc8tTqZIkNQxGSZIaBqMkSQ2DUZKkhsEoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSQ2DUZKkhsEoSVLDp2ssMJfdNMrKky+YchsfjitJW84ZoyRJDYNRkqSGwShJUsNgnCNJPpTk7bO9rSRpbnnzzRZIch2wF7BXVd3RrP8ucBjwuKp6/XT725xtJUlzyxnjlrsWeNnYQpJDge0HV44kaTYYjFvuHOBVzfLxwNljC0nOSvKu/v1RSW5MclKSnyS5JcnvTbStJGmwDMYtdzGwY5InJFkEvBQ4d4rt9wCWAcuB1wB/lWTn6RwoyYlJRpKMbFw/OtO6JUlTMBhnZmzWeAxwFXDTFNv+DDilqn5WVV8E7gUOns5BquqMqlpVVasWLVk205olSVPw5puZOQf4OvA4mtOok7izqh5sltcDS+eqMEnSlnHGOANVdT3dTTjPA84bcDmSpFngjHHmXgPsXFX3JXE8JWmB8xv5DFXVDwddgyRp9hiMW6CqVk6y/kEg/eIJzfoLgb0n66OqTkCSNBS8xihJUsMZ4wJz6PJljPi8RUmaM84YJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw8dOLTCX3TTKypMvGHQZAq7z8V/SVskZoyRJDYNRkqSGwShJUsNgHJAkK5NUkm375QuTvHbQdUnSI53BOIEkz0zyrSSjSe5KclGSpwy6LknS3POu1HGS7Ah8AfgD4JPAo4BfBR4YZF2SpPnhjPEXHQRQVR+rqo1VtaGqvlJV30tyQj97fF+StUl+lOQZ/fobkvwkyfFjHSV5fpLvJLmnb189sE8lSZoWg/EXXQNsTPKRJM9NsvO49iOB7wG7Ah8FPg48BTgA+F3gA0mW9tveB7wK2Al4PvAHSY7d3IKSnJhkJMnIxvWjW/CRJEnTZTCOU1X3AM8ECvgb4PYkn0vy2H6Ta6vqzKraCHwC2Ac4paoeqKqvAD+lC0mq6sKquqyqfl5V3wM+BjxrC2o6o6pWVdWqRUuWzfxDSpImZTBOoKqurKoTqmpv4EnAXsCavvm2ZtMN/fbj1y0FSHJkkq8muT3JKPB6YLe5rl+StOUMxk2oqquAs+gCcnN9FPgcsE9VLQM+BGT2qpMkzTaDcZwkj09yUpK9++V9gJcBF29BdzsAd1XV/UmeCrx8FkuVJM0Bg/EXraO7weZfktxHF4iXAydtQV9/CJySZB3wDrpf/5AkDbFU1aBr0GZYvOeBtefxawZdhvDpGtJCkuSSqlo1nW2dMUqS1PAv3ywwhy5fxogzFUmaM84YJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw8dOLTCX3TTKypMvGHQZs8IH/UoaRs4YJUlqGIySJDUMRkmSGgbjZkhSSQ7o338oydsHXZMkaXZttTffJLkO2AvYq6ruaNZ/FzgMeFxVXbel/VfV62dYoiRpCG3tM8ZrgZeNLSQ5FNh+cOVIkobd1h6M5wCvapaPB84eW0iyOMlfJPlxktv606PbN+1/lOSWJDcneXXbcZKzkryrf39Ckm+Oa29Pu56V5INJvpTk3iQXJdkjyZokdye5KsmT5+DzS5I209YejBcDOyZ5QpJFwEuBc5v204CDgMOBA4DlwDsAkvwm8GbgGOBA4OgZ1vIS4E+B3YAHgG8Dl/bLnwbeO9mOSU5MMpJkZOP60RmWIUmaytYejPDQrPEY4Crgpn59gN8H/ntV3VVV64B3A7/Tt78EOLOqLq+q+4DVM6zj/Kq6pKruB84H7q+qs6tqI/AJYNIZY1WdUVWrqmrVoiXLZliGJGkqW+3NN41zgK8Dj6M5jQrsDiwBLkkyti7Aov79XsAlzfbXz7CO25r3GyZYXjrD/iVJs2CrD8aquj7JtcDzgNc0TXfQBdIhVXXTBLveAuzTLO87xWHuowtZAJLsseUVS5IG6ZFwKhW6QPz1/pTomJ8DfwO8L8kvASRZnuQ5ffsngROSPDHJEuCdU/T/78AhSQ5P8mhmftpVkjQgj4hgrKofVtXIBE1/DPwAuDjJPcA/AQf3+3wJWAP8c7/NP0/R/zXAKf3+/wF8c7JtJUnDLVU16Bq0GRbveWDtefyaQZcxK3y6hqT5kuSSqlo1nW0fETNGSZKma6u/+WZrc+jyZYw405KkOeOMUZKkhsEoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSQ2DUZKkhsEoSVLDYJQkqWEwSpLUMBglSWoYjJIkNXzs1AJz2U2jrDz5gjnp2wcHS5IzRkmSHsZglCSpYTBKktQwGDdDkhOSfLNZvjfJfoOsSZI0uzYZjEmuS3L0fBSzuZK8PMlHJ1h/VJJKct649Yf16y+cjeNX1dKq+tFs9CVJGg7zMmNMZy6O9Tzgi5O03Q48I8muzbrjgWvmoA5J0lZii8Mqyc5JvpDk9iR39+/3btovTHJqkouA9cB+SZ6d5Ooko0k+mORrSV7b7PPqJFf2/f1DkhVTHH8b4Bjgy5Ns8lPgs8Dv9NsvAl4C/P24fh6f5B+T3NXX9pKmbdckn0tyT5J/BfYft28lOaD5vO1nGX/atZL8YZL/SLIuyZ8l2T/Jt/v+P5nkUZN9XknS/JjJLG4b4ExgBbAvsAH4wLhtXgmcCOwAjAKfBt4K7ApcDTxjbMMkxwJvA14E7A58A/jYFMd/KvCjqrpjim3OBl7Vv38OcAVwc3PMxwD/CHwU+CXgZcAHkxzSb/JXwP3AnsCr+9dM/CZwBPA04C3AGcArgH2AJ/XH/wVJTkwykmRk4/rRGZYgSZrKFgdjVd1ZVZ+pqvVVtQ44FXjWuM3OqqorqupB4LnAFVV1Xr/8l8CtzbavA95TVVf27e8GDp9i1vh8Jj+NOlbjt4BdkhxMF5Bnj9vkBcB1VXVmVT1YVZcCnwH+az/DfDHwjqq6r6ouBz4y5aBs2mlVdU9VXQFcDnylqn5UVaPAl4AnT/I5zqiqVVW1atGSZTMsQZI0lZmcSl2S5MNJrk9yD/B1YKc+UMbc0Lzfq12uqgJubNpXAO9PsjbJWuAuIMDySUqY6vpi6xzgjcB/Bs4f17YCOHLsmP1xXwHsQTdr3XbcZ7h+Gsebym3N+w0TLC+dYf+SpBmayZ+EOwk4GDiyqm5NcjjwHbowG1PN+1uA9hpk2mW6ADq1qh52DXAiSfagO7156TTqPAf4AXB2Va3vDvuwY36tqo6Z4BiLgAfpTnNe1a/ed4rj3AcsaZb3mEZtkqQhM90Z43ZJHt28tqW7brgBWJtkF+Cdm+jjAuDQJMf2+7+Bh4fHh4C3jl3fS7IsyXGT9PU84Mv9rHNKVXUt3SneP5mg+QvAQUlemWS7/vWUJE+oqo3AecDqfnb8RLq7WifzXeBF/bYHAK/ZVG2SpOEz3WD8Il0Ijr1WA2uA7YE7gIuZ/O5QAPqbZI4DTgfuBJ4IjAAP9O3nA6cBH+9PzV5Od11yItM9jTp27G9W1c0TrF8HPJvuztWb6a55ngYs7jd5I93pzVuBs+huNprM++juhL2N7lrkJme+kqThk2lMuubmwN2vW9wIvKKqvroZ+21LF1T79zetPKIs3vPA2vP4NXPSt0/XkLS1SnJJVa2azrbz+ifhkjwnyU5JFtP9akboZpubYxfg7Y/EUJQkzb35fh7j0+l+Z/BRwPeBY6tqw+Z0UFU/Af56DmpbEA5dvowRZ3aSNGfmNRirajXd9UlJkoaST9eQJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGvP92CnN0GU3jbLy5AsGXcaEfNCxpK2BM0ZJkhoGoyRJDYNRkqSGwShJUsNgHCfJdUmOHnQdkqTBMBhnWTqOqyQtUH4Dn4YkOyf5QpLbk9zdv9+7ab8wyalJLgLWA/sleXaSq5OMJvlgkq8leW2zz6uTXNn39w9JVgzis0mSHs5gnJ5tgDOBFcC+wAbgA+O2eSVwIrADMAp8GngrsCtwNfCMsQ2THAu8DXgRsDvwDeBjkx08yYlJRpKMbFw/OjufSJI0IYNxGqrqzqr6TFWtr6p1wKnAs8ZtdlZVXVFVDwLPBa6oqvP65b8Ebm22fR3wnqq6sm9/N3D4ZLPGqjqjqlZV1apFS5bN+ueTJD3EYJyGJEuSfDjJ9UnuAb4O7JRkUbPZDc37vdrlqirgxqZ9BfD+JGuTrAXuAgIsn6vPIEmaHoNxek4CDgaOrKodgV/r16fZppr3twDtNci0y3Sh+bqq2ql5bV9V35qb8iVJ02UwTmy7JI8eewE7011XXJtkF+Cdm9j/AuDQJMcm2RZ4A7BH0/4h4K1JDgFIsizJcbP/MSRJm8tgnNgX6YJw7LUTsD1wB3Ax8OWpdq6qO4DjgNOBO4EnAiPAA337+cBpwMf7U7OX012XlCQNmE/XGKeqVk5z0w83+xw1QT9fBg4C6H+v8Uaa64xVdQ5wzgxKlSTNAWeMcyTJc5LslGQx3a9mhG62KUkaYs4Y587TgY8CjwK+DxxbVRtm2umhy5cx4nMPJWnOGIxzpKpWA6sHXIYkaTN5KlWSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDV87NQCc9lNo6w8+YJBlyFJ8+q6eXwOrTNGSZIaBqMkSQ2DUZKkhsE4hST/muTAJPsluXQO+v9kkmOSLE5y62z3L0nafAbjJJJsB6wAfgAcAcx6MDb9/jJw+Rz0L0naTAbj5J4EfL+qClhFE4xJrkvy5iTfSzKa5BNJHt237ZzkC0luT3J3/37v8Z0n2RlIVd05vn9J0uAYjOMk+b0ka4GLgKf3708CTkuyNsnj+k1fAvwm8Di6Gd8J/fptgDPpZpv7AhuADzT9/0bf5w3A3v379wNv6Pt/1gQ1nZhkJMnIxvWjs/uBJUkPYzCOU1VnVtVOwCXA03joNOeOVbVTVV3bb/qXVXVzVd0FfB44vN//zqr6TFWtr6p1wKnAs5r+/2/f/2eB44DlwHXA7n3/X5ugpjOqalVVrVq0ZNlcfGxJUs9f8G8k2QX4ERBgKXAhsLhvvjvJ6qpa0y+3N8usB/bq+1gCvI9uNrlz375DkkVVtTHJjX3fOwAvALaj+/9wc5L/XVVvmqOPJ0maBmeMjaq6q5/NvQ742/79l4Hf6mdza6bRzUnAwcCRVbUj8Gv9+vTH2JsuNP+p7/8M4A19/4aiJA2YwTix9i7UJ9OdVp2uHeiuK67tZ6Dv3ET/vwKMbGGdkqRZZjBO7Ajg0iS7Ahur6u7N2HcNsD1wB3Ax3Yxzsv4DPB64YmblSpJmi9cYJ1BVv94s7j9B+8pxy6ub9zcDR43b5cPjtn91s/jYLSxTkjQHnDFKktRwxrjAHLp8GSPz+PgVSXqkccYoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSY10z+HVQpFkHXD1oOuYwm50fw5vmFnjzA17fTD8NQ57fTD8NW5OfSuqavfpbOgv+C88V1fVqkEXMZkkI8NcH1jjbBj2+mD4axz2+mD4a5yr+jyVKklSw2CUJKlhMC48Zwy6gE0Y9vrAGmfDsNcHw1/jsNcHw1/jnNTnzTeSJDWcMUqS1DAYJUlqGIySJDUMxgUiyS5Jzk9yX5Lrk7x8ADVcmOT+JPf2r6ubtt9IclWS9Um+mmRF05YkpyW5s3+dniSzUM8bk4wkeSDJWePatrieJCv7fdb3fRw92zX2x6hmLO9N8vb5rjHJ4iR/139NrUvynSTPbdoHOo5T1TcsY9j3dW6SW5Lck+SaJK9t2gb+tThZfcM0hk2fB6b7PnNus25+x7CqfC2AF/Ax4BPAUuCZwChwyDzXcCHw2gnW79bXcxzwaOB/Ahc37a+j+2s9ewPLge8Dr5+Fel4EHAv8NXDWbNUDfBt4L7A98GJgLbD7LNe4Eihg20n2m5cagccAq/t6tgFeAKzrlwc+jpuobyjGsO/rEGBx//7xwK3AEcMwhpuob2jGsOnzK8A3gHMH9e95Rt+YfM3Pq//m8FPgoGbdOcCfz3MdFzJxMJ4IfGtcvRuAx/fL3wJObNpf035hz0Jd7+LhobPF9QAHAQ8AOzTt32CGQT5BjZv6hjTvNTZ9fa//BjJ04ziuvqEcQ+Bg4BbgJcM4huPqG6oxBH4H+CTdD0NjwTjvY+ip1IXhIGBjVV3TrPt3up8C59t7ktyR5KIkR/XrDunrAaCq7gN+yEP1Paydua99JvUcAvyoqtZN0j7brk9yY5Izk+zWrB9IjUkeS/f1dsX4GoZhHMfVN2YoxjDJB5OsB66iC54vjq9hkGM4SX1jBj6GSXYETgFOGtc072NoMC4MS+lOJbRGgR3muY4/BvajO11xBvD5JPuz6frGt48CS9vrALNsJvXM11jfATwFWEF3SmsH4O+b9nmvMcl2fQ0fqaqrpnGcea1xgvqGagyr6g/7/X8VOI9upjI0YzhJfcM0hn8G/F1V3TBu/byPocG4MNwL7Dhu3Y5011rmTVX9S1Wtq6oHquojwEXA86ZR3/j2HYF7qz+vMQdmUs+8jHVV3VtVI1X1YFXdBrwReHb/U/O815hkG7rT8z/ta5mohvHHmbcaJ6pv2Mawr2ljVX2T7nrXH0zjOPNa4/j6hmUMkxwOHA28b4LmeR9Dg3FhuAbYNsmBzbrDePjppEEoIH0dh42tTPIYYH8equ9h7cx97TOp5wpgvyQ7TNI+V8Z+SBibRc9bjf1P1n8HPBZ4cVX9bKIaBjWOU9Q33sDGcALb8tBYDXwMp6hvvEGN4VF01zt/nORW4M3Ai5NcOr6GeRnDmVzE9TV/L+DjdHemPgb4T8zzXanATsBz6O4K2xZ4BXAf3YX83ft6Xty3n8bD7xp7PXAl3SnYvfovytm4yWHb/njvoZtNjNU2o3qAi4G/6Pf9bWZ2t+JkNR7Zj902wK50dxx/dUA1fqjvb+m49UMxjlPUNxRjCPwS3U0jS4FFdP9O7gNeOAxjuIn6hmUMlwB7NK+/AD7dj9+8j+GcfBP1NfsvYBfgs/0X9I+Bl8/z8XcH/o3uFMTa/ovtmKb9aLqL+hvo7l5d2bQFOB24q3+dTv93emdY02q6n3Db1+qZ1kP3k+uF/b5XA0fPdo3Ay4Br+/+ftwBnA3vMd41015YKuJ/utNPY6xXDMI5T1TdEY7g78DW6fxf3AJcBvz8b/zZmaQwnrW9YxnCSfzfnDmoM/SPikiQ1vMYoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSQ2DUZKkxv8DzRDGVrGXmiIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -8444,12 +8612,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD7CAYAAABnoJM0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXe0lEQVR4nO3df5BdZX3H8fcHAkncTSAQXIrW3UIDYZIQLKtoGZtNsQIyVGQ7HSBKIwNRnDh2iNCMBkgFFEWmUxlEwxADiIDUBERsWmlzUYax06SYwEpgmpKokMQAa8gNJBD99o9zlh5u98fd3bv35ub5vGbu5N7zPc+z53nuzX72/NizigjMzCxdBzV6A8zMrLEcBGZmiXMQmJklzkFgZpY4B4GZWeLGNXoDhmvq1KnR0dFRk752795NS0tLTfpqVqnPQerjB88BpDEH69atezEijuqv1nRB0NHRwdq1a2vSV6lUoqurqyZ9NavU5yD18YPnANKYA0lbBqr50JCZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeKa7jeLzcwaqWPxww372ptvOHtM+vUegZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJqyoIJH1H0lZJr0h6VtIlhdrpkjZKelXSGknthdp4ScvzdtskXV7R74BtzcysPqrdI/gy0BERk4G/BK6TdIqkqcBK4CrgCGAtcF+h3VJgGtAOzAWulHQmQBVtzcysDqr6wzQR0VN8mT+OA04BeiLifgBJS4EXJU2PiI3ARcAnIqIX6JV0GzAfWA2cN0RbMzOrg6r/Qpmkb5B9E58IPAH8CLgeWN+3TkTslrQJmCFpO3BMsZ4/Pzd/PmOgtsBbgkDSAmABQFtbG6VSqdrNHlS5XK5ZX80q9TlIffzgOYDhzcGiWfvGdmMGMVbvU9VBEBGflvQZ4P1AF7AXaAV2VKy6E5iU1/peV9YYom3l114GLAPo7OyMrq6uajd7UKVSiVr11axSn4PUxw+eAxjeHMxv5J+qnNc1Jv0O66qhiPhdRDwGvBO4DCgDkytWmwzsymtU1PtqDNHWzMzqZKSXj44jO0fQA8zuWyippW95fl5ga7GeP+873zBg2xFuk5mZjcCQQSDp7ZLOl9Qq6WBJZwAXAP8OrAJmSuqWNAG4GthQONl7J7BE0hRJ04FLgRV5bai2ZmZWB9XsEQTZYaBfA73A14C/jYgHI2IH0E120rgXOBU4v9D2GmATsAV4FLgxIlYDVNHWzMzqYMiTxfk37DmD1B8Bpg9Q2wtcnD+G1dbMzOrDt5gwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxFX9h2nMzPYnHTX8AzGLZu1r6B+caTTvEZiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJW7IIJA0XtLtkrZI2iXpCUln5bUOSSGpXHhcVdF2uaRXJG2TdHlF36dL2ijpVUlrJLXXfohmZjaYam4xMQ74FTAH+CXwYeB7kmYV1jk8Ivb103YpMA1oB44G1kj6RUSsljQVWAlcAjwEXAvcB7xvhGMxM7MRGHKPICJ2R8TSiNgcEb+PiB8CzwGnVNH/RcC1EdEbEU8DtwHz89p5QE9E3B8Re8hCY7ak6SMZiJmZjYwiYngNpDZgC3AysIcsFF4AAvgxcEVEvChpCvAycHREbM/b/hVwTUTMkvSPwKERcVmh76fy+vcrvuYCYAFAW1vbKffee++IBlupXC7T2tpak76aVepzkPr4oXnn4Mnnd9asr7aJsP21mnU3Zma947ARt507d+66iOjsrzasu49KOgS4G7gjIjZKagXeA/wcOBK4Ja+fAfR9sorv1k5gUv68FdhR8SWK9TdFxDJgGUBnZ2d0dXUNZ7MHVCqVqFVfzSr1OUh9/NC8c1DLu4UumrWPm57c/2/GvHle15j0W/XIJR0E3AW8DiwEiIgysDZfZbukhcBWSZOBcr58MtmeQ9/zXfnzcv66qFg3M7M6qOryUUkCbgfagO6IeGOAVfuOMykieoGtwOxCfTbQkz/vKdYktQDHFepmZlYH1f4ewa3AicA5EfHmkTRJp0o6QdJBko4Evg6UIqLvcNCdwBJJU/KTwJcCK/LaKmCmpG5JE4CrgQ0RsXH0wzIzs2pV83sE7cAnyU4Obyv8vsA84FhgNdnhnKeAvcAFhebXAJvITi4/CtwYEasBImIH0A1cD/QCpwLn12hcZmZWpSHPEUTEFkCDrHLPIG33Ahfnj/7qjwC+XNTMrIF8iwkzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEjdkEEgaL+l2SVsk7ZL0hKSzCvXTJW2U9KqkNZLaK9oul/SKpG2SLq/oe8C2ZmZWH9XsEYwDfgXMAQ4DrgK+J6lD0lRgZb7sCGAtcF+h7VJgGtAOzAWulHQmQBVtzcysDsYNtUJE7Cb7ht7nh5KeA04BjgR6IuJ+AElLgRclTY+IjcBFwCciohfolXQbMB9YDZw3RFszM6uDIYOgkqQ24HigB7gMWN9Xi4jdkjYBMyRtB44p1vPn5+bPZwzUFnhLEEhaACwAaGtro1QqDXez+1Uul2vWV7NKfQ5SHz807xwsmrWvZn21Taxtf2NlrN6nYQWBpEOAu4E7ImKjpFZgR8VqO4FJQGvhdWWNvD5Q27eIiGXAMoDOzs7o6uoazmYPqFQqUau+mlXqc5D6+KF552D+4odr1teiWfu46clh/1xcd5vndY1Jv1VfNSTpIOAu4HVgYb64DEyuWHUysCuvUVHvqw3V1szM6qSqIJAk4HagDeiOiDfyUg8wu7BeC3Ac2bH/XmBrsZ4/7xmq7YhGYmZmI1LtHsGtwInAORHxWmH5KmCmpG5JE4CrgQ2Fk713AkskTZE0HbgUWFFlWzMzq4Nqfo+gHfgkcDKwTVI5f8yLiB1AN3A90AucCpxfaH4NsAnYAjwK3BgRqwGqaGtmZnVQzeWjWwANUn8EmD5AbS9wcf4YVlszM6sP32LCzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxVQWBpIWS1kraK2lFYXmHpJBULjyuKtTHS1ou6RVJ2yRdXtHv6ZI2SnpV0hpJ7TUbmZmZVWVcleu9AFwHnAFM7Kd+eETs62f5UmAa0A4cDayR9IuIWC1pKrASuAR4CLgWuA9437BGYGZmo1LVHkFErIyIB4CXhtn/RcC1EdEbEU8DtwHz89p5QE9E3B8Re8hCY7ak6cP8GmZmNgrV7hEMZYukAH4MXBERL0qaAhwDrC+stx44N38+o1iLiN2SNuXLNxY7l7QAWADQ1tZGqVSqyUaXy+Wa9dWsUp+D1McPzTsHi2b1dxBiZNom1ra/sTJW79Nog+BF4D3Az4EjgVuAu8kOIbXm6+wsrL8TmJQ/bwV2VPRXrL8pIpYBywA6Ozujq6trlJudKZVK1KqvZpX6HKQ+fmjeOZi/+OGa9bVo1j5uerJWPxePnc3zusak31GNPCLKwNr85XZJC4GtkiYD5Xz5ZGBP4fmu/Hk5f11UrJuZWR3U+vLRyP9VRPQCW4HZhfpsoCd/3lOsSWoBjivUzcysDqq9fHScpAnAwcDBkibky06VdIKkgyQdCXwdKEVE3+GgO4ElkqbkJ4EvBVbktVXATEnded9XAxsi4i3nB8zMbGxVu0ewBHgNWAx8LH++BDgWWE12OOcpYC9wQaHdNcAmYAvwKHBjRKwGiIgdQDdwPdALnAqcP7rhmJnZcFV1jiAilpJd3tmfewZptxe4OH/0V38E8OWiZmYN5FtMmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpa4qoJA0kJJayXtlbSiona6pI2SXpW0RlJ7oTZe0nJJr0jaJunyatuamVl9VLtH8AJwHbC8uFDSVGAlcBVwBLAWuK+wylJgGtAOzAWulHRmlW3NzKwOqgqCiFgZEQ8AL1WUzgN6IuL+iNhD9o1/tqTpef0i4NqI6I2Ip4HbgPlVtjUzszoYN8r2M4D1fS8iYrekTcAMSduBY4r1/Pm5Q7UFNha/iKQFwAKAtrY2SqXSKDc7Uy6Xa9ZXs0p9DlIfPzTvHCyata9mfbVNrG1/Y2Ws3qfRBkErsKNi2U5gUl7re11ZG6rtW0TEMmAZQGdnZ3R1dY1qo/uUSiVq1VezSn0OUh8/NO8czF/8cM36WjRrHzc9Odpvh2Nv87yuMel3tFcNlYHJFcsmA7vyGhX1vtpQbc3MrE5GGwQ9wOy+F5JagOPIjv33AluL9fx5z1BtR7lNZmY2DNVePjpO0gTgYOBgSRMkjQNWATMldef1q4ENEdF3jP9OYImkKflJ4EuBFXltqLZmZlYH1e4RLAFeAxYDH8ufL4mIHUA3cD3QC5wKnF9odw2wCdgCPArcGBGrAapoa2ZmdVDV2ZGIWEp2eWd/tUeAfi/5jIi9wMX5Y1htzcysPnyLCTOzxDkIzMwS5yAwM0vc/v8bFGa2X+uo4S92WWN4j8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxPnyURszjbqscPMNZzfk65o1K+8RmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpa4mgSBpJKkPZLK+eOZQu1CSVsk7Zb0gKQjCrUjJK3Ka1skXViL7TEzs+rVco9gYUS05o8TACTNAL4FfBxoA14FvlFocwvwel6bB9yatzEzszoZ65vOzQMeioifAEi6Cnha0iTg90A3MDMiysBjkn5AFhqLx3i7zMwsp4gYfSdSCZgBCHgG+EJElCQ9CDweEV8prFsG5pAFweMRMbFQ+xwwJyLOqeh/AbAAoK2t7ZR777131NsMUC6XaW1trUlfzWos5+DJ53eOSb9DmfWOw6pe15+B0c9Bo97nWmqbCNtfa/RWDG04n+1Kc+fOXRcRnf3VarVH8HfAL8gO85wPPCTpZKAVqPyU7AQmAb8bpPYWEbEMWAbQ2dkZXV1dNdnoUqlErfpqVmM5B/MbdRvqeV1Vr+vPwOjnoFHvcy0tmrWPm57c/+/KP5zP9nDUZOQR8R+Fl3dIugD4MFAGJlesPhnYRbZHMFDNzMzqZKwuHw2yw0Q9wOy+hZKOBcYDz+aPcZKmFdrNztuYmVmdjDoIJB0u6QxJEySNkzQP+DPgX4C7gXMkfUBSC/BFYGVE7IqI3cBK4IuSWiSdBnwEuGu022RmZtWrxaGhQ4DrgOlkx/03AudGxDMAkj5FFghHAo8Anyi0/TSwHPgN8BJwWUR4j8DMrI5GHQQRsQN4zyD17wLfHaD2MnDuaLfBzMxGzreYMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNL3P5/31UzG1LHKG4FvWjWvgPiVtI2ct4jMDNLnIPAzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxvnzUrIZGcxmnWaN4j8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHENDwJJR0haJWm3pC2SLmz0NpmZpWR/uHz0FuB1oA04GXhY0vqI6GnsZpmZpaGhQSCpBegGZkZEGXhM0g+AjwOLx+JrFq/zruftdzffcHZdvo4N71p+34LZDBQRjfvi0ruBxyNiYmHZ54A5EXFOYdkCYEH+8gTgmRptwlTgxRr11axSn4PUxw+eA0hjDtoj4qj+Co0+NNQK7KxYthOYVFwQEcuAZbX+4pLWRkRnrfttJqnPQerjB88BeA4afbK4DEyuWDYZ2NWAbTEzS1Kjg+BZYJykaYVlswGfKDYzq5OGBkFE7AZWAl+U1CLpNOAjwF112oSaH25qQqnPQerjB88BJD4HDT1ZDNnvEQDLgb8AXgIWR8R3G7pRZmYJaXgQmJlZYzX6HIGZmTWYg8DMLHEHRBBIWihpraS9klZU1C6R9N+SypJWSzqmULtC0lOSdkl6TtIVFW07JK2R9KqkjZI+WKchDdtI56CwzqH5GH9dsfxkSevyOVgn6eQxHsqIjGb8kv5E0k/y+nZJny3UDvjPgKTxkr6Zj/1lSQ9Jekeh3jT3A8vHcnu+nbskPSHprEL99Px9fDV/X9sr2i6X9IqkbZIur+h7wLbN7oAIAuAF4Dqyk85vkjQH+BLZlUhHAM8B9xRXAS4CpgBnAgslnV+o3wM8ARwJfAH4J0n9/mbefmCkc9DnCuA3FW0PBR4EvkM2R3cAD+bL9zcjGr+kqcBq4Ftk7/MfA/9a6CKFz8BngfcDJwHHAL8Fbi7Ui/cDmwfcKmnG2Axh1MYBvwLmAIcBVwHfywN9KtlVileRzcNa4L5C26XANKAdmAtcKelMePNzMljb5hYRB8yD7D/BisLrrwG3FF4fAwRw3ADtvw7cnD8/HtgLTCrUfwp8qtHjrPUcAH8EPA2cBfy6sPxDwPPkFxXky34JnNnocdZq/GTfIO8aoK8kPgPArcBXC/WzgWfy5y1kIXB8oX4XcEOjxzmM+dhAdk+zBWS3tOlb3gK8BkzPXz8PfKhQvxa4N38+aNtmfxwoewQDUf4ovgaY+f9WlAR8gP/7ZbYZwP9ERPG3nNfny5tJNXNwM/B5sg920QxgQ+Sf/NwGmmsOhhr/+4CXJT0u6Tf5YZF35bVUPgO3A6dJOkbS28h+6v/nvHY88LuIeLbQvmnmQFIb2Rh6yLZ5fV8tst9j2gTMkDSFLCDXF5oXxzlg27Hc/no50IPgR8BfSzpJ0kTgarKfhN7Wz7pLyebj2/nrqu6D1AQGnQNJHwXGRcSqftoeCHMw1GfgncDfkB0eeRdvPWxyIIwfhp6DZ8n29J4HXgFOBL6Y15p2DiQdAtwN3BERGxl8LK2F15U1hmjb9A7oIIiIfwOuAb4PbAE2k93HqPKE6EKycwVnR8TefPEBcR+kweZA2W3Avwp8ZoDmTT8HVXwGXgNWRcR/RsQe4O+BP5V0GAfA+KGqObgVmEB2HqSF7Fh43x5BU86BpIPIDmG9DizMFw82lnLhdWVtqLZN74AOAoCIuCUipkXE28n+I4wDnuqrS7qY7G8fnB4RxYDoAY6VVEz8prwP0iBzMA3oAH4qaRvZN4A/yK+Y6CAb60n5YbM+J9FkczDEZ2AD2U/Hb66e/yvS+AxANqYVEfFy/oPQzcB78xOkTXc/sPzzejvZye3uiHgjL/WQbXvfei3AcUBPRPQCW4t13jrOAduO0TDqq9EnKWrxIPtQTwC+TPZTwITCsplk/6nfBZSALxXazQO2AScO0O/PyE60TQA+SnY1xVGNHm+t5iCvH114nEd25cnRwMHAoWQ/QX4WGE/2k9UW4NBGj7eGn4E/B3rJ/jreIcA/AD9N5TOQt/s2WTgcls/B54HnC/V7yQ6XtQCnkR0SmdHo8Q4yD9/M37fWiuVH5dvenc/JV4CfFeo3AI+SXSE3nSwYzqymbbM/Gr4BNXrjl5L9JFd8LAUOJ/uJbzfZN/wvAwcX2j0HvEG229f3+Gah3pH/p3mN7I/hfLDRY631HFT00UXhqqF82buBdfkc/Bfw7kaPtdbjBy4jOz7eCzwE/GFKnwGyQ0J3k10+/FvgMeC9hfoRwAN5+18CFzZ6rIPMQXs+7j0V/6/n5fUPAhvz97MEdBTajie79PYVYDtweUXfA7Zt9ofvNWRmlrgD/hyBmZkNzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiftfGkutOUh/ddgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD7CAYAAABnoJM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXhElEQVR4nO3df5BdZX3H8fcHQk3MZrEQ3DZpZRsKhoEkFlbtj2m5FKpVsAWW6cTGlkzrbGonTjtsoUwRknYoSqY7napUyIBGlAaUgK1ibbXNnWpVpmEgxG0XpkKCRKEQMeQmIZj67R/nueVw2c3e3b13b26ez2vmzN57vuc89zzP/vjc8+OeVURgZmb5Oq7TG2BmZp3lIDAzy5yDwMwscw4CM7PMOQjMzDI3p9MbMB0LFy6M/v7+Gbezf/9+5s+fP/MN6mIeA49B7v2HfMbgwQcffC4iTmmc35VB0N/fz7Zt22bcTrVapVKpzHyDupjHwGOQe/8hnzGQtGu8+T40ZGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWua78ZLGZWSf1X3N/R15354cuaku73iMwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHNNBYGkT0v6nqQXJD0m6b2l2gWSxiQdkLRV0qmlmiTdJGlPmjZIUqnen9Y5kNq4sLXdMzOzyTS7R/BBoD8ieoHfAG6QdK6khcC9wHXAScA24O7SekPAJcAKYDlwMbCmVN8MPAScDFwL3CPplGn3xszMpqypIIiI0Yg4VH+aptOAy4DRiPhsRLwIrAdWSFqalr0CGImIpyJiNzACrAaQdAZwDrAuIg5GxBZgBzDYkp6ZmVlTmv4PZZL+luKP+DyKd/FfBP4S2F5fJiL2S/o2cBYwlr5uLzWzPc0jfX08IvZNUG98/SGKPQz6+vqoVqvNbvqEarVaS9rpZh4Dj0Hu/Yepj8HwssPt25gjaNf3qekgiIg/lPR+4BeACnAI6AGebVh0L7AgPe5Jz8u1nnSeoLFWry+e4PU3AhsBBgYGolKpNLvpE6pWq7SinW7mMfAY5N5/mPoYrO7Uv6pcVWlLu1O6aigi/jcivgb8FPA+oAb0NizWC9Tf5TfWe4FaREQT65qZ2SyY7uWjcyjOEYxSnAgGQNL80nwa6+lxubZE0oIJ6mZmNgsmDQJJr5e0UlKPpOMlvR14N/CvwH3A2ZIGJc0FrgceiYixtPodwJWSFktaBAwDmwAi4jHgYWCdpLmSLqW4smhLa7toZmZH0sw5gqA4DHQLRXDsAv44Iv4eQNIg8FHg08ADwMrSurcCSyiuBgK4Lc2rW0kRDM8DTwKXR0TjOQczM2ujSYMg/WE+7wj1rwBLJ6gFcHWaxqvvpDjxbGZmHeJbTJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmmv7HNGZmR5P+Fv5zmOFlhzv2z2aOBt4jMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPL3KRBIOk1km6XtEvSPkkPSXpHqvVLCkm10nRdaV1JuknSnjRtkKRSvV/SVkkHJI1JurA93TQzs4k0c4uJOcB3gPOAJ4F3Ap+RtKy0zOsi4vA46w4BlwArgAC+DDwO3JLqm4FvpDbfCdwj6fSIeHbqXTEzs+mYdI8gIvZHxPqI2BkRP4qILwBPAOc20f4VwEhEPBURu4ERYDWApDOAc4B1EXEwIrYAO4DBafbFzMymQRExtRWkPmAX8CbgRYpQ+C4vv+O/KiKeS8vuBd4WEQ+k5wPA1ohYIOlS4MaIOLPU9keBiIj3j/O6QxR7GPT19Z171113TbGrr1ar1ejp6ZlxO93MY+Ax6Nb+79i9t2Vt9c2DZw62rLm2Wbb4xBmtf/755z8YEQON86d091FJJwB3Ap+MiDFJPcCbgYeBk4GbU/3taZUeoPzd2gv0pPMEjbV6ffF4rx0RG4GNAAMDA1GpVKay6eOqVqu0op1u5jHwGHRr/1t5t9DhZYcZ2XH034x556pKW9ptuueSjgM+BbwErAWIiBqwLS3yjKS1wPck9UbEC0AN6C010wvUIiIkNdbq9X3T6omZmU1LU5ePpnfwtwN9wGBE/HCCRevHmepXBo1SnCiuW5Hm1WtLJC2YoG5mZrOg2c8RfAw4E3hXRPz/kTRJb5X0RknHSToZ+DBQjYj6IZ87gCslLZa0CBgGNgFExGMUh5TWSZqbzhksB7a0oF9mZtakSQ8NSToVWAMcAp4ufQxgDfAj4Ebg9cALFCeL311a/VZgCcXVQAC3pXl1KymC4XmKS1Mv96WjZmaza9IgiIhdvHyoZzybj7BuAFenabz6TqAy2TaYmVn7+BYTZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWVu0iCQ9BpJt0vaJWmfpIckvaNUv0DSmKQDkrZKOrVUk6SbJO1J0wZJKtX70zoHUhsXtr6LZmZ2JM3sEcwBvgOcB5wIXAd8Jv0RXwjcm+adBGwD7i6tOwRcAqwAlgMXA2tK9c3AQ8DJwLXAPZJOmUF/zMxsiiYNgojYHxHrI2JnRPwoIr4APAGcC1wGjEbEZyPiRWA9sELS0rT6FcBIRDwVEbuBEWA1gKQzgHOAdRFxMCK2ADuAwdZ20czMjmTOVFeQ1AecAYwC7wO212sRsV/St4GzgLH0dXtp9e1pHunr4xGxb4J64+sOUexh0NfXR7Vaneqmv0qtVmtJO93MY+Ax6Nb+Dy873LK2+ua1tr12adf3aUpBIOkE4E7gkxExJqkHeLZhsb3AgvS4Jz0v13rSeYLGWr2+eLzXjoiNwEaAgYGBqFQqU9n0cVWrVVrRTjfzGHgMurX/q6+5v2VtDS87zMiOKb8vnnU7V1Xa0m7TVw1JOg74FPASsDbNrgG9DYv2AvsmqPcCtYiIJtY1M7NZ0FQQpHfwtwN9wGBE/DCVRilOBNeXmw+clua/qp4el2tLJC2YoG5mZrOg2T2CjwFnAu+KiIOl+fcBZ0salDQXuB54JCLGUv0O4EpJiyUtAoaBTQAR8RjwMLBO0lxJl1JcWbRlhn0yM7MpmPSgWPpcwBrgEPB06WMAayLiTkmDwEeBTwMPACtLq98KLKG4GgjgtjSvbiVFMDwPPAlcHhGN5xzMzKyNJg2CiNgF6Aj1rwBLJ6gFcHWaxqvvBCpNbKeZmbWJbzFhZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpa5poJA0lpJ2yQdkrSpNL9fUkiqlabrSnVJuknSnjRtkKSG9bdKOiBpTNKFLe2dmZlNak6Ty30XuAF4OzBvnPrrIuLwOPOHgEuAFUAAXwYeB25J9c3AN4B3pukeSadHxLPNdsDMzGamqT2CiLg3Ij4H7Jli+1cAIxHxVETsBkaA1QCSzgDOAdZFxMGI2ALsAAan+BpmZjYDze4RTGaXpPo7/qsi4rk0/yxge2m57WlevfZ4ROyboP4KkoYo9jDo6+ujWq3OeKNrtVpL2ulmHgOPQbf2f3jZeAchpqdvXmvba5d2fZ9mGgTPAW8GHgZOBm4G7qQ4hATQA+wtLb8X6EnnCRpr9fri8V4oIjYCGwEGBgaiUqnMcNOLQW1FO93MY+Ax6Nb+r77m/pa1NbzsMCM7WvW+uH12rqq0pd0Z9TwiasC29PQZSWuB70nqjYgXgBrQW1qlF6hFREhqrNXr+zAzs1nT6stHI32tXxk0SnGiuG5FmlevLZG0YIK6mZnNgmYvH50jaS5wPHC8pLlp3lslvVHScZJOBj4MVCOifsjnDuBKSYslLQKGgU0AEfEYxSGldam9S4HlwJZWdtDMzI6s2UNDHwDWlZ6/B/hz4FHgRuD1wAsUJ4vfXVruVmAJxdVAALeleXUrKYLheeBJ4HJfOmpmNruaCoKIWA+sn6C8+QjrBXB1msar7wQqzWyDmZm1h28xYWaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmmgoCSWslbZN0SNKmhtoFksYkHZC0VdKppZok3SRpT5o2SFKp3p/WOZDauLBlPTMzs6Y0u0fwXeAG4OPlmZIWAvcC1wEnAduAu0uLDAGXACuA5cDFwJpSfTPwEHAycC1wj6RTptoJMzObvqaCICLujYjPAXsaSpcBoxHx2Yh4EVgPrJC0NNWvAEYi4qmI2A2MAKsBJJ0BnAOsi4iDEbEF2AEMzqxLZmY2FXNmuP5ZwPb6k4jYL+nbaf5YYz09Pqu07uMRsW+C+itIGqLYw6Cvr49qtTrDTYdardaSdrqZx8Bj0K39H152uGVt9c1rbXvt0q7v00yDoAd4tmHeXmBBqb63odaTzhM01ur1xeO9UERsBDYCDAwMRKVSmdGGQzGorWinm3kMPAbd2v/V19zfsraGlx1mZMdM/xy2385Vlba0O9OrhmpAb8O8XmDfBPVeoBYR0cS6ZmY2C2YaBKMUJ4IBkDQfOC3Nf1U9PS7XlkhaMEHdzMxmQbOXj86RNBc4Hjhe0lxJc4D7gLMlDab69cAjETGWVr0DuFLSYkmLgGFgE0BEPAY8DKxL7V1KcWXRltZ1z8zMJtPsHsEHgIPANcB70uMPRMSzFFf5/CXwPPBWYGVpvVuBz1NcDfQt4P40r24lMJDW/RBweWrTzMxmSVNnRyJiPcWloePVvgIsnaAWwNVpGq++E6g0sw1mZtYevsWEmVnmHARmZplzEJiZZe7o/wSFmR3V+lv4wS7rDO8RmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5Xz5qbdPJywp3fuiijr22WbfxHoGZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmWtJEEiqSnpRUi1Nj5ZqF0gak3RA0lZJp5ZqknSTpD1p2iBJrdgmMzNrTiv3CNZGRE+a3gggaSFwL3AdcBKwDbi7tM4QcAmwAlgOXAysaeE2mZnZJNp9aOgyYDQiPhsRLwLrgRWSlqb6FcBIRDwVEbuBEWB1m7fJzMxKFBEzb0SqAmcBAh4Fro2IqqS/AX4sIt5XWvZbwLqI2CJpL/C2iHgg1QaArRGxYJzXGKLYg6Cvr+/cu+66a8bbXavV6OnpmXE73aydY7Bj9962tNuMZYtPbHrZ3H8OZtr/Tn6fW6VvHjxzsNNbMbmp/FyP5/zzz38wIgYa57fqNtR/Cvwn8BKwEvi8pDcBPcCzDcvuBep/6HvS83KtR5KiIaEiYiOwEWBgYCAqlcqMN7pardKKdrpZO8dgdSdvQ72q0vSyuf8czLT/nfw+t8rwssOM7Dj678o/lZ/rqWjJoaGIeCAi9kXEoYj4JPDvwDuBGtDbsHgvsC89bqz3ArXGEDAzs/Zp1zmCoDhMNEpxIhgASfOB09J8Guvp8ShmZjZrZhwEkl4n6e2S5kqaI2kV8CvAPwH3AWdLGpQ0F7geeCQixtLqdwBXSlosaREwDGya6TaZmVnzWnFQ7ATgBmAp8L/AGHBJRDwKIGkQ+CjwaeABinMIdbcCS4Ad6fltaZ6Zmc2SGQdBRDwLvPkI9a9QhMR4tQCuTpOZmXWAbzFhZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpa5o/++q2bWlP5p3g56eNnhY+JW0jZ93iMwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHO+fNSshaZ7CadZJ3mPwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscx0PAkknSbpP0n5JuyT9dqe3ycwsJ0fD5aM3Ay8BfcCbgPslbY+I0Y5ulZlZJjoaBJLmA4PA2RFRA74m6R+A3wGuacdrlq/zns3b7+780EWz8jpWmMr1/L4Ns+VOEdG5F5d+Dvh6RMwrzfsT4LyIeFfDskPAUHr6RuDRFmzCQuC5FrTTzTwGHoPc+w/5jMGpEXFK48xOHxrqAfY2zNsLLGhcMCI2Ahtb+eKStkXEQCvb7DYeA49B7v0Hj0GnTxbXgN6Geb3Avg5si5lZljodBI8BcySdXpq3AvCJYjOzWdLRIIiI/cC9wF9Imi/pl4DfBD41S5vQ0kNNXcpj4DHIvf+Q+Rh09GQxFJ8jAD4O/BqwB7gmIv6uoxtlZpaRjgeBmZl1VqfPEZiZWYc5CMzMMndMBIGktZK2STokaVND7b2S/ltSTdKXJC0q1a6S9C1J+yQ9IemqhnX7JW2VdEDSmKQLZ6lLUzbdMSgt82Opj081zM9iDCSdI+nfUv0ZSX9Uqh3zYyDpNZJuSX3/vqTPS1pcqnfFGKR+3J7uW7ZP0kOS3lGqX5C2/0Dqz6mlmiTdJGlPmjZIUqneFWMwHcdEEADfBW6gOOn8/ySdB9xIcSXSScATwObyIsDvAj8O/DqwVtLKUn0z8BBwMnAtcI+kV30q7ygx3TGouwr4n3HmH/NjIGkh8CXgVop+/izwz6UmjvkxAP4I+AVgObAI+AHwkVK9W8ZgDvAd4DzgROA64DPpj/hCiqsUr6MYg23A3aV1h4BLKC5hXw5cDKwp1btlDKYuIo6ZieIXYFPp+V8BN5eeLwICOG2C9T8MfCQ9PgM4BCwo1b8K/EGn+9nqMQB+Bvgv4B3AU6X5WYwBxR/IT03QVi5j8DFgQ6l+EfBoN49BaVsfobin2RDFLW3q8+cDB4Gl6fnXgaFS/feBbx4LYzDZdKzsEUxEaSo/Bzj7VQsWu4C/zMsfZjsLeDwiyp9y3p7md5NmxuAjwJ9R/FKU5TIGPw98X9LXJf1POizyhlTLZQxuB35J0iJJrwVWAf+Yal07BpL6KP6Ij1Js7/Z6LYrPMX2bl/vxijqv7GPXjkEzjvUg+CLwW5KWS5oHXE/xLui14yy7nmI8PpGeN30fpKPcEcdA0qXAnIi4b5x1sxgD4KeAKygOj7yBVx42yWUMHgOeBHYDLwBnAn+Ral05BpJOAO4EPhkRY0zej8b6XqAnvUnsyjFo1jEdBBHxL8A6YAuwC9hJcR+jxhOiaynOFVwUEYfS7GPiPkhHGgMVtwHfALx/gtWP+TFIixwE7ouI/4iIF4E/B35R0onkMwYfA+ZSHP+eT3Esvb5H0HVjIOk4ijsUvASsTbMn60djvReoRXEcqOvGYCqO6SAAiIibI+L0iHg9xS/BHOBb9bqk36P43wcXREQ5IEaBJZLKid+V90E6whicDvQDX5X0NMUv/09KelpSP3mMARTHkMufrKw/FvmMwQqKcwrfT2+GPgK8JZ1g7aoxSO/gb6f4Z1eDEfHDVBql2O76cvOB03i5H6+o88o+dtUYTFmnT1K0YqL4gZ4LfJDiXcDc0ryzKX6h3wBUgRtL660CngbOnKDdb1KcZJsLXEpxJcUpne5vq8Yg1X+iNF1GcdXJTwDH5zAGab1fBZ6n+A95JwB/DXw1l5+DtN4nKMLhxDQGfwbs7tIxuCVtb0/D/FMoDucMpn7cRDoZnOp/QHHRxGKKk+mjlE4Gd9MYTHnMOr0BLfrGr6d4F1ee1gOvo3i3t5/iD/4H63/g0npPAD+k2O2rT7eU6v3pF+YgxT/CubDTfW31GDS0UaF01VBOYwC8j+L4+PPA54GfzmkMKA4J3UlxCfEPgK8Bb+m2MQBOTX1+seH3elWqXwiMpX5Ugf7SuqI4VPr9NG0g3Yanm8ZgOpPvNWRmlrlj/hyBmZkdmYPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMvd/9bO/p9s5UxoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -8485,12 +8653,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 77, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAEOCAYAAAC+QhDtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3xUZdr/8c+VXgmBJLQAofcasIPYUbEg7Oo+9vrsrt3VdX+uuth2fbbp7urquruKZa2AqKjoWrFL70U6SYBQA0lIv39/zARDTGBSJmeSfN+v13nNzDlnznyHkMmVk/tctznnEBERERGR4ArzOoCIiIiISGugwltEREREpAmo8BYRERERaQIqvEVEREREmoAKbxERERGRJqDCW0RERESkCajwFhERERFpAhFN9UJmdgNwBTAEeMk5d0WVbacAjwPdgG+AK5xzmw5zrJuBW4A0YDNwnnNuzeFePyUlxWVkZDTsTYiI1FP23gPsLSxlYKc2mNXtufPnz9/pnEsNTrLQpM9sEWmuDveZ3WSFN5ADPAicAcRWrjSzFGAGcA3wFvAA8ApwTE0HMbNrgKuBs4GVQE9gz5FePCMjg3nz5jXsHYiI1INzjmN+9yHnd0vmiUsy6/x8M6v1RERLpc9sEWmuDveZ3WSFt3Nuhj/MKCC9yqYLgOXOudf826cAO82sv3NuVdVjmFkY8Bt8Z8RX+FevC3Z2EZGGWJa9j+37ijllQAevo4iIiIdCYYz3IGBx5QPnXAG+YnpQDfum+5fBZrbFzDaY2X3+gvwHzOw6M5tnZvN27NgRjOwiIkf0wcrtmMFJ/VrVaJE602e2iLR0oVB4JwB51dblAYk17Ft5pvx0fGPFTwJ+gm/oyQ84555yzo1yzo1KTdUPPBHxxoertjOyWzLtE6K9jhLS9JktIi1dKBTe+UCbauvaAPtr2PeA//b3zrm9zrmNwD+As4IXT0Sk/rblFbEsex+nDEjzOoqIiHgsFArv5cCwygdmFg/08q+vbjVQArimiSYi0jAfrcoF4JT+Gt8tItLaNVnhbWYRZhYDhAPhZhZjZhHA6/jGbE/yb78XWFL9wkoA51whvo4nvzSzRDNLB64FZjXV+xARqYsPV24nPTmWvh0SvI4iIiIea8oz3nfjGyryK+AS//27nXM7gEnAQ/jaAh4NXFT5JDN70syerHKcG/ANT8kBvgJeBJ5uijcgIlIXB0rK+XztTk4d0AGra/NuERFpcZqyneAUYEot2z4A+tey7afVHu+jSmEuIhKqvli7k+KyCo3vFhERIDTGeIuItEgfrtpOQnQER/do73UUEREJASq8RUSCwDnHhytzGds3hagIfdSKiIgKbxGRoFiWvY/c/cWcrG4mIiLip8JbRCQINFuliIhUp8JbRCQINFuliIhUp8JbRKSRabZKERGpiQpvEZFGVjlb5akDNL5bRES+p8JbRKSRVc5W2SdNs1WKiMj3VHiLiDQizVYpIiK1UeEtItKINFuliIjURoW3iEgj0myVIiJSGxXeIiKNpKJCs1WKiEjt9JNBRKSRLM/xzVZ5imarFBGRGqjwFhFpJJWzVY7TbJUiIlIDFd4iIo1Es1WKiMjhqPAWEWkEmq1SRESORIW3iEgj+HDVdkCzVYqISO1UeIuINIKPVubStZ1mqxQRkdqp8BYRaaDK2SpP6a/ZKkVEpHYqvEVEGkizVYqISCBUeIuINJBmqxQRkUCo8BYRaQDNVikiIoHSTwkRkQZYlpOn2SpFRCQgKrxFRBrgw5W5mMFJ/TW+W0REDk+Ft4hIA1TOVtkuPsrrKCIiEuJUeIuI1JNmqxQRkbpQ4S0iUk+arVJEROpChbeISD19qNkqRUSkDlR4i4jUw4GScr7QbJUiIlIHKrxFROpBs1WKiEhdqfAWEakHzVYpIiJ1pcJbRKSONFuliIjUh35iiIjUkWarFBGR+lDhLSJSRx+szCVMs1WKiEgdqfAWEamjjzRbpYiI1IMKbxGROqicrfJkdTMREZE6arLC28xuMLN5ZlZsZlOrbTvFzFaZWaGZfWxm3QM43olm5szswaCFFhGpRrNViohIfTXlGe8c4EHg6aorzSwFmAHcA7QD5gGvHO5AZhYJ/AX4JihJRURqodkqRUSkvpqs8HbOzXDOzQR2Vdt0AbDcOfeac64ImAIMM7P+hzncL4D3gVVBCSsiUoPCkjLNVikiIvUWCmO8BwGLKx845wqAdf71P+AfhnIVcP+RDmxm1/mHt8zbsWNHI8UVkdbqvyu2U1xWwfjBHb2O0iLpM1tEWrpQKLwTgLxq6/KAxFr2/ytwj3Mu/0gHds495Zwb5ZwblZqa2sCYItLazVyYTeekGI7KaOd1lBZJn9ki0tKFQuGdD7Sptq4NsL/6jmZ2DpDonDvsGHARkca2M7+YOd/t5LwRXQgL0zATERGpuwivAwDLgcsrH5hZPNDLv766U4BRZrbN/zgJKDezIc6584KeVERarVmLcyivcEwc0cXrKCIi0kwFdMbbzKLN7CEzW29mef51p5vZDYG+kJlFmFkMEA6Em1mMmUUArwODzWySf/u9wBLnXE0XTt4D9AWG+5c3gX8CVwaaQ0SkPl5flMOATm3o26G2UXAiIiKHF+hQk0eAwcDFgPOvWw78rA6vdTdwAPgVcIn//t3OuR3AJOAhYA9wNHBR5ZPM7EkzexLAObffObetcvEfo8A5t7sOOURE6mTDzgIWb9nLxBGdvY4iIiLNWKBDTSYCvZ1zBWZWAeCcyzazgP/m6pybgq9VYE3bPgBqbB/onPvpYY55RaCvLyJSXzMXZmMG5w7TMBNpfCVlFeQdKCU6Moyo8DCiI8LUrlKkhQq08C6pvq+ZpfLDntwiIi2Kc46Zi7I5tmd7OibFeB1HWpjcfUVMfvIrNu8uPGR9VHgYURG+Jdp/GxUedrA4960PP2Sf6IP7hFfZp+pxwg85TnQtxznkfrh+CRBpTIEW3q8Bz5rZrQBm1gl4FHg5WMFERELBoi172bSrkOtP6u11FGlhCkvKuPrZeezML+bXZw3ADIrLKiguq6DEvxSXlfvul1dQXOq7rVy/t7Dk4L7FB/cp992WVeDckTMEovIsfE3FeXxUBMlxUSTHR5IUG0VyXCTJcVG0jYskOd73uG1cFG1jI4kID4VGaiLeCrTwvgv4PbAUiAO+w3dR4xEnsRERac5mLswmOiJMk+ZIoyqvcNz00kKW5+Txr8tHcXL/Do16fOccZRWuSgHvL+bLyyk6pIA/fJFfXH1b2aHrCorLWbcjnz2bStlbWEJZRe3VfmKMv0iPiyQprlqRXuW2auEeHxWuM+7SogRUeDvnSoBbgFv8Q0x2OtdYv0uLiISm0vIK3lqylVMHdqBNTKTXcaQFeWDWCj5Ymcv95w1q9KIbwMyIDDciw8OIj270w9fIOUd+cRl7C0vZW1jKnsIS9hSWHLz//Tpfkb5xZwF7CkvYX1RW6zEjw+2HZ9LjomgbH3mwiK88o54c//32SJ1dlxAVUOFtZpcBi5xzS/xdSDCzYcBQ59zzwQwoIuKVz77bwe6CEs4frosqpfE888UGpn65katP6MFlx2Z4HafRmBmJMZEkxkTStQ6Tu5aW+y4u3esvyvcUHFqk5x0oYU+B7/GmXYUs2rKXvYWllJRX1HrMhOiIGs6kf3+mfWh6EpndNQOtNL1Ah5o8gK9vdlVb8PXRVuEtIi3SzIU5tI2L5MS+mr5cGsd/V2zn/lkrOGNQB+46a4DXcUJCZHgYKQnRpCQEfmreOUdhSfnBM+nfn1X3F+/VzrBv3l3I3sJS8g6UHjzGFcdl8Ksz+xMTGR6MtyVSo0AL7zbAvmrr8oC2jRtHRCQ05BeX8f6KbUzOTCcqQn+2loZbmpXHTS8tZGiXJB69cAThYRq7XF9mRnx0BPHREaQnB/688grHnsISHvtoLVO/3MhX63bx15+MoF9HTYwlTSPQnyYr8E1yU9VEYGXjxhERCQ3vLdtGUWmFhplIo8jaU8hVz86lXXwU/7p8NLFROsvqhfAwIyUhminnDuKZK0ezq6CEcx77nKlfbECXrklTCLTwvhP4l5lNN7Pfm9kM4N/AL4IXTUTEOzMXZZOeHEtm9zqcThOpwb6iUq6aOpei0nKmXjma1MQmutpRDuukfmnMvmUMJ/ROYcpbK7hy6lx27C/2Opa0cAEV3s65z/FNGT8XiAe+BQY7574IYjYREU/k7ivii7U7mTiii1qZSYOUllfw8xcWsH5HAU9ekkmfDhrSEEpSEqL59+WjuP+8QXy1bhfjH53DR6u2ex1LWrBAx3jjnNsMPBzELCIiIeHNxTlUODhPw0ykAZxz3P36Mj5fu5M/TB7K8b1TvI4kNTAzLjs2g2N6tuemlxZy1dR5XHZsd+46a4AuvJRGF2g7wXbA7fg6myRU3eacGxuEXCIinpm5KJshXZLonZZw5J1FavH3T9bxyrwt3Hhyb340qqvXceQI+nZIZOb1x/OH91bz7883HLzwckCnNl5HkxYk0DPeLwLRwKtAYfDiiIh4a23ufpZl7+OeCQO9jiLN2JuLc/jDe6s5b3hnbjutr9dxJEAxkeHcM2EgY/umcvtriznvsS+488z+XHlcBmHqQiONINDC+zgg1Tmnqw5EpEWbuTCHMINzhnXyOoo0U/M27ub21xYzOiOZ308equsEmqET+6Yy++Yx3Dl9CQ/MWsGna3bwx8lDSWsT43U0aeYC7WqyBEgPZhAREa9VVDhmLsrmhD6ppCXqB6zU3cadBVz73Dy6tI3lqUtHER2hMcLNVfuEaP552SgeOH8w36zfxfi/fMYHK3ThpTRMoGe8PwJmm9kzwLaqG5xzTzd6KhERD8zfvIesPQc0NEDqZU9BCVdOnQvAM1eMJjk+yuNE0lBmxqXHdOfYnu246aVFXPPcPC45phu/PmugerFLvQRaeI8BsoDTqq13gApvEWkRZi7MJjYynDMGdfQ6ijQzxWXl/O/z88nee4AXrzmajJR4ryNJI+qdlsjr1x/HH99bzT8/28DX63fzl4uGM6hzktfRpJkJqPB2zp0U7CAiIl4qKatg1pKtnD6oA/HRAXdaFcE5xy+nLeHbjbv5209GMCqjndeRJAiiI8L59dkDObFvGre9uoiJj3/JL8f346rje+jCSwlYoGO8MbP2Znapmd3hf9zZzDTuW0RahE9W55J3oFRTxEud/fm/a3hjUQ53nNGPc4Z19jqOBNkJfVKYfctYTuyXyoNvr+TyZ75l+74ir2NJMxFQ4W1mJwKrgYuBe/2r+wBPBCmXiEiTemNRDu3jozihjyY5kcC9Om8Lf/toLReO6srPx/XyOo40kXbxUTx1aSa/nTiEuRt3M/7ROby/fNuRnyitXqBnvB8FLnTOjQfK/Ou+AY4KSioRkSa0r6iU/67czjnDOhMZHvAfAqWV+2LtTu6asZQxfVJ4cOJgtQ1sZcyM/zm6G7NuHEOX5Fiue34+d72+lAMl5V5HkxAW6E+YDOfch/77zn9bQh2mnBcRCVWzl26jpKyC80domIkE5rvt+/npC/PplZrA4xeP1C9srVjvtARm/Ox4/vfEnrz07WbO/ttnLMvO8zqWhKhAPylWmNkZ1dadCixt5DwiIk3u9YXZZLSPY1i6OhTIkeXuL+KKZ+YSExnO01eOpk1MpNeRxGNREWH8vzMH8J+rj6aguIyJf/+Cf3y6jooKd+QnS6sSaOH9C+A/ZvYsEGtm/wCmAncEK5iISFPYmneArzfs4vwRXTRUQI7oQEk51z47j90FJTx9+Wi6tI31OpKEkON6pzD75rGc3D+N3727ikv+/Q3b8nThpXwvoMLbOfc1MAxYjq9v9wbgKOfc3CBmExEJujcX5eAc6mYiR1Re4bj55YUsyc7jrz8ZwRD9hURqkBwfxZOXZPLwBUNYuHkv4/8yh9nLdOGl+AQ8Rts5lw38PohZRESa3OsLsxneta0mPJEj+u07K3l/xXZ+c85AThvYwes4EsLMjIuO6sZRPdpx88uL+OkL87lodFfuPWcgcVG6PK41q/Wrb2bP8/2FlLVyzl3WqIlERJrIqm37WLVtP/edO8jrKBLinvtqI//+fANXHJfBlcf38DqONBM9UxOY/rPjeOSDNTz56Tq+3bCbRy8aztD0tl5HE48cbqjJWmCdf8kDzgfC8U0dHwacB+wNdkARkWCZuTCH8DBjwtBOXkeREPbhyu1MeXM5pw7owD0TBnodR5qZqIgw7hzfnxevOYYDpeVc8PcveeKTdZTrwstWqdYz3s65+yrvm9l7wNnOuc+qrDsBuCe48UREgqOiwvHGomxO7JtK+4Ror+NIiFqWnceNLy1kUOck/vqT4YRranCpp2N7tefdm8dw1+tL+b/Zq/h0TS6PXDicTkm6QLc1CbSryTHA19XWfQMc27hxRESaxjcbdrM1r4jzhmuKb6lZzt4DXDV1LslxUfz78lEamysN1jYuisf/ZyS/nzyUJVl5jH/0M95dutXrWNKEAi28FwK/NbNYAP/tQ8CiYAUTEQmmNxZlEx8VzukDO3odRULQ/qJSrpo6lwMl5Tx9xWjS2sR4HUlaCDPjx6O68s5NY8hoH8fP/rOAX05bTEFx2ZGfLM1eoIX3FcDxQJ6Zbcc35vsE4PIg5RIRCZqi0nLeXrqVMwZ3JDYq3Os4EmJKyyu4/sWFrM3N5++XjKRfx0SvI0kLlJESz7SfHccNJ/XmtflZnP3Xz1i8RZfOtXSB9vHe6Jw7DugFnAv0ds4d55zbENR0IiJB8PGqXPYXlal3t/yAc45731jOnDU7eGjiYMb0SfU6krRgkeFh3H5GP16+9hhKyiqY9MSXPP7xWl142YIFesa7UjGwA4gws55m1jMImUREgmrmomxSEqI5rld7r6NIiPnHnPW89O1mfj6uFxeO7uZ1HGklju7ZnndvHssZgzvyh/dW85N/fk323gNex5IgCKjwNrPxZpYNbMPXZrBy+S6I2UREGt3+olI+Xr2DCUM7ERFe13MP0pK9vWQrD7+7iglDO3H76f28jiOtTFJcJI/9ZAR//NEwlmfnceajc5i1JMfrWNLIAv2p8zjwABDvnAursmhwpIg0Kx+s3E5JWYV6d8sh5m/aw62vLmJU92T++KNhhKltoHjAzJicmc47N4+hZ2oCN7y4kF+8uph8XXjZYgRaeCcD/3DO1fvvHmZ2g5nNM7NiM5tabdspZrbKzArN7GMz617LMdLM7CUzyzGzPDP7wsyOrm8mEWl9Zi3eSqekGEZ2S/Y6ioSITbsKuPa5eXROiuGpy0YRE6lzSuKt7u3jee2nx3LTyb15fWEWZ/3lMxZu3uN1LGkEgRbe/waubOBr5QAPAk9XXWlmKcAMfJPxtAPmAa/UcowEYC6Q6d/3WeBtM0toYDYRaQXyCkuZ890Ozh7SSWc0BYC9hSVcOXUuFc7xzJVH0S4+yutIIoDvwsvbTu/HK/97LOUVjslPfsVTc9Z5HUsaqC4T6DxhZmvMbE7VJdAXcs7NcM7NBHZV23QBsNw595pzrgiYAgwzs/41HGO9c+7Pzrmtzrly59xTQBSgwXgickTvrdhGabljwjBNmiNQXFbOdc/PJ2v3Af552Sh6pMR7HUnkB0ZntOOdm8dwcv80fvvOKjbtKvA6kjRAoNNw/cu/BMMgYHHlA+dcgZmt869fdbgnmtlwfIX32lq2XwdcB9Ctm65OF2ntZi3ZStd2sQxLT/I6itSgKT+znXP8avpSvt2wm79cNJzRGe2C+noiDZEUG8n95w3ig5Xbmb4gm9tO6+t1JKmngApv59yzQcyQgK9FYVV5wGFnLDCzNsDzwH3Oubya9vGfEX8KYNSoUWqKKdKK7S4o4Yu1O7l2TE/MNMwkFDXlZ/ajH3zH6wuzuf30vpynfu7SDHRKiuWE3inMWJDFLaf00XC5ZirQdoJmZtea2UdmtsS/bqyZ/bgRMuQDbaqtawPsP0yeWOAt4Gvn3O8aIYOItHCzl22jvMKpm4kwfX4Wf/nwO348Kp3rT+rtdRyRgE3OTCdrzwG+2bDb6yhST4GO8b4fuBrfmYjKv/9lAXc2QoblwLDKB2YWj2+GzOU17Wxm0cBMIBv430Z4fRFpBWYtyaFHSjyDOlf/PV9ak6/W7eJXM5ZwfO/2PDRxiP76Ic3K6QM7khgdwbT5WV5HkXoKtPC+ApjgnHsZqPzz3wYg4JkrzSzCzGKAcCDczGLMLAJ4HRhsZpP82+8FljjnfjC+28wigWnAAeAy51xFoK8vIq3Xjv3FfL1+FxOGdlKh1Yqtzd3P/z4/j4z28fz94kwiNYGSNDOxUeGcPbQT7y7bSoF6ezdLgX7qhOMbEgLfF94JVdYF4m58BfOvgEv89+92zu0AJgEPAXuAo4GLKp9kZk+a2ZP+h8cBE4DTgb1mlu9fxtQhh4i0Mu8u20qFgwlD1c2ktdqZX8yVU+cSFRHOM1eOJik20utIIvUyOTOdwpJy3l22zesoUg+BdjV5B/izmd0KvjHf+GayfCvQF3LOTcHXKrCmbR8AP2gf6N/20yr3PwV0ukpE6mTW4q30SUugX8fDXrMtLVRRaTnXPDuPHfuLeeW6Y0lPjvM6kki9ZXZPJqN9HNPmb2FyZrrXcaSOAj3jfRvQGV+3kSR8Z7q70zhjvEVEgmZbXhFzN+3W2e5WqqLCcesri1ictZe/XjSCYV3beh1JpEHMjEkj0/l6/W627C70Oo7UUUCFt3Nun3PufHwXVh4D9HLOTXTO1dp5REQkFLy9dCvOwYRh6mbSGj08exXvLtvG3WcP5PRBHb2OI9IoLshMxwxmLMj2OorUUcBXlphZW+A0YBxwipklByuUiEhjmbUkhwGd2tArNcHrKNLEXvh6E0/NWc9lx3bnquMzvI4j0mi6tI3luF7tmbZgCxUVmqakOQm0j/fJwEbgJmA0cCOwwcxOCV40EZGGydpTyMLNe9W7uxX6eHUu976xjJP7p3HvhIHqZiMtzuTMdLbsPsDcjerp3ZwEesb7MeA659zRzrkfO+eOAa4FHg9eNBGRhnl7yVYAztH47lZlRc4+bvjPAgZ0asPffjKCCLUNlBbojEEdiY8KV0/vZibQT6POwPRq614HNGBORELWrCVbGZqeRLf26mLRWmzNO8BVU+fSJjaSp68YTXx0oM27RJqXuKgIzh7aiXeWbqWwRD29m4tAC+/ngOurrfuZf72ISMjZuLOApdl5GmbSiuQXl3HV1HnkF5fx9BWj6dAmxutIIkE1ObMrBSXlzFZP72Yj0MJ7JPAnM8sys2/MLAv4EzDCzOZULsGLKSJSN28v9Q0zOVvDTFqFsvIKbnhxAWu27+fxi0cyoFMbryOJBN3ojGS6tYvTcJNmJNC/wf3Tv4iINAtvLc5hZLe2dGkb63UUaQL5xWXsyi/hgfMGc2LfVK/jiDSJyp7ej364hqw9hZocqhkIqPB2zj0b7CAiIo1lbW4+q7bt594JA72OIk2kbVwUM35+HJG6kFJamQtGduGRD9bw+oJsbjylj9dx5AgCbSdoZnatmX1kZkv868aa2Y+DG09EpO7eXrIVMzhb47tbFRXd0hp1bRfHsT3bM21BFs6pp3eoC/RT6n7gauApfLNXAmShKeNFJATNWpLD6Ix2urhORFqFSZnpbNpVyLxNe7yOIkcQaOF9BTDBOfcyUPnr1AagZzBCiYjU1+pt+/kuN59zdLZbRFqJMwd3JC4qnOm6yDLkBVp4hwP5/vuVhXdClXUiIiFh1pIcwgzGD1bhLSKtQ3x0BGcN6cSsJVs5UFLudRw5jEAL73eAP5tZNPjGfAMPAG8FK5iISF0555i1ZCvH9mpPamK013FERJrMpJHp5BeX8d5y9fQOZYEW3rfhm70yD0jCd6a7OxrjLSIhZHnOPjbsLGCCeneLSCtzdI92pCfHMn2BhpuEsoAKb+fcPufc+fiK7WOAXs65ic65/UFNJyJSB7OWbCUizBg/qKPXUUREmlRYmK+n9+drd5Kz94DXcaQWtRbeZhZWfQF2APOB3CrrREQ85xtmksPxvVNIjo/yOo6ISJObNDId5+D1hdleR5FaHK5wLgNKA1hERDy3OCuPrD0HmKBuJiLSSnVrH8dRPdoxbb56eoeqwxXePfC1C+wJ3Ah8CowHBvhvPwZuCHZAEZFAzFqcQ1R4GKdrmImItGKTM9PZsLOABZv3eh1FalBr4e2c21S54Lu48gLn3H+dc2ucc/8FfgTc3lRBRURqU1HheHvpVsb2TSEpNtLrOCIinjlrSCdiI8OZpp7eISnQMdpJQFy1dXH+9SIinlqweQ9b84rUzUREWr2E6AjOHNKRWYtzKCpVT+9QE2jh/SzwgZldZ2Znmtl1wHv+9SIinpq1ZCvREWGcOrCD11FERDw3eWQ6+4vLeH/Fdq+jSDURAe73S2AtcCG+ft5bgceAfwYpl4hIQMr9w0xO6pdGQnSgH2kiIi3XMT3b06VtLNPmZ3HuMP0lMJQE9FPKOVcBPOlfRERCxrcbdrNjfzEThqmbiYgIVPb07sJjH69lW14RHZNivI4kfurDLSLN2qwlOcRGhnNy/zSvo4iIhIwLRqZT4WDGQl1kGUpUeItIs1VWXsHsZds4ZUAacVEaZiIiUikjJZ7RGclMV0/vkKLCW0Sara/W72JXQYm6mYiI1GByZjrrdhSwaIt6eocKFd4i0mzNWryVhOgIxvVL9TqKiEjIOWtIJ2Iiw9TTO4TU+rdZM7s/kAM45+5tvDgiIoEpKatg9vJtnDawAzGR4V7HEREJOYkxkYwf1JG3Fudwz4SB+qwMAYc74901wEVEpMnNWJBF3oFStcoSETmMyZld2VdUxgcr1dM7FNR6xts5d2VTBhERCVTegVL+8N5qRmcka5iJiMhhHNurPZ2TYpg2P0vXw4SAOo3xNrNEM+thZj0rl2AFExGpzV8//I7dhSX85pxBmJnXcUREQlZ4mDFxZBfmrNnB9n1FXsdp9QIqvM1soJktBPLwzWC5FvjOv4iINJm1uft59suNXDS6K4O7JHkdR0Qk5E3y9/SeuTDb6yitXqBnvP8OfAy0A/YBycA/gMuDlEtE5Aecc9w/ayWxUeIY1/kAACAASURBVOHcfno/r+OIiDQLPVMTyOyezDT19PZcoIX3MOBO59xewJxzecAdwANBSyYiUs2HK3OZs2YHt5zal/YJ0V7HERFpNiZnpvNdbj5LsvK8jtKqBVp4FwGR/vs7zayb/7ntA30hM7vBzOaZWbGZTa227RQzW2VmhWb2sZl1P8xxMvz7FPqfc2qgGUSk+SouK+eBt1fQOy2By46t9SNCRERqcPbQTkRHhDF9gXp6eynQwvsz4Mf++9OAd4FPgY/q8Fo5wIPA01VXmlkKMAO4B99QlnnAK4c5zkvAQnxF/6+BaWamtgYiLdzTn29k065C7p0wkMhwzf0lIlIXbWIiOWNQR95YlENxWbnXcVqtgH56Oed+7Jyb6n94F/Aw8E/g4kBfyDk3wzk3E9hVbdMFwHLn3GvOuSJgCjDMzPpXP4aZ9QVGAr9xzh1wzk0HlgKTAs0hIs1P7r4iHvvoO04d0IGxffV7tohIfUzOTCfvQCkfrsz1OkqrVefTRs65Cufc8865J5xzBY2QYRCwuMrxC4B1/vU17bveObe/yrrFteyLmV3nH94yb8eOHY0QVUS88PDsVZSWO+6ZMMDrKBJE+swWCa7je6fQsU2MppD30OGmjH/KOXed//7zQI2XwTrnLmtghgSg+idsHpBYy77VrwrIA7rUku0p4CmAUaNG6TJekWZo4eY9zFiQzc/G9aJ7+3iv40gQ6TNbJLgqe3o/NWc9ufuLSEuM8TpSq1Nr4Q1sqHJ/bRAz5ANtqq1rA+xv4L4NkrWnkLteX0a/Dgn069iGfh0S6dMhgZjI8MZ+KRGpRUWFY8qby0lLjOb6k3p7HUdEpNmbNDKdJz5ZxxsLc7h2rOZBbGqHmzL+d1Ue/sM5t636PmbWsREyLKdKP3Aziwd6+dfXtG9PM0usMtxkGPBiI+Q4xN7CUnblF/Ps+l2UlFUAEGbQvX08/Tok0rdjIv07JtK3QyIZ7eOI0MVeIo1u+oIsFmfl8ciFw0iIPtx5AhERCUTvtARGdGvLtPlZXDOmh2b/bWKB/iRbww/PNAOswNeJ5IjMLML/euFAuJnFAGXA68AfzGwS8DZwL7DEObeq+jGcc2vMbBHwGzO7GzgTGEoQLq4c3CWJt28aQ1l5BZt2F7J62/6Dy5rt+3l/xTYq/H8IjYoIo3dqgq8Q75hIv46JjOyWTFJs5OFfRERqtb+olP+bvZqR3dpy/vAaR5OJiEg9TBqZzt0zl7E8Z59mAG5igRbeP/h1yMzaABV1eK27gd9UeXwJcJ9zboq/6H4MeAH4Brioyus8CeCc+6l/1UXAVGAPsBmY7JwL2lU4EeFh9EpNoFdqAmcN6XRwfVFpOWtz81m1bT+rt+1j9fZ8vli3kxn+6Vg7JcUw68YTNMmHSD397aO17Coo5ukrRumMjIhIIzpnaGfun7WCafOzVHg3scMW3ma2Bd9FlbFmtrna5vb4emoHxDk3BV+rwJq2fQD8oH2gf9tPqz3eCIwL9HWDJSYynMFdkn7wH3ZvYQnzNu7h5y8u4JZXFvHslUcRFqaiQaQu1u/I55kvNvCjzHSGprf1Oo6ISIuSFBfJ6QM7MHNRNv/vrP5ER+j6taZypIHJlwCXASXApVWWS4CRzrlrghuv+WkbF8WpAztw37mD+Oy7nTz+cTCvSxVpmR6YtYKYiHDuOKPG38dFRKSBJmWms7ewlI9Xqad3UzrsGW/n3KdmFg68BXztnCtumljN30Wju/Ltht088sEaMrsnc1zvFK8jiTQLH6/K5ePVO/j1WQNITdRQLRGRYBjTO4W0xGimzc9m/OBOR36CNIojtuJwzpUDY6nbeO5Wz8x48PzB9ExN4KaXF5G7r8jrSCIhr6SsggdmraBnajyXH5fhdRwRkRYrIjyMiSO78PHqXHbs13nVphJoD7xHgPvMTG066iA+OoInLh5JQXEZN760kLJy/e4icjhTv9zA+p0F3DNhIFERatEpIhJMk0emU17heGNRttdRWo1Af7LdCNwB7DezLWa2uXIJYrYWoU+HRB6aOJhvNuzm0Q++8zqOSMjK3V/EXz9cy8n90zipX5rXcUREWrw+HRIZlp7E9AUqvJtKoO0ELwlqihbugpHpfLthN499vJbMjGQVFSI1+MPs1RSXlXPPhIFeRxERaTUmZ6ZzzxvLWZ6Tx6DOai0YbAGd8XbOfVrbEuyALcWUcwfRv2Mit72yiJy9B7yOIxJSFm/Zy2vzs7jq+B70SIn3Oo6ISKtxzrDORIWHMW1+ltdRWoWAB1Ga2XAzu9HM7jOz+yuXYIZrSWIiw/n7xSMpKavghhcXUKrx3iIAVFQ4pry1nJSEaG44ubfXcUREWpW2cVGcNrADbyzKoaRMtUmwBVR4m9l1wBfAycCdwBDgF4B+StZBz9QEHp40lAWb9/KH91Z7HUckJMxclM3CzXu5c3w/EmN0/baISFOblNmF3QUlfLJaPb2DLdAz3r8ExjvnJgIH/LeTgdKgJWuhzhnWmcuO7c5Tc9bz/vJtXscR8dSX63Zy98xlDO/alkkj072OIyLSKo3tk0pKQrSGmzSBQAvvNOfcZ/77FWYW5px7FzgnSLlatF+fPYAhXZK4/bXFbNld6HUcEU98sjqXK5+ZS3pyLE9dlklYmHkdSUSkVYoID+OCkV34aFUuu/LV0zuYAi28s8wsw39/DXCemY3BN5W81FF0hG+8twOuf3EBxWXlXkcSaVKzl23j2ufm0TstgZevO5a0xBivI4mItGqTRqZTVuF4c3GO11FatEAL798DA/z37wdeAD4C7gtGqNaga7s4/vSjYSzJyuO3b6/0Oo5Ik3ljUTbXv7iAwV2SePHaY2gXH+V1JBGRVq9fx0SGdEnScJMgC7Sd4FT/0BL8t8lAsnPuiWCGa+lOH9SRa8f04NmvNjFriX7DlJbv1blbuOWVRYzOSOb5q48mKVYXU4qIhIrJmeksz9nHipx9XkdpsQ5beJtZnJn91szeNLMpZhYN4Jwrcc7lN03Elu2X4/szsltbfjV9Ket36J9UWq7nvtrIL6cvYUyfVJ654igSogOdv0tERJrCucM6ExluTF+gs97BcqQz3o/hu4ByFb4uJn8MeqJWJjI8jMf+ZySR4cbP/7OAolKN95aW5x+fruPeN5Zz2sAO/POyTGKjwr2OJCIi1STHR3FK/w68sShb840EyZEK7zOB051zv/TfnxD8SK1P57ax/PnC4azatp/73lrudRyRRuOc49EP1vC7d1cxYWgn/n7xSKIjVHSLiISqyZnp7Mwv4dPVO7yO0iIdqfCOd85tBXDObQGSgh+pdTqpXxrXn9SLl77dwj0zl7G3UA1jpHlzzvHwu6t49IPvmJyZzl8uGkFkeMCT5YqIiAdO7JdKSkKULrIMkiMNsowws5MAq+UxzrmPghWutbn11L4UFJfz3FcbeXNxDree2oeLj+muYkWancpp4J/7ahOXHtOd+84dpD7dIiLNQGR4GOcN78JzX21kT0EJyeo81aiOVNHlAk8D//Yvu6o9/ldQ07UyEeFhTDl3EO/ePJYhXZKY8tYKzvzLZ5rCVZqV8grHr2Ys4bmvNnHtmB7cf56KbhGR5mRyZjql5erpHQyHLbydcxnOuR6HWXo2VdDWpF/HRJ6/+ij+ddkoyiscVzwzlyuf+Za1uep6IqGttLyCW19ZxKvzsrjplD7cddYAzFR0i4g0JwM6tWFQ5zYabhIEGsMQosyMUwd24L1bxnL32QOYt2kP4x+dw31vLdf4bwlJxWXl3PDiAt5cnMOd4/tz22l9VXSLiDRTkzPTWZqdx+pt+72O0qKo8A5xURFhXDOmJ5/cPo4LR3fl2S83Mu6Pn/DcVxspU6sfCRFFpeX87/PzeW/5dqacM5CfjevldSQREWmAc4d1JiJMPb0bmwrvZqJ9QjQPTRzC2zeNYWCnNtz7xnLO/MtnzFmjdj/ivd++s5JPVu/gdxcM4Yrje3gdR0REGqh9QjQn909jxoJsnehrRCq8m5kBndrwn2uO5qlLMykpr+Cyp7/l6qlzWadZL8Ujn6zO5bmvNnH1CT34yVHdvI4jIiKNxNfTu5g53+kkX2NR4d0MmRmnD+rI+7eO5a6z+vPtht2c8cgc7n1jGSty9nkdT1qR3QUl3DFtCf06JHLHGf28jiMiIo1oXL802sVHMX1+ttdRWowj9fGWEBYdEc51Y3txwch0/vT+al76djPPfbWJ/h0TmTiiC+cN70LHpBivY0oL5ZzjrhlLySss5dkrjyImUjNSioi0JFERYZw3vDP/+XozewtLaBunnt4NpTPeLUBKQjS/u2Ao3951Kg+cN4jYqHB+9+4qjn34Qy751zdMn59FQXGZ1zGlhZk2P4vZy7fxi9P7MrBzG6/jiIhIEEzOTKekvIK31NO7UajwbkGS46O49NgMXv/58Xx8+zhuPLkPm3YX8IvXFjPqwQ+45eWFfLpmB+UVzuuo0sxt2V3IfW+t4Oge7bhmjNr5i4i0VIM6JzGgk3p6NxYNNWmheqTEc9tpfbn11D7M37SHGQuzmbU4h5mLckhNjOa8YZ25YGS6zlRKnZVXOG59ZREG/OnHwwjXrJQiIi3apJFdePDtlXy3fT99OiR6HadZ0xnvFs7MGJXRjt9OHMLcu0/liYtHMrxrW579aiNn/fUzxj86h398uo6lWXkUlmg4ihzZk5+uY96mPdx//iDSk+O8jiMiIkF2/oguRIQZ09TTu8F0xrsViY4I58whnThzSCf2FJQwa0kOMxZm87t3Vx3cJz05lj5pCfTpkEjvtISDS5uYSA+TS6hYlp3HI/9dw9lDO3H+8C5exxERkSaQkhDNuH5pvL4gmztO70dEuM7b1pcK71aqcjz4pcdmsGV3Icuy81ibm893/uWLdbsoKfu+YX7HNjH06eArwvukJfrupyaQHK8rnFuLotJybnllESkJ0Tx0/mBNBy8i0opMzuzCByu38/nanYzrl+Z1nGZLhbfQtV0cXdsdOmSgvMKxZXehvxDfz9rcfNbm5vPK3C0UlpQf3K99fBTpybGkJ8fRJTmW9ORYurT9/nFCtP6LtRQPv7uKtbn5vHD10WopJSLSypzcvwPJcZFMm5+lwrsBVBVJjcLDjIyUeDJS4jltYIeD6ysqHDl5B/guN5+12/NZvzOfrD0HWLl1H/9duf2Qs+QAbeMiDy3G2/qL8+RYUhKiiYsKJy4qQhfohbg5a3Yw9cuNXHl8Bif0SfE6joiINDFfT+8uvPjtZvIKS0mK0xDU+lDhLXUSFmakJ8eRnhzHSdV+462ocOwsKCZrzwGy9xzw3e4tJGvPAdbtKGDOmp0cKC2v8bgxkWEkREcQFxVBXFQ48dH+26gI4qMjiI/2FejxUeHERUcQExlGdEQ40RFhxET6bg/er2WbxqTVz56CEm5/bTF90hK4c3x/r+OIiIhHJmemM/XLjby1JIdLjunudZxmKSQKbzMbADwOZAI7gDucc6/XsJ8BDwBXAgnAQuB659zyJowrtQgLM9ISY0hLjGFkt+QfbHfOsbughOy9vqJ8T2EJhcXlFJSUUVhSTkFxmW8pKaewpIz9RWVs31dEQeU+xeWUlFfU8MqBiQgz2sVHHbxgtE9aAr3891MTojVmuQbOOX49cyl7Ckt45srRmp1SRKQVG9S5Df06JDJ9QZYK73ryvPA2swjgDeBJ4DTgROAtMxvhnFtTbfcfAVcBJwCbgAeB54GRTZdY6svMaJ8QTfuEaIamt63XMUrKKjhQUk5xWTlFpRUUl5VTXFZx6OPSCorLKigqPXRbUWk5ufuLWZubz4wF2eRXmc0zKTbyYDHe21+Q90lLoHNSLGGteBjMjAXZvLN0G3eO78+gzklexxEREQ+ZGZMz03nonZWszc2nd1qC15GaHc8Lb6A/0Bl4xDnngI/M7AvgUuCeavv2AD53zq0HMLMXgFubMqx4KyoijKiIMKBhY8ucc2zfV3zIhaPf5ebz3xXbeXnuloP7xUaG0ystnj5piQzs1IZBXdowqHMSSbEtf2zblt2F/ObN5RyV0Y7rxmp2ShERgfNGdObh2auYviBLww/rIRQK75pOJxowuIb1LwMXmllfYANwOTC71gObXQdcB9CtW7eGJ5UWw8zomBRDx6QYxvRJPWTb7oKSg8X4Wn9Xl6/W7eL1hdkH9+nWLo4hXZIY1KUNgzsnMbhLEu1aUGvF8grHL15dDGh2Smk6+swWCX1piTGM65vK6wuyuf30fvr5UEehUHivAnKBO8zsEeAkfMNNPq5h363AZ8BqoBzYApxc24Gdc08BTwGMGjXKNW5saanaxUdxVI92HNWj3SHrd+UXszxnH0uz81iek8fS7DzeXrr14PbOSTEM6pLE4M5JDEn3FeRpbWKaOn6jeGrOer7duJs//WjYD1pNigSLPrNFmodJmel8uGoBX6zdydi+qUd+ghzkeeHtnCs1s/OBvwF3AvOAV4HiGnb/DTAa6ApsAy7BNzRlkHOusIkiSyvVPiGasX1TD/mQySssZfnWPJZn72OZvxj/YOV2nL9kSE2MZkzvFP7fWQNITYz2KHndLMvO48//Xc1ZQzpywUjNTikiIoc6ZUAaSbG+nt4qvOvG88IbwDm3BN9ZbgDM7Evg2Rp2HQa84pzL8j+eamaPAgPxFewiTSopLpLjeqVwXK/ve1vnF5excus+lmXnsTQrj1lLt/Lx6lwemjiEs4Z08jDtkRWVlnPrK4tIjoviofOHqNOLiIj8QHREOOcN78wrc7ewr6iUNjEt/7qnxhISjY3NbKiZxZhZnJndDnQCptaw61zgR2bWwczCzOxSfFfZrW3CuCKHlRAdweiMdlx5fA/+fOFw3r7xBNKT4/j5fxZw00sL2VtY4nXEGpWUVXDfW8v5LjefP/5oGMktaMy6iIg0rkkj0ykuq+DtJVuPvLMcFBKFN74OJlvxjfU+BTjNOVdsZt3MLN/MKq+y+T9gMbAI2Iuvo8kk59xeL0KLBKJPh0Rm/Pw4bjutL+8s3crpj8zho1XbvY51kHOOj1ZtZ/yjc3jp2y1cN7an/nQoIiKHNTQ9iT5pCUybn3XkneWgkCi8nXN3OOeSnXMJzrkznXNr/es3+9dt9j8ucs5d75zr5Jxr45wb6ZyrtauJSKiIDA/jplP6MPP640mOi+KqqfO4c9oS9heVepprbe5+rnhmLldNnQcGz1wxmrvOGuBpJhERCX2VPb3nb9rD+h35XsdpNkKi8BZpLQZ3SeLNG4/nZ+N68dr8LYx/9DO+XLuzyXPkFZZy31vLOePRz1iweQ93nz2A2TeP5aT+aU2eRUREmqeJI7oQZr7J1iQwKrxFmlh0RDh3ju/Paz89jqiIMP7nX98w5c3lHCgpD/prl5VX8PxXGxn3x4959suNXDi6K5/cPo5rxvT0T0wkIiISmLQ2MYztm8r0BVmUV6gDaCD0k1bEI5ndk3nnpjFccVwGU7/cyFl//Yz5m/YE7fW+WLuTs//6Ofe8sZx+HROZdeMYfjtxCO0TmkebQxERCT2TM9PZmlfEV+t2eR2lWVDhLeKh2Khwppw7iBevPZqSsgp+9OSXPPzuKorLGu/s96ZdBVz33Dwu/tc3FJSU8eQlI3np2mMY2LlNo72GiIi0TqcO6ECbmAimzd/idZRmIST6eIu0dsf1SmH2LWN46O2VPPnpOj5elcuffjyMwV2S6n3M/OIyHvtoLU9/voGIcOOOM/px9Qk9iIkMb8TkIiLSmsVEhnPOsM5MX5DF/qJSEtXT+7BUeIuEiMSYSB6eNJQzBnXkzulLOP/xL+iVmkB8dDjx0RHER0X4bv2PE6IjiIs69L7vNoJl2Xn8/r3V7MwvZtLIdH45vh8dmun09SIiEtomZ6bzn282887SrVw4utuRn9CKqfAWCTEn9U/j/VvH8thHa9myp5CC4nLyi8vYvq+IguJyCkrKKCguo7T88BeyjOjWln9dPorhXds2UXIREWmNhndtS6/UeKbNz1LhfQQqvEVCUNu4KO6eMPCw+xSXlVPoL8oLS3y3BcVlFJaUERcVwZg+KZryXUREgs7X07sr/zd7FRt3FpCREu91pJClwlukmYqOCCc6IlxTu4uIiOcmjujCH95bxYwFWdx2ej+v44QsdTURERERkQbpmBTDCX1Smb4gmwr19K6VCm8RERERabDJmelk7z3A1+vV07s2KrxFREREpMFOH9iBxJgIpi3I8jpKyFLhLSIiIiINFhMZzoShnXl36Tbyi8u8jhOSVHhLszJu3DjGjRvndYxWz4uvQyCvGWiuhuSv6blt27albdu2h91Hgs/MmmUnn+b6/6W55q7+/dpcNJd/78mZ6RwoLeedpVu9jhKSVHiLiIiISKMY2a0tPVPimT5fw01qosJbRERERBqFmTEpM51vNuxm865Cr+OEHBXeIiIiItJoJo7oghlM10WWP6DCW0REREQaTee2sZzQO4XpC7LU07saFd4iIiIi0qgmjUwna88Bvt242+soIUWFt4iIiIg0qjMGdSQhOoJpusjyECq8RURERKRRxUaFM2FoJ95ZupUC9fQ+SIW3iIiIiDS6yZnpFJaUM3vZNq+jhIwIrwOIiIiISMuT2T2ZjPZxvDx3M8O6JgGGGRgQZpX3fbcAYWGGwSHrfY+r3fc/H+OQ9WHVjld5nDD7/nnmv+8VFd4iIiIi0ujMjMmZ6fzx/TWc+uc5Xsc5RPVC/pBiv8r9l649hmFdG2+mU3OudbR5MbMdwKZ6PDUF2NnIcZpSc88Pzf89NPf80PzfQ3PP3905l+p1iKbUCj+zlbtpKXfTam25a/3MbjWFd32Z2Tzn3Civc9RXc88Pzf89NPf80PzfQ3PPL4Frrl9r5W5ayt20lPt7urhSRERERKQJqPAWEREREWkCKryP7CmvAzRQc88Pzf89NPf80PzfQ3PPL4Frrl9r5W5ayt20lNtPY7xFRERERJqAzniLiIiIiDQBFd4iIiIiIk1AhbeIiIiISBNoNYW3md1gZvPMrNjMplbbdo2ZrTWzfDObbWadq2ybYmal/m2VS88q24eb2XwzK/TfDg+l/P7tI81sjn/7djO7ucq2DDP72J9/lZmdGoz8DXkPZvZutX//EjNb2tTvoQH5o83sSf+//W4ze8vMulTZ3s7MXjezAjPbZGb/E4z8DXwPbc3sWTPL9S9Tqj23qb4G0Wb2b/+/034zW2hmZ1bZfor/9Qv9ebpXe+7TZrbPzLaZ2W3Vjl3rcyX0NeX3UWM53PdjKDvS92EoM7MXzGyr/3NgjZld43WmujCzPmZWZGYveJ0lEGb2iT9v5c/v1V5nqgszu8jMVvo/V9aZ2ZiGHrPVFN5ADvAg8HTVlWZ2IvBb4DygHbABeKnac19xziVUWdb7nxsFvAG8ACQDzwJv+NeHRH4zSwFmA/8A2gO9gferHOIlYKF/26+BaWYWrBny6vUenHNnVv33B74EXvPgPdT3/9DNwLHAUKAzsBf4W5XtjwMlQAfgYuAJMxsUhPxQ//fwCBAHZABHAZea2ZVVtjfV1yAC2AKcCCQB9wCv+gv/FGCGf107YB7wSpXnTgH6AN2Bk4Bfmtl4OPh9crjnSuhryu+jxlLj92MzUOv3oYeZAvU7IMM51wY4F3jQzDI9zlQXjwNzvQ5RRzdU+Rnez+swgTKz04D/A64EEoGxwPoGH9g516oWfB9yU6s8/iPweJXHnQEH9PI/ngK8UMuxTgey8XeH8a/bDIwPofy/BZ6v5Vh9gWIgscq6z4CfhtLXoNpzM4ByoIdX76EeX4MngN9X2X42sNp/Px5fsdC3yvbngYdD6WuAb8rc0VW23wV85uX/oyqvtQSYBFwHfFllfTxwAOjvf5wNnF5l+wPAy/77h32ultBevPo+asT8h3w/Nsel8vvQ6xx1zNwP2Ar82OssAea9CHiVw9QlobYAnwDXeJ2jntm/BK5u7OO2pjPetTH/UvUxwOAq687xDxFYbmY/q7J+ELDE+b9Cfkv865vKkfIfA+w2sy/9QwTeMrNu/m2DgPXOuf1Vnr+Yps0PgX0NKl2Gr+Db4H8cCu/hSPn/DRxvZp3NLA7f2bh3/dv6AuXOuTVVnh+qX4Pq2yu3efY1MLMO+P4Nl/tfb3HlNudcAbAOGGRmyfh+mVhc5elVM9b63GDml0YTKt9HrVK178OQZ2Z/N7NCYBW+wvsdjyMdkZm1Ae4HfuF1lnr4nZntNLMvzGyc12ECYWbhwCgg1T8EM8vMHjOz2IYeW4W37xvux2Y21P8Pei++M31x/u2vAgOAVOBa4F4z+4l/WwKQV+14efj+JNFUjpQ/Hbgc33CHbhw6hCAU8sOR30NVlwFTqzwOhfdwpPxr8P0lJBvYh+//0/3+baGQH478HmYDvzKzRDPrDVxVZZsn78HMIoH/AM8651YdIUdClcc1ZQyVr4PUj75+Hqnh+zDkOed+ju//xhh8Q8yKvU0UkAeAfzvntngdpI7uBHoCXfBNRvOWmfXyNlJAOgCRwGR8/0+GAyOAuxt64FZfeDvnPgR+A0wHNgEbgf1Aln/7CudcjnOu3Dn3JfD/27vbYKuqOo7j3x8XlQREUBlERcKYoSLRTF4oJaUODg2ooU5CaU6iYyKZ2jiiBTiiUy90FJ/GVMiHMBMRH8oySid8JBVTGqN85FkvDwIK+PTvxVpH9r3e6z3I5Zxz7/19Zvbcc/bae+3/PvvstddZe619ryYdCICNwG6Nstwtr18RLcVPul0+JyIWRMRmYCpwmKQe1ED8UNY+ACBpGNAHuKcwu+r7UEb8NwBdSP2fu5IK+lKLd9Xjh7L2YSLpu/Rf0riGWYW0iu+DpE6krgTvAxPKiGNj4X1TMdbEcbDPzcevCpo5D9uEfE2fT2qcOqul5atJ6aENR5HG2rQpEfF0RGyIiC0R8VvgcWBkteMqw6b8d3pErIiIeuBKz8ObDQAACW1JREFUWiH2Dl/xBoiI6yJiYET0JlU8OgMvNbc4W2+5LwIOlFS8BX8gFb7d1kL8/yLF/Mni+a9IcQ6QVGwVGkIVbheWeQxOBe6NiI2FeTWxDy3EP4TUf3NNRGwhDawcmgf0LQY6SxpYyK7mjkGOfVxE9ImIr5LKjmfyqhU9Bvl8u4XUIjEmIj4oxDGksFxX4ABgUUSsJd1SHlLIqhhjs+vuiH2wVlcz51FH8RnnYVvTmXSu17LhpPFNb0paCVwAjJH0XDWD+pyKdaiala8ZS2lYf2oVHabiLamzpC5AHVAnqUtpnqTBSvqRboVcnT90JB0rqWdOH0pq+Zubs32UNNBvYn68UukX/99qJX5gBnC80mMPdyKNPp8fEetyf8iFwOScz/GkHw6zWzv+7dwHcveHE2nYzYRK7sN2xL8AOEVSj3wMfgIsj4j63Jf4XuBSSV0lHU56ssjtrR3/9uyDpAMk7SGpTumxYWeQBoRV9BhkN5C664yKiE2F+XOAwZLG5H38JWkMRun2923AJfl8HkTqOjazzHWthlX6PGotzZ2P1Y6rTM2dhzVLUm+lx8N1y2XZCOBkdsA1u5XdRPpxcFCebgQeAkZUM6iWKD2GdkThOjOO9GSQP1c7tjLNAM7J35uewLnAg9uda7VHjVZqIo0CjkbTFGB3Uqvwu8BK0qOG6grrzQJWk25lvgxMbJTvwcCzpNsSzwEH11L8ed2zSP2L1wIPAPsV0vqTfkBsAv4DHFVrxyCvezKpC4SayLci+7Ad36E9SH0g3yI9SnA+MLSQ3gu4L6//JjC21o4BcBLp0WfvkSrZI6p0DPbPMW/O52RpGpfTjyKdp5tyPP0L6+5CemzbemAVcF6jvJtd11PtT5U8j1ox5ibPx2rHVUbcn3ke1upEGqv1WC6H1wMvAuOrHdfn/N7U/FNN8ue9gNTlax3wFHB0tePahvh3Aq7Psa8ErgG6bG++ypmbmZmZmdkO1GG6mpiZmZmZVZMr3mZmZmZmFeCKt5mZmZlZBbjibWZmZmZWAa54m5mZmZlVgCveZmZmZmYV4Iq3WY2RdIekKdWOw8ysrZA0XNLSKmx3kqSbK71da7tc8bZ2RdKdkm5tNO8ISasl7d3K27pDUkga2Wj+tXn+D1pze2ZmbZ2k1yVtkrRR0ipJMyR1q3ZcJZIelXR6o3nHSlooab2keknzJPUHiIjLI+L0pvIya4or3tbeTARGSjoaIP875t8A50fEitbaiKS6/HIxcGph/k7AGODV1tqWmVk7MyoiugFfBw4FLikmKqmJ+omkLwG3AecDPYAvkv6b4cfVjMvarpr4Ypu1lohYDZwD3CSpKzAZeCUiZkrqlG8LvpJbLe6S1BMgp90jaaWkdbnV48ulfHPr9nWSHpb0LvDNnHQfMFxSj/z+u8A/gbcL6w6U9Pfc6l4v6fbC8kg6JLembJA0i/SvzSmkj5b0Qo5rvqTBrf7BmZlVWEQsA/4EDM5l7jRJjwPvAQMk9ZV0v6Q1kv4naXxpXUlfkDRT0lpJ/yZV4CmkR640l97PlHRZ4X2xFfsVScdImkYq26/NLfLXAgcBr0XEvEg2RMTsiHgz5zNF0h35dWm90vRhqdtg3pfZkt6W9JqkiTvmU7Va54q3tTsR8QfgWWAWcAZwZk46j1Qx/hawL/AucE1h1QeBgUAf4CXg9kZZjwWmAt2BJ/O8TcBDwEn5/Smk1pEiAZcBewNfAQYAvwCQtAswF7gV6JVfH/fJitKhpBb704E98nJzJe1c3qdhZlabJO0HjASez7N+SCqzuwNvkMrwpUBf4ATgcklH5mUnAwfkaQSFO49lbHcoqZz+ObA76ZrwekRcDPwDmBAR3SJiAvAcMEjSVZK+/VndYiKitF43YBiwllRedwIeAF4A9gGOBM6VNKLcmK39cMXb2quzge8Al5ZaJkgV8EkRsSwiNgNTgJMkdYqIjyNiZm7NKKUdklvNS+ZExJN52S2F+bcBp0jqBRwG3F8MJCIW59aS9yPiLeAq4IicfDgQwPSI+CAi7mLrRQjSRej6iFgQER9FRKn/eoPWHTOzNuQ+SeuA+cBjwOV5/syIWBQRH5IaQIYBF0bE5ohYCNxMqpxDauyYFhFrImIJDRtRWvJj4NaIeCSX58si4uWmFoyIV4HhpArz3UB9bj1vtgIuaS/S3dBzIuJ5Unm9V0Rcmq8Dr5IaVL6/DTFbO9G52gGY7QgRsUpSPbCoMLsf8ICkYt+8AHpLehu4gtSqsidb++/tSWoZB1jSzOYeI7WgTwLmRsQWSZ8kSupDuigcTmrJ6cTWrih9gaUREYX83ii83h8YJ+lnhXk7ky4CZmZt0XER8dfijFxmFsvYvsCaiNhQmPcG8I1C+pJGaeXaD/hjuQtHxFPku5r5LuTvgYuBixovm8f53AP8LjekQCrH++YfGyV1pNZ162Dc4m0dyVLg6IjYvTB1iYiVpC4iI0mt5D2AUt9AFdYPmpArzXeSurI07mYC8CtgC/C1iNgN+FEh3xWkSntRv8LrJcDURjHvGhF3l7fLZmZtRrGMXQ70ktS9MK8fsCy/XkGqQBfTit4Ddi2871N4vYTURaWlGD6dGLEAuBdobqzNdGADDQeMLiH1Ey+W490jYmTTWVh75oq3dSQ3kvoI9gOQ1FvS6JzWnVQ5Xk0qrKdtY95XkSr1jzeR1p3Uav5O7tN4QSFtPtBJ0gRJnSWdSBrpX3ITcLakQ/NI/26SRjXqAmNm1q7k7iNPAFdI6iLpQFIXkTvzIncDF0nqKWlf0qD6ooXAWEl1ko5ha/c+gFuA0yQdmQfW7yNpUE5bRRqHA4CkYZLGS+qd3w8CRgNPNY5Z0pl5O2Mjonhn9RlgvaQL86DQOkmDc+u5dTCueFtHciXwMDBP0gZSoV4q+GaQWliWk7qnPLEtGUfE6oiY10zyZGAo8A6p//fswnpbgOOB8aSBON8j9Q0spT8NnAXckNMXA34+uJl1BCcD/Unl8hxgckQ8ktOmkrqXvAb8hU8Phv8pMApYB4yjYbn6DHAaqcHkHVJ3wf1z8tXACflpKdfk9UcDL0raSLqGzAF+3Uy8A4DlhSebTIqIj3IsB+V460n91Xs0kYe1c2rYtdTMzMzMzHYEt3ibmZmZmVWAK95mZmZmZhXgireZmZmZWQW44m1mZmZmVgGueJuZmZmZVYAr3mZmZmZmFeCKt5mZmZlZBbjibWZmZmZWAf8HquM7L8tZfpUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAEPCAYAAAB1HsNIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABKG0lEQVR4nO3dd5hU5fnG8e+zjYVdlrr0snSkSxUVEXuJ0WBDDRZURGNLTDQxaowak5hfYmKJJYqo2HvvBQWlN+m9t6XDwvbn98cMZtiwMMDunNnd+3Ndc+3MaXPPzs6ZZ9/znveYuyMiIiIiIuUrIegAIiIiIiJVgQpvEREREZEYUOEtIiIiIhIDKrxFRERERGJAhbeIiIiISAyo8BYRERERiQEV3iIiIiIiMRCzwtvMrjezyWaWZ2ajSsw70czmmdkuM/vKzFoeYFtDzGyumeWY2WIzG1Cu4UVEREREDpPF6gI6ZjYYKAZOBaq7++Xh6fWBxcBVwHvAvcAAdz+qlO2cDDwFXAhMBBoDuPvq/T1//fr1PSsrqyxeiojIQVu/PZcNO/Lo2KgmyYkH1+YxZcqUje6eWU7R4pL22SJSUe1vn50UqxDu/iaAmfUGmkXMGgzMdvfXwvPvBjaaWUd3n7ePTf0RuMfdx4cf77fg3iMrK4vJkycfanwRkUNWWFTMsX/9ihMb12TUFX0Pen0zW14OseKa9tkiUlHtb58dD328OwMz9jxw9xxCLeCdSy5oZolAbyDTzBaZ2Soze8TMqscsrYjIQfpmYTbrtucypE/zoKOIiEiA4qHwTge2lZi2Dai5j2UbAsnAecAAoAdwJHDHvjZsZsPD/conZ2dnl1lgEZGD8fLEldRPT+GEjg2DjhLXtM8WkcouHgrvnUBGiWkZwI59LLs7/PNhd1/r7huBfwBn7GvD7v6ku/d2996ZmVWqe6SIxIkN23P5Yt4Gzu3ZjJSkeNjlxi/ts0WksouHb4HZQPc9D8wsDWgTnr4Xd98CrAJic0aoiMhhen3qKoqKnQvVzUREpMqL5XCCSWaWCiQCiWaWamZJwFtAFzM7Nzz/LmBmKSdWAjwD3GBmDcysDnAz8H4MXoKIyEFxd16ZtJK+rerSOjM96DgiIhKwWLZ430Goq8hvgZ+H79/h7tnAucCfgC1AP2DInpXM7HYz+yhiO/cCk4AFwFxgWnhdEZG4Mn7JZpZv2qWTKkVEBIjtcIJ3A3eXMu9zoGMp8+4v8bgAuC58ExGJW69MWkHN1CRO79I46CgiIhIH4qGPt4hIpbN1Vz4fzlrHz45sSvWUxKDjiIhIHFDhLSJSDt6etpr8wmKdVCkiIj9S4S0iUsbcnZcnraRr01p0blIr6DgiIhInVHiLiJSxmau2MW/dDrV2i4jIXlR4i4iUsZcnraR6ciJn92gSdBQREYkjKrxFRMpQTl4h705fzZndGlMzNTnoOCIiEkdUeIuIlKEPZq4lJ79IY3eLiMj/UOEtIlKGXp60gjaZafRqWSfoKCIiEmdUeIuIlJEF63cwdcVWhvRpgZkFHUdEROKMCm8RkTLyyqSVJCcag3s2DTqKiIjEIRXeIiJlIK+wiDenruKUTo2ol14t6DgiIhKHVHiLiJSBT2evZ8uuAo3dLSIipVLhLSJSBl6ZtJKmtatzbNv6QUcREZE4pcJbROQwrdy8i7GLNnJhn+YkJOikShER2TcV3iIih+mVSStJMDivV7Ogo4iISBxT4S0ichgKi4p5bcpKBrbPpEnt6kHHERGROKbCW0TkMIxZkM367Xlc2KdF0FFERCTOqfAWETkML09aSf30apx4RIOgo4iISJxT4S0icog2bM/ly3kbOK9XM5ITtTsVEZH90zeFiMghem3KKoqKXWN3i4hIVFR4i4gcguJi59XJK+nXqi6t6qcFHUdERCoAFd4iIodg/NJNLN+0iyF91dotIiLRUeEtInIIXpm0kozUJE7v0jjoKCIiUkGo8BYROUhbd+Xz0ax1/OzIpqQmJwYdR0REKggV3iIiB+mtaavJLyzW2N0iInJQVHiLiBwEd+fliSvp1qwWnZpkBB1HREQqEBXeIiIHYcaqbcxfv4Mhau0WEZGDpMJbROQgvDJpBdWTEzmru06qFBGRg6PCW0QkSht35vHO9DX8pFtjaqYmBx1HREQqGBXeIiJReviLheQVFjPi+DZBRxERkQpIhbeISBSWbczhhQkrGNKnOW0y04OOIyIiFZAKbxGRKPzfp/NJTkzgphPbBR1FREQqKBXeIiIHMGPlVt6fuZarB7SiQUZq0HFERKSCilnhbWbXm9lkM8szs1El5p1oZvPMbJeZfWVmLaPYXjszyzWz0eUWWkSqPHfnLx/No25aClcf1zroOCIiUoHFssV7DXAfMDJyopnVB94E7gTqApOBV6LY3qPApDLOKCKylzELsvl+ySZuPKGtRjIREZHDErPC293fdPe3gU0lZg0GZrv7a+6eC9wNdDezjqVty8yGAFuBL8onrYgIFBeHWrtb1K3Bxf0OeCBORERkv+Khj3dnYMaeB+6eAywOT/8fZpYB3APcEpN0IlJlvT19NfPW7eDXp3YgJSkedpciIlKRxcM3STqwrcS0bUDNUpa/F3ja3VceaMNmNjzcr3xydnb2YcYUkaokt6CIv3+6gK5Na/GTrrpKZSxony0ilV08FN47gYwS0zKAHSUXNLMewEnAg9Fs2N2fdPfe7t47MzPzcHOKSBUyevxyVm/dzW9P70hCggUdp0rQPltEKrukoAMAs4HL9jwwszSgTXh6SccDWcAKM4NQa3mimXVy957lnlREqoRtuwt45KtFHNc+k2Pa1g86joiIVBKxHE4wycxSgURCxXKqmSUBbwFdzOzc8Py7gJnuPm8fm3mSUFHeI3x7HPgAODUGL0FEqojHxyxm2+4CbjutQ9BRRESkEollV5M7gN3Ab4Gfh+/f4e7ZwLnAn4AtQD9gyJ6VzOx2M/sIwN13ufu6PTdC3VRyw9sQETls67blMnLsUs7p0ZTOTWoFHUdERCqRmHU1cfe7CQ0VuK95nwP7HD7Q3e8/wDZFRMrMg58twB1+dXL7oKOIiEglE3WLt5nVM7OhZnZr+HETM2tWftFERGJr4fodvDZlJUP7t6R53RpBxxERkUomqsLbzAYC84FLCF1hEqAd8Fg55RIRibm/fjyftJQkfjGobdBRRESkEoq2xfufwIXufhpQGJ42AehbHqFERGJt0rLNfD53PSOOb0PdtJSg44iISCUUbeGd5e57Ls/u4Z/5xMdwhCIih8Xd+fOHc2mYUY1hx7QKOo6IiFRS0Rbec8ys5JB9JwE/lHEeEZGY+2T2eqau2MovT2pP9ZTEoOOIiEglFW2L9S3A+2b2AVDdzJ4AzgLOLrdkIiIxUFhUzAOfzKNNZhrn9dL54iIiUn6iavF29/FAN0JXkxwJLAX6uvukcswmIlLuXp28iiXZOdx2WkeSEmN5aQMREalqomrxNrNqQLa7PxAxLdnMqrl7XrmlExEpR7vyC/nn5wvo1bIOJ3dqGHQcERGp5KJt3vkM6FViWi/gk7KNIyISOyPHLmXDjjx+d3pHzCzoOCIiUslFW3h3JTR8YKSJQPeyjSMiEhubc/J5fMwSTu7UkN5ZdYOOIyIiVUC0hfc2oORx2IZATtnGERGJjYe/XMiu/EJuO61D0FFERKSKiLbwfgN40cy6mFkNM+sKPAe8Wn7RRETKx8rNuxg9fjkX9G5O2wY1g44jIiJVRLSF9++BuYS6l+wAxhO6hPzt5ZRLRKRcFBU7v31zJokJxs0ntQ86joiIVCFRjWri7rnAL8zseqA+sNHd/QCriYjEnb9/Op9xizbxwHndaFQrNeg4IiJShUR9yXczqwV0ANLDjwFw9y/LJZmISBn7bM56/v31Yi7q25wLejcPOo6IiFQx0Y7jfTnwKLAT2BUxy4HWZR9LRKRsLduYw69enU7XprX4w1mdg44jIiJVULQt3n8CznP3j8ozjIhIedidX8SI0VNIMOPfl/QkNTkx6EgiIlIFRVt4JwGflmcQEZHy4O7c8fYs5q/fwcjL+9C8bo2gI4mISBUV7agmfwXuMLNolxcRiQsvTVzJG1NXceMJ7RjUoUHQcUREpAqLtsX7l0Aj4FYz2xQ5w91blHkqEZEyMGPlVu5+dzbHtc/kxhPbBR1HRESquGgL75+XawoRkTK2JSef616YSmbNavzrwh4kJljQkUREpIqLdhzvMeUdRESkrBQVOze9Mp3sHXm8NqI/ddJSgo4kIiIS9XCC1YC7gIuAeu5ey8xOAdq7+yPlGVBE5GA99MVCvlmQzf0/60r35rWDjiNSKRQWFbO7oIjd+UWhnwVFFBdDerUk0qolkp6aRLUkjRgksj/RdjV5EGgKXALsGVJwdni6Cm8RiRtfzd/AQ18u5Nyezbiory6SI1VDcbGTWxhRFId/7gr/zM3/7/3Iwnl3/t7L5hYUsSu/kN0Fxf+9H55fUHTgC1YnJxpp1ZJIj7il/c/9UJH+v9P/e79mahLVkhJ+vFifSGURbeH9M6Ctu+eYWTGAu682s6blF01E5OCs3LyLm1+eTsdGGdx3Thd9aUuFsHLzLqau2MLuAxTHu8IF9O5wQZxbUBwukovILSg+6OdNSUwgNTmB6imJ1EhJIjU5kRrh+3XTQverJydSPSV8C89PTf7vfTPYmVfEztwCcvKL2JlXyM7cQnLyCkP38wrZuiufVVt2sTOvkJy8InLyC/ED1/AkJhhpKYnUTE0mrVrifgv19NRwQV8ttGzJwj+UVfsDCV60hXd+yWXNLBPYtO/FRURiK7egiOtemEqxO4//vCfVU3TIW+Lf5GWbuWLUJHbkFu413QxqJCdSPSWJ6ikJ4QI4ierJCdRPT6FGSo0fC+Xq4WJ4r0I5ojhOTYmYl/zf5ZMTgxkhuLjY2VVQ9N/ivEShHrpfxM68AnLyitgRnp+TX8iO3ELWbcslJ6+QHeFli6Mo4hMM0lL+W6Q3q1Odq45tzTFt66kgl5iKtvB+DXjWzH4JYGaNgX8CL5dTLhGRg/LH92bzw+pt/OfS3rSslxZ0HJEDGrtwI1c/N5lGtVJ58aqjqF8zherJoaK4MnezSEiwH1ujGx7mttyd3IJidoSL9Jy8wv8p1HPCBfqeQj0nr4gpy7fw86cncGSL2txwQlsGdWhQaX/fEl+iLbxvBx4AfgBqAAuB/wB/LKdcIiJRe3XySl6auJLrjm/DyZ0O96tcpPx9Onsd1784jdaZaTx/ZT8ya1YLOlKFZGY/doWhZvTr5RUW8fqUVfz7q8UMGzWZLk0zuH5QO07p1JAEDT0q5Siq40zunu/uN7t7OtAQqOnuv3T3/PKNJyKyf7PXbOPOt2dxTNt63HJKh6DjiBzQO9NXc+0LUzmiSQYvDz9KRXcAqiUlckm/lnz9m+N54Lxu7MwtZMToKZzx0Le8N2MNRdH0XxE5BKW2eJtZ6/2sV3PPIRl3X1LWoUREorFtVwHXjp5KnRop/GvIkbpIjsS9Fyes4Pdv/0C/VnV56rI+pFeL9sCzlIfkxAQu6N2cwUc25f2Za3nkq0Xc8NI0/vn5An4xqC0/7d6EpID6wkvltL9P/CLAAQv/JHyfiMcAOoNJRGLO3bnltems3babV67pT/10tRpKfPvPN0v404dzGdQhk8d+3ovUZH19xoukxATOObIpZ3Vvwsez1vHwlwv51asz+NcXC7nu+Db87MhmpCSpAJfDV+pfkbsnuHuiuycAVxE6kbIDkAp0BF4EroxJShGREt6cuprP527gd6cfQc8WdYKOI1Iqd+fBzxbwpw/ncmbXxjwxtLeK7jiVmGCc2a0xH944gCeH9iIjNZnb3viBQf/3Nc+PX05eYVHQEaWCi/YY171AO3ffHX680MyuARYAo8ojmIhIabbuyuf+D+fSs0VtLj86K+g4IqVyd/70wVyeGruU83s14y/ndlOXqAogIcE4pXMjTu7UkK8XZPPwFwu58+1ZPPLlQq45rg0X9W2hIUvlkER73CQByCoxrSUH0c3EzK43s8lmlmdmo0rMO9HM5pnZLjP7ysxalrKNamb2tJktN7MdZjbNzE6PNoOIVA5/+2Q+W3blc985XTUCgcStomLn9rd+4KmxS7n86Cz+qqK7wjEzBnVowBvXHs0LV/Ujq14a97w/hwEPfMkTYxaTk1d44I2IRDiYS8Z/aWbPACuB5sDl4enRWgPcB5wKVN8z0czqA28S6s7yHqHW9VeAo0rJuxIYCKwAzgBeNbOu7r7sILKISAU1feVWXpy4giuObkWnJhlBxxHZp4KiYm55dQbvzljD9YPacssp7TVOdAVmZhzTtj7HtK3PxKWbefjLhfz5o3k8PmYxVx7bikuPziIjNTnomFIBRFV4u/vfzOwH4HzgSGAtMMzdP472idz9TQAz6w00i5g1GJjt7q+F598NbDSzju4+r8Q2coC7Iya9b2ZLgV7AsmiziEjFVFTs/P6tH2hQsxq/OqV90HFE9im3oIjrX5zG53PXc9tpHbn2+DZBR5Iy1LdVXZ6/sh/TVmzh4S8X8X+fLuDJb5Zw+TGtGHZMFrVrpAQdUeJY1OMYhYvsqAvtg9AZmBHxPDlmtjg8fV6pawFm1hBoD8wuh1wiEmee/34Zs9ds59GLe2oYNolLOXmFDH9+MuMWbeLeszsztH9W0JGknBzZog4jL+/DrNXbePjLhTz0xUKe/nYJlx6dxVXHtqKeRlqSfYjqm8vMUgh1LekBpEfOc/dLDzNDOpBdYto2DnANKjNLBl4Ani3ZMh6xzHBgOECLFi0OM6aIBGnD9lz+/ukCBrSrzxldGwUdR8pBRd9nb9tdwBXPTGT6yq38/fzunNur2YFXkgqvS9NaPDG0N/PWbeeRLxfx+JjFjBq3jEv6tWD4ca1pkJEadESJI9GeXPkscDOwA1hc4na4dgIlO2pmhJ9rn8wsAXgeyAeuL205d3/S3Xu7e+/MzMwyiCoiQbnvg7nkFRVz79ld1Fe2kqrI++xNO/O46Mnx/LB6G49e3FNFdxXUsVEGj1zck89+OZDTuzTime+WcewDX3HXO7NYs3X3gTcgVUK0x2pPA1q5+9ZyyDAbuGzPAzNLA9pQSvcRC33jPk3o0vVnuHtBOWQSkTgyduFG3p2xhptObEdW/bSg44jsZd22XC55ajyrt+7mqcv6MLB9xfqnQcpW2wbp/OPCHtx0Ujse+3oxL05YwUsTV3Ber2Zcd3xbmtetEXRECVC0Ld4rgMPqrGRmSWaWSmgIwkQzSzWzJOAtoIuZnRuefxcws7TuI8BjwBHAWRHjiotIJZVXWMRd78yiZb0aOklN4s6KTbs4/4nvWL89j2ev6KuiW37Usl4afzm3G2NuHcSQPi14Y8pqjv+/r7nl1Rksyd4ZdDwJSLSF93PAO2Z2kZmdEHk7iOe6A9gN/Bb4efj+He6eDZwL/AnYAvQDhuxZycxuN7OPwvdbAtcQ6mu+zsx2hm+XHEQOEalAnhyzhCUbc7jn7C662p/ElYXrd3De49+xI7eQF6/uR7/W9YKOJHGoae3q3HtOF765dRCX9m/J+zPXcNI/xnDjS9NYsL7UXrVSSZm7H3ih0JB9++Lu3rpsI5WP3r17++TJk4OOISIHYcWmXZz84BhOOqIhj17SM+g4gTGzKe7eO+gcsRTv++xZq7dx6ciJJCYYo6/sR4dG+x0PQORH2TvyeGrsEp7/fjm7C4o4rXMjrj+hLZ2b1Ao6mpSR/e2zox3Hu1XZRhIR2T935w/vziIpwbjzJ52CjiPyo8nLNnPFM5PIqJ4cupqhzjuQg5BZsxq/O/0IRhzXhpHjljJq3DI+mrWOk45owA0ntKN789pBR5RyFG1XE8ws2cwGmNmF4cdp4RMhRUTK3Cez1/HV/Gx+eXJ7GtXScFwSH75dmM3QpyeSWbMar43or6JbDlmdtBRuOaUDY397Ar86uT2Tlm3h7EfHcenIiUxetjnoeFJOoiq8zawrsAD4D6ERRSB02faR5ZRLRKqwnLxC/vjeHDo2qsnlR2cFHUcEgE9nr+PKUZNpWa8Gr1zTnya1qwcdSSqBWtWTufHEdoz77QncdlpHZq/exnmPf89FT47nu8UbiaZLsFQc0bZ4Pwbc5e4dgT3D940Bji2XVCJSpf3ri4Ws3ZbLn37WhaTEqA/MiZSbd6av5toXptKpSQYvDz+KzJq6KqGUrfRqSVx7fBu+vW0Qd5x5BIuyd3LxfyZw/uPfM2ZBtgrwSiLab7TOwOjwfYfQpd0B/bsvImVq/rodPD12KUP6NKdXy7pBxxHhxQkruPmV6fTJqsPoq/pRu0ZK0JGkEquRksRVA1rz7a2DuOfszqzZupvLRk7knEfH8fX8DUHHk8MUbeG9DOgVOcHM+gKLyjqQiFRdxcXOHW//QEZqEred1jHoOCI8+c1ibn/rB45vn8moK/qSXi3a686JHJ7U5EQu7Z/F178ZxJ8Hd2Xzrnwuf2YSM1dtDTqaHIZoC+87gQ/M7I9Aipn9DniN0NjcIiJl4vWpq5i0bAu/O/0I6qSpVVGC4+7847MF3P/hPM7s2pgnhvbWOPISiJSkBC7q24IPbxxAzWpJPPHNkqAjyWGIqvB29/eB04FMQn27WwKD3f3TcswmIlXIlpx8/vzhXHq3rMN5vZoFHUeqMHfnvg/m8tAXC7mgdzMeuuhIUpJ0roEEq2ZqMpcc1ZKPfljL8k05QceRQxT1nsTdp7r7de5+pruPcPcp5RlMRKqWBz6Zx/bcQu49pwsJCRZ0HKmiioqd3735A0+PXcrlR2fxl8HdSNTfo8SJYcdkkZSQwH++Vat3RRXtcIIpZnaPmS00s5zwz3vNTIPrishhm7piCy9NXMmwY7I4onFG0HGkiiooKubmV6bz8qSV3HBCW/5wVif9EyhxpUFGKoN7NuW1yavYuDMv6DhyCA5mOMETgBuBPuGfA4F/l1MuEakiCouK+f1bs2iUkcpNJ7UPOo5UUbkFRVw7egrvzVjDb0/vyC2ndMBMRbfEn6uPa01+UTHPfbcs6ChyCKItvM8BfuLuH7n7HHf/KDztnHLKJSJVxH++Xcrctdv5w1mdNGKEBCInr5Bhoybx+dwN3HtOF0YMbBN0JJFStclM5+QjGvLs98vJySsMOo4cpGgL73VAjRLTqgNryzaOiFQlL09cwV8/nsfpXRpxWpdGQceRKmjbrgJ+/vQExi/ZxD8u6M7Qo1oGHUnkgEYc34Ztuwt4ZdLKoKPIQYq2eel54GMzexhYBTQHfgE8Z2Yn7FnI3b8s+4giUhm9Nnklv3vrBwa2z+SfQ3rosL7E3MadeVz69EQWbtjBvy/pyWldGgcdSSQqPVvUoW9WXZ4eu5Sh/VuSrCv8VhjRFt7XhH/eXmL6iPANQle0bF0WoUSkcntr2ipufWMmx7atzxNDe1EtSeMjS2yt3babnz81gdVbd/PUZX0Y2D4z6EgiB+Waga258tnJvD9zDT87UkOwVhRRFd7u3qq8g4hI1fDO9NXc8uoM+reux5O6KIkEYPmmHC55agJbdxXw3LB+9G1VN+hIIgdtUIcGtGuQzhNjlnBOj6Y6alhBRH1swsySzWyAmV0YfpxmZmnlF01EKpsPZq7lV6/OoHdWXZ66rDfVU1R0S2wtXL+D8x//np15hbx4tYpuqbgSEoxrBrZh3rodjFmQHXQciVK043h3BRYA/wGeDk8eCIwsp1wiUsl8PGsdN748jSOb1+aZy/tQI0UjmEhszVq9jQue+B4HXhnen27NagcdSeSw/LR7ExplpPLEGF1Qp6I4mHG873L3jkBBeNoY4NhySSUilcpnc9Zz/YtT6dasFqOG9SVNwwZKjE1etpmLnhxPjZQkXrumPx0a1Qw6kshhS0lK4MpjW/H9kk3MWLk16DgShWgL787A6PB9B3D3HEJDCoqIlOrLeeu57oUpdG6SwbPD+mqsbom5bxdmM/TpiWTWrMZrI/qTVV+9JKXyuKhfC2qmJvHEN4uDjiJRiLbwXgb0ipxgZn2BRWUdSEQqjzELshnx/FQ6NsrguSv7kZGaHHQkqWI+mb2OK0dNJqt+Gq9c058mtdVeJJVLerUkhh7Vko9mrWPZxpyg48gBRFt43wl8YGZ/BFLM7HfAa8Ad5ZZMRCq0sQs3Mvy5ybRtkM7zV/alVnUV3RJbb09bzXUvTKVTkwxevvooMmtWCzqSSLm4/JgskhMTePJb9fWOd1EV3u7+PnA6kEmob3dLYLC7f1qO2USkgvp+8Sauem4SreqnMfqqftSukRJ0JKliXpiwnF++Op2+WXUZfVU/atXQP35SeTWomcq5PZvx+pRVZO/ICzqO7EfUwwm6+1R3v87dz3T3Ee4+pTyDiUjFNHHpZoaNmkTzOjUYfVU/6qap6JbYemLMYn7/1iwGdWjAM1f00XkFUiVcPaAVBUXFPPvdsqCjyH6Uujcys3ui2YC731V2cUSkIpu8bDOXPzORJrVTefHqo6ifrkP7EjvuzoOfLeChLxdxZrfGPHhBD1KSdCltqRpaZ6ZzaqdGPPf9MkYc30b/cMap/e2Rmkfc2gG/BU4E2gInhB+3K++AIlIxTF2xhcufmUSjjFReUn9aiTF359735/LQl4u4oHczHhpypIpuqXKuGdia7bmFvDxxRdBRpBSl/jvk7lfsuW9mLwMXufsbEdMGA+eXbzwRiUfuztptucxes53Za7Yxe812vlu0kfo1q/Hi1UfRICM16IhSxRQUOfPXb+eKY7K488xOJCTo8tlS9RzZog79WtXl6bFLuezo0AmXEl+iPQ5xOnBJiWnvAM+UbRwRiTdFxc7SjTnMXrONOWu2/1hsb9kVupaWGbSun8apnRvx61M70KiWim6JvZSkBEZe3oeUxATMVHRL1TViYBuuGDWJ92asYXDPZkHHkRKiLbwXAb8AHoqYdh2g0dpFKpGComLmrd3xYyv27DXbmLduB7vyiwBISUygfaN0Tu3ciM5NMujUpBZHNK6py79LXKiWlBh0BJHAHd8hkw4Na/LEmCX87Mim+kc0zkT7bXkV8JaZ3QqsBpoChcDg8gomIrG1PbeAi54cz+w124HQRRk6Nc7ggt7N6dwkg85NatGuYboOXYqIxDEz45qBrfnVqzP4en42gzo2CDqSRIiq8Hb3aWbWDjgKaAKsBb5394LyDCcisZFfWMyI56cwf90O/vSzLhzTpj4t6tZQP1kRkQrorO5N+L9P5vP4mMUqvONM1MeHw0X2t+WYRUQC4O7c+voMvlu8ib+f351ze6lPoIhIRZacmMCwY1tx3wdzmbZiC0e2qBN0JAnTMWORKu5vn8zn7elr+PUp7VV0i4hUEhf1bUGt6sk8MUaXkY8nMSu8zex6M5tsZnlmNqrEvBPNbJ6Z7TKzr8ys5X62U9fM3jKzHDNbbmYXl3t4kUrq+fHL+ffXi7m4Xwt+Maht0HFERKSMpFVLYuhRLflkzjqWZO8MOo6ExbLFew1wHzAycqKZ1QfeBO4E6gKTgVf2s51HgXygIaEhDh8zs87lEVikMvtsznr+8M4sTuzYgHt+2llnvouIVDJ7xvL+z7dq9Y4XpRbeZpYQzS3aJ3L3N939bWBTiVmDgdnu/pq75wJ3A93NrOM+MqUB5wJ3uvtOdx8LvAsMjTaHiMC0FVu44aWpdG1ai4cvPpIkjVQiIlLpZNasxnm9mvHGlNVs2JEbdBxh/y3ehUDBfm575h+uzsCMPQ/cPYfQ+OD7asVuDxS5+4KIaTNKWVZE9mHZxhyufHYyDWqm8vTlfTQGt4hIJTZ8QGsKiosZNW5Z0FGE/Y9q0ipGGdKB7BLTtgE1S1l2W5TLYmbDgeEALVq0OLyUIpXApp15XPbMRNydZ4f1pX56taAjifxI+2yRspdVP43TuzTi+fHLuW5QW9KrqbElSKW2eLv78mhuZZBhJ5BRYloGsOMwl8Xdn3T33u7eOzMz87CDilRku/ILGfbsZNZty+Xpy/vQqn5a0JFE9qJ9tkj5uOa4NuzILeSlCSuCjlLlRf1vj5n9FBgI1Ad+PAvL3S89zAyzgcsinicNaBOeXtICIMnM2rn7wvC07qUsKyJhhUXF3PDiNH5YtZXHf96LnhrTVUSkyujevDb9W9fj6bFLuezoLFKSdF5PUKL6zZvZH4AnwsufT+gEyVOBrdE+kZklmVkqkAgkmlmqmSUBbwFdzOzc8Py7gJnuPq/kNsL9v98E7jGzNDM7BjgbeD7aHCJVjbtz17uz+WLeBu7+aWdO6dwo6EgiIhJj1wxszbrtubw7Y03QUaq0aP/lGQac7O6/BPLDP88Csg7iue4AdgO/BX4evn+Hu2cTGqnkT8AWoB8wZM9KZna7mX0UsZ3rgOrABuAl4Fp3V4u3SCn+/fViXpywghED23Bp/6yg44iISAAGts+kY6OaPDFmMcXFHnScKivaria13X1W+H6+mSW7+0QzGxjtE7n73YSGCtzXvM+B/xk+MDzv/hKPNwPnRPu8IlXZm1NX8bdP5nN2jybcemqHoOOIiEhAzIwRA9tw8yvT+Wr+Bk48omHQkaqkaFu8F0dcpGYWcK2ZDSXUQi0icWjswo3c+vpM+reuxwPndSMhQRfIERGpys7s1pimtavrMvIBirbwvgOoF77/O+BG4G/Ar8ojlIgcnjlrtjNi9BTaZKbz+NBeVEtKDDqSiIgELDkxgSuPbcXEZZuZslxtp0GIqvB29w/d/Zvw/Qnu3tbdG7n7m+UbT0QO1qotu7hi1ETSqyUxalgfalVPDjqSiIjEiQv7NKdW9WSeGLM46ChVUql9vM0sy92Xhe+3Lm05d9fxCpE4sW5bLpc8NYFd+UW8NqI/jWtVDzqSiIjEkbRqSVzWvyUPf7WIRRt20rZBetCRqpT9tXj/EHF/EbAw/DPytnAf64lIALJ35HHJU+PZuCOPZ4f1pWOjkteaEhERgUuPziIlMYGnvlXbaazt78qVNSPuJ7h7Yvhn5E0dR0XiwOacfH7+1ATWbM3lmSv66gI5IiJSqvrp1Ti/dzPenLqaDdtzg45TpUR7AZ2HSpn+zzJNIyIHbdvuAoY+PYGlm3J46rLe9G1VN+hIIiIS564e0JrC4mJGjlsWdJQqJdpRTS4vZfrQMsohIodgZ14hl42cyIL1O3hiaC+OaVs/6EgiIlIBtKyXxuldG/PC+OXsyC0IOk6Vsd8L6JjZsD3LRdzfozWwsVxSicgB7covZNgzk/hh9Tb+fUlPBnVoEHQkERGpQEYc14YPZq7lxQkruGZgm6DjVAkHunLlnhbtFPZu3XZgPXBZeYQSkf3LLSji6ucmM3n5Zv415EhO7dwo6EgiIlLBdG1Wi2Pa1mPkuKVcfkyWrvkQA/stvN19kJklAM8CV7h7YWxiiUhp8gqLuHb0FL5bvIm/n9+ds7o3CTqSiIhUUNcc14ZLR07knelruKB386DjVHoH7OPt7sXAYKC4/OOIyP4UFBVzw4vT+Gp+Nvf/rCuDezYLOpKIiFRgA9rV54jGGTwxZjHFxR50nEov2pMrpwHtyzOIiOxfYVExN78ynU/nrOfuszpxUd8WQUcSEZEKzswYMbA1i7Nz+GLehqDjVHrRFt5fAx+b2d1mdqWZDdtzK8dsIhJWXOzc+vpMPpi5ltvP6Mjlx7QKOpKIiFQSZ3ZtTNPa1XUZ+Rg40MmVexwDLAUGlpjuwMgyTSQie3F3fv/2D7w5bTW/Ork9w4/TmeciIlJ2khITuHpAK+5+bw6Tl22md5auB1Feoiq83X1QeQcRkf/l7vzxvTm8NHElvxjUhhtOaBt0JBERqYQu6NOcf32xkMfHLOEpFd7lJtquJj+ykIQ9t/IIJSKhovsvH81j1HfLuOrYVvz6lA6YWdCxRESkEqqRksSl/bP4fO56Fm3YEXScSivaS8Y3NbO3zGwTUAgURNxEpBz88/OFPPHNEoYe1ZLfn3mEim4RESlXl/ZvSWpyAk9+syToKJVWtC3WjwP5wInATqAn8C4wopxyiVRpr05ayb++WMj5vZrxx592VtEtIiLlrl56NS7o3Zy3pq1m3bbcoONUStEW3kcDw9x9OuDuPgO4ErilvIKJVFXfLd7I7W/9wIB29bl/cFcSElR0i4hIbFw9oDVFxc4z45YGHaVSirbwLiLUxQRgq5llAjlA03JJJVJFLc7eybWjp9KqfhqPXNyT5ESdRiEiIrHTvG4NzuzWhBcmrGB7rnoUl7Vov9UnAGeE738CvAK8CUwuj1AiVdGWnHyGjZpEUoIx8vI+1KqeHHQkERGpgq45rjU78wp5YfyKoKNUOtEW3kMJXUQH4GbgS2AWcHHZRxKpevIKi7jm+Sms3ZbLk5f2onndGkFHEhGRKqpL01oMaFefkeOWkldYFHScSmW/hbeZ1TCz+4HngJvMrJq773b3+9z9NndfG5uYIpWXu/O7N39g4rLN/O28bvRqqfFTRUQkWNcc14bsHXm8PW110FEqlQO1eD8CnAXMA84D/q/cE4lUMf/+ejFvTl3NzSe14+weOm1CRESCd0zbenRuksET3yyhuNiDjlNpHKjwPh04xd1vDd//SflHEqk63p+5hr99Mp+zezThphPbBR1HREQEADPjmoFtWJKdw2dz1wcdp9I4UOGdtqc7ibuvBGqVfySRqmHaii3c8uoMerWsw1/P7aaxukVEJK6c0aURzetW5/Exi3FXq3dZSDrQfDMbBFgpj3H3L8srnEhltWrLLq5+bjINMqrx5NBepCYnBh1JRERkL0mJCVw9oDV3vTObycu30CdL5yAdrgMV3huAkRGPN5V47EDrsg4lUpntyC3gylGTySss5uXhR1EvvVrQkURERPbp/F7N+efnC3n868X0uVyF9+Hab+Ht7lkxyiFSJRQWFXP9i9NYlL2TZ6/oS9sGNYOOJCIiUqrqKYlc1j+LBz9fwIL1O2jfUN9bh0OXxROJoXvfn8OYBdnce3YXjm1XP+g4IiIiB3Rp/5ZUT07kyW+WBB2lwlPhLRIjo8Yt5dnvl3P1gFZc3K9F0HFERESiUicthQv7NOed6atZu2130HEqNBXeIjHw1bwN3PP+HE46oiG/Pf2IoOOIiIgclCuPbUWxw8ixS4OOUqHFTeFtZkeY2Zdmts3MFpnZz0pZzszsPjNbHV72azPrHOu8ItGau3Y71784lSMaZ/CvIT1ITNCwgSIiUrE0r1uDn3RrzIsTVrBtd0HQcSqsuCi8zSwJeAd4H6gLDAdGm1n7fSx+PjAMGBBe9nvg+RhFFTko67fncuWoSaSnJvH0ZX1Iq3aggYRERETi0/DjWpOTX8To8cuDjlJhxUXhDXQEmgAPuntReGzwccDQfSzbChjr7kvcvQgYDXSKXVSR6MxYuZWzHxnHll0FPH1ZHxrVSg06koiIyCHr3KQWA9rV55lxy8gtKAo6ToUUL4X3vo69G9BlH9NfBtqaWXszSwYuAz4uz3AiB+uNKas4/4nvSUwwXr+2P12a6qKvIiJS8V07sA0bd+bx1rTVQUepkOKl8J5H6GI9vzGzZDM7BRgI1NjHsmuBb4H5wG5CXU9+ua+NmtlwM5tsZpOzs7PLJ7lIhIKiYv743mxueW0GvVrU4b0bjqVzExXdItHQPlsk/vVvU4+uTWvxn2+WUFSsy8gfrLgovN29ADgHOBNYB9wCvAqs2sfifwD6AM2BVOCPwJdm9j9Furs/6e693b13ZmZmOaUXCdm0M49Ln57IM+OWMeyYVjx/ZV/qpqUEHUukwtA+WyT+mRnXDGzNko05fDZnXdBxKpy4KLwB3H2muw9093rufiqhS9FP3Mei3YFX3H2Vuxe6+yigDurnLQGatXobP31kHFNWbOHv53fnrrM6kZQYNx8vERGRMnN6l8a0qFuDx8YswV2t3gcjbioDM+tmZqlmVsPMfg00BkbtY9FJwPlm1tDMEsxsKJAMLIphXJEfvTN9Nec9/h3F7rw+oj/n9moWdCQREZFyk5hgXH1ca2as3MrEpZuDjlOhxE3hTWgEk7WE+nqfCJzs7nlm1sLMdprZnkv9/RWYAUwHthLq332uu2+NeWKp0oqKnT9/OJebXp5O16a1ePf6Y+nWrHbQsURERMrd+b2aUS8thcfHLA46SoUSN4MKu/tvgN/sY/oKID3icS7wi/BNJBBbd+Vzw0vT+HbhRoYe1ZI7f9KJlKR4+j9WRESk/KQmJ3L50Vn8/bMFzFu3nY6NMoKOVCGoUhA5SPPWbeenj4xjwpLN/GVwV+49p4uKbhERqXKG9m9J9eREnvxmSdBRKgxVCyIH4cMf1jL439+RW1DES8OPYkjfFgdeSUREpBKqXSOFIX2b8+70NazeujvoOBWCCm+RKBQVO3/7ZB7XvTCVDo1q8t4Nx9KrZZ2gY4mIiATqymNb4cDIsUuDjlIhqPAWOYDcgiKGPzeZR79azJA+zXl5+FE0zNDl30VERJrVqcFPuzfhpYkr2LarIOg4cU+Ft8h+5BcWc+3oKXw5fwP3nN2ZPw/uSrWkxKBjiYiIxI3hx7VmV34RoycsDzpK3FPhLVKKwqJibnxpGl/Nz+ZP53Tl0v5ZmFnQsUREROLKEY0zGNg+k2fGLSW3oCjoOHFNhbfIPhQVO79+bQYfz17HnT/pxMX9dBKliIhIaUYMbMPGnfm8MXVV0FHimgrvUrg7789cw9y12/XfWxXj7vz+rR94e/oafnNqB648tlXQkUREROLaUa3r0r1ZLf7zzRKKinUZ+dLEzQV04s3abblc/+I0ABIMmtetQZvMdNo2SKdtZjptGoTu16qeHHBSKUvuzh/fm8PLk1Zy/aC2/GJQ26AjiYiIxD0z45qBbbjuhal8MnsdZ3RtHHSkuKTCuxSZNavx4Y0DWJy9k0UbdrIoeyeLN+xk7KKN5BcW77Vcm8y0Hwvytg1q0rZBOg0zqqk/cAXj7jzwyXxGfbeMYce04pZT2gcdSUREpMI4tXMjsurV4Ikxizm9SyPVQfugwrsUyYkJdGqSQacme18CtajYWbl5F4s27NyrKH9n+hp25Bb+uFzbBum8dk1/6qSlxDq6HKJHvlzEY18v5uJ+LbjzJ0dohyEiInIQEhOMq49rze/fmsX4JZvp36Ze0JHijgrvg5SYYGTVTyOrfhon0fDH6e5O9o48Fm3YyZy123ng4/n8+rUZPHVZbxVwFcBT3y7h758tYPCRTbnv7C56z0RERA7BuT2b8eBnC3h8zGIV3vugkyvLiJnRICOVo9vW56oBrbn9jI58MW8DT32rKznFu9Hjl3PfB3M5s2tjHjivGwkJKrpFREQORWpyIpcfncWYBdnMXbs96DhxR4V3Obns6CxO69yIv348j6krtgQdR0rx+pRV3PH2LE7s2IAHL+xBUqI+EiIiIodj6FFZ1EhJ5MlvlgQdJe6oyignZsZfz+tGo1qp3PDiNF1GNQ69P3MNt74+g2Pb1ufRS3qSkqSPg4iIyOGqVSOZi/q24N0Za1i1ZVfQceKKKo1yVKt6Mo9c3JP123P59eszcNe4lvHi8znrufnl6fRqWYcnL+1FarIuAy8iIlJWrjy2FQY8PVZdbiOp8C5nPZrX5rend+SzOet5ZtyyoOMI8O3CbK57YSqdm2Qw8vI+1EjROcYiIiJlqUnt6vy0RxNenriSLTn5QceJGyq8Y+DKY1tx0hEN+PNHc5mxcmvQcaq0iUs3c/Vzk2mdmcazw/pSM1UXQBIRESkPw49rze6CIkaPXx50lLihpr4YMDP+7/zunPGvb7n+pam8f8MAXfEyAN8t3sjw56bQtHZ1Rl/Vj9o1NMa6iIhIeenYKINBHTJ55rtlFLmzp8ftjx1vwxN874c4/7ts5LzIGf+df+B1Svb4dfcDLnthn+Z0a1Y7qtcbDRXeMVK7RgoPX3wkFzwxnt++MZN/X9JTY0XHyMrNu/jLx/P4YOZasurV4IWrjqJ+erWgY4mIiFR615/Qjov+M55/fr5wn/PNwH68H7pnEfNCj3+88z/z98yz/5m397b+d1074DpmcFz7TLo1O/DrjJYK7xjq1bIuvzm1A3/5aB7Pj1/Opf2zgo5UqeXkFfLY14t58tslJBjcfFI7hh/XWn26RUREYqRXyzrMv/e0Hx9X9UZHVSAxNnxAa8Yv2cR978+lZ4s6dGlaK+hIlU5xsfPmtNU88PE8NuzI45weTbj1tI40qV096GgiIiJVTlUvtiPp5MoYS0gw/nFBD+qmpfCLF6eyI1fje5elScs2c/aj4/j1azNoUrs6b153NP8ccqSKbhEREQmcCu8A1E1L4aGLjmTVlt387s0fNL53GVi1ZRfXvziV8x//nuwdefzzwh68ee3R9GxRJ+hoIiIiIoC6mgSmb6u6/Ork9vztk/n0b1OPS/q1DDpShZSTV8jjYxbz5DdLMIObTmzHNQPVj1tERETij6qTAF07sA3jl2zij+/N4cjmdejUJCPoSBVGyX7cZ/dowm3qxy0iIiJxTIV3gBISjAcv7BEa3/vFqbx7w7GkV9Nbsj/uTv+fDmVzy+PJT29M92a1eOznvejVUl1KYun4448H4Ouvv46754xmucPJv691a9euDcDWrVsPe/ty6PacwFXRuu9V1L+Xipq75Oe1oqiov2/Zm6q8gNVPr8a/hhzJJU+N5463fuDBC3vo7N8IxcXOwg07Gb9kExOWbmLCks1s6nwRifk7+McF3TmnR1MSEvT7EhERkfinwjsO9G9Tj5tObM+Dny+gf5t6XNinRdCRAlNc7MxfvyNUaC/ZzISlm9iyKzTyS5NaqQxsn8mY158ibdN8Bv9jSMBpRURERKKnwjtOXH9CWyYs3cQf3p1NzdRkBrSrT83Uyn9Z+eJiZ+667UxYspnxSzYxcdlmtoYL7WZ1qnNCx4Yc1bouR7WuR7M61TEzjn9sVsCpRURERA6eCu84kZhg/HNID855ZBzXvTCVxASja9NaHNO2Hke3qU+vlnVITU4MOmaZ2LargPd/WMNX87KZtGwz23aHCu0WdWtw8hENOap1Pfq1rkuzOjUCTioiIiJSdlR4x5EGNVP58tfHM3XFFr5fvInvFm/i8TFLePSrxaQkJdCrRR2OblOPo9vWo1uz2iQnVpxh2AuKihkzP5s3p63i8zkbyC8qpkXdGpzWuRFHtalLv1b1NCKJiIiIVGoqvONManIiR7epz9Ft6nMLsDOvkElLNzNu0Ua+W7yJv3+2gL9/BmkpifRtVTe0bNt6HNEoI+5OMnR3Zq/ZzhtTV/Hu9DVsysmnXloKlxzVgnN7NqNzkwydSCoiIiJVRtwU3mZ2BPAo0AvIBn7j7m+Vsmxr4CFgIJAHjHT3W2OVNZbSqyUxqGMDBnVsAMDmnHzGL9nEd4tDhfhX8+cCUKdGMn1b1aVr01p0apJBp8a1aJhRLZDCdv32XN6etpo3p65m/vodpCQmcFKnBgw+shkDO2RWqJZ6ERERkbISF4W3mSUB7wCPAycTKqjfM7Mj3X1BiWVTgM8IFekXAkVA+9gmDk7dtBTO6NqYM7o2BmDttt0/dkuZtGwzn8xev9eynRpnhAvx0M/W9dNIKofCd3d+EZ/OWccbU1czdmE2xQ49W9TmvnO6cFa3JtSqUflPFBURERHZn7govIGOQBPgQQ9d+eBLMxsHDAXuLLHs5cAad/9HxLSZMUkZhxrXqs7gns0Y3LMZADtyC5i3bgdz1mwP3dZuZ9R3y8gvLAagWlICHRvV3KsY79gog7SIC/cUFzuFxU5hcTGFxU5RUehxUbFTUFRMUfF/H2fvyOOd6av5aNY6duYV0rR2da4f1Jaf9WxGq/ppgfxOREREROJRvBTe++oPYUCXfUw/ClhmZh8BfYBZwA3u/kM55qswaqYm0yerLn2y6v44raComCXZOcxZu+3HYvzjWet4aeJKAMxCBfmegvpgL/qWXi2JM7o2YnDPZvTNqht3fc1FRERE4kG8FN7zgA3Ab8zsQWAQoe4mX+1j2Wbh+T8FvgBuAt4xs47unh+5oJkNB4aHH+40s/mHkK0+sPEQ1osXMck/G/hb+W1+n6+hAp2YWdH/hiCO3oNon7PEcmWef1/rlpxWhr+flmW1oXhWVvtsM6uInzflji3ljq2K/D14KNlL3WebH2zzZjkxs27Aw4RauScTOsEyz92vLLHcO0CGuw8KPzZgK3Ccu88oh1yT3b13WW83Vip6fqj4r6Gi54eK/xoqen6JXkV9r5U7tpQ7tipqbij77HEzvIS7z3T3ge5ez91PBVoDE/ex6EwgPv5bEBERERGJUtwU3mbWzcxSzayGmf0aaAyM2seio4GjzOwkM0sEbiZ0CGBuzMKKiIiIiBykuCm8CY1gspZQX+8TgZPdPc/MWpjZTjNrAeDu84GfExp6cAtwNvDTkv27y9CT5bTdWKno+aHiv4aKnh8q/muo6PklehX1vVbu2FLu2KqouaGMs8dNH28RERERkcosnlq8RUREREQqLRXeIiIiIiIxUGUKbzO73swmm1memY0qMe8qM1sU7kv+sZk1iZh3t5kVhOftubWOmJ9lZl+Z2S4zm2dmJ8VT/vD8nmb2TXj+ejO7Kdb5D+c1mNlHJX7/+Wb2Q8T8uH4PzKyamT0e/t1vNrP3zKxprPMf5muobWbPmtmG8O3uEuvG6j2oZmZPm9lyM9thZtPM7PSI+SeGn39XOE/LiHlmZn81s03h2wNm/x1oO5bvg5Q9M6trZm+ZWU747+PioDNFY3+fyXh1oM9hPDOz0Wa21sy2m9kCM7sq6EwHw8zamVmumY0OOku0zOzrcOY93+GHMj5/IMxsiJnNDe9XFpvZgMPdZpUpvIE1wH3AyMiJZjYQuJ/QSZp1gaXASyXWfcXd0yNuSyLmvQRMA+oBvwdeN7PMeMlvZvWBj4EnwhnbAp8GkP+QX4O7nx75+we+A14L4DUc6t/QTUB/oBvQhNC48w8HkB8O/TU8CNQAsoC+wFAzuyJifqxeQxKwktAFtmoBdwKvhovm+sCb4Wl1CV0P4JWIdYcD5wDdCb0XPwGuCeA1SPl4FMgHGgKXAI+ZWedgI0Vln5/JOFfq5zDIUFH6M5Dl7hmELsR3n5n1CjjTwXgUmBR0iENwfcT3eIegw0TDzE4G/gpcAdQEjgOW7HelaLh7lboR2sGNinj8f8CjEY+bEBonvE348d3A6FK21R7IA2pGTPsWGBFH+e8Hno+X/IfyGkqsmwUUAa0q0HvwGPBAxPwzgfkV6T0gNGRnn4j5twPfBvkaIp5rJnAuocL6u4jpacBuoGP48XfA8Ij5VwLj4+E16HbYfwNphIru9hHTngf+EnS2g3gNe30mK9ptz+cw6BwHmbkDodHULgg6S5R5hwCvsp+6JB5vwNfAVUHnOITc3wFXlvV2q1KLd2ksfIt8DKEraO5xVriLwGwzuzZiemdgibvviJg2Izw9Vg6U/yhgs5l9F+4i8J6Fh2YkPvJDdO/BHpcSKviWhh/Hw2s4UP6ngWPMrImZ1SDUGvdReF485Ifo3oOS8/fMC+w1mFlDQkXz7PDz/Xj1WnfPARZH5NhrfomM8fI+yKFpDxS5+4KIaXr/YqTE5zDumdm/zWwXMI9Q4f1hwJEOyMwygHuAW4LOcoj+bGYbzWycmR0fdJgDsdB1YnoDmeEumKvM7BEzq36421bhHfrAXWChC/hUB+4i1NJXIzz/VeAIIBO4GrjLzC4Kz0sHtpXY3jZChyRi5UD5mwGXEeru0IK9uxDEQ3448GuIdCl7X1gpHl7DgfIvAFYAq4HthP6e7gnPi4f8cODX8DHwWzOraWZtgWER8wJ5DWaWDLwAPOvu86LIUXL+NiA93M87Xt4HOTR6/wKyj89h3HP36wj9bQwg1D0tL9hEUbkXeNrdVwYd5BDcRuhq5E0JjYn9npm1CTbSATUEkoHzCP2d9ACOBO443A1X+cLb3b8A/gC8ASwHlgE7gFXh+XPcfY27F7n7d8C/CL0RADuBjBKbzAivHxMHyk/oUPtb7j7J3XOBPwJHm1kt4iA/RPUaADCzY4FGwOsRkwN/DVHkfwxIJdR3OI3Qjn5Pi3fg+SGq13Ajob+lhcA7hP552zMv5q/BzBIIdSXIB66PMkfJ+RnATg8dU4yL90EOmd6/AJTyOawQwt/pYwk1Tl17oOWDZGY9gJMInWtT4bj7BHff4e557v4sMA44I+hcB7A7/PNhd1/r7huBf1AGuat84Q3g7o+6ezt3b0Co8EgCZpW2OP895D4baG1mka0q3Ynx4bYD5J9JKPOPi4d/GnGSH6J+Dy4D3nT3nRHT4uI1HCB/d0J9Nze7ex6hEyv7hk8GjIv8sP/XEM5+ibs3cvfOhPYdE8OrxvQ1hFuonybUInGuuxdE5OgesVwa0CYix17zS2SMm/dBDskCIMnM2kVM0/tXjvbzOaxokgjtJ+LZ8YTOb1phZuuAXwPnmtnUIEMdhsg6Ki65+xZCjUtlfpXJKlN4m1mSmaUCiUCimaXumWZmXSykBaHDIP8K/9Ixs7PNrE54fl9CLX/vAIT7E04H/hDezs8IjZbwRrzkB54BfmZmPcKHBO8Exrr71ljmP8zXQLj7w/ns3c2korwHk4BLzaxW+D24Dljj7hsryntgZm3MrJ6ZJVpo2LDhhE4Gi+l7EPYYoe46Z7n77ojpbwFdzOzc8Gu8C5gZcfj7OeBXZtbUQkMl3kL47ymA1yBlKNyf/03gHjNLM7NjCI3Q83ywyQ6stM9k0LmiUNrnMG6ZWQMLDQ+XHt6XnQpcBHwZdLYDeJLQPwc9wrfHgQ+AU4OLFB0LDUV7asR3zSWERgf5JOhsUXgGuCH8d1MHuBl4/7C3GuQZo7G8EToL2Evc7gZqE2oVzgHWERpqKDFivZeATYQOZc4Dbiyx3SxCZ+zuBuYDJ8VT/vC61xLqX7wFeA9oHuv8ZfAaLiLUBcL2sd24fg8IdTF5AdhAaCjBsUDfivQeABcQGvZsF6EC9dSA3oOW4cy5hD6Te26XhOefROhzujucJytiXQMeADaHbw9E/j3F8n3QrVz+NuoCb4f/hlcAFwedKcrc+/xMBp3rAJn3+zmM1xuhc7XGhPfD24EfgKuDznWIfzMVYlST8O98EqFuX1uB8cDJQeeKMnsy8O9w7nXAQ0Dq4W7XwhsXEREREZFyVGW6moiIiIiIBEmFt4iIiIhIDKjwFhERERGJARXeIiIiIiIxoMJbRERERCQGVHiLiIiIiMSACm+ROGJmx5vZqgMvKSIie5jZ12Z2VQDPu9PMWsf6eaXiUuEtlY6ZvWBmI0tMG2hmm8yscRk9x/Fm5mb2Zonp3cPTvy6L5xERqUzMbJmZ7Q4XrOvN7BkzSw86F+y74SN85cWRZrbOzHaY2QIzu23PfHdPd/clsU8rFZUKb6mMbgTOMLOTAcKXY/4PcIu7rz3cjUdczjkbONrM6kXMvgxYcLjPISJSiZ3l7ulAT6APcEfkzIh9bDx4EEgHjgBqAT8FFgeaSCo0Fd5S6bj7JuAG4EkzSwP+QGhHOc/MvjOzrWY2w8yO37OOmV1hZnPDLRpLzOyaiHnHm9kqM7vNzNYBz4Rn5RO6RPWQ8HKJhC6t/kJkHjP7l5mtNLPtZjbFzAZEzKtuZqPMbIuZzSH0JRS5bhMze8PMss1sqZndWEa/JhGRQLn7auAjoEv4SOEvzGwhsBDAzK42s0VmttnM3jWzJnvWNbOTzWyemW0zs0cAi5h3t5mNjnicFd5+Uvhx3XBL+5rwvvft8HfFR0CTcGv8zvDz9QFedPct7l7s7vPc/fWIbbuZtQ3vq3dG3HaZmUcsNyz8HbPFzD4xs5bl9XuV+KbCWyold38NmAK8BAwHRgAfAPcBdYFfA2+YWWZ4lQ3AT4AM4ArgQTPrGbHJRuH1Woa3t8dzwKXh+6cCs4E1JeJMAnqE138ReC3cCg+hfwrahG+nEmoxB8DMEoD3gBlAU+BE4GYzO/WgfhkiInHIzJoDZwDTwpPOAfoBnczsBODPhBozGgPLgZfD69UH3iDUUl6fUMPKMQfx1M8DNYDOQAPgQXfPAU4H1oS7j6S7+xpgPPCncONMu9I26O6R66UDb0XkPQe4HRgMZALfEvpukipIhbdUZr8ATgDuIdQq/aG7fxhutfgMmExop4+7f+Duiz1kDPApMCBiW8XAH9w9z91375no7t8Bdc2sA6EC/LmSIdx9tLtvcvdCd/87UA3oEJ59AfAnd9/s7iuBhyJW7QNkuvs97p4f7kf4n/BrERGpqN42s63AWGAMcH94+p/D+8LdwCXASHef6u55wO+A/maWRWi/PcfdX3f3AuCfwLponjh8ns/pwIhwK3ZBeJ9fmhsIHcW8HpgTboE//QDPcRvQERgWnnRN+LXNdffC8OvtoVbvqkmFt1Ra7r4e2EioFbolcH64m8nW8E7/WEItKZjZ6WY2PnxIcyuhHXv9iM1lu3tuKU/1PKGd8iBCrRx7MbNbwocYt4W3XSti202AlRGLL4+435LQYc/IzLcDDaP9HYiIxKFz3L22u7d09+siGjMi94VNiNgfuvtOYBOho3977Tfd3Uusuz/Ngc3uviWahd19t7vf7+69gHrAq4SOWtbd1/Lhovym8Gvc87paAv+K2I9vJtQ1pmmUmaUSiacTGETK00rgeXe/uuQMM6tG6LDlpcA77l5gZm8T0WcQ8JLrRXgeWAQ85+67zP67Wrg/922EuonMdvdiM9sSse21hL4IZocftyiReam7l3p4U0SkEoncz64hVLACEO6DXQ9YzX/3m3vmWeRjIIdQV5I9GkXcX0noKGVtd9+6n+f/33Du283sfkKt760IFdA/Ch/5fBYYHD6CGfmcf3L3vc7/kapJLd5SVYwGzjKzU80s0cxSwydNNgNSCHX/yAYKwy0Wp0S7YXdfCgwEfr+P2TWBwvC2k8zsLkL9yPd4FfidmdUJZ7khYt5EYHv4pM7q4dxdzGyvEzBFRCqhF4ErzKxHuHHkfmCCuy8jdL5OZzMbHD5h8kb2Lq6nA8eZWQszq0WoUAYgPLLVR8C/w/vdZDM7Ljx7PVAvvA4AZnanmfUxs5TwuTk3AVuB+ZFhzSwDeAe4w93HlngtjxPaz3cOL1vLzM4/9F+NVGQqvKVKCLc+nE2oq0Y2oRaI3wAJ7r6D0I77VWALcDHw7kFuf2z4RJySPiG0k19A6LBpLnsfEv1jePpSQv3Kn4/YZhFwFqETM5cS6jbzFKGuKiIilZa7fwHcSeho5FpCJ6APCc/bCJwP/IVQ95N2wLiIdT8DXgFmEjrJ/v0Smx8KFADzCJ1Yf3N4vXmETnpcEu4W0oRQK/gzhPa/a4CTgTPDXV8i9SR07s4/Ikc3CW/3LeCvwMtmth2YRaifuVRBFuoaJSIiIiIi5Ukt3iIiIiIiMaDCW0REREQkBlR4i4iIiIjEgApvEREREZEYUOEtIiIiIhIDKrxFRERERGJAhbeIiIiISAyo8BYRERERiQEV3iIiIiIiMfD/pp00IS4EiAEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -8520,14 +8688,18 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "heading_collapsed": true + }, "source": [ "### Data Leakage" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "In the paper [\"Leakage in Data Mining: Formulation, Detection, and Avoidance\"](https://dl.acm.org/doi/10.1145/2020408.2020496), Shachar Kaufman, Saharon Rosset, and Claudia Perlich describe leakage as: \n", "\n", @@ -8571,7 +8743,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -8614,7 +8786,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -8630,7 +8802,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 80, "metadata": {}, "outputs": [], "source": [ @@ -8646,16 +8818,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(array([9.98234598]), 10.104309759725059, -0.12196378442186026)" + "(array([10.01216396]), 10.104746057831765, -0.0925820990266335)" ] }, - "execution_count": null, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -8673,12 +8845,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 82, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEUCAYAAABkhkJAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5wURfbAv293WUCWzCqCR1Aw4QF6iyiIoBjwTk/MIgYExQhGDCeI8VQ4PMV4Kkg0gxhOvDOtghlU0L3zwMhPRUXAFZTM+/3xatjeYZbdHXZnBnjfz6c/011VXf26p7te1atXVaKqOI7jOE66yUq3AI7jOI4DrpAcx3GcDMEVkuM4jpMRuEJyHMdxMgJXSI7jOE5G4ArJcRzHyQhcITmO4zgZQVIKSUQaicjTIvKriHwtIqeUke4gEXlNRIpF5KsE8a1C/G8i8qmIHBIXf4mIfB/OHysiNZOR13Ecx8l8km0h3QOsBnYA+gL3iUi7BOl+BcYCQ8rI51HgQ6AxcA3wlIjkA4jI4cBVQE+gFbAzcH2S8jqO4zgZjlR2pgYRqQMsBfZS1XkhbCLwrapeVcY5hwAPqWqrSNiuwMdAE1VdFsJmAJNV9X4ReQT4SlX/EuJ6hrimlbxHx3EcZwsgJ4lzdgXWxZRRYA7QvZL5tAO+iCmjSD7tIvHPxMXtICKNVXVxWZk2adJEW7VqVUlRHMdxnFQwe/bsn1Q1P1FcMgopDyiOCysG6lZRPs3LiI/t1wVKKSQRGQgMBGjRogWzZs2qpCiO4zhOKhCRr8uKS6YPaTlQLy6sHrAsQdrNySc+Pra/0XVU9QFVLVDVgvz8hIrXcRzHyXCSUUjzgBwRaRsJ6wAUVTKfImBnEYm2rKL5FIXjaNwPmzLXOY7jOFsulVZIqvorMBW4QUTqiEhX4GhgYnxaEckSkVpADTuUWiKSG/KZB3wEDA/hxwDtgSnh9AnAABHZU0QaAkOBcZW+Q8dxHGeLIFm37/OB2sCPmOv2eapaJCLdRGR5JN2BwArgBaBF2P93JP5koADz2rsVOF5VFwGo6ovACOA14OuwDU9SXsdxHCfDqbTbd6ZTUFCg7tTgOI6TmYjIbFUtSBTnUwc5juM4GYErJMdxHCcjcIXkOI7jZASukBzHcZyMwBWS4ziOkxG4QnIcx3EyAldIjuM4TkbgCslxHMfJCFwhOY7jOBmBKyTHcRwnI3CF5DiO42QErpAcx3GcjMAVkuM4jpMRuEJyHMdxMgJXSI7jOE5G4ArJcRzHyQhcITmO4zgZQVIKSUQaicjTIvKriHwtIqeUkU5E5DYRWRy2ESIikfiOIjJbRH4Lvx0req7jOI6zdZFsC+keYDWwA9AXuE9E2iVINxDoDXQA2gNHAucAiEgu8AwwCWgIjAeeCeGbPNdxHMfZ+qi0QhKROsBxwDBVXa6qM4FngdMSJD8DGKWq36jqt8AooF+I6wHkAHeo6ipVHQ0IcHAFznUcx3G2MpJpIe0KrFPVeZGwOUCiFlK7EJcoXTtgrqpqJH5uXHxZ5zqO4zhbGTlJnJMHFMeFFQN1K5C2GMgLfUHl5VPmuXFKDBEZiJn4yM/PZ+DAgbRr145u3bpx//33U79+fYYMGcLQoUMBGDVqFFdffTWrV6/mkksuYdq0aXz55ZeceOKJLFy4kNeH3MT+9XagZc08Hlv0OS1q5nFCfmtGffMx2ZLFyNb7cukX7wAwvOU+3PVdEUvWrGJA0914b9kiPv51Cb0a7gTAi0u/oePQQXTu3JkHH3yQRo0acdFFFzF8+HAA7rjjDi677DLWrVvHkCFDePzxx1mwYAF9+vTh66+/5q233qJbt27suOOOPPHEE7Ru3ZrevXvz97//ndzcXG655RYuu+wyAG666SZGjhxJcXEx5557LjNmzKCoqIijjjqKVatW8e9//5u9996bvffem7Fjx5Kfn895553HDTfcAMBdd93FoEGDALjqqquYOHEi3377Laeeeirz58/n3XffpUePHjRu3JgpU6bQpk0b/vjHPzJ69Ghq167N9ddfzxVXXAHALbfcws0338zy5cu54IILeOWVV/j000/p3bs3y5Yt45VXXqGgoIB27doxfvx4mjZtyoABA7j55ps3kuWaa65hzJgxfP/995xxxhkUFRUxa9YsevbsSd26dZk2bRq77747PXv25J577iEvL49rrrmGq6++GoARI0YwfPhwVqxYweDBg3nhhRf47LPPOO6441i8eDGFhYV07tyZtm3bMmnSJJo3b85pp53GrbfeupEs1157Lffddx+LFi2if//+fPjhh3z44Yccdthh1KxZk+eee26z3r0ZM2bQpUsXWrZsyaOPPkqLFi046aSTGDlyJNnZ2YwaNYqLL74YgOuvv54777yTJUuWcPbZZ/Puu+8yd+5cjjjiCACmT59O+/bt/d3bht+9pw4ZwpL77d1rctEoFt97NbpmNQ36XMLy16ex9rsvyTvkRNb+tJCVH82gVvsu5DRtyfJ/P0rODi3IO/Qkfp40ErKyaXLxKH66/WJOyt/8d68sJK5sLxcR2Rt4U1W3i4RdBvRQ1aPi0hYDh6rqe+H4D0ChqtYVkUtC3B8j6Z8L8aM2de6m5CsoKNBZs2ZV6p7iWdttwGadH0/OjDFVmt+2yLiPxvHA7AcQEe464i722XGfDXFv/d9bnPP8OcxfPJ/PBn/GTvWsMnDikyfyzS/fsE7XcV7BefTr2I//LPoP5//zfABWrVvFvMXzWHzF4rTck+NUN23fr/o853favPNFZLaqFiSKS6aFNA/IEZG2qjo/hHUAihKkLQpx7yVIVwRcFtfiaY85TJR3rrMNsXTFUka/O5p3znqHb3/5ltOePo2Z/WduiG+X3463B7zNkY8cWeq8mw++mbaN27Jy7Ur2uncvTt7rZPbM35PCfoUAPFH0BK9++Woqb6VK2ZSSXrl2JQOeHcCC4gW0qN+CMX8eQ62cWgz59xDe++49VqxZQfeW3Rl52EgAbplxC1M/nYognLzXyVy6/6Xpui1nG6bSfUiq+iswFbhBROqISFfgaGBiguQTgEtFpLmINAMuA8aFuEJgHTBYRGqKyIUh/NUKnOtsQ7z77bt0a9GN3OxcWjdszfLVy1m1dtWG+Pq16pOXm7fReW0btwWgRlYNsiQLofSogUlzJ3Fq+1OrV/hqIqakC/sVMumYSQyePrhU/LiPxrF7492ZceYMdmu8G+M+GgfAzT1v5vV+r/Pe2e/x3nfvUfRjEctWLWPsR2N5Z8A7vDXgLe6fdT+/rv41DXflbOsk6/Z9PlAb+BF4FDhPVYtEpJuILI+k+wfwHPAx8AnwzxCGqq7G3LpPB34G+gO9Q/gmz3W2LZasWELD2g03HNevVZ8lK5ZU+Py/zvgrffbqQ82cmhvCFv+2mE9/+pSuv+tapbKmivKUdOFXhRy5q7UYj9r1KN74+g0AcrNtVMWadWuoU6MOzeo2o3aN2jSr24wVa1ewYs0KateoTY3sGqm/KWebJxmTHaq6BFMm8eEzMGeE2LECV4QtUT4fAn8oI26T5zrbDo1qN+LnlT9vOC5eWUyj2o0qdO6EORP4ZNEnPHrco6XCHy96nBP2PIEtdax1WUp6x7o7bhTfoFYDFq8o6Scb9MIgpv1vGoftfBj1a9UnS7L4Y5s/stvdu7Fe1zO029ANistxUolPHeRkPJ2bd2bmgpmsWbeGBcULyMvNK9XaKYtnPn2GRz5+hInHTCRLSr/qkz+evMWa66B8JR2NL15VOu6uP97Flxd9yU8rfuLFz15k3uJ5TPnvFL4Y/AVfDP6C8XPG8+0v36buZqqIcR+No8uYLnQd25UPFn5QKm7l2pX0ndqXbg93o+/UvqxcuxKA6fOn0+nBThvC165fu+GcJSuW0PC2hkyaOyml97Et4wrJyXga1m7I+Z3Op/u47vSZ0oc7et3BR99/xMg3rUN+3uJ5HDLhEOb8MIc+U/pw3/v3AdB3al9++u0nDpt4GD3G9dhQyH6x9AtWrV3FHvl7pO2eNpfylHT3lt15Yf4LALww/wW6t+wOsKEgzsnKoU6NOmxXYztUlbo161Izpya1a9SmZk5Nlq9evvFFM5hk+9SGvTaMp054ihlnzqBGVg1e+vylDefcMuOWLdaku6WSlMnOcVJN/73703/v/qXCOja1qQ93bbwrL5/+8kbnLP9L4kJ154Y7M2vg5g0NSDdRJS0i3NnrTj76/iNe+vwlhnQdQr+O/ej/bH+6PdyNnertxMNHPwyYkl7822LWrF/DAb87gB6tegCwb7N92e+h/VCUg1odxG5Ndkvj3VWesvrUYkq68KtCrux6JWB9aiPfGsm5BefSbvt2/LzyZ1poC4pXFZNfJx+ABcULWLh8IQXNEnonO9WEKyTH2ULZlJKuXaP2Rv1mAFNOnJIwr1sOuaXqBUwhyfapnd7+dHpN7kW9mvXosEOHDQro+sLruabbNTxe9HiK72Tbxk12juNs8STbp3bO8+fw3lnv8b8L/0ej2o14suhJPv7hY0Rkizbpbql4C8lxnC2ezs07M/TVoaxZt4aFyxeW2afWsWnHUn1q2VnZG1pO+dvls2TFEmYvnM3/Fv+PXpN68dmSz6iTW4ddG+/Kvs33Tcu9bUu4QnIcZ4sn2T61mw66iYPHH0ytnFo0qNWAKw+4krzcPPp17AfAdYXX0aZRG1dGKaLSc9llOj6X3dbLnov2r/I8/5P/dlLn+TvibAlsC3PZOY6TIVS1knYF7aQTd2pwHMdxMgJXSI7jOE5G4ArJcRzHyQi8D8lxnK2GTHF8qeo+Ndg2+tW8heQ4juNkBK6QHMdxnIzAFZLjOI6TEbhCchzHcTICV0iO4zhORpCUQhKRS0TkexEpFpGxIpJw+U4RyRWRp0TkKxFREekRFy8icpuILA7bCImsKS0iHUVktoj8Fn47JiOv4ziOk/lU2u1bRA4HrgIOBr4DngauD2GJmAncATyZIG4g0BvoACjwEvAFcL+I5ALPhHPvBc4BnhGRtqq6urJyO05VkikuuMlO9eM4mUgyLaQzgDGqWqSqS4EbgX6JEqrqalW9Q1VnAuvKyGuUqn6jqt8CoyJ59cAU5h2qukpVRwOCKULHcRxnKyMZhdQOmBM5ngPsICKNqyivdpG4uVp6OvK5kfgNiMhAEZklIrMWLVqUhBiO4zhOuklGIeUBxZHj2H7dKsorL/QjxcfF4je6jqo+oKoFqlqQn5+fhBiO4zhOuilXIYlIXxFZHrbpwHKgXiRJbH9ZEtdPlNfy0CqKj4vFJ3Mdx3EcJ8MpVyGp6mRVzQvbEUAR5oQQowPwg6ouTuL6ifIqisS1j3rdAe0j8Y6THj74ALp2hS5dYNy4xGn++ldLc/DB8NVXpeOGD4c2bUqOTzsNevSAggL4+9+rSWjHyXySMdlNAAaIyJ4i0hAYCowrK7GI1BSRWuEwV0RqRZTMBOBSEWkuIs2AyyJ5FWKOEINDHheG8FeTkNlxqo5Bg2DSJCgshNGjYenS0vGffgqvvgpvvgnXXQdXRRxQf/gB5s0rnX7MGMvrnXfg3nthmRsBnG2TSiskVX0RGAG8BnwdtuGxeBEpEpG+kVP+B6wAmgP/CvstQ9w/gOeAj4FPgH+GMIJrd2/gdOBnoD/Q212+nbSyahX8+iu0bg25udCtG7wft050YSH86U+2f+CBMCfit3PjjXD11aXT5+ba78qV0KIFbLddtYnvOJlMUstPqOrtwO1lxLWLO261iXwUuCJsieI/BP6QjIyOUy0sXgwNGpQcN2hgYVGWLIFmzUqO14URD/Pnw/Ll0L79xvmecAK8/jqcdx5kZ1e93E5KyZRxavM7pVuCyuHrITlORbj7bnjqKev7KY44fxYXQ6NGpdM2agQ//1xyHFMw110HN9yQOP8nn4TffrMW1UknwZ57Vqn4jrMl4HPZOZtk3Efj6DKmC13HduWDhR+Uilu5diV9p/al28Pd6Du1LyvXriwV331cd8569qwNx7O/m81hEw/joPEHccVLCRvFmcuFF5op7qGHzKS2YAGsWQMzZ8K++5ZO2707TJ9u+2+9BR2C384XX8AFF0CvXrBwIQweDKqwOliha9WC2rVtc5xtEG8hOWWydMVSRr87mnfOeodvf/mW054+jZn9Z26IH/fROHZvvDuTj53MDa/fwLiPxnFuwbkAPD/veerVLPHaX71uNVe9chVTT5xK3ZrJDFnLIO68E/r0MWVy/vnQsKGF9+0LkyfDHnvAAQeYl11urjktALwdmeanTRtziFizBg47zMJWrbLWUevWqb0fx8kQvIXklMm7375LtxbdyM3OpXXD1ixfvZxVa1dtiC/8qpAjdz0SgKN2PYo3vn4DgPW6nnvev4cLOl2wIe3b//c2ebl5nDL1FA4efzAzvp6R2pupSgoKzIPurbegf/+S8MmTS/aHDbM0r70GO++8cR6ffWa/NWpYy6uw0BTWxRdXp+SOk9G4QnLKZMmKJTSs3XDDcf1a9VmyYknC+Aa1GrB4hXXuj/9oPMfufiy1cmptSPvdsu+Y8/0cJh87mYnHTOTs586m9KxQjrOVkOw4tXHjrHXco4dt335r4f36wd57W9gJJ1StLMuWwf77m3POpEkl4SNGQOfOdu6gQWYNWLECDj3UWv/77Vdilq5CXCE5ZdKodiN+XlnSOV+8sphGtRsljC9eZXEr165k8seTOXPvMzfKq8vvulCvZj2a12tOk+2asOg3n3fQ2QrZnHFqAwaUtJibNy8Jv+suC3sy0aIJmyFL7drw9NMbt8yPOQbefddk/OEHkzcnBx580PpNn3++WlrzrpCcMuncvDMzF8xkzbo1LCheQF5uHjVzSpa+6t6yOy/MfwGAF+a/QPeW3fly6Zf8vPJnjnzkSK546Qr+9fm/eOiDh+i8U2fmLZ7H2vVrWbZqGT/++iONayczH6/jZDCbO05twgRrgQwbBuvXl4Rfeqnl9fjjVStLTg40bbrxuW3bluzn5lq6GjWgVSsLq1ULsqpefbhTg1MmDWs35PxO59N9XHdEhDt73clH33/ES5+/xJCuQ+jXsR/9n+1Pt4e7sVO9nXj46IeplVOLWQNnAdbHNGnuJM7axzztBu07iB7jerBm/RpuO+Q2srN8vM3WQqaMu0n7+lCbM07t6KNtGimAM8+0PsnTToO//Q2aNLHzevaETp0S90smI0t5FBaaR+iBB5YOv+giuKLqPWVdITmbpP/e/em/d/9SYR2b2sK9tWvU5tHjHi3z3B6tetCjVY8Nx6d1OI3TOpxWLXI6TlqpinFqDUv6azn5ZPjXv0whNWlSct6hh1qLalMKqTKybIq5c21Wkeeeg+iUojfeaLKeeWbZ5yaJm+wcx3E2l6oYpxZVUq++CrvtVjp89Wrr09l116qTpSw++8w8SB97rEQhgim7+fNh5MiK5VNJvIXkOI5TlSQ7Tm3kSHj5Zeuv2W03uOUWCz/pJJtyas0aOPVUaLfRGqXJywJw1FFQVGTKa+ZMuP9+c1j4+Wc44wxLM2SImQovusi88g46yMJfeaVKp7qSrc31tqCgQGfNmrVZeaztNqCKpDEyxb6+pbPnov2rPM+09zk4zjaGiMxW1YJEcW6ycxxn80h23M0PP9g0SgcdZDXxVWHQ9fTpVhvv1s1q8mvXpuIunAzATXZOuWRKy8RbMxlKbKxL8+Y2YPLoo0t30EfH3bzxho27eewxM0n162cd+LfdZi7PZ59tLs9TpkDLlhb/0ktwxBHpujsnhXgLKUPZ1KSmI94cQeeHOtN1bFcGvTBow4wHHyz8gK5ju9JlTBfGfTRuQ/rDJx1O/sh8bnrjplTegrMtsDnjbubNs2mYwDrbX3vN9tu1s/4LVfMMy89Pya046ccVUgYSm9S0sF8hk46ZxODpg0vFH7P7Mbx71ru82f9Nfvj1B1790hbRHTR9EJOOmURhv0JGvzuapStsVPaYP49h5KHV4xXjbONUdNxNtMUUG3fz+9/Diy/a/gsvWDqA0083U97uu9tgzIKE3Q3OVogrpAykvElN2zYuGUWdm51LTlYOq9au4tfVv9K6YWtys3Pp1qIb739nNdWd6u2U8ntwtnLuvtvmVrv22uTH3fzlLzY9zcEHWz9RbLDoOefAe+/B//5n51Z2uhxniyUphSQil4jI9yJSLCJjRaRmGen2E5GXRGSJiCwSkSdFZMdIvIjIbSKyOGwjREpGYIlIRxGZLSK/hd+Oyci7pVHepKYxCr8qZOHyhRzY8kAWr1hMg1olNdUGtRqw+LdKjsp2nIpSFeNu6teHiROtf6l2bTj+eAvPzi5pUeXnl7ScnK2eSiskETkcuAroCbQCdgauLyN5Q+CBkK4lsAx4OBI/EOgNdADaA0cC54Tr5ALPAJNCPuOBZ0L4Vk15k5oCzP1hLle/cjWPH/84IkKj2o0oXlVSU41Nduo41U5srEv37huPdYHS426uucY87sAU0UEH2XQ4eXnwxz9a+E03Wasp1t8Uy8fZ6knGy+4MYIyqFgGIyI3AZExJlUJVS81PLiJ3A6/H5TVKVb8J8aOAs4H7gR5BvjvUeu1Hi8jlwMHAi0nIvcXQuXlnhr46lDXr1rBw+cKNJjX9bMln9H+mP1NOnEKT7WwUda2cWmxXYzsWFC9gx7wdmblgJsO7D0/XLTjbErH1oeKJXx9q2LDS8QcfbFs8J5xQ+WUWnK2CZBRSO6zlEmMOsIOINFbV8mxEBwJFcXlFprplTgiLxc3V0iN354bwUgpJRAZirS1atGhRwdvIXMqb1PTiFy/m55U/c8Y0G0U9pMsQ/rTrn7iz1530mdIHVeX8TudvMPud/ezZvPXNW6xau4pZ381i2snT0nl7juM4Can0TA0i8jlwgaq+GI5rAKuB1qr61SbOaw8UAker6owQtg5op6qfhuO2wDzMlDg0xJ0cyWMyMF9VryvrOj5TQ9WTKeOQHMfZ8tmsmRpEpK+ILA/bdGA5UC+SJLa/bBN5tAGmAxfFlFEgUV7LQ6soPi4WX+Z1HMdxnC2XchWSqk5W1bywHYGZ3DpEknQAfijLXCciLYGXgRtVdWJcdKK8iiJx7aNed5jjQ9Tk5ziO42wlJOP2PQEYICJ7ikhDzLQ2LlFCEWkOvArco6r3l5HXpSLSXESaAZdF8ioE1gGDRaSmiFwYwl9NQmbHcRwnw6m0Qgp9RyOA14Cvw7bBnUtEikQk5qd5FuYWPjxi9lseye4fwHPAx8AnwD9DGKq6GnMJPx34GegP9A7hjuM4zlaGLz+RgExxanBnAsdxtjZ8+QnHcRwn43GF5DiO42QErpAcx3GcjMAVkuM4jpMRuEJyHMdxMgJXSI7jOE5G4ArJcRzHyQhcITmO4zgZgSskx3EcJyNwheQ4juNkBK6QHMdxnIzAFZLjOI6TEbhCchzHcTICV0iO4zhORuAKyXEcx8kIXCE5juM4GYErJMdxHCcjSEohicglIvK9iBSLyFgRqVlGuj1FZJaILA3byyKyZyReROQ2EVkcthEiIpH4jiIyW0R+C78dk5HXcRzHyXwqrZBE5HDgKqAn0ArYGbi+jOTfAccDjYAmwLPAY5H4gUBvoAPQHjgSOCdcJxd4BpgENATGA8+EcMdxHGcrI5kW0hnAGFUtUtWlwI1Av0QJVfVnVf1KVRUQYB3QJi6vUar6jap+C4yK5NUDyAHuUNVVqjo65HFwEjI7juM4GU4yCqkdMCdyPAfYQUQal3WCiPwMrATuAv5aTl7tInFzgzKLMTcSH81/YDANzlq0aFFl7sVxHMfJEJJRSHlAceQ4tl+3rBNUtQFQH7gQ+LCcvPJCP1J8XCx+o+uo6gOqWqCqBfn5+RW9D8dxHCeDKFchiUhfEVketunAcqBeJElsf9mm8lHVX4H7gQkisn0ITpTX8tAqio+LxW/yOo7jOM6WSbkKSVUnq2pe2I4AijAnhBgdgB9UdXEFr7cd0DwcJ8qrKBLXPup1hzk+FOE4juNsdSRjspsADAgu3Q2BocC4RAlF5FAR2VtEskWkHnA7sBT4bySvS0WkuYg0Ay6L5FWIOUEMFpGaInJhCH81CZkdx3GcDKfSCklVXwRGAK8BX4dteCxeRIpEpG84bAA8ivX9fI552PVS1ZUh/h/Ac8DHwCfAP0MYqroacwk/HfgZ6A/0DuGO4zjOVkZOMiep6u1YaydRXLvI/pPAk5vIR4ErwpYo/kPgD8nI6DiO42xZ+NRBjuM4TkbgCslxHMfJCFwhOY7jOBmBKyTHcRwnI3CF5DiO42QErpAcx3GcjMAVkuM4jpMRuEJyHMdxMgJXSI7jOE5G4ArJcRzHyQhcITmO4zgZgSskx3EcJyNwheQ4juNkBK6QHMdxnIzAFZLjOI6TEbhCchzHcTICV0iO4zhORpCUQhKRS0TkexEpFpGxIlKzAucMFxEVkUMiYTXD+b+E/C6NO6eniHwqIr+JyGsi0jIZeR3HcZzMp9IKSUQOB64CegKtgJ2B68s5ZxfgeGBhXNR1QFugJXAQcIWI9ArnNAGmAsOARsAs4PHKyus4juNsGSTTQjoDGKOqRaq6FLgR6FfOOXcDVwKr48JPB25U1aWq+l/gwUhexwJFqvqkqq7ElFcHEdk9CZkdx3GcDCcZhdQOmBM5ngPsICKNEyUWkROA1ar6Qlx4Q6BZgrzaJbqOqv4KfB6JdxzHcbYiklFIeUBx5Di2Xzc+oYjkAX8FLi4jn+j5sf26kfhiShONj15noIjMEpFZixYtKvcGHMdxnMyjXIUkIn1FZHnYpgPLgXqRJLH9ZQlOvx6YqKpfJohbHnd+bH9ZJL4epYnGb0BVH1DVAlUtyM/P3/QNOY7jOBlJuQpJVSeral7YjgCKgA6RJB2AH1R1cYLTewKDgwfd98DvgCdE5MrQ/7QwQV5FYb/UdUSkDrBLJN5xHMfZikjGZDcBGCAie4Z+oKHAuDLS9gT2AjqG7TvgHOCeSF5DRaRhcFY4O5LX08BeInKciNQCrgXmquqnScjsOI7jZDiVVkiq+iIwAngN+Dpsw2PxIlIkIn1D2sWq+n1sA9YBS1U1Zq4bjjkqfA28DowM+aOqi4DjgJuBpUBn4OSk7la/3nkAACAASURBVNJxHMfJeHKSOUlVbwduLyOuTC84VW0Vd7wK6B+2ROlfBtzN23EcZxsgKYW0tZMzY0y6RQDgP/lvp1sEx3GclOFz2TmO4zgZgSskx3EcJyNwheQ4juNkBK6QHMdxnIzAFVI8H3wAXbtCly4wblzZ6V57DUTgm2/s+OKLYb/9bLv11pJ0hxwCPXpAQQE8+mh1Su44jrNFI6qabhmqlIKCAp01a1byGXTtCpMmQfPmplxeeQUaNiydRhX+/Gf4/nt4+mnYaSeYPx/atoX160vy2GUXWL0acnPhl1+gQwf4MtEsSo7jONsGIjJbVQsSxXkLKcqqVfDrr9C6tSmRbt3g/fc3Tvfkk3D44VCnTklY27b2m5UF2dm2geUDlm87n6jccRynLFwhRVm8GBo0KDlu0MDCoqxZAw89BAMHJs5j4kRrGbVqZcfr1kH37vD738PRR1eL2I7jOFsDPjAW4O674amnoE0bKI6seFFcDI0alU77wANw6qklLZ8oL78M48fDc8+VhGVnw+uvm2Lr1AlOPBHq16+e+3Acx9mC8RYSwIUXQmGhtXy22w4WLLCW0MyZsO++pdN+8on1D/XqBXPnwmmnwcqV8O67MGyYKbbatS3tmjXWpwRm3qtVyzbHcRxnI7yFFM+dd0KfPua4cP75JQ4NffvC5Mlw330laXv0MBNdrVowYICF9e5tv6NGQdOmlld2tvVPDRsGNWum9HYcx3G2FNzLznEcx0kZ7mXnOI7jZDyukBzHcZyMwBWS4ziOkxG4QnIcx3EygqQUkohcIiLfi0ixiIwVkYSuYyLSSkRURJZHtmGR+Jrh/F9CfpfGnd9TRD4Vkd9E5DURaZmMvI7jOE7mU2mFJCKHA1cBPYFWwM7A9eWc1kBV88J2YyT8OqAt0BI4CLhCRHqF6zQBpgLDgEbALODxysrrOI7jbBkk00I6AxijqkWquhS4EeiX5PVPB25U1aWq+l/gwUhexwJFqvqkqq7ElFcHEdk9yWs5juM4GUwyCqkdMCdyPAfYQUQab+Kcr0XkGxF5OLR8EJGGQLMEecVmIC11HVX9Ffg8Eu84juNsRSSjkPKAyIRvG/brJkj7E9AJM8n9IaSZHMknen5sv24kPhoXH78BERkoIrNEZNaiRYsqeBuO4zhOJlGuQhKRvhGHhOnAcqBeJElsf1n8uaq6XFVnqepaVf0BuBA4TETqhXyi58f2Y/nEXyc+PnqdB1S1QFUL8vPzy7slx3EcJwMpVyGp6uSIQ8IRQBHQIZKkA/CDqi5OnEPp7MKvhP6nhQnyKgr7pa4jInWAXSLxjuM4zlZEMia7CcAAEdkz9AMNBcYlSiginUVkNxHJCn1Mo4FCVS2O5DVURBoGZ4WzI3k9DewlIseJSC3gWmCuqn6ahMyO4zhOhlNphaSqLwIjgNeAr8M2PBYvIkUi0jcc7gy8iJnZPgFWAX0i2Q3HHBW+Bl4HRob8UdVFwHHAzcBSoDNwcmXldRzHcbYMfLZvx3EcJ2VsarbvrU4hicgirMWVCppgnoTpxuXYmEyRxeUojctRmkyRA1InS0tVTeh9ttUppFQiIrPK0vQuR3rJFFlcDpdjS5ADMkMWn1zVcRzHyQhcITmO4zgZgSukzeOBdAsQcDk2JlNkcTlK43KUJlPkgAyQxfuQHMdxnIzAW0iO4zhORuAKyXEcx8kIXCE5zhaCiEj013G2NlwhOc6Wwx4AqqqulJytEVdIjrMFICLNgZdF5EZwpVQZRGSLK+dEJCdN15VE+6lii/ujtka8YEmOqipotpDnvwi4GDhRRK6FzFZKmSKXiGSr6noR2UVEjqyma+RE9jf7nRSRLFVdKyI1RaT35uZXievmxt4pEamhaXDBdoWUYhLVfNLxxydCRLLTLUNFiRQ0rUTklLDMSZ0KnhtfWNYpJz7tqOpqVX0C+AvQT0QuCeEZqZSCXNvHjtMho4iIqq4TkfbADKBLWAanKq+RHZRHlojcB3QOy+VsTn7rw+HrwFlVImj51x0G7Ckiudiq3vul4rrxpKVZuK0SfXmBOwABVgB/AxalUzEF2daFguNwYD3wmap+kS6ZNkWQdU/gTeBToBHwoIg8qaplTq4bCikN+5cDu2GrGE8H3lDVR2KFfCZVFCL3ewjwI3CLiNRS1VsyUN4s7N2eISJPqeo16ZAtPJd8bI2161S1ygd+hv8lC5gFfIUtp7NqM/MT4FTgA1U9H0q/t9XE3sCRQENs3bkZ1XitMvEWUooIzfDYy/s+0BIoBDoBU4Dfp1G86Ic1G7gIGAlcLyLXpFOueOJMIl2BYaq6P7ZGVxfgTBFpWca5UWU0BTgK+B9wJ9AM+EvUHFZ9d1E5wn/TAngZmIu1koYCA0VkaEiT9pZSpIUtqroOGAzsJyIHplGsuth6bFNCK6Y6PBXPwypvx6rqj1Xw7vTElOjRYguXVtv7GHsOqnossD3QGFsMtVR8qnCFVI2ISFMR6Q4QzEuC1XC/VtWjVXUKVquqCXycRjljL91o7MM6AtgXaz20T5dc8QSlvl5EWovICUA34FsAVR2DrTLcAThDRHaJPz+ijKZhH94hqvo3Vb0duBB4EDhFRM5JzR1VinbAV6p6n6q+CtwDXA1cICIXQPqVaFCcbYErRKStqv4Le6+7ikhOKgq3BGbnBkArIGYKqxnC24hIrySvEX8fzQGNxGeF30YVMd/Fy6yqLwPHYlaKXiJSNxk5K3DdrFCRyQrm1RuB54AxItJNRHIi30xKdIUrpGpCRGpgNY1BInIwbCgwmmEvMCIyASjAavp5qezADNfPjsgFZsJ9OOzfD9QC+opIAxHZLZWyxRNRRrsBnwH9MLNGdxFpCKCqE4GngEOB7mXkcyXwJ+BEVV0jIjXDuQuAJ4E3gCM3px+gmvgFyBaRnQFUdQVmrvwFuEtE+qVRtmghfTG2yvPTInIA8C72P7WLFX7VKEPMtLmHiFwlIjVV9QNgDvBcaCGvDMmHAacncY1oIR3rI/sUWC8iO4FVPkN4X6yCVBGZs0TkTyJyuog0VtVnsGd5Cdbqr1KlFO4jVkluA+Sr6lhV7YdZDf6GWW8QkT8Dx1fl9ctEVX2rpg3oiDW9HwZ6hbC2wKPAv4API2mHhLB6KZItJ/ZdAQeH/WmY+eoO4ANguxA+DDgXq2Wm83k2A04Czg/HvYD/A64BGkbSHQ5kxe4vLo+Tw/O/HfhdCMuKxB8E/Absksb7zA6/2wF5Yb8O8E54l2pH0j4AHJeu/yb2fCPvSh3gLmA8ZmI8Cyuw3wAapUCODsAPWIHaKIRtD0wHvsEqWs9ips8aSf4vWcBUYABWadsN+BC4Ddg3pDkPWFyR9yjk9z7wEvBKyGtAiOuDVcCujL0LVfissoC3gH+H72gCsFeImxDet0nhe9gtJe9TOl7ibWEDcsPvXqEQmYR5ruRg5pYFoXCsgfXZ/Ai0T5FsMWWUhXnyvBWO9w6FR3Ek7XnAd6l6ITf1PIFPgF+BEyLhvcKz/AvQOO6cqKI5M7J/HPAYcB+wYwirEX67h490uzTdZ0yRtg+F6NtYBeFQzMz4NfAEcCvwONbnFzsnXUppe+Bu4MJwfAFwDtYveiZW0VoPnFrNcjTBFM3ASNjumEUiBzgfq/hdGvkGcir7/2AtrqmY+S/27PcGXgjXfyN8R/tUMM9bgUcix18Cj1CiOM4M+TasjKwVuO7jwOSwXwtYA/w1En8ucBXWuk3Nu5SOF3hr3yIvUswENhVYDTwD/CG8yDeH4zeA14COKZIt9iFmY62gQuA/wO/CS3kS5jH0T6x19zmwdzqfY+S4AzAPeDwu/LDwMZ0RFx6rFOwYCsSHInHHU6KUmkfCr8HMfmlRSEGGVpjiGQTsgzkwfI+1EJsBN2CVmvsoUaRZKZZRIvu7ApeHQvgBrJU5l1BxwPpxbqOaFSamkJ4FemDK+w1gZnif/5wgfaXlwVpFkyLHfYH+wIGRZ7EPsH0l8hwPnBb2H8b63XKAppgpDarYcoK1vp+nxEpwT7huNtAk0f+ckvcqlRfb1jashvtUUEAHYZ3uj8QKeKy21QSoU81ytMRqOtGm+lzgiXD8AbBHJK5x+PB6Aa3S9Oxi5pGGQD2gWThuD/wEjI1Lv2+0gMFq7c8AncPxrsASylBK4fjMkHfKaoRl3PufKV1j/hi4P+zXTpC+UrX8KvxvGgP5wA7hOB8z//wd6xwvAv5QXbISp4SB2phjzttYJe+h8O09Btyc5DXiK0XnY4q3M9ZS/Q9m3loAdKros4sLGw7cEsqG2UDNED4C64fO2lzFkOi5Yyb6/sBYzExYK4TfDhydyndqg0zpuOi2sGE1jWnAfpGwdpg56J/AoSmUpR/QO3LcE7g1clwIHBQ5rnDtrprkjZqtZmEmn9kEUwxmBv0BeDDRcw+/e2AtvJdjBUVQSsUJlNIEzAxTTAXNLNVxv5Hj84Fnw/5sQosQa2mcS6QGmwZZY5Wa9uGZvQwsxMb5gJlWzwzKYD0wqJrkiP3PO2OVp9OwlmUOZj7rFEk7GRiZxDVyIvtR8++zmAPMQ1gf7HaYckpoScD61WpE88IcBpoGeXtilcIvgBYhzSDMg3T3qnq/wnXvw5R2X0wJvh6uG2tpXxCO09KHmpaXemvcKG3CiA0M/AC4Jy7dJcBSrNO12lpGcfJEO2NPT1AAvgH0D/uDMUVaP83Pc0esM/dCoD5wQijg9gvxe4XjqzeRx15Y30Yhm1ZKJ4d7TkkfXpyMsf9ml8i9NcNq4UuAuyJpHwuFa2rNKHHvAtYSmo8pzh2xoQzfxgr98J5lYQ4N1dZ6C//vQswkPg4bZP7nEJcTnuNUrKW2OQ4M48OzH4+ZjbOJtFqw/rKvCOavuHwaYy22EyNh74Xn9yZwRcjvFMya8na4l6+oAlN55D4Ec1J4Gus7moRVxJ7GFNRkTEEtrIrrJi1vui68NW2UrknlUOIZdTCmlC6LxF+A2Wt3qEZ5osqoAyUmgKOxKVSui5P5IeAI4ETMjfgP1SVbObJGZToIeDHsZ2M1uUnhePvwuwuJTSDR2mwHylZK/4ikqxIPpkree1ZExm8xE03dUHicEQqt67ABv5OxFkmsJpsSpQTsj9Wq946E7Q28GZduH2AlcFSCPKpcKWH9nY8DgyNhKyhpqTXGnBemRJ5ZpfqMIoX4k5iJbgxm2uoZef/uxeYZLLNljZnAPsZMsTdg491yg3xPYv3J2Zj5/sjwf2+k3DbjWQnQG7g3EnZ6kGMCcAzmWNUf2DXV30EpWdN58a1ho3RN6lHgRWAicHgIHxAKltexms8v1fmnU7qAn4h5/sT6rLYDBmK1xusjH+q1wHKs5ZYOk1VuZD/m9dYF64fYHlPqj4Tw2ljr8neRc6KKbEONMBLWNhSqhZQopbZYC2t0mt+flpgyOicSVgPrN+uKmSvvD/JvcEhJgVyx2n8vzMT8d4LjDeYA81/gyLhnPhk4r7re57jw7PBsDggF7oeRd6QT1veYF7mPSitFTMlOixyPw9yzs7C+qcaYO/aeZckY2b8RG9/zJMFcjymlflgr5a9U05APbPjJ+vAdxb6vLKzSMyG8W9Xaj11hWdMtwNawUTKO4DHMNnsN1uQ+JMS3xmpBF5f18laDTFOx1lAroG4kPKaUng0fSTbmBv15qmSLkzPW13Z7kHU15om4M9ZhvIhIXxFmaniaBF5llK4cXBYKi+Ox2vSOlCilgpCuDel3Zz8UeDLs18AqNdOxsTw1y7rH6v5Pwm9u2LqFgnQ00CHEPYS19Asi5/2bKlRIlLQgc0LhXxDe31hFamJ4l98huC9H3pH+keMyW5PlxPUG5of9sVgrpwamAE8J79Wmzt8h7vgibEzPlZQ4EGRj/V//Dt+jbCrPzXiWnTHHi2MoGTOWBZyNmSKrzWJTKTnTLcCWtFG61p0X2b8ceC5yPAmr9S4ggQkjBXIey8YmlfqYYowNFjwzFOw3h+O0dJSHwmZ/rCN1MaVbCgcCP2MegoOx2tyGAY2RAitqosvCastTMRPLREwJ1cDGxdwJfET6XNnj++86YQMiH8FmNZiEzbG3CDgmDfLFlFE9zKEk5rp9OKaU7gJaYOaqZyjp4H8UMylWiXkuIkddrOVVGJ7JV1i/S2PMBLYeKIycNxnroylXccd9zwdhyu184LCYDJjJ7z1KD2K/HHMnL3OgL6Z8bsUqVu8C54bw4Vj/4J8JHpPhG+gD7FTN/213bNjEsZFrZ5GiwfgV2Xy270qgsbdY5AHgWxF5UFW/w0war4a4h7DO1v2wQuYpETlJVaelUNR8zASH2JIM+wD/wF78n4LcD4fpSPYPU5X8lEL5CLKJ2uznn2Id0CswzyMAVPUNEfkTVhhuj5k++4dzckLYd2pToOSo6lrMCeIbtckiEZGnMZPgGuBjEfkHNmZpSQpvlSBLbJqYHbH7XKaq74vISOz+V6rqYyHtm1hrIJXyxSYAjimj11X1SQBV/ZeIKNaBfwXWAX4WZlo9APN6PC38N9lqk6smK0d2vBzYwOcvMe+z3pjJdRBmkbhCRF4E1mKmuq7h/DLliJtodzxmOo0NecgVkUJVPVtEXsM8Gx8NUwWdjrVwDlHVTb1DSzEl9ybwnqreD6Cq14d3dwQwREReVpsG6tEkH1eFUdXXReRsrN+rpohMC9f+pbqvXWHSrRG3tA2r0a7Hak0XUGKTzcZs/h8QahyYSWMo0KYa5dmoeY+1BD7AOn3/jk2ZMgIzD43EapsNsP6YBml6jrEa8PaYW2xLzNb9KTCqvHMx5foR8FJc3GDgprA/kdCiwgr3WGd0pTyuqvJ/wtylvwr/z3tEBvli5rGs8L99TIrHFwUZtsMG5Y6IC68ffg/DvMHuIoxdS/S/VoEceVify90J4vphrY7Lw3EHbBzafkTMfBW8zjTM5BcbS1Ufa638SHACwJTQE1il81mC2XJT73XYfw4b13ZNrJyIxN2AtfiOSMN/fAjWxVA31dcuV7Z0C7Albpip4gts8N0lQNMQXoCZX3pQMoAuJWN6iLgshw/qSKwP6Sbg2EjcfqEgb54KucqQNaaM2oeCuV8oCHMwb7//An8LaR4Fzi4jn7aYa/iUSNjlWN/TQ6GgqRPCrw6F6EYDS1NwvzFlVBczAQ3EKgOdsNr/2yF+d6z2OpMkPcOqQNY+WOsx6qbcFxtvFPMePQxTmuOpJgcdrCL1NbBzJCw6lufWEJ9ooHCFZq3AzHvzEryXOZhJ7f+AUyLxNUnQrxeJj86C0jJ8g7Fxbn+N3ktIdwHVWFkt597TNhPJJuVKtwCZvJX1YmN9HjdjpovZWAd6PjZn1stBKX1DijzWsPnmXsBMWx8D14bwRC7RF2JmhCqdFysJmffAao9DEsQdhk2VMzcol41aNJECu3V41hMicc9hrdhYS/U8rMa7Vxrvt2l4NwqBtnHhrwNnheNK1/KrQc7YO3IiVpv+ibipd0KBfVNFC/8k5NgVm9rmIWD/BP97S6yFUam+QKzikxW+16ewyUx3CnHRvsg8rI/17xXMNzoLyozwPX6L9X8+iE0JdCPWAjuVBC0/31whVewhWWvnEEo6AltjXjH7Y2aw2dikjVnYyqWtCK2mFMkX885aBrwaCY9+YC0wL78lpGjevARyRjuRrwSGh/1srLN3FNAnhOWHQm9DrTX+vrCa7EjMHXc9JTMaNMJMK3PC7/uVLbiq6f4nYl5Wp0YK1izMkWFYXNqUzk0Xd+3tMdPn3PBcY9Mv1UgkV1XKGvfONsX6Z8cQZtGOxB2ImdAqPIM45mk5lpKZ9/fAPC9fI0wXFf6P2Pv1EPBMJeV/Hmt55WCeeHdj8/v9DVOA72DOO2n5BjN9S7sAmb5h3jLrw8c5E+snqo+1RmaEwrRveNGGkcJpdyhtrx6OjUifjLnpxiYWFczJYkQooNP6IQA7BJmGYLN3nxKe7fOYW/EvxLVkSNzSk1CQTMSmZOqDmVii5rv9sJp0yqdCKquQDspzFjZoOtYv8xwl3o4pnYVhE/LHlNJHwHHl3VcVX7sJ1qqoi7WUprNxS+mR8Cwr/LxCfs9j/UE9QtgemMPPqxGlFDO9PQhcXIn8c7EK0O/j3sHHMdPdLqHcSNvSJpm+pV2ATN+wMTFPhZrOM6HQfDEogKcoWf9kIJWssW2mXNElJE7COnVjte0pWIsu1rrohPVPpHWsAWYumUxJK+gJzFvrynBcOzzjthXIq0Uo2HeKhO2KmXHGpPk+syPy/BVrDUaXzJiE9UHOCIXehhkYMmmLKKW3iCzpkILr7oW5J8daMrsFpfQPrN9wHKXd/8tVSpS0euoFZTYlgVJ6jZL1gC6iknO6hby/omQZjpgZ7++Y+S8jKhuZvKVdgEzdKG0iOjIUpCOwgWWdsL6AZUQmjyR1i+vFz9o9KfbhYG6vj2BjQ44IBcq/SXOfUZCtViiAN5oUNcRPwObySmQWip91uR7W93JGRAFkhzzWAw+n6R5jsvw+KMdY5/+HRGrbWAXne8yDKza1U6YqpQsxl/tqmQG6jP/7SszUGnMYaouZ777DWm2VdvqI/Df1MRP31ARK6VnMDPwTSZh5sel3PiEy/hBzWR/tCqkCzy/dAmTiRkltKhtzEjgc85x7PLy0rTEbcRtKr1Sa6kkv/0HpZQpiiqoeZnd/FuvwT9cg0ERT3rfFxqxEzUBdsA7/D0iwvg+lKwd1I2luw8xdHSNhV4ZCPmXeS5jbcbvIcT7Wr3hFOG6EeQMuBYZG0k3C3Jf3ZRPeW9Ukc2VMXTtiJqcq9/iLfGs7EFpE4fh3QWF0i4S1wbzrKrW4Hon7H+uH5z8topR2D4oq6VnfMWeIv2CKczzmNfkTaZi4d0vcYgWYkwARuRRrwvcPx/tjbt4/Y7X899MoWy6mIB9W1WdFpIaqrgmDG9eHwXf5wFpVXZQimWLX3jAgUUR+h5k/rgPWqOoqEbkBQFWvDWmysZkjxmkY9Ko2yDWaZ2yuwCZYP9NrqjpaRJ7AxjEtxgqBC7H/7KsU3K9gAymfx2rz96rqf0WkPtav+BCwDjMtfoLNqj4KuFNVh4U8xmIDS09V1feqW+ZwzegA3e1VdU4lz98wqHQz5Yj9t7tirfmrsJb9FLVBnHdgY50OT3DuhneknGvE7jUL83JriP0Xj2EDsR8krKMUrtkG+FVVF27GfdXAnC6Oxrw7p6rqf5LNb1siK90CZCoich02Ev2HcJylqm9j9uA84CIRKUihPKX+K1VdDawCeiRQRidiUwEtTKEyyg7XzgPGicjxIWo3zBHkZWCoiOyJucWfLiItw72sU9WH4pVRiFsfCv6XsdknhmHm0j4iMkpVT8T6opZgg333T5EyylLjJ8xBY09ggIjsoarFWIG3BhscPU9VT8NaSe8Au4UKBaGy8wpm3qt2IrMxtMdcuzuJSONIvMSnj+y3DTJXpTLaDRt3tgCb2qYhcLGIPIP1u7QSkV7x51dQGUlEGb2HmeWKMEUxEatMnA/8CgwTkW6q+tnmKKMg2xpVfUVVB6vqTa6MKkG6m2iZsrFxH0UvrCP1JeJMXljtZywpdO2OXHs4YalurP/kOWytoNigxcHYB56f6meHmQo/xVoGh8elORUzsX2PTcXyDdaPkltGnsMIZjfMOeBtgnkUcz8+AOtDOixyTkoGkVJ6vreDwn63IM8oIhO2Ym7FsRkFHgSuicQlvPcUyL8LZYwBi7u/qJv+BZjTTpX1RWIt+IspvTxLLczd+0GsEvIb1qKsaJ47srGLeG+slRI7fi78VzEzb/1wvWqdS863Cvx/6RYgEzbKsEVjrrlTsQ7JfeLiaqVBzsaY3ftR4E8h7Nbwgf0nfFTfx8uaItlqYC2X+AUJ68QdH4KNyZiLeTE1COHRwu9CzDHhHWxM106YU8AekTR5WIVhSCSs2vvw4pTRj0SWxo4oyb9R4q11F2E+M8Js0amSdRP3cEqskMdmH/gHVjmIrg8V7cM7nypeTTe8L29i5u+hiZ4J1t84MCilAyqQZ03MIeFFSruIXwT8M+xPoGTW7tqUePK5w0EGbGkXIN1bpIDJwlo947G+mVjBcQjmInoHcTWvFMi2UQ0am4TzbszWHltzaU9soskTSdfSw6Y43qD0Uhd/xAYFPojNvhDzJsvFzGuzSTBvHeY08noo8P+HjSWazsbz1t1FcBlP8btSD3NLTjTPWg9KWko7hrRHY+tipWw9ozLkzsOccQ7FFP4NWP/WM1jf6IeEJVMi556PmUOr3DEGM+e+F97l5gnkjbW8bwcuqGCeB4bv4wmCQwQ2Tu05rIX3fiTfoZhZMOWLM/pWxv+XbgEyYQvK6IPw0p5FicdXbH37gzHT3W1UszcUNl39eZHjHMwEtkMkrDnWN/FPIiarND/DfGwcx4VAT2x80Vqs9v0h1nraM6SNKftDMXf66ADfbKymewW2DMMErBO6Q8jnLazP5jrMkSGl6xlhDhQLiLSMQvjhsUIVaykVBqW0a1y6VCujmFdZe6zlcHA47h8K5DMjaV8kmCDD8dlYv91mt4wiSqYOkSUPsH6d/2CmzYTzK2KecPdX4l73C0psCra6bW74Xr6kZAzcJVi/3e835758q+L3Nd0CZMIWCo7oypD3YjXIzymZ56o7KbAxY4vlLQMuioR9gdXs8iNhLULB+A5wfAY8w9xQwM3A+pGep6SGWhvrMzo77pybMdPddtg0TFHFdGaIq4V1QP8HU9ajsJbspHQUJtiMEOsp7Y58bAg7IBJ2ANaBPijVMiaQeTfMOecKEre6hZLVUKNjde5jEzNbV+L6sTz3wip2/wr/aWyxv3bhWd1D6ZWAs7FW3cflKUVKWj2CVXKmYYs9Ph2u2xhbGXkWpnjfxqfvybgt7QJkwhYKw5gteRJWE6+Bjbr+ihTOjB0K5xOxmYyviIS/g7XaGkfC7glbyp0r4mSOFQY1Mbt/W+IW/MMmmzwuLv3NHJa0WAAAFvtJREFU2EwY40KB/gDmmhur6d5KUMxYa/BDSgYAp2UQaSioL8OmKeqKVVSWkKCliplSU90i2o/ImKgQdiVwa9iP9g0JpuSnBWVUarBpIuVVCTlK9ZVhLaEfsaUYTsDMrZ9ElNKemKPF5QnyqrAcmMKbhFWC+mAm+KcomRYoDxs6kDGL0vkW+f/SLUDKbziugIgUfrmYqek9SuaBuyO84CkZZElJH0MtzHYfv4LqO0G+Y7DWyEygWbqfaZAt0bpMscLoYaxmupH3VjjugpmG7sX6il7ETCojgDsi6V4hrBOU6Hqpur+glK7ETD7r2dgL825KTxWUimXHBXP+mMDGyxyMofS6S7H3rCU2aPeAyH+z2TOMY/1oAynxiqwVZLgtIuuHWEt6PqGli/UdJpy3sILXrYFVXKIODV3DO/U0FXCM8C29W9oFSOnNlnZgGI155IymZM2cw7FWSDNK+pLqpFjGrKB4HsBMcj9SuqX0WPjo5pIGb7oE8iYsLEIhdAxmx59FOVO9hILjY6xfaQDmDvxTKPAPjaRLuWtu5L2pFfuPwu/l4f+JmurGY30VKV06ghKHkZgSaEqJp9/xmKPOH+LOuQM4MP4+q0CWa7EZKPpF5OmMKcxsrFI1ORwvxDz4dq+sHGzc2msQ3qFLou8m1p/5A6YUU74elm+VeHfSLUDKb9g+iFmULJT2SPggmmMdv89jtbdvgU5pkO9e4Imwv3P4qL8mYsrAauhpWe0xUjhvcqVZzHx3PGbeqtBUL9iSzx8Dx4TjjiGPOqRpOYaI8mmHmX4mhf+oZQi/Eqs49MAqN9FJP1M1Lqo7ZlpuFo7zMDPoGKz/aMfwXt8b3qemlLg/V4uM4X9/Gatc1I0oh4FEvCUxh51LKysHG08n1SjsH4O5kkcXpRyMDWhvksy9+Ja6Le0CpOQmze04NjixN/B8JO4u4JPIcVPMDv+7VMoYuf79lB7bUgdb7fRnIgMI0yRbrFD5PebivXs56aOFRoX6fELBPp8McNSIyLQzVpO/GnPhvh9zPKkbtsuxltynEWWU6hbSW9ikozuG46OxVtFdQSHtgo2PmodNtvtidShOSlpqdbHK3lzMoy/mVXd6UI57Y84p/4y8V5VqGWHWhJdCHouCYmuPWTdWY5WHSVhLO6XemL4lt20rUwcti+xnA1a6ikzCapf7iEhtETkd+ElV31HV/6tuoeKnAwrHS4CdI1PL/IqN1/k/4AwRaRw/vUuqUFUVkSbAycCTqvppWWnD1DCx+ei2U9U1FbxGIVag3CAifWLPIVWIyOFhjrfoNDp/Al5U1VuwwrQj8LSqLsPmQ7sTeyZ7qU3hVKF51qpI3hwAVe2CvTuvikhTVX0GayU1wyb7XKuqlwMF2MDYIyKyrqsqedTmKtwHe2e/waZPGgocLyLbYZWNulhr8vdA7/BeSVlyxL/vqro+7P4bM5megVUWDsYU3jSsP/gLbLqm7qr6v6q6R6caSbdGrOqNxJ3rlwIzw/7h2Ajxpyjt5nop1vG5SVNUFcoZM2MJtpxFJ6zfZXtM+dxDyTios7Gabv00P9v6WB/bB4QaJ+V0QgPnYDXhyppkDgn/T0pNk5g78OdEPBexaXNGhv2PgEfDfnPMJFUjkjbVLaOsuONCrKUWW7bhiPCu30GcCTrRt1IF8mRjA11viIRdiymo/uE4H3NgKHep9rh3qXEsLLyLLxBZfDG8M+9gSi4t34hvm/n+pFuAarux0i/qnsArkePYOKMumAvohZhHW0qmiKfERJEVCt2XsE7XKVhtfEds0ba3MdPYj6RxzERE3nqYeeo3Igu2xRUa8fOfFScrO7Bdmu73Jax/JVaon4yZhP6DzegdSzeJBLM1pEHeFrHCPhzHK6Ve2CwFFV79dDNkqRGuNTAufAw2rdUgIhWreIW6iXwfx8ySMbf/7bEWYUzJxd7R+4ksyeLblrWlXYBquSmrkc3BBvZdh01h8wvQNZLmLqxp/wrW9E95gY+5Q8dq2x0xV+cZ2ESdDTETxLFA6zQ9x3jvstjxFaGAPjmSVuKUUcxtPe2egJW432if12vYYM3tw/GtWCVmn7A9TAas9Iq1SAZiE+qeGwkvDAo0ppT2q2jhn8w7Ehd2HTZ90s6RsEOxaaD+SiVbZlhF6L+Y48Z0StzEh4TjgyNpbyZuFg3ftpxtq1wPSURaYGMs9sPmtlqDfRB/wyb//Cmka4ot4bBOVX9JgVw5akssiKqqiDwMvKyqk0P8DpjpsJaqXlTd8pQja2x5gL2wwaqrMKX+N1WdJyIXY55Ul6vq43HnDsbmSTtIVT9MtezJEPlPNqz1IyKvYzXx7qr6Y1jH6Q9YC3E51gpYE13/KZWyRo6bYxWXU4CJqnpvCH8Fcx5oo6pLQliWlvTBbK4csXekDfadLcP62Bph02xlA7er6vsi8iBmCh0RzqnQmkqh/yi2ltEe2GDazliF5xes76gb5kpejPU/HqSqn1TFPTopJt0aMVUb8Gfsg7iS4CKa4utv8CTC+ocaYZ5OY+PS9cFMdSmfTTyBzK2xRe+uxFqZd2KKqQHm/TcIm6+uZ+ScNtjUMH9Il9xJ3Gd0upz6lJ4NYwbW0siPpKkR/T/TJPOOQJe448Hh3Tk7En53dcgYuf/dMNPZjHDtF7C+0PbYPIarsNbmfynpNy2zpfb/7Z170F1ldcZ/KxcggQYIt0oi2qYGgpoRBqyDihegFgIiIKiI1FQLJEGGggaIgiCg4JBAMEjkngQYI9ckxQTEYqIkwxgp1wkjNjQFyqAjF4GKkOTpH8/a+banARJzLt93vveZ2fN9Z593n/2ec/bZz7vWetZavIH1hGX3j+MF2yX529klz3UEzs+7gMy9Klvf3Do+gZa+uVqsJv8eglU359Di0iHr+2ElGc0CFuTjsTg+dGZtzETsSmwrIeHgdyWiqD63CcCs2tyXAbPz8WZ45XpU/YaX+9oiDGnS+67I6L248sUDOEfn87Uxi3FMaeeGYzvSsiA/41m4GHC9pt5fJwH9Gjhpfe+zyfMYjuOx4/Px2Lx2F5MJqFiss66E0obOA7veJud1ViWuT8aLoD2wgnARmXrQivdXtvZvHZ9A29+wV1MPUlsFt+Ac9VhKlZi4FVbLzacngXEAtjyez5vhrdgiaXqp/w2Y8z1Ypjuytu944OL8v64uexuOW2xeGzuwUzfoJrz33bCo5FRcMeKsJKAv1saswO6wTs2xsdzSSKyeuwGnLlQ3/H/Ka+n7NMT1mjyfYTipdRUZS8xr4F24ncXPaVj0seEChoNxvG4tLh81DVvrB+HY2BbYfTeT7MDb6WuobM3Z+kseErDO934LFjf8voXnqGIQc3BfloW4uvEEHNcaB86nkPRj7I6Yg1V2+6oDcRdJH8Ok8+8R8fbc/Tuc+/QYcK+kz+X+i/Aq9bXa8Wuq990XUOW2RMRgrKK7TtJUSffi4p8vAxMj4mgASWNwlYNOzHWgJGUO2oiIeIekp7CLbiiWnh+cw/fEbrNJzf4+6vlAcsx1MV5A7Z9zWoM9EKfmsO/Wj9ebxK4iYteI+GLm4i3D720VJrkqmXcHfN1NkLQCW0nLcC5YQRegK0UNb4UNDahu4jluw5Lyz2Gr7AD8o/oQXvldJunnrZzDhqKeyBkRi3BW/8ckPRURZ2OL4UM4XjQB3/T2kgP6Lf8sm41KhBARO+O2BENw7tdv8cr+19g9tARbApMk3VY/to1zrYQDY3Gc5AUcp/uKpLkpzLkAW+LD8c15L9XEM02aR/WZbYldaL/N/Ydgy/8h4GpJTyRxjQD+581IqPbaY/Fi6DhJV+W+IbjT6yTsal+DS0tNxsKaS3Lc5pL+1Iz3WNAL0GkTrRs37Mp4kj9PmFyClVDbYD/79fSC6sOsx42C83BW0tMLagqOV8zN99bWWm2teL843vEUtnp2yn2H8ef5anOAL3T6fQKjsSVyCq5yMAErR6scnGE4bWAcGxmr+Qs+s2VY0fYz7NIdhAljHlbCveutrq+G57fHVtUp+XgQtlCH5v9n52/po/n8tpTWEV27DdoI7irYcMzBUtT9gYUp594Jy8tfiIgJOA/qaxGxRtKyTkyytuodgS2FYZJ+IemAiFgILI6IfSV9OyKGAa8orYN2WwrNgmxt/A1O3rxA0nW1p4cCL0XE/rhB4A7ADXlMRyyjfFjVX5yWLsajcYHgK/L6mYUtjAfy2KbONd//SLwomZp/j8Vt6XeS9K2I2AoT5ZNYDbfu2A04xQrsKg4cLxqF5fZXY5ITMCcivizpzk6VzipoAzrNiN264UDzCnp+pFNyf7XaHIGtpI70M6LHXfseHNBfjAuI3kKPQmoRTmZ85/qO7asbcAx2L4Grkl+Fb7TzcJ7LPGwJVJZgpyqNv48eK2QPLFK4F/hhPr8Yu38PbsNc9qZWlDj3fSmvkcrC/MTGflbYzTgrv4OVWKRxMhb/nIgFDANxY79XqCXBlq37to5PoJs3nCz4cnUDyX0DaIFbZSPnVZHRdljZd3z+6EdgBeKC2tjl9fl3w4Y7BL+MJdL3JQlPyc/ik3mTfMs6a634XujJ1RmG859Oqj3/EeCe2uNzcCJo0+dYu0YrUt4P5xttWxszCLvbvtxw7MaS0mic1LqSHgXq6eshpck0uATL1l1bv1LZtRuSluBV49iIOCyrXq9VulPUIZeXJEXEDtgdMgr3p1kj6Wlc32/viDgjx1bVobsGsov0aGwRzpB0hKRvYyJaLek52U21rmJ5KxER74+I3WWsjojR2HV1i6RLa0NfBEZExEmp4DwQW3qrq6rfTZpP5cp9D3BJRIyS9FOcGnBdRGwBkJ/NI9jCXgdtfCWItXgx8DBwboocLsTW4Mdx7tFgSd+V9Pgbv0xBX0chpBZDlhFPAM4DDo02t1OoIyIG1h6+hgPjOwLHVH55ud3FtVh5Ru5bGw2tMvo6JM2XdL6kORExKCJm4VyxO2tjmlJi582Q8cWTgW9GxK65e3vcQ+gztXGBCfR6nI+zHU5fqModNY04k4zejYULz+J+QmCSWAPcHxGnRsStuFfUwk08328kjcfW0Ags3tgdy8Yfxu7KIW/8CgXdgn4p++4EMlD+HewDf+mtxrdwHqNzDjMzEP11/ONfiMsYvRYRdwEPyf1zuhZ5kx8NnIll0/uoM7XpDsKdcQcBF0p6NCL2weR4maTTa2MH57+rk4ya3nspz3E58BtJF9QFFkmgJ+ISSq8Dp6WF1pTPLCJGYcHPM7hU1cO41FdL8gYLehcKIbUR6bL73w7PYRxWSZ0s6dKI2BrHT/bDMYz/wFnwH1c/yO9Ii3Uv4L60DNrZXK9+o/8Utnw2x72E/jMiPoKTXC+VdEaOq+eMtSQHLIl6EW5KeHE+HpjEs10jOTSbwJOUZuN45smSXnuLQwq6BEX23UZ0gowa5MNIuiMiDgduzecuiYjzgFdx35xngIlpKXV90mHe7JbCuhtrW8ioOn2edwx26waO4UVEfEfS4rSeFkTE1pIm1ufXLDJazzWiiHgE2D7P+yKwOolpUkRcJ+m/a+Obak0mGR+DrcBCRv0IXRUXKPj/yPjPLhFxfG3f7bh6xLSI+Eq6EKfiKgW7AUdGxGbdTkaNaLfIJG/8O2JrZD5OMJ2Eq4mfERGjJS3G7rxdW5F/kyS8NiJGRsSBKbAYjuvkHYHji3vm8Fk5x6eaPY9GSHpC0pOtPk9B70Jx2XUx8gY2AFcbOA13O/1e7flTccO0KZKmZvLrGbg00CxJN3Zg2l2PuqstE05vAA6vXGHpVj0Ly74vkvTo+o5t1jwi4r3YNfgYjgsNwTlGe+Tf3bAkewiumPB6o1VVUNAMFJddF6K6WeSNa01E3I5jE+Pzuek59FdYWvupiJgu6Q8RcSHuXLukM7PvfiQJvA0r5Z7DMbs9gLuTJO6IiPG4fuBK4NGKPDaFjBqIsCKjrbGI4EJJMyJiN+CXmCAviogluK3FAODhtKbaFmcr6F8oFlKXoZZD8g7gozi7/TFJj0TERFylYKGkcyPiGpxbcn1dsdWqYHmBkXk807CKbVpEfBPHkMZJ+lWOuRxXyZjejO8ieoq0DsacWAkjhmL33GdxJ9z7gEclHRvOQ3qmLmIollFBK1EspD6ORvJQT0LjXfjmsg0wKiImS/p+RLyIY0dH4Oz345OM1uWyFDJqPurfk6RXI2IVcEJEXC7pnHB166UR8UPc+2cr4MT8bjaJBGqLlL/CFcPvj4izM2a2NfBO3Bb8TOBxScfmoScAtwE/rV6rkFFBK1EspD6M2qp3EK4C/ULewG4HfpYKum2AQ3HDtk9LWhgR2+Gb3v3FBdMa1Fxi6yTRjarFiFgALJZ0UT7+JP5eNgemqQn5PbV5DMNloO4GrgEelPR6jjkN58jdKenA3DcHJ73u226xR0H/RbGQ+igaVr1X4GZ6y3H+xmDgJQBJLwCzMrfjyIi4J10wVQC9LeVx+huSBAYDV0fEj4GbgBkRsUDS/Bx2F653WB0zv/4azVgoVKSIi5feLWli7fW3xdfJ93D5nq9HxBXAzriCxwfzGituuoK2oBBSH0SueisyWo4z+mcAT+eQ5/Dqtu4qWgWMkfRq/bXKjaalGI4rvU/CBV0fAa6KiJuwO/VK4KsRMV7StY0HbyoZ1YhkM+ya+0HuH4wl3V/K/TcAl2Exw464EeM8tTlRuKCgEFIfRCVAwHXNlko6qWHIlcAdGS+6Dfen2Qf4Q3tn2r8h6dmI+AEuinoIbnC4JyaDU3Bl8ZXAQRExF/hjEyXdRwJbRcRsnID7FHBIROyO3YInYMn/COA44GlJNze8RrsThQv6OUoMqY8iXK37Jlxa5YFGhVxEfBDXI3sBLzwGYRdMn2w73leQ7rEBVXwm9w3ATRv3BP5V0qLc/w3c8+hw3D14aZPm8C/YGnq/pOW57x9xd9x3446vV0i6L5+bB6xaz8KmoKCtKBZS38WWwC44XgSOAaxTyEm6NyLm42ZzQ4FfFBdMa5FkdCvwo4i4peYePRhbSDcDZ0XEcEk3SjovLd1zgG9ExKe1ieWlwq0bzseLj+UR8XbcAmUWVsttBbwu6eXaYWuxS7egoKMohNR38RL+/g4AfqmeFhED0lIag9VaD1XKruKCaS2S8GfgKtV/Am6OiMNwK+5DcYfX03E9uC0kXZPf1VzcubcZVusrOD71bES8D0u5h+I40mxJz4MFE/j6mYldeEc24dwFBZuEQkh9FJJ+HxHfwg3U/itX3GtJSwn4Ks6uf612TJHvthiSfhIRE4DLI+LvsXDgKEn3wDo59ZbAByLi2rRoP4wb0Q0F/riJU3gZx6wuxNXDp+Br4hPAoIi4Wu55dRQmyZHA3s2QmBcUbCoKIfVt3IiTGq+MiL/FVRdexa2exwB71pJeS8yoTZCrdB+HZd1TJd1de+7JiJgO/K72nTyG8302uedPCilm4xYjD+LY1fOYBPcD1kbETNxmBGBuceUW9BYUUUMfR5Z++Qx2zQh4Asu+P68ONJsr6EFEfBiLC84C/q1Rcp8uVjV7sRDu9joO+ABWVk7FkvOvYbXlUuDiWmJsuUYKegUKIXUJMslxS1yP7PlKGl5WvZ1FuMneTNzC/kd19V0bzv13OOn1WdwOfAVwLhbCnF6s5oLehkJIXYripus9iIh/AP5Z0mc7cO5RwKWYlKZLerCWGlCukYJehUJIBQVtQCdv/klKNwLzJZ3f6fkUFLwRCiEVFLQJHSalEbiVRCkVVdBrUQipoKAfoRRKLejNKIRUUFBQUNArMKDTEygoKCgoKIBCSAUFBQUFvQSFkAoKCgoKegUKIRUUFBQU9AoUQiooKCgo6BUohFRQUFBQ0CtQCKmgoKCgoFfg/wB/w0bk7H5f/gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEUCAYAAABkhkJAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABIMUlEQVR4nO2debhe0/XHP9/MkZCBiKkhRAxBaGMoItGoWVFTCU0IKTG3za9mRZVSWrMiRELNcwltkZIiFVM0rcbUpEKIJEIic9bvj7Xf3HOvO765977nJuvzPOd5z9l7n332Pue8Z+1h7bVkZgRBEARBqWlW6gIEQRAEAYRACoIgCHJCCKQgCIIgF4RACoIgCHJBCKQgCIIgF4RACoIgCHJBCKQgCIIgFxQlkCR1lvSIpHmSpkg6qop0W0l6RtLnkr6x4KmmfCQNkPSOpK8lPS9pw2LKGwRBEOSfYntINwCLgK7AQOAmSb0qSbcYuB8YUtd8JK0FPAycD3QGJgD3FVneIAiCIOeorpYaJLUDZgNbmdnkFDYamGZmZ1VxTg/gXTNTbfORNBQYbGY7Z9J/DmxnZu9UV8a11lrLNtpoozrVKwiCIGh4Xnvttc/NrEtlcS2KyK8nsLQgRBJvAf3qOZ9e6RgAM5sn6f0U/g2BlATYUIBu3boxYcKEOhYnCIIgaGgkTakqrpghu/bAnAphc4DV6zmfOl3HzG4xsz5m1qdLl0qFbxAEQZBjihFIc4E1KoStAXxVz/nU13WCIAiCJkAxAmky0ELSppmw3sCkes5nUjoGls8hbVLEdYIgCIImQJ0FkpnNw7XfLpbUTtIuwIHA6Ipp5bQBWqXjNpJa1zKfR4CtJB2S8rgAmFiTQkMQBEHQNClW7XsY0Bb4DLgHOMnMJknqJmmupG4p3YbAfMp6NfOB/9SUD4CZzQAOAS7FtfF2BH5UZHmDIAiCnFOMlh1mNgs4qJLwqbgyQuH4v4Aqpqspn0z8X4HNiyljEARB0LQI00FBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLihKIEnqLOkRSfMkTZF0VDVpz5Q0XdIcSbdLal3bfCQNkPSOpK8lPS9pw2LKGwRBEOSfYntINwCLgK7AQOAmSb0qJpK0F3AWMADYCNgYuKg2+UhaC3gYOB/oDEwA7iuyvEEQBEHOqbNAktQOOAQ438zmmtk44HHgmEqSDwJGmNkkM5sNXAIMrmU+PwQmmdkDZrYA+CXQW9LmdS1zEARBkH9aFHFOT2CpmU3OhL0F9KskbS/gsQrpukpaE+hWQz690jEAZjZP0vsp/J2KF5I0FBgK0KVLF4YOHUqvXr3o27cvN998Mx06dGD48OGcd955AFx11VWcffbZLFq0iDPPPJNHH32UDz/8kMMPP5yPTr6EcXOm8901urJh6/bcO+N9urVuz2FdunPVR2/TXM24svsO/PSDVwC4cMNvc93Hk5i1eCFD1tmMf3w1g7fnzWLvThsA8PTsj9i6XWd2WL0LI6b/h84tW3Pqer24pPfqAPz+97/nZz/7GUuXLmX48OHcd999TJ06lSOPPJIpU6bw0ksv0bdvX9Zdd13uv/9+unfvzkEHHcTvfvc7WrVqxWWXXcbPfvYzAH71q19x5ZVXMmfOHE488URefPFFJk2axAEHHMDChQv585//zHbbbcd2223H7bffTpcuXTjppJO4+OKLAbjuuus49dRTATjrrLMYPXo006ZN4+ijj+bdd99l/Pjx9O/fnzXXXJOHHnqIHj16sO+++3LttdfStm1bLrroIv7v//4PgMsuu4xLL72UuXPncvLJJ/Pss8/yzjvvcNBBB/HVV1/x7LPP0qdPH3r16sWdd97JOuusw5AhQ7j00ku/UZZzzz2XESNGMH36dAYNGsSkSZOYMGECAwYMYPXVV+fRRx9l8803Z8CAAdxwww20b9+ec889l7PPPhuAK664ggsvvJD58+dz2mmn8dRTT/Hee+9xyCGHMHPmTMaOHcuOO+7Ipptuyl133cX666/PMcccw+WXX/6NslxwwQXcdNNNzJgxg+OOO4433niDN954gz333JPWrVvzxBNPFP3uffLJJ7z44ovsvPPObLjhhtxzzz1069aNI444giuvvJLmzZtz1VVXccYZZwBw0UUXcc011zBr1ixOOOEExo8fz8SJE9lnn30AGDNmDNtssw077rgjt956K507d+b000/nwgsvjHdvJXv3TpvamnkvPkGrjXvRZtu+fPnwzTRr34GORw9n1s3+7q11+lXMvPFsbPEiOh55JnP/9ihLPv6Q9nsczpLPP2HBmy/SZpudabHOhsz98z206NqN9t8/gi/uuhKaNWetM65iwOgVe/eqQ2ZWbYJvnCD1BR4ws3UyYScAA82sf4W07wMnm9nT6bglPkTXHfhWdflIGgHMMLOzMvF/B241s5HVlbFPnz42YcKEOtUry5K+Q4o+ty60eHFEo1wnCIKVn01fbZzrvLv9ip0v6TUz61NZXDFzSHOBNSqErQF8VYu0hf2vapFPXa4TBEEQNHGKEUiTgRaSNs2E9QYmVZJ2UorLpvvUzGbWIp9y56Y5p02quE4QBEHQxKmzQDKzebj228WS2knaBTgQGF1J8lHAEElbSuoEnAeMrGU+jwBbSTpEUhvgAmCimX1j/igIGoqRb45k5xE7s8vtu/D6J6+Xi3vpfy+x9U1b0+ZXbfjoy4+Wh//4kR/Tf2R/+o/sT6ffdOKJ/zwBQPdrui8Pv/SFSxu1HkHQFChGqQFgGHA78BkwEzjJzCZJ6gb8C9jSzKaa2dOSrgCeB9oCDwEX1pQPgJnNkHQIcD1wFzAe+FGR5Q2COjN7/myuHX8trxz/CtO+nMYxjxzDuOPGLY/v1aUXLw95mf3/uH+580YdPAqARUsXsdn1m/H9Tb4PQHM1Z+zgsY1W/iBoahQlkMxsFnBQJeFTgfYVwq4Grq5LPpn4vwKh5h2UhPHTxtO3W19aNW9F907dmbtoLguXLKR1C1/b3aFNh2rP/9PkPzGg+wDatGgDgGHsfufutG7emsv3uJxt19m2oasQBE2KYntIQbDSM2v+LDq17bT8uEObDsyaP4t1V1+3VuffNfEuTt3h1OXH448fz1qrrcVb09/iqIePYtKwmA4Ngixhyy4IqqBz2858seCL5cdzFsyhc9vOtTr3iwVfMPHTifTbqGx53lqrrQVA73V6065lO2bPn12v5Q2Cpk4IpCCogh3X35FxU8exeOlips6ZSvtW7ZcP19XE/ZPu55AtDqGZ/C+2cMlCFixZAMC0L6fxxYIv6NimY0MVPQiaJDFkFwRV0KltJ4ZtP4x+I/shiWv2voY3p7/JX97/C8N3Gc7kmZMZ9uQw3vr0LY586EiO2uooTtr+JMCH627Y94bleX027zMOvPdA2rVqx9JlS/nD/n9AUqmqFgS5pM6WGpoCYakhCIJVjVXVUkMQBEEQ1DshkIIgCGqgugXSC5YsYODDA+l7R18GPjxw+Vzh14u/5vjHj2fAqAH0H9l/uRLLcY8dx7pXrcvxjx/f6PXIOyGQgiAIqqGwQHrs4LHcdfBdnDbmtHLxI98cyeZrbs6Lx77IZmtuxsg3RwJw0diLOLzX4Tz742cZO3js8iUEl+x+Cfccck9jV6NJEAIpCIKgGqpaIF1g7H/Hsn9Pt9ZxQM8DeGHKCwA8++GzPP3e0/Qf2Z8Lny8zULP+Gus3bgWaEKFlFwRVsOWM7zb4Nf7V5eV6yScUcRqOmhZIZ+M7tunIzPkzAXj7s7f5Zf9fctWeV3H4g4fz9HtPs3ePvRu/Ak2I6CEFQRBUQ00LpLPxcxaWxXVu25m9e+yNJPbaZC8mfjqxMYvdJAmBFARBUA01LZDut2E/nnr3KQCeevcp+m3o1jn6b9SfCR/78pMJH0+gR+cejV/4JkYM2QVBEFRDTQukB287mOMeP46+d/RlgzU24I4D7wDg8gGXc8ITJ7BgyQI27bwpB21+EADnPXceY94bw/S509lj1B489qPHaNeqXQlrmB9iYWwlxHh8ADGHVBnxzuaXWBgbBEEQBPVECKQgCIIgF4RACoIgCHJBUQJJ0pmSpkuaI+l2SVXa5Jd0i6T/SFomaXBd8pLUWdIjkuZJmiLpqGLKGwRBEOSfOmvZSdoLOAv4HvAx8AhwUQqrjLeA+4DfFJHXDcAioCuwLfCkpLfMLFxtBkHQ4DSGYgvUj3LLiiob5IFiekiDgBFmNsnMZgOXAIOrSmxmN5jZs8CCuuQlqR1wCHC+mc01s3HA48AxRZQ5CIIgyDnFrEPqBTyWOX4L6CppTTObWV95Ad2ApWY2uUJ8PypB0lBgKEC3bt3qWIwgaNo0JXXsUFEPqqKYHlJ7YE7muLC/ej3nVTGuEF/pdczsFjPrY2Z9unTpUkRRgiAIglJSo0CSNFDS3LSNAeYCa2SSFPa/KuL61eVVMa4QX8x1giAIgpxTo0Ays7vNrH3a9gEmAb0zSXoDnxYxXEcNeU0GWkjatEJ8KDQEQRBUxeuvwy67wM47w8iRlaf59a89zfe+B//9r4d9+insvTfsvjsMGgQLk4uN4cOhXz/YYQffb0CKGbIbBQyRtKWkTsB5wMiqEktqJakNIKClpDaSCtetMi8zmwc8DFwsqZ2kXYADgdFFlDkIgmDV4NRT4a67YOxYuPZamD27fPw778Bzz8Hf/w6//CWclZSaL7sMBg+G55+HLbeEUaM8/NJL4W9/g3/8w7dJDdcnqLNAMrOngSuA54EpaVvufUrSGEnnZE75MzAf2Bm4Je3vVpu8gGFAW+Az4B7gpFD5DoIqKLZlXODCC6FHxiL1jTdCz57lw4J8s3AhzJsH3btDq1bQty+8WsHI3dixsN9+vr/bbvDWW74/eTL0SSbmdtjBBRN4PgCLF0O7drDeeg1W/KIWxprZ1WbW1czWMLNjzWxhJm4fM/t15ri/manCNraWec0ys4PMrJ2ZdTOzPxZZzyBY+Sm2ZQw+XDN5cvn0hxzSoK3hoAGYORM6diw77tjRw7LMmgWdyhwOsnSp/269NTz9tO8/9ZSnK3DqqbDxxrDuutChQ0OUHAjTQUGwcrAiLWOASy6Bs88un75rV2jZskGLHdQT118P/fvDBRfAnIxy8pw50Llz+bSdO8MXX5QdN2/uv+ecA+PHe+95yZLyPaHrroMPP4TPPy8TWg1ACKQgWBlYkZbxu+/C3LmwzTYNXcqgoTjlFG9w3HYbrLYaTJ3qQ2zjxvnwW5Z+/WDMGN9/6SXonfTKOnSA0aO9F922LRx6qIcvSDYNWrTwIbvVVmuwaoSDviBoylx/PTz4oM/zFNsy/uUv4eKLG7qkQWNxzTVw5JFgBsOGlTVCBg6Eu++GLbaAXXf1ucRWrWBEWkD83HPeU27WDAYMgH33LTtv5kwXcLvu6j2xBiIEUhA0ZU45xTfwD8zUqT7OP26cKylk6dcPzjjDt2zL+IMP4OSTff+TT+C003wOKmia9Onj84QVufvusv3zz/cty/e+51tFHnqofstXDSGQgmBlodiW8csZw549epQJowcegD/8AT7+GPbYw3tRO+/cuHUKVilCIAXBykKxLeMs771Xtn/YYb4FQSMRSg1BEARBLogeUhAEjUpTssJdH36KgtoTPaQgCIIgF4RACoIgCHJBCKQgCIIgF4RACoIgCHJBCKQgCIIgF4RACoKgNBTrLmPkSDci27+/b9OmefjgwbDddh4W66eaJKH2HQRBaSi4y1h/fdhpJzjwwPLGX7PuMl54wd1l3Huvxw0ZAued9808r7vOrVEETZLoIQVB0PisqLuMUaNc8Jx/PixbVhb+0596Xvfd1+BVCOqfogSSpDMlTZc0R9LtklpXka6npMckzZA0S9IzkjarbV6SOkt6RNI8SVMkHVVMeYN8MfLNkew8Ymd2uX0XXv/k9XJxC5YsYODDA+l7R18GPjyQBUvc9P3Xi7/m+MePZ8CoAfQf2Z/Z89353B6j9qD/yP70uaUP97x9T6PXJSiSFXGXceCB8O9/u1vtKVPKTCP99rfuYvuxx+Dyy91obNCkqLNAkrQXcBYwANgI2Bi4qIrkHYHHgc2ArsA/gMfqkNcNwKJ07kDgJkm96lrmID/Mnj+ba8dfy9jBY7nr4Ls4bcxp5eJHvjmSzdfcnBePfZHN1tyMkW+OBOCisRdxeK/DefbHzzJ28Fg6tfUP1VMDn2Ls4LE8N+g5znnunMauTlBX6sORXKdOvt+8OfzoRzBhgoevtVbZed//fvkeVdAkKKaHNAgYYWaTzGw2cAkwuLKEZvYPMxuRXJEvBn4HbCZpzZryktQOOAQ438zmmtk4XLgdU0SZg5wwftp4+nbrS6vmrejeqTtzF81l4ZLlXusZ+9+x7N9zfwAO6HkAL0x5AYBnP3yWp997mv4j+3Ph82VuFVo1bwXAvEXz6NUl2iq5pz4cyWWF1HPPwWablQ9ftMjnnXr2bMCKBA1BMQKpF5BterwFdM0ImerYDZhuZoW+eXV59QSWmtnkCvGVfnUkDZU0QdKEGTNm1LIqQWMza/6s5b0bgA5tOjBr/qxK4zu26cjM+f6qvP3Z23yv+/d4ftDz/Ovzf/H0e+5GeemypfQb2Y+tb9qaAzc7sBFrEqwwBXcZ/fp9010GlHeXce65rnEHcOWVsOOOHj5rFpxwgocfcYSH7bqr7/eKBkpToxgtu/ZApq+9fH91YOY3kzuSNsCH4H5ay7wqxhXiV68sfzO7BbgFoE+fPlZtDYKS0bltZ75Y8MXy4zkL5tC5bedK4+csLIvr3LYze/fYG0nstcleTPx0Inv32JvmzZrzt8F/Y+bXM9n+1u05vNfhdGjToTGrFBRLse4yLr3Ut4o880z9li9odGrsIUkaKGlu2sYAc4E1MkkK+19Vk0cX4M/AjWaWnXmuLq+KcYX4Kq8T5J8d19+RcVPHsXjpYqbOmUr7Vu1p3aJMJ6bfhv146t2nAHjq3afot2E/APpv1J8JH/tcwYSPJ9Cjcw8WL13MMnMNq3at2tGmRRvatGjTyDUKgqC+qLGHZGZ3A8ubLJL+CPQG7k9BvYFPM8Nw5ZDUCRdGj5tZxWbNpKrykrQAaCFpUzN7NxM/qVY1C3JJp7adGLb9MPqN7Ickrtn7Gt6c/iZ/ef8vDN9lOIO3Hcxxjx9H3zv6ssEaG3DHgXcAcPmAyznhiRNYsGQBm3belIM2P4hPvvqEIx86kubNmrNwyULO3+38csItCIKmhczqNrolaW9gJPA94BPgIeAfZnZWJWnXAP6a4k+pa16S7gUMOB7YFngK2NnMqhVKffr0sQkFzZsiWNJ3SNHn1oWm5BdmVWTLGd9t8GuEv51gVUPSa2bWp7K4Ois1mNnTwBXA88CUtC1Xe5I0RlJB//ZgYHvg2Myw31xJ3WqTFzAMaAt8BtwDnFSTMAqCIAiaJkWZDjKzq4Grq4jbJ7N/J3DnCuQ1CziomDIGQRAETYswHRQEQRDkghBIQRAEQS4Ia99Bo9EYSgJQf4oCoXAQBI1L9JCCIAiCXBACKQiCIMgFIZCCIAiCXBACKQiCIMgFIZBWEqpzevfS/15i65u2ps2v2vDRlx8tDx/+5+H0G9mPHW7dgeF/Hr48/LIXL2P7W7dnh1t34OqXK10iFgRBUO+Elt1KQMHp3SvHv8K0L6dxzCPHMO64ccvje3XpxctDXmb/P+5f7rxLB1y63J9Qv5H9mPTZJLp16Mbtb97OOye/g2FsecOW/OQ7P6Fdq3aNWqcgCFY9QiCtBFTl9K5gaLQqdwwFYbR46WLatWzHequvR9uWbVlv9fWYv2Q+Zkbblm1p2bxlo9UlCIJVlxiyWwmoyelddZz61KlsfO3GrNt+XTq06UCLZi3Yt8e+bHb9ZvS8vidDvz10ueAKgiBoSEIgrQTU5PSuOq7b9zo+PP1DPp//OU+/9zSTZ07moX8/xAenfcAHp33AnW/dybQvpzVQyYMgCMoIgbQSUJPTu6pYsGQBAC2ataBdy3as1nI1zIzVW69O6xataduyLa1btGbuorkNXYUgCIKYQ1oZqMnp3eSZkxn25DDe+vQtjnzoSI7a6ihO2v4kBj48kJlfz2TxssXs+q1d6b9RfwB2WG8HdrptJwxj9412Z7O1NittBYMgWCWos4O+pkA46MsnTc2WXRAE9U+9OugLgiAIgoYgBFIQBEGQC4oSSJLOlDRd0hxJt0uqdAZd0lqS/i5ppqQvJL0saZfa5iWps6RHJM2TNEXSUcWUNwiCIMg/dRZIkvYCzgIGABsBGwMXVZF8LnAc0AXoBPwGeEJSi1rmdQOwCOgKDARuktSrrmUOgiAI8k8xWnaDgBFmNglA0iXA3bhgKYeZLQD+k9I1A5bigqkz8Fl1eUlqBxwCbGVmc4Fxkh4HjqnsWqsqTUlRIJQNgiCojmKG7HoBb2WO3wK6SlqzqhMkTQQWAI8Dt5nZZ7XIqyew1MwmV4ivtIckaaikCZImzJgxo651CoIgCEpMMQKpPTAnc1zYX72qE8xsG2AN4ChgXCaqurwqxhXiK72Omd1iZn3MrE+XLl1qqkMQBEGQM2oUSJIGSpqbtjH4vNAamSSF/a+qy8fMFpjZPfhwXO8UXF1eFeMK8dVeJwiCIGia1CiQzOxuM2uftn2ASUDvTJLewKdmNrOW12yJKy9QQ16TgRaSNq0QP6mW1wmCIAiaEMUM2Y0ChkjaUlIn4DxgZGUJJe0kaVdJrSS1lfQLXGNufE15mdk84GHgYkntkrr4gcDoIsocBEEQ5Jw6CyQzexq4AngemJK2CwvxksZIOicdtsZVt2cC04B9gf3M7OPa5AUMA9riGnn3ACcVNPKCIAiClYuijKua2dVApb6t07BeYf9vlB+Sq2tes4CDiiljEARB0LQI00FBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLihKIEk6U9J0SXMk3S6pdS3OGSTJJB1f27wkdZb0iKR5kqZIOqqY8gZBEAT5p84CSdJewFnAAGAjYGPgohrO6QScDUyqY143AIuArsBA4CZJvepa5iAIgiD/FNNDGgSMMLNJZjYbuAQYXMM5lwHXAp/XNi9J7YBDgPPNbK6ZjQMeB44posxBEARBzilGIPUC3socvwV0lbRmZYkl7QD0AW6uY149gaVmNrlCfKU9JElDJU2QNGHGjBm1rkwQBEGQD4oRSO2BOZnjwv7qFRNKag7cCJxqZsvqmFfFuEL8N64DYGa3mFkfM+vTpUuXGisRBEEQ5IsaBZKkgZLmpm0MMBdYI5OksP9VJacPAyaa2ctVZF9dXhXjCvGVXScIgiBo4tQokMzsbjNrn7Z9cMWE3pkkvYFPzWxmJacPAA5OWnTTgZ2BqyRdn+Kry2sy0ELSphXiyylGBEEQBCsHLYo4ZxQwUtLdwCfAecDIKtIOBtpkjh8GHgRG1JSXmc2T9DBwcVIV3xY4EBdqQRAEwUpGneeQzOxp4ArgeWBK2i4sxEsaI+mclPYLM5te2HAV7i/NbE5t8sKH/NoCnwH3ACeZWfSQgiAIVkKK6SFhZlcDV1cRt0815/WvY16zgIOKKWMQBEHQtAjTQUEQBEEuCIEUBEEQ5IKihuxWdlq8OKLmRDnhX12q0qgPgiBoWkQPKQiCIMgFIZCCIAiCXBACKQiCIMgFIZCCIAiCXBACqTpefx122QV23hlGjqw63fPPgwQffeTH994Lu+4Ku+0G++8PX37p4cOHQ79+sMMOvh8EQRAsR2ZW6jLUO3369LEJEyaseEa77AJ33QXrrw877QTPPgudOpVPYwY/+AFMnw6PPAIbbACLFkGrVh5/wQXQtSucfHL58H794MYboVf4GwyCYNVB0mtm1qeyuOghVcXChTBvHnTv7kKkb1949dVvpnvgAdhrL2jXriysIHQAvv66TOgUwhcv9vTrrddw5Q+CIGhihECqipkzoWPHsuOOHT0sy+LFcNttMHToN88fMQK23hpeeKF8L+jUU2HjjWHddaFDh4YoeRAEQZMkBFJFrr8e+vf3obY5Gf+Ac+ZA587l095yCxx9dPkeUYEhQ+Dtt+HQQ+HKK8vCr7sOPvwQPv8cnn66QaoQBEHQFAmBVJFTToGxY73ns9pqMHWq94TGjXNlhCz//KfPMe29N0ycCMccAwsW+FagY0fPB8rCW7TwIbtCeBAEQRCmg6rlmmvgyCNdcWHYsDKFhoED4e674aabytL27w+jR0ObNnDJJa4AAd6ruv32svNmznQBt+uufk4QBEEAhJZdEARB0IiEll0QBEGQe4oSSJLOlDRd0hxJt0tqXU1akzRP0ty03VbbvCR1lvRIOn+KpKOKKW8QBEGQf+oskCTtBZwFDAA2AjYGLqrhtN5m1j5tx9chrxtwt+ddgYHATZJiJWkQBMFKSDE9pEHACDObZGazgUuAwUVev8q8JLUDDgHON7O5ZjYOeBw4pshrBUEQBDmmGIHUC3grc/wW0FXSmtWc80IalntY0ka1zKsnsNTMJleIjx5SEATBSkgxAqk9kFkxunx/9SrS98OH4zYHPgb+JKmgbl5dXhXjCvGVXkfSUEkTJE2YMWNGLaoRBEEQ5IkaBZKkgRmFhDHAXGCNTJLC/leVnW9mL5jZIjP7Ajgd6A5skaKry6tiXCG+quvcYmZ9zKxPly5daqpWEARBkDNqFEhmdndGIWEfYBLQO5OkN/Cpmc2sPIdvZgko7VeX12SghaRNK8RPquV1giAIgiZEMUN2o4AhkraU1Ak4DxhZWUJJvSRtK6m5pPbAVcA04N815WVm84CHgYsltZO0C3AgMLqIMgdBEAQ5p84CycyeBq4AngempO3CQrykMZLOSYddgfuAL4EP8Lmk/c1scW3yAoYBbYHPgHuAk8wsekhBEAQrIWE6KAiCIGg0wnRQEARBkHtCIAVBEAS5IARSEARBkAtWyjkkSTNwBYnGZC3g80a+ZrFEWRuGplRWaFrljbI2DKUo64ZmVuli0ZVSIJUCSROqmqjLG1HWhqEplRWaVnmjrA1D3soaQ3ZBEARBLgiBFARBEOSCEEj1xy2lLkAdiLI2DE2prNC0yhtlbRhyVdaYQwqCIAhyQfSQgiAIglwQAikIgiDIBSGQgiAIglwQAikIgiDIBSGQgiAIGgFJLUpdhqqQpMr2G5sQSDmilC9C4EhqtP/Eqvi8S3l/S3m/JTUzsyWSWks6qFTlqAxJrczM5LS0Eqpeh0AqIZKaZ48LL0JT+VBlPy5NpczVIam5mS2TtJGkoyRtJqldPeZf8R61qyF+pSJzfzeRtH8jXMsyx21K9aEt1Dsd/g04vhTlqAxJ5wNbSmoF3A3sVMryhEAqEeklXSqpmaQzJF0oaW9J6xVaK6UuY3VIalH4k0lqC3QucZFWmPQ8tgTeAE4FHgdOkrThiuYtSZkGx88l3QpMknSzpKPS9XP/3Isl1X+ppG2AF4GdJa3ZQNdqZmZL0/6tku4BXpV0kKRKjXo2JKneknQM8LqZ7Z/KlodnvR3wB+CfQCsze7GUhYmFsY1MQRCl/WbABOB94GtgCdANGGhmn5WulNWT/vDLUvmfxMu9MXADMMLMFpa0gHWkUJ+0fwLQ2syulzQE2A+YCNxhZkVZkK8gjB7CLSw/ASwD+uP37n4zu3iFK5NjkjB4BrjZzBrcQoCk0UAP4CfAt4FrgeHArZkeS6MgaQ+87tOBAWb2TmNev5LyZN/JD4E1gL5m9q+K8Y1J9JAaCUnrw/LWUmFy82TgYzM7zMwGARuk8Bl5ngDN/Jn/AswETsTrcj3ww1KVqxgywrW7pMOAvsA0ADMbATwC9AYGSdqkmGtk/viPAmsCe5jZb83sauAU4FbgKEk/WeEK5ZvVga+Ah9LIgKBhegqSOgOd8I//RKAlsAh4tDGEUSXD8X/F/xvLgL0lrd7QZaiK9M5begZrA5fgDaQRkvqm0Y/CO9uoMiIEUiOQxmdvkPR3ADNbkqJa48NDSBoFrAvsC7QCdpPUsgTFrZI07FD4iGwMLDOzo81sGt6T+BdwXxrCyz0ZYbQZ8B4wGDga6CepE4CZjQYeBL4P9FuBa/0Cv0eHm9liSa1T/lOBB4AXgP0ltVmBKuWKih9loCOwEVCYU2mdwntI2nsFr1WxAdca2BbYRNL/ARcBu5rZp5JOk9R9Ra5XQ1myw/H7SfqxpDXN7DHgDOBM4NhSCKXCUHv6H/cAupjZ7WY2GPgP8Ftg+5T2B8ChjVpAM4utETZ8rPYvwFOZsJ/gH/F7gJeB1VL4BfjwV9tSlztT1hYVjtcHXgc2A+4A3sKHugCuBHqWusy1rNd6wBHAsHS8N/A/4FygUybdXkCzOuSrCsc/Ss/5auBbKaxZJn53fNh2k1Lfk3q6r83T7xbAWZl343FgfPb+AKOAP67otdL+bcChaf8a4GngU2DdFLYnMBnYtoHr3wx4Nf3nn8UbnkNS3JF4A+gXQPtGfCbKlO0l4M/pXR8FbJV5Fq8Ad6X3cbNGfW8a82Kr6pZ5EbZOL+fDmbi7gIWFDzgwDPis8ILkYSsIo/Qiv4H3JJrhLfsJwJuZtKfgcy4blLrctahXK3wydx5wWCZ8b2AqcA6wZoVzai2UUvpjM/uHAPcCN2U+kC3Tb7/0kVit1PelHu5r4X3vnYTBb4HOKWxtYAzwEXBzElATC/eh2Hcz7d+DD4mNSccHJ6HwO2Af4HBgVvZZN+A9uDwrZIEPgT9m7s2xqd6dGroslZTtPuDutN8GWAz8OhN/It6I6NXoZWvsC65qG+VbwSOA0elP80gKWz99oD7Ah4ZeA7YrdbkzZS4Io+bpg7kYn5QufET/DVwKnACcjbtDzk35K6lPxZ5Lb7zFfF+F8D1TXQcVcY1W6Xfd9Kxvy8QdmhFK62fCz03Pv8kLpFSftdIHd2gmbPP0vrfAG17DgZ9m3rEWtcy7FdCxQtgjpGFP4OlM+L54w+Lv+FzdgZW9Bw1Q/zuBY9L+HcDbqd7r4MNkAGuU4LmsBvyJsl76DalszYG1Muka9P5UWb5SXHRV2wABzwEjgZ7AEGAc8HgmzY7pz7p2Dsr7LcoPqTTHe0Y34S3NZzNx38WHHu4CfkOOenaV1KswjNQJ1ypaLx1vkwTp7RXS70BmOKiW11gbeAzYMR33xFvllQqldHxsun6jt0gb8F6vhfd++uOKHC+kd34C8IOqnk0t8m2W/ksHZcKuAd7NXPfltJ99h1tnnr/q84NbWdmBC4HL8F7Ra5QNWV6BD8k3a4yPPpUIeeBR4Djg9vS/bpPCryYJ7JK9N6W8+Kqy4S3lV4FN03FzXA31TVLXOS8b3op7F9g3E3YTqdUJfAd4Ie1X7G3U6ePdyPVqln63SR/FZ9KHYmgK3wofXrq1knNrXS98zmQk8Fdg+xTWE5hTiVAahc+9zQG+Xep7VB/3N3PcFlezfhl4Hp/baZ0E8aUreK2eFY7bZfY3BT4BNkzH3wMOaID6tiMzzJgEzPZ4D6gFMACfY/0A6JbSnIprcG7emM8kle2m9DwGJkH5t1S2wpDxyem4pHOYuVUtXslYCswFeuEtuaWSJgGTgCOT5ssRJS1hwty8ybfN7KvMWoSfmdnXKckcYE1J7c1srqQzgc/M7G5L66vyiLlm0brAw8Dv8aHTPXGtwIlm9oqkAcBESR+Y2WWZc2tdLzP7t6Tf4uPwV0oabmavStoeX5yJmR1vZg8mzbA18KGdifVX28Ylo1W2Ma6csQhf/PpTfN60hZm9mtIuxYfc6pJ/ds1MazObnPavwgXfBcC8pJX6OfClmU2RtAveMKjX/1Za0PsnfG7q/hT8Ct7z/gzvIV+Fz539EH/H/oP3Fve3RliDlHkmwofaP8Gfyz74MPIsvDE0UtJUfF54XzN7v6HLVi2llIYr40b5SdbskMGNeI9oI8paJecCQ0njuSUsc7acHTP7T6at0NJqAXQHpqfjE4D5QJ9S3/dq6pN9HrtT1tNrjrcS70rHa6ffTSiyp0f5+cLe+LqssXyzp/SHTLpG07Jq4Hu+Ff7RexjvIc4nDc2l92a9FDeJOigwVHiWJ+FDYe3S8QB8UfklZJRP8En7i9K9PqJiPvVU36vxuZcfABfj81OtcCH8AD6v2hwfQtwf2Lmx/+f40ORBwI2ZsB+nso7ClT5Ox4fvcqEVW/ICrEwbZWPUzfDJwpHAlZn4J/Dhopvw1tVsoEeJy5z9w/8aOD/zce6GrywfVeFj+yje/c+tAgNJsSDtFzTadk7PYG18OOWPKbwt3pr9VuacWk2wV/Lss/dz0/Sss0JpU7yFem2p71E93us2SQiclgmbD/wy7a+ZPtQPUdYYq+vc3JX4OpkjyMxx4guZ308CoGv6772W7vHBhWdSXwKJ8irml6QyPQB8v/De4b2NR9L/qdEVFzLl2zbdh9cz/4FmwKD0n76JzHBnHraSF2Bl2Sg/XvsGPkcxLL2w9wNdU/wp+MTmLeRIASAJmZdxJYVOmfqsnwTP6EzYm+lF713qcldRl+apPlfjPdJF+NzXxvi6rxlk5opwhYxHqKNKd/Z6mWf/M1zJ49D0oV43I5T6pHQ9aOT1HfV0Xyv9qKf7/Qywa/r4v0GZsN8+vU/tM0KkrsL+5CR0umbLkslv14xQapU+xLtXTFdP96BrhePT8fU6v6BMOaA5cAy+zueS+i5DHcu7I76E4WDK1jk2w0c37qxYn1JvJS9AU90qe8HSi3gVcE8mbFT6eI8htVIKL0Wp65Apy+XAi5XUpfAH2wAfGx+djvsAG5W63NXUpwUuWD/ATRv9JBO3G/AFvs7itPR8lq+DqctzoXyvsdAQeZgy9f6xuMmarXFNsDfJaY+ytnVN93bN9A6slrlvo/Hh51fIKOrgwv64zHGdP8z4eqVTM8ft8CG5m4AfprDvpnf0csrUyOtbGJ2e8t8YX9x7Ygq/EHgHH75rm7lPR5KD9Xj48ozJ+HxWoXzNKGHvraotlBqKxApvvHQd8I6Z3WA+ifgKrq2FpLvx1vB6+HjzCEmnmdl7gJWo6JWxNq4FBYCkLYCfAx0lPWtmN0r6NjBV0pdmdnKpCloTaQJ8iaR38Ps+H9d8AsDMXpC0H255YW1co/C4dE4LKzPrVN011jOzj80VJQrnnAJ8ZGY/TGkewYcNFwNvS/oDvq5pVj1XucHJTJCvjguH9XEFnXnAjZJG4MNWj+IamAPTeXfjQ5SDCnkV/jd1ZD6wkaS+eG/rOryXOxP/T61uZndKOhwXQEtW4FrVMRufh/w78A8zuzld56KkoHIFMFzSX81sPr5Qt+SY2d/kRoNvBFpLejSV78sSF+2blFoiNuUN15pZhreOfpoJb4VrcGXNAY3GX+R1S1HWKsrfElfF/SM+tLA/PnE8B9ciui3V76SUfj1yMvlZRX0KQ2dr463oDfHhm3eAq2pzbi2u0QLv6fylQvhpwK8yz7pg0HM13MAnFGmNICf3dA28lX0rPhe3Lj5H8lIKa4P3CN7AzfX8Kb3vRc0ZVSjD4bi23BTc0slvMnE3pOu0yYTVtwJDdt7oCXwI+9yK/2VcuWEGsE+pn1sV9dgDX36yeqnLUtUWPaQV41/4H+8DYIDc2+JvzGyRpK54C/lrSSfiH7L9zWx2KQucxbz1jqTb8UnjH+J/+uGW3ANI+grYU9LtZvZxyQpbA5lW/Da4Msm1+NzdNNyY5dVJe/jncv84z5nZrYXzrZaq3eY9qcOAMZIeMrNDUlQr4IeS1sF7Bd81N6L6c2A9SS+Zt0qbFOmetsc/ZH82s1My0edIGow3Yk4xs99K+hfeyGmG9yKyvchiy3B/6vE2B+ZbebXp9/H/1pJM+nrrGRXKngzFboD7DroTH547VdJtZvZBuu4Fkj7Fe925w8z+mt7Dr2tOXSJKLRGbysY3F/4VJlR/j/eEhuCtuOEpfEO8lfwGPradG9VoXPhckPbfwVWUN8H/cOtXSHsdrhxQkknZOtZrC7z1OrySuD1xjcGJeEOiWNtphRZ/d9we26hMXMHH0Rrp+CRyZpewyDr/Dm+obFzxPqT9y1P8N4wBV/zfFHHtKt87fNHrLDKLuOu53lljpC8CT+ENnLPwXuEd+MhCB9xK/PWlflZNfQsHfXVE7t3zJTP7bzpui0+uPoV7TT0aeNDMfp96Sd8BJlmRzt3qmzTWvQ8+yW7AeDM7qoq0w4BfAv0tOe7KGxUWTRY0nS5KLdrz8KGmCWZ2j9xB3HeBJy35pbI6tNwz7ipa4Kvdu+DrOh4wsyPkPnhG4o2RKfiw1lAze6P+atz4SOqJN0qm4w4YX07hLc17gRviyxn2bIy6StoVf44/A043s/uy70EDXO9P+DD2IHz4cGe8R/wlrsW5Ad4rHmBmbzZEGVYVYsiuDki6GP/ITZZ0BfCFmT0saRauPnmdL4zmR5JWM7Nf44IqF6QP6hJJz+BquB3xMfhCfGF44jBclfYgYO+8CiNY7va7K94TWQYcJuldvBU7FR9O/YOkt83sn7h9tcIQX52GkazMj8xf8N7R5bi68xWZ4bsfSNoJXyQ633Ls+bcmCgLYzCZLOh7XHjxe0lIz+4elIV9cAL+NC+HGoBn+/h5pZs+nZ9IgyH2ZLQMuT+/LHyV9gA8D/xlvjPYA3rNSWzlYCQiBVEvknhP/itug2wEfJz9F0ndx3yaXpA/9H/EJ3u/LnXLNLFWZs2SEjfAhhv1wgXSz3AzQxZkP9L/xIbwB5hqBuUXSanjr/U9mdqXcRM/WuOrxb1IPdkPcxcdyrHgzR9/CPZ+ebWYfAZMkvQb8XdIIMxtiZq8UXaEckQTwWnhv8Kf4R/gaYGgS6C+npCfiwr+o+dHC/F8l4ctdy1co1wuSJljZXEizFXieNdEGt3/YD9eWlLmZqY9xu3APhSCqP8JjbC1IH/Nl+MTuZbgNqO/ipu2bAVvi6qjdzexLfG3LwBwJo0LPqBmukfQrfMHuX/GexI8lnZvSnoKr9F6Rd2GUWIYvTPwegJkdbmZnm9lvUvwfcK27oj4albS+v8DVnQeozCPq+/g6s2Ml3VHMdXLMOvjHeBdzG3Jn4GrfgyVtKmkkbjbohNRbrVNvJSuMJO0pqZ+k3rBcIH7jG5XO+VrJo3IDCiPS//li4ERJB2SGBWfgzu2C+qTUk1h53yhbENgc/4D/CNgJF0rXZNLtB3QodXmrqUdhqOl2vGdcqFcrXLtudqrffOA7pS5vNfWozJz+pvjar0MyYTun+rxOEYteK14L7xUV8vkNrsCwbSbsF/h8UklNQdXD/f3GPUp1exVYJ3O/nwQ+xlXg60O1+1F8Ue3LuNWMK6tIV1j02hm4m4wPnwa8J+1xn0of4xp2N+LKM9uU+nmtbFsoNdSC1Oo7Eh/CGpLCdsLHj/9pZseksEqHGPKApC3x3sI+5la6y00Cp/i9gCcsRz2jjCJBtiX9LXzV/C+BxWa2MM3vYWYXpDTNcT9DI60Oi14ruW4zfIHjWvgk9vNmdq2k+/G1TjPxD9UpuDbdf+un5o1Pps5dcYsST6fwb+FDdb8zsxdTWA/geOC8Yu5vheueiTcmdk3Ho3CTQ9+xjIpyZti5M94gPN7Mnim+xnUqY0vcyseB+Hzlw5bjudUmS6klYlPY8NXpn5DcUZN6GHhPaTzJ+2ueNir0JPA/+D8ps5Rc8Gq6Pjlt1VO2KLM9vtj00HS8B96SfgVXu90SN7L5X5IfnMryqeFalfUMCo4VR+A9rtPTda9K8YNwtf+bga1Lfb9W8F4Xesw9Uz0/wddy9Uvhvweeqc27Vtvnmjn+KXBu2j8fV63ujo9K9K7wLnTGFVX2KvU9i63+t5hDqoGk4vsI3jo+GHxxpHlPaDyuetpR0nqlK+U3sTRnJOnQFPQmbtX66hS/KIUfA1wqqXVDaivVldSDWyppDVyleCHwFfgCPzP7Lu7eoRUuNHrhDYXhSTNqOVaLOYb0PJF0fmr9gw9NtQV+bmYv4UM1w4E+kvY0szvN7AzgZDN7e4UrXSIyPaPNcIWWqfi8USfgDEmP4f+BjSTtXfF8q3vPs9DTvU3S/rhV+Z5y8zY/wS1nf4iPSvxAUrv0LnTG15GdZI3UMwoamVJLxLxtVNGaxs0EfQjcUCFcZMyW5GnDew3LSGaNcIOY/wUexAXR+fjCwlyOheOmd8ZWcs/bVTjeA3cfMRFvPXcsPJs6Xu+UdL9eoWx9yRvAFpk07XEFhuGZsNwvGq5F3bvgCgs/y4S1wZUabsXn474mM2+6gtc7ERibufaUdO8Lxj93x+dp9krHzVM59iz1vYqt4baSFyBPG+XdCFyE23L7IbBeCu+POxjLpS8bKp/wPwh3v3B6Ot4IN3d0D66intuhplTWF8jY3sI1G28pfJyA1im8Fa7G/ho12K2r5nrdcad9n+FaiBsm4VPRbt11wC9KfX/q8T63xLUvv8DnhL4hZPHe4tAklHatQ97tk6BrnwkbnJ7Tj9JxM3x+5n+UOfj7gORcL3Nex1Lfq9gadot1SBnMhwUKDr6m4ZPVJwO7SrrJzMbKrRfcK2mhmQ0vZXkB0jDGamb2kZWpdv/AzB4FMLNHJf0IuF/uPvsa3Ijq8pX2JSt8zczD3b8PkvRvvCc0HJ/T2R7/SH6EmwIyM/tC0lm4SnKla1sKVFRASUoQH+PaY78FDkv7A3E3zy/hw1btgKPwOaWVAnNrC8fh83S9Ja1vZtOgnFr2e2b2rqTNcVNT46rLM6M00wN3+Di3kB9uPaMjbtXk3vQcXpDbITwEtwhxnZm9loaRZb5A94v6r32QK0otEfO2kYxyZo6fwz9615JseeFWDDbJQVnb4x/NX5Mm8/EP6EskC92ZtCfgQyJnZMJyPdSE93rOw+2IvYP37PqmuLbpuZxQ4ZxL8aG71Wp5je9S3przsen8NvgH+l+4/5urcJX5u8hxr7KWdS6MBLQj4xcHtwX4L1x7dP0qzn0UuLmG/LNecw8gOSPEhXw7fK5vEN77/BUZ776xrdpbyQuQpy195I4jaZ3haw7G4/arpqXjLUpZxkrKfAw+zHQePt7fGV838jg+2V5Itz2+luRzfLI678KosCShNd4T2pQKa05ws0yHVEh/KbVcR4UPDS3DhwAvoUzT7HLKhjifxOeRNknHTc6FRIU6F4TRVvi6tGeS4O2dwnvhw9I3UN6le3O8AfQ28O2anlva/x3e2+mUhPq89HxWw4cJT8B7nRdRpvWZ6/cytobdVmktu6RBtxxz9wAPAh9KOgI3QbObmd2PzykswNedlBw5zc1sNK5t1hf/gy/G1xu9jLuN+Gk6ZVv847qJmc02s1wvQDPzVf9mttDM3k3b5wVNwGQRYW28xZ4971wze62Wl7kFnxNZgit8PJXWxDTD55Mws/1wxY9H0/tStBuFUlGwaJDRXNwC7/mPxedJvwDultTbzCbhPZkj0gb4cLb5sNt3zOz1Kq6TNXR7CT7/2iu9bx/g83+H476EWuANgifw5RO/rLg2Llj1WKXnkKzMz8lpuKbP88BEM/tS0trAv8wXXZ6Kmwq50PJjLLPwcWmGD7UUhrda48NLN+If26GSBuEaY3uY2ZxSFbi2FD5MFT9OktoA+0g6Glc4+G66B9XOF1WFmb0kaS98HdFPcfXj1fFecmdJT5rZX8xsgKQNbAV8+pQKSf1xleoHzGx2uoc/B+4ws0uTgD8H/xY8KOmHZva23Cbg1EqyrHTOsYIw+jVukupyM5tZeD7mnkuPx902gA/X3ZWu/VoIo6DkXbRSbLiG1rC0PwFvZV+NC6QRQFd80noZPiz0NbBtqctdRV1exU2obI1/VN/GLRh0xFv6G+LrpzYsdVmrqUNhGKljDelaA4fia78KJmTqtCizinx3T/ft4HS8bbpOO1bQn0+pN+ACfNh5MNAphe2IN1CaA/9I788G+GLYOcDmFZ9NHa53NT7f92N8VOGcis8VX+P0H7zh1JYYpostbatqD+kroK2kQ4CPzOwgAElj8T/mTDP7VNK3cavXp1jyCpknUi/uS+An5sMpb0v6H27mpRlwu7kpm1z4YqqMzDDS1sANkoZaeY+gyzHvrT5qqadSX1qC5i4MTgVuTa35B/GFxE0eM7tY0jxco615Mnn0DzMzSUOBOWY2EEDSk7hSw7uZ82vd85S0Cb6wdRMzmy7pS9zCw1JJf7CkJWfeUzoJH7L7g7nR1iBY+QVSFePSH+Hj23/Fh+KQNBpYE3cvsZqkLc3dCLzZiMWtlkrqItwB4KG4arLM7AFJB+NrP2ZJutHKrDLkjvRhXAs3WvtAVcIIyqyWp/3VrB5dMZur9B8P3JTmXB7K832rDZJam9lCfK7sO7hJIMPnSb/E50QXStoOOBUfGShY7a7zMKiZvS+po7kaeSvzJQdL8XVbFIRSek+fk7Stmc2qvxoHTZ2VXqmh8AFPvYkCT+PDEw/hcwVPAZvj2kOL8SGhn6Tx9lwgNyxpmeP2ZvYpPg5/mKQBmfi3cRcYD+b9oyqpA+7obJ/0W1irUjGdrMy8z0+A6ytLtyKY2d/w+cSf4sODTZrUo/w2vq7uI3z+5zzgULkfqXfxObNr8SHfg5IwUl2FUeaai9P5i9LxE7iwOwk4QVKnzHs6e0XqF6x8rPQ9JABJFwCHyBc3forPu+yLzx0twDWshqQ/0+n4n+d7ZragREUuh8r7M7oX7xl1l3QR3stbB7hM0sv4fNcQoI+5A7lckuntGW4x4mLS3EIawstOkmf3T8bXXfUr9qNZHWb2V0kv1Wfvq1QkgX02vvi0YAX9AnyxN2Z2u9zWYXtgiiX37LaCyhsVRyTM7AlJy/BlEy0lXWFuDzKUGIJyrBICCR+rfh5XL90NX2m+DB+iuIu08FXSe7gSwJ7m7q5zgZW5zn4RN6kyEl9XdCeuMfUb3P7a0fh6qT3NrDINqZKTGQpqjTcG5pnZb5OwvVTSl2Z2b6GlDuV6ucNwwbW7mb3ZUGVcGYRRohk+DL28YZLmlDYEfi2pHTDK3JBpuSHR+sbMnpRbg/iqoa4RNH1WWX9IaZ7lSnzS9X78A7kMWGhmn5ewaMtReR9A3YE7zWy3TPwRuFDqb+5WuRn+/c7lQ1WZVemt8IWoC/G5jN+a2WRJZ+DDpT83s/sqnHsaZcLojUYuepOgsnkfSb/EtQiPLSjmSPo+vnbtIdztQ4O+L5U0LGK9UVApK/0cUpbCHyN9GB/BP36n4/MGX5jZtBwJo4L2WaukATYf2ES+bqZQh/vwhYUF993L8vxHT8KoOz5X9Ao+zzUf1w7siKvjX4Ev0hxQOE/uDmI/3EFiCKNKSO/DUkk9JB0n6TBJbfF7+j+897l9Sn44vhbovGxPtKGwRPa4Ia8XNF1W2R5SAbnq9wX4nFHJrDBUNmeSejxP4h/to3Ftpel4T2lySjsKeN3Mfl+akleNpH2ASWY2NVOnk4CdzGxQmuMYB7xrZj+W+zFagmsNPpTpHRbsrX1Roqrkmsy93Qy30DEJH46fjWuT9sTnjQbjdg7Xwe3xLVGOvRwHqx6rtEDK/JHbW7JGXMpypP3N8MWJ8/APyCbmTuCQtB+uzv0hvor+a9xu3W5m9p9GL3gNSHoet0G3U0HBImnIbW5mZ0p6E/i3mR0paV3cEOed5qrKhUn5XPf68oLc6vuvgFfN7A655eyLcTtye5vZ/NRDmkeZ4khRFi6CoKFYpQVSgVKOaVcQRqOBbXDNs+m4v58vcRM5/05pdsUtVO+Bq67/zszeKkXZa4OkP+Et9AFm9j9JP8Ttp30GPGtmJ6d0d+N1HRYCqG7IvepeDXwf99N0bxLmG+OuNDoD+5nZl5lzomcU5I4QSDlB0iPAWrjb5kOBXYDXgTNxi8gnZj/Uady/heXUn1FWfVjS07jFi93N7KM00X4B7sZjCa5m/21cVX1xKRsITYWK90jSMcAwfLjuEjObkt6RTfD5oklmdmJpShsEtSMEUg6QdBuwF+5vaXEKexG4DPfN8y/gbjM7KcXl+oNdWetb0l/wj+NuSSidg/f0vsZNOZ2UhFEMI9VA4R4lte12lgz+SjoAt/g+ERhhZh8mobQ+8HH0iIK8s6qsQ8o7o3H3EXsAYyR1xV0rtEof7z7AS2mu65icC6PCx3J9fA3MGmY2zsy+L2kM8DdJu5nZr9NQ07yM8kIIoxrIaNNtg7sZaS7pa9wl/YiU7HjgOEmjzOxd0jqkGKYL8s4qpfadV8xN1gwFrk5aaBPwyf1H00d6Mi6wdpO0TinLWh0ZVfWt8OHG64AHJD0kqa2Z7YObq3lO0kZm9mVGGBVtrmZVIqnOb4Cr+9+D+yx6Hp9vPMfcVM+9uNWL3Sue28jFDYI6EUN2OULSbri7iz+Z2Y9SWDPcBcBi1ZN164Ygo7G4Jr725RlceWEdvE5TzeyAlHYC8F6hjkHdSNpyF5rZ/pmwIbhjvUHmlur3Av4SQihoSkQPKUeY2Qv4XNI2kg6WW7RelhFCuTW5koRRF9wCwyb4x3CpmU3DfUttL+nslLYPcFTpStu0SBpzyz2/AmsAO0vqlEl2J9ADV53HzJ5Jvan4jwdNhnhZc4aZ/R3XOvsVcGBaLFqIy113VuUtbi/CLUqvDRxdsABgZvNwTa+2hYTxsawdmTm5rYDfS9rEzJ7Fh+lGKlmkTxqN/8SNBy8nekhBUyI+CDkkzSmdThNwg5A+lj0lnWjuHv1c3Pjrd3AXHgWB+h1gtQrnxseyBtL97QWMxYVNwbTVb4ClwOuSfibpYXzd0ZiSFDQI6oGYQ8oxqmcndA1FsiDxBHCGmV0r93F0DjAAd5XxBrAFbp5pYelK2vRIw3Q34XNul2c15ZI25ilAB7xn+otkDii0FYMmSah955i8CqOK6sPmrgV+CDyc4n4v6Ve4e4m9cYsSw8xskcq8mAa1YwnwLXzBK4BlFh0vMbPzs4lDGAVNmRiyC+pMmv/pluzSFcIeBQ7BVddPNbOvgKtwH06b415tW4Uwqp6K82pp3vCfwFqSOpizJM3PnSypW4X0IYyCJksIpKBOyGmOu7w4Q+4aAwBzlx7Dgd9K+lmynXYx8B7wY9wkUlAFqXezTNIGkvaRtIPcaOqDuLA/Wu6SHFyr7gAyzveCoKkTc0hBrag4TCf3X3QEcCxwj5ldk8L743bqWuK265aktGcCt1qO3aqXksw6rq3xdVvv4PNCbXGX9Nul381xr8FtcceMi8MCQ7CyEAIpqJGM6vGGQH/chcE7ZvZPuVvxo4ExZnaJpNtxleS70ge2RWGIKY9q66Uiez8ywqgD8BjwoJldL2lz4FXgInM3713whcbNgLdTb2q5EdsgaOqEQAq+QWXCI62D+TMwHuiIL379P3NXBwNx9wefAM2Bb1tY7a4Slblyb4lPExWsoq+GD8/9CDc6Ox630v3jdP8/sYwTyegZBSsbMYcUlCN95ExSC0mdCotb8YW6V5jZwcDBwPnACEn7mNndwJa4Uc/eSRi1CGH0TTLzRKsDjwIXZhYXdwA2AnYEniN50k1xJwLbZvMKYRSsbIRACpZT4WM5GrgIOCZFt8TdRGBmX5jZnbgW3WGS2pjZTDObULDAEMNI3yRjfHYN4DVgCj5E1wzAzD7BlRWewa2gF+wZjsbnkMaWotxB0FjEOqQAKPexXB23Nv4McD0wLSWZhVsCyA7pTQG2MLMF2byi5V45qefZHDc6+1czG1aIS3bpvsItpC8DzpV0C7Aeboppl/R8YpguWGkJgRQAyz+WLYC7gJfM7LQKSW4FnpQ0B/dg+y5uNPVLghrJCJJW+NDcH1J4S1yle0gKvxu4AVdmWBtfGPtYEkahwBCs1IRACrJ0wj+KF0KZG/LUI3pB0t64GZv9k/Bqgbtaz70X21Ii6TCgvaRRgOFrhw6QtCXQHZ8f+jXu2XUoMM3MHqyQR/MQRsHKTgikIEs7oBs+XwQ+dLTcyriZ/V3S4/i8x2rAuGi5V4+kE/De0A7JisJSSQ8Ag3Fbf//A12uNT+kfA3bDte2WExYYglWBEEhBlq/wd+L7wKtW5iKiWeopbYFbH59YMAEULfeqkbsZvxSf/5kg6Vu4v6s7gWeB9sBiM5ubOW0ZPjcXBKscIZCC5ZjZTEkX4353/mtmf0zzHoVJ9J/jGmGLMudEy71q5uFriT6VtC2uKr8aPo80ysxmgw+N4v/Fm/EhvMNKUtogKDEhkIKK/BFfC3OrpI1xqwsLgP/DXUh8OylAxJxRzcwF5uC+i/bFXXIsw3tJLSSNMHdeeDhwILABsL2FC4lgFSUEUlAOM/ta0q+B9/EW/bHAh7ja93fiY1l7zOzTpMjwBPAWvrZrNj5XNwBYJulm3F8UwH0xJxesyoTpoKBK0tqYdrgZm9lZ23QlLlqTQe7tdT9gJ1xF/ircncRwXG3+JeB3ZrY4pQ9hH6yyhEAKak0M0xWPpB74otdPgSuAfwOX4BqNZ8V9DYIQSEHQaEjaBLgWF0rXmNlbGUvfIeyDVZ6wZRcEjYSZvQ+cBvQC9k9hIYyCIBE9pCBoZCStj7uSCJt0QZAhBFIQlIgwlBoE5QmBFARBEOSCmEMKgiAIckEIpCAIgiAXhEAKgiAIckEIpCAIgiAXhEAKgiAIckEIpCAIgiAX/D+Arb5Gqovk5QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -8731,7 +8903,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 83, "metadata": {}, "outputs": [], "source": [ @@ -8748,12 +8920,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 84, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAD7CAYAAACYLnSTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAU+ElEQVR4nO3df6zdd13H8eebdaHXdvU6epm2ZC1M1pkxYe4SjNVhGNKMaJytJsAQSDQFzRL/ahjKoOKwhRH/0BiwCbCxLIiYrREXXCDdIgwh3qXZZrUbYUuVO8VOaG23sl++/eOc251ezs/7/Z7zPd/vfT6Sk/R+z/ec8+n3nPs63/v+vr/fT2QmkqR6e0nVA5AkFWeYS1IDGOaS1ACGuSQ1gGEuSQ2wpooX3bhxY27durWKl5ak2nrggQeezMy5bvdVEuZbt25lYWGhipeWpNqKiGO97rPMIkkNYJhLUgMY5pLUAIa5JDWAYS5JDVBJN4skVeHg4UVuuecRnjhxhk2zM+zZsY3rrtxc9bBKYZhLWhUOHl7kA3c+zJnnXgBg8cQZPnDnwwCNCPSBZZaIeGlEfDoijkXEqYg4HBHXdtx/TUQcjYinI+LeiNgy3iFL0uhuueeRs0G+5MxzL3DLPY9UNKJyDVMzXwP8B/BG4MeBm4C/iYitEbERuLO97EJgAfjCmMYqSSv2xIkzIy2vm4Fllsx8CtjbsejvI+Jx4CrgZcCRzPwiQETsBZ6MiMsy82j5w5Wkldk0O8Nil+DeNDtTwWjKN3I3S0RcBFwKHAEuBx5cuq8d/N9pL1/+uN0RsRARC8ePH1/5iCVpBfbs2MbM+eeds2zm/PPYs2NbRSMq10gHQCPifOAO4LbMPBoR64HlyXwSuGD5YzPzAHAAYH5+3rnqJE3U0kHOXt0sde90GTrMI+IlwO3As8AN7cWngQ3LVt0AnCpldJJUouuu3Nw1oJvQ6TJUmSUiAvg0cBGwKzOfa991BHhtx3rrgEvayyWpFprQ6TJszfyTwM8Av5aZnUcQ7gJeExG7ImIt8CHgIQ9+SqqTJnS6DNNnvgV4L/A64L8i4nT7dn1mHgd2AR8FfgC8AXjbOAcsSWXr1dFSp06XYVoTjwHR5/6vApeVOShJmqQ9O7adUzOH+nW6eDq/pFVvUKdLHRjmkkTvTpe68BK4ktQA7plL0gSM+6Qkw1yShlAkjCdxUpJlFkkaYCmMF0+cIXkxjA8eXhzq8ZM4Kckwl6QBiobxJE5KMswlaYCiYTyJk5IMc0kaYJgwPnh4ke37D/HKG+9m+/5D55RgJnH5XcNckgYYFMaDaurXXbmZfTuvYPPsDAFsnp1h384r7GaRpEkadIZov5r60jrjPinJMJdUG1VOINEvjKfhqouWWSTVQtH2wHGahqsuGuaSamGaJ5CYhvlFLbNIqoVhShlVlWGm4aqLhrmkWtg0O8Nil0BfKmVUPY9n1VddtMwiqRYGlTKmuQwzCe6ZS6qFQaWMaegoqZJhLqk2+pUyBpVhms4yi6RGmIaOkiq5Zy6pEaaho6RKhrmkxqi6o6RKllkkqQEMc0lqAMNckhrAMJekBjDMJakBDHNJagDDXJIawDCXpAYwzCWpAQxzSWoAT+eXdI4qJ03Wyhnmks4aZraeImHvF8X4WGaRdNag2XqWwn7xxBmSF8P+4OHFgc9d5LEazDCXdNag2XqKTM222qd1GzfDXNJZvWblWVpeZGq21T6t27gZ5pLOGjRbz6Cw76fIYzXYUGEeETdExEJEPBMRt3Ys3xoRGRGnO243jW20ksbquis3s2/nFWyenSGAzbMz7Nt5xdmDlEWmZhvmsQcPL7J9/yFeeePdbN9/yHr6CIbtZnkCuBnYAXT7Gp3NzOdLG5WkFSvaMdJvtp4iU7MNeuwwnTTqLTJz+JUjbgZekZnvaf+8FXgcOH+UMJ+fn8+FhYWRBippsOWBCK29386962m1ff8hFrvUzzfPznD/jW+qYETTJyIeyMz5bveVVTM/FhHfjYjPRsTGHoPY3S7VLBw/frykl5XUqc4dIx4gLaZomD8JvB7YAlwFXADc0W3FzDyQmfOZOT83N1fwZSV1U+dA9ABpMYXCPDNPZ+ZCZj6fmd8DbgDeEhEbyhmepFHUORCLHFxV+a2JSwX4KPl5JQ2hzoE4qJNG/Q3VzRIRa9rrngecFxFrgedplVZOAN8GfgL4c+C+zDw5nuFK6qdIt0lZinTT9OukUX/DtiZ+EPhwx8/vBP4YeAT4U+DlwP8CXwHeXuYAJY2mykC0vbA6Q4V5Zu4F9va4+/NlDUZSvfXrpjHMx8vT+SWVps7dNHVnmEsqTZ27aerOMJdUmjp309SdMw1JKs00dNOsVoa5VIEmT59me2E1DHNpwmzf0zhYM5cmrM4Xw9L0MsylCbN9T+NgmUWasE2zM12v2z1K+16Ta+5aGffMpQkr2r63VHNfPHGG5MWa+7BTrDk1WzMZ5tKEFb06YJGae9EvAk0vyyxSBYq07xWpuXvtlOZyz1yqmSKnzHvwtbkMc6lmitTcvXZKcxnmUs0Uqbl77ZTmsmYuTaFBrYcrrbl77ZTmMsylKTPu0/29dkozWWaRpoyn+2sl3DOXxqDIGZp2nGgl3DOXSlb0xBw7TrQShrm0Av1OiS9aJrHjRCthmUUa0aADlEXLJHacaCUMc2lEg06JL+OqiHacaFSWWaQRDdrztkyiKhjm0ogGHaAselVEaSUss0gj2rNj2zk1c/jRPW/LJJo0w1wakQcoNY0Mc2kF3PPWtLFmLkkNYJhLUgMY5pLUAIa5JDWAYS5JDWCYS1IDGOaS1ACGuSQ1gCcNadUqMhuQNG2G2jOPiBsiYiEinomIW5fdd01EHI2IpyPi3ojYMpaRSiUqOhuQNG2GLbM8AdwMfKZzYURsBO4EbgIuBBaAL5Q5QGkcnDRZTTNUmSUz7wSIiHngFR137QSOZOYX2/fvBZ6MiMsy82jJY9UqM84yiJMmq2mKHgC9HHhw6YfMfAr4Tnv5OSJid7tUs3D8+PGCL6umG3cZxEmT1TRFw3w9cHLZspPABctXzMwDmTmfmfNzc3MFX1ZNN+4yiLMBqWmKdrOcBjYsW7YBOFXwebXKjbsMMsw1ye12UZ0UDfMjwLuXfoiIdcAl7eXSipUxKfIg/a5JvlTmWfrrYKnMs/Q4adoM25q4JiLWAucB50XE2ohYA9wFvCYidrXv/xDwkAc/VVTVZRC7XVQ3w9bMPwicAW4E3tn+9wcz8ziwC/go8APgDcDbxjBOrTJVT4pst4vqZtjWxL3A3h73fRW4rLwhSS1VTs02iTKPVCavzSJ1UXWZRxqV12aRuhim20WaJoa5Gqtoa2GVZR5pVIa5GsnWQq02hrlqq9+ed7/WQsNcTWSYq1IrLYUM2vO2tVCrjd0sqkyRi2kNOqnHC2lptTHMVZkiZ1kO2vO2tVCrjWGuyhQphQza8676DFJp0qyZqzJFzrLcs2PbOTVz+NE9b1sLtZq4Z67KFCmFuOctncs9c1Wm6FmW7nlLLzLMVSkDWSqHZRZJagDDXJIawDCXpAYwzCWpAQxzSWoAw1ySGsAwl6QGMMwlqQEMc0lqAMNckhrAMJekBjDMJakBvNCWxmqlc3xKGo1h3gDTGpiDJl2WVB7DvOaqDsx+XyT95vg0zKVyWTOvuSKTIhe19EWyeOIMyYtfJAcPLwLF5viUNBrDvOaqDMxBXySDJl2WVB7DvOaqDMxBXyRF5viUNBrDvOaqDMxBXyROuixNjgdAa67opMhF7Nmx7ZyDr/CjXyTO8SlNhmHeAFUFZpVfJJLOZZirr0E97O55S9PBMFdPVfewSxqeB0DVU5U97JJGY5irJ0/6keqjlDCPiPsi4ocRcbp9c9etATzpR6qPMvfMb8jM9e2bZ4U0gCf9SPXhAdBVYKVXVbT1UKqPyMziTxJxH3A5EMAjwB9l5n3L1tkN7Aa4+OKLrzp27Fjh19VgyztSoLV37ZmYUv1ExAOZOd/tvrLKLO8HXgVsBg4AX4qISzpXyMwDmTmfmfNzc3MlvawGsSNFWh1KCfPM/FZmnsrMZzLzNuB+4K1lPLeKsSNFWh3G1ZqYtEouqpgdKdLqUDjMI2I2InZExNqIWBMR1wNXA/cUH56KGtSRcvDwItv3H+KVN97N9v2Hzk4sIaleyuhmOR+4GbgMeAE4ClyXmRZlp0C/jhRP15eao5RullHNz8/nwsLCxF9X59q+/xCLXWrnm2dnuP/GN1UwIkn9TKKbRTXkwVGpOQzzVcyDo1JzGOarmKfrS83h6fyrmKfrS81hmK9yzhQkNYNlFklqAPfMa2ClVz2UtHoY5lPOE3skDcMyy5TzqoeShuGe+QQUKZN4Yo+kYbhnPmZLZZLFE2dIXiyTDHtBK0/skTQMw3xIK726YNEyiSf2SBqGZZYhFDkIWbRM4ok9koZhmA+h3971oFDdNDvT9cqEo5RJPLFH0iCWWYZQZO/aMomkSTDMh1DkIOR1V25m384r2Dw7Q9C6Vvi+nVe4py2pVJZZhrBnx7ZzauYw2t61ZRJJ42aYD8GDkJKmXWPCfNzXL3HvWtI0q1WY9wrsYVoHp/liVdM8Nkn1UJsw7xfYg1oHp/liVdM8Nkn1UZtuln6BPah1cJovVjXNY5NUH7UJ836BPah1cJovVjXNY5NUH7UJ836BPejEnGm+WNU0j01SfdQmzPsF9qATc6b5LMxpHpuk+qjNAdBBvd79Wgcn0Se+0o4Ue9gllSEyc+IvOj8/nwsLCxN/3XFZ3pECrb1rT9uXVKaIeCAz57vdV5syyzSzI0VS1QzzEtiRIqlqhnkJ7EiRVDXDvAR2pEiqWm26WaaZHSmSqmaYl8SrKkqqkmUWSWoAw1ySGsAwl6QGMMwlqQFKCfOIuDAi7oqIpyLiWES8o4znlSQNp6xulr8EngUuAl4H3B0RD2bmkZKeX5LUR+E984hYB+wCbsrM05n5deDvgN8u+tySpOGUUWa5FHghMx/tWPYgcHnnShGxOyIWImLh+PHjJbysJGlJGWG+Hji5bNlJ4ILOBZl5IDPnM3N+bm6uhJeVJC0pI8xPAxuWLdsAnCrhuSVJQyjjAOijwJqIeHVmfru97LVArQ5+rnSmIEmaBoX3zDPzKeBO4CMRsS4itgO/Dtxe9LknZWmmoMUTZ0hg8cQZPnDnwxw8vFj10CRpKGWdNPT7wAzw38Dngd+rU1uiMwVJqrtS+swz8/vAdWU8VxWcKUhS3Xk6P84UJKn+DHOcKUhS/Tk5Bc4UJKn+DPM2ZwqSVGeWWSSpAQxzSWoAw1ySGsAwl6QGMMwlqQEiMyf/ohHHgWMFnmIj8GRJwymT4xqN4xqN4xpNE8e1JTO7XkO8kjAvKiIWMnO+6nEs57hG47hG47hGs9rGZZlFkhrAMJekBqhrmB+oegA9OK7ROK7ROK7RrKpx1bJmLkk6V133zCVJHQxzSWoAw1ySGmAqwzwiLoyIuyLiqYg4FhHv6LFeRMTHIuJ/2rePR0SMaUwvjYhPt8dzKiIOR8S1PdZ9T0S8EBGnO26/PI5xtV/vvoj4YcdrdZ28dMLb6/Sy2wsR8Rc91h3r9oqIGyJiISKeiYhbl913TUQcjYinI+LeiNjS53m2ttd5uv2YN49jXBHx8xHxlYj4fkQcj4gvRsRP9Xmeod7/Esa1NSJy2ft0U5/nmdT2un7ZmJ5uj/OqHs9T2vYalAsT/Xxl5tTdaE0K/QVgPfCLwEng8i7rvRd4BHgFsBn4V+B9YxrTOmAvsJXWl+CvAqeArV3WfQ/w9Qlur/uA3x1ivYltry7b7jRwdY/7x7q9gJ205qj9JHBrx/KN7c/WbwFrgVuAb/Z5nn8C/ozW5OW7gBPA3BjGdW17TBuAHwM+A/xD0fe/hHFtBRJYM+TzTGR79fg8fYd2g8c4t1e/XJj052ssvzwlbJxngUs7lt0O7O+y7jeA3R0//06/jTWGsT4E7OrxYZrGMK9kewHvBh7r88s1ke0F3LwsnHYD3+j4eR1wBrisy2MvBZ4BLuhY9jVK+DJcPq4u9/8ccKro+1/C9ho6zCveXvcCH5709up4/ofaYTzRz9c0llkuBV7IzEc7lj0IXN5l3cvb9w1ar3QRcRGtsR7pscqVEfFkRDwaETdFxLhnddrXfr37+5Qoqtpe7wY+l+1PaA+T3l6wbHtk5lO09uh6fdYey8xTHcsmtf2upvfnbMkw739ZjkXEdyPisxGxscc6lWyvdhnjauBzA1Ydy/ZalgsT/XxNY5ivp/WnSaeTwAVDrHsSWD+uOvCSiDgfuAO4LTOPdlnlH4HXAC+n9Q39dmDPGIf0fuBVtEonB4AvRcQlXdab+PaKiIuBNwK39Vlt0ttrSZHPWr91SxMRPwt8iP7bY9j3v6gngdcDW4CraP3f7+ixbiXbC3gX8LXMfLzPOmPZXl1yYaKfr2kM89O0aoWdNtCqQw1adwNwesAeYCER8RJaZZ9ngRu6rZOZj2Xm45n5f5n5MPAR4DfHNabM/FZmnsrMZzLzNuB+4K1dVp349qL1y/X1fr9ck95eHYp81vqtW4qI+Gngy8AfZObXeq03wvtfSGaezsyFzHw+M79H6/P/lohYvl2ggu3V9i767ziMZXv1yIWJfr6mMcwfBdZExKs7lr2W7n9mHmnfN2i9UrT3YD8NXESrVv7ckA9NYKx/LQz5ehPdXm0Df7m6mNT2Omd7RMQ64BJ6f9ZeFRGde0pj237tcsFXgT/JzNtHfPiktt/STkCvz9rEthdARGwHNgF/O+JDC22vPrkw2c/XuA4CFDyA8Ne0OlrWAdvp3c3yPuDfaP25tKn9Hx9bdwbwKeCbwPoB610LXNT+92XAv9DngEzBMc0CO2gdLV8DXA88BWybgu31C+2xXDBgvbFur/Z2WQvso7X3tLSt5tqfrV3tZR+jf7fBN4FPtNf9DYp3Z/Qa12ZatdU9Zb7/JYzrDcA2WjuBL6PVcXZv1dur4/4DtI7NTHp7dc2FSX++SvllKfsGXAgcbG/kfwfe0V7+S7TKAkvrBfBx4Pvt28fp0TFRwpi20PoG/yGtP4mWbtcDF7f/fXF73U8A32uP/zFaZYPzxzSuOeCfaf05dqL9gfiVqrdX+/X+Cri9y/KJbi9arWO57La3fd+bgaO0ugzuo6PVtP1L+qmOn7e21zlDq8XzzeMYF/Dh9r87P2ed7+MfAl8e9P6PYVxvBx5vv0//Sesg409Wvb3a961t//+v6fK4sW0v+uTCpD9fXmhLkhpgGmvmkqQRGeaS1ACGuSQ1gGEuSQ1gmEtSAxjmktQAhrkkNYBhLkkN8P+BPQdCqMhX4wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAD7CAYAAACYLnSTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU3UlEQVR4nO3df4wcd3nH8fdDHMWnJOYINmlzKDGkxGlDCmkOUdUSVKStC1LVKO4fQCjkjypVkaWqlSxCS8BAwEb0r1aI1lKAEKUppHKs0ghFIMcqpAX1UitJLTlBELlwadJLwcZ2TH716R+756yPvf01szs7c++XdJI9O7v79ez4s3PPPDPfyEwkSfX2iqoHIEkqzjCXpAYwzCWpAQxzSWoAw1ySGmBdFW+6cePG3Lx5cxVvLUm19dBDDz2TmZu6PVZJmG/evJmFhYUq3lqSaisijq72mGUWSWoAw1ySGsAwl6QGMMwlqQEMc0lqgEq6WSSpCvsPLfLZ+x/jyWOnuWR2hp3btnD9NXNVD6sUhrmkNWH/oUU+vO9RTr/wEgCLx07z4X2PAjQi0PuWWSLivIi4PSKORsSJiDgUEe/sePy6iDgSEc9GxAMRcdl4hyxJw/vs/Y+dCfJlp194ic/e/1hFIyrXIDXzdcAPgbcDrwRuBb4aEZsjYiOwr73sImAB+MqYxipJI3vy2OmhltdN3zJLZp4CdnUs+ueIeAK4Fng1cDgz7wGIiF3AMxFxZWYeKX+4kjSaS2ZnWOwS3JfMzlQwmvIN3c0SERcDVwCHgauAh5cfawf/99vLVz7v5ohYiIiFpaWl0UcsSSPYuW0LM+eec9aymXPPYee2LRWNqFxDnQCNiHOBu4A7MvNIRFwArEzm48CFK5+bmXuBvQDz8/POVSdpopZPcvbqZqlzt8vAYR4RrwDuBJ4HdrQXnwQ2rFh1A3CilNFJUomuv2Zu1XCue7fLQGWWiAjgduBiYHtmvtB+6DDwpo71zgcuby+XpNqoe7fLoDXzzwO/DPxeZnaeQbgXeGNEbI+I9cBHgUc8+Smpbure7TJIn/llwB8DbwaeioiT7Z8bM3MJ2A58CvgJ8Fbg3WMcrySNxWpdLXXpdhmkNfEoED0e/yZwZZmDkqRJ27lty1k1c6hXt4uX80sSg3W7TDPDXJLaenW7TDtvgStJDeCRuSRNwLgvSDLMJWkARcJ4EhckWWaRpD6Ww3jx2GmSl8N4/6HFgZ4/iQuSDHNJ6qNoGE/igiTDXJL6KBrGk7ggyTCXpD4GCeP9hxbZuucAr7vlPrbuOXBWCWYSt981zCWpj35h3K+mfv01c+y+4WrmZmcIYG52ht03XG03iyRNUr+rQ3vV1JfXGfcFSYa5pNqocvKIXmE8DXdctMwiqRaKtgeO0zTccdEwl1QL0zx5xDTML2qZRVItDFLKqKoMMw13XDTMJdXCJbMzLHYJ9OVSRtVzeFZ9x0XLLJJqoV8pY5rLMJPgkbmkWuhXypiGjpIqGeaSaqNXKaNfGabpLLNIaoRp6CipkkfmkhphGjpKqmSYS2qMqjtKqmSZRZIawDCXpAYwzCWpAQxzSWoAw1ySGsAwl6QGMMwlqQEMc0lqAMNckhrAK0AlnaXKeTY1OsNc0hlVT/Cg0Rnmks7oNcHDcpgXPXL3yH88DHNJZ/Sb4KHokbtH/uPjCVBJZ6w2kcPy8qJTs631qd3GyTCXdEa/CR6KTs221qd2GyfDXNIZ118zx+4brmZudoYA5mZn2H3D1WdKIP2O3Psp+nytbqCaeUTsAG4Crgbuzsyb2ss3A08ApzpW/0xmfrLUUUqamF4TPOzctuWsmjcMNzVbv+d7cnR0g54AfRK4DdgGdPsKnc3MF0sblaRCxhWKRadm6/V8T44WE5k5+MoRtwGv7XJkfu4wYT4/P58LCwvDjVTSQFaGIrSOfjvLJdNo654DLHapnc/NzvDgLe+oYETTJyIeysz5bo+VVTM/GhE/iogvRsTGVQZxc0QsRMTC0tJSSW8raaW6dox4crSYomH+DPAW4DLgWuBC4K5uK2bm3sycz8z5TZs2FXxbSaupayh6crSYQmGemSczcyEzX8zMp4EdwO9ExIZyhidpWHUNxX5tkeqt7NbE5QJ8lPy6kgZU11Ds1xap3gZtTVzXXvcc4JyIWA+8SKu0cgz4HvAq4K+Bg5l5fCyjldRX0Y6Toop00vRqi1Rvg7YmfgT4WMff3wd8HHgM+DTwGuCnwDeA95Q5QEnDqyoUbS+szkBhnpm7gF2rPHx3WYORVG+D3HVR4+Hl/JJKU9dOmiYwzCWVpq6dNE1gmEsqTV07aZrAySkklabqTpq1zDCXKtDkuwPaXlgNw1yaMNv3NA7WzKUJq+uNsDTdDHNpwmzf0zhYZpEm7JLZma737R6mfa/JNXeNxiNzacKKtu8t19wXj50mebnmvv/Q4sDP37rnAK+75T627jkw8PM03QxzacKK3h2wSM296BeBppdlFqkCRdr3itTcvXdKc3lkLtVMkUvmPfnaXIa5VDNFau7eO6W5DHOpZorU3L13SnNZM5emUL/Ww1Fr7t47pbkMc2nKjPtyf++d0kyWWaQp4+X+GoVH5tIYFLlC044TjcIjc6lkRS/MseNEozDMpRGtdll80TKJHScahWUWaQS9TlIWLZPYcaJRGObSCHodfZdxV0Q7TjQsyyzSCHodfVsmURUMc2kEvU5SFr0rojQKyyzSCHZu23JWzRzOPvq2TKJJM8ylEXiSUtPGMJdG5NG3pok1c0lqAMNckhrAMJekBjDMJakBDHNJagDDXJIawDCXpAYwzCWpAbxoSGtWkdmApGkz0JF5ROyIiIWIeC4ivrTisesi4khEPBsRD0TEZWMZqVSiorMBSdNm0DLLk8BtwBc6F0bERmAfcCtwEbAAfKXMAUrj4KTJapqByiyZuQ8gIuaB13Y8dANwODPvaT++C3gmIq7MzCMlj1Vr0LhKIU6arKYpegL0KuDh5b9k5ing++3lZ4mIm9ulmoWlpaWCb6u1YJylECdNVtMUDfMLgOMrlh0HLly5Ymbuzcz5zJzftGlTwbfVWjDOUoizAalpinaznAQ2rFi2AThR8HWlsZZCBrkfud0uqpOiYX4Y+MDyXyLifODy9nKpkDImRu6l1/3Il0s8y78ZLJd4lp8nTZtBWxPXRcR64BzgnIhYHxHrgHuBN0bE9vbjHwUe8eSnylBlKcRuF9XNoDXzjwCngVuA97X//JHMXAK2A58CfgK8FXj3GMapNajKiZHtdlHdDNqauAvYtcpj3wSuLG9I0suqmppt3CUeqWzem0Xqwm4X1Y33ZpG6GKTbRZomhrkaq2hrYVUlHmkUhrkaydZCrTWGuWqr15F3r9ZCw1xNZJirUqOWQvodedtaqLXGbhZVpsiNtPpd1OONtLTWGOaqTJGrLPsdedtaqLXGMFdlipRC+h15V3n1qFQFa+aqTJGrLHdu23JWzRx+/sjb1kKtJR6ZqzJFSiEeeUtn88hclSl6laVH3tLLDHNVykCWymGZRZIawDCXpAYwzCWpAQxzSWoAw1ySGsAwl6QGMMwlqQEMc0lqAMNckhrAMJekBjDMJakBDHNJagBvtKWxGnWOT0nDMcwbYFoDs9+ky5LKY5jXXNWB2euLpNccn4a5VC5r5jVXZFLkopa/SBaPnSZ5+Ytk/6FFoNgcn5KGY5jXXJWB2e+LpN+ky5LKY5jXXJWB2e+LpMgcn5KGY5jXXJWB2e+LxEmXpcnxBGjNFZ0UuYid27acdfIVfv6LxDk+pckwzBugqsCs8otE0tkMc/XUr4fdI29pOhjmWlXVPeySBucJUK2qyh52ScMxzLUqL/qR6qOUMI+IgxHxs4g42f7x0K0BvOhHqo8yj8x3ZOYF7R+vCmkAL/qR6sMToGvAqHdVtPVQqo/IzOIvEnEQuAoI4DHgLzPz4Ip1bgZuBrj00kuvPXr0aOH3VX8rO1KgdXTtlZhS/UTEQ5k53+2xssosHwJeD8wBe4GvRcTlnStk5t7MnM/M+U2bNpX0turHjhRpbSglzDPzu5l5IjOfy8w7gAeBd5Xx2irGjhRpbRhXa2LSKrmoYnakSGtD4TCPiNmI2BYR6yNiXUTcCLwNuL/48FTUIB0p+w8tsnXPAV53y31s3XPgzOQSkuqjjG6Wc4HbgCuBl4AjwPWZaVF2CvTrSPGSfakZSulmGdb8/HwuLCxM/H3187buOcBil/r53OwMD97yjgpGJGk1k+hmUU15glRqBsN8jfMEqdQMhvka5yX7UjN4Of8a5yX7UjMY5nK2IKkBLLNIUgN4ZF4Do971UNLaYZhPOS/qkTQIyyxTzrseShqER+YTUKRM4kU9kgbhkfmYLZdJFo+dJnm5TDLozay8qEfSIAzzMStaJvGiHkmDsMwyoFFLJUXLJF7UI2kQhvkAinSUXDI70/WuhMOUSbyoR1I/llkGUKRUYplE0iR4ZD6AIqUSyySSJsEwH0DRUollEknjZpllAJZKJE27xhyZj/P+JZZKJE27WoX5aoE9SLdJ0bAfZ6nEG2lJKqo2Yd4rsHt1mwwa9lWZ5rFJqo/a1Mx7BXa/bpNpvlnVNI9NUn3UJsx7BXa/+5dM882qpnlskuqjNmHeK7D7dZtM882qpnlskuqjNmHeK7Cvv2aO3TdczdzsDAHMzc6w+4arz9Scp7m1cJrHJqk+anMCtF97YK9uk0m0Fo7akWLbo6QyRGZO/E3n5+dzYWFh4u87Lis7UqB1dN3524EkFRURD2XmfLfHalNmmWZ2pEiqmmFeAjtSJFXNMC+BHSmSqmaYl8COFElVq003yzSzI0VS1QzzknjPcklVsswiSQ1gmEtSAxjmktQAhrkkNUApYR4RF0XEvRFxKiKORsR7y3hdSdJgyupm+RzwPHAx8Gbgvoh4ODMPl/T6kqQeCh+ZR8T5wHbg1sw8mZnfBv4J+MOiry1JGkwZZZYrgJcy8/GOZQ8DV5Xw2pKkAZQR5hcAx1csOw5c2LkgIm6OiIWIWFhaWirhbSVJy8oI85PAhhXLNgAnOhdk5t7MnM/M+U2bNpXwtpKkZWWcAH0cWBcRb8jM77WXvQmo1cnPUWcKkqRpUPjIPDNPAfuAT0TE+RGxFfh94M6irz0pyzMFLR47TQKLx07z4X2Psv/QYtVDk6SBlHXR0AeBGeB/gLuBP6lTW6IzBUmqu1L6zDPzx8D1ZbxWFZwpSFLdeTk/zhQkqf4Mc5wpSFL9OTkFzhQkqf4M8zZnCpJUZ5ZZJKkBDHNJagDDXJIawDCXpAYwzCWpASIzJ/+mEUvA0QIvsRF4pqThlMlxDcdxDcdxDaeJ47osM7vedraSMC8qIhYyc77qcazkuIbjuIbjuIaz1sZlmUWSGsAwl6QGqGuY7616AKtwXMNxXMNxXMNZU+OqZc1cknS2uh6ZS5I6GOaS1ACGuSQ1wFSGeURcFBH3RsSpiDgaEe/tse6fRcRTEXE8Ir4QEeeNaUznRcTt7fGciIhDEfHOVda9KSJeioiTHT+/OY5xtd/vYET8rOO9Vp28dILb6+SKn5ci4m9WWXes2ysidkTEQkQ8FxFfWvHYdRFxJCKejYgHIuKyHq8z8H5ZZFwR8esR8Y2I+HFELEXEPRHxiz1eZ+DPv+C4NkdErvicbu3xOpPaXjeuGNOz7XFeu8rrlL29embDpPaxqQxz4HPA88DFwI3A5yPiqpUrRcQ24BbgOmAz8Hrg42Ma0zrgh8DbgVcCtwJfjYjNq6z/b5l5QcfPwTGNa9mOjvfqOkXSJLdX57+d1ud4Grinx1PGub2eBG4DvtC5MCI2AvtofZYXAQvAV3q8zkD7ZdFxAa+i1fGwGbgMOAF8sc9r9f38SxjXstmO9/pkj9eZyPbKzLtW7G8fBH4A/EeP1ypze62aDRPdxzJzqn6A89v/mCs6lt0J7Omy7t8Dn+74+3XAUxMc6yPA9i7LbwK+PcFxHAT+aID1KtlewAdo/eeKVR6fyPaiFQRf6vj7zcC/dvz9fFpfOld2ee7A+2XRcXV5/NeAE0U//xK212YggXUDPLfK7fUA8LFJb68V7/EIsH2S+9g0HplfAbyUmY93LHsY6PbtdFX7sc71Lo6IV49xfABExMW0xnp4lVWuiYhnIuLxiLg1IsY9q9Pu9vs92KNEUdX2+gDw5WzvnauY9PaCFdsjM08B36f7vjbMflm2t7H6frZskM+/LEcj4kcR8cX2kWc3lWyvdgnjbcCX+6w6tu21Ihsmto9NY5hfABxfsew4cOEA6y7/udu6pYmIc4G7gDsy80iXVf4FeCPwGlrfzu8Bdo5xSB+iVTKZo/Xr+dci4vIu6018e0XEpbR+/byjx2qT3l7LiuxrvdYtTUT8KvBRem+PQT//op4B3kKr9HMtrX/7XausW8n2At4PfCszn+ixzti2V5dsmNg+No1hfhLYsGLZBlp1w37rLv+527qliIhX0PrV53lgR7d1MvMHmflEZv5fZj4KfAL4g3GNKTO/m5knMvO5zLwDeBB4V5dVJ769aP3n+nav/1yT3l4diuxrvdYtRUT8EvB14E8z81urrTfE519IZp7MzIXMfDEzn6a1//9ORKzcLlDB9mp7P70PHMa2vVbJhontY9MY5o8D6yLiDR3L3kT3XzMPtx/rXO/pzPzfcQwsIgK4ndbJie2Z+cKAT00gxjGmId9voturre9/ri4mtb3O2h4RcT5wOd33tWH2y8La5YJvAp/MzDuHfPqktt9y2azbe010ewFExFbgEuAfh3xq4e3VIxsmt4+N8yRAgZMH/wDcTeuEwFZav2pc1WW93wWeAn6FVgfAAUo4wdJjXH8LfAe4oM967wQubv/5SuA/6XFCpuCYZoFtwHpaZ9VvBE4BW6Zge/1GeywXVrm92ttlPbCb1pHT8rba1N63treXfQb4TtH9soRxzdGqq+4s8/MvYVxvBbbQOgh8Na2ujAeq3l4dj++ldW5motur/bpds2GS+1gp/1nK/qHVwrO/vZH/C3hve/mltH4VubRj3T8HngZ+Sqt967wxjekyWt/gP2uPYfnnxpXjAv6qPaZTtLo4PgGcO6ZxbQL+ndavYsfaO9RvV7292u/1d8CdXZZPdHsBu9qfXefPrvZjvwUcodVhcBDY3PG8vwC+3m+/LHtcwMfaf+7cz052G1evz38M43oP8ET73//ftE4y/kLV26v92Pr2v/+6Ls8b9/ZaNRsmuY95oy1JaoBprJlLkoZkmEtSAxjmktQAhrkkNYBhLkkNYJhLUgMY5pLUAIa5JDXA/wO3hEEKahr09gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -8779,7 +8951,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 85, "metadata": {}, "outputs": [ { @@ -8788,7 +8960,7 @@ "(torch.Size([40]), torch.Size([40, 1]))" ] }, - "execution_count": null, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -8807,7 +8979,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 86, "metadata": {}, "outputs": [ { @@ -8816,7 +8988,7 @@ "torch.Size([40, 1])" ] }, - "execution_count": null, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" } @@ -8834,7 +9006,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -8850,12 +9022,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 88, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAD7CAYAAACYLnSTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXDc5Z3n8fe3kazWZaktiUuyfA5mg0t4B6U4RBhIAgMM48zKkMlBEhanyCShZqu2iJ3NQsaVYTbgceWP3WJmlsIJIZtMwFgZMpmBLSjjCkdwrSCmjRnDru1YlrGDpehoHS1L7mf/+LWslqI+pL7bn1dVl1q/qx893frq0ff3HOacQ0REipsv3wUQEZH0KZiLiJQABXMRkRKgYC4iUgIUzEVESkBZPl60sbHRrVy5Mh8vLSJStN58880+51zTfPvyEsxXrlxJd3d3Pl5aRKRomdmxePuUZhERKQEK5iIiJUDBXESkBCiYi4iUAAVzEZESoGAuIiWvf2SCt48P0j8yke+iZE1euiaKiOTKc/tPsHV3kHKfj8lIhO2b2ti4oTnfxcq4pC1zM6sws51mdszMQmb2azO7LWb/J8zskJmNmdnLZrYiu0UWEUlN/8gEW3cHCU9GCE1MEZ6MsGV3sCRb6KmkWcqA48AfAXXAQ8AzZrbSzBqBrui2ZUA38HSWyioisiC9A+OU+2aHuXKfj96B8TyVKHuSplmcc6PAtphNvzCzo8BVQANw0Dm3C8DMtgF9Zna5c+5Q5osrIpK6lkAlk5HIrG2TkQgtgco8lSh7FnwD1MwuAi4DDgJXAG9P74sG/sPR7XPPu8/Mus2s+/Tp04svsYhIihpqKti+qQ1/uY/aijL85T62b2qjoaYi30XLuAXdADWzcuDHwA+dc4fMrAaYG5mHgNq55zrnHgceB2hvb9dadSKSExs3NNOxtpHegXFaApXzBvL+kYmE+4tBysHczHzAj4AzwP3RzSPA0jmHLgVCGSmdiEgGNNRUxA3SpdLbJaU0i5kZsBO4CNjknJuM7joIXBlzXDWwJrpdRKSglVJvl1Rz5n8P/DvgT51zsbeBfwasN7NNZuYHvg0EdfNTRIpBKfV2SaWf+QrgK8AG4JSZjUQfn3fOnQY2AX8DDABXA5/JZoFFRDKllHq7pNI18RhgCfa/BFyeyUKJiOTCdG+XLXNy5sV4E1TD+UXkvJZKb5dioGAuIue9RL1dioVmTRQRKQEK5iIiWZSr6XeVZhERSWKxI0RzOSBJwVxEJIHFBuTYAUlhvO6PW3YH6VjbmJX8vNIsIiJxpDNCNNcDkhTMRUTiSCcg53pAkoK5iEgcqQTkeDc4cz39rnLmIiJxJBshmiyfnssBSQrmIiIJxAvIqd7gzNWAJAVzESkK+VxAYr6APJ1Pnw7kMJNPz8doUgVzESl4hbiARKHNuKgboCJS0Ap1AYlCW19ULXMRKWippjPykYYppBkXFcxFpKClks7IZxqmUGZcVJpFRApasnRGoaZhck0tcxEpeInSGYXWqyRfFMxFpCjES2cUWq+SfFGaRUSKWqH1KskXtcxFpOgVUq+SfFEwF5GSUCi9SvJFaRYRkRKgYC4iUgIUzEVESoCCuYhICVAwFxEpAQrmIiIlQMFcRKQEKJiLiJQABXMRkRKgYC4iUgIUzEVklv6RCd4+PnjezQde7DQ3i4ics+eZFzn42JO0DJ3ml3VNrP/6Pdz06ZvP7U93abZ8LO12vlAwFxEABt/oZvjhR6heUk1P9TJqR0MMPfwIg60B6q9pTxroCQahqwt6eqC1FTo7oa3t3O6E5yc5N639hXztDFKaRUQACD/9LCF/LcP+Gpz5GPbXEPLXEn762ZlAPxqip3oZ1dOB/o1u7+RgEHbsgIEBaGnxvu7Y4W2HxOcnOTet/YV87QxTy1xEAKjvO8lwRSW4mW3DFZXU951kcDrQL6nytvtrvKXann4Wrmn3Wp+BgPeAma9dXdDWNvOHYr7z6/wJz0127YT7p78vxGtnmFrmIgKAf80qblteRZnPWHKBjzKfcdvyKvxrVs0E+hjTgR7w0gh1dbMvWFfnbYfE5yc5N639hXztDEspmJvZ/WbWbWYTZvZkzPaVZubMbCTm8VBWSioi2dXZyeqySTavD9C54VI2rw+wumwSOjsTBnrAywcPDc2+3tCQt53Efyimzx07M8WpoTBjZ6ZmnZvs2gn3p3Nutq+dYam2zD8AHga+H2d/vXOuJvr468wUTUQWY9FdC9va4IEHqLywkYtDfVRe2AgPPOBtTxDoAe/rwID3iERmnsfsj3t+Zyc9h0+w66UD/OzNHna9dIDjh08s6Npx96dzbravnWHmnEt+1PTBZg8DLc65e6LfrwSOAuXOualUr9Pe3u66u7sXVFARSe65/SfYujtIuc/HZCTC9k1tbNzQnJmLZ6lXSP/IBP/xP+/kpndfpXn4NCeWNvHyR67nB9/bPNN9Ub1ZADCzN51z7fPuy1Aw/wDvtsmLwDecc33znHsfcB9Aa2vrVceOHVvQDyEiifWPTNDx6B7Ck5Fz2/zlPl7b+vGC7tP99vFB7n5iH6GJmfZgbUUZ/+vLV3Pl8vo8lqzwJArm6d4A7QM+CqwArgJqgR/Pd6Bz7nHnXLtzrr2pqSnNlxWRuXoHxin3zf6VLvf56B0Yz1OJUtMSqGQyEpm1bTISoSVQGecMmU9awdw5N+Kc63bOTTnnfgvcD9xiZkszUzwRSVWxBsWGmgq2b2rDX+6jtqIMf7mP7ZvaCvq/iUKU6X7m0zkby/B1RSSJ6aC4ZU7OvBiC4sYNzXSsbdRQ/zSkFMzNrCx67AXABWbmB6bwUiuDwP8FAsB/B/Y654biXUtEsmejr59Pnn2d8fePULlmNVW+ZiBDN0BTkM7cKw01FQriaUg1zfIgMA58E7g7+vxBYDXwAhAC3gEmgM9mvpgiklR0+HjV6DAN69ZQNTqc1eHjcz23/wQdj+7h7if20fHoHn6+/0ROXlc8KbXMnXPbgG1xdv9jpgojImnI8fDxWP0jE2zdHSQ8GSGMl7ffsjtIx9pGtbZzRMP5RUpFjoePxyrWnjSlRMFcpFTkePh4rGLtSVNKFMxFSkWOh4/HUvfC/FvQCNBM0XB+kSzJ4WII89FKQtmVaASo5jMXyZOsBL62tsTBO8vBXt0L80dpFpE8yEs3vhyvfCO5pWAukmOx3fhCE1OEJyNs2R1c+JS1CxXbddHnm3k+vWqOFDUFc5Ecy1s3vjx2XZTsU85cJMdaApWsOnn49+bvbgncmPI1FpVvb231UivTg4kgZ10XJfvUMhfJsYYj7/HYB3tYdmaU/vomlp0Z5bEP9tBw5L2Uzt/zzIv85E/u5ciffpqf/Mm9vPzMi6m9cLTr4viHfZwaGGP8w76cdV2U7FPLXCTXurpYvqaZu9pqGR6fYmllGVWjoZSG3Q++0c3ww49QvaSanupl1I6GGHr4EQZbA9RfM2+PtRltbey54wscfOxJWobep7euifVfv4ebcth1UbJHwVwk13p6oKWFKp+PqiXRX8Gy1HLX4aefJeSvZXhJFQDD/hrKfT7CTz8LSYJ5/8gEXzswRfjaz53b5j8wxWu3T6g7YQlQmkUk19IYdl/fd5LhitlD5IcrKqnvO5n0XM2fUtoUzEVyLdmw+2AQtm2De+/1vsb0A/evWcVty6so8xlLLvBR5jNuW16Ff82qpC+r+VNKm4K5SK61tcEDD3i9Snp7va8PPOBtTzawp7OT1WWTbF4foHPDpWxeH2B12WRKNzE1f0pp09wsIoVk2zYYGGCses7N0UDA2wdpD8nX/CnFS3OziBSLnh4OlS3lpV8fxWdGxDluvryJdaGYm6PJ5l9JQvOnlCalWUQKyNjFzezbf5SpiOPM2QhTEccb+48ydnHu1vGU4qSWuUg2BIOM/XQX44ejCyt/5q6UWtPHb7yV+n/5FWcjjlBFFbUTY9RPjnH8xltZl4NiS/FSy1wk04JBer71HXa9FOSZk45dLwU5/q3vpDQ7YeN17ey8upMhfw2XhPoZ8tew8+pOGq9LMiBIzntqmYssUrwbiWM/3cXLH04ysKQaIjCxpJo9H45y1093UZWkdd5QU8GXv/YptuxeRbnPx2Qkoh4nkhIFc5FFeG7/CbbuDs4KuBs3eHnt8cNHGPN7gXzamL+a8cNHqErh2hs3NNOxtlE9TmRBlGYRWaBk85FXrllNVXh01jlV4VEq16xO+TUaaiq4cnm9ArmkTC1zkQXqHRjnIx/+ho8dfOXcFLavXPExegfGaaipoOozd/Hx4L+x58NRxvzVVIVH+fiF5d5NUJEsUTAXWaAVJ/4fX/zVs/xuSTUnaxuoC4/wxV89y4oTH4Xl7dDWxvL/9m3uOtebpS3l3iwii6VgLrJA9S/8grb1K/nX3jDlZoxdUMuNlzVR/8IvZmYubGujqq0tpRy5SCYomIssVE8Pq9e2cO/KyMyQ+zKfll+TvFIwF1mo6PJrVYHAzHzkAwNafk3ySr1ZRBYq2RS2InmgYC6yUImmsBXJE6VZRBYjzZkLRTJNLXMRkRKgYC4iUgIUzEVESoCCuYhICVAwFxEpAQrmcl7rH5ng7eOD52Y8FClWKQVzM7vfzLrNbMLMnpyz7xNmdsjMxszsZTNbkZWSimTYc/tP0PHoHu5+Yh8dj+7h5/tP5LtIIouWasv8A+Bh4PuxG82sEegCHgKWAd3A05ksoEg2JJuTXKTYpDRoyDnXBWBm7UBLzK5O4KBzbld0/zagz8wud84dynBZ5TwVb3m2dPQOjFPu8xGOWQ6o3Oc7Nyc54K3Z2dXlTaDV2uoN19dAISlQ6Y4AvQJ4e/ob59yomR2Obp8VzM3sPuA+gFZNSCQpSrQ8WzpaApWsOnmYm9599dwCEy9/5HpaAjd6BwSDsGOHN1S/pcWbe2XHDg3bl4KV7g3QGmBozrYhoHbugc65x51z7c659qampjRfVs4H2UyFNBx5j8c+2MOyM6P01zex7Mwoj32wh4Yj73kHdHV5gTwQAJ9v5nlXV9qvLZIN6bbMR4Clc7YtBUJpXlcktVTIYnV1sXxNM3e11c7MST4a8oJ1W5uXWmlpYezM1Mz+ujrNWS4FK91gfhD40vQ3ZlYNrIluF0lLS6CSyUhk1rbJSISWQGX6F48G6yqfb2ZO8rKYYN3ayuH3j/N8bxifGRHnuL3Fz+rLlCKUwpRq18QyM/MDFwAXmJnfzMqAnwHrzWxTdP+3gaBufkomNNRUsH1TG/5yH7UVZfjLfWzf1JaZm6CtrTA0J0M4NHRugYnBW+/gwDu/oWosxOTUFFVjIYLv/IbBW+9I/7VFsiDVnPmDwDjwTeDu6PMHnXOngU3A3wADwNXAZ7JQTjlPbfT189bZ19l76CneOvs6G339mblwkgUmjjWv5alr72TIX8MloX6G/DU8de2dHGtem5nXF8kwc87l/EXb29tdd3d3zl9Xikxsj5K6Oq/lPDCQeo+SZF0LE+zvH5mg49E9hCdn0jz+ch+vbf14xrpHiiyUmb3pnGufb58Wp5DCFdujBGa+Tt+kTCSVroUJFpiYTvFsmdMtUoFcCpWCuRSu6E3KWVLtUZLOH4KojRua6VjbmPEBSyLZoGAuhau11WtRTwdimHWTEoifKslQ18KGmgoFcSkKCuZSuDo7vdQIzM6Zb97sbUuUSlHXQjnPaApcKVxtbV5gDgSgt9f7GpvzjqZSxqprORU6w1h17blRmupaKOcbtcwl7xJOpJXgJiU9PRwqW8pLvz56rvV98+VNrAv1nOta+LGDr5ybe+UXV93Gqua11Gf/RxLJOQVzyat0JtIau7iZfS8FmVpSDXhdbN/Yf5Tln2yjJVDJuxeu5K3ATFrFX+7LzOhRkQKkNIvkTboTaR2/8VbqJ0ZZGh7BXISl4RHqJ0Y5fuOt2R09KlKA1DKXvEl3Iq3G69rZeXXnrGls/+kPb+UH13ljKtS1UM4nCuaSN0nnFE+ioaaCL3/tU2zZvSruwB51LZTzhYK55M30nOJ7zkx6c4qHp+cUv14De0QWSMFc8ifZnOIpUutbRMFc8inZnOIikjL1ZpH8STKnuIikTsFc8ifJnOIikjoFc8mfZMP1RSRlyplLfiUari8iKVPLXESkBCiYi4iUAAVzEZESoJy5ZF+yhZVFJG1qmUt2Ta8GNDAwezWgYDDfJRMpKQrmkl2xCyv7fDPPu7ryXTKRkqJgLtnV0+Ot3xlrEQsri0hiCuaSXRqyL5ITCuaSXdEh++Mf9nFqYIzxD/s0ZF8kC9SbpYQkXBg5X9ra2HPHFzj42JO0DL1Pb10T679+DzepN4tIRimYl4h0FkbOhHh/SPpHJvjagSnC137u3Db/gSleu32icP7giJQABfMSELsw8vR6mlt2B+lY25iTgJnoD0m663yKSGoUzEtAPgNm/8gEO//uOb4Ss47nE7+9no7vbaahpoKWQCWTkciscyYjEVoClVktl8j5RjdAS0A+A2bf691s3tdFXXiEk7UN1IVH2Lyvi77XuwFvSbftm9rwl/uorSjDX+77vUWXRSR9apmXgOmAuWVOqiMXAXP53hd4o6Ka4SXVAAz7a7jAZyzf+wLc0gFo0WWRXFAwLxH5CphVp05wzYZVvHjoND4zIs5xzYZVVJ06Mes4Lboskl0K5qUiGKShq4uGbExmlWiirNZW1g0MsPz6VQyPT7G0soyq0RAENChIJJeUMy8F2ZzMKnrt8Q/7OFXb6A36ib12dFBQ1WiIi2uXeIFcg4JEck7BvBRkczKrri4OT5Wz850BuvZ/wM53BjgyVT5zba3jKVIQlGYpBT09Xos8VoYmswofPsoLx88w5QxwADx/fIzNFxzFP32Q1vEUyTsF81LQ2uqlNgKBmW1zJ7Na5AIRg42XsPS9Q/QvqTq3benEOIONK7g4kz+DiKQlI2kWM9trZmEzG4k+3svEdSVF0bw1AwMQicw8n85bp5FT9//5ndSGQywNj2AuwtLwCLXhEP4/vzPLP5SILEQmc+b3O+dqoo91GbyuJJMsb51GTr3+mnbqHvwmo9W1tI7+jtHqWuoe/Cb117Rn+YcSkYVQmqVUJMpbR3PqY2emZroPLiCnftOnb6bt9hvoHRjnBg36ESlImQzm3zWzR4D3gP/qnNsbu9PM7gPuA2jVwgS51drK4feP83xv+NzAnttb/Ky+LPX3QYN+RApbptIsW4HVQDPwOPDPZrYm9gDn3OPOuXbnXHtTU1OGXlZSMXjrHRx45zdUjYWYnJqiaixE8J3fMHjrHTMHBYOwbRvce6/3VQsuixSVjARz59w+51zIOTfhnPsh8BpweyauLek71ryWp669kyF/DZeE+hny1/DUtXdyrHmtd0A2Bx2JSE5kK2fuAMvStWWBWgKVvHvhSt6KGWLvL/fNzKoYe4MUZr52dan/uEiRSLtlbmb1ZvbHZuY3szIz+zxwA/C/0y+eZELSaWh7eqCujrEzU5waCjN2Zipjg45EJDcy0TIvBx4GLgfOAoeAP3POqa95AUk4q2IGbpCKSH6lHcydc6eBj2agLJJl8XqkDN56Bwe6tlK1pJpQRRW1E2ME3znFsr/8KvV5KKeILJwm2pLkN0hFpOBp0JAkv0EqIgVPLXPROp0iJUAtcwG0TqdIsVMwl3M0ZF+keCnNIiJSAhTMi0z/yARvHx+kf2Qi30URkQKiNEsReW7/CbbuDlLu8zEZibB9UxsbNzTnu1giUgAUzItE/8gEO//uOb7y7qs0D5/mxNImnvjt9XR8b7Py3CKiNEuuLTZN0vd6N5v3dVEXHuFkbQN14RE27+ui7/XuLJVURIqJWuY5lE6aZPneF3ijoprhJdUADPtruMBnLN/7AtzSkc1ii0gRUMt8ERbTuu4fmWDr7iDhyQihiSnCkxG27A6mfI2qUye4ZsMqynzGkgt8lPmMazasourUicX+GCJSQtQyX6DFtq57B8Yp9/kIEzm3rdzno3dgPLWcd2sr6wYGWH79qpl1PEdDENDMhiKiYL4gsa3r6aC8ZXeQjrWNSQNyS6CSVScPc1PMDcyXP3I9LYEbU3vxzk7YsYMq8BZjHhryVgTavDm9H0pESoLSLAsw3bqONd26TqbhyHs89sEelp0Zpb++iWVnRnnsgz00HElx2ve2NnjgAW8VoN5e7+sDD2glIBEB1DJfkJZAJZORyKxtk5FIarMLdnWxfE0zd7XVzk6TLGRptrY2BW8RmZeC+QJMzy64ZU7OPKWcd08PtLRQ5fNRtSRa7WVzlmYLBr3g3tMDra1eakXBW0RSoDTLAm309fPW2dfZe+gp3jr7Oht9/amd2Nrq5bljDQ1528EL5Dt2eHnwlhbv644d3nYRkSRKNphnZQ6TaMCtGh2mYd0aqkaHUw+4nZ1egB4YgEhk5nlnp7e/q8vLgwcC4PPNPO/qylz5RaRkFW0wTxSsn9t/go5H93D3E/voeHQPP9//+32xFxXs0wm4yW5g9vRAXR1jZ6Y4NRRm7MwU1M1Jw4iIxFGUOfM9z7zIwceepGXoNL+sa2L91+/hpk/fDKQ2h8miR2JG896zLCTgJrqB2drK4feP83xvGJ8ZEee4vcXP6svUj1xEkiu6YD74RjfDDz9C9ZJqeqqXUTsaYujhRxhsDVB/Tfu5OUz6y6vmzGFyJQ23dKQ3YVVrq5caCQRmtsXmvWHRNzEHb72DA11bqVpSTaiiitqJMYLvnGLZX36V+kXWlYicP4ouzRJ++llC/lqG/TU48zHsryHkryX89LOAN4fJYEX1rP2DFdXeHCakOWFVsrx3GjcxjzWv5alr72TIX8MloX6G/DU8de2dHGteu+i6EpHzR9G1zOv7TjJcUQluZttwRSX1fSeBmTlMXjx0+ly6InYOk7QmrJrOe8e2vDdvnml5x+bUYeZrCn3JWwKVvHvhSt6KGZ7vL/el1oddRM57RRfM/WtWcdvZ4/xrTG75tpZK/GuWewckmcMkWbBPKlHeO42celp92EXkvFd0wZzOTlbv2MHm9QGGyquomxyjcmR4JtWRbA6TbE5YFc2pj1XPGeXZmtq1N25opmNtI70D47QEKhXIRSRlRZczn051VF7YyMWhPiovbJzdxS9ZF8Bo3rtqNMTFtUu8YBub905HZyc9h0+w66UD/OzNHna9dIDjh08s6NoNNRVcubxegVxEFqT4WuaQfI6SRPuT5b3T0L96Hfdf+nFuGnyV5kGvp8zXL72eH6xeR0PaVxcRia84g3m6sjRhVe/AOEcvWUNw2Ypz22orylKfs1xEZJGKL81SwNKaVVFEJA3nZ8s8kTRmLlSPFBHJF3POJT8qw9rb2113dwGuKj896CcQ8LoUTveEWeAiEP0jE+qRIiIZZ2ZvOufa59unlnmsNAb9xGqoqVAQF5GcUs48VnTmwlk0c6GIFAEF81jJFpAQESlQCuaxkk2kJSJSoBTMYyUbPSoiUqAycgPUzJYBO4FbgD7gvzjnfpKJa+dclgYUiYhkU6Z6szwGnAEuAjYA/2JmbzvnDmbo+iIikkDaaRYzqwY2AQ8550acc68CPwe+kO61RUQkNZnImV8GnHXOvR+z7W3gitiDzOw+M+s2s+7Tp09n4GVFRGRaJoJ5DTCnPx9DQG3sBufc4865dudce1NTUwZeVkREpmUimI8AS+dsWwqEMnBtERFJQSaC+ftAmZn9Qcy2K4GivfnZPzLB28cH6R+ZyHdRRERSknZvFufcqJl1Ad8xsy/j9Wb5FHBdutfOh+f2n2DrnFkPN25oznexREQSytSgoa8BlcCHwD8CXy3Gbon9IxNs3R0kPBkhNDFFeDLClt1BtdBFpOBlpJ+5c+53wJ9l4lr51DswTrnPR5iZBSbKfT6tFCQiBU/D+WNopSARKVYK5jGmVwryl/uorSjDX+7TSkEiUhS0OMUcGzc007G2USsFiUhRUTCfh1YKEpFiozSLiEgJUDAXESkBCuYiIiVAwVxEpAQomIuIlABzzuX+Rc1OA8cycKlGvGXqCk0hlktlSl0hlktlSl0hlitTZVrhnJt3DvG8BPNMMbNu51x7vssxVyGWS2VKXSGWS2VKXSGWKxdlUppFRKQEKJiLiJSAYg/mj+e7AHEUYrlUptQVYrlUptQVYrmyXqaizpmLiIin2FvmIiKCgrmISElQMBcRKQEFH8zNbJmZ/czMRs3smJl9Ls5xZmaPmll/9LHdzCwL5akws53RsoTM7NdmdlucY+8xs7NmNhLzuDHTZYp5vb1mFo55rffiHJeruhqZ8zhrZv8jzrFZqyszu9/Mus1swsyenLPvE2Z2yMzGzOxlM1uR4Doro8eMRc/5ZKbLZGbXmNmLZvY7MzttZrvM7JIE10npPU+zTCvNzM15bx5KcJ2M1VOScn1+TpnGouW8Ks51MllXCeNAXj5XzrmCfuAtEP00UANcDwwBV8xz3FeA94AWoBl4F/iLLJSnGtgGrMT7Y3gHEAJWznPsPcCrOayrvcCXUzguJ3U1T72NADfE2Z+1ugI68dao/XvgyZjtjdHP012AH/hb4I0E1/kV8D28xcs3AYNAU4bLdFu0PEuBKuD7wAvpvudplmkl4ICyFK+TsXpKVK44n6HDRDt2ZLmu4saBfH2uMv6Lk8lHtMLOAJfFbPsR8Mg8x74O3Bfz/eZEFZjhcgaBTXE+XIUYzHNeV8CXgCMJftGyXlfAw3OC1H3A63M+b+PA5fOcexkwAdTGbHuFNP8Izi3TPPv/EAil+56nWU8pB/Ns1VOKdfUy8Fe5rKs51w9Gg3FePleFnma5DDjrnHs/ZtvbwBXzHHtFdF+y4zLKzC7CK+fBOIf8ezPrM7P3zewhM8v26k7fjb7eawnSFPmoqy8BT7nopzWOXNfVrHpwzo3itezifb6OOOdCMdtyUW83EP+zNS2V9zwTjplZr5n9wMwa4xyTl3qKpjFuAJ5KcmhW6mpOHMjL56rQg3kN3r8rsYaA2hSOHQJqspELnmZm5cCPgR865w7Nc8gvgfXAhXh/sT8LfCNb5QG2AqvxUiePA/9sZmvmOS6ndWVmrcAfAT9McFiu6wrS+3wlOjYjzKwN+DaJ6yHV9zwdfcBHgRXAVR+v/SAAAAK4SURBVHg/84/jHJvzeor6IvCKc+5ogmOyUlfzxIG8fK4KPZiP4OUOYy3Fy00lO3YpMJKkJbhoZubDS/mcAe6f7xjn3BHn3FHnXMQ5dwD4DnBnNsoTfb19zrmQc27COfdD4DXg9nkOzWld4f2ivZroFy3XdRWVzucr0bFpM7O1wPPAf3LOvRLvuAW854vmnBtxznU756acc7/F+7zfYmZz6wNyXE8xvkjixkJW6ipOHMjL56rQg/n7QJmZ/UHMtiuZ/9/Og9F9yY5LW7QFuxO4CC9XPpniqQ7I2n8KC3i9nNVVVNJftHnkoq5m1YOZVQNriP/5Wm1msS2mrNRbNGXwEvDXzrkfLfD0XNTb9B/9eJ+tnNTTNDPrAC4Fnl3gqWnVVYI4kJ/PVbZuBmTwpsJP8Xq0VAMdxO/N8hfAv+H9C3VptDKy0kMD+AfgDaAmyXG3ARdFn18OvEOCGzRplqke+GO8u+dlwOeBUWBdnuvqumg5apMcl7W6itaHH/guXitquo6aop+nTdFtj5K418EbwI7osf+B9HqzxCtTM15+9RuZfM/TLNPVwDq8xl8DXu+yl3NRT4nKFbP/cbz7MTmrq+g1540D+fpcpf2Lku0HsAz4p2jF9wCfi27/GF5qYPo4A7YDv4s+thOn50Sa5VmB9xc9jPcv0vTj80Br9Hlr9NgdwG+jZT+Clzooz1I9NQH/B+/fs8HoB+TmfNZV9LX+J/CjebbnrK7wupC5OY9t0X2fBA7h9TbYS0wX0+gv6z/EfL8yesw4XtfOT2a6TMBfRZ/HfrZi37tvAc8ne88zXKbPAkej781JvJuMF+einlJ4//zRn/0T85yXzbqKGwfy9bnSRFsiIiWg0HPmIiKSAgVzEZESoGAuIlICFMxFREqAgrmISAlQMBcRKQEK5iIiJUDBXESkBPx/7haD9GritKIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAD7CAYAAACYLnSTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAieUlEQVR4nO3deXDc5Z3n8fe3LVmtW21JHJEsnwNs8ArvoBSHCYEQCDCMMyWTZDJkkyymSCVhZmtTjs3uQuJNmAlQrvyxW57sUjEhsEmWw8qQYRe2YI0rIQTXCgKNoQwb27EkY4OltO7DEv3sH7+W1VKk7pb616c/r6ouSb/z0U+trx59n8ucc4iISGEL5LoAIiKSPgVzEZEioGAuIlIEFMxFRIqAgrmISBEoycVNGxoa3OrVq3NxaxGRgvXqq6/2Ouca59uXk2C+evVqOjs7c3FrEZGCZWbHFtqnNIuISBFQMBcRKQIK5iIiRUDBXESkCCiYi4gUAQVzETmr9A1P8EZ3P33DE7kuiq9y0jVRRCQXnn79ODv2hikNBJiMRnlwSyubNzbluli+SFozN7MyM9tjZsfMbMjMfmdmN8Xtv87MDpnZqJm9aGarMltkEZHF6xueYMfeMOOTUYYmphifjLJ9b7hoauippFlKgG7gE0AtcC/whJmtNrMGoCO2bQXQCTyeobKKiCxZT2SM0sDskFcaCNATGctRifyVNM3inBsBdsZtesbMjgKXAvXAW865JwHMbCfQa2YXOecO+V9cEZGlaQ6VMxmNzto2GY3SHCrPUYn8tegGUDM7F7gAeAu4GHhjel8s8B+ObZ973p1m1mlmnadOnVp6iUVElqC+qowHt7QSLA1QXVZCsDTAg1taqa8qy3XRfLGoBlAzKwV+CvzEOXfIzKqAuZF5AKiee65z7iHgIYC2tjatVSciWbd5YxOb1jfQExmjOVQ+byDvG55IuD9fpRzMzSwAPAacBu6KbR4GauYcWgMM+VI6ERGf1VeVLRikC7m3S0ppFjMzYA9wLrDFOTcZ2/UWcEnccZXAuth2EZGCUei9XVLNmf8Q+BfAXzrn4pt+fwFsMLMtZhYEvg2E1fgpIoWm0Hu7pNLPfBXwVWAjcNLMhmOv25xzp4AtwN8DEeAy4K8zWF4RkYwo9N4uqXRNPAZYgv0vABf5WSgRkWyb7u2yfU7OvFAaQTWcX0QkJpXeLvlKwVxEJE6i3i75TLMmiogUAQVzEZEsyeT0u0qziIikKJ3RoZkekKRgLiKSgnSCcfyApHG87o/b94bZtL7Bt/y80iwiIkmkOzo0GwOSFMxFRJJINxhnY0CSgrmISBKpBuOFGjizMf2ucuYiIkmkMjo0WU490wOSFMxFRFKQKBin2sCZyQFJCuYiUlByuXjEQsF4Oqc+HchhJqeerTIqmItIwcjXxSPyYcZFNYCKSEHI58Uj8mF9UdXMRaQgpJrKyFUaJtczLiqYi0hBSCWVkes0TC5nXFSaRUQKQrJURj6nYbJBNXMRKRiJUhn50KMklxTMRaSgLJTKyIceJbmkNIuIFIV86FGSS6qZi0jRyHWPklxSMBeRolKoa3imS2kWEZEioGAuIlIEFMxFRIqAgrmISBFQMBcRKQIK5iIiRUDBXESkCCiYi4gUAQVzEZEioGAuIn+ib3iCN7r7z5rpY4uBhvOLyCy5XuBBlkY1cxE5I9UFHtKtuavm7z/VzEXkjFQWeNj3xPO8tfsRmgdO8avaRjZ84ytc+7nrZy4SDkNHB3R1QUsLtLdDa+uZ3QnPT3JuTvdn+t5pUs1cRM5ItsBD/yudDN53P5UjQ3RVrqByZIiB++6n/5VO7+BwGHbtgkgEmpu9j7t2eduTnZ/k3Jzuz/S9faBgLiJnJFvgYfzxpxgKVjMYrMJZgMFgFUPBasYff8q7QEcHhELeKxCY+byjI/n5Sc7N6f5M39sHSrOIyCyJFnio6z3BYFk5uJnjB8vKqes94X3R1eXVPOPV1nrbk50/sCzhucmunfH9mby2D1KqmZvZXWbWaWYTZvZI3PbVZubMbDjuda9vpROR7AuHqd/1fS75zjep3/X9WamA4Lo13LSygpKAsXxZgJKAcdPKCoLr1ngHtLTAwMDs6w0MeNuTnR87d/T0FCcHxhk9PTXr3GTXzuj+TN/bB6mmWd4D7gMeXmB/nXOuKvb6nj9FE5F0LKnHSLLcbns7a0sm2bohRPvGj7B1Q4i1JZNeY15sP5GI94pGZz6P27/g+e3tdB0+zpMvvMkvXu3iyRfepPvw8UVdO2P7M31vH5hzLvlR0web3Qc0O+e+Evt6NXAUKHXOTaV6nba2NtfZ2bm4kopIypbcV3znTi/IhEIz26a/3rnT+zpDvTr6hif4N9/cw7Vvv0TT4CmO1zTy4kev4sc/2DqT6jnLe7OY2avOubZ59/kUzN/Dy4I9D3zLOdc7z7l3AncCtLS0XHrs2LFFfRMikpq+4Qk2PbCP8cmZXinB0gC/2fHJ5Gtj3n67VyMPxP3THo1CTw88vNA/5v54o7ufL/7oAEMTM/XC6rIS/vsdl3HJyrqM3rtQJArm6fZm6QU+BqwCLgWqgZ/Od6Bz7iHnXJtzrq2xsTHN24rIQqb7iseb7iueVBZyuwtJ1i1SEksrmDvnhp1znc65Kefc+8BdwA1mVuNP8URksdIKilnI7S4kWbdISczvronTORvz+boikqLpoLh9Ts48paDY2grbts3O7W7d6utIxUQSdYuUxFIK5mZWEjt2GbDMzILAFF5qpR/4f0AI+M/AfufcwAKXEpEs2Bzo41MfvszYu0coX7eWikATkOJkWa2taQfvvuGJJQfk+qoyBfElSDXNcg8wBtwNfDH2+T3AWuA5YAg4CEwAX/C/mCKSslj3woqRQeovXEfFyKDvQ8cTefr142x6YB9f/NEBNj2wj1++fjwr9z3bpVQzd87tBHYusPvnfhVGRHwQP3QcZj52dGQ8XRI/6+L0ZF3b94bZtL5Bte0M09wsIsWmq8sbKh7P56HjC0mrJ42kRcFcpNioe+FZScFcpNioe+FZaVEjQP2i4fwiGZbOsHQfpNObRRbm23B+vyiYi+Qo4E1PpBUKeXn0gQGv1r5tW9b6ksvSJQrmms9cJAdytmhyDnu6SGYpZy6SZakumpwROezpIpmlYC6SZTntvpfDni6SWUqziGRZc6icNScO/8m83c2haxZ1nSXl3NvbvZw5zM6Zb926qHtL/lHNXCTL6o+8w+739rHi9Ah9dY2sOD3C7vf2UX/knZSvse+J5/nZX9zOkb/8HD/7i9t58YnnUzsxNpHWaGUNfe8cZrSyRo2fRUI1c5Fs6+hg5bomPttazeDYFDXlJVSMDKXcCNn/SieD991P5fJKuipXUD0yxMB999PfEqLu8nk7OszydLSeHcuupPSiq7zG12g9m/34viSnVDMXybZYI2TF8hLOqw1SsbxkUY2Q448/xVCwmsFgFc4CDAarGApWM/74U0nPzWnjq2SUgrlItqXZCFnXe4LBstnD4wfLyqnrPZH0XM2dUrwUzEWyLZXh9uGwt4Dy7bd7H+Omrw2uW8NNKysoCRjLlwUoCRg3rawguG5N0ltr7pTipWAukm3Tq/mEQt5CyaHQ7EbI6VGakYi3uHIkMns+8vZ21pZMsnVDiPaNH2HrhhBrSyZTmntFc6cULw3nF8k3O3dCJMJo5ZwG0lDI2wdpz6+iuVMKk4bzixSSri4OldTwwu+OEjAj6hzXX9TIhUNxDaRpLu2mpdmKj4K5SCakUXMePa+JAy+EmVpeyfQa6a+8fpSVn2qlIoNFlsKmnLmI32I577EPejlZ3cDYB72LWoOz+5obqZsYoWZ8GHNRasaHqZsYofuaGzNccClkCuYifuvo4PBUKXsORuh4/T32HIxwZKrUq6mnoOHKNvZc1s5AsIrzh/oYCFax57J2Gq5MPiBIzl5Ks4ikYb6GxPHDR3mu+zRTzphOkzzbPcrWZUcJpnDN+qoy7vj6Z9i+d82sKXKV45ZEFMxFlmihOcn7G86n5p1D9C2fyXDXTIzR37CK81K89uaNTWxa36AeJ5IypVlEliDRsPjg52+lenxoVs67enyI4OdvXdQ96qvKuGRlnQK5pEQ1c5El6ImM8dEP/sDH3/r1mWlsf33xx+mJjHHJ5W3U3nM33bsfoWXgFD21jazZ/rcpTYIlslQK5iJLsOr47/nSb5/ij8srOVFdT+34MF/67VOsOv4xWNnGtZ+7ntabr6YnMsbVSpNIFijNIrIEdc89Q+uG1YxWVFNaUsJoRTWtG1ZT99wzZ45RmkSySTVzkaXo6mLt+mZuXx2dGXJfEtBampIzCuYiS9HSApEIFaGQNx85eBNiaS1NyRGlWUSWIpVpbEWySMFcZCmSTWMrkmVKs4gsVZozF4r4STVzEZEioGAuIlIEFMxFRIqAgrmISBFQMBcRKQIK5nJW6xue4I3ufvqGJ3JdFJG0pBTMzewuM+s0swkze2TOvuvM7JCZjZrZi2a2KiMlFfHZ068fZ9MD+/jijw6w6YF9/PL147kuksiSpVozfw+4D3g4fqOZNQAdwL3ACqATeNzPAopkQqL5yEUKUUqDhpxzHQBm1gY0x+1qB95yzj0Z278T6DWzi5xzh3wuq5yl5luaLV09kTFKAwHGiZ7ZVhoI0BMZm7lHOOyt29nV5c250t6uQUKSt9IdAXox8Mb0F865ETM7HNs+K5ib2Z3AnQAtmoxIUrTQ0mzpag6Vs+bEYa59+6Uzi0u8+NGraA5d4x0QDsOuXd4w/eZmb96VXbs0ZF/yVroNoFXAwJxtA0D13AOdcw8559qcc22NjY1p3lbOBplMhdQfeYfd7+1jxekR+uoaWXF6hN3v7aP+yDveAR0dXiAPhSAQmPm8oyPte4tkQro182GgZs62GmAozeuKpJYKWaqODlaua+KzrdUz85GPDHnBurXVS600NzN6empmf22t5iuXvJVuMH8L+PL0F2ZWCayLbRdJS3OonMlodNa2yWiU5lB5+hePBeuKQGBmPvKSuGDd0sLhd7t5tmecgBlR57i5OcjaC5QilPyUatfEEjMLAsuAZWYWNLMS4BfABjPbEtv/bSCsxk/xQ31VGQ9uaSVYGqC6rIRgaYAHt7T60wja0gIDczKEAwNnFpfov/EW3jz4BypGh5icmqJidIjwwT/Qf+Mt6d9bJANSzZnfA4wBdwNfjH1+j3PuFLAF+HsgAlwG/HUGyilnqc2BPl778GX2H3qU1z58mc2BPn8unGRxiWNN63n0ilsZCFZx/lAfA8EqHr3iVo41rffn/iI+M+dc1m/a1tbmOjs7s35fKTDxPUpqa72acySSeo+SZF0LE+zvG55g0wP7GJ+cSfMESwP8ZscntUCz5IyZveqca5tvnxankPwV36MEZj5ON1ImkkrXwgSLS0yneLbP6RapQC75SsFc8leskXKWVHuUpPOHIGbzxiY2rW/wfcCSSCYomEv+amnxatTTgRhmNVImTKP41LWwvqpMQVwKgmZNlPyVqJFyOo0SicxOo4TD3rktLRz+/XEefukoHa/18PBLRzny++MzfwhEioyCueRWOAw7d8Ltt3sfp4MxeLXsbdu8mnlPj/dxOucdS6OMVlZzcug0o5XVs0ZoqmuhnG2UZpHcidWux6pqGKhuoPaDXspTbaTs6uJQSQ0v/O7omUE911/UyIVDXhplumvhx9/69Zm5V5659CbWNK2nLnvfoUjWKJhL7nR0cHiqlGcPRghY/8woyxQaKUfPa+LAC2GmllcCXvfaV14/yspPtVKBN3r07XNW81poJq0SLA34M3pUJA8pzSI5M374KM91jzIVdZz+MMpU1PFs9yjjh48mPbf7mhupmxihZnwYc1Fqxoepmxih+5obgQyPHhXJQ6qZS870N5xPzTuH6FtecWZbzcQY/Q2rOC/JuQ1XtrHnsvZZU9j+05/fyI+vnBlPoa6FcjZRMJecCX7+Vqr/zw4mo1GGyiqonhil+vQIwc/fmvTc+qoy7vj6Z9i+d03CQT3qWihnCwVzyZm6y9uoveduunc/QsvAKXpqG1mz/W+pu3ze0cp/QjVvkRmam0VyLhPLwokUI83NInlNqRCR9Kk3i4hIEVAwFxEpAgrmIiJFQMFcRKQIKJiLiBQBBXMRkSKgYC4iUgQUzEVEioCCuYhIEVAwFxEpAgrmIiJFQHOzSGaFw966nF1d3mLK7e1JVxESkcVTzVwyZ3qNzw96OVndwNgHvbBr1+xFm0XEF6qZF4m8nEY2jTU+RWRxFMyLwNOvH2fH3vCsFXc2b2zK2v0X+kPirfF5milnTC+6/Gz3KFuXHSWYtdKJnB0UzAtc3/AEO/aGGZ+MMk4UgO17w2xa35CVGnqiPyTprPEpIoujYF7geiJjlAYCZwI5QGkgQE9kLOPBvG94gj3/+DRfjVtU+UfvX8WmH2ylvqosrTU+RWRx1ABa4JpD5UxGo7O2TUajNIfKM37v3pc72Xqgg9rxYU5U11M7PszWAx30vuwtCTi9xudIZTUtI39kpLKa2nvuTnmNTxFJnWrmBa6+qowHt7SyfU6qIxsplpX7n+OVskoGl1cCMBisYlnAWLn/ObhhEwDXfu56Wm++mp7IGFfnU+OsSJFRMC8CuVqlvuLkcS7fuIbnD50iYEbUOS7fuIaKk8dnHac1PkUyT8G8GITD1Hd0UJ+JgTmJBv20tHBhJMLKq9YwODZFTXkJFSNDEGrx594ikjLlzAtdbGAOkQg0N3sf/RqYk2zQT3s7RCJUjAxxXvVyL5BHIt52EckqBfNC19EBoZD3CgRmPu/o8OXah6dK2XMwQsfr77HnYIQjU6Uz125thW3bvPv19Hgft23TgCCRHFCapdB1dXk18ni1td72NKU06Ke1VcFbJA8omBe6lhYvtREKzWwbGPC2T1viZFca9CNSOHxJs5jZfjMbN7Ph2OsdP64rKYjlrYlEIBqd+Xw6b51GTj34+VupHh+iZnwYc1FqxoepHh/SoB+RPORnzvwu51xV7HWhj9eVRJLlrdPIqWvQj0jhUJqlGCTKW8dy6qOnp2a6Dy4ip65BPyKFwc9g/n0zux94B/iPzrn98TvN7E7gToCWFvVDzpqWFg6/282zPeNnBvbc3Bxk7QWp/ww06Eck//mVZtkBrAWagIeAfzazdfEHOOcecs61OefaGhsbfbqtJNN/4y28efAPVIwOMTk1RcXoEOGDf6D/xltmDgqHYedOuP1276MWjxApOL4Ec+fcAefckHNuwjn3E+A3wM1+XFvSc6xpPY9ecSsDwSrOH+pjIFjFo1fcyrGm9d4BmRx0JCJZk6mcuQMsQ9eWRWgOlfP2Oat5LW6IfbA0MDOrYnwDKcx81GpAIgUl7Zq5mdWZ2afNLGhmJWZ2G3A18L/TL56ka3pWxWBpgOqyEoKlgdmzKnZ1QW0to6enODkwzujpKd8GHYlI9vhRMy8F7gMuAj4EDgF/5ZxTX/M8kXBWRR8aSEUk99IO5s65U8DHfCiLZNBCPVL6b7yFNzt2ULG88sxqQOGDJ1nxd1+jLvvFFJEl0kRbZ7mkDaQiUhA0aOgsl7SBVEQKgmrmZ7mkDaQiUhBUM5ecLTsnIv5RMBdAQ/ZFCp3SLCIiRUDBvED0DU/wRnc/fcMTuS6KiOQhpVkKwNOvH2fH3jClgQCT0SgPbmll88amXBdLRPKIgnme6xueYM8/Ps1X336JpsFTHK9p5EfvX8WmH2xVjltEzlCaJUuWmibpfbmTrQc6qB0f5kR1PbXjw2w90EHvy50ZKqmIFCLVzLMgnTTJyv3P8UpZJYPLKwEYDFaxLGCs3P8c3LApk8UWkQKimnmG9Q1PsGNvmPHJKEMTU4xPRtm+N5xyDb3i5HEu37iGkoCxfFmAkoBx+cY1VJw8nuGSi0ghUc18EfqGJxY9sKYnMkZpIMA40TPbSgMBeiJjqV2jpYULIxFWXrVmZg3PkSEIaVZDEZmhYJ6ipaZKmkPlrDlxmGvjGjBf/OhVNIeuSe3G7e2waxcV4C3EPDDgrQa0dWs6346IFBmlWVKQTqqk/sg77H5vHytOj9BX18iK0yPsfm8f9UdSnO69tRW2bfNWAOrp8T5u26ZVgERkFtXMU5BWqqSjg5Xrmvhsa/XsNMlilmVrbVXwFpGEFMxT0BwqZzIanbVtMhpNbZrYri5obqYiEKBieexxl8xZli0c9oJ7Vxe0tHipFQVvEVkEBfMU1FeV8cN/WcLB3Y/QPHCKntpGNnzjKyk3YBKJzCyUDF7euyXWgBkOw65d3v7mZu/YXbuUShGRRSmqnHnG5i8Jh7n2mce44+IQV3xiI3dcHOLaZx7zAnEy7e1egI5EIBqd+by93dvf0eEF8lAIAoGZzzs6/P0eRKSoFVzNfKHugan0NllK10LgTMAtD4XwEisVULostbz3dANmfBpl69aZ82JpmNHTUzM59do5aRgRkSQKKpjve+J53oqlOn4VS3Vc+7nrU5q/JK3JqmIBd5bFBNxEDZgtLRx+t5tne8YJmBF1jpubg6y9QP3IRSR1BRPM+1/pZPC++6lcXklX5QqqR4YYuO9++ltC9A5OsPVAB32lFXPmL7mE+hs2pT9ZVbK8Nyy5EbP/xlt4s2MHFcsrGSqroHpilPDBk6z4u69Rt/jHJCJnqYLJmY8//hRDwWoGg1U4CzAYrGIoWM3440+xcv9z9JdVztrXX1bpzV+CD5NVJct7TzdiRiKzGzFTyKkfa1rPo1fcykCwivOH+hgIVvHoFbdyrGn9Uh+ViJyFCqZmXtd7gsGycnAz2wbLyqnrPUGwdBmXb1zD84dOnUlVxM9fkvZkVcny3vGNmDDzMYWcenOonLfPWc1rccPzg6WB1Lo9iojEFEwwD65bw00fdvO/4nLLNzWXE1y3EiDh/CXTk1UtFOxTkijvnUZOvb6qjAe3tLJ9Tj5fc5WLyGIUTDCnvZ21u3axdUOIgdIKaidHKR8enEl1JJq/JNOTVcVy6qOVc0Z5tqR2/c0bm9i0vmFpPW1ERCignPl0qqP8nAbOG+ql/JyGmYE1yeYvieW8K0aGOK96uRdo43Pe6Wpvp+vwcZ584U1+8WoXT77wJt2Hjy/q+vVVZVyysk6BXESWpHBq5pA41ZFsX6Kcd5r61l7IXR/5JNf2v0RTv9db5hsfuYofr72Qel/uICKSWGEF83RkcLKqnsgYR89fR3jFqjPbqstKUp+zXEQkTYWTZsljaU3EJSLig7OnZp5MGjMXqkeKiOSaOeeSH+WztrY219mZR6vLx89cGN8bZpEzFy557hcRkRSY2avOubb59qlmDmkN+olXX1WmIC4iOaGcOXipldra2ds0c6GIFBAFc/By5AMDs7fNnUhLRCSPKZhD8om0RETynII5JB9BKiKS53xpADWzFcAe4AagF/j3zrmf+XHtrMngoCIRkUzzqzfLbuA0cC6wEfifZvaGc+4tn64vIiIJpJ1mMbNKYAtwr3Nu2Dn3EvBL4F+ne20REUmNHznzC4APnXPvxm17A7jYh2uLiEgK/AjmVcCcfn0MANXxG8zsTjPrNLPOU6dO+XBbERGZ5kcwHwZq5myrAYbiNzjnHnLOtTnn2hobG324rYiITPMjmL8LlJjZn8VtuwQouMbPvuEJ3ujup294ItdFERFZlLR7szjnRsysA/iumd2B15vlM8CV6V47m55+/Tg75sx6uHljU66LJSKSEr8GDX0dKAc+AH4OfK2QuiX2DU+wY2+Y8ckoQxNTjE9G2b43rBq6iBQMX/qZO+f+CPyVH9fKhZ7IGKWBAOPMLDBRGghopSARKRgazo9WChKRwqdgzsxKQcHSANVlJQRLA1opSEQKihaniNm8sYlN6xu0UpCIFCQF8zhaKUhECpXSLCIiRUDBXESkCCiYi4gUAQVzEZEioGAuIlIEzDmX/ZuanQKOpXGJBrzl6fKNyrU4KtfiqFyLU4zlWuWcm3fa2ZwE83SZWadzri3X5ZhL5VoclWtxVK7FOdvKpTSLiEgRUDAXESkChRrMH8p1ARagci2OyrU4KtfinFXlKsicuYiIzFaoNXMREYmjYC4iUgQUzEVEikBeBnMzW2FmvzCzETM7ZmZ/k+DYf2dmJ81swMweNrOMzGFrZmVmtidWniEz+52Z3bTAsV8xsw/NbDjudU0myhW7334zG4+71zsJjs3W8xqe8/rQzP7LAsdm9HmZ2V1m1mlmE2b2yJx915nZITMbNbMXzWxVguuk/L5Mp1xmdrmZPW9mfzSzU2b2pJmdn+A6Kf/80yzXajNzc35O9ya4Trae121zyjQaK+elC1zH7+eVMDZk6z2Wl8Ec2A2cBs4FbgN+aGYXzz3IzD4N3A1cB6wG1gL/KUNlKgG6gU8AtcC9wBNmtnqB43/rnKuKe+3PULmm3RV3rwvnOyCbzyv+e8f7OY4BTyY4JZPP6z3gPuDh+I1m1gB04P0sVwCdwOMJrpPS+zLdcgEhvB4Pq4FVwBDw4yTXSvrz96Fc0+ri7vW9BNfJyvNyzv10zvvt68AR4LUE1/LzeS0YG7L6HnPO5dULqIx9MxfEbXsMuH+eY38G/EPc19cBJ7NY1jCwZZ7tXwFeymI59gN3pHBcTp4X8GW8Xy5bYH9WnhdeIHgk7us7gZfjvq7E+6Nz0Tznpvy+TLdc8+z/c2Ao3Z+/D89rNeCAkhTOzeXzehH4Traf15x7hIEt2XyP5WPN/ALgQ+fcu3Hb3gDm++t0cWxf/HHnmll9BssHgJmdi1fWtxY45F+ZWa+ZvWtm95pZpld1+n7sfr9JkKLI1fP6MvCoi707F5Dt5wVznodzbgQ4zPzvtcW8L/12NQu/z6al8vP3yzEz6zGzH8dqnvPJyfOKpTCuBh5NcmjGntec2JC191g+BvMqYGDOtgGgOoVjpz+f71jfmFkp8FPgJ865Q/Mc8itgA3AO3l/nLwDfymCRduClTJrw/j3/ZzNbN89xWX9eZtaC9+/nTxIclu3nNS2d91qiY31jZq3At0n8PFL9+aerF/gYXurnUrzv/acLHJuT5wV8Cfi1c+5ogmMy9rzmiQ1Ze4/lYzAfBmrmbKvByxsmO3b68/mO9YWZBfD+9TkN3DXfMc65I865o865qHPuTeC7wK2ZKpNz7oBzbsg5N+Gc+wnwG+DmeQ7N+vPC++V6KdEvV7afV5x03muJjvWFma0HngX+rXPu1wsdt4iff1qcc8POuU7n3JRz7n289/8NZjb3uUAOnlfMl0hcccjY81ogNmTtPZaPwfxdoMTM/ixu2yXM/2/mW7F98ce975zry0TBzMyAPXiNE1ucc5MpnuoAy0SZFnm/rD6vmKS/XPPI1vOa9TzMrBJYx/zvtcW8L9MWSxe8AHzPOffYIk/P1vObTpvNd6+sPi8AM9sEfAR4apGnpv28EsSG7L3HMtkIkEbjwf8Afo7XILAJ71+Ni+c57kbgJPBRvB4A+/ChgSVBuf4r8ApQleS4m4BzY59fBBwkQYNMmmWqAz4NBPFa1W8DRoAL8+B5XRkrS3Uun1fsuQSB7+PVnKafVWPsvbUltu0B4JV035c+lKsJL6/6LT9//j6U6zLgQrxKYD1er4wXc/284vY/hNc2k9XnFbvuvLEhm+8xX35Z/H7hdeH5p9hD7gL+Jra9Be9fkZa4Y78JvA8M4nXfKstQmVbh/QUfj5Vh+nXb3HIBu2JlGsHrxfFdoDRD5WoE/i/ev2L9sTfU9bl+XrF7/TfgsXm2Z/V5ATtjP7v4187Yvk8Bh/B6GOwHVsed9x+AZ5O9L/0uF/Cd2Ofx77Ph+cqV6OefgXJ9ATga+/5P4DUynpfr5xXbF4x9/9fNc16mn9eCsSGb7zFNtCUiUgTyMWcuIiKLpGAuIlIEFMxFRIqAgrmISBFQMBcRKQIK5iIiRUDBXESkCCiYi4gUgf8PDmvvgfgWq1cAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -8900,7 +9072,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 89, "metadata": {}, "outputs": [ { @@ -8930,34 +9102,34 @@ " \n", " \n", "
\n", - " 5\n", + " 6\n", " saleElapsed\n", - " 0.859446\n", + " 0.891571\n", "
\n", "
\n", " 9\n", " SalesID\n", - " 0.119325\n", + " 0.091174\n", "
\n", "
\n", - " 13\n", + " 14\n", " MachineID\n", - " 0.014259\n", + " 0.012950\n", "
\n", "
\n", " 0\n", " YearMade\n", - " 0.001793\n", + " 0.001520\n", "
\n", "
\n", - " 8\n", - " fiModelDesc\n", - " 0.001740\n", + " 10\n", + " Enclosure\n", + " 0.000430\n", "
\n", "
\n", - " 11\n", - " Enclosure\n", - " 0.000657\n", + " 5\n", + " ModelID\n", + " 0.000395\n", "
\n", "
\n", "\n", @@ -8965,15 +9137,15 @@ ], "text/plain": [ " cols imp\n", - "5 saleElapsed 0.859446\n", - "9 SalesID 0.119325\n", - "13 MachineID 0.014259\n", - "0 YearMade 0.001793\n", - "8 fiModelDesc 0.001740\n", - "11 Enclosure 0.000657" + "6 saleElapsed 0.891571\n", + "9 SalesID 0.091174\n", + "14 MachineID 0.012950\n", + "0 YearMade 0.001520\n", + "10 Enclosure 0.000430\n", + "5 ModelID 0.000395" ] }, - "execution_count": null, + "execution_count": 89, "metadata": {}, "output_type": "execute_result" } @@ -8997,17 +9169,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 90, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "orig 0.232795\n", - "SalesID 0.23109\n", - "saleElapsed 0.236221\n", - "MachineID 0.233492\n" + "orig 0.232883\n", + "SalesID 0.230347\n", + "saleElapsed 0.235529\n", + "MachineID 0.230735\n" ] } ], @@ -9029,16 +9201,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.231307" + "0.229498" ] }, - "execution_count": null, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } @@ -9063,12 +9235,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 92, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD7CAYAAACfQGjDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZ/klEQVR4nO3df5Dc9X3f8ecLhCVV0hVk2ZuSaXQ1kaP0EJLH52EaD+EoxMZ2XKso9cgoxjIxZ8NgN+ESyrQIVDAFl5Bpm2DXx4AFNjiEqQA7eOQMCYtNHbcRIRK5IhMrlhIcBAKfhVZCwoff/eP72ZmvNvrqvne7+92VeD1mvsN+v+/v+/vjfcu+9f2x+1VEYGZmdjQn9XoDzMysf7lJmJlZITcJMzMr5CZhZmaF3CTMzKzQnF5vQKctWbIkBgcHK1vfgQMHWLBgQWXr62euRcZ1yLgOmeOlDk8++eRLEfGW1uknXJMYHBxk69atla2vXq8zMjJS2fr6mWuRcR0yrkPmeKmDpN1Hm+7TTWZmVshNwszMCrlJmJlZITcJMzMr5CZhZmaF3CTMzKyQm4SZmRVykzAzs0JuEmZmVuiE+8a1mRnA4DWP9GS9u275QE/W2y0+kjAzs0JuEmZmVshNwszMCrlJmJlZITcJMzMrVKpJSBqU9A1Jk5L2SPoDSXNSbJWkJyUdTP9dlcuTpM9JejkN/1WScvFZ55qZWfeVPZL4PPAi8M+AVcC5wBWS3gQ8DHwFOA24G3g4TQcYBVYDK4GzgF8FPgnQTq6ZmVWjbJP4F8AfRcShiNgDbAGGgBGy71r8t4g4HBH/AxDwr1Pex4DbIuK5iPghcBuwPsXayTUzswqU/TLdfwfWSqqT/av/fcAGskaxPSIiN+/2NL3ZSLblYtvSNNrMPYKkUbIjD2q1GvV6veRuta/RaFS6vn7mWmRch0yv6zC2Yqon623d517XoV1lm8TjwGXAK8DJZKeGHgKuBfa1zLsPWJReL2yJ7wMWpmsLrbHSuS2NhYgYB8YBhoeHo8rnyR4vz6+tgmuRcR0yva7D+l5943rdyBHjva5Du6Y93STpJOCbwGZgAbCE7Gjic0ADGGhJGQD2p9et8QGgkT7k28k1M7MKlLkmsRj458AfpGsHLwNfAt4PTABntdx1dFaaTvrvylxsZUtstrlmZlaBaZtERLwE/AC4XNIcSaeSXVTeBtSB14HPSJor6cqU9mfpv/cAV0n6WUmnA2PAphRrJ9fMzCpQ9u6mi4ALgb3A94Ep4Lci4jWy21QvAX4MXAqsTtMBvgh8HXga+GvgkTSNdnLNzKwapS5cR8Rfkd2yerTYU8A7C2IBXJ2GjuaamVn3+Wc5zMyskJuEmZkVcpMwM7NCbhJmZlbITcLMzAq5SZiZWSE3CTMzK+QmYWZmhdwkzMyskJuEmZkVcpMwM7NCbhJmZlao7JPpzMyshMGWJ+KNrZiq7Cl5u275QMeX6SMJMzMrVObxpY2W4XVJv5+Lny9ph6SDkh6TtDQXmyvpLkmvSNoj6aqWZc8618zMuq/Mk+kWNgegBrwKPAAgaQnZs683kD3mdCtwfy59I7AMWAqcB1wt6cJ2c83MrBozPd30a8CLwLfT+EXAREQ8EBGHyD7YV0panuKXADdGxGREPAPcAazvQK6ZmVVgpheuPwbck54aBzBE9qxrACLigKSdwJCkF4DT8/H0enUHco8gaRQYBajVatTr9Rnu1uw1Go1K19fPXIuM65DpdR3GVkz1bN15tfnVbUs36l26SUj6OeBc4DdykxeSPfc6bx+wKMWa462xdnOPEBHjwDjA8PBwjIyMHHtnOqher1Pl+vqZa5FxHTK9rkNVdxRNZ2zFFLc9Xc2NpLvWjXR8mTM53XQJ8ERE/CA3rQEMtMw3AOxPMVrizVi7uWZmVoGZNom7W6ZNACubI5IWAGeQXWuYBJ7Px9PriQ7kmplZBUo1CUm/BPws6a6mnAeBMyWtkTQPuA7YHhE7Uvwe4FpJp6UL0pcBmzqQa2ZmFSh7JPExYHNEHHG6JyL2AmuAm4BJ4GxgbW6W64GdwG7gceDWiNjSbq6ZmVWj1NWUiPjkMWKPAssLYoeBS9PQ0VwzM+s+/yyHmZkVcpMwM7NCbhJmZlbITcLMzAq5SZiZWSE3CTMzK+QmYWZmhdwkzMyskJuEmZkVcpMwM7NCbhJmZlbITcLMzAq5SZiZWSE3CTMzK+QmYWZmhUo3CUlrJT0j6YCknZLOSdPPl7RD0kFJj0lamsuZK+kuSa9I2iPpqpZlzjrXzMy6r+zjS38F+BzwcWAR8MvA30paAmwGNgCLga3A/bnUjcAyYClwHnC1pAvTMmeda2Zm1Sh7JPGfgRsi4rsR8dOI+GFE/BC4CJiIiAci4hDZB/vK9ExqgEuAGyNiMiKeAe4A1qdYO7lmZlaBaR9fKulkYBj4mqTvA/OAh4DfAYaAbc15I+KApJ3AkKQXgNPz8fR6dXrdTm7rNo4CowC1Wo16vT7dbnVMo9GodH39zLXIuA6ZXtdhbMVUz9adV5tf3bZ0o95lnnFdA04Bfg04B/gJ8DBwLbAQ2Nsy/z6yU1ILc+OtMdrMPUJEjAPjAMPDwzEyMjL9XnVIvV6nyvX1M9ci4zpkel2H9dc80rN1542tmOK2p8t81LZv17qRji+zzOmmV9N/fz8ino+Il4DfA94PNICBlvkHgP0pRku8GaPNXDMzq8C0TSIiJoHngDhKeAJY2RyRtAA4g+xawyTwfD6eXk90INfMzCpQ9sL1l4BPS3qrpNOA3wT+GHgQOFPSGknzgOuA7RGxI+XdA1wr6bR0QfoyYFOKtZNrZmYVKNskbgT+AngWeAZ4CrgpIvYCa4CbgEngbGBtLu96YCewG3gcuDUitgC0k2tmZtUodTUlIn4CXJGG1tijwPJ/lJTFDgOXpuFo8VnnmplZ9/lnOczMrJCbhJmZFXKTMDOzQm4SZmZWqJqvAZpZTw324NvHYyumGKl8rdZpPpIwM7NCbhJmZlbITcLMzAr5moSZdU0vroVYZ/lIwszMCrlJmJlZITcJMzMr5CZhZmaF3CTMzKyQm4SZmRUq1SQk1SUdktRIw/dysYsl7ZZ0QNJDkhbnYoslPZhiuyVd3LLcWeeamVn3zeRI4sqIWJiGXwCQNAR8EfgoUAMOAp/P5dwOvJZi64AvpJy2cs3MrBrtfpluHfD1iPgWgKQNwDOSFgE/JXs86ZkR0QCekPQ1sqZwTZu5ZmZWgZk0iZsl3QJ8D/hPEVEHhoDvNGeIiJ2SXgPeTvZB/3pEPJtbxjbg3PS6ndwjSBoFRgFqtRr1en0Gu9WeRqNR6fr6mWuR6cc6jK2Yqnydtfm9WW+/qbIO3XjflW0S/wH4f2Snf9YCX5e0ClgI7GuZdx+wCHj9GDHazD1CRIwD4wDDw8MxMjJSZp86ol6vU+X6+plrkenHOqzv0U+F3/a0f/mnyjrsWjfS8WWW2vKI+D+50bslfQR4P9AABlpmHwD2kx0NFMVoM9fMzCow21tgAxAwAaxsTpT0NmAu8Gwa5khalstbmXJoM9fMzCowbZOQdKqk90qaJ2mOpHXALwPfBO4FPijpHEkLgBuAzRGxPyIOAJuBGyQtkPRu4EPAl9Oi28k1M7MKlDmSOAX4LLAXeAn4NLA6Ir4XERPAp8g+8F8ku2ZwRS73CmB+in0VuDzl0E6umZlVY9prEhGxF3jXMeL3AfcVxH4ErO5GrpmZdZ9/lsPMzAq5SZiZWSE3CTMzK+QmYWZmhdwkzMyskJuEmZkVcpMwM7NCbhJmZlbITcLMzAq5SZiZWSE3CTMzK+QmYWZmhdwkzMyskJuEmZkVcpMwM7NCM2oSkpZJOiTpK7lpF0vaLemApIckLc7FFkt6MMV2S7q4ZXmzzjUzs+6b6ZHE7cBfNEckDQFfBD4K1ICDwOdb5n8txdYBX0g5beWamVk1pn0yXZOktcCPge8AP58mrwO+HhHfSvNsAJ6RtAj4KbAGODMiGsATkr5G1hSuaTPXzMwqUKpJSBoAbgDOB34jFxoiaxoARMROSa8Bbyf7oH89Ip7Nzb8NOLcDua3bNwqMAtRqNer1epnd6ohGo1Hp+vqZa5HpxzqMrZiqfJ21+b1Zb7+psg7deN+VPZK4EbgzIv5eUn76QmBfy7z7gEXA68eItZt7hIgYB8YBhoeHY2Rk5Nh700H1ep0q19fPXItMP9Zh/TWPVL7OsRVT3PZ06ZMVJ6wq67Br3UjHlzntlktaBVwAvOMo4QYw0DJtANhPdjRQFGs318zMKlCmvY0Ag8DfpaOIhcDJkv4lsAVY2ZxR0tuAucCzZB/0cyQti4i/SbOsBCbS64k2cs3MrAJlmsQ48Ie58d8maxqXA28F/lzSOcBfkl232BwR+wEkbQZukPQJYBXwIeCX0nLubSPXzMwqMO0tsBFxMCL2NAey00SHImJvREwAnyL7wH+R7JrBFbn0K4D5KfZV4PKUQzu5ZmZWjRlfTYmIjS3j9wH3Fcz7I2D1MZY161wzM+s+/yyHmZkVcpMwM7NCbhJmZlbITcLMzAq5SZiZWSE3CTMzK+QfVjGryGAPfj/JrF0+kjAzs0JuEmZmVshNwszMCrlJmJlZITcJMzMr5CZhZmaFfAus9UQvbwfddcsHerZus+NNqSMJSV+R9LykVyQ9mx4E1IydL2mHpIOSHpO0NBebK+mulLdH0lUty511rpmZdV/Z0003A4MRMQD8G+Czkt4paQmwGdgALAa2Avfn8jYCy4ClwHnA1ZIuBGgn18zMqlGqSUTEREQcbo6m4QzgImAiIh6IiENkH+wrJS1P814C3BgRkxHxDHAHsD7F2sk1M7MKlL4mIenzZB/S84GngG8ANwHbmvNExAFJO4EhSS8Ap+fj6XXzaXNDbeSazVq3r4eMrZhivX+Cw04QpZtERFwh6dPAvwJGgMPAQmBvy6z7yJ5XvTA33hqjzdwjSBoFRgFqtRr1er3MLnVEo9GodH39bCa1GFsx1d2N6aHa/BN7/8pyHTJV1qEbn0UzurspIl4HnpD068DlQAMYaJltANifYs3xQy0x2sxt3a5xYBxgeHg4RkZGZrJbbanX61S5vn42k1qcyP/SHlsxxW1P+8ZB1yFTZR12rRvp+DJn+z2JOWTXJCaAlc2JkhY0p0fEJPB8Pp5eT6TX7eSamVkFpm0Skt4qaa2khZJOlvRe4CPAnwEPAmdKWiNpHnAdsD0idqT0e4BrJZ2WLkhfBmxKsXZyzcysAmWOJILs1NJzwCTwu8BvRsTDEbEXWEN2AXsSOBtYm8u9HtgJ7AYeB26NiC0A7eSamVk1pj1Rlj7Mzz1G/FFgeUHsMHBpGjqaa2Zm3effbjIzs0JuEmZmVshNwszMCrlJmJlZITcJMzMr5CZhZmaF3CTMzKyQm4SZmRVykzAzs0JuEmZmVshNwszMCrlJmJlZITcJMzMr5CZhZmaF3CTMzKxQmSfTzZV0p6TdkvZLekrS+3Lx8yXtkHRQ0mOSlrbk3iXpFUl7JF3VsuxZ55qZWfeVOZKYA/w92YOH/imwAfgjSYOSlgCb07TFwFbg/lzuRmAZsBQ4D7ha0oUA7eSamVk1yjyZ7gDZB3bTH0v6AfBO4M3AREQ8ACBpI/CSpOXpWdWXAB+PiElgUtIdwHpgC3BRG7lmZlaBaZtEK0k14O3ABNmzr7c1YxFxQNJOYEjSC8Dp+Xh6vTq9Hmojt3WbRoFRgFqtRr1en+luzVqj0ah0ff1sJrUYWzHV3Y3podr8E3v/ynIdMlXWoRufRTNqEpJOAe4F7o6IHZIWAntbZtsHLAIW5sZbY6T4bHOPEBHjwDjA8PBwjIyMlNyj9tXrdapcXz+bSS3WX/NIdzemh8ZWTHHb0zP+99cJx3XIVFmHXetGOr7M0nc3SToJ+DLwGnBlmtwABlpmHQD2pxgt8Was3VwzM6tAqSYhScCdQA1YExE/SaEJYGVuvgXAGWTXGiaB5/Px9HqiA7lmZlaBskcSXwB+EfhgRLyam/4gcKakNZLmAdcB29OFZ4B7gGslnSZpOXAZsKkDuWZmVoEy35NYCnwSWAXskdRIw7qI2AusAW4CJoGzgbW59OuBncBu4HHg1ojYAtBOrpmZVaPMLbC7AR0j/iiwvCB2GLg0DR3NNTOz7vPPcpiZWSE3CTMzK+SbmN/gBjv4fYWxFVMn9PcfzN6IfCRhZmaF3CTMzKyQm4SZmRVykzAzs0K+cJ0zm4u4nbpYu+uWD7S9DDOzTvORhJmZFXKTMDOzQm4SZmZWyE3CzMwKuUmYmVkhNwkzMyvkW2D7RCd/Q8nMrFPKPr70SklbJR2WtKkldr6kHZIOSnosPaSoGZsr6S5Jr0jaI+mqTuWamVn3lT3d9A/AZ4G78hMlLQE2AxuAxcBW4P7cLBuBZcBS4DzgakkXtptrZmbVKNUkImJzRDwEvNwSugiYiIgHIuIQ2Qf7yvRMaoBLgBsjYjIingHuANZ3INfMzCrQ7jWJIWBbcyQiDkjaCQxJegE4PR9Pr1d3IPcIkkaBUYBarUa9Xp/VzoytmJpxTm3+7PJORK5FxnXIuA6ZKusw28++Y2m3SSwE9rZM2wcsSrHmeGus3dwjRMQ4MA4wPDwcIyMjpXcgbza/wTS2Yorbnvb1f3AtmlyHjOuQqbIOu9aNdHyZ7d4C2wAGWqYNAPtTjJZ4M9ZurpmZVaDdJjEBrGyOSFoAnEF2rWESeD4fT68nOpBrZmYVKHsL7BxJ84CTgZMlzZM0B3gQOFPSmhS/DtgeETtS6j3AtZJOSxekLwM2pVg7uWZmVoGyRxLXAq8C1wC/nl5fGxF7gTXATcAkcDawNpd3PbAT2A08DtwaEVsA2sk1M7NqlLqaEhEbyW5RPVrsUWB5QewwcGkaOpprZmbd599uMjOzQm4SZmZWyE3CzMwKuUmYmVkhNwkzMyvkJmFmZoXcJMzMrJCbhJmZFXKTMDOzQm4SZmZWyE3CzMwKuUmYmVkhNwkzMyvkJmFmZoXcJMzMrFBfNwlJiyU9KOmApN2SLu71NpmZvZGUeuhQD90OvAbUgFXAI5K2RYSfdW1mVoG+PZKQtIDs8aYbIqIREU8AXwM+2tstMzN741BE9HobjkrSO4DvRMT83LTfBs6NiA+2zDsKjKbRXwC+V9mGwhLgpQrX189ci4zrkHEdMsdLHZZGxFtaJ/bz6aaFwL6WafuARa0zRsQ4MF7FRrWStDUihnux7n7jWmRch4zrkDne69C3p5uABjDQMm0A2N+DbTEze0Pq5ybxLDBH0rLctJWAL1qbmVWkb5tERBwANgM3SFog6d3Ah4Av93bL/pGenObqU65FxnXIuA6Z47oOfXvhGrLvSQB3Ab8CvAxcExH39XarzMzeOPq6SZiZWW/17ekmMzPrPTcJMzMr5CaRI+lKSVslHZa0qSX2CUnfl9SQtEXS6bnYqZLulvRiGja25A5KekzSQUk7JF1QzR7NThfrsEvSqym3IelPqtmj2ZE0V9Kd6XfD9kt6StL7cvHz09/zYPr7Lm3JvUvSK5L2SLqqZdmFuf2mW3VI/19E7v3QkLSh6v0rq806fFjSd1KsfpRlr5L0ZIo/KWlVRbs1vYjwkAbgImA18AVgU276ucCLwBDwphR/PBf/EvAA8E+AQWAn8PFc/M+B3wPmk/3UyI+Bt/R6f3tQh13ABb3evxnUYQGwMe3LScCvkn1PZ5DsW7T7gH8HzANuBb6by70Z+DZwGvCLwB7gwhQ7Zm6/DV2swyAQwJxe72MFdbgA+DBwHVBvWe6bgN3AbwFzgc+k8Tf1ep8jwk2i4M3w2ZYPx98Fbs+Nn57e3Gek8ZeAd+Xi/xH4dnr9duAwsCgX/zbwqV7vZ5V1SOO7OI6aREFNtpM1+lGyn41pTl8AvAosT+M/BN6Ti98I/GF6fczc42HoUB2OqybRTh1y0z9xlCbxnlQn5ab9HamZ9nrw6aZylIb8OMCZR5nWfN2MDQF/GxH5b4pvS9OPN+3UoeleSXsl/YmklV3Yxq6RVCNr+hNkf79tzVhk3+vZCQxJOo2sgW7Lpef/5oW53dz+TulgHZp2S3pO0pckLenqxndQ2TqUWNQQsD1Sd0i2l8ztOjeJcr4BfFjSWZLmkx0yBtlpFYAtwDWSFkn6eeDSXKz0b1AdB9qpA8A6sn89LgUeA74p6dSqNr4dkk4B7gXujogdHPvvujA33hpjmty+1uE6vAS8i+z98M40/d7ubHlnzbAO0+nr94ObRAkR8afA9cD/IjtXuIvsXORzaZbPkB1a/g3wMPDVXOyE+Q2qNutARPzviHg1Ig5GxM1k12bOqWwHZknSSWTf9H8NuDJNPtbftZEbb41Nl9u3Ol2HyB4BsDUipiLihbTM90hqXV5fmUUdptPX7wc3iZIi4vaIWBYRbyX7kJwD/HWK/Sgi1kXEz0TEEFld/29KnQDeJin/r4Lj9jeo2qjDURfHkaen+o4kAXeSPfhqTUT8JIUmyP6OzfkWAGcAExExCTyfj3Pk37wwt0u70bYu1aFV83RL374nZlOHEoudAM5Ky246q2Ru9/X6okg/DWQfePPI7sj4cnrdnHYm2Zv354A68F9yeWcAbwZOBt5Hdhg9lIt/l+yi7zzg39L/dzd1vA5p/neT3ckxD/gdYC/w5l7v7zS1+J/p77ewZfpbyE4JrEn78zmOvJvlFuBxsrt6lpN9WF5YJrcfhy7V4Wyy57+clN439wOP9Xpfu1SHk9P0TwHfSq9PSbHm3U3/nuzupivx3U39OZDd3hYtw0bgVLILSQfIbuG7GTg5l/dh4B+Ag8BfAe9tWe5g+kB9leyBSH19h0836kC6OJdyXwb+FBju9b5OU4elad8PkZ0SaA7rUvwCYEf6u9aBwVzuXLLfHXsFeAG4qmXZhbn9NnSrDsBHgB+k98TzwD3Az/R6f7tUh/VH+X9qUy7+DuDJlPuXwDt6vb/Nwb/dZGZmhXxNwszMCrlJmJlZITcJMzMr5CZhZmaF3CTMzKyQm4SZmRVykzAzs0JuEmZmVuj/A4k3h7pF3zeIAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD7CAYAAAB0d9PAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfBUlEQVR4nO3df5Bd5X3f8fcHcBDRsnWE5G1RG21FrdBZBIRs6mkzxNtBGdc2tKClGRWFItepIIzTSdmEMsUglZgaqVVmOsHEaOwYCIjBIIGj4LEzcrnBDrVbURB4k7Vq4ZUDiQdZIYquVkKW8+0fz3PJ4Xj37N0f98eKz2vmzN57vvd5znmePXu/e85z7n0UEZiZmU3ljE7vgJmZdTcnCjMzq+REYWZmlZwozMyskhOFmZlVOqvTOzDfli5dGv39/W3d5rFjx1i8eHFbt9mN3A+J+yFxPyQLpR+ef/7570fEsslip12i6O/vZ+/evW3dZq1WY2hoqK3b7Ebuh8T9kLgfkoXSD5IOThXzpSczM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6t02n0y28wMoP+2pzuy3fF7PtyR7baSzyjMzKySE4WZmVVyojAzs0pOFGZmVsmJwszMKjWVKCT1S/qipDckfU/SvZLOyrErJI1JmpD0jKQVhXKStEXS4bxslaRSvc/ksmOS1pS2e52kg5KOSXpK0pL5ariZmTWn2TOK+4DXgb8HXAq8H7hZ0lJgF3AHsATYCzxWKLcRuBq4BLgYuBK4sRB/FHgBOA+4HXhC0jIASQPA/cD1QB8wkffDzMzaqNlE8Q+Bz0fEiYj4HvAlYABYC4xGxOMRcQLYDFwi6cJc7gZgW0S8GhGvAduADQCSVgGXAZsi4nhE7AReBoZz2fXA7oh4NiLqpGS0VtK5c2uymZnNRLMfuPsfwDpJNeAngA+S3riHgH2NF0XEMUkHSElkLP/cV6hnX15H/vlKRBytiD9XqPuApJPAKuD54s5J2kg6e6Gvr49ardZks+ZHvV5v+za7kfshcT8kne6HkdWnOrLdcps73Q/zodlE8UfAvwf+GjgTeBB4inQp6VDptUeAxn/9Pfl5MdaTxynKsUZ8+RRly3W/JSK2A9sBBgcHo93z0y6UOXFbzf2QuB+STvfDhk59Mnv90Nued7of5sO0l54knQF8mTQWsRhYSjqr2ALUgd5SkV6gcZZQjvcC9YiIWZQtx83MrA2aGaNYAvwD4N6IeDMiDgOfAz4EjJIGqgGQtBi4IK+nHM+Pi7GVpTGHcrxY90rgbGB/Uy0zM7N5MW2iiIjvA98BfkXSWZLeTRqk3gc8CVwkaVjSIuBO4KWIGMvFHwJukbRc0vnACPBArnc/8CKwSdIiSdeQ7ozamcs+Alwl6fKcgO4CdpXGNMzMrMWavetpLfAvSOMR3wZOAf8xIg6R7lK6G3gDeB+wrlDufmA36W6mbwJP53UN64DBXPYe4NpcJxExCtxEShivk8Ymbp5xC83MbE6aGsyOiBdJdzhNFtsDXDhFLIBb8zJZfHyqenN8B7CjmX00M7PW8Fd4mJlZJScKMzOr5ERhZmaVnCjMzKySE4WZmVVyojAzs0pOFGZmVsmJwszMKjlRmJlZJScKMzOr5ERhZmaVnCjMzKxSszPcmZlZE/pLM+uNrD7Vttn2xu/5cEvq9RmFmZlVamYq1Hpp+aGk3y7Er5A0JmlC0jOSVhRikrRF0uG8bM3zZTfi/bnMRK5jTWnb10k6KOmYpKckLZmvhpuZWXOameGup7EAfcBx4HEASUtJc2nfQZoydS/wWKH4RuBq0pSmFwNXAjcW4o8CLwDnAbcDT0haluseIE1ydH3e7gRw3yzbaWZmszTTS0/Xkmab+2p+vhYYjYjHI+IEsBm4RFJjIqMbgG0R8WpEvAZsAzYASFoFXAZsiojjEbGTNBPecC67HtgdEc9GRJ2UjNaW5tg2M7MWm+lg9g3AQ3nmOoAB0tzZAETEMUkH8vqxcjw/HiiUfaU0B3Y5/lyh7gOSTgKrgOeLOyVpI+nshb6+Pmq12gybNTf1er3t2+xG7ofE/ZB0uh9GVp/q2LaL+s5p3760qr+bThSSfhJ4P/DRwuoe0jzaRUdI81s34kdKsZ48TlGONeLLpyhbrvstEbEd2A4wODgYQ0ND0zdoHtVqNdq9zW7kfkjcD0mn+6FddxpNZ2T1Kba93J4bTMfXD7Wk3plcevq3wNci4juFdXWgt/S6XuDoFPFeoJ7PSGZathw3M7M2mGmieLC0bpQ0UA2ApMXABXn9j8Tz42JsZWnMoRwv1r0SOBvYP4N9NjOzOWoqUUj6Z6RLQo+XQk8CF0kalrQIuBN4KSLGcvwh4BZJyyWdD4wADwBExH7gRWCTpEWSriHdGbUzl30EuErS5TkB3QXsKo1pmJlZizV7RnEDk7xJR8Qh0l1KdwNvAO8D1hVecj+wm3Q30zeBp/O6hnXAYC57D3BtrpOIGAVuIiWM10ljEzfPoG1mZjYPmhphiYgbK2J7gAuniAVwa14mi48DQxV17wB2NLOPZmbWGv4KDzMzq+REYWZmlZwozMyskhOFmZlVcqIwM7NKThRmZlbJicLMzCo5UZiZWSUnCjMzq+REYWZmlZwozMyskhOFmZlVcqIwM7NKThRmZlbJicLMzCo1nSgkrZP0p5KOSTog6fK8/gpJY5ImJD0jaUWhjCRtkXQ4L1slqRDvz2Umch1rStu8TtLBvM2nJC2Zj0abmVnzmp0K9ReALcBHSDPN/TzwiqSlwC7gDmAJsBd4rFB0I3A1ae7ri4ErgeIkSI8CLwDnAbcDT0halrc5QJoN73qgD5gA7ptFG83MbA6aPaP4L8BdEfH1iPibiHgtIl4D1gKjEfF4RJwANgOXSGrMeHcDsC0iXs2v3wZsAJC0CrgM2BQRxyNiJ2nK1OFcdj2wOyKejYg6KRmtlXTuXBttZmbNm3YqVElnkua1/n1J3wYWAU8BvwEMAPsar42IY5IO5PVj5Xh+PJAfDwCvlObhLsefK9R9QNJJYBXwfGkfN5LOXujr66NWq03XrHlVr9fbvs1u5H5I3A9Jp/thZPWpjm27qO+c9u1Lq/q7mTmz+4B3AdcClwM/AL4AfBzoAQ6VXn+EdHmKHD9SivXkcYpyrBFfPkXZct1viYjtwHaAwcHBGBoaaqJZ86dWq9HubXYj90Pifkg63Q8bbnu6Y9suGll9im0vN/NWO3fj64daUm8zl56O55+/HRF/ERHfB34L+BBQB3pLr+8FGmcJ5XgvUI+ImEXZctzMzNpg2kQREW8ArwIxSXiUNFANgKTFwAV5/Y/E8+NibGVpzKEcL9a9Ejgb2D/dPpuZ2fxpdjD7c8CvSnqPpJ8Afg34A+BJ4CJJw5IWAXcCL0XEWC73EHCLpOWSzgdGgAcAImI/8CKwSdIiSdeQ7ozamcs+Alwl6fKcgO4CdpXGNMzMrMWavXD2m8BS0n/zJ4DPA3dHxAlJw8C9wMPAN4B1hXL3AytJdzMBfCava1hHShxvAN8Fro2IQwARMSrpJlLCOA/YQ7o918zM2qipRBERPwBuzks5tge48EcKpVgAt+Zlsvg4MFSx3R3Ajmb20czMWsNf4WFmZpWcKMzMrJIThZmZVXKiMDOzSu35uKCZdVR/Bz6lPLL6FBtue5rxez7c9m3b/PIZhZmZVXKiMDOzSk4UZmZWyWMUZtZSnRgfsfnlMwozM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSk4UZmZWqalEIakm6YSkel6+VYhdIWlM0oSkZyStKMQkaYukw3nZKkmFeH8uM5HrWFPa7nWSDko6JukpSUvmo9FmZta8mZxRfCwievLyUwCSlgK7gDuAJcBe4LFCmY3A1aS5ry8GrgRuLMQfBV4gzWB3O/CEpGW57gHSbHjXA33ABHDfDNtnZmZzNNdLT2uB0Yh4PCJOAJuBSyQ1Zry7AdgWEa9GxGvANmADgKRVwGXApog4HhE7SVOmDuey64HdEfFsRNRJyWitpHPnuM9mZjYDM/lk9icl3QN8C7g9ImrAALCv8YKIOCbpQF4/Vo7nxwP58QDwSkQcrYg/V6j7gKSTwCrg+eKOSdpIOnuhr6+PWq02g2bNXb1eb/s2u5H7IenGfhhZfart2+w7pzPb7Tbt7IdWHXfNJor/BPwJcBJYB+yWdCnQAxwqvfYI0Pivvyc/L8Z68jhFOdaIL5+ibLnut0TEdmA7wODgYAwNDTXZrPlRq9Vo9za7kfsh6cZ+2NChrxnf9rK/Jaid/TC+fqgl9TZ16SkivhERRyPizYh4EPhj4ENAHegtvbwXaJwllOO9QD0iYhZly3EzM2uD2Y5RBCBglDRQDYCkxcAFeT3leH5cjK0sjTmU48W6VwJnA/tnuc9mZjYL0yYKSe+W9AFJiySdJWk98PPAl4EngYskDUtaBNwJvBQRY7n4Q8AtkpZLOh8YAR4AiIj9wIvAplz3NaQ7o3bmso8AV0m6PCegu4BdpTENMzNrsWYunL0L+ARwIfBD0iD11RHxLQBJw8C9wMPAN0hjGA33AytJdzMBfCava1hHShxvAN8Fro2IQwARMSrpJlLCOA/YA3xkxi00M7M5mTZR5Dfun62I7yElkcliAdyal8ni48BQRd07gB3T7aOZmbWOv8LDzMwqOVGYmVklJwozM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSjNKFJLeK+mEpIcL666QNCZpQtIzklYUYpK0RdLhvGyVpEK8P5eZyHWsKW3vOkkHJR2T9JSkJXNprJmZzdxMzyg+BfyfxhNJS4FdwB3AEmAv8Fjh9RuBq0lzX18MXAncWIg/CrxAmsHuduAJScty3QOk2fCuB/qACeC+Ge6vmZnNUdOJQtI64K+ArxRWrwVGI+LxiDgBbAYukdSY8e4GYFtEvBoRrwHbgA25vlXAZcCmiDgeETtJU6YO57Lrgd0R8WxE1EnJaK2kc2fVUjMzm5Vm5sxGUi9wF3AF8NFCaADY13gSEcckHcjrx8rx/HigUPaViDhaEX+uUPcBSSeBVcDzpf3bSDp7oa+vj1qt1kyz5k29Xm/7NruR+yHpxn4YWX2q7dvsO6cz2+027eyHVh13TSUK4DeBz0bEnxWGGAB6gEOl1x4Bzi3Ej5RiPXmcohxrxJdPUbZc91siYjuwHWBwcDCGhoamb9E8qtVqtHub3cj9kHRjP2y47em2b3Nk9Sm2vdzsW8zpq539ML5+qCX1Trv3ki4F1gA/PUm4DvSW1vUCR6eI9wL1iAhJMy1bjpuZWRs0M0YxBPQD35X0PeDXgWFJ/xcYJQ1UAyBpMXBBXk85nh8XYytLYw7leLHulcDZwP4m9tnMzOZJM4liO+nN/9K8fBp4GvgA8CRwkaRhSYuAO4GXImIsl30IuEXScknnAyPAAwARsR94EdgkaZGka0h3Ru3MZR8BrpJ0eU5AdwG7SmMaZmbWYtNeeoqICdKtqQDkS0YnIuJQfj4M3As8DHwDWFcofj+wknQ3E8Bn8rqGdaTE8QbwXeDaRr0RMSrpJlLCOA/YA3xkxi00M7M5mfEIS0RsLj3fA1w4xWsDuDUvk8XHSZe2ptrWDmDHTPfRzMzmj7/Cw8zMKjlRmJlZJScKMzOr5ERhZmaVnCjMzKySE4WZmVXyF7GYtVF/B75zyWyufEZhZmaVnCjMzKySE4WZmVVyojAzs0pOFGZmVsmJwszMKvn2WOuYTt0qOn7PhzuyXbOFqqkzCkkPS/oLSX8tab+kXy7ErpA0JmlC0jOSVhRikrRF0uG8bFVh0m1J/bnMRK5jTWm710k6KOmYpKckLZmPRpuZWfOavfT0SaA/InqBfwl8QtLPSFoK7ALuAJYAe4HHCuU2AleTpjS9GLgSuLEQfxR4gTQx0e3AE5KWAUgaIE1ydD3QR5o86b6ZN9HMzOaiqUQREaMR8WbjaV4uANYCoxHxeEScADYDl0hqTGR0A7AtIl6NiNeAbcAGAEmrgMuATRFxPCJ2kmbCG85l1wO7I+LZiKiTktHa0hzbZmbWYk2PUUi6j/Qmfw7pLOCLwN3AvsZrIuKYpAPAADCWf+4rVLMvryP/fKU0B3Y5/lyh7gOSTgKrgOeb3W+zslaPjYysPsUGf1WHnUaaThQRcbOkXwX+KWn60jeBHuBQ6aVHgMZ//T35eTHWk8cpyrFGfPkUZct1v0XSRtJlLvr6+qjVas02a17U6/W2b7MbzbQfRlafat3OdFDfOadv22bC/ZC0sx9a9T40o7ueIuKHwNck/RLwK0Ad6C29rBdonCWU471APSJC0kzLluPF/doObAcYHByMoaGhGbRq7mq1Gu3eZjeaaT+crv91j6w+xbaXfUOh+yFpZz+Mrx9qSb2z/RzFWaQxilHSQDUAkhYX1lOO58fF2MrSmEM5Xqx7JXA2sH+W+2xmZrMwbaKQ9B5J6yT1SDpT0geAfwP8T+BJ4CJJw5IWAXcCL0XEWC7+EHCLpOWSzgdGgAcAImI/8CKwSdIiSdeQ7ozamcs+Alwl6fKcgO4CdpXGNMzMrMWaOR8K0mWmT5MSy0Hg1yLiCwCShoF7gYeBbwDrCmXvB1aS7mYC+Exe17COlDjeAL4LXBsRhyDdaSXpJlLCOA/YA3xkxi00M7M5mTZR5Dfu91fE9wAXThEL4Na8TBYfJw2MT1X3DmDHdPtoZmat4+96MjOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6vkRGFmZpWcKMzMrFIzM9ydLemzkg5KOirpBUkfLMSvkDQmaULSM5JWFGKStEXS4bxslaRCvD+Xmch1rClt+7q83WOSnpK0ZL4abmZmzWnmjOIs4M9Ikxf9HeAO4PP5TX4psCuvWwLsBR4rlN0IXE2a+/pi4ErgxkL8UeAF0gx2twNPSFoGIGmANBve9UAfMAHcN5tGmpnZ7E2bKCLiWERsjojxiPibiPgD4DvAzwBrgdGIeDwiTgCbgUskNWa8uwHYFhGvRsRrwDZgA4CkVcBlwKaIOB4RO0lTpg7nsuuB3RHxbETUScloraRz56fpZmbWjGbmzH4bSX3AKmCUNJf2vkYsIo5JOgAMAGP5575C8X15HfnnKxFxtCL+XKHuA5JO5m0/X9qnjaSzF/r6+qjVajNt1pzU6/W2b7MbzbQfRlafat3OdFDfOadv22bC/ZC0sx9a9T40o0Qh6V3AI8CDETEmqQc4VHrZEaDxX39Pfl6M9eRxinKsEV8+Rdly3W+JiO3AdoDBwcEYGhqaQavmrlar0e5tdqOZ9sOG255u3c500MjqU2x7ecb/g5123A9JO/thfP1QS+pt+q4nSWcAvwecBD6WV9eB3tJLe4GjU8R7gXpExCzKluNmZtYGTSWKfAbwWdKg8nBE/CCHRkkD1Y3XLQYuyOt/JJ4fF2MrS2MO5Xix7pXA2cD+ZvbZzMzmR7NnFL8D/GPgqog4Xlj/JHCRpGFJi4A7gZciYizHHwJukbRc0vnACPAAQETsB14ENklaJOka0p1RO3PZR4CrJF2eE9BdwK7SmIaZmbVYM5+jWEG6pfVS4HuS6nlZHxGHSHcp3Q28AbwPWFcofj+wm3Q30zeBp/O6hnXAYC57D3BtrpOIGAVuIiWM10ljEzfPuqVmZjYr046wRMRBQBXxPcCFU8QCuDUvk8XHgaGKuncAO6bbRzMzax1/hYeZmVVyojAzs0q+yfkdrn8eP8swsvrUafvZCLN3Mp9RmJlZJScKMzOr5ERhZmaVnCjMzKySB7NLZjO4Ox+DuOP3fHhO5c3MWsVnFGZmVsmJwszMKjlRmJlZJScKMzOr5ERhZmaVnCjMzKySb4/tEvP5nUtmZvOp2alQPyZpr6Q3JT1Qil0haUzShKRn8kRHjZgkbZF0OC9b87SqjXh/LjOR61hTqvs6SQclHZP0lKQlc2yvmZnNULOXnv4c+ATwu8WVkpYCu4A7gCXAXuCxwks2AleT5r6+GLiSNFtew6PAC8B5wO3AE5KW5boHSLPhXU+aq3sCuK/plpmZ2bxoKlFExK6IeAo4XAqtBUYj4vGIOAFsBi6R1Jjx7gZgW0S8GhGvAduADQCSVgGXAZsi4nhE7CRNmTqcy64HdkfEsxFRJyWjtZLOnV1TzcxsNuY6RjEA7Gs8iYhjkg7k9WPleH48UCj7SkQcrYg/V6j7gKSTwCrg+eJOSNpIOnuhr6+PWq026waNrD414zJ958yu3OnG/ZC4HxL3Q9LOfpjLe1+VuSaKHuBQad0R4NxC/Egp1pPHKcqxRnz5FGXLdb8lIrYD2wEGBwdjaGhoRo0oms13No2sPsW2l31fgPshcT8k7oeknf0wvn6oJfXO9fbYOtBbWtcLHJ0i3gvUIyJmUbYcNzOzNphrohglDVQDIGkxcEFe/yPx/LgYW1kacyjHi3WvBM4G9s9xn83MbAaavT32LEmLgDOBMyUtknQW8CRwkaThHL8TeCkixnLRh4BbJC2XdD4wAjwAEBH7gReBTbm+a0h3Ru3MZR8BrpJ0eU5AdwG7SmMaZmbWYs2eUXwcOA7cBvxSfvzxiDhEukvpbuAN4H3AukK5+4HdpLuZvgk8ndc1rAMGc9l7gGtznUTEKHATKWG8ThqbuHnGLTQzszlpaoQlIjaTbn2dLLYHuHCKWAC35mWy+DgwVLHdHcCOZvbRzMxaw9/1ZGZmlZwozMyskhOFmZlVcqIwM7NKThRmZlbJicLMzCo5UZiZWSUnCjMzq+REYWZmlZwozMyskhOFmZlVcqIwM7NKThRmZlbJicLMzCo5UZiZWaWuThSSlkh6UtIxSQclXdfpfTIze6dpauKiDvoUcBLoAy4Fnpa0L89+Z2ZmbdC1ZxR5nuxh4I6IqEfE14DfB67v7J6Zmb2zKM1W2n0k/TTwXEScU1j368D7I+Kq0ms3Ahvz058CvtW2HU2WAt9v8za7kfshcT8k7odkofTDiohYNlmgmy899QBHSuuOAOeWXxgR24Ht7dipyUjaGxGDndp+t3A/JO6HxP2QnA790LWXnoA60Fta1wsc7cC+mJm9Y3VzotgPnCXpvYV1lwAeyDYza6OuTRQRcQzYBdwlabGknwP+FfB7nd2zSXXssleXcT8k7ofE/ZAs+H7o2sFsSJ+jAH4X+AXgMHBbROzo7F6Zmb2zdHWiMDOzzuvaS09mZtYdnCjMzKySE0WBpI9J2ivpTUkPlGK/LOnbkuqSviTp/ELs3ZIelPR6XjaXyvZLekbShKQxSWva06LZaWE/jEs6nsvWJf1he1o0O5LOlvTZ/D1jRyW9IOmDhfgV+fc5kX+/KwoxSdoi6XBetkpSIb5gjokW98OCOSbm2A//PK87Iml8krq7+3iICC95AdYCVwO/AzxQWP9+4HVgAPixHP+jQvxzwOPAjwP9wAHgI4X4/wJ+CziH9LUkfwUs63R7O9AP48CaTrdvBv2wGNic23IGcCXpczz9pE/bHgH+NbAI+G/A1wtlbyR9Q8DfB5YDfwLctBCPiRb3w4I5JubYD/+E9PVDG4HxSeru6uOh4zvQjQvwidIb5H8HPlV4fj4QwAX5+feBny3E/zPw1fx4FfAmcG4h/tXiH0u3LvPZD/n5gnlTqOiTl/If8kbSV8w01i8GjgMX5ufPARsL8Y823jgW8jExn/1wOhwTzfZDYf2acqJYCMeDLz01R3kpPge4aJJ1jceN2ADwSkQUP1G+L69faObSDw2PSDok6Q8lXdKCfWwZSX2kP+pR0u9vXyMW6XM/B/jb3+vb4rz9d76gj4l57IeGBXlMzLAfqnT98eBE0ZwvAr8o6WJJ5wB3kv6T/vEc/xJwm6RzJf0j4N8VYk1/Z9UCMJd+AFhPOk1fATwDfFnSu9u073Mi6V3AI8CDETHG9L/XcvwI0JOvzy/YY2Ke+wEW6DExi36o0vXHgxNFEyLiK8AmYCdwkHS6fBR4Nb/kP5BOM/8f8AXg0ULstPnOqjn2AxHxxxFxPCImIuKTpOuwl7dr/2dL0hmkbwQ4CXwsr57u91qO9wL1SNcVFuQx0YJ+WJDHxCz7oUrXHw9OFE2KiE9FxHsj4j2kN8qzgG/m2F9GxPqI+LsRMUDq1/+di44CKyUV/ztYsN9ZNYd+mLQ63n6pquvk/3w/S5o8azgifpBDo6TfY+N1i4EL+Nvf69vivP13vuCOiRb1w2S6+piYQz9U6f7jodODJN20kN70FgGfJP3HsKiw7iLSAfyTQA34r4VyFwDnAWcCHyQN6g4U4l8nDQQvAq6hy+5oaEc/5Nf/HOluqUXAbwCHgPM63d5p+uLT+ffXU1q/jHR5YDi3ZwtvH6S9CfhT0p0+55P+6It3+yy0Y2Le+2EhHhNz6Icz8voPks7GFwE/tlCOh47vQDctpFvforRsBt5NurvhGPC9/AZ6ZqHcLwJ/DkwALwIfKNXbn99Uj5NuFezquzxa0Q+kgblG2cPAV4DBTrd1mn5Ykdt+gnR5oLGsz/E1wFj+vdaA/kJZAVuBv8zLVvJX5iy0Y6JV/bDQjok59sPQJH9TtYVyPPi7nszMrJLHKMzMrJIThZmZVXKiMDOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6vkRGFmZpX+Px2MpDsi92uqAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -9092,7 +9264,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 93, "metadata": {}, "outputs": [], "source": [ @@ -9103,16 +9275,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.17768, 0.230631)" + "(0.177284, 0.228008)" ] }, - "execution_count": null, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } @@ -9147,7 +9319,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 95, "metadata": {}, "outputs": [], "source": [ @@ -9167,7 +9339,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 96, "metadata": {}, "outputs": [], "source": [ @@ -9183,7 +9355,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 97, "metadata": {}, "outputs": [], "source": [ @@ -9199,7 +9371,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ @@ -9207,6 +9379,22 @@ "cat_nn.remove('saleElapsed')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also, to use this as a continuous variable, we have to ensure it's of a numeric type:" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [], + "source": [ + "df_nn['saleElapsed'] = df_nn['saleElapsed'].astype(int)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -9216,7 +9404,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -9226,20 +9414,19 @@ "ProductSize 6\n", "Coupler_System 2\n", "fiProductClassDesc 74\n", - "ModelID 5281\n", "Hydraulics_Flow 3\n", + "ModelID 5281\n", "fiSecondaryDesc 177\n", "fiModelDesc 5059\n", - "ProductGroup 6\n", "Enclosure 6\n", - "fiModelDescriptor 140\n", - "Drive_System 4\n", "Hydraulics 12\n", + "ProductGroup 6\n", + "Drive_System 4\n", "Tire_Size 17\n", "dtype: int64" ] }, - "execution_count": null, + "execution_count": 108, "metadata": {}, "output_type": "execute_result" } @@ -9257,16 +9444,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 109, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.176706, 0.230642)" + "(0.176713, 0.230195)" ] }, - "execution_count": null, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } @@ -9287,7 +9474,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ @@ -9303,8 +9490,10 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, + "execution_count": 112, + "metadata": { + "scrolled": false + }, "outputs": [], "source": [ "procs_nn = [Categorify, FillMissing, Normalize]\n", @@ -9321,7 +9510,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -9337,16 +9526,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 114, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(8.465899897028686, 11.863582336583399)" + "(8.465899467468262, 11.863582611083984)" ] }, - "execution_count": null, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" } @@ -9367,16 +9556,7 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from fastai.tabular.all import *" - ] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 120, "metadata": {}, "outputs": [], "source": [ @@ -9386,7 +9566,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 116, "metadata": {}, "outputs": [ { @@ -9402,16 +9582,16 @@ { "data": { "text/plain": [ - "(0.005754399299621582, 0.0002754228771664202)" + "SuggestedLRs(lr_min=0.002754228748381138, lr_steep=0.00015848931798245758)" ] }, - "execution_count": null, + "execution_count": 116, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAERCAYAAABhKjCtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZzVZd3/8ddn9o0BBoZhHXYERVFAFAG1NHPJFLXMNdPCtG7NrDvzzm7zl5WWLXeZe26VW6JprqWigIrigsoOw77NxjL7+vn9cc7UcTjDzMCcbeb9fDzmwTnfc53vec8Bzudc3+/1vS5zd0RERFpLinUAERGJTyoQIiISlgqEiIiEpQIhIiJhqUCIiEhYKhAiIhKWCoSIiISVEq0XMrNvA5cAhwKPuPslbbSbCNwGTAH6ubt1ZP/9+/f3ESNGdElWEZGe4r333it19/xwj0WtQABbgZ8Cnwcy99GuAXgc+CPwdEd3PmLECBYvXnxAAUVEehoz29DWY1ErEO4+NxhmKjB0H+1WAivNbEy0somIyN4S+hyEmc0xs8VmtrikpCTWcUREupWELhDufre7T3X3qfn5YQ+hiYjIfkroAiEiIpGjAiEiImFFc5hrSvD1koFkM8sAGt29sVU7A9KBtOD9DMDdvS5aWUVEJLo9iB8BNcB1wIXB2z8ys0IzqzSzwmC74cHHlgbv1wAro5hTRCRhbCyrpr6xOSL7jlqBcPcb3d1a/dzo7hvdPcfdNwbbrQ/TbkS0coqIJIrmZufk373Bz19YHpH96xyEiEiC2rKrhur6JsYO6BWR/atAiIgkqNXFFQCMK8iJyP5VIEREEtTqHZUAjC1QD0JEREKs2lFJQW46vTNTI7J/FQgRkQS1uriCcRHqPYAKhIhIQmpudlbvqIzYCWpQgRARSUhbdtVQ09AUsRPUoAIhIpKQVu0IjGAaqwIhIiKhVgVHMI3RISYREQm1ekcFA3MzIjaCCVQgREQS0qriiogeXgIVCBGRhNPc7KwprozoEFdQgRARSTibd9ZQ29Ac0RFMoAIhIpJw/jOCST0IEREJsSo4Sd/YAepBiIhIiNU7KhnUO4NeGZEbwQQqECIiCWfVjoqIH16CKBYIM/u2mS02szoze6CdtteY2XYz221mfzKz9CjFFBGJa00tI5gifHgJotuD2Ar8FPjTvhqZ2ecJrFt9AjACGAX8JNLhREQSwabyauoamyM+xBWiuyb1XHd/Gihrp+lXgfvcfam77wT+H3BJpPOJiCSCaMzB1CIez0EcAiwJub8EKDCzfjHKIyISN1YXR3YVuVDxWCBygN0h91tu7/VumNmc4HmNxSUlJVEJJyISS8u37WFYXiY56SkRf614LBCVQG7I/ZbbFa0buvvd7j7V3afm5+dHJZyISCyt3F7BQQW57TfsAvFYIJYCk0LuTwJ2uHt75y5ERLq1usYmikqrmDAo8oeXILrDXFPMLANIBpLNLMPMwvWRHgIuM7ODzawv8CPggWjlFBGJV2uKK2lqdg4a2M0KBIEP+hoCQ1gvDN7+kZkVmlmlmRUCuPuLwK3Aa8CG4M//RjGniEhcWrEtcKR9/MDoHGKK/FmOIHe/EbixjYc/NV7L3X8N/DrCkUREEsrKHRWkpSQxol9WVF4vHs9BiIhIGMu37WFcQQ4pydH56FaBEBFJECuiOIIJVCBERBJCWWUdJRV1URvBBCoQIiIJYeX2wAnqaI1gAhUIEZGEsGJ7dEcwgQqEiEhCWLF9D/2y08jvFb3VD1QgREQSwMrtFYyP4vkHUIEQEYl7Tc3Oyh3RHcEEKhAiInFvY3k1tQ3NjI/iCWpQgRARiXsrtu0B0CEmERH5tBXbKzCDsQNUIEREJMSK7XsY2S+bzLTkqL6uCoSISJxbub0iqhfItVCBEBGJY7UNTWwsr47KGtStqUCIiMSxopIqmh3GDshpv3EXU4EQEYlja0oqARijAiEiIqHW7KggyWBk/+yov7YKhIhIHFtTUklhXhYZqdEdwQRRLBBmlmdmT5lZlZltMLPz22jXx8weNLPi4M+N0cooIhJvVu+oZEyUr39oEc0exO1APVAAXADcYWaHhGn3GyALGAFMAy4ys69FK6SISLxoaGpmfVlVTM4/QJQKhJllA2cDN7h7pbsvAJ4BLgrT/HTgVnevdvf1wH3ApdHIKSISTzaUVdPQ5DEZwQTR60GMA5rcfVXItiVAuB4EgLW6PTFsI7M5ZrbYzBaXlJR0TVIRkTixpjh2I5ggegUiB9jdattuINyBtReB68ysl5mNIdB7yAq3U3e/292nuvvU/Pz8Lg0sIhJra4oDq8iN7uYFohJoPZF5LlARpu1VQA2wGvg78AiwOaLpRETi0JriSgb3ziAnPSUmrx+tArEKSDGzsSHbJgFLWzd093J3v8DdB7r7IcGM70Qpp4hI3FhdXMmYGEyx0SIqBcLdq4C5wE1mlm1mM4AzgIdbtzWz0WbWz8ySzewUYA7w02jkFBGJF83NztqSSsbkx+bwEkR3mOuVQCZQTOCw0RXuvtTMZplZZUi7KcDHBA4//Ry4wN336mmIiHRnW3bVUNvQzNiC2BWIqB3Ycvdy4Mww2+cTOIndcv9x4PFo5RIRiUexHsEEmmpDRCQurQ6OYOoph5hERKSD1hRX0j8njb7ZaTHLoAIhIhKHVhdXxvTwEqhAiIjEHXdnjQqEiIi0VlxRR0VtI2NjNItrCxUIEZE4Ew8jmEAFQkQk7rQUiNExHMEEKhAiInGnqKSSnPQUCnLTY5pDBUJEJM6sLalidH42ZtZ+4whSgRARiTNrSyoZFePDS6ACISISV6rqGtm2u5bR+dmxjqICISIST9aVVgGxP0ENKhAiInFlbUlwBFOMh7iCCoSISFxZW1xJksHwfmFXWo4qFQgRkTiytrSKYXlZpKckxzqKCoSISDxZW1wZF+cfQAVCRCRuNDc760qr4mIEE0SxQJhZnpk9ZWZVZrbBzM5vo126md1pZjvMrNzMnjWzIdHKKSISK1t21VDX2NwjexC3A/VAAXABcIeZHRKm3dXAdOAwYDCwC/h9tEKKiMRKywimeLhIDqJUIMwsGzgbuMHdK919AfAMcFGY5iOBl9x9h7vXAo8C4QqJiEi3srak5RqInnWIaRzQ5O6rQrYtIfwH/33ADDMbbGZZBHobL4TbqZnNMbPFZra4pKSky0OLiETT2pJK+mSlkhfDZUZDRatA5AC7W23bDYRbDWMVsBHYAuwBJgA3hdupu9/t7lPdfWp+fn4XxhURib6iksAIplhP0tciWgWiEshttS0XqAjT9g4gA+gHZANzaaMHISLSnawtqWJU//g4vATRKxCrgBQzGxuybRKwNEzbScAD7l7u7nUETlBPM7P+UcgpIhITe2obKKmoi4spNlpEpUC4exWBnsBNZpZtZjOAM4CHwzR/F7jYzHqbWSpwJbDV3UujkVVEJBaKSuJnkr4W0RzmeiWQCRQDjwBXuPtSM5tlZpUh7b4H1AKrgRLgVGB2FHOKiETd2n8vMxo/h5hSovVC7l4OnBlm+3wCJ7Fb7pcRGLkkItJjrC2pJCXJGJYX+0n6WmiqDRGROFBUUsXwflmkJsfPx3L8JBER6cHiZZnRUCoQIiIx1tTsbCirZlQcnX8AFQgRkZjbvLOa+qZmRvdXD0JEREIUBdehVg9CREQ+peUaiJFxdBU1qECIiMRcUUklvTPjZ5K+FioQIiIxtq60ilH52XEzSV+LDhcIM/uumR0evH20mW00syIzmx65eCIi3V9RSVXcHV6CzvUgrgHWBW//HPg1cDPw264OJSLSU1TVNbJ9T21czcHUojNTbfR2991m1ovAjKsnunuTmd0WoWwiIt3eupYRTHHYg+hMgdhkZscQWAXujWBxyAWaIhNNRKT7axniOjLOhrhC5wrE94G/AfUE1pcG+ALwTleHEhHpKYpKKjGDEf0SuEC4+/PA4Fabnwj+iIjIfigqqWJIn0wyUpNjHWUvnRnFdLCZFQRv55jZT4AfAqmRCici0t0VlcbfJH0tOjOK6a9An+DtXwHHAtOBu7o6lIhIT+DurIuzdahDdeYcxAh3X2mBKzlmEzhZXcN/hr6KiEgnFFfUUVXfFHdzMLXoTA+iLjjEdRqwKbhGdB2Q0ZEnm1memT1lZlVmtsHMzm+j3QtmVhnyU29mH3cip4hIQlhbElhmdFSczeLaojM9iL8CrwK9gD8Et02m4z2I2wmMgCoADgeeM7Ml7r40tJG7nxJ638zmBV9XRKRb+fckfXHag+jMKKZrzOwkoMHdXwtubiZwhfU+mVk2gaGxE929ElhgZs8AFwHX7eN5I4BZwNc6mlNEJFGsK60iIzWJQbkdOhATdZ3pQeDuL5tZYXD+pS3uvriDTx0HNLn7qpBtS4Dj2nnexcB8dw/bSzGzOcAcgMLCwg5GERGJD0UllYzsn0NSUnxN0teiM8NcB5nZ68BqYC6wxsxeN7PW10aEkwPsbrVtN4HDVftyMfBAWw+6+93uPtXdp+bn53cgxt4ampqprm+kqdn36/kiIvurqDR+RzBB53oQdxD41n+qu1cFDxv9DLgT+GI7z60EclttywUq2nqCmc0EBhK4ejti/rlsB1f+5X0AUpONjJRkzp4ylB9/4eC4reoikvjqG5vZVF7NFyd15Dt2bHSmQMwEBrl7A0CwSPw3sKUDz10FpJjZWHdfHdw2CVi6j+d8FZgbPGcRMeMKenHdKeOpa2imtrGJjeXVPPDmemobmvjZ7ENVJEQkIjaWV9Hs8bfMaKjOFIidwMEEehEtDgJ2tffEYDGZC9xkZl8nMIrpDOCYcO3NLBP4EnBWJ/LtlzEDchgz4D9DzNydkf2y+cNrazAzbj5zooqEiHS5tf9eZjQ+h7hC5wrErcC/zOw+YAMwnMDoohs6+PwrgT8BxUAZcIW7LzWzWcAL7h76Lp1J4BzFa3vvJrLMjGtPGofj3P7aWpqbnetPm0DvTM0oIiJdp+UaiNHdoQfh7veY2VrgfOAwYCuBYaozO/j8cgIf/K23zydwEjt02yPAIx3N1tXMjO+ddBAAt7+2lmc/2srZk4dyyYwRnV7Uo7iilo827aa+qRkDzGBPTSNFpVWsL61i255axuTnMGV4X6aO6MvgPpnUNTRR39RMQ6NjBinJRrIZa0uqeGddOYvWlbGutIrCvCzGFfRiXEEOw/tlM6RvJoN7Z5KeksT2PbWsL61iY3k12ekpDMvLYmjfTPplp3XpsoZNzU6SEXdLJYrEu6KSKvJ7pdMrI36/fJr7/o/eMbN0oNrdYz4N4dSpU33x4o6Ouu24T7bs5v6F63l2yVbqm5rJTE2m2R13SE9JYlR+NqMH5DA6P4f0lCTqGpupa2xm664aFq8vZ31Zddj9piYbhXlZFORmsHJ7BWVV9R3KYwYTBuYyriCHjeXVrN5RSUVd4177bmgK//eammzkpKeQk5FCdloK2ekpZKYmk5GaTHZ68r8fy0lLITUliZQkIyXJqKhtZH1ZNRvKqti8s4aq+kZqG5poaHJSkoy+2WnkZaXRLyeNIX0yGdo3UJAK+2UxvF8W+TnpKiIiIc7640LSUpJ4dE5sV202s/fcfWrYx7qgQNS4e2em7IiISBWIFiUVdcx9fzNlVfWYQZIZVXWNrC2pZE1xJTv21H2qfb/sNKYM78uRI/I4orAPvTJSaXan2Z1e6akM7pNBSnLgbXN31pdV896GnZRV1pGRmkx6ShIpyUmB5zQ7Dc3OkD4ZTBme96nDXe7O9j21bCqvYcuuarbuqmVPbQPD+mYxsn82hXlZVNU3srm8hk07q9mxp46qukYq6xqpqG2kpqGRmvomahqaqaprpKqukYq6Ruobm/d6Dwb1zmB4vyyG9c0iJyOFjNRkMlKSqW9qoryqnrLKekoq69i6q2av9yMrLZnBfTJJNvv3+zeodwYTBuUyflAvxhX0YkifTLLTO3VpjkhCcncOv+mfnHbYIH42+9CYZtlXgeiK/4094gKC/F7pXH7c6DYfr6prpNmd9JRkUpOtU9+WzYyR/bP3a9FyM2NQ70wG9c4E8tpsN35g61HG+1bf2ExjczONzU5Tk5OZltyp+eprG5rYuquGjeXVbCirZn1ZFdt31/6799XU7GzaWc28VSWfugald2Yqg/tkMrJ/FmPycxg9IIdxBb0YMyCH1OSYfw8R6RLlVfXsrmmIy3WoQ7VbIMzss/t4OK0LsyS07vbNNy0libROzeX4aRmpyYzKz2l3nvu6xibWFAd6YVt31bJtdw2bd9awfFsFL36ynZbakZaSxISBvZg4pDenHTqI6aP76ZCVJKyWEUzxPMQVOtaDuK+dxzd2RRDpmdJTkjlkcG8OGdx7r8dqG5pYX1bFyu0VLN26h0+27ObvH27lL4s2Mio/mwuPGs7ZU4ZqhJkknKLgCKYxid6DcPeR0Qgi0lpGajLjB+YyfmAuZxw+BAgUjec+2safF23gpn8s47aXV3LB0cO5bOZICuJ0wjOR1opKq0hLSWJwn8xYR9mn7nVcRLq9jNTAVChnTxnKJ1t2c8/8Iu6dX8QDC9dz9pQhXHHcGAr7ZcU6psg+rS2uZFT/bJLj/CJcnfWThDVxSG9+95UjmPe9z/ClqUN58v0tfOa2eXzviSWsK62KdTyRNhWVVsX9+QdQgZBuoLBfFjfPPpT5//0Zvjp9BP/4aCsn3DaPb/31fd4uKuNAhnKLdLX6xmY2llfH7SpyoXSISbqNgtwMfnz6wVxx/GjuXVDEI4s28txH2xgzIIcLjyrk3CMLyUyL+TWd0sNtLK+iqdkZPUA9CJGoy++Vzg9PmcCi60/k1nMOIzstmRufXcZxv3yNh95aT11jU6wjSg/27yGuCdCDUIGQbiszLZkvTx3G3789k8cvn86I/tn8+O9L+eyvXufJ9zbTrEWiJAZaJunTOQiRODFtZB6PzTmahy6dRr+cNK59Ygln3/kmSza1O1u9SJcqKqliQJxP0tdCBUJ6DDPj2HH5PH3lDH71pUlsKq/hzD8u5L//toTSyrr2dyDSBYpKKuN+io0WKhDS4yQlGedMGcpr3zuOb8waxdz3t/CZX83j/oXraGzae5JCka7i7qwtSYwhrqACIT1Yr4xUrj91Ai9+51gOH9aHnzy7jC/8fgEfbNwZ62jSTbVM0tfeHGXxQgVCerwxA3J46NJp3HnhFCpqGzn3rrd57F1NMSZdr2UEUzyvIhcqagXCzPLM7CkzqzKzDWZ2/j7aTjazN8ys0sx2mNnV0copPZOZcfLEgTx31UyOGpXHD578mP/9+yc06JCTdKGify8zqh5Ea7cD9UABcAFwh5kd0rqRmfUHXgTuAvoBY4CXo5hTerA+WWncf8mRfGPWSB58awMX3beInR1c7U8knPrG5sCiXPVNrNpRSXoCTNLXIipXUptZNnA2MNHdK4EFZvYMgTWtr2vV/LvAS+7+l+D9OmB5NHKKAKQkJ/E/px3MhEG5XPfkx5x1x5vcf8mRjNiPBZ2k5/pw0y7uX7iO5z/e9qklgMcP7BX3k/S1iNZUG+OAJndfFbJtCXBcmLZHAx+b2ZsEeg+LgG+5+14Hhc1sDjAHoLCwsMtDS8921uShDMvLYs5Di5n9x4Xcc/FUpo5oe9U+EXfn5WU7uOv1tby/cRc56SmcN62QwX0yaZkSbNrIxPk3dEBrUnf4RcxmAU+4+8CQbd8ALnD341u1XQUMAD4HfAzcCkxx9xn7eo1Ir0ktPde60ioufeBdtuys4bYvT+L0SYNjHUni0MI1pdz60kqWbNpFYV4WX5sxgnOmDI37C+IivSZ1R1QCrRdFzgUqwrStAZ5y93cBzOwnQKmZ9Xb33ZGNKbK3kf2zmXvFMcx5eDH/9cgHFFfUcdlMraMlAQ1NzXzz4fd4ZUUxg3tncOvZh3HW5CGkdIM11KNVIFYBKWY21t1XB7dNApaGafsRENqtabmdGAftpFvqm53Gw5cdxdWPfsD/+8cyduyp5bqTx5OUIMeSJXLe27CTV1YUc+Xxo7nqhLFkpHafGYOjUuLcvQqYC9xkZtlmNgM4A3g4TPP7gdlmdriZpQI3AAvcXZPmSExlpCbzxwumcNHRw7n7jSK++/iHGgYrvLmmlCSDbx4/ulsVB4juMNcrgUygGHgEuMLdl5rZLDOrbGnk7q8C1wPPBduOAdq8ZkIkmpKTjJvOOITvnTSOpz/cypyHFlNTr+nDe7IFa0o5bGgfcuP8XMP+iFqBcPdydz/T3bPdvdDd/xrcPt/dc1q1vcPdh7h7X3c/3d03RSunSHvMjG9/diw/m30o81aVcPGfFrG7piHWsSQGKmobWLJ5NzPG9It1lIhI/LMoIjFy/lGF/OG8yXy4aRfn3vUWxRW1sY4kUbaoqJymZmfGmP6xjhIRKhAiB+C0wwZx31ePZENZNefe9TZbdtXEOpJE0cK1paSnJDG5sG+so0SECoTIATp2XD5//vo0Sivr+PKdb7G+tCrWkSRK3lxTxpEj8rrdyekWKhAiXWDK8Dwe+cbR1DQ08aW73mLl9nCX+Eh3UlxRy8odFd328BKoQIh0mYlDevPYnKNJMvjK3W/xyRZd19mdvbW2DKDbnqAGFQiRLjW2oBePXz6dzNRkLrh3ER9vVpHorhasLiU3I4VDBveOdZSIUYEQ6WLD+2Xz2OXT6ZWRwvn3vs2Hm3SNZ3fj7ixcU8oxo/snzMys+0MFQiQChuVl8eico+mblcZF9y7ivQ1axrQ7WV9Wzdbdtd368BKoQIhEzNC+WTx2+dH0y0njovsW8XZRWawjSRdZuKYUgGO68QlqUIEQiahBvTN5/PLpDO6TySX3v8OC1aWxjiRdYN7KYob0yWRUN19ESgVCJMIG5Gbw6JyjGdEvm0sffJdXV+yIdSQ5ANX1jcxfXcrnDi7ArPuefwAVCJGo6J+TzqNzjuaggl7Meeg9nl2yNdaRZD+9saqUusZmTjqkINZRIk4FQiRK+mSl8ZdvHMXk4X256tEP+OuivVbRlQTw8rLt9M5MZVoPWH5WBUIkinIzUnno0ml85qABXP/Ux9wxb22sI0knNDY188ryYk6YMKBbrBjXnu7/G4rEmYzUZO66aApfnDSYW15cwY3PLKVRCw8lhHfWl7O7poGTDh4Y6yhREa0lR0UkRGpyEr8593AG9Ern3gXr2FBWxe/Pn0xOuv5LxrOXl+4gPSWJY8d17+GtLdSDEImR5CTjR184mJtnT+SN1aWcc8ebmi48jrk7/1y2g1lj88lK6xmFPGoFwszyzOwpM6sysw1mFnYZUTO70cwazKwy5GdUtHKKRNsFRw3nga8dyZadNZzxhwUs0gV1cWnZtj1s2VXTI0YvtYhmD+J2oB4oAC4A7jCzQ9po+5i754T8FEUtpUgMzBqbz1PfOobczFQuuHcRDyxch7vHOpaEeHnpDpIMThg/INZRoiYqBcLMsoGzgRvcvdLdFwDPABdF4/VFEsGYAb14+lszOP6gAdz47DKufWIJ1fWNsY4lQS8v28HUEXn0y0mPdZSoiVYPYhzQ5O6rQrYtAdrqQZxuZuVmttTMrmhrp2Y2x8wWm9nikpKSrswrEhO5GancfdEUrjlxHE99sIUv/H6B1pWIA2uKK1m+bQ+fP6RnjF5qEa0CkQO0/le+G+gVpu3jwAQgH/gG8GMzOy/cTt39bnef6u5T8/PzuzKvSMwkJRlXnziWv3z9KKrrmpj9x4Xc+fpampt1yClWnvpgM8lJxumTBsU6SlRFq0BUArmttuUCe63L6O7L3H2ruze5+5vA74BzopBRJK4cM7o/L35nFidOKOAXL6zgwvsWsW23RjlFW3Oz89T7Wzh2bH8G9MqIdZyoilaBWAWkmNnYkG2TgKUdeK4D3XtGLJE29MlK448XTOaWsw/lg427OPm383nxk22xjtWjvF1UxtbdtZw1eWiso0RdVAqEu1cBc4GbzCzbzGYAZwAPt25rZmeYWV8LmAZcBfw9GjlF4pGZce6RhTx31UwK87L45p/f57onP6KqTiewo+HJ97fQKyOFzx3cc4a3tojmMNcrgUygGHgEuMLdl5rZLDOrDGn3FWANgcNPDwG3uPuDUcwpEpdG5efw5BXH8M3jRvPY4k2c/Ls3dM1EhFXVNfLCJ9v4wmGDyEhNjnWcqIva5YDuXg6cGWb7fAInsVvuhz0hLSKQlpLEdaeM54QJA7j28SV85Z63uWzGSL73+YN65AdYpL20dDvV9U098vASaKoNkYR05Ig8Xrh6FudPK+TeBes45XfzeXOtVqvranPf30JhXhZTh/eNdZSYUIEQSVDZ6SncPPtQHr5sGk3Nzvn3LOL7TyxhZ1V9rKN1C1t31bBwbSlnTR7S7VeOa4sKhEiCmzU2n5e+cyxXHD+auR9s4YRfv84j72ykSddNHJCH396AO8w+Ykiso8SMCoRIN5CZlswPTh7PP/5rJqPzs/nh3I/54h8WsHh9eayjJaQ1xZXcO7+I2UcMYXi/7FjHiRkVCJFuZMKgXB6/fDr/d94RlFfVc86db/Gtv7zP+tKqWEdLGO7ODU9/QmZqMv9z2oRYx4mpnjGpuUgPYmZ8cdJgTpwwgLteL+Ke+UW8tHQ75x9VyFUnjKV/D5psbn88/eEW3ioq46dnTuzx75V6ECLdVFZaCtd8bhzzvn885x45jL8s2sjxv5zHna+vpa6xKdbx4tLu6gZufm45k4b14fxphbGOE3MqECLd3IBeGdw8+1BevuZYjh6Vxy9eWMFJv3mDl5Zu15oTrfzy5RWUV9Vz85kTSUrqmSOXQqlAiPQQo/NzuPerR/LQpdNIS07i8off42sPvMum8upYR4sLy7bu4S+LNnLx9BFMHNI71nHiggqESA9z7Lh8Xrh6Fjd84WDeWVfOSb95g3vnF9HY1BzraDHj7vzs+eX0zkzlmhPHxTpO3FCBEOmBUpKTuGzmSP753eM4ZnQ/fvrccr74h4W820OHxc5bWcKCNaVc9dmx9M5KjXWcuKECIdKDDemTyb1fncofL5jMzup6vnTnW3zn0Q/Yvrs21tGiprGpmZufX87I/tlcePTwWMeJKxrmKtLDmRmnHjqI4w/K50quT3AAAA9PSURBVI55a7nrjSJeXraDy2aO5OszR3X7b9SPvLuJNcWV3HXRFNJS9J05lN4NEQECw2KvPekg/nXNcXxm/AB+/+oaZt7yKr/55yp21zTEOl5E7Klt4Lf/XMVRI/M4qQeu99AeFQgR+ZTCflncfv5kXrh6FjPG9Od3r6zutoXimQ+3UlZVzw9PndBjJ+TbFxUIEQlrwqBc7rxoCv/4r5lMH9UvUCh+8Sq/fnlltykUy7btITcjhUlDNaw1HBUIEdmniUN6c/fFU3n+qlnMHNuf/3t1Dcfe+hp3zFtLTX1iX5G9cnsF4wfmqvfQhqgVCDPLM7OnzKzKzDaY2fnttE8zsxVmtjlaGUWkbQcPzuWOC6fw3FUzmVzYh1teXMGxv3yN+xeuo7o+8dbHdvdAgRjUK9ZR4lY0exC3A/VAAXABcIeZHbKP9t8nsH61iMSRQwb35v6vTeOJb05nZP9sfvLsMmb84lV++69VCbVY0eadNVTWNXLQQBWItkSlQJhZNnA2cIO7V7r7AuAZ4KI22o8ELgR+Ho18ItJ5R47I4/HLp/O3b05nyvC+/PZfq5n+i1e49vElvLOuPO7neVqxvQKA8QNzY5wkfkXrOohxQJO7rwrZtgQ4ro32vweuB2oiHUxEDszUEXncOyKPVTsquH/hep5dspUn39/MqP7ZnDetkC9PHRaX11Ks3L4HQD2IfYjWIaYcYHerbbuBvf5mzGw2kOLuT7W3UzObY2aLzWxxSUlJ1yQVkf0yrqAXPz/rUN75nxP41ZcmkZedxs3PL+eon/+LH879iOXb9sQ64qcs317BsLxMctJ1vXBbovXOVAKt+3G5QEXohuChqFuBUzuyU3e/G7gbYOrUqfHdnxXpIbLSUjhnylDOmTKUZVv38OCb65n7/hYeeWcTR47oy4VHD+fkiQNJT0mOac6WEUzStmj1IFYBKWY2NmTbJGBpq3ZjgRHAfDPbDswFBpnZdjMbEYWcItKFDh6cyy3nHMai60/g+lPHU1xRx9WPfsiMX7zKr15ayY49sZnzqbahiXWlVYzX4aV9ikoPwt2rzGwucJOZfR04HDgDOKZV00+AYSH3jwH+AEwGdAxJJEH1yUpjzrGj+frMUSxYU8pDb23g9nlruPP1tZxy6CAuOWY4kwv7Ru16hDXFlTQ1u3oQ7YjmwbcrgT8RGLpaBlzh7kvNbBbwgrvnuHsjsL3lCWZWDjS7+/awexSRhJKUZBw7Lp9jx+WzsayaB99az+PvbuLZJVsZV5DDuUcWMvuIIeRlp0U0R8sIJp2g3jeL96FoHTV16lRfvHhxrGOISCdV1jXy7JKtPPruJpZs2kVachInHjyAs44YynEH5ZOa3PVHwm9+bhkPvbWBpT/5PCkR2H8iMbP33H1quMd0+l5EYionPYXzphVy3rRCVmzfw2PvbuKZD7fy/Mfb6ZedxqmHDuLYcfkcPSqPXhldM1x2xfYKxhbk9Pji0B4VCBGJG+MH5vK/px/C9adO4PWVJTz5/mb+9t5mHn57AylJxuTCvpx++GDOOHwwuQdQLFZsr+C4cfldmLx7UoEQkbiTmpzEiQcXcOLBBdQ1NvHehp0sWF3KK8uLueHpT/jZc8s57bBBnDetkMmFfTp1crusso6SijqNYOoAFQgRiWvpKckcM7o/x4zuz/c/fxAfbd7No+9u5JkPt/K39zYzaVgfLp0xglMPHdSh8xUrNcVGh+kAnIgkDDNj0rA+/Pysw3jnf07kpjMOYU9NA1c/+iGzbnmN219bQ3k7EwYubykQmsW1XepBiEhCyk5P4eLpI7jwqOHMW1XMnxas55cvreR3r6zmjEmD+dLUYRxR2GevXsWKbXvon5NG/5z0GCVPHCoQIpLQkpKMz44v4LPjC1i9o4IHglN7PPHeZrLSkpk2Mo/Dh/VhZ1U9m3fW8M66ciYN6xPr2AlB10GISLezp7aBN9eUsXBNKQvXllJUUkWv9BSG5mUxpE8mXz1mOLPGahQT6DoIEelhcjNSOXniQE6eOBAIzL2UkRrbyQETkU5Si0i3p+Kwf1QgREQkLBUIEREJSwVCRETCUoEQEZGwVCBERCQsFQgREQlLBUJERMLqNldSm1kJsAHoDewOeSj0fsvt1n/2B0o7+ZKtX6cjj7e3bV9ZQ7d1dd62HuvIe9le7li9t23dT6Ss4TLGOmtb+cJlDd3Wk//NxnvW4e4e/rJyd+9WP8Ddbd1vuR3mz8UH+jodeby9bfvKGsm8bT3WkfeyA+9xTN7btu4nUtY2Murf7D4ei8d/s4mUtfVPdzzE9Ow+7j/bxp9d8Todeby9bfvK2pHX7Gye9h7ryHvZ1u1Yv7dt3U+krKG34yVr6236N9v+cxMp66d0m0NMB8LMFnsbk1XFo0TKq6yRkUhZIbHyKut/dMcexP64O9YBOimR8iprZCRSVkisvMoapB6EiIiEpR6EiIiEpQIhIiJhqUB0kJnNNLN5wZ9VZvabWGfaFzM73sxeMbPXzGx2rPO0xcxGmFlJyHubEMt8mdl5wWtv4paZFZjZm2b2upm9amaDYp2pLWY23czeCmZ9xMxSY52pLWbW28zeMbNKM5sY6zzhmNnNZjbfzP5mZln7ux8ViA5y9wXufry7Hw+8CTwd40htMrMM4FrgFHf/jLs/FetM7Xi95b1197j+0AUwsyTgHGBTrLO0oxSY6e7HAQ8Bl8U4z75sAD4bzFoEnBHjPPtSDZwG/C3WQcIJFq3R7j4L+Bdw6f7uSwWik4LfbKYB82OdZR+OAWqAZ83sKTMbGOtA7ZgR/LbzMzOzWIfpgPMJfDg0xzrIvrh7k7u3ZOwFLI1lnn1x963uXhO820gcv7fu3hDnX2RmAS8Eb78AzNzfHXXLAmFm3zazxWZWZ2YPtHosL/ihWWVmG8zs/E7u/nPAKyH/8eIxawEwBjgduAe4MY6zbgtmPRYYAJzVFVkjldfMkoEvA491Vc5IZQ0+93AzWwR8G3g/nrMGnz8SOAX4R7xnjbQDyN6X/0ylsRvI298MKfv7xDi3Ffgp8Hkgs9VjtwP1BD5EDweeM7Ml7r40+E07XLfxHHffHrz9JeD+eM4K7AIWunu9mb0CXBevWYPvax2Amc0FjgaejNe8wX097u7NXdzZich76+4fAkeZ2ZeBHwLfjNesZpYLPAhc5O71XZAzYlm7KFt79is7sJPAfEsE/yzf7wSdnccjkX6Cb+4DIfezg2/quJBtDwO/6OD+UoFPgKR4zgr0I3Ds0YCjgPvjOGtuyO2fAxfH+Xt7C/Ay8CKBb2f/F8dZ00Nufx74dRxnTQGeI3Aeokv//rs6a0j7B4CJkch7INmBQ4G/Bm/PAf5rf1+7u/Yg2jIOaHL3VSHblgDHdfD5JwKvehcdXmrHfmd19zIzewp4ncCx3P0+SdVBB/K+HmdmNxI48bcOuKHr4+3lQN7bH7TctsA0B1dFIF+oA3lvJ5vZLUATUEt8/zs4j8CXmR+b2Y+BO9y9Sw/jtXJAnwVm9jyBb+4Hmdld7v5A10ds0z6zu/vHwcNO84Fi4OL9faGeViBy2Hva3d0ETuC1y91f4D8nfyLtQLPeTqAbGg37ndXdn+XAJh7bHwf03rbw6MzXcyDv7VsEzu1Ey4FkfZjAt+BoOdD/X6d2eaKOaze7u/+wK16oW56k3odKILfVtlygIgZZ2qOskZNIeZU1MhIpa2tRy97TCsQqIMXMxoZsm0R8Dv9T1shJpLzKGhmJlLW1qGXvlgXCzFIscLFYMpBsZhlmluLuVcBc4CYzyzazGQQuyIlm11ZZlVdZlbVdcZE90mfgY/FDYNy/t/q5MfhYHoGroKuAjcD5ytr9siZaXmVV1njMrum+RUQkrG55iElERA6cCoSIiISlAiEiImGpQIiISFgqECIiEpYKhIiIhKUCISIiYalAiIhIWCoQIl3AzF4ws6/GOodIV1KBkIRmZuvN7MRY53D3U9z9wa7er5kdb2bNZlZpZhVmttLMvtaJ599oZn/u6lzSM6hAiLTDzGK9bspWd88hMKXzNcA9ZnZQjDNJD6ACId2WmX3BzD40s11m9qaZHRby2HVmtjb4rXyZmc0OeewSM1toZr8xs3LgxuC2BWb2KzPbaWbrzOyUkOfMM7Ovhzx/X21Hmtkbwdf+l5nd3pFv+R7wPIE1hkN/l9+Z2SYz22Nm75nZrOD2k4HrgXODPZAlwe29zew+M9tmZlvM7KdmlnwAb7V0UyoQ0i2Z2WTgT8DlBNbovgt4xszSg03WArMILOr+E+DPZjYoZBdHAUXAAODmkG0rgf7ArcB9ZmZtRNhX278C7wRz3Qhc1MHfKcnMvhjc55qQh94lsPxlXnDfT5hZhru/CPwMeMzdc9x9UrD9g0AjMAY4AjgJ+HpHMkjPogIh3dU3gLvcfZG7NwXPD9QBRwO4+xPuvtXdmz2w9vFqYFrI87e6++/dvdHda4LbNrj7Pe7eROBDdhBQ0Mbrh21rZoXAkcCP3b3e3RcAz7Tzuww2s11ADfAU8F13/6DlQXf/s7uXBbPeBqQDYQ9BmVkBcArwHXevcvdi4DfAV9rJID2QCoR0V8OBa4OHl3YFP2CHAYMBzOzikMNPu4CJBL6Zt9gUZp/bW264e3XwZk4br99W28FAeci2tl4r1FZ370PgHMT/AZ8NfdDMrjWz5Wa2O/i79G71u4QaDqQC20J+97sI9JREPiXWJ99EImUTcLO739z6ATMbDtwDnAC85e5NZvYhEHq4KFILpWwD8swsK6RIDOvIE929zsx+AKw0szPd/eng+YYfEPhdlrp7s5nt5D+/S+vfYxOBnlR/d2884N9GujX1IKQ7SA0ux9jyk0KgAHzTzI6ygGwzO83MegHZBD44SwCCw0YnRiOou28AFhM48Z1mZtOB0zvx/HrgNuDHwU29CJxPKCGwTvGP+fSC9juAEWaWFHz+NuBl4DYzyw2e1xhtZscd6O8m3Y8KhHQHzxM4Pt/yc6O7LyZwHuIPwE4CJ3UvAXD3ZQQ+ZN8i8AF6KLAwinkvAKYDZcBPgccIfKvvqD8BhWZ2OvAS8AKBhew3ALV8+pDVE8E/y8zs/eDti4E0YBmB9+ZvBM6RiHyKlhwViTEzewxY4e7/G+ssIqHUgxCJMjM7MnhYJyl4rcIZBBagF4krOkktEn0DgbkEroPYDFwROmxVJF7oEJOIiISlQ0wiIhKWCoSIiISlAiEiImGpQIiISFgqECIiEtb/ByB47SeblLNwAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEQCAYAAABIqvhxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyDElEQVR4nO3deXyU1bnA8d+TTDYSkhASwr4vyiKoYVFEcKVar+CuINZdUbSt19r23mtv63XpbqtFC3XBguK+r21FQUCWgKKyyg6yZCMhkz2T5/4xAx1jAhmSmXeW5/v5zIfJec975pkB8sw5533PEVXFGGOMCUSc0wEYY4yJPJY8jDHGBMyShzHGmIBZ8jDGGBMwSx7GGGMCZsnDGGNMwFxOBxAq2dnZ2rt3b6fDMMaYiLJq1aoiVc1pXB4zyaN3797k5+c7HYYxxkQUEdnRVLkNWxljjAmYJQ9jjDEBs+RhjDEmYJY8jDHGBMyShzHGmIBZ8jDGGBMwSx7GGBOlKmrq2X+wmnpPQ5u3bcnDGGOi1IINBYx+8EO2FlW0eduWPIwxJkqVVtUBkNkuoc3btuRhjDFRqqyyFoDMlMQ2b9uShzHGRKkDlXWkJsaT6Gr7X/WWPIwxJkqVVtaR2a7tex1gycMYY6JWaWUtGSltP98BljyMMSZqlVbV0SHVkocxxpgAlFbWBmWyHCx5GGNM1CqtrCMjCJfpQgiTh4hkichrIlIhIjtEZMoR6vYVkbdFpFxEikTkt37HPhaRahFx+x4bQ/MOjDEmcqiqd9gq0pMHMBOoBXKBqcDjIjKkcSURSQT+CSwAOgPdgXmNqs1Q1TTfY1BwwzbGmMjjrqnH06CRPWwlIqnAJcC9qupW1cXAm8C0JqpfC+xR1T+qaoWqVqvqF6GI0xhjokVpZfDuLofQ9TwGAh5V3eRXtgb4Ts8DGANsF5H3fENWH4vIsEZ1HvIdWyIiE5p7URG5WUTyRSS/sLCwte/BGGMixr+TRwT3PIA0oKxRWRnQvom63YErgUeArsA7wBu+4SyAnwJ9gW7AbOAtEenX1Iuq6mxVzVPVvJycnNa/C2OMiRAHDi1NEuE9DzeQ3qgsHShvom4VsFhV31PVWuD3QEfgeABVXa6q5apao6rPAEuA84MXujHGRJ5DiyJG+oT5JsAlIgP8yoYDa5uo+wWgAbStgLQiNmOMiTqHFkXMiOQJc1WtAF4F7hORVBEZC0wC5jZRfR4wRkTOFpF44EdAEbBeRDJFZKKIJIuIS0SmAqcDH4TifRhjTKQ44JvziIblSW4DUoACYD4wXVXXikhP3/0aPQFUdSNwNfBX4ADeJHOhbwgrAbgfKMSbUO4AJvvOMcYY41NaWUdakisoK+oCuILSahNUtQSY3ET5TrwT6v5lr+LtqTSuWwiMDFKIxhgTNUqrgrcoItjyJMYYE5VKK4O3KCJY8jDGmKgUzEURwZKHMcZEpdKq4C2KCJY8jDEmKpVWBm9RRLDkYYwxUaehQW3YyhhjTGDKa+pp0OAtTQKWPIwxJuqUBXlRRLDkYYwxUae0yrcoot3nYYwxpqUOBHkvD7DkYYwxUaf08HLsNmxljDGmhcqqrOdhjDEmQAcqfMnD5jyMMca0VGlVLe2TXLjig/cr3pKHMcZEmbLK4C5NApY8jDEm6hyorKVDECfLIYTJQ0SyROQ1EakQkR0iMuUIdfuKyNsiUi4iRSLy22NpxxhjYlFpVV1QJ8shtD2PmUAtkAtMBR4XkSGNK4lIIvBPYAHQGeiOd2vagNoxxphYVVpZF9SNoCBEyUNEUoFLgHtV1a2qi4E3gWlNVL8W2KOqf1TVClWtVtUvjqEdY4yJSaVRNGw1EPCo6ia/sjVAUz2GMcB2EXnPN2T1sYgMO4Z2jDEm5jQ0KGVRNGyVBpQ1KisD2jdRtztwJfAI0BV4B3jDN5wVSDuIyM0iki8i+YWFha0I3xhjIkN59aEVdaOj5+EG0huVpQPlTdStAhar6nuqWgv8HugIHB9gO6jqbFXNU9W8nJyc1sRvjDERIRSLIkLokscmwCUiA/zKhgNrm6j7BaBt0I4xxsSc0hAsigghSh6qWgG8CtwnIqkiMhaYBMxtovo8YIyInC0i8cCPgCJgfYDtGGNMzDkQgkURIbSX6t4GpAAFwHxguqquFZGeIuIWkZ4AqroRuBr4K3AAb3K40DeE1Ww7IXwfxhgTtkKxKCKAK6it+1HVEmByE+U78U6E+5e9ireH0eJ2jDHGwIGK6JrzMMYYEwKlvp5HVNwkaIwxJjRKK+tonxzcFXXBkocxxkSVUNxdDpY8jDEmqoRiUUSw5GGMMVElFIsigiUPY4yJKjZsZYwxJmA2bGWMMSYgh1fUtWErY4wxLVXkrkEVOqYlBf21LHkYY0yU2Ljfu8D4gNy0o9RsPUsexhgTJTbu8yaP4zo33rmi7VnyMMaYKLF+bzk57ZPISrWrrYwxxrTQxv0HOa5zkxurtjlLHsYYEwU8DcrX+90MyrXkYYwxpoW2F1dQU9/AcV2CP98BljyMMSYq/HuyPMp6HiKSJSKviUiFiOwQkSnN1LtWRDy+3QUPPSb4Hf9YRKr9jm0M1XswxphwtWHvQeIE+ncK/mW6EMKdBIGZQC2QC4wA3hGRNc1sIfupqp52hLZmqOoTQYjRGGMi0oZ95fTOTiU5IT4krxeSnoeIpAKXAPeqqltVFwNvAtNC8frGGBPtNu4vD9mQFYRu2Gog4FHVTX5la4AhzdQ/UUSKRGSTiNwrIo17SA/5ji/xH9JqTERuFpF8EckvLCxs1RswxphwVVlbz86SypDcHHhIqJJHGlDWqKwMaCpNLgKGAp3w9lauAn7id/ynQF+gGzAbeEtE+jX1oqo6W1XzVDUvJyende/AGGPC1Kb9blRhUBT2PNxA45SYDpQ3rqiqW1V1m6o2qOqXwH3ApX7Hl6tquarWqOozwBLg/CDGbowxYW3jvoNA6K60gtAlj02AS0QG+JUNB5qaLG9MAWnFcWOMiWrr95bTLjGeHh3ahew1Q5I8VLUCeBW4T0RSRWQsMAmY27iuiJwnIrm+58cB9wJv+H7OFJGJIpIsIi4RmQqcDnwQivdhjDHhaOO+cgbmticuLnTfo0N5k+BtQApQAMwHpqvqWhHp6btfo6ev3lnAFyJSAbyLN+k86DuWANwPFAJFwB3AZFW1ez2MMTFJVUN+pRWE8D4PVS0BJjdRvhPvhPqhn+8G7m6mjUJgZJBCNMaYiFPorqGkojakk+Vgy5MYY0xEO7QsiSUPY4wxLRbKDaD8WfIwxpgItn5vOZ1CtAGUP0sexhgTwbYWuUOyZ3ljljyMMSaCFblryElLCvnrWvIwxpgIVuyupaMlD2OMMS1VVeuhstYT8vkOsOTRZhoalG9KqzhQUet0KMaYGFFcUQNAdlrok0coN4OKOgXl1fzqrXVs3FfOzpJKausbSEmI54kf5DG2f7bT4RljolyJ78tqVqoNW0WUB99Zzz/X7adfTirXndqbBy4aSs+sdlw3ZyUfbShwOjxjTJQrdnuTR0freUSO1TsP8Prne5hxRn/unjjocPl5Q7twzVPLuXluPo9edRLfG9rZwSiNMdGs2Nfz6GhzHpFBVbnvrXXktE9i+oRv70OVlZrIszeOYWi3DG5/bjVvrtnjUJTGmGhX7PbOedjVVhHizTV7+HxXKfdMHERq0nc7bxkpCcy9YTQn9+rAj57/jLe/aF0CUVX2lFZRWVvfqnaMMdGlpKKWJFccqYnxIX9tG7YKUFWth1+/t4Gh3dK55KTuzdZLS3Lx9LUjue7plfzw+c+JF+G8YV0Ceq39B6t5ZfVuXl61m62FFQCkJ7vokpFC54xkundIoXuHdnTNTKasqo71ew+ybm8524sq6J2dyok9MjmxZyZ5vbPolpnS5Gt4GpTqOg91ngZq6xvwqJKW5CItyYXId/cGUFXqfed4GpSMlIQm6xljgq/IXUvH1ERH/g9a8gjQ7EVb2VtWzZ+vPPGoG6+kJrl46rqR/OCpFdwx/zP+ItLkHMi6PQd5bsUONhe4D5fV1DewZlcpDQoje3fg6tG9qKlvYF9ZFXvLqtlTVsUXu0s5UFl3+JzMdgkc3zmd84d1YWuhmxdW7mLO0u2Ad3vKcwbncs7gXJJc8XzydSGLvi5i+dZiauobvhNTnED75ASSXHHUNyh1ngbqPUpNvYcG/Xe9zunJ5PXuwMjeWQzrnkFOWhIdUhNJTYy3pGJMkBVX1DgyZAUhTB4ikgU8CZyLdyOnn6vqc03Uu9ZXr8qv+AJV/TiQdoLhxfxdzPxoM+cN7cyoPlktOictycWc60ZyzVMrmPHcak7p15FBue0Z1Lk9IsL8FTtZteMASa44TuiecfgXbmJ8HNMn9OPSk3vQJzu12fYraur5prSK9skuOqcnf+sXdr2ngQ37ylm2tZh/rNvPzI828+iCzYeP9++UxlWjetI1M5mE+DgS4uOIE6Gipp6D1XUcrKqjuq6BBJccPp7k8j6SE+JRhS+/KWPl9hLe/mLvt+JKiBeSE+IRQEQQgax2ieSmJx/uNY3p25GTe3UgOSH0XW5jokFJRa0jNwgCiKoevVZbvJDIfLxzLDcAI4B3gFNVdW2jetcCN6rqaa1pp7G8vDzNz88/pthr6xv4v7fXMXfZDk7t15GZU06iQ4B/YQer6/jt+xv4fFcpX+93H/623yc7lamje3Lpyd3JbBfcfwQlFbV8tKEAjyqn9c+mazNDWcfim9IqNuw9SElFLQcqaympqKO6znP4uKdBKamoZd/BavaVVbPvYDWeBiU5IY4xfTsyvHsmme0SSE9OoL1vaK5vTmqTc0rGGK+xv17A6L5Z/PHyEUF7DRFZpap5jctD8j9TRFKBS4ChquoGFovIm8A04GehbicQBQerue3Z1eTvOMDNp/flnomDcMUHfp1BenIC908eBnh/ke4orqC8up5h3TJCtu9wVmoil5zc/DxNa3TLTGl2XqUpFTX1LNtazCdfF7FoUyEfbyxssl5uehL9ctI4vks6Q7ulM7RrBn1z0ogP4V7NxoQjVfUOWznU8wjV17qBgEdVN/mVrQHGN1P/RBEpAkqAucBDqlofaDsicjNwM0DPnj2bqnJEqsr0Z1ezbs9BHrnqRC4c3jXgNpoSHyf0zQn9EsrhJDXJxVnH53LW8bkA1HkacFfXU15dT1lVHbsPVLK1qIIthW62FLiZt2zH4d5aRkoCk0Z05YqRPRjSNcPJt2GMYyprPVTXNUT9nEcaUNaorAxoat/ERcBQYAcwBHgBqAceCrAdVHU2MBu8w1aBBi0i3DdpCHEiHN8ltLt0xZqE+Dg6pCYeHg4c1v3bSaHe08CWwgrW7inj442FPL9yF3//dAdDu6UzaXg3Th+Yw8DcNJukNzHj30uThHnPQ0TOALar6jYR6QL8GvAA/6Wq+45yuhto/Ns3HShvXFFVt/r9+KWI3Af8BG/yaHE7bcW+2YYHV3wcgzp7LzS4+KTulFbW8vpn3/Bi/m4eeHc9D7y7ntz0JMYNyOH8YZ0ZNyCHhGMYXjQmUhS5nVsUEQLreTwGTPQ9/4Pvz3q83+wvPMq5mwCXiAxQ1a99ZcOBI05y+yhw6Otka9oxUSSzXSLXju3DtWP7sKe0isVfF7Hw60L+uW4/L6/aTcfURC4c0ZVLTurO0G72BcBEn5LDS5OE/7BVN1XdKSIuvEmkF1ALHPX2aVWtEJFXgftE5Ea8V0lNAk5tXFdEzgNWq+p+ETkOuBd4KdB2TOzompnC5SN7cPnIHtTWN7BwUyGvfbabZ5ft5Okl2xk3IJsfnzOQk3p2cDpUY9rMoUURw37YCjgoIrl45yPWqapbRBKBhBaefxvwFFAAFAPTVXWtiPQE1gGDVXUncBYwR0TSgP3APODBo7UTwPswUSzRFXf4ZsiyyjqeX7mTWYu2cvFjSxk/MIf/PHcgJ3TPdDpMY1rt8KKIETBs9SiwEkgEfuQrGwtsaMnJqloCTG6ifCfeifBDP98N3B1oO8Y0ltEugVvG9+PqMb2Yu2wHsxdtZfLMJdw0ri8/Pmeg3ZxoIlqxu4aUhHjaJTpzL1SLZxRV9TfA2cBYVX3eV/wNcGMwAjOmraQmubh1fD8W/mQCV4zsyaxFW/n+I5/w+a5Sp0Mz5pgVV9Q61uuAAFfVVdVNqroFDl991VlVvwxKZMa0sfbJCTx08TD+fv0oKms9XPzYEv77tS/ZWVzpdGjGBKy4otaxGwQhgOQhIgtFZKzv+U+B54H5IvJfwQrOmGA4fWAOH/z4dKaO7sVL+buZ8PuPuGP+Z6zd0/gWImPCV7HbuUURIbCex1Bgme/5TcAEYAxwaxvHZEzQpScn8H+Th/LJT8/gpnF9WbB+P99/ZDF3zv+MvWVVR2/AGIc5uSgiBJY84gAVkX54F1Rcr6q7ALv+0USs3PRkfn7+8Sz92VnMOKM/76/dx5m/X8ijH379rYUdjQknqkqxO3LmPBYDfwF+D7wG4EskRUGIy5iQymiXwN0TB/HhXeOZMCiHP/xzExP/tIgvd9tQlgk/7pp6aj0NZDt0gyAEljyuBUqBL4Bf+sqOA/7cphEZ46AeWe14/OqTee7G0dTVN3DJ40uZt2wHodq6wJiWcPoGQQjgPg9VLQb+q1HZO20ekTFh4NT+2bx95zjuevFz/uf1r1i5vYQHLxpm+4uYsOD0DYIQ2NVWCSLyKxHZKiLVvj9/5bvL3Jiok5WayFM/GMnd5w7krTV7OP+RT1ixrcTpsIyh2LcoolPrWkFgw1a/xXuT4K14FyO8FTgT+E0Q4jImLMTFCTPOHMD8m8bQoMoVsz/lV2+tparWJtONc0oiqecBXAZcqKr/UNWNqvoP4CLg8uCEZkz4GN23I+//8HSuGdOLp5ds57w/22S6cU6xw3t5QGDJo7lddmz3HRMTUpNc/GrSUObfNIY6j3LZrKW8/9XRtrIxpu0VuWtIS3I5uj5bIMnjJeAtEZkoIseLyPeA14EXgxKZMWHqlH4def32sRzXOZ3pz65i1sItdjWWCSmnbxCEwJLHPcC/gJnAKryr7H6Ed08PY2JKTvsknr95DN8f1oWH3tvAz175kjpPg9NhmRjh9A2CENilurXAL3wPAEQkGajAm1iMiSnJCfE8cuWJ9M1O5ZEFmyly1zBz6km21LsJuuKKWrplpjgaQ2s3efbfIvaIRCRLRF4TkQoR2SEiU1pwzgIRUd/uhYfKPvZdKuz2PTa2In5jWiUuTrjr3EHcP3koCzYWcM2TKyirqnM6LBPlit01jq6oC61PHuBNIC0xE+8QVy4wFXhcRIY0V1lEptJ8z2iGqqb5HoMCitaYILh6TC8evepEPtt1gCtnL6OgvNrpkEyUUlVKHN7LA1owbCUiZx7hcIuiF5FU4BJgqKq6gcUi8iYwDfhZE/UzgP8FrgE+bclrGOO0C07oSnpyArfMXcVlf/2U524a4/jQgok+B6vqqW9QxyfMWzLn8eRRju9sQRsDAY+qbvIrWwOMb6b+g8DjQHPXQT4kIr8GNgL/raoftyAGY4Lu9IE5PHvTaH7w1AqumPUp828aQ4+sdk6HZaJIcYX37vJsB/fygBYMW6lqn6M9WvA6aUDjO6rKgPaNK4pIHt690R9tpq2fAn2BbsBsvJcP92uqoojcLCL5IpJfWFjYgjCNab2TenbguRvHUF5dz+WzPmVbUYXTIZkoEg43CELbzHm0hBtIb1SWDpT7F4hIHPAY8ENVrW+qIVVdrqrlqlqjqs8AS4Dzm6k7W1XzVDUvJyen1W/CmJYa1j2D+TeNoba+gctnfcrmgvKjn2RMCxxaUdfpOY9QJY9NgEtEBviVDQfWNqqXDuQBL4jIPmClr3y3iIxrpu0WX/FlTCgN7prO8zePAeDqJ1awq8T2SjeBUVW+3l/O3GU7mLtsBy+v2s3CTd5RFCcXRYQA7vNoDVWtEJFXgftE5EZgBDAJOLVR1TKgq9/PPYAVwMlAoYhkAqOBhUA9cAVwOvCjIIZvzDEbkNueeTeM5vJZnzLtyeW8eOspdGqf7HRYJozV1jewbGsxH67fz4KNBewq+e62yKmJ8Y4PW4Vyc4LbgKeAAqAYmK6qa0WkJ7AOGKyqO/GbJPfdhAiwX1XrfVdh3Y93EyoPsAGYrKp2r4cJW4M6t+fp60Yy9W/LuebJFbxwyylkpCQ4HZYJIxU19Xy4oYB/rN3Hwo2FlNfUk5wQx2n9s5k+vj/jBmSTnBBPdZ2HqjoP6ckJJLpCNXDUNImVNXny8vI0Pz/f6TBMDPvk60JumJPPsO4ZzLthNCmJdid6rCutrGXO0u08vWQ7ZVV1ZKclcvbxuZwzOJex/bPDYrUCEVmlqnmNy21bNGNCZNyAHP585Qhuf241M55bzaxpJ+OKd/bbo3FGdZ2Hh/+1iXmf7qCi1sPZx+dy07g+5PXOIj4uMqZw7V+uMSF03rAu3DdpKB9uKOB/Xv/KVuONUY99tJlZC7dy5vG5vP+jcTzxgzxG9+0YMYkDrOdhTMhdPaYX+8qq+ctHm+mckcyPzh7odEgmhIrdNTy5eBvnD+vMo1ed6HQ4x8yShzEO+M9zB7LvYDV/+tfX5KYnc9Wonk6HZEJk1qKtVNV5uOucyP7SYMnDGAeICA9dPIwidw3//dqXZKclcc7gXKfDMkFWcLCaZ5ZuZ/KIbvTv9J0FNiKKzXkY45CE+DhmTjmJYd0zmfHcavK3lzgdkgmyv3y0GU+D8sOzBxy9cpiz5GGMg1KTXDx97Ui6ZaZw/ZyVbNpvy5hEq90HKpm/YieX5fWgV8dUp8NpNUsexjgsKzWRZ64fRXJCPNc8uYJvSr97R7GJfI9+uBkR4c6z+jsdSpuw5GFMGOiR1Y5nrh9FRW09055cTrG7xumQTBty19Tz8urdXDWyB10yomOPF0sexoSJ47uk89S1I9lTWsU1T63gYLVtZxsttha68TQop/bPdjqUNmPJw5gwMrJ3Fn+9+mQ27S/nxjn5VNV6nA7JtIEthW4A+uWkORxJ27HkYUyYmTCoEw9fMYKVO0qY/uwqausbnA7JtNKWggpccUKvjtGzq6QlD2PC0AUndOWhi4bx8cZCfvLyGhoabBmTSLal0E3Pju1IiKK1zOwmQWPC1JWjelJSWctv399ITloS/3PBYKdDMsdoS6E7qoaswJKHMWFt+vh+FBys4YnF2+iUnsTNp/dzOiQToHpPA9uLKjnzuOhaQcCShzFhTET4xQWDKXLX8OC7G8hOS+Lik7o7HZYJwO4DVdR6GuiXE/k3BvoL2QCciGSJyGsiUiEiO0RkSgvOWSAiKiIuv7KA2zEmksXFCX+4fDhj+3fknpe/4P2v9jodkgnA5gLflVadomvYKpSzNzOBWiAXmAo8LiJDmqssIlNpumcUUDvGRIMkVzyzpuUxvEcmM577zBJIBDl8mW62JY+AiUgqcAlwr6q6VXUx8CYwrZn6GcD/Ave0ph1joklakos51420BBJhthS6yU5LIqNddO1bH6qex0DAo6qb/MrWAM31GB4EHgf2taYdEblZRPJFJL+wsPDYIjcmjLRPTvhWAnn3S0sg4W5LYUXUzXdA6JJHGlDWqKwM+M6C9iKSB4wFHm1NOwCqOltV81Q1LycnJ+CgjQlH7ZMTeOb6UYzokcntz63mb4u22na2YUpV2Vzgjrr5Dghd8nAD6Y3K0oFvrT8tInHAY8APVbX+WNsxJtqlJbmYe8NozhvamQfeXc/PXvnS7kQPQyUVtZRV1dE/yu7xgNAlj02AS0T8d0AZDqxtVC8dyANeEJF9wEpf+W4RGRdAO8ZEvZTEeP5y1UnccWZ/XsjfxbQnl3OgotbpsIyfLYUVQPRdaQUhSh6qWgG8CtwnIqkiMhaYBMxtVLUM6AqM8D3O95WfDCwPoB1jYkJcnPCf5w7iT1eM4LOdpVw5exmF5bace7j494KINufRGrcBKUABMB+YrqprRaSniLhFpKd67Tv0AA7Ncu9X1dojtRPC92FM2Jl8YjfmXDeSnSWVXDH7U/aVVTsdksF7j0dyQhxdo2QPD38hSx6qWqKqk1U1VVV7qupzvvKdqpqmqjubOGe7qor//Edz7RgT607tn83fbxhFwcEaLp/1KbsPVDodUszbUuimb3YacXHidChtLnqWeDTGMLJ3FvNuHE1pZS1XzFrG5gK7lsRJWwqj80orsORhTNQZ0SOT524aQ019AxfNXMpHGwucDikmVdd52H2gKirnO8CShzFRaWi3DN6YMZYeWe24Yc5KnvjE7gUJtW1FFahG1+6B/ix5GBOlumWm8PL0U5g4pDP3v7Oee17+wu4FCaFo3HrWnyUPY6JYu0QXM6ecxJ1n9uelVbu55qnllFbavSChsKWgAhHok23DVsaYCBQXJ9zluxdk9Y5SLn5sKduLKpwOK+ptKXTTLTOFlMR4p0MJCksexsSIySd2Y96NozlQWctFjy1h+dZip0OKWjX1HpZuKWJYtwynQwkaSx7GxJBRfbJ47baxdEhNZMoTy21RxSB5/6t9FLlruXJUT6dDCRpLHsbEmN7Zqbx++1jOHZzLA++u59Z5qyirqnM6rKjy7LKd9OrYjnH9s50OJWgseRgTg9KTE3hs6knce8FgPlxfwIV/WcxX3zTe7cAciw37DrJiewlTR/eMyjvLD7HkYUyMEhFuOK0PL9wyhpq6Bi5+fCnPLd9pw1it9OyynSS64rjs5B5OhxJUljyMiXEn98rinTtPY3SfLP7rtS+568U1VNQ0tZ2OORp3TT2vrt7NBSd0oUNqotPhBJUlD2MMHdOSmHPdKO46ZyBvfP4Nk2YuYXOB2+mwIs7rn31DRa2Hq8f0cjqUoLPkYYwBID5OuPOsAcy7YTQHKmqZ9JfFvGd7pLeYqjJv2Q6GdE3nxB6ZTocTdJY8jDHfcmr/bN6+8zQG5LZn+rOreejd9dR7bFmTo1m14wAb9pUzbUwvRKJ3ovyQkCUPEckSkddEpEJEdojIlGbqXSkiG0WkTEQKROQZEUn3O/6xiFT7NpByi8jGUL0HY2JFl4wUXrhlDNPG9GLWoq1c/eRy26HwKF5ZvZt2ifFcOKKr06GERCh7HjOBWiAXmAo8LiJDmqi3BBirqhlAX8AF3N+ozgzfBlJpqjoomEEbE6uSXPH83+Sh/OGy4Xy+q5QLHv2EVTsOOB1WWKr3NPDB2v2cdXwu7RJdTocTEiFJHiKSClwC3KuqblVdDLwJTGtcV1V3qWqRX5EH6B+KOI0x33XJyd15dfpYkhPiuXL2pzyzdLtdztvI8m0llFTU8v1hnZ0OJWRC1fMYCHhUdZNf2RqgqZ4HInKaiJQB5XiTzp8aVXlIRIpEZImITGj7cI0x/gZ3TefNGacxfmAO//vmWqbPW02x24axDnnny720S4xnwqBOTocSMqFKHmlA49tXy4D2TVVW1cW+YavuwO+A7X6Hf4p3OKsbMBt4S0T6NdWOiNwsIvkikl9YWNi6d2BMjMtISWD2tDx+ft5xLNhQwMQ/LeKf6/Y7HZbj6j0NfPDVPs48rhPJCdG5gm5TQpU83EB6o7J0vD2LZqnqN8D7wPN+ZctVtVxVa1T1GbxzJOc3c/5sVc1T1bycnJxWvQFjjHd591vG9+PNO8aS0z6Zm/6ez90vrYnptbFWbCuhuKKW7w/r4nQoIRWq5LEJcInIAL+y4cDaFpzrAprsWfgoEP3XxRkTRo7rnM4bt49lxhn9ee2zbzjnjwt5/6t9TofliHe+3EtKQmwNWUGIkoeqVgCvAveJSKqIjAUmAXMb1xWRqSLSU7x6AQ8AH/qOZYrIRBFJFhGXiEwFTgc+CMX7MMb8W6IrjrsnDuKN28eSnZbErfNWcevcVRQcrHY6tJDxNCgfrPUOWUXrpk/NCeWlurcBKUABMB+YrqprfYnCLSKHFr4fDCzFO9S1BNgI3OQ7loD3st1CoAi4A5isqnavhzEOGdotgzdmjOWe7w1iwcYCzvrjQuYu20FDQ/RfkbViWwlF7lrOj7EhKwCJlUvu8vLyND8/3+kwjIlqWwvd/M/rX7F0SzEjemTy4EXDGNy18XRn9Lj39a94adUuVt97TtTe3yEiq1Q1r3G5LU9ijGkzfXPSePbG0Tx8xXB2lVTyH39ZzEPvrae6zuN0aG3O06C857vKKloTx5FY8jDGtCkR4aITu/Phf47nspO7M2vhVs5/JPruTv9s5wGK3DWcNzT2hqzAkocxJkgy2yXy60tOYO4No6ipa+DSvy7l/rfXRU0vZMGGAlxxwvhBsXkbgCUPY0xQjRuQwwc/Pp0po3ryxOJtTJ65hC2Fkb9XyIINBeT17kB6coLToTjCkocxJujSklw8cNEwnr5uJPsPVnPho4t54/NvnA7rmO0prWLDvnLOPC627u3wZ8nDGBMyZwzqxLs/HMfxXdL54fOf87NXvsAdgVvefrSxAPC+n1hlycMYE1JdMlJ4/uYx3DahHy/k72Liw4tYtCmy1p77aEMB3Tuk0L9TmtOhOMaShzEm5FzxcdzzveN4+dZTSEqI45qnVnjXyKoM/zWyqus8LNlczJnHdYqJHQObY8nDGOOYk3tl8e6d47htQj/vGlkPL2TBhvBeqXfZ1mKq6jycEcPzHWDJwxjjsOSEeO753nG8cftYOrRL5Po5+fzkpTUcrA7PXsjHGwtJTojjlL4dnQ7FUZY8jDFhYWi3DN68Yyy3TejHK6t3872HF/H+V3vDatdCVWXBhgLG9suOqb07mmLJwxgTNpJc3l7IK9NPJTXJxa3zVjN55hIWf1109JNDYEthBTtLKpkQ40NWYMnDGBOGTuzZgfd+OI7fXnoCRe5arn5yOVP+toz1ew86GtdHG7yX6Mby/R2HWPIwxoQlV3wcl+f1YMHd4/nFBYNZv/cg33/kE3755lrHrspasKGAQbnt6ZaZ4sjrhxNLHsaYsJbkiuf60/rw0d0TuHpML/7+6XbO+MPHvLByZ0j3DNlXVs3ybcWcOyQ3ZK8ZzkKWPEQkS0ReE5EKEdkhIlOaqXeliGwUkTIRKRCRZ0QkPdB2jDHRJbNdIvdNGspbd5xG3+xUfvrKl1z616Ws2xOaoaxXVu+mQeGSk7qH5PXCXSh7HjOBWiAXmAo8LiJDmqi3BBirqhlAX7x7mN9/DO0YY6LQkK4ZvHTrKfz+suHsKK7kgkc/4b631lEexEt7VZUX83cxuk8WvbNTg/Y6kSQkyUNEUoFLgHtV1a2qi4E3gWmN66rqLlX1v7TCA/QPtB1jTPQSES492btnyFWjevL00m1M+N3HzF22g3pPQ5u/3optJeworuSKkT3avO1IFaqex0DAo6qb/MrWAE32GETkNBEpA8rxJos/HUs7xpjoltkukQcuGsYbt4+lX6c07n39Kyb+aRH/Wre/Te8PeSF/F2lJrpjd+KkpoUoeaUBZo7IyoH1TlVV1sW/YqjvwO2D7sbQjIjeLSL6I5BcWRtbCa8aYljuheyYv3DyGv12Thyrc+Pd8rpuzkl0lla1uu7y6jne/3Mt/DO9KSmJs3xjoL1TJww2kNypLx9uzaJaqfgO8Dzx/LO2o6mxVzVPVvJyc2Nzty5hYISKcMziXD358OvdeMJiV20o45+GF/HXhFupaMZT19hd7qa5rsCGrRkKVPDYBLhEZ4Fc2HFjbgnNdQL82aMcYEwMS4uO44bQ+/POu8Zw+IIdfv7eBCx5ZzEcbC45pKOuFlbsYmJvG8O4ZQYg2coUkeahqBfAqcJ+IpIrIWGASMLdxXRGZKiI9xasX8ADwYaDtGGNiW9fMFGZfk8fsaSdTVefhuqdXMuVvy1mzq7TFbWzaX87nu0q5PK9HTC+/3pRQXqp7G5ACFADzgemqutaXKNwi0tNXbzCwFO8Q1RJgI3DT0doJ0XswxkSYc4d05l93jedXFw5h0/5yJs1cwi1z84+aROo9DfzhHxtxxQkXndgtNMFGEAmnFSuDKS8vT/Pz850OwxjjIHdNPX9btJWnl2zjYHU9Y/t35LYJ/Tm1X8dv9Sxq6j3cOf8zPli7n5+fdxy3jO93hFajm4isUtW875Rb8jDGxJry6jqeW76TJxZvo7C8hiFd07nhtD5ccEJXGlS5Ze4qFm4q5BcXDOb60/o4Ha6jLHlY8jDGNFJd5+HV1d/w1JJtbC5w06l9Ep3Sk1i75yAPXTSMK0f1PHojUa655OFyIhhjjAkHyQnxTBndkytH9mDR14U8uXgby7eW8KcrRjBphM1zHIklD2NMzIuLEyYM6sSEQZ2o9zTgircFx4/GPiFjjPFjiaNl7FMyxhgTMEsexhhjAmbJwxhjTMAseRhjjAmYJQ9jjDEBs+RhjDEmYJY8jDHGBCxmlicRkUKglG/vRJjh93NTzw/9mQ3476veUv5tBnK8cfmRfnYi7ubqtKTsSPH6l9ln3rLjR/vMA3nudOyR+pmHW9zN1TnW/5+9VPW7u+mpasw8gNnN/dzUc78/89vi9Vp6/EhxhkPczdVpSdmR4rXPvPVxtyRW+8yjO+6W/LsINPamHrE2bPXWEX5u6nnj+q19vZYeP1KcjX92Iu7m6rSk7Gjx2mce2PGjfeaBPj8Wsf6Zh1vczdU51v+fTYqZYavWEJF8bWJVyXAXqXFD5MYeqXFD5MZucTsj1noex2q20wEco0iNGyI39kiNGyI3dovbAdbzMMYYEzDreRhjjAmYJQ9jjDEBs+TRRkTkNBH52PfYJCIPOx1TS4nIBBH5UEQ+EpGLnI6nJUSkt4gU+n3m370OPcyJyFW++48igojkishSEVkoIgtEpIvTMbWUiJwiIp/6Yp8vIglOx9QSIpIhIitExC0iQ52Ox5/NeQSBiMwBnlbVhU7HcjQikgy8BFyiqrVOx9NSItIb+L2qXup0LMdCROLwfu59VPUkp+NpCRGJB1RVG0TkWqC7qt7vcFgtIiJdgQOqWiUiDwCfqerLTsd1NL4klwn8Du+/96+cjejfrOfRxnx/2aOAT5yOpYVOBaqAt0TkNRHp7HRAARgrIp+IyIMiIk4HE6ApwMtAg9OBtJSqelT1ULztgbVOxhMIVd2jqlW+H+uJkM9dVetUNSx7pzGZPERkhojki0iNr5fgfyzL90u0QkR2iMiUAJs/B/jQ7z9ZmwlS3LlAf+A/gL8Bv2zToAla3Hvxxn060Am4uG2jPhxfm8fu+wZ/OfBCEEI+9BpB+TcuIiNEZDkwA1jdxmEfeo2g/f8UkT7AecDbbRjyobaD+Xsl7LicDsAhe4D7gYlASqNjM4FavL9URwDviMgaVV3r+1beVFf3UlXd53t+GfB0UKIOQtx41/taoqq1IvIh8LNIiNv3edcAiMirwBjglUiI3dfWi77hnyCEHJy4VXWfqn4OjBaRy4GfA7dGSuwikg48A0wL0hBtMH+vhJ9jWVslWh54/6Ln+P2civcveKBf2Vzg1y1sLwH4CoiLlLiBjsC/AAFG452riYS40/2ePwRcE0Gf+W+AfwDv41147pEIiTvJ7/lE4I8R9Jm7gHeAM4MZc1vH7Vd/DjA02LEH8ojVnkdzBgIeVd3kV7YGGN/C888GFmgQhqyO4pjjVtViEXkNWIh3HPj64ITYpNZ83uNF5JdAJbANuLftwzui1nzmPz30XLxLVNwZhPia05rP/CQR+Q3gAaoJ7b8VaF3sV+H9cvQLEfkF8LiqBm3YsJFW/V4RkXfx9lYGicgsVZ3T5hEeA0se35bGd5csLsM7OXhUqvoe8F5bB9UCrY17Jt5udagdc9yq+hatX2CuNVr1mR+ioV/bqDWf+ad455ic0prY5+L9tu+E1v7/PL/NI2oDMTlhfgRuIL1RWTpQ7kAsgbC4Qy9SY4/UuCFyY4/UuI/Ikse3bQJcIjLAr2w44X9JosUdepEae6TGDZEbe6TGfUQxmTxExOW7OS4eiBeRZBFxqWoF8Cpwn4ikishYYBLOdXe/xeIOvUiNPVLjhsiNPVLjPmZOz9g78cB7L4M2evzSdywLeB2oAHYCU5yO1+K22GMl7kiOPVLjPtaHLU9ijDEmYDE5bGWMMaZ1LHkYY4wJmCUPY4wxAbPkYYwxJmCWPIwxxgTMkocxxpiAWfIwxhgTMEsexgSZiIwTkY1Ox2FMW7LkYaKaiGwXkbOdjEFVP1HVQcFoW0Q+FpFqEXGLSJGIvCoiXVp47gQR2R2MuEz0s+RhTCv5tpV10gxVTcO7LW8a8HuH4zExwJKHiUkiEiciPxORLSJSLCIvikiW3/GXRGSfiJSJyCIRGeJ3bI6IPC4i74pIBXCGr4dzt4h84TvnBd8ied/5hn+kur7j94jIXhHZIyI3ioiKSP+jvSdVLcW7ftIIv7auE5H1IlIuIltF5BZfeSrevWe6+notbhHperTPxZhDLHmYWHUnMBnvbm5dgQN8e0Os94ABQCdgNfBso/OnAA/g3dBnsa/scuB7QB/gBODaI7x+k3VF5HvAXXh3pexPy3exREQ6AhcDm/2KC4AL8O4fcR3wsIicpN6VXs8D9qhqmu+xh6N/LsYAljxM7LoF+G9V3a2qNXhXRL1URFwAqvqUqpb7HRsuIhl+57+hqktUtUFVq31lj6jqHlUtwbvL4YgjvH5zdS/Hu4/8WlWtBH7VgvfyiIiUAUVANnDHoQOq+o6qblGvhXj3Th93hLaO+LkYc4glDxOregGviUipiJQC6/HuzZ0rIvEi8mvf0M1BYLvvnGy/83c10eY+v+eVeOcfmtNc3a6N2m7qdRq7U1Uz8PZgOgDdDx0QkfNEZJmIlPje5/l8+3001uzn0oI4TAyx5GFi1S7gPFXN9Hskq+o3eIekJuEdOsoAevvOEb/zg7WXwV78fvkDPVp6oqp+CdwPzBSvJOAVvBPouaqaCbzLv99HU+/hSJ+LMYdZ8jCxIMG3q9uhhwv4K/CAiPQCEJEcEZnkq98eqAGKgXbAgyGM9UXgOhE5XkTaAb8I8Pxn8M7TXAgkAklAIVAvIucB5/rV3Q90bDQcd6TPxZjDLHmYWPAuUOX3+CXwZ+BN4B8iUg4sA0b76v8d2AF8A6zzHQsJVX0PeAT4CO/E96e+QzUtPL/Wd/69qlqOdwL8RbwT31PwvudDdTcA84GtvmGqrhz5czHmMNtJ0JgwJiLHA18BSapa73Q8xhxiPQ9jwoyIXCQiiSLSAfgN8JYlDhNuLHkYE35uwTtPsQXvlU7TnQ3HmO+yYStjjDEBs56HMcaYgFnyMMYYEzBLHsYYYwJmycMYY0zALHkYY4wJmCUPY4wxAft/GlCbjCJYIjoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -9435,7 +9615,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 121, "metadata": {}, "outputs": [ { @@ -9453,33 +9633,33 @@ " \n", "
\n", " 0\n", - " 0.069705\n", - " 0.062389\n", - " 00:11\n", + " 0.068459\n", + " 0.061185\n", + " 00:09\n", "
\n", "
\n", " 1\n", - " 0.056253\n", - " 0.058489\n", - " 00:11\n", + " 0.056469\n", + " 0.058471\n", + " 00:09\n", "
\n", "
\n", " 2\n", - " 0.048385\n", - " 0.052256\n", - " 00:11\n", + " 0.048689\n", + " 0.052404\n", + " 00:09\n", "
\n", "
\n", " 3\n", - " 0.043400\n", - " 0.050743\n", - " 00:11\n", + " 0.044529\n", + " 0.052138\n", + " 00:09\n", "
\n", "
\n", " 4\n", - " 0.040358\n", - " 0.050986\n", - " 00:11\n", + " 0.040860\n", + " 0.051236\n", + " 00:09\n", "
\n", "
\n", "" @@ -9505,7 +9685,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 122, "metadata": {}, "outputs": [ { @@ -9521,10 +9701,10 @@ { "data": { "text/plain": [ - "0.2258" + "0.226353" ] }, - "execution_count": null, + "execution_count": 122, "metadata": {}, "output_type": "execute_result" } @@ -9545,9 +9725,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 123, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Path('models/nn.pth')" + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "learn.save('nn')" ] @@ -9606,7 +9797,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 124, "metadata": {}, "outputs": [], "source": [ @@ -9623,16 +9814,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 125, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.22291" + "0.222134" ] }, - "execution_count": null, + "execution_count": 125, "metadata": {}, "output_type": "execute_result" } diff --git a/clean/01_intro.ipynb b/clean/01_intro.ipynb index 52498ffde..4c9ca71ff 100644 --- a/clean/01_intro.ipynb +++ b/clean/01_intro.ipynb @@ -162,7 +162,7 @@ "source": [ "#hide\n", "# For the book, we can't actually click an upload button, so we fake it\n", - "# uploader = SimpleNamespace(data = ['images/chapter1_cat_example.jpg'])" + "uploader = SimpleNamespace(data = ['images/chapter1_cat_example.jpg'])" ] }, { @@ -479,7 +479,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "It can be hard to know in pages and pages of prose what the key things are that you really need to focus on and remember. So, we've prepared a list of questions and suggested steps to complete at the end of each chapter. All the answers are in the text of the chapter, so if you're not sure about anything here, reread that part of the text and make sure you understand it. Answers to all these questions are also available on the [book's website](https://book.fast.ai). You can also visit [the forums](https://forums.fast.ai) if you get stuck to get help from other folks studying this material." + "It can be hard to know in pages and pages of prose what the key things are that you really need to focus on and remember. So, we've prepared a list of questions and suggested steps to complete at the end of each chapter. All the answers are in the text of the chapter, so if you're not sure about anything here, reread that part of the text and make sure you understand it. Answers to all these questions are also available on the [book's website](https://book.fast.ai). You can also visit [the forums](https://forums.fast.ai) if you get stuck to get help from other folks studying this material.\n", + "\n", + "For more questions, including detailed answers and links to the video timeline, have a look at Radek Osmulski's [aiquizzes](http://aiquizzes.com/howto)." ] }, { diff --git a/clean/02_production.ipynb b/clean/02_production.ipynb index c413cc58d..fe9423703 100644 --- a/clean/02_production.ipynb +++ b/clean/02_production.ipynb @@ -7,7 +7,7 @@ "outputs": [], "source": [ "#hide\n", - "!pip install -Uqq fastbook\n", + "# !pip install -Uqq fastbook\n", "import fastbook\n", "fastbook.setup_book()" ] @@ -196,7 +196,7 @@ " dest = (path/o)\n", " dest.mkdir(exist_ok=True)\n", " results = search_images_bing(key, f'{o} bear')\n", - " download_images(dest, urls=results.attrgot('content_url'))" + " download_images(dest, urls=results.attrgot('contentUrl'))" ] }, { @@ -592,7 +592,7 @@ "source": [ "#hide\n", "# !pip install voila\n", - "# !jupyter serverextension enable voila —sys-prefix" + "# !jupyter serverextension enable --sys-prefix voila " ] }, { @@ -700,4 +700,4 @@ }, "nbformat": 4, "nbformat_minor": 4 -} \ No newline at end of file +} diff --git a/clean/04_mnist_basics.ipynb b/clean/04_mnist_basics.ipynb index 200f6ac4f..f6b101643 100644 --- a/clean/04_mnist_basics.ipynb +++ b/clean/04_mnist_basics.ipynb @@ -620,7 +620,7 @@ "metadata": {}, "outputs": [], "source": [ - "def mse(preds, targets): return ((preds-targets)**2).mean()" + "def mse(preds, targets): return ((preds-targets)**2).mean().sqrt()" ] }, { diff --git a/clean/05_pet_breeds.ipynb b/clean/05_pet_breeds.ipynb index d28dc5c48..3d52d8f64 100644 --- a/clean/05_pet_breeds.ipynb +++ b/clean/05_pet_breeds.ipynb @@ -625,7 +625,7 @@ "1. Why do we first resize to a large size on the CPU, and then to a smaller size on the GPU?\n", "1. If you are not familiar with regular expressions, find a regular expression tutorial, and some problem sets, and complete them. Have a look on the book's website for suggestions.\n", "1. What are the two ways in which data is most commonly provided, for most deep learning datasets?\n", - "1. Look up the documentation for `L` and try using a few of the new methods is that it adds.\n", + "1. Look up the documentation for `L` and try using a few of the new methods that it adds.\n", "1. Look up the documentation for the Python `pathlib` module and try using a few methods of the `Path` class.\n", "1. Give two examples of ways that image transformations can degrade the quality of the data.\n", "1. What method does fastai provide to view the data in a `DataLoaders`?\n", diff --git a/clean/07_sizing_and_tta.ipynb b/clean/07_sizing_and_tta.ipynb index 6fc95e0d0..3a150f634 100644 --- a/clean/07_sizing_and_tta.ipynb +++ b/clean/07_sizing_and_tta.ipynb @@ -66,7 +66,7 @@ "metadata": {}, "outputs": [], "source": [ - "model = xresnet50()\n", + "model = xresnet50(n_out=dls.c)\n", "learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(), metrics=accuracy)\n", "learn.fit_one_cycle(5, 3e-3)" ] @@ -129,7 +129,7 @@ "metadata": {}, "outputs": [], "source": [ - "model = xresnet50()\n", + "model = xresnet50(n_out=dls.c)\n", "learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(), metrics=accuracy)\n", "learn.fit_one_cycle(5, 3e-3)" ] @@ -148,7 +148,7 @@ "outputs": [], "source": [ "dls = get_dls(128, 128)\n", - "learn = Learner(dls, xresnet50(), loss_func=CrossEntropyLossFlat(), \n", + "learn = Learner(dls, xresnet50(n_out=dls.c), loss_func=CrossEntropyLossFlat(), \n", " metrics=accuracy)\n", "learn.fit_one_cycle(4, 3e-3)" ] diff --git a/clean/08_collab.ipynb b/clean/08_collab.ipynb index 7605c47b2..e1c73dc3a 100644 --- a/clean/08_collab.ipynb +++ b/clean/08_collab.ipynb @@ -503,7 +503,6 @@ "movie_w = learn.model.movie_factors[top_idxs].cpu().detach()\n", "movie_pca = movie_w.pca(3)\n", "fac0,fac1,fac2 = movie_pca.t()\n", - "idxs = np.random.choice(len(top_movies), 50, replace=False)\n", "idxs = list(range(50))\n", "X = fac0[idxs]\n", "Y = fac2[idxs]\n", diff --git a/clean/09_tabular.ipynb b/clean/09_tabular.ipynb index 5d5496ca2..04b952ab7 100644 --- a/clean/09_tabular.ipynb +++ b/clean/09_tabular.ipynb @@ -7,7 +7,7 @@ "outputs": [], "source": [ "#hide\n", - "!pip install -Uqq fastbook\n", + "!pip install -Uqq fastbook kaggle waterfallcharts treeinterpreter dtreeviz\n", "import fastbook\n", "fastbook.setup_book()" ] @@ -85,7 +85,7 @@ "cred_path = Path('~/.kaggle/kaggle.json').expanduser()\n", "if not cred_path.exists():\n", " cred_path.parent.mkdir(exist_ok=True)\n", - " cred_path.write(creds)\n", + " cred_path.write_text(creds)\n", " cred_path.chmod(0o600)" ] }, @@ -116,7 +116,7 @@ "outputs": [], "source": [ "if not path.exists():\n", - " path.mkdir()\n", + " path.mkdir(parents=true)\n", " api.competition_download_cli('bluebook-for-bulldozers', path=path)\n", " file_extract(path/'bluebook-for-bulldozers.zip')\n", "\n", @@ -344,7 +344,7 @@ "metadata": {}, "outputs": [], "source": [ - "(path/'to.pkl').save(to)" + "save_pickle(path/'to.pkl',to)" ] }, { @@ -361,7 +361,7 @@ "outputs": [], "source": [ "#hide\n", - "to = (path/'to.pkl').load()" + "to = load_pickle(path/'to.pkl')" ] }, { @@ -390,7 +390,7 @@ "metadata": {}, "outputs": [], "source": [ - "draw_tree(m, xs, size=7, leaves_parallel=True, precision=2)" + "draw_tree(m, xs, size=10, leaves_parallel=True, precision=2)" ] }, { @@ -829,8 +829,8 @@ "metadata": {}, "outputs": [], "source": [ - "(path/'xs_final.pkl').save(xs_final)\n", - "(path/'valid_xs_final.pkl').save(valid_xs_final)" + "save_pickle(path/'xs_final.pkl', xs_final)\n", + "save_pickle(path/'valid_xs_final.pkl', valid_xs_final)" ] }, { @@ -839,8 +839,8 @@ "metadata": {}, "outputs": [], "source": [ - "xs_final = (path/'xs_final.pkl').load()\n", - "valid_xs_final = (path/'valid_xs_final.pkl').load()" + "xs_final = load_pickle(path/'xs_final.pkl')\n", + "valid_xs_final = load_pickle(path/'valid_xs_final.pkl')" ] }, { @@ -1157,6 +1157,15 @@ "cat_nn.remove('saleElapsed')" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_nn['saleElapsed'] = df_nn['saleElapsed'].astype(int)" + ] + }, { "cell_type": "code", "execution_count": null, @@ -1175,7 +1184,7 @@ "xs_filt2 = xs_filt.drop('fiModelDescriptor', axis=1)\n", "valid_xs_time2 = valid_xs_time.drop('fiModelDescriptor', axis=1)\n", "m2 = rf(xs_filt2, y_filt)\n", - "m_rmse(m, xs_filt2, y_filt), m_rmse(m2, valid_xs_time2, valid_y)" + "m_rmse(m2, xs_filt2, y_filt), m_rmse(m2, valid_xs_time2, valid_y)" ] }, { @@ -1217,15 +1226,6 @@ "y.min(),y.max()" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from fastai.tabular.all import *" - ] - }, { "cell_type": "code", "execution_count": null, @@ -1393,7 +1393,7 @@ "metadata": {}, "source": [ "1. Pick a competition on Kaggle with tabular data (current or past) and try to adapt the techniques seen in this chapter to get the best possible results. Compare your results to the private leaderboard.\n", - "1. Implement the decision tree algorithm in this chapter from scratch yourself, and try it on the datase you used in the first exercise.\n", + "1. Implement the decision tree algorithm in this chapter from scratch yourself, and try it on the dataset you used in the first exercise.\n", "1. Use the embeddings from the neural net in this chapter in a random forest, and see if you can improve on the random forest results we saw.\n", "1. Explain what each line of the source of `TabularModel` does (with the exception of the `BatchNorm1d` and `Dropout` layers)." ] diff --git a/clean/12_nlp_dive.ipynb b/clean/12_nlp_dive.ipynb index 27eb9d7dc..92874ca36 100644 --- a/clean/12_nlp_dive.ipynb +++ b/clean/12_nlp_dive.ipynb @@ -491,14 +491,14 @@ "\n", " def forward(self, input, state):\n", " h,c = state\n", - " h = torch.stack([h, input], dim=1)\n", + " h = torch.cat([h, input], dim=1)\n", " forget = torch.sigmoid(self.forget_gate(h))\n", " c = c * forget\n", " inp = torch.sigmoid(self.input_gate(h))\n", " cell = torch.tanh(self.cell_gate(h))\n", " c = c + inp * cell\n", " out = torch.sigmoid(self.output_gate(h))\n", - " h = outgate * torch.tanh(c)\n", + " h = out * torch.tanh(c)\n", " return h, (h,c)" ] }, diff --git a/clean/16_accel_sgd.ipynb b/clean/16_accel_sgd.ipynb index c690c7a8e..2158879ee 100644 --- a/clean/16_accel_sgd.ipynb +++ b/clean/16_accel_sgd.ipynb @@ -257,7 +257,7 @@ "source": [ "def average_sqr_grad(p, sqr_mom, sqr_avg=None, **kwargs):\n", " if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data)\n", - " return {'sqr_avg': sqr_avg*sqr_mom + p.grad.data**2}" + " return {'sqr_avg': sqr_mom*sqr_avg + (1-sqr_mom)*p.grad.data**2}" ] }, { diff --git a/clean/17_foundations.ipynb b/clean/17_foundations.ipynb index 72cfbcadf..25b3c7dcd 100644 --- a/clean/17_foundations.ipynb +++ b/clean/17_foundations.ipynb @@ -938,7 +938,7 @@ " \n", " def bwd(self, out, inp):\n", " inp.g = out.g @ self.w.t()\n", - " self.w.g = self.inp.t() @ self.out.g\n", + " self.w.g = inp.t() @ self.out.g\n", " self.b.g = out.g.sum(0)" ] }, diff --git a/clean/app_jupyter.ipynb b/clean/app_jupyter.ipynb index f0d9892a4..390ba34cc 100644 --- a/clean/app_jupyter.ipynb +++ b/clean/app_jupyter.ipynb @@ -7,7 +7,7 @@ "outputs": [], "source": [ "#hide\n", - "# !pip install -Uqq fastbook\n", + "!pip install -Uqq fastbook\n", "import fastbook\n", "fastbook.setup_book()" ] diff --git a/tools/clean.py b/tools/clean.py old mode 100644 new mode 100755 index 8e36626e9..298e6b2b0 --- a/tools/clean.py +++ b/tools/clean.py @@ -1,3 +1,5 @@ +#!/usr/bin/env python + import nbformat from nbdev.export import * from nbdev.clean import *