forked from sheng-z/figet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
executable file
·178 lines (143 loc) · 5.69 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python
# encoding: utf-8
from __future__ import print_function
import argparse
from tqdm import tqdm
import torch
import figet
from figet.context_modules.doc2vec import Doc2Vec
log = figet.utils.get_logging()
def make_vocabs(args):
token_vocab = figet.Dict(
[figet.Constants.PAD_WORD, figet.Constants.UNK_WORD],
lower=args.lower)
feature_vocab = figet.Dict([figet.Constants.UNK_WORD])
type_vocab = figet.Dict()
all_files = (args.train, args.dev, args.test)
bar = tqdm(desc="make_vocabs", total=figet.utils.wc(all_files))
for data_file in all_files:
for line in open(data_file):
bar.update()
fields = line.strip().split("\t")
tokens, types, features = fields[2].split(), fields[3].split(), fields[4].split()
for token in tokens:
token_vocab.add(token)
for feature in features:
feature_vocab.add(feature)
for type_ in types:
type_vocab.add(type_)
bar.close()
token_vocab.prune()
feature_vocab.prune()
type_vocab.prune()
log.info("Created vocabs:\n\t#token: %d\n\t#feature: %d\n\t#type: %d"
% (token_vocab.size(), feature_vocab.size(), type_vocab.size()))
return {"token": token_vocab, "feature": feature_vocab, "type": type_vocab}
def make_data(data_file, vocabs, args, doc2vec=None):
count, ignored = 0, 0
data, sizes = [], []
for line in tqdm(open(data_file), total=figet.utils.wc(data_file)):
line = line.strip()
fields = line.split("\t")
if len(fields) not in {5, 8}:
ignored += 1
continue
start_idx, end_idx = int(fields[0]), int(fields[1])
tokens = fields[2].split()
if len(tokens[start_idx: end_idx]) == 0:
ignored += 1
continue
doc_vec = None
if args.use_doc == 1:
if len(fields) == 5:
doc = fields[2]
else:
doc = fields[7].replace('\\n', ' ').strip()
doc_vec = doc2vec.transform(doc)
mention = figet.Mention(line, doc_vec)
data.append(mention)
sizes.append(len(tokens))
count += 1
if args.shuffle:
log.info("... shuffling sentences.")
perm = torch.randperm(len(data))
data = [data[idx] for idx in perm]
sizes = [sizes[idx] for idx in perm]
log.info('... sorting sentences by size')
_, perm = torch.sort(torch.Tensor(sizes))
data = [data[idx] for idx in perm]
log.info("Prepared %d mentions (%d ignored due to malformed input.)" %(count, ignored))
return data
def make_word2vec(filepath, vocab):
token2vec = {}
log.info("Start loading pretrained word vecs")
for line in tqdm(open(filepath), total=figet.utils.wc(filepath)):
fields = line.strip().split()
token = fields[0]
vec = list(map(float, fields[1:]))
token2vec[token] = torch.Tensor(vec)
ret = []
oov = 0
unk_vec = token2vec["unk"]
for idx in xrange(vocab.size()):
token = vocab.idx2label[idx]
if token == figet.Constants.PAD_WORD:
ret.append(torch.zeros(unk_vec.size()))
continue
if token in token2vec:
vec = token2vec[token]
else:
oov += 1
vec = unk_vec
ret.append(vec)
ret = torch.stack(ret)
log.info("* OOV count: %d" %oov)
log.info("* Embedding size (%s)" % (", ".join(map(str, list(ret.size())))))
return ret
def main(args):
doc2vec = None
if args.use_doc == 1:
doc2vec = Doc2Vec(save_path=args.save_doc2vec)
doc2vec.load()
log.info("Preparing vocabulary...")
vocabs = make_vocabs(args)
log.info("Preparing training...")
train = make_data(args.train, vocabs, args, doc2vec)
log.info("Preparing dev...")
dev = make_data(args.dev, vocabs, args, doc2vec)
log.info("Preparing test...")
test = make_data(args.test, vocabs, args, doc2vec)
log.info("Preparing pretrained word vectors...")
word2vec = make_word2vec(args.word2vec, vocabs["token"])
log.info("Saving pretrained word vectors to '%s'..." % (args.save_data + ".word2vec"))
torch.save(word2vec, args.save_data + ".word2vec")
log.info("Saving data to '%s'..." % (args.save_data + ".data.pt"))
save_data = {"vocabs": vocabs, "train": train, "dev": dev, "test": test}
torch.save(save_data, args.save_data + ".data.pt")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="preprocess.py")
# Input data
parser.add_argument("--train", required=True,
help="Path to the training data.")
parser.add_argument("--dev", required=True,
help="Path to the dev data.")
parser.add_argument("--test", required=True,
help="Path to the test data.")
parser.add_argument("--word2vec", default="", type=str,
help="Path to pretrained word vectors.")
# Ops
parser.add_argument("--use_doc", default=0, type=int,
help="Whether to use the doc context or not.")
parser.add_argument("--shuffle", action="store_true",
help="Shuffle data.")
parser.add_argument('--seed', type=int, default=3435,
help="Random seed")
parser.add_argument('--lower', action='store_true', help='lowercase data')
# Output data
parser.add_argument("--save_data", required=True,
help="Path to the output data.")
parser.add_argument("--save_doc2vec",
help="Path to the doc2vec model.")
args = parser.parse_args()
figet.utils.set_seed(args.seed)
main(args)